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Irreducible components of affine Deligne-Lusztig
varieties
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∗

We determine the top-dimensional irreducible components (and
their stabilizers in the Frobenius twisted centralizer group) of affine
Deligne-Lusztig varieties in the affine Grassmannian of a reductive
group, by constructing a natural map from the set of irreducible
components to the set of Mirković-Vilonen cycles. This in particu-
lar verifies a conjecture by Miaofen Chen and Xinwen Zhu.
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Introduction

0.1. Background

The notion of affine Deligne-Lusztig variety was first introduced by Rapoport
in [44], which plays an important role in understanding geometric and arith-
metic properties of Shimura varieties. Thanks to the uniformization theorem
by Rapoport and Zink [46], the Newton strata of Shimura varieties can be
described explicitly in terms of so-called Rapoport-Zink spaces, whose un-
derlying spaces are special cases of affine Deligne-Lusztig varieties.
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In [34] and [44], Kottwitz and Rapoport made several conjectures on ba-

sic properties of affine Deligne-Lusztig varieties. Most of them have been ver-

ified by a number of authors. We mention the works by Rapoport-Richartz

[45], Kottwitz [33], Gashi [6], and He [21], [23] on the “Mazur inequality”

criterion of non-emptiness; the works by Görtz-Haines-Kottwitz-Reuman

[8], He [24], He-Yu [26], Viehmann [48], Hamacher [10], and Zhu [55] on

the dimension formula; the works by Hartl-Viehmann [18], [19], Milićević-

Viehmann [40], and Hamacher [11] on the irreducible components; and the

works by Viehmann [51], Chen-Kisin-Viehmann [3], and the author [41] on

the connected components in the hyperspecial case (see also [27], [4] for some

partial results in arbitrary parahoric case). For a thorough survey we refer to

the report [22]. These advances on affine Deligne-Lusztig varieties have found

several interesting applications in arithmetic geometry. For example, the di-

mension formula leads to a proof by Hamacher [11] for the Grothendieck

conjecture on the closure relations of Newton strata of Shimura varieties,

and the description of connected components in [3] plays an essential role

in the proof by Kisin [30] for the Langlands-Rapoport conjecture on mod p

points of Shimura varieties (see [56], [25] for recent progresses).

0.2. Main results

This paper is concerned with the parametrization problem of top-dimensional

irreducible components of affine Deligne-Lusztig varieties. The problem was

first considered by Xiao and Zhu in [53], where they solved the unrami-

fied case in order to prove certain cases of the Tate conjecture for Shimura

varieties. We will provide a complete parametrization in the general case.

To state the results, we introduce some notations. Let F be a non-

archimedean local field with residue field Fq. Let F̆ be the completion of the

maximal unramified extension of F . Denote by OF and OF̆ the valuation

rings of F and F̆ respectively. Let σ be the Frobenius automorphism of F̆ /F .

Let G be a connected reductive group over OF . Fix T ⊆ B ⊆ G, where T

is a maximal torus and B = TU is a Borel subgroup with unipotent radical

U . Denote by Y the cocharacter group of T , and by Y + the set of dominant

cocharacters determined by B. Let K = G(OF̆ ). Fix a uniformizer t ∈ OF

and set tλ = λ(t) ∈ G(F̆ ) for λ ∈ Y . Then we have the Cartan decomposition

for the affine Grassmannian

Gr = GrG = G(F̆ )/K = �μ∈Y +Gr◦μ,
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where Gr◦μ = KtμK/K. For b ∈ G(F̆ ) and μ ∈ Y +, the attached affine
Deligne-Lusztig set is defined by

Xμ(b) = XG
μ (b) = {g ∈ G(F̆ ); g−1bσ(g) ∈ KtμK}/K,

which is a subscheme locally of finite type in the usual sense if char(F ) > 0,
and in the sense of Bhatt-Scholze [2] and Zhu [55] if char(F ) = 0. By left
multiplication it carries an action of the group

Jb = JGb = {g ∈ G(F̆ ); g−1bσ(g) = b}.

Up to isomorphism, Xμ(b) only depends on the σ-conjugacy class [b] = [b]G
of b. Thanks to Kottwitz [31], [b] is uniquely determined by two invariants:
the Kottwitz point κG(b) ∈ π1(G)σ = π1(G)/(1−σ)(π1(G)) and the Newton
point νG(b) ∈ YR = Y ⊗ R, see [17, §2.1]. Then Xμ(b) �= ∅ if and only if
κG(t

μ) = κG(b) and νG(b) � μ�, where μ� denotes the σ-average of μ, and
� denotes the partial order on YR such that v � v′ ∈ YR if v′ − v is a
non-negative linear combination of coroots in B. Moreover, in this case, its
dimension is given by

dimXμ(b) = 〈ρG, μ− νG(b)〉 −
1

2
defG(b),

where ρG is the half-sum of roots of B and defG(b) is the defect of b, see
[32, §1.9.1]. Let IrrtopXμ(b) denote the set of top-dimensional irreducible
components of Xμ(b).

The first goal of this paper is to give an explicit description of the set
Jb\IrrtopXμ(b) of Jb-orbits of Irr

topXμ(b). We invoke a conjecture by Miaofen
Chen and Xinwen Zhu which suggests a parametrization of Jb\IrrtopXμ(b)
by certain Mirković-Vilonen cycles.

Recall that Mirković-Vilonen cycles are irreducible components of Sλ ∩
Grμ for μ ∈ Y + and λ ∈ Y , where Sλ = U(F̆ )tλK/K and Grμ = Gr◦μ. We

write MVμ = �λMVμ(λ) with MVμ(λ) = Irr(Sλ∩Grμ) the set of irreducible
components.

Let Ĝ be the Langlands dual of G defined over Ql with l �= char(k).

Denote by Vμ = V Ĝ
μ the irreducible Ĝ-module of highest weight μ. The crys-

tal basis (or the canonical basis) Bμ = BĜ
μ of Vμ was first constructed by

Lusztig [38] and Kashiwara [29]. In [1, Theorem 3.1], Braverman and Gaits-
gory proved that the set MVμ of Mirković-Vilonen cycles admits a Ĝ-crystal
structure and gives rise to a crystal basis of Vμ via the geometric Satake
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isomorphism [39]. In [53, §3.3], Xiao and Zhu constructed a canonical iso-
morphism Bμ

∼= MVμ using Littelmann’s path model [37], which we denote

by δ �→ Sδ. The advantage of using Bμ is that its Ĝ-crystal structure is given
in a combinatorial way.

In [17, §2.1], Hamacher and Viehmann proved that, under the partial
order �, there is a unique maximal element λG(b) in the set

{λ ∈ Yσ = Y/(1− σ)Y ;λ = κG(b), λ
� � νG(b)},

which is called “the best integral approximation” of νG(b). Let Vμ(λG(b)) be
the sum of λ-weight spaces Vμ(λ) with λ = λG(b) ∈ Yσ, whose basis in Bμ

and MVμ is denoted by Bμ(λG(b)) and MVμ(λG(b)) respectively.

Conjecture 0.1 (Chen-Zhu). There exist natural bijections

Jb\IrrtopXμ(b) ∼= MVμ(λG(b))
∼= Bμ(λG(b)).

In particular, |Jb\IrrtopXμ(b)| = dimVμ(λG(b)).

Remark 0.1. If char(F ) > 0, Xμ(b) is equi-dimensional by [19] and
IrrtopXμ(b) coincides with the set of irreducible components of Xμ(b). If
char(F ) = 0, the equi-dimensionality of Xμ(b) is not fully established, see
[17, Theorem 3.4]. However, Xμ(b) is always equi-dimensional if μ is minus-
cule.

Remark 0.2. If μ is minuscule and either G is split or b is superbasic,
Conjecture 0.1 is proved by Hamacher and Viehmann [17] using the method
of semi-modules, which originates in the work [5] by de Jong and Oort. If b is
unramified, that is, defG(b) = 0, it is proved by Xiao and Zhu [53] using the
geometric Satake. In both cases, the authors obtained complete descriptions
of IrrtopXμ(b).

Remark 0.3. A complete description of IrrtopXμ(b) was also known for the
case where G is GLn or GSp2n and μ is minuscule, see [49] and [50].

Remark 0.4. If the pair (G,μ) is fully Hodge-Newton decomposable (see
[9]), Xμ(b) admits a nice stratification by classical Deligne-Lusztig varieties,
whose index set and closure relations are encoded in the Bruhat-Tits build-
ing of Jb. Such a stratification has important applications in arithmetic
geometry, including the Kudla-Rapoport program [35], [36] and Zhang’s
Arithmetic Fundamental Lemma [54]. We mention the works by Vollaard-
Wedhorn [52], Rapoport-Terstiege-Wilson [47], Howard-Pappas [15], [16],
and Görtz-He [7] for some of the typical examples.
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Let I ⊆ G(F̆ ) be the standard Iwahori subgroup associated to the triple
T ⊆ B ⊆ G, see §1.1. By Proposition 1.2, for b ∈ G(F̆ ), there is a unique
standard Levi subgroup T ⊆ M ⊆ G and a superbasic element bM of M(F̆ ),
unique up to M(F̆ )-σ-conjugation, such that [bM ] = [b] and νM (bM ) =
νG(b). Moreover, we may and do choose bM such that bMT (F̆ )b−1

M = T (F̆ )

and bMIMb−1
M = IM , where IM = M(F̆ )∩I is the standard Iwahori subgroup

of M(F̆ ). Take b = bM . Let P = MN be the standard parabolic subgroup
with N ⊆ U its unipotent radical. Using the Iwasawa decomposition G(F̆ ) =
N(F̆ )M(F̆ )K we have

Gr = N(F̆ )M(F̆ )K/K = �λ∈Y N(F̆ )IM tλK/K.

For λ ∈ Y let θPλ : N(F̆ )IM → Gr be the map given by h �→ htλK.
Our first goal is to prove Conjecture 0.1.

Theorem 0.5. Let b and M be as above. Then there exists a map

γ = γG : IrrtopXμ(b) → Bμ(λG(b))

such that for C ∈ IrrtopXμ(b) we have

{(htλ)−1bσ(htλ)K;h ∈ (θPλ )
−1(C)} = εMλ Sγ(C),

where λ is the unique cocharacter such that N(F̆ )IM tλK/K ∩ C is open
dense in C and εMλ is certain Weyl group element for M associated to λ
(see §1.5). Moreover, γ factors through a bijection

Jb\IrrtopXμ(b) ∼= Bμ(λG(b)).

Remark 0.6. The equality |Jb\IrrtopXμ(b)| = dimVμ(λG(b)), which is the
numerical version of Conjecture 0.1, is proved by Rong Zhou and Yihang
Zhu in [57] (even for the quasi-split case), and by the author in an earlier
version of this paper, using different approaches.

It is a remarkable feature that the tensor product of two crystals bases
is again a crystal basis. So there is a natural map

⊗ : BĜd

μ•
= BĜ

μ1
× · · · × BĜ

μd
−→ BĜ

μ1
⊗ · · · ⊗ BĜ

μd
−→ �μB

Ĝ
μ (λG(b)),

where the first map is given by taking the tensor product, and the second
one is the canonical projection to highest weight Ĝ-crystals.
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On the other hand, there is also a “tensor structure” among affine
Deligne-Lusztig varieties coming from the geometric Satake. Consider the
product Gd of d copies of G together with a Frobenius automorphism given
by

(g1, g2, . . . , gd) �→ (g2, . . . , gd, σ(g1)).

For μ• = (μ1, . . . , μd) ∈ Y d and b• = (1, . . . , 1, b) ∈ Gd(F̆ ) with b ∈ G(F̆ ),
we can define the affine Deligne-Lusztig variety Xμ•(b•) in a similar way. We
know (see Corollary 1.6) that the projection Grd → Gr to the first factor
induces a map

pr : IrrtopXμ•(b•) → �μIrr
topXμ(b),

which serves as the functor of taking tensor products.
Our second main result shows that the map γ (for various G) preserves

the tensor structures on both sides.

Theorem 0.7. There is a Cartesian square

IrrtopXμ•(b•)

pr

γGd

BĜd

μ•

⊗

�μIrr
topXμ(b)

γG

�μB
Ĝ
μ .

As a consequence, if BĜ
μ appears in the tensor product BĜ

μ•
= BĜ

μ1
⊗· · ·⊗BĜ

μd
,

then γG is determined by γG
d

and IrrtopXμ(b) = pr((⊗ ◦ γGd

)−1(BĜ
μ )).

Remark 0.8. The map γG coincides with the natural constructions of [53]
and [17] for quasi-minuscule cocharacters, see [43, Lemme 1.1]. On the other
hand, we know that each highest weight module appears in some tensor
product of quasi-minuscule highest weight modules. Thus Theorem 0.7 gives
a characterization of the map γG by the tensor structure of Ĝ-crystals.

Remark 0.9. As an essential application, Theorem 0.7, combined with
the construction of [17], provides a representation-theoretic construction of
IrrtopXμ(b) up to taking closures. Indeed, by the reduction method in [8, §5],
it suffices to consider the case where b is superbasic and G = ResE/FGLn

with E/F a finite unramified extension. In this case, we can choose a mi-

nuscule cocharacter μ• ∈ Y d for some d such that BĜ
μ appears in BĜ

μ•
. As μ•

is minuscule, both IrrtopXμ•(b•) and γG
d

are explicitly constructed in [17].
Then Theorem 0.7 shows how to obtain IrrtopXμ(b) from IrrtopXμ•(b•) by
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taking the projection pr. The key is to decompose the tensor product into
simple objects

BĜ
μ•

= BĜ
μ1

⊗ · · · ⊗ BĜ
μd

= �μ(B
Ĝ
μ )

mμ
μ• ,

which can be solved combinatorially using the “Littlewood-Richardson” rule
for Ĝ-crystals (see [37, §10]). Here mμ

μ• denotes the multiplicity with which

BĜ
μ appears in BĜ

μ•
.

Remark 0.10. In the case mentioned above where G = ResE/FGLn and b
is superbasic, Viehmann [48] and Hamacher [10] defined a decomposition of
Xμ(b) using extended semi-modules (or extended EL-charts). In particular,
Jb\IrrtopXμ(b) is parameterized by the set of equivalence classes of top ex-
tended semi-modules, that is, the semi-modules whose corresponding strata
are top-dimensional. However, it unclear how to construct all the top ex-
tended semi-modules if μ is non-minuscule. It would be interesting to give
an explicit correspondence between the top extended semi-modules and the
crystal elements in Bμ(λG(b)).

The third goal is to give an explicit construction of an irreducible com-
ponent from each Jb-orbit of IrrtopXμ(b) and compute its stabilizer. Com-
bined with Theorem 0.5, this will provide a complete parametrization of
IrrtopXμ(b) in theory. If b is unramified, this task has been done by Xiao-
Zhu [53]. Otherwise, using Theorem 0.7, it suffices to consider the case where
G is adjoint, μ is minuscule, and b is basic. To handle this case, we consider
the decomposition

Xμ(b) = �λ∈Y X
λ
μ(b),

where each piece Xλ
μ(b) = ItλK/K ∩ Xμ(b) is a locally closed subset of

Xμ(b).

Theorem 0.11. Keep the assumptions on G, b, μ as above.
(1) Xλ

μ(b) ∈ IrrtopXμ(b) if and only if λ ∈ Y is small;

(2) each Jb-orbit of Irr
topXμ(b) has a representative of the form Xλ

μ(b)
with λ small;

(3) if λ ∈ Y is small, then the stabilizer of Xλ
μ(b) in Jb is the standard

parahoric subgroup of type Π(λ), which is of maximal volume among all
parahoric subgroups of Jb.

We refer to §6.4 for the meanings of the smallness of λ and the associ-
ated type Π(λ). As a consequence, we obtain the following result without
restrictions on G, b, and μ.
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Theorem 0.12 (He-Zhou-Zhu). The stabilizer of each top-dimensional irre-
ducible component of Xμ(b) in Jb is a parahoric subgroup of maximal volume.

Remark 0.13. Theorem 0.12 is first proved by He-Zhou-Zhu [28]. It is also
verified in [28] that a parahoric subgroup has maximal volume if and only if
its Weyl group has maximal length (see Theorem 6.4). This gives an explicit
characterization of parahoric subgroups of maximal volume by their types.

The original proof in [28] is based on the twisted orbital integral method
(see [57]) and the Deligne-Lusztig reduction method (see [23]). Our proof
is based on the combinatorial properties of small cocharacters, which shows
that the stabilizers are parahoric subgroups of maximal length.

0.3. Strategy

Now we briefly discuss the strategy. First we reduced the problem to the case
where b is basic and G is simple and adjoint. If G has no non-zero minuscule
coweights, then b is unramified and the problem has been solved by Xiao-Zhu
[53]. Thus, it remains to consider the case where G has some non-zero minus-
cule cocharacter. In particular, any irreducible Ĝ-module appears in some
tensor product of irreducible Ĝ-modules with minuscule highest weights (see
Lemma 4.6). Combined with the geometric Satake, this observation enables
us to decompose the problem into three ingredients: (1) the construction of
γ in the case where b is superbasic; (2) the equality

|Jb\IrrtopXμ(b)| = dimVμ(λG(b))

in the case where μ is minuscule and b is basic; and (3) the construction
of irreducible components and the computation of their stabilizers in the
situation of (2).

The first ingredient is solved in §3 by combining the semi-module method
and Littelmann’s path model. For the second ingredients, we consider in §5
the following decomposition

Xμ(b) = �λ∈Y X
λ
μ(b).

In Proposition 2.9, we show that I ∩ Jb acts on IrrXλ
μ(b) transitively and

IrrtopXμ(b) = �λ∈Atop
μ,b
IrrXλ

μ(b),

where Atop
μ,b is the set of coweights λ such that dimXλ

μ(b) = dimXμ(b).

In particular, the action of Jb on IrrtopXμ(b) induces an equivalence rela-
tion on Atop

μ,b , and the Jb-orbits of IrrtopXμ(b) are naturally parameterized
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by the corresponding equivalence classes of Atop
μ,b . Therefore, it remains to

show the number of these equivalence classes is equal to dimVμ(λG(b)).

To this end, we give an explicit description of Atop
μ,b (see Proposition 5.12)

and reduce the question to the superbasic case, which has been solved by

Hamacher-Viehmann [17, Theorem 1.5]. Finally, to solve the last ingredient,

we introduce the notion of small cocharacters in §6. We prove that Xλ
μ(b)

is irreducible if and only if λ is small, and show its stabilizer is of maximal

length in this case. Here we will use a general result [57, Theorem 3.3.1]

by Zhou-Zhu showing that the stabilizers are parahoric subgroups, which

simplifies the original proof following [53].

Remark 0.14. Even if the simple adjoint group G has no non-zero minus-

cule cocharacters, the above approach still works but is more technically

involved, by using quasi-minuscule cocharacters instead.

0.4. Comparison with the work [57] by Zhou-Zhu

As mentioned before, this paper aims to give a complete parametrization of

Irrtop

Xμ(b), which consists of three parts: the parametrization of Jb\IrrtopXμ(b);

the construction of representative irreducible components; and the computa-

tion of their stabilizers. The major overlap with [57] lies in the first part, see

Remark 0.6. A key new feature of this paper is that the Ĝ-crystal structure

plays an essential role in the construction, see Remark 0.8 & 0.9. This in

particular enables us to handle the type A case, which is not covered in [57].

There is a minor overlap in the third part, where the difference is that this

paper gives an algorithm for computing the stabilizers (see Theorem 0.11);

while the work by Zhou-Zhu produces extra interesting information on the

volumes of stabilizers, see [57, Theorem C & Remark 1.4.3].
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1. Preliminaries

We keep the notations in the introduction. Set KH = H(OF̆ ) for any sub-
group H ⊆ G over OF̆ .

1.1. Root system

Let R = (Y,Φ∨, X,Φ,S0) be the based root datum of G associated to the
triple T ⊆ B ⊆ G, where X and Y denote the (absolute) character and
cocharacter groups of T respectively; Φ (resp. Φ∨) is the roots system (resp.
coroot system); S0 is the set of simple reflections. There is a natural perfect
pairing 〈, 〉 : X × Y → Z.

Denote by Φ+ the set of (positive) roots appearing in B. Then Φ =
Φ+ �Φ− with Φ− = −Φ+. For α ∈ Φ, we denote by sα the reflection which
sends λ ∈ Y to λ−〈α, λ〉α∨ with α∨ ∈ Φ∨ the corresponding coroot of α. The
Frobenius map of G induces an automorphism of R of finite order, which is
still denoted by σ. In particular, σ acts on YR as a linear transformation of
finite order.

LetW0 = WG be the Weyl group of T inG, which is a reflection subgroup
of GL(YR) generated by S0. The Iwahori-Weyl group of T in G is given by

W̃ = W̃G = NT (F̆ )/KT
∼= Y �W0 = {tλw;λ ∈ Y,w ∈ W0},

where NT denotes the normalizer of T in G. We can embed W̃ into the
group of affine transformations of YR so that the action of w̃ = tμw is given
by v �→ μ + w(v). Let Φ+ be the set of (positive) roots appearing in Borel
subgroup B ⊇ T and let

Δ = ΔG = {v ∈ YR; 0 < 〈α, v〉 < 1, α ∈ Φ+}

be the base alcove. Then we have W̃ = W a�Ω, whereW a = ZΦ∨�W0 is the
affine Weyl group and Ω is the stabilizer of Δ. Let Y + be the set of dominant
cocharacters. For χ, η ∈ Y we write χ � η if η−χ is a sum of positive roots.
Write χ ≤ η if χ̄ � η̄. Here η̄, χ̄ are the dominant W0-conjugate of η, χ
respectively.

For α ∈ Φ, let Uα ⊆ G denote the corresponding root subgroup. We set

I = KT

∏
α∈Φ+

Uα(tOF̆ )
∏

β∈Φ+

U−β(OF̆ ) ⊆ G(F̆ ),

which is called the standard Iwahori subgroup associated to T ⊆ B ⊆ G.
We have the Bruhat decomposition G(F̆ ) = �w̃∈W̃ Iw̃I.
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1.2. Affine roots

Let Φ̃ = Φ̃G = Φ × Z be the set of (real) affine roots. Let a = α + k :=
(α, k) ∈ Φ̃. Denote by Ua : OF̆ → G(F̆ ), z �→ Uα(zt

k) the corresponding one-
parameter affine root subgroup. We can view a as an affine function such that
a(v) = −〈α, v〉 + k for v ∈ YR, whose zero locus Ha = {v ∈ YR; a(v) = 0}
is called an affine root hyperplane. Let sa = sHa

= tkα
∨
sα ∈ W̃ denote

the corresponding affine reflection. Set Φ̃+ = {a ∈ Φ̃; a(Δ) > 0}. Then
Φ̃ = Φ̃+ � Φ̃− with Φ̃− = −Φ̃+. The associated length function � : W̃ → N

is defined by �(w̃) = |Φ̃− ∩ w̃(Φ̃+)|. Let Sa = {sa; a ∈ Φ̃, �(sa) = 1}. Then
W a is generated by Sa and (W a,Sa) is a Coxeter system.

Let α ∈ Φ. Define α̃ = (α, 0) ∈ Φ̃+ if α < 0 and α̃ = (α, 1) ∈ Φ̃+

otherwise. Then the map α �→ α̃ gives an embedding of Φ into Φ̃+, whose
image is {a ∈ Φ̃; 0 < a(Δ) < 1}. Let Π be the set of roots α ∈ Φ such that α̃
is a simple affine root, namely, Π consists of minus simple roots and highest
positive roots.

Lemma 1.1. Let w̃, w̃′ ∈ W̃ . Then Iw̃Iw̃′I ⊆ ∪x≤w̃Ixw̃
′I and Iw̃Iw̃′I ⊆

∪x′≤w̃′Iw̃x′I. Consequently, w̃ItλK ⊆ ∪x≤w̃It
x(λ)K for λ ∈ Y . Here ≤ is

the usual Bruhat order on W̃ associated to �.

1.3. Levi subgroup

Let M ⊇ T be a (semistandard) Levi subgroup of G. By replacing the triple
T ⊆ B ⊆ G with T ⊆ B ∩ M ⊆ M , we can define Φ±

M , W̃M , W a
M , WM ,

IM , Φ̃±
M , ΔM , ΩM and so on as above. For v ∈ YR, we denote by Mv the

Levi subgroup generated by T and Uα for α ∈ Φ such that 〈α, v〉 = 0, and
denote by Nv the unipotent subgroup generated by Uβ for β ∈ Φ such that
〈β, v〉 > 0. We say M is standard if M = Mv for some dominant vector
v ∈ Y +.

1.4. Superbasic element

We say b ∈ G(F̆ ) is superbasic if none of its σ-conjugates is contained in
a proper Levi subgroup of G. In particular, b is basic in G(F̆ ), that is, the
Newton point νG(b) is central for Φ.

Proposition 1.2. If b ∈ G(F̆ ) is basic, then there exists a unique stan-
dard Levi subgroup M ⊆ G such that M(F̆ ) ∩ [b] is a (single) superbasic
σ-conjugacy class of M(F̆ ).

The existence is known. The uniqueness is proved in Appendix B, which
is only used in the formulation of Theorem 0.5.
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1.5. The element εGλ

Let λ ∈ Y and γ ∈ Φ. We set λγ = −γ̃(λ), that is, λγ = 〈γ, λ〉 if γ < 0

and λγ = 〈γ, λ〉 − 1 otherwise. Let Uλ (resp. U−
λ ) be the subgroup of G

generated by Uα such that λα � 0 (resp. λα < 0). Notice that λα � 0 if and

only if 〈α, λ − v〉 > 0 for any v ∈ Δ. So Uλ and U−
λ are opposite maximal

unipotent subgroups normalized by T . Thus there exists a unique element

ελ = εGλ ∈ W0 such that Uλ = ελU := ελUε−1
λ . Here U denotes the unipotent

radical of B. Set Iλ = I ∩ tλKt−λ and

I−λ = KT (Iλ ∩ U−
λ ) = KT (I ∩ U−

λ );

I+λ = KT (Iλ ∩ Uλ) = KT t
λKUλ

t−λ.

It follows from the Iwahori decomposition that Iλ = I−λ I+λ = I+λ I−λ .

Let p : W̃ � 〈σ〉 → W0 � 〈σ〉 denote the natural projection, where 〈σ〉 is
the finite cyclic subgroup of GL(YR) generated by σ.

Lemma 1.3. Let λ ∈ Y and α ∈ Φ. Then

(1) λα + λ−α = −1;

(2) sα̃(λ) = λ− λαα
∨;

(3) λα = ω(λ)p(ω)(α) and εω(λ) = p(ω)ελ for ω ∈ Ω.

Proof. The first two statements follow directly by definition. We show the

last one. Write ω = tηp(ω) for some η ∈ Y . Then

〈p(ω)(α), ω(λ)〉 = 〈α, λ〉+ 〈p(ω)(α), η〉.

By the statement (1) we may assume α > 0. Since ω ∈ Ω, 〈p(ω)(α), η〉 = 0 if

p(ω)(α) > 0 and 〈p(ω)(α), η〉 = −1 otherwise. It follows that ω(λ)p(ω)(α) =

λα. In particular, Uω(λ) =
p(ω)Uλ and hence εω(λ) = p(ω)ελ.

Lemma 1.4. Let λ, η ∈ Y such that η − λ is minuscule. Then I−η ⊆ Iλ.

Proof. It suffices to show Uα(t
εαOF̆ ) ⊆ Iλ for λα < 0, where εα = 0 if α < 0

and εα = 1 otherwise. If λα < 0, there is nothing to prove. Suppose λα > 0.

Then 〈α, λ〉 > 〈α, η〉 and hence 〈α, λ〉 = 〈α, η〉 + 1 as η − λ is minuscule.

This means −1 � 〈α, η〉 � 0. If 〈α, η〉 = 0, then α > 0 (since λα < 0) and

Uα(t
εαOF̆ ) = Uα(tOF̆ ) = Uα(t

〈α,λ〉OF̆ ) ⊆ I+λ . If 〈α, η〉 = −1, then α < 0

(since λα > 0) and Uα(t
εαOF̆ ) = Uα(OF̆ ) = Uα(t

〈α,λ〉OF̆ ) ⊆ I+λ .
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1.6. The convolution map

Let d ∈ Z�1 and let Gd be the product of d copies of G. Let σ• be the
Frobenius-type automorphism on Gd given by

(g1, g2, . . . , gd) �→ (g2, . . . , gd, σ(g1)).

We set b• = (1, . . . , 1, b) ∈ G(F̆ )d. Let μ• = (μ1, . . . , μd) ∈ Y d be a dominant
cocharacter of Gd. Let Xμ•(b•) be the corresponding affine Deligne-Lusztig
variety in Grd using automorphism σ•. Consider the twisted product

Gr◦μ•
:= Ktμ1K ×K · · · ×K KtμdK/K

together with the convolution map

mμ• : Grμ• := Gr◦μ•
→ Gr|μ•| = ∪μ≤|μ•|Gr◦μ

given by (g1, . . . , gd−1, gdK) �→ g1 · · · gdK, where |μ•| = μ1 + · · ·+ μd ∈ Y +.

Theorem 1.5 ([39], [43], [20, Theorem 1.3]). Let notations be as above. Let
μ ∈ Y + with μ ≤ |μ•| and y ∈ Gr◦μ. Then

(1) dimm−1
μ•

(y) � 〈ρ, |μ•| − μ〉, and moreover, the number of irreducible
components of m−1

μ•
(y) having dimension 〈ρ, |μ•| −μ〉 equals the multiplicity

mμ
μ• with which BĜ

μ occurs in BĜ
μ•

:= BĜ
μ1

⊗ · · · ⊗ BĜ
μd
.

(2) m−1
μ•

(y) is equi-dimensional of dimension 〈ρ, |μ•|−μ〉 if μ• is minus-
cule.

Here ρ = ρG is the half sum of roots in Φ+.

Thanks to Zhu [55, §3.1.3], there is a Cartesian square

Xμ•(b•)

pr

G(F̆ )×K Gr◦μ•

id×Kmμ•

∪μ≤|μ•|Xμ(b) G(F̆ )×K Gr|μ•|,

where pr is the projection to the first factor; the lower horizontal map is
given by g1K �→ (g1, g

−1
1 bσ(g1)K); the upper horizontal map is given by

(g1K, . . . , gdK) �→ (g1, g
−1
1 g2, . . . , g

−1
d−1gd, g

−1
d bσ(g1)K).

Moreover, via the identification

Jb ∼= Jb• , g �→ (g, . . . , g),
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the above Cartesian square is Jb-equivariant by left multiplication.

Corollary 1.6. Let the notation be as above. Then

IrrtopXμ•(b•) = �μ∈Y +,mμ
μ• �=0 �C∈IrrtopXμ(b) Irr

toppr−1(C).

In particular,

Jb\IrrtopXμ•(b•) = �μ∈Y +,mμ
μ• �=0 �C∈Jb\IrrtopXμ(b) Irr

toppr−1(C)

and hence

|Jb\IrrtopXμ•(b•)| =
∑
μ∈Y +

mμ
μ•
|Jb\IrrtopXμ(b)|.

As a consequence, if Theorem 0.5 is true, then the diagram of Theorem 0.7
is Cartesian if it is commutative.

Proof. Using the same strategies of [8] and [10] we have

dimXμ•(b•) = 〈ρ, |μ•| − νb〉 −
1

2
def(b) = dimXμ(b) + 〈ρ, |μ•| − μ〉.

Let μ ∈ Y + and C ∈ IrrtopXμ(b). By Theorem 1.5 (1),

dimpr−1(C) = dimC+〈ρ, |μ•|−μ〉 = dimXμ(b)+〈ρ, |μ•|−μ〉 � dimXμ•(b•),

and moreover, the number of irreducible components of pr−1(C) having
dimension dimXμ•(b•) is equal to mμ

μ• as desired.

1.7. Tensor structure

Let μ ∈ Y +. Recall that Vμ = V Ĝ
μ denotes the simple Ĝ-module of highest

weight μ, and Bμ = BĜ
μ denotes the crystal basis of Vμ, which is a highest

weight Ĝ-crystal. We refer to [29], [37] and [53, §3.3] for the definition of
Ĝ-crystals and a realization of Bμ using Littelmann’s path model.

For λ ∈ Y , let Bμ(λ) be the set of basis elements of weight λ. Then

|Bμ(λ)| = dimVμ(λ),

where Vμ(λ) denotes the λ-weight space of Vμ.

Recall that MVμ = MVĜ
μ denotes the set of Mirković-Vilonen cycles

in Grμ. By [1, Theorem 3.1], MVμ admits a Ĝ-crystal structure, which is
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isomorphic to Bμ. Let S1 ∈ MVμ(λ1) and S2 ∈ MVμ(λ2) be two Mirković-
Vilonen cycles. The twisted product of S1 and S2 is

S1×̃S2 = (θUλ1
)−1(S1)t

λ1 ×KU
S2 ⊆ G(F̆ )×K Gr,

where θUλ1
: U(F̆ ) → Gr is given by u �→ utλ1K. The convolution of S1 and

S2 is defined by

S1 � S2 = m(S1×̃S2) ∩ Sλ1+λ2 ,

where m : G(F̆ )×K Gr → Gr denotes the usual convolution map. Note that

S1 � S2 = m(S1×̃S2).
Following [53, Proposition 3.3.15], we fix from now on a bijection δ �→ Sδ

from Bμ to MVμ for μ ∈ Y +, which is compatible with the tensor product

for Ĝ-crystals, that is, Sδ1⊗δ2 = Sδ1 � Sδ2 .

1.8. Admissible set

Let P = MN be a standard parabolic subgroup with standard Levi subgroup
M = σ(M) ⊇ T and unipotent radical N = σ(N). Let E be one of groups
I, M(F̆ ), N(F̆ ) and P (F̆ ). For n ∈ Z�0 set En = E ∩ Kn, where Kn =
{g ∈ K = G(OF̆ ); g ≡ 1 mod tn}. Following [8], we say a subset D ⊆ E
is admissible if there exists some integer r > 0 such that DEr = D and
D/Er ⊆ E/Er is a (bounded) locally closed subset. In this case, define

dimD = dimD/Er − dim E0/Er,

and moreover, we can define topological notions for E , such as open/closed
subsets, irreducible/connected components and so on, by passing to the
quotient D/Dr. These definitions are independent of the choice of r since
the natural quotient map E/En → E/En+1 is an affine space fiber bundle. For
instance, the irreducible components of D is defined to be the inverse images
of the irreducible components of D/Er ⊆ E/Er under the natural projection
E → E/Er. We denote by IrrD the set of irreducible components of D in this
sense.

2. The set XP,λ
μ (b)

Keep the notations in the introduction and §1. In this section, we introduce
a decomposition Xμ(b) = �λ∈Y X

P,λ
μ (b) with respect to certain parabolic

subgroup P ⊆ G, and study the irreducible components of XP,λ
μ (b).
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2.1. The set HP (C)

Let P = MN be a standard parabolic subgroup as in §1.8. Suppose that

b ∈ M(F̆ ) such that b is basic in M(F̆ ) and νM (b) = νG(b). Moreover,

we always assume that b ∈ NT (F̆ ) is a lift of an element in ΩM , whose

image in W̃M is still denote by b. Notice that b normalizes N(F̆ )IM . Let

φP
b : N(F̆ )IM → N(F̆ )IM be the Lang’s map given by h �→ h−1bσ(h)b−1.

For λ ∈ Y let θPλ : N(F̆ )IM → Gr be the map given by h �→ htλK.

Let C ⊆ Gr be locally closed and irreducible. We define

HP (C) = HP (C; b) = φP
b ((θ

P
λ )

−1(C)) ⊆ N(F̆ )IM ,

where λ ∈ Y such that N(F̆ )IM tλK/K ∩C is open dense in C. In this case,

the map γG of Theorem 0.5 can be formulated by

{(htλ)−1bσ(htλ)K;h ∈ (θPλ )
−1(C)} = t−λHP (C)tbσ(λ)K/K,

where bσ(λ) ∈ Y is defined by the affine action of W̃ � 〈σ〉 on Y , see §1.1.
For μ ∈ Y + and λ ∈ Y we set Xλ,P

μ (b) = N(F̆ )IM tλK/K ∩Xμ(b).

Lemma 2.1. The map C �→ HP (C) for C ∈ IrrXλ,P
μ (b) induces a bijection

(N(F̆ )IM ∩ Jb)\IrrXλ,P
μ (b) ∼= Irr(tλKtμKt−bσ(λ) ∩N(F̆ )IM ).

In particular, HP (C; b) is invariant under left/right multiplication by KT .

Proof. Note that btχK = tb(χ)K and Kt−χb−1 = Kt−b(χ) for χ ∈ Y . There-

fore,

(θPλ )
−1(Xλ,P

μ (b)) = (φP
b )

−1(tλKtμKt−σ(λ)b−1 ∩N(F̆ )IM )

= (φP
b )

−1(tλKtμKt−bσ(λ) ∩N(F̆ )IM ),

As φP
b is an etale covering of N(F̆ )IM with Galois group N(F̆ )IM ∩ Jb, the

map C �→ HP (C) for C ∈ IrrXλ,P
μ (b) induces a bijection

(N(F̆ )IM ∩ Jb)\IrrXλ,P
μ (b) ∼= Irr(tλKtμKt−bσ(λ) ∩N(F̆ )IM ).

The proof is finished.

Now we focus on the basic case. Let Ider be the derived subgroup of I.
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Corollary 2.2. Assume b is basic. Then the map C �→ HG
der(C) for C ∈

IrrXλ,G
μ (b) induces a bijection

(Ider ∩ Jb)\IrrXλ,G
μ (b) ∼= Irr(tλKtμKt−bσ(λ) ∩ Ider).

Here HG
der(C) = φG

b ((θ
G
λ )

−1(C) ∩ Ider).

Proof. Note that ItλK/K = Idert
λK/K and that φG

b restricts to an etale
covering of Ider with Galois group Ider ∩ Jb. Then the statement follows in
the same way of Lemma 2.1.

recall that p : W̃ � 〈σ〉 → W0 � 〈σ〉 is the natural projection.

Lemma 2.3. Assume b is basic. For λ ∈ Y and C ∈ IrrXλ,G
μ (b) we have

t−λ′
HG(C ′; b′)tb

′σ(λ′) = p(ω)t−λHG(C; b)tbσ(λ)p(ω)−1,

where ω ∈ Ω, ω̇ ∈ NT (F̆ ) is a lift of ω, λ′ = ω(λ), C ′ = ω̇C and b′ =
ω̇bσ(ω̇)−1. Note that the right hand side is independent of the choice of ω̇
by Lemma 2.1.

Proof. As ω ∈ Ω, we have ω̇Iω̇−1 = I and hence

C ′ = ω̇C ⊆ ω̇ItλK/K = Itω(λ)K/K.

So (θGλ′)−1(C ′) = ω̇(θGλ )
−1(C)ω̇−1, and the statement follows by definition.

Corollary 2.4. In the superbasic case, the map γG in Theorem 0.5 is in-
dependent of the choice of b.

Proof. Suppose b is superbasic and let b, b′, λ, λ′, ω, C,C ′ be as in Lemma
2.3. Let γGb (resp. γGb′ ) be the map γG in Theorem 0.5 defined with respect
to b (resp. b′). We need to show that γGb (C) = γGb′ (C

′). By definition (for the
superbasic case), it suffices to show that

(εGλ )
−1t−λHG(C; b)tbσ(λ)K/K = (εGλ′)−1t−λ′

HG(C ′; b′)tb
′σ(λ′)K/K,

which follows from Lemma 1.3 (3) and Lemma 2.3.

Corollary 2.5. Assume b is basic. For λ ∈ Y there are natural bijections

(I ∩ Jb)\IrrXλ,G
μ (b) ∼= Irr(tλKtμKt−bσ(λ) ∩ IUλ

) ∼= (Ider ∩ Jb)\IrrXλ,G
μ (b),
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where IUλ
= I ∩ Uλ and Uλ is as in §1.5. Moreover, for C ∈ IrrXλ,G

μ (b) we
have

HG(C) = KTH
G
der(C) = HG

der(C)KT .

Proof. By Lemma 2.1 the map C �→ HG(C) for C ∈ IrrXλ,G
μ (b) induces a

bijection

(I ∩ Jb)\IrrXλ,G
μ (b) ∼= Irr(tλKtμKt−bσ(λ) ∩ I) ∼= Irr(tλKtμKt−bσ(λ) ∩ IUλ

),

(a)

where the second bijection follows from that

tλKtμKt−bσ(λ) ∩ I = I−λ (tλKtμKt−bσ(λ) ∩ IUλ
).

Similarly, by Corollary 2.2 we have

(Ider ∩ Jb)\IrrXλ,G
μ (b) ∼= Irr(tλKtμKt−bσ(λ) ∩ Ider)(b)

∼= Irr(tλKtμKt−bσ(λ) ∩ IUλ
).

So the first statement follows.
By (a) and (b), there exist Z,Z ′ ∈ Irr(tλKtμKt−bσ(λ) ∩ IUλ

) such that

(I−λ ∩ Ider)Z = HG
der(C) ⊆ HG(C) = I−λ Z ′.

In particular, Z = Z ′. Moreover, KT normalises tλKtμKt−bσ(λ) ∩ IUλ
, and

hence normalises each of its irreducible components. So we have

HG(C) = I−λ Z = (I−λ ∩ Ider)KTZ = HG
der(C)KT = KTH

G
der(C).

The second statement is proved.

Lemma 2.6. For λ, χ ∈ Y there is a natural bijection

Irr(tλKtμKt−χ ∩ IUλ
) ∼= Irr(Kt−μK/K ∩ t−χIUλ

tλK/K).

Proof. The map g �→ t−χg−1tλ gives a bijection

tλKtμKt−χ ∩ IUλ
∼= Kt−μK ∩ t−χIUλ

tλ.

By the definition of Uλ we have KUλ
⊆ t−λIUλ

tλ. Therefore,

Irr(tλKtμKt−χ ∩ IUλ
) ∼= Irr((Kt−μK ∩ t−χIUλ

tλ)/KUλ
)



Irreducible components of affine Deligne-Lusztig varieties 453

= Irr(Kt−μK/K ∩ t−χIUλ
tλK/K),

where the identity follows from that t−χIUλ
tλ/KUλ

∼= t−χIUλ
tλK/K.

2.2. The minuscule and basic case

Suppose μ ∈ Y + is minuscule and b is basic. For D ⊆ W̃ we set D ∩ Jb =
{w̃ ∈ D; bσ(w̃)b−1 = w̃}.

For λ ∈ Y we write Xλ
μ(b) = Xλ,G

μ (b) = ItλK/K ∩Xμ(b). Let AG
μ,b and

AG,top
μ,b be the sets of λ ∈ Y such that Xλ

μ(b) �= ∅ and dimXλ
μ(b) = dimXμ(b)

respectively.
For α ∈ Φ define αi = p(bσ)i(α) ∈ Φ and α̃i = (bσ)i(α̃) ∈ Φ̃ for i ∈ Z,

where α̃ is as in §1.2 and p : W̃ � 〈σ〉 → W0 � 〈σ〉 is the natural projection.
For λ ∈ AG

μ,b define λ� = −λ + bσ(λ), and denote by RG
μ,b(λ) the set of

roots α ∈ Φ such that 〈α, λ�〉 = −1 and λα � 1. By Lemma 2.7 (1) below,
this condition is equivalent to that 〈α, λ�〉 = −1 and λα−1 � 0.

Lemma 2.7. Let λ ∈ Y . Then we have (1) 〈α, λ�〉 = λα−1 − λα for α ∈ Φ
and (2) w̃(λ)� = p(w̃)(λ�) for w̃ ∈ W̃ ∩ Jb.

Proof. Suppose b ∈ tτW0 for some τ ∈ Y . Then

〈α, λ�〉 = −〈α, λ〉+ 〈α, τ〉+ 〈α−1, λ〉.

As b ∈ Ω, bσ preserves the fundamental alcove Δ and hence preserves the set
{β̃;β ∈ Φ}, see §1.2. Thus α, α−1 are both positive or negative if 〈α, τ〉 = 0;
α < 0 and α−1 > 0 if 〈α, τ〉 = −1; α > 0 and α−1 < 0 if 〈α, τ〉 = 1. In all
cases we have 〈α, λ�〉 = λα−1 −λα as desired. For w̃ ∈ W̃ ∩Jb, it follows that

w̃(λ)� = −w̃(λ)+bσw̃(λ) = −w̃(λ)+w̃bσ(λ) = p(w̃)(−λ+bσ(λ)) = p(w̃)(λ�).

The proof is finished.

Lemma 2.8. We have RG
μ,b(ω(λ)) = p(ω)RG

μ,b(λ) for ω ∈ Ω ∩ Jb, λ ∈ AG
μ,b.

Proof. Notice that p(w̃)(γ)i = p(w̃)(γi) for γ ∈ Φ, w̃ ∈ W̃ ∩ Jb and i ∈ Z.
The statement now follows from Lemma 1.3 (3) and Lemma 2.7 (1).

Proposition 2.9. Suppose μ is minuscule and b is basic. Then λ ∈ AG
μ,b,

that is Xλ
μ(b) �= ∅, if and only if λ� is conjugate to μ by W0. Moreover, in

this case,
(1) tλKtμKt−bσ(λ) ∩ I = Iλ

∏
δ∈RG

μ,b(λ)
Uδ(t

〈δ,λ〉−1OF̆ );
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(2) Xλ
μ(b) is smooth and I ∩ Jb acts on IrrXλ

μ(b) transitively;

(3) dimXλ
μ(b) = |RG

μ,b(λ)|.
Proof. By Corollary 2.5 we have

(I ∩ Jb)\IrrXλ
μ(b)

∼= Irr(tλKtμKt−bσ(λ) ∩ I) ∼= Irr(KtμK ∩ t−λIUλ
tλtλ

�

).

As μ is minuscule, we see that ∅ �= KtμK ∩ t−λIUλ
tλtλ

� ⊆ Uλ(F̆ )tλ
�

, that is,
λ ∈ AG

μ,b, if and only if λ� is conjugate to μ. Moreover, in this case,

KtμK ∩ Uλ(F̆ )tλ
�

= KUλ
tλ

�

KUλ
= (

∏
α

Uα(OF̆ )
∏
β

Uβ(t
−1OF̆ ))t

λ�

,

where α, β range over the roots of Uλ such that 〈α, λ�〉 � 0 and 〈β, λ�〉 = −1
in any fixed orders. Here the root subgroups Uβ commute with each other

since λ� is minuscule. On the other hand, t−λIUλ
tλtλ

�

= (
∏

γ Uγ(t
−λγOF̆ ))t

λ�

,
where γ ranges over the roots of Uλ (or λγ � 0) in the above fixed order.
Thus

KUλ
tλ

�

KUλ
∩ t−λIUλ

tλtλ
�

= (KUλ

∏
δ

Uδ(t
−1OF̆ ))t

λ�

,

where δ ranges over RG
μ,b(λ) = {γ ∈ Φ; 〈γ, λ�〉 = −1, λγ � 1}. Therefore,

tλKtμKt−bσ(λ) ∩ I = Iλt
λ(KtμK ∩ t−λIUλ

tλtλ
�

)t−bσ(λ)

= Iλt
λ(KUλ

tλ
�

KUλ
∩ t−λIUλ

tλtλ
�

)t−bσ(λ)

= Iλt
λ(KUλ

∏
δ∈RG

μ,b(λ)

Uδ(t
−1OF̆ ))t

−λ

= Iλ
∏

δ∈RG
μ,b(λ)

Uδ(t
〈δ,λ〉−1OF̆ ).

So the statement (1) follows. The statement (2) follows from Corollary 2.5
by noticing that tλKtμKt−bσ(λ) ∩ I is smooth and irreducible.

As (θGλ )
−1(Xλ

μ(b)) = (φG
b )

−1(tλKtμKt−bσ(λ) ∩ I), we deduce by (1) that

dimXλ
μ(b) = dim((θGλ )

−1(Xλ
μ(b))/Iλ)

= dim((θGλ )
−1(Xλ

μ(b)))− dim Iλ

= dim(tλKtμKt−bσ(λ) ∩ I)− dim Iλ

= |RG
μ,b(λ)|.

So the statement (3) follows.



Irreducible components of affine Deligne-Lusztig varieties 455

2.3. The set HP d

(C)

Let P = MN and b ∈ M(L) be as in §2.1. Let Gd, σ•, b•, μ• and pr be as
in §1.6. We also denote by pr the projections Gd(F̆ ) → G(F̆ ) and Y d → Y
to the first factors.

Let C ∈ IrrtopXμ•(b•) and λ• ∈ Y d such that (N(F̆ )IM )dtλ•Kd/Kd ∩C

is open dense in C. By Corollary 1.6, pr(C) ∈ IrrtopXμ(b) for some μ ∈ Y +.

Let λ = pr(λ•). Then N(F̆ )IM tλK/K ∩ pr(C) is open dense in pr(C). Set

λ†
• = b•σ•(λ•), φb• = φP d

b•
and θλ• = θP

d

λ . By Lemma 2.1,

HP d

(C) = φb•(θ
−1
λ•

(C)) ∈ Irr(tλ•Kdtμ•Kdt−λ†
• ∩ (N(F̆ )IM )d).

So we can write

HP d

(C) = H1(C)× · · · ×Hd(C),

where Hτ (C) ∈ Irr(tλτKtμτKt−λ†
τ ∩ N(F̆ )IM ) for 1 � τ � d with μ• =

(μ1, . . . , μd), λ• = (λ1, . . . , λd) and λ†
• = (λ†

1, . . . , λ
†
d).

Lemma 2.10. Let notations be as above. Then we have

HP (pr(C)) = H1(C) · · ·Hd(C) ⊆ N(F̆ )IM

As a consequence,

t−λHP (pr(C))tbσ(λ)K/K = t−λ1H1(C)tλ
†
1 · · · t−λdHd(C)tλ

†
dK/K.

Proof. As pr((N(F̆ )IM )dtλ•Kd/Kd ∩ C) = pr(C), we see that

pr(θ−1
λ•

(C)) = (θPλ )
−1(pr(C)) ⊆ N(F̆ )IM .

On the other hand, the equality HP d

(C) = φb•(θ
−1
λ•

(C)) means that

H1(C)× · · · ×Hd(C) = {(h−1
1 h2, . . . , h

−1
d−1hd, h

−1
d bσ(h1)b

−1);

(h1, . . . , hd) ∈ θ−1
λ•

(C)}.

In particular,

H1(C) · · ·Hd(C) = φP
b (pr(θ

−1
λ•

(C))).

So HP (pr(C)) = φP
b ((θ

P
λ )

−1(pr(C))) = φP
b (pr(θ

−1
λ•

(C))) = H1(C) · · ·Hd(C)
as desired.
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3. The superbasic case

In this section, we assume that b is superbasic. For d ∈ Z�1 let σ•, b•, μ•
and P = G be as in §1.6. Let C ∈ IrrtopXμ•(b•) and let λ• ∈ Y d such that
(Idtλ•Kd/Kd) ∩ C is open dense in C. Following §2.3 let

HGd

(C) = H1(C)× · · · ×Hd(C) ∈ Irr(tλ•Kdtμ•Kdt−b•σ•(λ•) ∩ Id),

where Hτ (C) ∈ Irr(tλτKtμτKt−λ†
τ ∩ I) for 1 � τ � d with λ• = (λ1, . . . , λd)

and λ†
• = b•σ•(λ•) = (λ†

1, . . . , λ
†
d). We set Xλ•

μ•
(b•) = Xλ•,Gd

μ• (b•) for simplic-
ity.

The main result of this section is

Theorem 3.1. Let C, λ•, λ
†
• be as above. There is γG

d

(C) = (γ1, . . . , γd) ∈
BĜd

μ•
such that

t−λ1H1(C)tλ
†
1 ×K · · · ×K t−λdHd(C)tλ

†
dK/K = ελ1

Sγ1
×̃ · · · ×̃Sγd

,

where ελ1
= εGλ1

is as in §1.5. Moreover, the map C �→ γG
d

(C) factors
through a bijection

Jb•\IrrtopXμ•(b•) ∼= BĜd

μ•
(λGd(b•)).

In particular, Theorem 0.5 is true if b is superbasic by taking d = 1.

3.1. Reduction procedure

First we show how to pass to the case where G = ResE/FGLn with E/F an
unramified extension.

Lemma 3.2. Let f : G → G′ be a central isogeny. Then Theorem 3.1 is
true for G if and only if it is true for G′.

Proof. We still denote by f the induced maps G(F̆ ) → G′(F̆ ), GrG →
GrG′ and so on. Let σ′ be the Frobenius automorphism of G′. Let C ∈
IrrtopXμ•(b•) and λ• ∈ Y d such that Idtλ•Kd/Kd ∩ C is open dense in C.
Let ω• ∈ π1(G

d) such that the corresponding connected component Grω•
Gd

contains C. Let K ′ = G′(OF̆ ) and I ′ ⊆ K ′ the Iwahori subgroup containing
f(I). Denote by μ′

•, λ
′
•, C

′, b′•, ω
′
• the images of μ•, λ•, C, b•, ω• under f re-

spectively. Write λ• = (λ1, . . . , λd), b• = (b1, . . . , bd), λ
′
• = (λ′

1, . . . , λ
′
d) and

b′• = (b′1, . . . , b
′
d).



Irreducible components of affine Deligne-Lusztig varieties 457

By [3, Corollary 2.4.2] and [17, Proposition 3.1], f induces a homeomor-
phism

Xμ•(b•) ∩Grω•
Gd =: Xμ•(b•)

ω• ∼−→ Xμ′
•
(b′•)

ω′
• := Xμ′

•
(b′•)

ω′
• ∩Gr

ω′
•

G′d .

So C ′ ∈ IrrtopXμ′
•
(b′•) and I ′dtλ

′
•K ′d/K ′d∩C ′ is open dense in C ′. Moreover,

as f(Ider) = I ′der we have

f((θG
d

λ•
)−1(C) ∩ (Ider)

d) = (θG
′d

λ′
•
)−1(C ′) ∩ (I ′der)

d

f(HGd

der(C)) = HG′d

der (C
′),

where HGd

der(C) and HG′d

der (C
′) are defined as in Corollary 2.2. By Corollary

2.3,

HGd

(C) = HGd

der(C)T d(OF̆ ) = T d(OF̆ )H
Gd

der(C);

HG′d
(C ′) = HG′d

der (C
′)T ′d(OF̆ ) = T ′d(OF̆ )H

G′d

der (C
′).

Therefore, f induces a surjection and hence a bijection

t−λaHa(C)tλ
†
a ×K · · · ×K t−λcHc(C)tλ

†
cK/K

= t−λaHder,a(C)tλ
†
a ×K · · · ×K t−λcHder,c(C)tλ

†
cK/K

∼= t−λ′
aHder,a(C

′)tλ
′†
a ×K′ · · · ×K′ t−λ′

cHder,c(C
′)tλ

′†
c K ′/K ′

= t−λ′
a(Ha(C

′)tλ
′†
a ×K′ · · · ×K′ t−λ′

cHc(C
′)tλ

′†
c K ′/K ′,

where, as in §2.3 we write

HGd

der(C) = Hder,1(C)× · · · ×Hder,d(C)

HG′d

der (C
′) = Hder,1(C

′)× · · · ×Hder,d(C
′).

By Corollary 2.3, we have the following commutative diagram

((Ider)
d ∩ Jb•)\IrrXλ•

μ•
(b•)

f

∼
Irr(tλ•Kdtμ•Kdt−λ†

• ∩ (Id)(Ud)λ•
)

�f

((I ′der)
d ∩ Jb′•)\IrrX

λ′
•

μ′
•
(b′•)

∼
Irr(tλ

′
•K ′dtμ

′
•K ′dt−λ′†

• ∩ (I ′d)(Ud)λ′•
),

(a)

where the right vertical bijection follows from Lemma 2.6 and the homeo-

morphism f : Grω•
Gd

∼= Gr
ω′

•
G′d .
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Let J0b• and J0b′•
be the kernels of the natural projections Jb• → π1(G

d)

and Jb′• → π1(G
′d) respectively. Then we have a commutative diagram

J0b•\Irr
topXμ•(b•)

ω• ∼
Jb•\IrrtopXμ•(b•)

J0b′•
\IrrtopXμ′

•(b
′
•)

ω′
•

∼
Jb′•\Irr

topXμ′
•(b

′
•).

Thus the bijection Jb•\IrrtopXμ•(b•) ∼= Jb′•\Irr
topXμ′

•(b
′
•) follows from the

following commutative diagrams

((Ider)
d ∩ Jb•)\IrrtopXμ•(b•)

ω•

�

∼
(Id ∩ Jb)\IrrtopXμ•(b•)

ω• ∼
J0b•\Irr

topXμ•(b•)
ω•

((I ′der)
d ∩ Jb′•)\Irr

topXμ′
•
(b′•)

ω′
•

∼
(I ′d ∩ Jb′•)\Irr

topXμ′
•
(b′•)

ω′
•

∼
J0b′•

\IrrtopXμ′
•
(b′•)

ω′
• ,

where the left horizontal bijections follow from Corollary 2.3; the right hor-
izontal bijections follow from that J0b• = Id ∩ Jb• and J0b′•

= I ′d ∩ Jb′• as

b•, b′• are superbasic; the leftmost vertical bijection follows from the natural
bijection

((Ider)
d ∩ Jb•)\IrrXλ•

μ•
(b•) ∼= ((I ′der)

d ∩ Jb′•)\IrrX
λ′
•

μ′
•
(b′•)

in the commutative diagram (a). The proof is finished.

Let Gad denote the adjoint group of G. As b is superbasic, by [3, Lemma
3.11], Gad

∼=
∏

iResFi/FPGLni
for some unramified extensions Fi/F . In view

of the following natural central isogenies

G −→ Gad
∼=

∏
i

ResFdi
/FPGLni

←−
∏
i

ResFdi
/FGLni

,

we will assume in the rest of this section that G = ResE/FGLn for some
unramified extension E/F by Lemma 3.2.

3.2. Reduction procedure in the minuscule case

Now we consider the case where μ• is minuscule. Let Aμ•,b• = AGd

μ•,b•
and

Atop
μ•,b•

= AGd,top
μ•,b•

be defined in §2.2. For λ• ∈ Aμ•,b• set λ†
• = b•σ•(λ•),

λ�
• = −λ• + λ†

• and λ�
• = ε−1

λ•
(λ�

•), where ελ• := εG
d

λ•
is defined in §1.5.
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Since μ• is minuscule, we identify BĜd

μ•
canonically with the set of cochar-

acters in Y d which are conjugate to μ•. Moreover, for ζ• ∈ BĜd

μ•
, the corre-

sponding Mirković-Vilonen cycle is Sζ• = (KU )
dtζ•Kd/Kd.

Theorem 3.3 ([17, Proposition 1.6]). Assume μ• is minuscule. For λ ∈
Aμ•,b• we have

(1) Xλ•
μ•
(b•) is an affine space;

(2) λ• ∈ Atop
μ•,b•

if and only if λ�
• = ε−1

λ•
(λ�

•) ∈ BĜd

μ•
(λGd(b•)).

Moreover, the maps λ• �→ λ�
• and λ• �→ Xλ•

μ• (b•) induce a bijection

Jb•\IrrtopXμ•(b•) ∼= BĜd

μ•
(λGd(b•)).

As a consequence, for C ∈ IrrtopXμ•(b•) there exists λ• ∈ Atop
μ•,b•

such

that Č = Xλ•
μ• (b•). Define

γG
d

(C) = λ�
• ∈ BĜd

μ•
(λGd(b•)).

Moreover, we write

H(λ•) := HGd

(C) = tλ•Kdtμ•Kdt−λ†
• ∩ Id = H1(λ•)× · · · ×Hd(λ•),

where Hτ (λ) := Hτ (C) for 1 � τ � d as in §2.3.

Remark 3.4. In [17], the EL-charts forXμ•(b•) are parameterized by cochar-
acters λ• in Aμ•,b• ⊆ Y d ∼= (Zn)dl with l = degE/F . By [17, Corollary 4.18],
the map, sending λ• to its cotype, induces a bijection

Jb•\IrrtopXμ•(b•) ∼= BĜd

μ•
(λGd(b•)).

Following [17, Definition 4.13], the cotype of λ• is equal to ε−1
• (λ�

•), where
ε• lies in (W0)

d ∼= (Sn)
dl such that

nλi,j(εi,j(k)) + εi,j(k) < nλi,j(εi,j(k
′)) + εi,j(k

′)

for 1 � i � d, 1 � j � l, and 1 � k′ < k � n. This means that (λi,j)εi,j(α) � 0

for all positive roots α. So ε• = ελ• and the cotype of λ• coincides with λ�
•.

By the definition of γG
d

, the second statement of Theorem 3.1 (for the
minuscule case) follows from Theorem 3.3. It remains to show the first state-
ment, which follows from the following result.
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Proposition 3.5. Let μ• be minuscule and let λ• ∈ Atop
μ•,b•

. For 1 � a �
c � d,

t−λa(Ha(λ•)tλ
†
a ×K · · · ×K t−λcHc(λ•)tλ

†
cK/K

= ελa
KU tλ

�
a ×K · · · ×K KU tλ

�
cK/K

= ελa
Sλ�

a
×̃ · · · ×̃Sλ�

c
,

where λ�
• = (λ�

1, . . . , λ
�
d) and λ†

• = (λ†
1, . . . , λ

†
d).

As G = ResE/FGLn, we have Gd(F̆ ) =
∏dl

i=1Gi(F̆ ), where l = degE/F
and each Gi is isomorphic to GLn over E. Moreover, σ• sends Gi to Gi−1

for 1 � i � dl with Gdl+1 = G1. By Lemma 2.9 (1), we see that H(λ•) only
depends on λ• ∈ Atop

μ•,b•
, the image of b• in (ΩG)

d and the induced action
of σ• on the root system. Moreover, by Corollary 2.4, we can assume, by
replacing b with a suitable Ω-σ-conjugate, that

b• = (1, . . . , 1, b) ∈
dl∏
i=1

Gi(F̆ ).

Let G′ = GLn and let σ′
• be the Frobenius automorphism of (G′)dl defined

in §1.6. Via the natural identification (over E)

(G′)dl =
dl∏
i=1

Gi = Gd,

we see that the induced actions of σ′
• and σ• on the root system coincide.

Thus Proposition 3.5 for the triple (G = ResE/FGLn, d, b•) is a consequence
of its counterpart for the triple (G′ = GLn, dl, b•). So we will assume that
G = GLn when μ• is minuscule.

3.3. The minuscule case with G = GLn

Assume G = GLn. Let T and B be the group of diagonal matrices and
the group of upper triangular matrices respectively. Let V = ⊕n

i=1F̆ ei be
the natural representation of G(F̆ ). Then there are natural identifications
X = ⊕n

i=1Zei, Y = ⊕n
i=1Ze

∨
i and W0 = Sn, where (e∨i )1�i�n is the dual

basis to (ei)1�i�n and Sn denotes the symmetric group. Then the natural
action of w ∈ W0 on X is given by w(ei) = ew(i). Moreover, we have Φ =
{αi,j = ei − ej ; 1 � i �= j � n} and the simple roots are αi = ei − ei+1 for
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1 � i � n − 1. Notice that Ω is a free abelian group of rank one. We fix

a generator ω ∈ Ω which sends ei to ei+1 for i ∈ Z, where ej+n = tej for

j ∈ Z. So we can assume b = ωm for some m ∈ Z. As b is superbasic, m

is coprime to n. The embedding h �→ (1, . . . , 1, h) induces an identification

Y = Yσ ∼= (Y d)σ• , through which we have λG(b) = λGd(b•).

Suppose μ• ∈ Y d is minuscule. Let λ• = (λ1, . . . , λd) ∈ Aμ•,b• . Following

§3.2 we can define λ†
• = (λ†

1, . . . , λ
†
d), λ

�
• = (λ�

1, . . . , λ
�
d), λ

�
• = (λ�

1, . . . , λ
�
d)

and H(λ•) = H1(λ•)×· · ·×Hd(λ•). Notice that λ†
τ = λτ+1 for 1 � τ � d−1.

Lemma 3.6. Let λ• ∈ Aμ•,b• and 1 � a � c � d. Then

t−λaHa(λ•)t
λ†
a ×K · · · ×K t−λcHc(λ•)t

λ†
cK = KUλa

tλ
�
a ×K · · · ×K KUλc

tλ
�
cK.

Proof. Let Rμ•,b•(λ•) = �d
τ=1Rτ (λ•) ⊆ �d

τ=1Φ be as in §2.2, where

Rτ (λ•) = {α ∈ Φ; (λτ )α � 1, 〈α, λ�
τ 〉 = 〈α,−λτ + λ†

τ 〉 = −1}.

By the proof of Proposition 2.9, we have Hτ (λ•) = Iλτ
Στ , where

Στ =
∏

α∈Rτ (λ•)

Uα(t
〈α,λτ 〉−1OF̆ ).

Thus (λ†
τ )α = (λτ )α − 1 � 0 and Uα(t

〈α,λτ 〉−1OF̆ ) = Uα(t
〈α,λ†

τ 〉OF̆ ) ⊆ I+
λ†
τ

for α ∈ Rτ (λ•), which means Στ ⊆ I+
λ†
τ
for 1 � τ � d. As λ†

τ = λτ+1 for

1 � τ � d− 1, we have

t−λaHa(λ•)t
λ†
a ×K · · · ×K t−λc−1Hc−1t

λ†
c−1 ×K t−λcHc(λ•)t

λ†
cK

= t−λaHa(λ•)t
λc+1 ×K · · · ×K t−λc−1Hc−1(λ•)t

λc ×K t−λcHc(λ•)t
λ†
cK

= t−λaIλa
Σat

λa+1 ×K · · · ×K t−λc−1Iλc−1
Σc−1t

λc ×K t−λcIλc
Σct

λ†
cK

= t−λaIλa
tλa+1 ×K · · · ×K t−λc−1Iλc−1

tλc ×K t−λcIλc
tλ

†
cK

= t−λaI+λa
I−λa

tλa+1 ×K · · · ×K t−λc−1I+λc−1
I−λc−1

tλc ×K (t−λcI+λc
I−λc

tλ
†
c)K

= t−λaI+λa
tλa+1 ×K · · · ×K t−λc−1I+λc−1

tλc ×K t−λcI+λc
tλ

†
cK

= KUλa
tλ

�
a ×K · · · ×K KUλc

tλ
�
cK,

where the fifth equality follows from Lemma 1.4 that I−λτ
⊆ Iλ†

τ
for 1 � τ � d

since λ�
• = −λ• + λ†

• is minuscule. The proof is finished.
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Write ελ• = (ε1, . . . , εd) ∈ (Sn)
d with ετ := εGλτ

for 1 � τ � d. We define
aτ,i = ετ (i)+nλτ (ετ (i)) for 1 � τ � d. By the definition of ετ = ελτ

(see also
Remark 3.4), aτ,1 > · · · > aτ,n is the arrangement of the integers i+ nλτ (i)
for 1 � i � n in the decreasing order. Define wλ• = (wτ )1�τ�d ∈ (Sn)

d such
that

aτ,i =

{
aτ+1,wτ (i) − nλ�

τ (i), if 1 � τ � d− 1;

a1,wd(i) − nλ�
d(i) +m, if τ = d.

(∗)

Lemma 3.7. We have ετ =ε1w
−1
1 · · ·w−1

τ−1 and hence λ�
τ =wτ−1 · · ·w1ε

−1
1 (λ�

τ )
for 1 � τ � d.

Proof. Suppose 2 � τ � d. Then aτ,i = aτ−1,w−1
τ−1(i)

+ nλ�
τ−1(w

−1
τ−1(i)), that

is,

ετ (i)+nλτ (ετ (i)) = ετ−1(w
−1
τ−1(i))+nλτ−1(ετ−1(w

−1
τ−1(i)))+nλ�

τ−1(w
−1
τ−1(i)),

which means ετ (i)=ετ−1(w
−1
τ−1(i)). By induction we have ετ =ε1w

−1
1 · · ·w−1

τ−1.

Lemma 3.8. Let 1 � τ � d and 1 � i < j � n. We have

(1) wτ (i) > wτ (j), that is, aτ+1,wτ (i) < aτ+1,wτ (j) if and only if aτ,i −
aτ,j < n and λ�

τ (j)− λ�
τ (i) = 1, in which case aτ+1,wτ (j) − aτ+1,wτ (i) < n.

(2) �(wτ ) = |{α ∈ Φ; (λτ )α � 0, (λ†
τ )α < 0}|.

Proof. By (∗) we have

aτ+1,wτ (i) − aτ+1,wτ (j) = aτ,i − aτ,j + n(λ�
τ (i)− λ�

τ (j))(i)

= (ετ (i) + nλτ (ετ (i)))− (ετ (j) + nλτ (ετ (j))).

Then the first statement follows from that λ�
τ is minuscule. For 1 � k �= l � n

we ave λαk,l
� 0 if and only if k + nλ(k) > l + nλ(l). Then it follows from

(i) that the map γ �→ ετ (γ) gives a bijection between Φ+ ∩ −w−1
τ (Φ+) and

the set {α ∈ Φ; (λτ )α � 0, (λ†
τ )α < 0}. The second statement is proved.

For w ∈ Sn we denote by supp(w) the set of integers 1 � i � n− 1 such
that the simple reflection sαi

appears in some/any reduced expression of w.

Lemma 3.9. Let 1 � τ � d and 1 � i � n − 1 such that i ∈ supp(wτ ).
Then there are roots α, β � αi such that w−1

τ (α) < 0 and wτ (β) < 0. As a
consequence, aτ,i − aτ,i+1 < n and aτ+1,i − aτ+1,i+1 < n.
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Proof. The first statement follows from that i ∈ supp(wτ ). Let α = αj,j′ ∈
Φ+ such that w−1

τ (α) < 0 and αi � α. In other words, j � i < i+1 � j′ and
w−1
τ (j) > w−1

τ (j′). Then we have aτ+1,i − aτ+1,i+1 � aτ+1,j − aτ+1,j′ < n by

Lemma 3.8. The inequality aτ,i − aτ,i+1 < n follows in a similar way.

Lemma 3.10. We have dimXλ•
μ•
(b•) = 〈ρ•, μ• − λ�

•〉 − �(wλ•). Here ρ•
denotes the half sum of positive roots of Gd.

Proof. We set

E = {(τ, i, j); 1 � τ � d, 1 � i < j � n, λ�
τ (j)− λ�

τ (i) = 1}
E′ = {(τ, i, j) ∈ E; aτ,i − aτ,j > n}
E′′ = {(τ, i, j); 1 � τ � d, 1 � i < j � n,wτ (i) > wτ (j)}.

Then E = E′ � E′′ by Lemma 3.8. Applying Proposition 2.9 (3) we have

dimXλ•
μ•
(b•)= |E′|= |E|− |E′′|=〈ρ•, λ�

•−λ�
•〉−�(wλ•)=〈ρ•, μ•−λ�

•〉− �(wλ•),

where λ�
• denotes the dominant conjugate of λ�

•, which equals μ• by Propo-

sition 2.9.

Lemma 3.11. If λ• ∈ Atop
μ•,b•

, then �(wλ•) =
∑d

τ=1 �(wτ ) = n − 1, and

wd · · ·w1 ∈ Sn is a product of distinct simple reflections.

Proof. Let λm,n ∈ Zn such that λm,n(i) = � imn � − � (i−1)m
n � for 1 � i �

n. As λ• ∈ Atop
μ•,b•

, It follows from [17, §4.4] that
∑d

τ=1 λ
�
τ = λm,n and

dimXλ•
μ•
(b•) = 〈ρ•, μ•〉 − n−1

2 . By Lemma 3.10,

dimXλ•
μ•
(b•) = 〈ρ•, μ• − λ�

•〉 − �(wλ•)

= 〈ρ•, μ•〉 − 〈ρ, λm,n〉 − �(wλ•)

= 〈ρ•, μ•〉+
n− 1

2
− �(wλ•)

= 〈ρ•, μ•〉 −
n− 1

2
,

where ρ is the half sum of positive roots of GLn. Thus �(wλ•) = n − 1.

Moreover, by (∗) we see that ε1(i)− ε1wd · · ·w1(i) ≡ a1,i − a1,wd···w1(i) ≡ m

mod n for 1 � i � n. So wd · · ·w1 ∈ Sn acts on {1, . . . , n} transitively as m

is coprime to n. This means that n− 1 � �(wd · · ·w1) � �(wλ•) = n− 1 and

wd · · ·w1 is a product of distinct simple reflections as desired.
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Lemma 3.12. Let λ• ∈ Atop
μ•,b•

. Let 1 � τ � d− 1 and i ∈ supp(wτ ). Then∑ι
k=τ+1〈αi, λ

�
k〉 ∈ Z�0 for τ + 1 � ι � d.

Proof. By Lemma 3.11, i /∈ supp(wl) for τ +1 � l � d, and moreover, there
exists at most one integer τ + 1 � τ ′ � ι (resp. τ + 1 � τ ′′ � ι) such that
i − 1 ∈ supp(wτ ′) (resp. i + 1 ∈ supp(wτ ′′)). Without loss of generality, we
assume such τ ′, τ ′′ exist. Therefore,

(i) for τ + 1 � k � ι we have: (1) wk(i) �= i if and only if k = τ ′ and
wτ ′(i) < i; (2) wk(i+1) �= i+1 if and only if k = τ ′′ and wτ ′′(i+1) > i+1.

Using (i) and the equality from (∗)

〈αi, λ
�
k〉 = (ak+1,wk(i) − ak+1,wk(i+1))− (ak,i − ak,i+1)

we deduce that

ι∑
k=τ+1

〈αi, λ
�
k〉

=
aτ ′+1,wτ′ (i) − aτ ′+1,i

n

+
aι+1,i − aι+1,i+1

n
+

aτ ′′+1,i+1 − aτ ′′+1,wτ′′ (i+1)

n
− aτ+1,i − aτ+1,i+1

n
� 0,

where the inequality follows from that aτ+1,i−aτ+1,i+1 < n (by Lemma 3.9)
and that aτ ′+1,wτ′ (i) − aτ ′+1,i, aι+1,i − aι+1,i+1, aτ ′′+1,i+1 − aτ ′′+1,wτ′′(i+1) >
0.

Proof of Proposition 3.5. By Lemma 3.7 we have λ�
k=ελa

(wk−1· · ·wa)
−1(λ�

k)

and Uλk
= ελa (wk−1···wa)−1

U for a � k � d. By Lemma 3.6,

t−λaHa(λ•)t
λ†
a ×K · · · ×K t−λcHc(λ•)t

λ†
cK/K

= KUλa
tλ

�
a ×K · · · ×K KUλc

tλ
�
cK/K

= ελa
KU t

λ�
a ×K w−1

a KU t
λ�
a+1wa

×K · · · ×K (wc−1 · · ·wa)
−1KU t

λ�
cwc−1 · · ·waK/K

= ελa
KU t

λ�
a ×K w−1

a KU t
λ�
a+1 ×K · · · ×K w−1

c−1KU t
λ�
cK/K

Therefore, it suffices to show that for a � τ � c − 1 and i ∈ supp(wτ ) we
have

siKU t
λ�
τ+1 ×K · · · ×K KU tλ

�
cK/K = KU t

λ�
τ+1 ×K · · · ×K KU tλ

�
cK/K.
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Set Ui = Uαi
, U−i = U−αi

and U i =
∏

0<α �=αi
Uα for 1 � i � n − 1. Then

U = UiU
i = U iUi and U i is normalized by Ui and U−i. As we can take

si = Ui(−1)U−i(1)Ui(−1), the displayed equality above is equivalent to

U−i(1)KU t
λ�
τ+1 ×K · · · ×K KU tλ

�
cK/K = KU t

λ�
τ+1 ×K · · · ×K KU tλ

�
cK/K.

Define fι for τ � ι � d such that fτ = 1 and fι = teιfι−1/(1 + zιfι−1)
with eι = 〈αi, λ

�
ι〉 for τ + 1 � ι � c. We claim that

(i) for generic points (zτ+1, . . . , zc) ∈ (OF̆ )
c−τ we have 1 + zιfι−1 ∈ O×

F̆

and fι ∈ t
∑ι

k=τ+1 ekOF̆ ⊆ OF̆ for τ + 1 � ι � c.
if ι = τ + 1, the claim is true by taking zτ+1 ∈ OF̆ \ {−1}. Suppose

it is true for ι − 1. Then fι−1 ∈ t
∑ι−1

k=τ+1 ekOF̆ ⊆ OF̆ by Lemma 3.12. So
there exist generic points zι ∈ OF̆ such that 1 + zιfι−1 ∈ O×

F̆
and hence

fι = teιfι−1/(1 + zιfι−1) ∈ t
∑ι

k=τ+1 ekOF̆ as desired. The claim (i) is proved.
Let (zτ+1, . . . , zc) ∈ (OF̆ )

c−τ be a generic point as in (i). Using (i) and
the commutator relation

U−α(f)Uα(z) = Uα(
z

1 + zf
)(1 + zf)−α∨

U−α(
f

1 + zf
) for 1 + zf �= 0,

we deduce that

U−i(1)KU iUi(zτ+1)t
λ�
τ+1 ×K · · · ×K KU iUi(zc)t

λ�
cK/K

⊆ KBt
λ�
τ+1 ×K U−i(fτ+1)KU iUi(zτ+2)t

λ�
τ+2 ×K · · · ×K KU iUi(zc)t

λ�
cK/K

...

⊆ KBt
λ�
τ+1 ×K · · · ×K KBt

λ�
cK/K

= KU t
λ�
τ+1 ×K · · · ×K KU t

λ�
cK/K.

Therefore, KU t
λ�
τ+1 ×K · · · ×K KU t

λ�
cK/K contains an open dense subset of

U−i(1)KU t
λ�
τ+1 ×K · · · ×K KU t

λ�
cK/K as desired.

3.4. The general case

Finally we consider the general case where μ• ∈ Y d is an arbitrary dominant
cocharacter. The strategy is to reduce it to the minuscule case considered in
the previous subsection.

As G = ResE/FGLn, there exist e ∈ Z�d, a minuscule dominant cochar-
acter υ• ∈ Y e and a sequence Σ of integers 1 = k1 < · · · < kd < kd+1 = e+1
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such that μτ = υkτ
+ · · ·+ υkτ+1−1 for 1 � τ � d. Let prΣ : Ge → Gd be the

projection given by (g1, . . . , ge) �→ (gk1
, . . . , gkd

). By abuse of notation, we
still denote by b• the element (1, . . . , 1, b) in Ge(F̆ ) and by σ• the Frobenius
of Ge given by (g1, . . . , ge) �→ (g2, . . . , ge, σ(g1)). Then there is a Cartesian
square

Xυ•(b•)

prΣ

G(F̆ )×K Grυ•

id×KmΣ
υ•

∪η•≤μ•Xη•(b•) G(F̆ )×K Grμ• ,

where mΣ
υ•

: Grυ• → Grμ• is the partial convolution map given by

(g1, . . . , ge−1, geK) �→ (gk1
· · · gk2−1, . . . , gkd−1

· · · gkd−1, gkd
· · · geK);

the top horizontal map is given by

(g1K, . . . , geK) �→ (g1, g
−1
1 g2, . . . , g

−1
e−1ge, g

−1
e bσ(g1)K);

the bottom horizontal map is given by

(h1K, . . . , hdK) �→ (h1, h
−1
1 h2, . . . , h

−1
d−1hd, h

−1
d bσ(h1)K).

For a dominant cocharacter η• ∈ Y d we denote by mη•
υ• the multiplicity

with which V Ĝd

η•
appears in V Ĝe

υ•
. Here we view each Ĝe-crystal as a Ĝd-

crystal via the embedding Ĝd ↪→ Ĝe given by (h1, . . . , hd) �→ (h
(k2−k1)
1 , . . . ,

h
(kd+1−kd)
d ).

Proposition 3.13. We have

|Jb•\IrrtopXυ•(b•)| =
∑

η•≤μ•

mη•
υ•
|Jb•\IrrtopXη•(b•)|.

As a consequence, |Jb•\IrrtopXμ•(b•)| = dimV Ĝd

μ•
(λG(b)).

Proof. The first statement follows similarly as Corollary 1.6. To show the
second one, we argue by induction on |μ•|. If μ• minuscule, it is proved in
Theorem 3.3. Suppose it is true for |η•| < |μ•|. By the choice of υ• we have
mμ•

υ• = 1. Therefore,

|Jb•\IrrtopXυ•(b•)| =
∑

η•≤μ•

mη•
υ•
|Jb•\IrrtopXη•(b•)|
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= |Jb•\IrrtopXμ•(b•)|+
∑

η•<μ•

mη•
υ•

dimVη•(λG(b))

= dimVυ•(λG(b))

=
∑

η•≤μ•

mη•
υ•

dimVη•(λG(b)),

where the second equality follows from the induction hypothesis, and the
last equality follows again from Theorem 3.3 as υ• is minuscule. Therefore,
we have |Jb•\IrrtopXμ•(b•)| = dimVμ•(λG(b)) as desired.

Similar to the definition of ⊗ in Theorem 0.7, let ⊗Σ : BĜe

υ•
→ �η•B

Ĝd

η•

denote the map given by

(δ1, . . . , δe) �→ (δk1
⊗ · · · ⊗ δk2−1, . . . , δkd

⊗ · · · ⊗ δkd+1−1).

Proof of Theorem 3.1. Let C ∈ IrrtopXμ•(b•). By Theorem 3.3 and Propo-

sition 3.13, there exists ξ• ∈ Atop
υ•,b•

such that ξ�• ∈ BĜe

υ•
(λG(b)) and C =

prΣ(X
ξ•
υ•(b•)). Write ξ• = (ξ1, . . . , ξe), ξ†• = b•σ•(ξ•) = (ξ†1, . . . , ξ

†
e) and

ξ�• = (ξ�1, . . . , ξ
�
e). Define

γG
d

(C) = ⊗Σ(ξ
�
•) = (γ1, . . . , γd) ∈ �η•B

Ĝd

η•
(λG(b)),

where γτ = ξ�kτ
⊗ · · · ⊗ ξ�kτ+1−1 ∈ BĜ := �ηB

Ĝ
η for 1 � τ � d.

Let λ• = prΣ(ξ•) ∈ Y d. Then (Idtλ•Kd/Kd) ∩ C is open dense in C. So

(θG
d

λ•
)−1(C) = prΣ((θ

Ge

ξ•
)−1(Xξ•

υ•(b•))) ⊆ Id,

which means (by the proof of Lemma 2.10) that, for each 1 � τ � d,

Hτ (C) = Hkτ
(ξ•) · · ·Hkτ+1−1(ξ•),

where Hτ (C) and H(ξ•) are defined in §2.3 and §3.2 respectively. Thus for
1 � a � c � d,

t−λaHa(C)tλ
†
a ×K · · · ×K t−λcHc(C)tλ

†
cK/K

= mΣ
υ•
(t−ξkaHka

(ξ•)t
ξ†ka ×K · · · ×K t−ξkc+1−1Hkc+1−1(ξ•)t

ξ†kc+1−1K/K)

= mΣ
υ•
(ελa

KU t
ξ�ka ×K · · · ×K KU t

ξ�kc+1−1K/K)

= ελa
Sγa

×̃ · · · ×̃Sγc
,
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where the first equality follows from that λτ = ξkτ
and λ†

τ = ξ†kτ+1−1 for
1 � τ � d; the second equality follows from Proposition 3.5. In particular,
we have

t−λτHτ (C)tλ
†
τK/K = ελτ

Sγτ

by taking a = c = τ . On the other hand, as C ⊆ Xμ•(b•) it follows that

t−λτHτ (C)tλ
†
τK/K ⊆ Gr◦μτ

.

Thus, γτ ∈ BĜ
μτ

and hence γG
d

(C) ∈ BĜd

μ•
(λG(b)). Now the first statement of

Theorem 3.1 follows by taking a = 1 and c = d.
As b• is superbasic, Jb• = (Ωd∩Jb•)(Id∩Jb•). By Lemma 2.3 and Lemma

2.5, the map C �→ γG
d

(C) defined in the previous paragraph induces a map

Jb•\IrrtopXμ•(b•) → BĜd

μ•
(λG(b)).

Then we have the following commutative diagram

IrrXυ•(b•)

prΣ

γGe

BĜe

μ•
(λG(b))

⊗Σ

�η•IrrXη•(b)
γGd

�η•B
Ĝd

η•
(λG(b)).

As γG
e

is bijective and mμ•
υ• = 1, the map Jb•\IrrtopXμ•(b•)

γGd

−→ BĜd

μ•
(λG(b))

is surjective and hence bijective by Proposition 3.13.

4. Proof of Theorem 0.5 and 0.7

4.1. Irreducible components of SN
μ,η

Let P = MN and b ∈ M(F̆ ) be as in §2.1. For μ ∈ Y + we denote by Iμ,M
the set of M -dominant cocharacters η such that

SN
μ,η := N(F̆ )tηK/K ∩Gr◦μ �= ∅.

Define Iμ,b,M = {η ∈ Iμ,M ; η = κM (b) ∈ π1(M)σ}.

Proposition 4.1 ([8, Proposition 5.4.2]). Let η ∈ Iμ,M , then

dimSN
μ,η � 〈ρ, μ+ η〉 − 2〈ρM , η〉.
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Moreover, let ΣN
μ,η be the set of irreducible components of SN

μ,η with the max-

imal possible dimension 〈ρ, μ+ η〉 − 2〈ρM , η〉. Then |ΣN
μ,η| equals the multi-

plicity with which BM̂
η appears in BĜ

μ .

For η ∈ Iμ,M recall that θNη : N(F̆ ) → GrP is the map given by n �→
ntηKP . Let ZN ∈ IrrSN

μ,η and g = htηh′ ∈ KM tηKM with h, h′ ∈ KM . We
define

(θNη )−1(ZN ) ∗ g = h(θNη )−1(ZN )h−1g ⊆ P (F̆ );

ZN ∗ (gKM ) = (θ−1
η (ZN ) ∗ g)KP /KP ⊆ GrP ,

which do not depend on the choices of h, h′ ∈ KM since the connected group
KM ∩ tηKM t−η fixes SN

μ,η and hence fixes each of its irreducible components,

by left multiplication. For DM ⊆ KM tηKM we set

(θNη )−1(ZN ) ∗ DM = ∪g∈DM (θNη )−1(ZN ) ∗ g;
ZN ∗ (DMKM/KM ) = ∪g∈DMZN ∗ (gKM ).

Notice that ZN ∗ (DMKM/KM ) = ((θNη )−1(ZN ) ∗ DM )KP /KP .

Lemma 4.2. Let ZN ∈ IrrSN
μ,η and g ∈ KM tηKM . Then we have

(1) h((θNη )−1(ZN ) ∗ g) = (θNη )−1(ZN ) ∗ (hg) for h ∈ KM ;

(2) u((θNη )−1(ZN ) ∗ g) = (θNη )−1(ZN ) ∗ g for u ∈ KN .

Proof. The first statement follows by definition. The second one follows from
that KNZN = ZN since KN fixes SN

μ,η and hence fixes each of its irreducible
components by left multiplication.

4.2. Iwasawa decomposition of Xμ(b)

Notice that the natural projection P = MN → M induces a map

β : Xμ(b) ↪→ GrG = GrP → GrM .

Let η ∈ Iμ,b,M and let XM
η (b) be the affine Deligne-Lusztig variety defined

for M . For ZN ∈ IrrSN
μ,η and CM ⊆ XM

η (b) we define

XZN ,CM

μ (b) = {gKP ∈ β−1(CM ); g−1bσ(g)KP ∈ ZN ∗Gr◦η,M} ⊆ GrP ,

where Gr◦η,M = KM tηKM/KM . Notice that the natural projection

ZN ∗Gr◦η,M → Gr◦η,M
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is a fiber bundle with fibers isomorphic to ZN .

Proposition 4.3. Let CM ⊆ XM
η (b) be locally closed and irreducible. Then

(1) β−1(CM ) = ∪ZN∈IrrSN
μ,η

XZN ,CM

μ (b);

(2) dimXZN ,CM

μ (b) � dimXμ(b), where the equality holds if and only if
dimCM = dimXM

η (b) and ZN ∈ ΣN
μ,η;

(3) N(F̆ ) ∩ Jb acts transitively on IrrXZN ,CM

μ (b);

(4) XZN ,CM

μ (b) is irreducible if M is the centralizer of νb;
(5) t−λHP (C)tbσ(λ) = (θNη )−1(ZN ) ∗ (t−λHM (CM )tbσ(λ))

if C ∈ IrrXZN ,CM

μ (b) and CM ∈ IrrXλ,M
η for some λ ∈ Y .

Here Xλ,M
η (b) = IM tλKM/KM ∩XM

η (b), and HM (CM ) is define in §2.1
for G = M .

Proof. Let mKM ∈ XM
η (b). By definition,

β−1(mKM ) = {mnKP ;n
−1m−1bσ(m)σ(n)KP ∈ SN

μ,η ∗ (bmKM )}.

So (1) follows. Moreover, as νM (b) = νG(b) is dominant, it follows from [8,
Proposition 5.3.2] that

dim(XZN ,CM

μ (b) ∩ β−1(mKM )) = dimZN − 〈2ρN , η〉.

Therefore, by Proposition 4.1 we have

dimXZN ,CM

μ (b) = dimCM + dimZN − 2〈ρ, η〉

� 〈ρM , η〉 − 1

2
defM (b) + 〈ρ, μ+ η〉 − 2〈ρM , η〉 − 2〈ρN , η〉

= 〈ρ, μ〉 − 〈ρN , η〉 − 1

2
defG(b)

= 〈ρ, μ− νM (b)〉 − 1

2
defG(b)

= dimXμ(b),

where the equality holds if and only if dimCM = dimXM
η (b) and ZN ∈ ΣN

μ,η.
So (2) follows.

The statement (3) follows similarly as [17, Proposition 5.6] which deals
with the minuscule case. Notice that for minuscule μ the sets SN

μ,η=KN tηK/K

and N(F̆ )∩ t−ηKtμK = t−η(θNη )−1(SN
μ,η)t

η are irreducible. For general case

we only needs to replace N(F̆ ) ∩ t−ηKtμK in [17, Claim 1 on page 1630]
with the irreducible set t−η(θNη )−1(ZN )tη for ZN ∈ IrrSN

μ,η.
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The statement (4) follows from (3) and that N(F̆ ) ∩ Jb = {1}.
It follows by definition that

t−λHP (XZN ,CM

(b))tbσ(λ) = (θNη )−1(ZN ) ∗ (t−λHM (CM )tbσ(λ)).

By (3), all the irreducible components of XZN ,CM

(b) are conjugate under
N(F̆ ) ∩ Jb. Thus H

P (C) = HP (XZN ,CM

(b)) for C ∈ IrrXZN ,CM

(b), and (5)
follows.

Corollary 4.4. The map

(ZN , CM ) �→ JMb IrrXZN ,CM

μ (b) = (P (F̆ ) ∩ Jb)IrrX
ZN ,CM

μ (b)

induces a bijection

(P (F̆ ) ∩ Jb)\IrrtopXμ(b) ∼= �η∈Iμ,b,M
ΣN
μ,η × (JMb \IrrtopXM

η (b)).

As a consequence, |Jb\IrrtopXμ(b)| � dimVμ(λG(b)).

Proof. The bijection follows from Proposition 4.3 (1), (2), (3). Choose P =
MN such that b is superbasic in M(F̆ ). Then

|Jb\IrrtopXμ(b)| � |(P (F̆ ) ∩ Jb)\IrrtopXμ(b)|
=

∑
η∈Iμ,b,M

|ΣN
μ,η||JMb \IrrtopXM

η (b)|

=
∑

η∈Iμ,b,M

|ΣN
μ,η| dimV M̂

η (λM (b))

= dimVμ(λM (b))

= dimVμ(λG(b)),

where the second equality follows from Proposition 3.13 dealing with the
subperbasic case, and the last one follows from that λM (b) = λG(b).

4.3. The numerical identity

In this subsection we prove the numerical version of Theorem 0.5.

Proposition 4.5. We have |Jb\IrrtopXμ(b)| = dimVμ(λG(b)) if μ is minus-
cule and b is basic.

The proof is given in §5.
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Lemma 4.6. If G is simple, adjoint and has some nonzero minuscule
cocharacter, then each irreducible Ĝ-module appears in some tensor prod-
uct of irreducible Ĝ-modules with minuscule highest weights.

Proof. Let μ ∈ Y +. By the assumption on G, there exists a dominant and
minuscule cocharacter μ• ∈ Y d for some d ∈ Z�1 such that μ ≤ |μ•| and
hence Grμ ⊆ mμ•(Grμ•). By Theorem 1.5 (2), V Ĝ

μ appears in V Ĝ
μ•

as desired.

Remark 4.7. The condition in Lemma 4.6 is equivalent to that G is simple,
adjoint, and any/some of its absolute factors is of classical type or E6 type
or E7 type.

Proposition 4.8. We have |Jb\IrrtopXμ(b)| = dimVμ(λG(b)) if b is basic.

First we reduce Proposition 4.8 to the adjoint case.

Lemma 4.9. Proposition 4.8 is true for G if it is true for G = Gad.

Proof. Choose ω ∈ π1(G) such that Xμ(b)
ω := Xμ(b) ∩Grω �= ∅, where Grω

is the corresponding connected component of Gr. By [3, Corollary 2.4.2] and
[17, Proposition 3.1], the natural projection G → Gad induces a universal
homeomorphism Xμ(b)

ω ∼→ Xμad
(bad)

ωad , where μad, bad and ωad denote the
images of μ, b and ω respectively under the natural projection G → Gad. Let
J0b , J

0
bad

be the kernels of the natural projections Jb → π1(G), Jbad → π1(Gad)
respectively. Notice that Xμ(b) = (Ω ∩ Jb)Xμ(b)

ω as b ∈ Ω is basic. By
Corollary 4.4,

dimVμ(λG(b)) � |Jb\IrrtopXμ(b)| = |J0b\IrrtopXμ(b)
ω|

� |J0bad\Irr
topXμad

(bad)
ωad | = |Jbad\IrrtopXμad

(bad)|
= dimVμad

(λGad
(bad)) = dimVμ(λG(b)),

where the second last equality follows by assumption.

Proof of Proposition 4.8 by assuming Proposition 4.5. By Lemma 4.9, we
can assume G is adjoint and simple. If the coweight lattice equals the coroot
lattice, then b is unramified and the statement is proved in [53, Theorem
4.4.14]. So we will assume G has a nonzero minuscule coweight. By Lemma
4.6, there exists a minuscule and dominant cocharacter μ• ∈ Y d for some

d ∈ Z�1 such that BĜ
μ appears in BĜ

μ•
, that is, mμ

μ• �= 0. By Proposition 4.5,

dimV Ĝ
μ•
(λG(b)) = |Jb•\IrrtopXμ•(b•)|
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=
∑

υ≤|μ•|
mυ

μ•
|Jb\IrrXυ(b)|

�
∑

υ≤|μ•|
mυ

μ•
dimV Ĝ

υ (λG(b))

= dimV Ĝ
μ•
(λG(b)).

where the second equality follows from Corollary 1.6, and the inequality
follows from Corollary 4.4. Thus |Jb\IrrXυ(b)| = dimVυ(λ(b)) if mυ

μ•
�=

0.

Theorem 4.10. We have |Jb\IrrtopXμ(b)| = dimVμ(λG(b)). In particular,

(P (F̆ ) ∩ Jb)\IrrtopXμ(b) ∼= Jb\IrrtopXμ(b).

Proof. By Corollary 4.4 we have

|(P (F̆ ) ∩ Jb)\IrrtopXμ(b)| =
∑

η∈Iμ,b,M

|ΣN
μ,η||Jb\IrrtopXM

η (b)|

=
∑

η∈Iμ,b,M

|ΣN
μ,η| dimV M̂

η (λM (b))

= dimVμ(λG(b)),

where the second equality follows from Proposition 4.8 since b is basic in
M(F̆ ). Now the first statement follows by taking M to be the centralizer of
νG(b), in which case P (F̆ )∩Jb = JMb = Jb. The second statement follows from

the equality |(P (F̆ ) ∩ Jb)\IrrtopXμ(b)| = dimVμ(λG(b)) = |Jb\IrrtopXμ(b)|.

4.4. Decomposition of MV-cycles

Notice that each Ĝ-crystal restricts to an M̂ -crystal. For δ ∈ BĜ
μ we denote

by SM
δ the corresponding Mirković-Vilonen cycle in GrM .

Lemma 4.11. Let δ ∈ BĜ
μ and let η ∈ Iμ,M such that δ lies in a highest

weight M̂ -crystal isomorphic to BM̂
η . Then there exists a unique irreducible

component ZN
δ ∈ ΣN

μ,η such that

Sδ = ZN
δ ∗ SM

δ .

Here we view SM
δ as its open dense subset lying in Gr◦η,M .
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Proof. Let χ ∈ Iμ,M . Let ZN ∈ ΣN
μ,χ and ξ ∈ BM̂

χ (λ) for some λ ∈ Y . Then

ZN ∗ SM
ξ ⊆ Sλ is irreducible as the natural projection ZN ∗ SM

ξ → SM
ξ is a

fiber bundle with fibers isomorphic to ZN . Moreover,

dimZN ∗ SM
ξ = dimZN + dimSM

ξ

= 〈ρ, μ+ χ〉 − 2〈ρM , χ〉+ 〈ρM , χ+ λ〉
= 〈ρ, μ+ λ〉+ 〈ρN , χ− λ〉
= 〈ρ, μ+ λ〉
= dim(Sλ ∩Grμ),

where the fourth equality follows from that χ− λ ∈ ZΦ∨
M . Therefore,

Z ∗ SM
ξ ∈ Irr(Sλ ∩Grμ) ∼= MVμ(λ) = BĜ

μ (λ).

Hence the map (ZN , ξ) �→ ZN ∗ SM
ξ gives an embedding

�χ(Σ
N
μ,χ × BM̂

χ ) ↪→ MVμ
∼= BĜ

μ ,

which is bijective since
∑

χ |ΣN
μ,χ||BM̂

χ | = |BĜ
μ | by Proposition 4.1. Thus

there exist unique κ ∈ Iμ,M , ζ ∈ BM̂
κ and ZN

δ ∈ ΣN
μ,κ such that Sδ =

ZN
δ ∗ SM

ζ . It remains to show ζ = δ ∈ BM̂
η , that is, πP (Sδ) = SM

δ with
πP : GrP → GrM the natural projection. In view of the construction of MV
cycles using Littelmann’s path model [53, Proposition 3.3.12 & 3.3.15], it
suffices to consider the case where μ is a quasi-minuscule cocharacter of G.
Then the statement follows from the explicit construction in [53, §3.2.5 &
Definition 3.3.6].

4.5. Proof of Theorem 0.5

Take P = MN such that b is superbasic in M(F̆ ). Let C ∈ IrrtopXμ(b). By

Corollary 4.4, there exist η ∈ Iμ,b,M and λ ∈ Y such that C ⊆ XZN ,Cλ,M

μ (b)

for some (ZN , Cλ,M ) ∈ ΣN
μ,η × IrrXλ,M

η such that Cλ,M ∈ IrrXM
η (b). In

particular, (N(F̆ )IM tλK/K) ∩ C is open dense in C. Let γM (Cλ,M ) ∈
BM̂
η (λM (b)) be as in Theorem 3.1 such that

t−λHM (Cλ,M )tbσ(λ)KM/KM = εMλ SM
γM (Cλ,M )

⊆ GrM .
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By Lemma 4.11, there exists γ(C) ∈ Bμ(λ(b)) such that

ZN ∗ SM
γM (Cλ,M )

= Sγ(C).

By Proposition 4.3 (5),

t−λHP (C)tbσ(λ)K/K = ZN ∗ εMλ SγM (Cλ,M ) = εMλ ZN ∗ SγM (Cλ,M ) = εMλ Sγ(C).

So the first statement follows.

Let C ′ ∈ IrrtopXμ(b) be a conjugate of C under Jb. By Theorem 4.10, C ′

and C are conjugate under P (F̆ ) ∩ Jb, which, combined with Corollary 4.4,

implies that C ′ ⊆ XZN ,Cλ′,M
μ (b) for some λ′ ∈ Y and Cλ′,M ∈ IrrXλ′,M

η (b)

such that Cλ,M and Cλ′,M are conjugate by JMb . By Theorem 3.1, we have

γM (Cλ′,M ) = γM (Cλ,M )

and hence γ(C ′) = γ(C). So γ is invariant on the Jb-orbits of Irr
topXμ(b).

It remains to show γ induces a bijection Jb\IrrtopXμ(b) ∼= Bμ(λG(b)). By

Theorem 4.10 it suffices to show it is surjective. Let δ ∈ Bμ(λG(b)). Suppose

δ ∈ BM̂
η (λG(b)) for some η ∈ Iμ,b,M . It follows from Theorem 3.1 that there

exists CM ∈ IrrtopXM
η (b) such that

γM (CM ) = δ ∈ BM̂
η (λG(b)).

Let φ ∈ Y and Cφ,M ∈ IrrXφ,M
η (b) such that Cφ,M = CM . Let ZN

δ ∈ ΣN
μ,η

be as in Lemma 4.11 such that Sδ = ZN
δ ∗ SM

δ . By the construction in the

previous paragraph, we have γ(C) = δ for any C ∈ IrrX
ZN

δ ,Cφ,M

μ (b). So γ is

surjective as desired.

4.6. Proof of Theorem 0.7

Let C ∈ IrrtopXμ•(b•) and C ′ ∈ IrrtopXμ(b) for some μ ∈ Y + such that C ′ =

pr(C). One should not confuse with the notation in the previous subsection.

Assume γG
d

(C) = γ• = (γ1, . . . , γd) ∈ BĜd

μ•
. By Corollary 1.6, it suffices to

show that

γ(C ′) = γ1 ⊗ · · · ⊗ γd.
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It follows from Corollary 4.4 that there exist ZNd

• = (ZN
1 , · · · , ZN

d ) ∈ ΣNd

μ•,η•

and Cλ•,Md ∈ IrrXλ•,Md

η• (b•) for some η• ∈ Iμ•,Md and λ• ∈ Y d such that

Cλ•,Md ∈ IrrtopXMd

η•
(b•) and

C ⊆ X
ZNd

• ,Cλ•,Md

μ• (b•).(i)

Let ZNd

• = (θN
d

η•
)−1(ZNd

• ) = (ZN
1 , · · · ,ZN

d ). By (i) and Proposition 4.3
(5),

t−λ•HP d(C)tb•σ•(λ•) = ZNd

• ∗ (t−λ•HMd(Cλ•,Md)tb•σ•(λ•)).(ii)

Set λ• = (λ1, . . . , λd), λ
†
• = b•σ•(λ•) = (λ†

1, . . . , λ
†
d) and

HP d

(C) = H1(C)× · · · ×Hd(C);

HMd

(Cλ•,Md

) = H1(C
λ•,Md

)× · · · ×Hd(C
λ•,Md

).

Applying Theorem 0.5 (for C and Cλ•,Md respectively) and Lemma 4.11 we
have

εM
d

λ•
SGd

γ•
= t−λ•HP d(C)tλ

†
•Kd/Kd = ZNd

• ∗ (t−λ•HMd(Cλ•,Md)tλ
†
•)Kd/Kd

= εM
d

λ•
ZNd

• ∗ SMd

γ•
.

In particular, for 1 � τ � d we have

Sγτ
= (εMλτ

)−1ZN
τ ∗ (t−λτHτ (Cλ•,Md)tλ

†
τ )K/K = ZN

τ ∗ SM
γτ
.(iii)

Let λ = pr(λ•) = λ1. As C ′ = pr(C) ⊆ Gr, we see that N(F̆ )IM tλK/K ∩C ′

is open dense in C ′. By Theorem 0.5,

εMλ Sγ(C′)

= t−λHP (C ′)tbσ(λ)K/K

= t−λ1H1(C)tλ
†
1 · · · t−λdHd(C)tλ

†
dK/K

= (ZN
1 ∗ (t−λ1H1(Cλ•,Md)tλ

†
1)) · · · (ZN

d ∗ (t−λdHd(Cλ•,Md)tλ
†
d))K/K

= m(ZN
1 ∗ (t−λ1H1(Cλ•,Md)tλ

†
1)×K · · ·×K(ZN

d ∗(t−λdHd(Cλ•,Md)tλ
†
d))K/K)

= m(εMλ1
(ZN

1 ∗ SM
γ1
)̃×· · ·̃ ×(ZN

d ∗ SM
γd
))

= εMλ1
m(Sγ1

×̃ · · · ×̃Sγd
)
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= εMλ1
Sγ1

� · · · � Sγd

= εMλ Sγ1⊗···⊗γd
,

where m : G(F̆ )×K · · ·×K G(F̆ )×K Gr → Gr is the usual convolution map;
the second equality follows from Lemma 2.10; the third one follows from (ii)

and that λ†
• = (λ†

1, . . . , λ
†
d) = (λ2, . . . , λd, bσ(λ1)); the fifth one follows from

Lemma 4.2, Theorem 3.1 and (iii). So γ(C ′) = γ1 ⊗ · · · ⊗ γd as desired.

5. Proof of Proposition 4.5

We keep the notations in §1. Let μ ∈ Y + be minuscule, and let b ∈ G(F̆ ) be
basic which is a lift of an element in Ω. To prove Proposition 4.5, we assume
by Lemma 4.9 that G is simple and adjoint. Then σ acts transitively on the
connected components of (the Dynkin diagram of) S0. Let d be the number
of connected components of S0.

For simplicity, we also denote by w̃ ∈ W̃ ∩ Jb = {x ∈ W̃ ; bσ(x)b−1 = x}
some lift of w̃ in NT (F̆ ) that lies in Jb.

5.1. Orthogonal subset of roots

We say a subset D ⊆ Φ is strongly orthogonal if β′±β /∈ Φ for any β′, β ∈ D.
In particular, if D is strongly orthogonal, then it is orthogonal, that is,
〈β′, β∨〉 = 0 for any β �= β′ ∈ D.

Let α ∈ Φ. Set Oα = {αi; i ∈ Z} and Oα̃ = {α̃i; i ∈ Z}, where αi and α̃i

are as in §2.2. Let WOα̃
be the parabolic subgroup of W̃ generated by sβ̃ for

β ∈ Oα. Recall that Π is the set of minus simple roots and highest roots of
Φ.

Lemma 5.1. Let α ∈ Π such that WOα̃
is finite. Let w̃α be the longest

element of WOα̃
. Then WOα̃

∩ Jb = {1, w̃α} and one of the following cases
occurs:

(1) 〈αd, α∨〉 = −1, |Oα| = 2d, Oα+αd is strongly orthogonal (as |Oα+αd |=
d) and w̃α =

∏
ξ∈Oα+αd

sξ̃;

(2) Oα is strongly orthogonal and hence w̃α =
∏

β∈Oα
sβ̃.

In particular, any affine reflection of W a ∩ Jb is equal to
∏

c∈Oa
sc for

some a = (γ, k) ∈ Φ× Z = Φ̃ such that Oγ is strongly orthogonal.

Proof. The first statement follows from a case-by-case analysis. The “In par-
ticular” part follows by noticing that each reflection of W a ∩ Jb is conjugate
to some w̃α as in the first statement.
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5.2. Characterization of Atop
μ,b

Let λ ∈ Y . Let Xλ
μ(b) = ItλK/K ∩Xμ(b), Aμ,b = AG

μ,b, A
top
μ,b = Atop,G

μ,b and

R(λ) = Rtop
μ,b (λ) be as in §2.2. By Proposition 2.9, λ ∈ Aμ,b if and only if

λ� = −λ+ bσ(λ) is conjugate to μ by W0.
Let V = Y ⊗Z R and V p(bσ) = {v ∈ V ; p(bσ)(v) = v}. Define

V p(bσ)
gen = {v ∈ V p(bσ); 〈α, v〉 = 0 ⇔ 〈α, V p(bσ)〉 = 0, ∀α ∈ Φ},

which is open dense in V p(bσ). Notice that V
p(bσ)
gen ∩ Y �= ∅. Let Mb ⊇ T be

the Levi subgroup with root system {α ∈ Φ; 〈α, V p(bσ)〉 = 0}. By definition,

for any v ∈ V
p(bσ)
gen the centralizer Mv (see §1.3) of v in G coincides with Mb.

Fix v ∈ V
p(bσ)
gen ∩ Y . Denote by v̄ the unique dominant W0-conjugate

of v. Let z be the minimal element of W0 such that z(v) = v̄. Let Nv =∏
α∈Φ;〈α,v〉>0 Uα. Set M = Mv̄ = zMv = zMb and bM = zbσ(z)−1. By [14,

Lemma 3.1], bM is a lift of some element in ΩM , and is superbasic in M(F̆ ).

Lemma 5.2. Let λ ∈ Aμ,b and α ∈ Φ− ΦMb
. Then Oα ∩ O−α = ∅ and

|R(λ) ∩ (Oα ∪ O−α)| � 1

2

∑
β∈Oα

|〈β, λ�〉|,

where the equality holds if and only if either λβ � 0 for β ∈ Oα or λβ � −1
for β ∈ Oα.

Proof. As μ is minuscule, it follows from Proposition 2.9 and Lemma 2.7 (1)
that λ� is minuscule and that

λγ−1 − λγ = 〈γ, λ�〉 ∈ {0,±1} for γ ∈ Φ.(i)

By assumption, we have 〈α, v〉 �= 0 and hence Oα ∩O−α = ∅. By symmetry,
we may assume λα � 0 and there exist integers

0 = b0 � c1 < b1 � · · · � cr < br = |Oα|

such that for 1 � k � r we have

λαi < 0 for bk−1 + 1 � i � ck and λαj � 0 for ck + 1 � j � bk.

It follows from (i) that

if bk−1 < ck, then λαbk−1+1 = λαck = −1 and λαck+1 = λαbk−1 = 0.(ii)
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If bk−1 < ck for some 1 � k � r, we have

|R(λ) ∩ {±αi; bk−1 + 1 � i � ck}|
= |R(λ) ∩ {−αi; bk−1 + 1 � i � ck}|
= |{bk−1 + 1 � i � ck;λ−αi−1 � 0, λ−αi − λ−αi−1 = 1}|
= |{bk−1 + 1 � i � ck;λαi−1 � −1, λαi−1 − λαi = 1}|
= |{bk−1 + 1 � i � ck;λαi−1 − λαi = 1}| − 1

= −1

2
+

1

2

ck∑
i=bk−1+1

|λαi−1 − λαi |

= −1

2
+

1

2

ck∑
i=bk−1+1

|〈αi, λ�〉|,

where the first equality follows from that λαi < 0 and hence αi /∈ R(λ)
for bk−1 + 1 � i � ck; the third one follows from that λ−γ = −1 − λγ for
γ ∈ Φ; the fourth one follows from that λαi � −1 for bk−1 + 1 � i � ck
but 1 + λαbk−1+1 = λαbk−1 = 0 by (ii); the fifth one follows from (i) and
the equality

∑ck
i=bk−1+1 λαi−1 − λαi = λαbk−1 − λαck = 1 by (ii); the last one

follows from (i).
Similarly, for 1 � k � r,

|R(λ) ∩ {±αi; ck + 1 � i � bk}|
= |{ck + 1 � i � bk;λαi � 1, λαi − λαi−1 = 1}|

=

{
|{ck + 1 � i � bk;λαi − λαi−1 = 1}|, if bk−1 = ck;

|{ck + 1 � i � bk;λαi − λαi−1 = 1}| − 1, otherwise

=

{
1
2

∑bk
i=ck+1 |〈αi, λ�〉|, if bk−1 = ck

−1
2 + 1

2

∑bk
i=ck+1 |〈αi, λ�〉|, otherwise.

where the second equality follows from that λαi � 0 for ck + 1 � i � bk and
that λαck � 0 if and only if bk−1 = ck.

Therefore,

|R(λ) ∩ (Oα ∪ O−α)| � 1

2

∑
β∈Oα

|〈β, λ�〉|,

where the equality holds if and only if bk−1 = ck for 1 � k � r, that is,
λβ � 0 for β ∈ Oα. The proof is finished.
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Lemma 5.3. Let α ∈ Π (see §1.2). Then WOα̃
is infinite if and only if

Oα = Π. Moreover, in this case, Mb = G.

Proof. It follows from a case-by-case analysis on the Dynkin diagram of
S0.

For η ∈ Y let ηM be the unique WM -conjugate of η which is M -
dominant.

Lemma 5.4. For λ ∈ Aμ,b the map α �→ z(α) gives a bijection R(λ)∩ΦMb
∼=

RM
z(λ�),bM

(z(λ)). As a consequence, |R(λ)∩ΦMb
| � dimXM

z(λ�)(bM ). Here the

subset RM
z(λ�),bM

(z(λ)) ⊆ ΦM is defined in §2.2 for G = M , b = bM , and

μ = z(λ�).

Proof. Since z(Φ+
Mb

) = Φ+
M , we have λα = z(λ)z(α) for α ∈ ΦMv

. Hence the
first statement follows. The second statement follows from Proposition 2.9

that |RM
z(λ�),bM

(z(λ))| = dimX
z(λ),M
z(λ�) (bM ).

Corollary 5.5. Let λ ∈ Aμ,b. Then λ ∈ Atop
μ,b if and only if (1) z(λ) ∈

AM,top
z(λ�),bM

and (2) for each α ∈ Φ − ΦMb
, either λβ � 0 for β ∈ Oα or

λβ � −1 for β ∈ Oα. Here AM,top
z(λ�),bM

is defined in §5.2 for G = M , b = bM ,

and μ = z(λ�)
M
.

Proof. As λ� is conjugate to μ, we have

|〈ρ, μ〉| = 1

2

∑
α∈Φ+

Mv
∪ΦNv

|〈α, λ�〉|.

Therefore,

dimXλ
μ(b) = |R(λ)|

= |R(λ) ∩ ΦMb
|+ |R(λ) ∩ (Φ− ΦMb

)|
= |R(λ) ∩ ΦMb

|+
∑
O

|R(λ) ∩ ±O|

� |R(λ) ∩ ΦMb
|+ 1

2

∑
α∈ΦNv

|〈α, λ�〉|

= |R(λ) ∩ ΦMb
|+ 〈ρ, λ�〉 − 〈ρM , z(λ�)

M 〉

� dimXM
z(λ�)(bM ) + 〈ρ, μ〉 − 〈ρM , z(λ�)

M 〉
= dimXμ(b),
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where O ranges over p(bσ)-orbits of ΦNv
, and moreover, by Lemma 5.2 and

Lemma 5.4 the equality holds if and only if the conditions (1) and (2) hold.
The proof is finished.

5.3. The action of WOα̃
∩ Jb on IrrXμ(b)

Notice that Jb is generated by I ∩ Jb, Ω∩ Jb and WOα̃
∩ Jb for α ∈ Π. In this

subsection we study the action of WOα̃
∩ Jb on IrrXμ(b). Assume that WOα̃

is finite and let w̃α be the longest element of WOα̃
.

Lemma 5.6. Let α, w̃α be as in §5.3. Then {λβ;β ∈ Oα} = {−w̃α(λ)β;β ∈
Oα} for λ ∈ Y .

Proof. Recall that λβ = −β̃(λ) for β ∈ Φ. The statement follows by noticing
that w̃α sends Oα̃ to −Oα̃.

Lemma 5.7. Let α, w̃α be as in §5.3. Let λ ∈ Y such that either λβ � 1
for β ∈ Oα or λβ � −1 for β ∈ Oα. For γ ∈ Φ with λγ � 0 we have
w̃α(λ)p(w̃α)(γ) � 0. If, moreover, λ ∈ Aμ,b, then p(w̃α)R(λ) = R(w̃α(λ)).

Proof. We argue by contradiction. Set w̃ = w̃α, λ
′ = w̃(λ) and γ′ = p(w̃)(γ).

Suppose λγ � 0 but λ′
γ′ < 0, that is,

(i) 〈γ, λ〉 � 0, and γ < 0 if 〈γ, λ〉 = 0;
(ii) 〈γ′, λ′〉 � 0, and γ′ > 0 if 〈γ′, λ′〉 = 0.
By assumption and Lemma 5.1, we have
(iii) λβ � 1 or λβ � −1 if β ∈ Φ is a sum of roots in Oα.
Case(1): 〈αd, α∨〉 �= −1. ThenOα is orthogonal and w̃ = w̃α =

∏
β∈Oα

sβ̃.

So λ′ = w̃(λ) = p(w̃)(λ −
∑

β∈Oα∩Φ+ β∨) and hence 〈γ′, λ′〉 = 〈γ, λ −∑
β∈E∩Φ+ β∨〉, where E = {β ∈ Oα; 〈γ, β∨〉 �= 0}. If E ⊆ Φ−, then 〈γ′, λ′〉 =

〈γ, λ〉. By (i) and (ii) this implies that γ′ > 0, γ < 0 and 〈γ, λ〉 = 0. As
E consists of minus simple roots and γ′ = p(w̃)(γ) = (

∏
β∈E sβ)(γ), we de-

duce that γ is a sum of roots in E, contradicting (iii) since λγ = 0. Thus
E contains a unique highest root θ of Φ+ and 〈γ′, λ′〉 = 〈γ, λ − θ∨〉. By
(i), (ii) and that 〈γ, θ∨〉 �= 0, we have 〈γ, θ∨〉 � 1. If γ = θ ∈ Oα, then
γ′ = −θ < 0 (since Oα is orthogonal). As λγ � 0 and γ ∈ Oα, by (iii) we
have 〈λ, γ〉 = λγ +1 � 2. So λ′

γ′ = 〈γ, λ〉 − 2 � 2− 2 = 0, which is a contra-
diction. So γ �= ±θ and hence 〈γ, θ∨〉 = 1 (since θ is a long root). By (i) and
(ii) we have 0 � 〈γ, λ〉 � 1. If 〈γ, λ〉 = 1, then γ′ = (

∏
β∈E−{θ} sβ)(γ−θ) > 0

by (ii). As γ− θ ∈ Φ−, γ− θ is a sum of roots in E−{θ}, contradicting that
O is strongly orthogonal by Lemma 5.1 (2). So 〈γ, λ〉 = 0 and hence γ < 0
by (i). In particular, 〈γ, θ∨〉 � 0 as θ∨ is dominant, which contradicts that
〈γ, θ∨〉 = 1.
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Case(2): 〈αd, α∨〉 = −1. Let ξ = α + αd. Then |Oξ| = d and w̃ = w̃α =∏
β∈Oξ

sβ̃ by Lemma 5.1. So λ′ = w̃(λ) = p(w̃)(λ−
∑

β∈Oξ∩Φ+ β∨) and hence

〈γ′, λ′〉 = 〈γ, λ −
∑

β∈E∩Φ+ β∨〉, where E = {β ∈ Oξ; 〈γ, β∨〉 �= 0}. Notice
that E consists of at most one element. If E = ∅, then γ = γ′ and 〈γ′, λ′〉 =
〈γ, λ〉, contradicting (i) and (ii). So E = {ξi0} for some 1 � i0 � d. If ξi0 < 0,
then αi0 , αi0+d are both minus simple roots and 〈γ′, λ′〉 = 〈γ, λ〉. By (i) and
(ii) we have γ′ > 0, γ < 0 and 〈γ, λ〉 = 0. As γ′ = sξi0 (γ) = sαi0sαi0+dsαi0 (γ),
we deduce that γ is a sum of roots in {αi0 , αi0+d}, contradicting (iii). So ξi0 >
0 and 〈γ′, λ′〉 = 〈γ, λ− (ξi0)∨〉. Moreover, as ξi0 = αi0 +αi0+d, exactly one of
{αi0 , αi0+d} is a positive highest root. By symmetry, we can assume αi0 < 0
and αi0+d > 0. By (ii) and that 〈γ, (ξi0)∨〉 �= 0 we have 〈γ, (ξi0)∨〉 � 1. If
γ = ξi0 , then γ′ = −ξi0 < 0. By (iii) we have 〈λ, γ〉 = λγ + 1 � 2 and hence
λ′
γ′ = 〈γ, λ〉 − 2 � 2 − 2 = 0, which is a contradiction. So γ �= ±ξi0 and

〈γ, (ξi0)∨〉 = 1 (since ξi0 is a long root), which means γ′ = sξi0 (γ) = γ − ξi0 .
By (i) and (ii) we have 0 � 〈γ, λ〉 � 1. If 〈γ, λ〉 = 1, then 〈γ′, λ′〉 = 0
and hence 0 < γ′ = γ − ξi0 = (γ − αi0+d) − αi0 � −αi0 by (ii), where the
last inequality follows from that αi0+d is a positive highest root. As −αi0

is a simple root, we deduce that γ′ = −αi0 and hence γ = αi0+d ∈ Oα,
contradicting (iii) since λγ = 0. So 〈γ, λ〉 = 0 and hence γ < 0 by (i), which
together with the equality γ′ = γ − ξi0 ∈ Φ implies that 0 � γ′ + αi0+d =
γ − αi0 < −αi0 . So γ − αi0 = 0, that is, γ = αi0 ∈ Oα, which contradicts
(iii) since λγ = 0. The first statement is proved.

Let γ ∈ R(λ), that is, 〈γ, λ�〉 = −1 and λγ−1 � 0. By Lemma 2.7 and
the first statement of the lemma we have

〈p(w̃)(γ), w̃(λ)�〉 = 〈p(w̃)(γ), p(w̃)(λ�)〉 = 〈γ, λ�〉 = −1

and w̃(λ)p(w̃)(γ)−1 = w̃(λ)p(w̃)(γ−1) � 0, that is, p(w̃)(γ) ∈ R(w̃(λ)) and hence
p(w̃)R(λ) ⊆ R(w̃(λ)). By symmetry (see Lemma 5.6), we have p(w̃)R(λ) =
R(w̃(λ)). The second statement follows.

Lemma 5.8. Let α, w̃α be as in §5.3. For λ ∈ Atop
μ,b we have

(1) either λβ � 0 for β ∈ Oα or λβ � −1 for β ∈ Oα;

(2) if λ �= w̃α(λ) ∈ Atop
μ,b , then either λβ � 1 for β ∈ Oα, or λβ � −1 for

β ∈ Oα;
(3) if λ′ ∈ WOα̃

(λ) ∩ Atop
μ,b , then λ′ = λ or λ′ = w̃α(λ).

Proof. The first statement follows from Lemma 5.3 and Corollary 5.5 (2).
Suppose λ �= w̃α(λ) ∈ Atop

μ,b . By Lemma 5.6 we have

{λβ;β ∈ Oα} = {−w̃α(λ)β;β ∈ Oα},
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which, together with (1), implies that either λβ = 0 for β ∈ Oα or λβ � 1
for β ∈ Oα or λβ � −1 for β ∈ Oα. By Lemma 1.3 (2), the first case implies
that λ = w̃α(λ), contradicting our assumption. So the statement (2) follows.

Suppose λ′ ∈ WOα̃
(λ) ∩ Atop

μ,b . By (1) and the equality χβ = −β̃(χ) for

β ∈ Φ and χ ∈ Y , we see that λ and λ′ are contained in the union of

{y ∈ YR; β̃(y) � 0, β ∈ Oα} and {y ∈ YR; β̃(y) > 0, β ∈ Oα},

which are the closed anti-dominant Weyl chamber and the open dominant
Weyl chamber for WOα̃

respectively. Therefore, as λ′ ∈ WOα̃
(λ), we see

that λ = λ′ if they are both dominant or both anti-dominant for WOα̃
, and

λ′ = w̃α(λ) otherwise. The statement (3) is proved.

Corollary 5.9. Let α, w̃α be as in §5.3. For λ ∈ Atop
μ,b we have

(1) w̃αXλ
μ(b) = Xλ

μ(b) if λβ = 0 for some β ∈ Oα;

(2) w̃αX
λ
μ(b) ⊆ X

w̃α(λ)
μ (b) if λβ � −1 for β ∈ Oα.

Proof. Let λ′ ∈ Atop
μ,b such that IrrXλ′

μ intersects Irr(w̃αXλ
μ(b)). By Lemma

1.1, λ′ ∈ WOα̃
(λ). Thus λ′ = λ or λ′ = w̃α(λ) by Lemma 5.8 (3). If λβ = 0

for some β ∈ Oα, then λ′ = λ by Lemma 5.8 (2). So the statement (1)
follows.

Suppose λβ � −1 for β ∈ Oα. Then sβ̃t
λ > tλ for β ∈ Oα. Thus

�(w̃αt
λ) = �(w̃α) + �(tλ) and

w̃αIt
λK ⊆ Iw̃αt

λK = Itw̃α(λ)K.

So w̃αX
λ
μ(b) ⊆ X

w̃α(λ)
μ (b) and the statement (2) follows.

5.4. Equivalence relations on Atop
μ,b and Atop

μ,b (v)

For λ, λ′ ∈ Atop
μ,b , we write λ ∼ λ′ if JbIrrXλ

μ(b) = JbIrrXλ′
μ (b). Notice that

JbIrrX
λ
μ(b) -is a single Jb-orbit of IrrXμ(b) by Proposition 2.9.

Let v ∈ V
p(bσ)
gen ∩Y . Let Atop

μ,b (v) (resp. Aμ,b(v)) denote the set of λ ∈ Atop
μ,b

(resp. λ ∈ Aμ,b) such that λα � 0 for α ∈ ΦNv
. Here ΦNv

= {α ∈ Φ; 〈α, v〉 >
0} is the set of roots in Nv.

Lemma 5.10. Let λ ∈ Atop
μ,b . Then λ ∼ χ for some χ ∈ Atop

μ,b (v).

Proof. Let n ∈ Z. By Lemma 1.1, tnvItλK ⊆ ∪x≤tλIt
nvxK. Let χx,n ∈ Y

such that ItnvxK = Itχx,nK for x ≤ tλ. Then tnvIrrXλ
μ(b) ⊆ ∪x≤tλIrrX

χx,n
μ (b).
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Thus for sufficiently large n we have (χx,n)α � 0 for x ≤ tλ and α ∈ ΦNv
.

So the statement follows.

Lemma 5.11. Let λ, λ′ ∈ Atop
μ,b such that λ ∼ λ′. Then there exists a

sequence λ = λ0, λ1, . . . , λr = λ′ ∈ Atop
μ,b such that λi = w̃αi

(λi−1) and

R(λi) = p(w̃αi
)R(λi−1) for 1 � i � r, where w̃αi

∈ Ω ∩ Jb or w̃αi
is the

longest element of WOα̃i
for some αi ∈ Π.

Proof. By assumption, there exist C ∈ IrrXλ
μ(b) and g ∈ Jb such that gC ⊆

Xλ′
μ (b). Since b ∈ Ω, Jb is generated by I ∩Jb, Ω∩Jb and WOα̃

∩Jb for α ∈ Π

such that WOα
is finite. We may assume g lies in one of the sets I∩Jb, Ω∩Jb

and WOα̃
∩ Jb. If g ∈ I ∩ Jb, then λ = λ′ and there is nothing to prove. If

g = ω for some ω ∈ Ω ∩ Jb, then ωItλK/K = Itω(λ)K/K. Hence λ′ = ω(λ)

and R(λ′) = p(ω)R(λ) by Lemma 2.8. Suppose g ∈ WOα̃
∩ Jb = {1, w̃α},

where w̃α is the unique longest element of WOα̃
. Then λ′ equals λ or w̃α(λ)

by Lemma 5.8 (3). So we can assume that λ �= λ′ = w̃α(λ) and it remains to

show R(λ′) = p(w̃α)R(λ). The statement follows from Lemma 5.8 (2) and

Lemma 5.7.

Proposition 5.12. We have Atop
μ,b = ∪v′∈p(W̃∩Jb)(v)A

top
μ,b (v

′).

Proof. Let λ ∈ Atop
μ,b . By Lemma 5.10, there exist v′ ∈ p(W̃ ∩ Jb)(v) and

χ ∈ Atop
μ,b (v

′) such that λ ∼ χ. By Lemma 5.11, we can assume that χ �= λ =

w̃(χ) ∈ Atop
μ,b , where (1) w̃ ∈ Ω∩ Jb or (2) w̃ = w̃α for some α ∈ Π as in §5.3.

It suffices to show λ ∈ Atop
μ,b (p(w̃)(v

′)), that is, λp(w̃)(β) = w̃(χ)p(w̃)(β) � 0 for

β ∈ ΦNv′ . Notice that χβ � 0 for β ∈ ΦNv′ . Then the case (1) follows from

Lemma 1.3 (3), and the case (2) follows from Lemma 5.8 (2) and Lemma

5.7 as desired.

5.5. The action of W̃ ∩ Jb on V bσ

Notice that W a ∩ Jb preserves the affine space V bσ = {v ∈ V ; bσ(v) = v}.
Via the restriction to V bσ we can identify W a ∩ Jb with an affine reflection

group of V bσ, whose affine root hyperplanes are Ha ∩ V bσ for a ∈ Φ̃+ with

V bσ �= Ha∩V bσ �= ∅. Moreover, Δ∩V bσ is an alcove for W a∩Jb, with respect

to which the simple affine reflections are the longest elements of WOα̃
for

α ∈ Π with WOα̃
finite. We fix a special point e′ in the closure of Δ ∩ V bσ

for W a ∩ Jb.

We recall a lemma on root systems.
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Lemma 5.13. Let E be some euclidean space and let Σ ⊆ E be a root
system. Let v1, v2 ∈ E be two regular points for Σ (that is, not contained
in any root hyperplane of Σ). Then there exists root hyperplanes H1, . . . , Hr

separating v1 from v2 such that sH1
· · · sHr

(v1) and v2 are in the same Weyl
chamber.

Lemma 5.14. Let e′ be as in §5.5. Let v ∈ V
p(bσ)
gen . Then for w̃ ∈ W̃ ∩ Jb

there exist affine root hyperplanes H1, . . . , Hr of V bσ passing through e′ such
that

(1) Hi separates e′ + v from e′ + p(w̃)−1(v) for 1 � i � r;

(2) e′ + v = sH1
· · · sHr

(e′ + p(w̃)−1(v)).

Moreover, sHi
=

∏
β∈Oαi

sβ̃ for some αi ∈ Φ such that Oαi
is strongly

orthogonal.

Proof. First note that V p(bσ) is the underlining vector space of the affine

space V bσ. As p(w̃) preserves V p(bσ), we see that v, p(w̃)−1(v) ∈ V
p(bσ)
gen .

Hence e′ + v, e′ + p(w̃)(v) are regular points for the root system associated
to W a ∩ Jb with origin e′. By Lemma 5.13, there are affine root hyperplanes
H1, . . . , Hr of V

bσ (passing through e′) separating e′+v from e′+p(w̃)−1(v)
such that sH1

· · · sHr
(e′ + p(w̃)−1(v)) and e′ + v are contained in the same

Weyl chamber of V bσ with origin e′. Suppose e′ + v �= sH1
· · · sHr

(e′ +
p(w̃)−1(v)), that is, v �= p(sH1

· · · sHr
w̃−1)(v) ∈ W0(v). Then there exists

α ∈ Φ whose root hyperplane Hα separates v from p(sH1
· · · sHr

w̃−1)(v). In
particular, Hα ∩ V bσ is an affine root hyperplane for W a ∩ Jb. As e′ is a
special point for W a ∩ Jb, there exists some affine root hyperplane H of V bσ

passing through e′ which is parallel to Hα ∩ V bσ. Then H separates e′ + v
from sH1

· · · sHr
(e′ + p(w̃)−1(v)), contradicting our assumption. So we have

e′ + v = sH1
· · · sHr

(e′ + p(w̃)−1(v)) as desired.

Now we show the “Moreover” part. By Lemma 5.1, there exists ai =
(αi, ki) ∈ Φ̃+ such that Oαi

is strongly orthogonal and sHi
=

∏
a∈Oai

sa by

viewing sHi
as an element of W̃ ∩ Jb. Notice that e′ ∈ Hi = Hai

∩ V bσ,
that is, ai(e

′) = −〈αi, e
′〉 + ki = 0. As e′ lies in the closure of Δ, we have

|〈αi, e
′〉| � 1, which together with the inclusion ai ∈ Φ̃+ implies that either

αi > 0 and ki = 1 or αi < 0 and ki = 0. In either case, ai = α̃i and the
proof is finished.

5.6. Characterization of the equivalence relation

Let v, z, M , bM be as in §5.2. We give an explicit description of the equiv-
alence relation ∼ on Atop

μ,b (v).
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Lemma 5.15. Let λ, λ′ ∈ Atop
μ,b (v) such that λ ∼ λ′. Then λ′ = y(λ) for

some y ∈ ΩMb
∩ Jb.

Proof. First note that it suffices to find an element y ∈ W̃ ∩ Jb such that

p(y)(v) = v and λ′ = y(λ). Indeed, the conditions p(y)(v) = v and y ∈ Jb
imply that y ∈ W̃Mb

and y(V bσ) = V bσ. Noticing that V bσ ⊆ ΔMb
(since

V bσ ∩Δ �= ∅), we have y(ΔMb
) = ΔMb

and hence y ∈ ΩMb
.

By Lemma 5.11, there is w̃ ∈ W̃ ∩ Jb such that λ′ = w̃(λ) and R(λ′) =
p(w̃)R(λ). If p(w̃)(v) = v, the statement follows as in the above paragraph.

Suppose p(w̃)(v) �= v. Let e′, Hi and αi for 1 � i � r be as in Lemma

5.14. We construct xi ∈ W a ∩ Jb such that p(xi) = p(sHi
) and xi(λ) = λ as

follows.

As Hi separates e
′+ v from e′+p(w̃)−1(v), without loss of generality we

may assume that

〈αi, v〉 < 0 < 〈αi, p(w̃)
−1(v)〉 = 〈p(w̃)(αi), v〉.

Let α ∈ O−αi
. As v ∈ V p(bσ) and that p(w̃) commutes with p(bσ), we have

〈p(w̃)(α), v〉 = 〈p(w̃)(−αi), v〉 < 0.

So −p(w̃)(α) ∈ ΦNv
. Moreover, as λ′ ∈ Aμ,b(v), we have λ′

−p(w̃)(α) � 0 and

λ′
p(w̃)(α) = −λ′

−p(w̃)(α) − 1 � −1.

By definition, p(w̃)(α) /∈ R(λ′) and hence R(λ′)∩ p(w̃)O−αi
= ∅. Therefore,

R(λ) ∩ O−αi
= ∅ as R(λ′) = p(w̃)R(λ).

We claim that λβ is invariant for β ∈ O−αi
⊆ ΦNv

. Otherwise, there

exists ξ ∈ O−αi
such that 〈ξ, λ�〉 = λξ−1 − λξ �= 0 (see Lemma 2.7). Since λ�

is minuscule and ∑
β∈O−αi

〈β, λ�〉 =
∑

β∈O−αi

λβ−1 − λβ = 0,

there exists γ ∈ O−αi
such that 〈γ, λ�〉 = λγ−1 − λγ = −1. On the other

hand, we have λγ−1 � 0 since λ ∈ Atop
μ,b (v) and γ−1 ∈ O−αi

⊆ ΦNv
. So

γ ∈ R(λ), which contradicts that R(λ) ∩ O−αi
= ∅. The claim is proved.

Let ci = λβ = −λ−β − 1 ∈ Z for β ∈ O−αi
, which is a constant by the

above claim. Let ψi =
∑

δ∈Oαi
λδδ

∨ = (−ci − 1)
∑

δ∈Oαi
δ∨ and xi = tψisHi

.
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Then p(xi) = p(sHi
) and tψi ∈ W a ∩ Jb. Moreover, by Lemma 1.3 (2) and

that Oαi
is orthogonal (see Lemma 5.14) we have

xi(λ) = ψi + (
∏

δ∈Oαi

sδ̃)(λ) = ψi + λ−
∑

δ∈Oαi

λδδ
∨ = λ.

Thus xi satisfies our requirements.
Let y = w̃xr · · ·x1 ∈ W̃ ∩ Jb. Then it follows that y(λ) = w̃(λ) = λ′ and

p(y)(v) = p(w̃)p(sHr
) · · · p(sH1

)(v) = v as desired.

Lemma 5.16. Let λ ∈ Atop
μ,b (v) and w̃ ∈ ΩMb

∩ Jb. Then w̃(λ) ∈ Aμ,b.

Moreover, if w̃(λ) ∈ Aμ,b(v), then w̃(λ) ∈ Atop
μ,b (v) and λ ∼ w̃(λ).

Proof. Let χ = w̃(λ). By Lemma 2.7, χ� ∈ WMb
(λ�) and hence χ ∈ Aμ,b

by Proposition 2.9. As w̃ ∈ ΩMb
∩ Jb, it follows the same way as Lemma

2.8 that p(w̃)(R(λ) ∩ ΦMb
) = R(χ) ∩ ΦMb

. Combining Proposition 2.9 with
Lemma 5.4 we have

dimX
z(χ),M
z(χ�) (bM ) = |R(χ) ∩ ΦMb

| = |R(λ) ∩ ΦMb
|(a)

= dimXM
z(λ�)(bM ) = dimXM

z(χ�)(bM ),

where the third equality follows from Corollary 5.5 (1) by noticing that
λ ∈ Atop

μ,b , and the last one follows from that z(χ�), z(λ�) are conjugate by
WM .

Suppose χ ∈ Aμ,b(v). Then χβ � 0 and χ−β = −χβ − 1 � −1 for

β ∈ ΦNv
, which together with (a) implies that χ ∈ Atop

μ,b by Corollary 5.5.
For η ∈ Aμ,b(v) we have −〈β, η〉 � η−β � 0 for β ∈ ΦN−v

= −ΦNv
. Then

ItηK/K = IMb
INv

IN−v
tηK/K = IMb

INv
tηK/K,

which implies that tnvItηK/K ⊆ Itnv+ηK/K for n ∈ Z�0. In particular,
tnvXχ

μ (b) ⊆ Xnv+χ
μ (b) and hence χ ∼ nv + χ for n ∈ Z�0. Choose n suffi-

ciently large so that w̃tnvINv
t−nv ⊆ INv

w̃. Then

w̃tnvXλ
μ(b) ⊆ w̃tnvItλK/K

= w̃tnvIMb
INv

tλK/K

= IMb
w̃(tnvINv

t−nv)tnv+λK/K

⊆ IMb
INv

w̃tnv+λK/K

⊆ Itnv+χK/K.

Therefore, w̃tnvXλ
μ(b) ⊆ Xnv+χ

μ (b) and hence λ ∼ nv+χ ∼ χ as desired.
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Combining Lemma 5.15 with Lemma 5.16 we have

Corollary 5.17. Let λ, λ′ ∈ Atop
μ,b (v). Then λ ∼ λ′ if and only if λ′ = w̃(λ)

for some w̃ ∈ ΩMb
∩ Jb.

5.7. End of the proof

Let v, z, M , bM be as in §5.2. Recall that Iμ,M is the set of WM -orbits of
W0(μ), and Iμ,bM ,M = {η ∈ Iμ,M ;κM (tη) = κM (bM )}. Let Ãtop

μ,b (v) denote

the set of equivalence classes of Atop
μ,b (v) with respect to ∼ defined in §5.4.

For η ∈ Iμ,bM ,M let AM,top
η,bM

:= AM,top
ηM ,bM

be defined in §5.2. Similarly we can

define an equivalence relation ∼M on AM,top
η,bM

, and denote by ÃM,top
η,bM

the set

of corresponding equivalence classes. As bM is superbasic in M(F̆ ), we have

χ ∼M χ′ ∈ AM,top
η,bM

if and only if χ′ = w̃(χ) for some w̃ ∈ ΩM ∩ JMbM .

Proof of Proposition 4.5. We show that there are bijections

Jb\IrrtopXμ(b)
Ψ1←− Ãtop

μ,b (v)
Ψ2−→ �η∈Iμ,bM,M

ÃM,top
η,bM

,

where Ψ1 and Ψ2 are given by λ �→ JbIrrXλ
μ(b) and λ �→ z(λ) respectively.

Indeed, by Proposition 2.9 and Lemma 5.10 we see that Ψ1 is bijective.
Let λ ∈ Atop

μ,b (v). By Corollary 5.5, z(λ) ∈ AM,top
z(λ�),bM

and z(λ�) ∈ Iμ,bM ,M .

Moreover, by Lemma 2.7 and Corollary 5.17 we deduce that

λ ∼ λ′ ∈ Atop
μ,b (v) ⇔ z(λ) ∼M z(λ′) ∈ AM,top

z(λ�),bM
.

So Ψ2 is well defined. On the other hand, let χ ∈ AM,top
η,bM

with η ∈ Iμ,bM ,M .

By Corollary 5.5 and 5.17, the map χ → nv + z−1(χ) with n � 0 induces
the inverse map of Ψ2. So Ψ2 is also bijective.

Therefore,

|Jb\IrrtopXμ(b)| =
∑

η∈Iμ,bM,M

|ÃM,top
η,bM

|;

=
∑

η∈Iμ,bM,M

dimV M̂
η (λM (bM ))

=
∑

η∈Iμ,M

dimV M̂
η (λM (bM ))

= dimVμ(λM (bM ))

= dimVμ(λG(b)),
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where the second equality follows from [17, Theorem 1.5]; the fourth one

follows from that Vμ = ⊕η∈Iμ,M
V M̂
η as μ is minuscule. The proof is finished.

6. The stabilizer in Jb

In this section, we give an algorithm to compute the stabilizer NJb(C) of

C ∈ IrrtopXμ(b) in Jb.

6.1. Reduction to the adjoint case

Let Gad be the adjoint quotient of G. By [3, §2], the natural projection

f : G → Gad induces a Cartesian square

Xμ(b)
f

Xμad
(bad)

π1(G)
f

π1(Gad),

where the vertical maps are the natural projections; μad and bad are the

images of μ and b under f respectively. In particular, the stabilizer NJb(C)

can be computed from the stabilizer NJbad
(Cad) of Cad = f(C) in Jbad via

the following natural Cartesian square

NJb(C)
f

NJbad
(Cad)

J0b
f

Jbad ,

where the vertical maps are the natural inclusions, and J0b is the kernel of

the natural projection Jb → π1(G). Thus we can assume G is adjoint and

simple.

6.2. Reduction to the basic case

Now we show how to pass to the case where b is basic. Let P = MN and

β : Xμ(b) → GrM be as in §2.1 such that M is the centralizer of νG(b). In
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particular, Jb = JMb . Let η ∈ Iμ,b,M such that XM
η (b) contains an open dense

subset of β(C). Let

CM = β(C) ∩XM
η (b) ⊆ XM

η (b).

By Proposition 4.3 (1) and (4), C = XZN ,CM

μ (b) for some ZN ∈ ΣN
μ,η. Note

that jXZN ,CM

μ (b) = XZN ,jCM

μ (b) for j ∈ JMb = Jb. So we have NJb(C) =
NJMb

(CM ).

6.3. Reduction to the minuscule case

Assume b is basic. If G has no nonzero minuscule cocharacters, then b is
unramified and NJb(C) is determined in [53, Theorem 4.4.14]. Otherwise,
by Lemma 4.6, there exists a dominant minuscule cocharacter μ• ∈ Y d for

some d ∈ Z�1 such that BĜ
μ occurs in

BĜ
μ•

= BĜ
μ1

⊗ · · · ⊗ BĜ
μd
.

Let Xμ•(b•) be as in §1.6. By Theorem 0.7, there exists C ′ ∈ IrrtopXμ•(b•)
such that

pr(C ′) = C ⊆ Gr,

and moreover, the map g �→ (g, . . . , g) gives an isomorphism NJb(C) ∼=
NJb• (C

′).

6.4. Small cocharacters

In the rest of the section we assume that G = Gad is simple, μ• is minuscule
and b is basic. By abuse of notation, we write Xμ(b) for Xμ•(b•) by assuming
that μ is minuscule in the rest of this section. Then we can adopt the notation
in §5.

Let v ∈ V
p(bσ)
gen ∩Y . For D ⊆ Φ we set D(v,+) = {α ∈ D; 〈α, v〉 > 0}. We

say λ ∈ Atop
μ,b is v-small if λ ∈ Atop

μ,b (v) (see §5.4) and for each α ∈ Π(v,+)
(see §1.2) there exists β ∈ Oα such that λβ = 0. We say v is permissible if
v-small cocharacters exist.

We say λ ∈ Atop
μ,b is small if it is v-small for some v ∈ V

p(bσ)
gen ∩ Y , and

we define Π(λ) to be the set of roots α ∈ Π − ΦMb
such that λβ � 0 for

some/any β ∈ Oα (see Corollary 5.5). By definition, Π(λ) = Π(v,+) if λ is
v-small.
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Lemma 6.1. If λ ∈ Atop
μ,b is not small, then there exists α ∈ Π such that

WOα̃
is finite and λβ � 1 for β ∈ Oα

Proof. By Proposition 5.12, there exists v ∈ V
p(bσ)
gen ∩Y such that λ ∈ Atop

μ,b (v).
As λ is not v-small, there exists α ∈ Π(v,+) − ΦMb

such that λβ � 1 for
β ∈ Oα. Moreover, WOα̃

is finite by Lemma 5.3.

Proposition 6.2. For each C ∈ IrrtopXμ(b) there exists small λ ∈ Atop
μ,b

such that C ∈ JbIrrXλ
μ(b).

Proof. Recall the dominance order ≤ on Y defined in §1.1. For η, χ ∈ Y
write η � χ if either η � χ (see §1.1 for the definition of ≤) or η ∈ W0(χ)
and χ � η. Let λ be a minimal cocharacter in the set

{χ ∈ Atop
μ,b ;C ∈ JbIrrX

χ
μ (b)}

under the partial order �. We show that λ is small.
Suppose λ is not small. Let α ∈ Π as in Lemma 6.1, and let w̃ = w̃α ∈ Jb

be the maximal element of WOα̃
. By Lemma 5.1,

w̃ = w̃α =
∏

β∈Oγ

sβ̃,

where Oγ is orthogonal with γ = α if 〈αd, α∨〉 �= −1, and γ = αd + α
otherwise. In particular, λβ � 1 for β ∈ Oγ . Let λ

′ = w̃(λ). By Corollary 5.9,

λ′ ∈ Atop
μ,b and C ∈ JbIrrXλ

μ(b) = JbIrrXλ′
μ (b). Moreover, as Oγ is orthogonal,

λ′ = w̃(λ) = p(w̃)(λ−
∑

β∈Φ+∩Oγ

β∨).

If Φ+ ∩ Oγ �= ∅, we have λ′ � λ since 〈β, λ〉 = λβ + 1 � 2 for β ∈ Φ+ ∩ Oγ .
Otherwise,

λ′ = p(w̃)(λ) = λ−
∑
β∈Oγ

λββ
∨ > λ.

Thus, in either case we have λ′ � λ, contradicting the choice of λ. So λ is
small as desired.

We say a root α ∈ Φ(v,+) is indecomposable (in Φ(v,+)) if it is not a
sum of roots in Φ(v,+) \ {α}.

Lemma 6.3. Let v ∈ V
p(bσ)
gen ∩ Y be permissible. Then each root of Π(v,+)

is indecomposable in Φ(v,+).
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Proof. For α ∈ Π(v,+) set Y ′(v, α) = {λ ∈ Y ;λα = 0, λβ � 0 for β ∈
Φ(v,+)}. We claim that

(a) Y ′(v, α) �= ∅.
By assumption, there is a v-small cocharacter χ. By definition, χ ∈

Y ′(v, γ) for some γ ∈ Oα. By Lemma 1.3 (3), Y ′(v, α) and Y ′(v, γ) are

conjugate by 〈bσ〉. So (a) is proved.

Suppose α =
∑

i∈D αi for some α �= αi ∈ Φ(v,+). Let λ ∈ Y ′(v, α)
by (a). Then λα = 0 and 〈αi, λ〉 � λαi

� 0 for i ∈ D. If α < 0 is a

minus simple root, then there exists i0 ∈ D such that αi0 > 0. Hence λα =

〈α, λ〉 � 〈αi0 , λ〉 = λαi0
+ 1 � 1, which is a contradiction. If α > 0 is the

highest root, then there exist i1 �= i2 ∈ D such that αi1 , αi2 > 0. Again

we have 〈α, λ〉 � 〈αi1 , λ〉 + 〈αi2 , λ〉 � 2 and hence λα � 1, which is also a

contradiction. So α is indecomposable as desired.

Let J = p(bσ)(J) ⊆ Π such that the corresponding parabolic subgroup

WJ (generated by sα̃ for α ∈ J) is finite. By a standard parahoric subgroup

of type J we mean a subgroup of Jb generated by I ∩Jb and WJ ∩Jb. We say

a standard parahoric subgroup of type J is of maximal length if the length,

of the maximal element of WJ , is maximal among all standard parahoric

subgroups of Jb. The following result will be proved in Appendix A.

Proposition 6.4. If v ∈ V
p(bσ)
gen ∩ Y is permissible, then the parahoric sub-

group of type Π(v,+) is of maximal length.

6.5. Irreducibility implies smallness

Suppose λ ∈ Atop
μ,b is not small. Let α ∈ Π be as in Lemma 6.1, and let w̃ =

w̃α ∈ WOα̃
be the longest element. Suppose Xλ

μ(b) is irreducible. By Lemma

5.6, Lemma 5.8 and Corollary 5.9 (2), λ �= w̃(λ) ∈ Atop
μ,b and w̃X

w̃(λ)
μ (b) ⊆

Xλ
μ(b). Hence w̃X

w̃(λ)
μ (b) = Xλ

μ(b) is also irreducible. In particular,

w̃NJb(X
w̃(λ)
μ (b)))w̃−1 = NJb(X

λ
μ(b)).

Notice that w̃ ∈ W a ∩ Jb and NJb(X
w̃(λ)
μ (b))), NJb(X

λ
μ(b)) are both stan-

dard parahoric subgroups containing I ∩ Jb. Thus w̃ ∈ NJb(X
w̃(λ)
μ (b))) =

NJb(X
λ
μ(b)), which is a contradiction. So Xλ

μ(b) is not irreducible as desired.
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6.6. Smallness implies irreducibility

Now we show Xλ
μ(b) is irreducible if λ is small. We need some results on

permissible vectors introduced in §6.4.
Let (, ) : V ×V → R be the Killing form such that 〈β, γ∨〉 = 2(β∨,γ∨)

(β∨,β∨) for

β, γ ∈ Φ. For any p(bσ)-orbitO of Π we set rO =
∑

ξ∈O ξ and r∨O =
∑

ξ∈O ξ∨.

Then we have the identification rO = 2
(ξ∨,ξ∨)r

∨
O via the bilinear form (, ),

where ξ is any/some root in O.

Lemma 6.5. If v ∈ V
p(bσ)
gen ∩Y is permissible, then {r∨O;O ∈ Π(v,+)/〈p(bσ)〉}

is a basis of V p(bσ).

Proof. By Proposition 6.4, Π(v,+) is a maximal proper p(bσ)-stable subset
of Π. Hence {r∨O;O ∈ Π(v,+)/〈p(bσ)〉} is linearly independent, and more-
over,

|Π(v,+)/〈p(bσ)〉| = |Π/〈p(bσ)〉| − 1 = dimV p(bσ).

So the statement follows.

Lemma 6.6. Let v ∈ V
p(bσ)
gen ∩Y be permissible. Let γ be an indecomposable

root in Φ(v,+). Then there exists α ∈ Π(v,+) such that γ −α ∈ ΦMb
� {0}.

Proof. Suppose 〈γ, β∨〉 � 0 for β ∈ Π(v,+). Then (r∨O, r
∨
O′) � 0 for O,O′ ∈

(Π(v,+)/〈p(bσ)〉) ∪ {Oγ}. Thus the set

{r∨O;O ∈ Π(v,+)/〈p(bσ)〉} � {r∨Oγ
} ⊆ Φ(v,+)

is linearly independent, which contradicts Lemma 6.5.
Thus 〈γ, α∨〉 > 0 for some α ∈ Π(v,+). Notice that α is indecomposable

in Φ(v,+) by Lemma 6.3. If γ = α, the statement follows. Otherwise, δ :=
α−γ is also a root. Suppose 〈δ, v〉 �= 0. Then α = γ+ δ (resp. γ = α+(−δ))
is indecomposable if 〈δ, v〉 > 0 (resp. 〈δ, v〉 < 0), which contradicts that α
and γ are indecomposable in Φ(v,+). So we have 〈δ, v〉 = 0, that is, δ ∈ ΦMb

as desired.

Corollary 6.7. Let v, v′ ∈ V
p(bσ)
gen ∩ Y be permissible. Then there exists

ε ∈ Ω ∩ Jb such that Π(p(ε)(v),+) = Π(v′,+) and hence Φ(p(ε)(v),+) =
Φ(v′,+).

Proof. By Proposition 6.4, one checks (using that G is adjoint) that there
exists ε ∈ Ω ∩ Jb such that

Π(p(ε)(v),+) = p(ε)(Π(v,+)) = Π(v′,+).
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By replacing v with p(ε)(v), we may assume further Π(v,+) = Π(v′,+), and
it remains to show Φ(v,+) = Φ(v′,+). Otherwise, there exists an indecom-
posable root γ in Φ(v,+) such that 〈γ, v′〉 < 0. By Lemma 6.6, there exists
α ∈ Π(v,+) = Π(v′,+) such that γ−α ∈ ΦMb

�{0}. Hence 〈γ, v′〉 = 〈α, v′〉 >
0, which contradicts our assumption. So Φ(v,+) = Φ(v′,+) as desired.

Proposition 6.8. Let λ, λ′ ∈ Atop
μ,b be small cocharacters such that λ ∼ λ′.

Then λ, λ′ are conjugate under Ω ∩ Jb. In particular, Xλ
μ(b) and Xλ′

μ (b) are
conjugate by Ω ∩ Jb.

Proof. By Proposition 5.12, there exist permissible vectors v, v′ ∈ V
p(bσ)
gen ∩Y

such that λ, λ′ are v-small and v′-small respectively. In particular, v, v′ are
both permissible. By Corollary 6.7, there exists ε ∈ Ω ∩ Jb such that

p(ε)(Φ(v′,+)) = Φ(p(ε)(v′),+) = Φ(v,+).

Thus ε(λ′) is also v-small. By replacing λ′ with ε(λ′), we may assume λ, λ′

are both v-small. By Lemma 5.15, there exists x ∈ ΩMb
∩ Jb such that

x(λ) = λ′. It suffices to show x ∈ Ω.
First we claim that
(a) x(α̃) is a simple affine root for each α ∈ Π(v,+).
Indeed, let γ = p(x)(α) ∈ Φ(v,+). As λ is v-small, we may assume

λα = 0 (by replacing α by a suitable 〈p(bσ)〉-conjugate). Then we have

Ux(α̃) = xUα̃x
−1 = xtλUα(OF̆ )t

−λx−1 = tx(λ)Uγ(OF̆ )t
−x(λ) ⊆ I,

where the last inclusion follows from that x(λ) = λ′ is v-small. So x(α̃) ∈ Φ̃+.
By Lemma 6.3, α is indecomposable in Φ(v,+). Hence γ is also indecompos-
able in Φ(v,+). Applying Lemma 6.6 we deduce that there exists β ∈ Π(v,+)
such that either γ = β or γ = β + δ for some δ ∈ ΦMb

. By symmetry,
x−1(β̃) ∈ Φ̃+. In the former case, x(α̃) = β̃ + m for some m ∈ Z�0. Then
α̃ = x−1(β̃)+m, which means m = 0 since α̃ is simple and x−1(β̃) ∈ Φ̃+. So
we have x(α̃) = β̃ as desired. In the latter case, we have x(α̃) = β̃ + δ̃ +m
for some m ∈ Z�0. As δ ∈ ΦMb

and x ∈ ΩMb
, we have x−1(δ̃) ∈ Φ̃+

Mb
. Then

α̃ = x−1(β̃) + x−1(δ̃) +m,

which is a contradiction since α̃ is simple but x−1(β̃), x−1(δ̃) ∈ Φ̃+. Thus
(a) is proved.

By (a) we see that x permutes the hyperplanesHO forO∈Π(v,+)/〈p(bσ)〉,
where

HO = {h ∈ V bσ; α̃(h) = 0 for any/some α ∈ O}
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whose underlining vector space is

VO = {r ∈ V p(bσ); 〈α, r〉 = 0 for any/some α ∈ O}
= {r ∈ V p(bσ); 〈rO, r〉 = 0 = (r∨O, r)}.

By Lemma 6.5, the subspaces VO are distinct and their intersection ∩OVO
is trivial. On the other hand, as x ∈ ΩMb

, p(x) is product of reflections sα
such that 〈α, v〉 = 0 = 〈α, V p(bσ)〉. In particular, p(x) acts on V p(bσ) trivially,
which means x acts on V bσ as a translation by some vector ι ∈ V p(bσ). Thus
x fixes each HO and hence ι ∈ ∩OVO = {0}, that is, x acts trivially on V bσ.
In particular, x fixes the nonempty subset Δ∩V bσ, which means x ∈ Ω∩ Jb
as desired.

We recall the following result in [57, Theorem 3.1.1].

Theorem 6.9. Let Z be an irreducible component of Xμ(b). Then the sta-
bilizer of Z in Jb is a parahoric subgroup of Jb.

Corollary 6.10. Let λ ∈ Atop
μ,b . Then Xλ

μ(b) is irreducible if and only if λ
is small.

Proof. In view of §6.5, it remains to show the “if” part. Let λ ∈ Atop
μ,b be

small. Thanks to Theorem 6.9, there exists C ′ ∈ JbIrrXλ
μ(b) whose stabilizer

in Jb contains I ∩ Jb. Let λ′ ∈ Atop
μ,b such that C ′ ∈ IrrXλ′

μ (b). As I ∩ Jb

fixes C ′, and acts transitively on IrrXλ′

μ (b) (by Lemma 2.9), we see that

Xλ′
μ (b) = C ′ is irreducible, and hence λ′ is small. Noticing that λ ∼ λ′, we

deduce by Proposition 6.8 that Xλ
μ(b) is also irreducible as desired.

6.7. Computation of the stabilizer

Suppose C = Xλ
μ(b) ∈ IrrtopXμ(b) with λ small. Notice that Jb is generated

by I∩Jb, Ω∩Jb, and the longest element w̃α of WOα̃
for α ∈ Π such that WOα̃

is finite. by definition, I ∩ Jb ⊆ NJb(C). So NJb(C) is a standard parahoric
subgroup of Jb, and it remains to determine which w̃α fixes C. By Lemma
5.8, either λβ � −1 for β ∈ Oα or λβ � 0 for β ∈ Oα. In the former case, we
have α /∈ Π(λ) and w̃αC �= C by Corollary 5.9 (2) and Lemma 5.6. Suppose
the latter case occurs. Then α ∈ Π(λ) and λβ = 0 for some β ∈ Oα since λ
small. So w̃C = C by Corollary 5.9 (1). Therefore, NJb(C) is the parahoric
subgroup of Jb generated by I ∩ Jb and the longest element w̃α of WOα̃

for
α ∈ Π(λ). Moreover, NJb(C) is of maximal length by Proposition 6.4.
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Appendix A. Proof of Proposition 6.4

We assume that b is basic and G is simple and adjoint.

A.1. Reduction to absolutely simple case

For practical computation, we need to pass to the case where G is absolutely

simple, that is, the root system Φ of G is irreducible. By assumption,

GOF̆
= G1 × · · · ×Gh,

where each Gi is an absolutely simple factor of G and the Frobenius auto-

morphism σ sends Gi to Gi−1 for i ∈ Z/hZ. Let

π : GOF̆
→ G1

be the projection to the first factor, which induces an identification

Jb = JGb
∼= JG1

b1
= Jb1 ,

where b1 = π(bσ(b) · · ·σh−1(b)) ∈ G1(F̆ ) and the Frobenius automorphism

of G1 is given by σh.

The following lemma follows similarly as Corollary 1.6.

Lemma A.1. The projection π induces a Jb-equivariant map

π : IrrtopXμ(b) → �μ1
IrrtopXG1

μ1
(b1).

Moreover, NJb(C) = NJb1
(π(C)) for C ∈ IrrXμ(b).

Now we can assume G is absolutely simple by Lemma A.1. Moreover,

we adopt the notation in §6.3. Notice that V
p(bσ)
gen is an open dense subset

of V p(bσ). Notice that the diagonal map gives an isomorphism V p(bσ) ∼=
(V d)p(b•σ•).

Fix v ∈ V
p(bσ)
gen ∩ Y and let z,Mb,M, bM be as in §5.2. Notice that bM

is a superbasic element of M(F̆ ). We define Y (v) = {λ ∈ Y ;λα � 0, ∀α ∈
Φ(v,+)}.

The following lemma is a reformulation of Corollary 5.5 and small cochar-

acters in §6.4.
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Lemma A.2. Let λ• = (λ1, . . . , λd) ∈ Y d. Then we have

(1) λ• ∈ AGd,top
μ•,b•

if and only if (1) λi ∈ Y (v) for 1 � i � d and

(2) z(λ•) := (z(λ1), . . . , z(λd)) ∈ AMd,top
z(λ•),bM•

, where bM • = (1, . . . , 1, bM ) ∈
Md(F̆ ).

(2) λ• is v-small if λ• ∈ AGd,top
μ•,b•

and for each p(bσ)-orbit O in Π(v,+)
we have (λi)α = 0 for some α ∈ O and 1 � i � d.

To prove Proposition 6.4, we need some properties of permissible vectors
introduced in §6.4. Let M ′ ⊇ T be a Levi subgroup and let λ, η ∈ Y . Define

HM ′(λ, η) = {γ ∈ ΦM ′ ;λγ � 0, ηγ � −1} = −HM ′(η, λ).

Lemma A.3. For λ, η ∈ Y we have
(0) bσ(λ)p(bσ)(γ) = λγ for γ ∈ Φ;
(1) HMb

(λ, η) ⊆ HMb
(λ, χ) ∪HMb

(χ, η) for χ ∈ Y ;
(2) z(HMb

(λ, η)) = HM (z(λ), z(η)));
(3) p(bσ)(HMb

(λ, η)) = HMb
(bσ(λ), bσ(η)).

Proof. Note that (1) follows by definition, and (3) follows from (0) which
is proved in Lemma 1.3 (3). As z(Φ+

Mb
) = Φ+

M , we have z(λ)z(α) = λα for
α ∈ ΦMb

, from which (2) follows.

Corollary A.4. Let λ• = (λ1, . . . , λd) ∈ AGd,top
μ•,b•

. For 1 � i � d we have

|HMb
(λi, bσ(λi))| � def(b),

where def(b) denotes the defect of b.

Proof. By Lemma A.2 (2), z(λ•) ∈ AMd,top
z(λ•),bM•

. Moreover, bM is superbasic

in M(F̆ ). By Lemma A.3 we have

def(b) = rkF (M)

= |HM (z(λ1), z(λ2))|+ · · ·+ |HM (z(λd−1), z(λd))|
+ |HM (z(λd), z(bσ(λ1)))|

= |HMb
(λ1, λ2)|+ · · ·+ |HMb

(λd−1, λd)|+ |HMb
(λd, bσ(λ1))|

� |HMb
(λ1, λi)|+ |HMb

(λi, bσ(λ1))|
= |HMb

(bσ(λ1), bσ(λi))|+ |HMb
(λi, bσ(λ1))|

� |HMb
(λi, bσ(λi))|,

where rkF (M) denote the F -semisimple rank of M , and the second equality
follows from Lemma 3.8 and Lemma 3.10.
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For α ∈ Π(v,+) we define

Y (v, α) = {λ ∈ Y (v);λα = 0, |HMb
(λ, bσ(λ))| � def(b)}.

Lemma A.5. If v ∈ V
p(bσ)
gen ∩ Y is permissible, then we have Y (v, α) �= ∅

for α ∈ Π(v,+).

Proof. By assumption, there is a v-small cocharacter λ• = (λ1, . . . , λd). By
definition, there exists a 〈p(bσ)〉-conjugate γ of α such that (λi)γ = 0 for
some 1 � i � d. Moreover, we have |HMb

(λi, bσ(λi))| � def(b) by Lemma
A.4. So λi ∈ Y (v, γ). By Lemma A.3, Y (v, γ) and Y (v, α) are conjugate
under 〈bσ〉. So the statement follows.

For α, β ∈ Φ we write α → β if there exists a sequence α = γ0, γ1, . . . , γr=
β of roots in Φ−ΦMb

such that γi−γi−1 ∈ Φ+ is a simple root for 1 � i � r.

Lemma A.6. Assume v ∈ V
p(bσ)
gen ∩ Y is permissible. If α → β with α ∈

Φ(v,+), then β ∈ Φ(v,+).

Proof. We can assume β − α is a simple root. Notice that 〈β, v〉 �= 0 since
β /∈ ΦMb

= ΦMv
. If β /∈ Φ(v,+), then −β ∈ Φ(v,+). Thus −β+α ∈ Π(v,+)

is decomposable in Φ(v,+), contradicting Lemma 6.3.

A.2. The classification

Now we apply Lemma 6.3 and Lemma A.5 to prove Proposition 6.4 when b
is ramified, that is, b ∈ Ω and the identity 1 are not σ-conjugate under Ω
(noticing that G is adjoint).

We argue by a case-by-case analysis on the (connected) Dynkin diagram
of S0. The simple roots αi of Φ

+ are labeled as in [12, §11.4]. If the funda-
mental coweight �∨

i of αi is minuscule, we denote by ωi ∈ Ω ∩ t�
∨
i W0 the

unique length zero element. Let θ > 0 denote the highest root.
For classical types we fix an ambient vector space V0 = ⊕n

i=1Re
∨
i (of Φ∨)

and its dual V ∗
0 = ⊕n

i=1Rei together with a pairing 〈, 〉 between V0 and V ∗
0

such that 〈ei, e∨j 〉 = δi,j .

A.2.1. Type Dn. The simple roots are αi = ei − ei+1 for 1 � i � n − 1
and αn = en−1 + en.

Case(4.1.1): σ = id and b = ω1. Then V p(bσ) = ⊕n−1
i=2 Re

∨
i and Φ+

Mb
=

{e1 ± en}. Suppose αi ∈ Φ(v,+) for some 2 � i � n− 2. Then

αi = ei − ei+1 → ei − en−1 → e1 − en−1;
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αi = ei − ei+1 → ei − en → ei + en−1 → e2 + en−1.

So e2 + en−1, e1 − en−1 ∈ Φ(v,+) by Lemma A.6. Hence

θ = (e2 + en−1) + (e1 − en−1) ∈ Π(v,+)

is decomposable in Φ(v,+), contradicting Lemma 6.3. Suppose α1, αn, αn−1 ∈
Φ(v,+). Then we have αn → e2 + en and αn−1 → e2 − en. Hence e2 ± en ∈
Φ(v,+) and θ = α1 + (e2 + en) + (e2 − en) is decomposable in Φ(v,+), a
contradiction. Thus Π(v,+) equals Π \ {−α1, θ} or Π \ {−αn−1,−αn} as
desired.

Case(4.1.2): n is odd and bσ is of order 4. Let m = (n− 1)/2 � 2. Then
we have V p(bσ) = ⊕m

i=2R(e
∨
i − e∨n+1−i) and

Φ+
Mb

= {ei + en+1−i; 2 � i � m} ∪ {e1 ± em+1, e1 ± en, em+1 ± en}.

Denote by T ⊆ M1 (resp. T ⊆ M i for 2 � i � m) the Levi subgroup
of Mb whose set of positive roots is {e1 ± em+1, e1 ± en, em+1 ± en} (resp.
{ei + en+1−i}).

Suppose αi, αn−i ∈ Φ(v,+) for some 2 � i � m− 1. Then m � 3 and

αn−i = en−i − en−i+1 → en−i − en → en−i + en−1 → em+1

+ en−1 → em+1 + em+2;

αi = ei − ei+1 → ei − em+1 → e2 − em+1;

αi = ei − ei+1 → ei − em+2 → e1 − em+2.

So em+1 + em+2, e2 − em+1, e1 − em+2 ∈ Φ(v,+) and θ = (em+1 + em+2) +
(e2 − em+1) + (e1 − em+2) is decomposable, a contradiction.

Suppose αn ∈ Φ(v,+). Then αn → em+2 + en and hence em+2 + en ∈
Φ(v,+), that is, v(m+ 2) > 0 as v(n) = v(m+ 1) = v(1) = 0. Thus

−αm+1 = em+2 − em+1, em+2 ± e1, em+2 ± en ∈ Π(v,+).

Let λ ∈ Y (v,−αm+1). Then λ−αm
= 0 and λem+2±e1 , λem+2±en � 0, which

means λ(m+ 1) = λ(m+ 2) and

1− λ(m+ 1) � λ(1) � λ(m+ 1), 1− λ(m+ 1) � λ(n) � λ(m+ 1)− 1.

It follows that |HM1(λ, bσ(λ))| � 4 because

em+1 ± e1, em+1 ± en ∈ HM1(λ, bσ(λ)).
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On the other hand, one checks that |HM i(λ, bσ(λ))| = 1 for 2 � i � m. Thus

|HMb
(λ, bσ(λ))| =

m∑
j=1

|HMj (λ, bσ(λ))| � m+ 3 > m+ 2 = def(b),

contradicting Lemma A.4. Thus Π(v,+) = Π \ {−αm,−αm+1} as desired.

Case(4.1.3): n is even and bσ is of order 4. Let m = n/2 � 2. Then we

have V p(bσ) = ⊕m
i=2R(e

∨
i − e∨n+1−i) and

Φ+
Mb

= {ei + en+1−i; 2 � i � m} ∪ {e1 ± en}.

Suppose αi, αn−i ∈ Φ(v,+) for some 2 � i � m− 1. Then m � 3 and

αn−i = en−i − en−i+1 → en−i + en → en−i + en−i+2 → em + em+2;

αi = ei − ei+1 → e2 − em+2;

αi = ei − ei+1 → e1 − em.

So em+em+2, e2−em+2, e1−em ∈ Φ(v,+) and θ = (em+em+2)+(e2−em+2)+

(e1−em) is decomposable in Φ(v,+), a contradiction. Suppose α1, αn−1, αn ∈
Φ(v,+). Then αn−1 → e2 − en and αn → e2 + en. So e2 ± en ∈ Φ(v,+) and

θ = α1 + (e2 + en) + (e2 − en) is decomposable in Φ(v,+), a contradiction.

Therefore, Π(v,+) = Π \ {−αm} as desired.

Case(4.1.4): bσ is of order 2 and b ∈ {ωn−1, ωn}. Let m = �n/2� � 2.

Then we have V p(bσ) = ⊕m
i=1R(e

∨
i − e∨n+1−i) and

Φ+
Mb

= {ei + en+1−i ∈ Φ; 1 � i � m}.

Suppose αi, αn−i ∈ Φ(v,+) for some 2 � i � m. Then

αn−i = en−i − en−i+1 → en−i + en → e2 + en;

αi = ei − ei+1 → e1 − en.

So e2 + en, e1 − en ∈ Φ(v,+) and θ = (e2 + en) + (e1 − en) is decompos-

able in Φ(v,+), a contradiction. It is also impossible that α1, αn−1, αn ∈
Φ(v,+) as in Case(4.1.3). Therefore, we deduce that Π(v,+) equals Π \
{−αn−1,−p(bσ)(αn−1)} or Π \ {−αn,−p(bσ)(αn)} as desired.
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A.2.2. Type Bn. The simple roots are αi = ei−ei+1 for 1 � i � n−1 and
αn = en. We can assume σ = id and b = ω1. In this case, V p(bσ) = ⊕n

i=2Re
∨
i

and Φ+
Mb

= {e1}. Suppose αi ∈ Φ(v,+) for some 2 � i � n− 1. Then

α = ei − ei+1 → e2 − en → e2 → e2 + en → e1 + en.

So e2 − en, e1 + en ∈ Φ(v,+) and θ = (e2 − en) + (e1 + en) is decomposable
in Φ(v,+), a contradiction.

Suppose α1 ∈ Φ(v,+). Then α1 → e1 − en ∈ Φ(v,+), which means
v(n) < 0 as v(1) = 0. So we have −αn = −en,±e1 − en ∈ Φ(v,+). Let
λ ∈ Y (v,−αn). Then λ−αn

= 0 and λ±e1−en � 0, which means λ(n) = 0,
λ(1) − λ(n) � 1 and −λ(1) − λ(n) � 0, a contradiction. Thus Π(v,+) =
Π \ {−αn} as desired.

A.2.3. Type Cn. The simple roots are αi = ei − ei+1 for 1 � i � n − 1
and αn = 2en. We can assume σ = id and b = ωn. Let m = �n/2� � 1. Then
V p(bσ) = ⊕m

i=1R(e
∨
i − e∨n+1−i) and

Φ+
Mb

= {ei + en+1−i; 1 � i � m+ 1}.

Case(4.3.1): n = 2m. Suppose αi, αn−i ∈ Φ(v,+) for some 1 � i � m−1.
Then m � 2 and

αn−i = en−i − en−i+1 → en−i + en → em + en;

αi = ei − ei+1 → e1 − em → e1 − en

So em+en, e1−em, e1−en ∈ Φ(v,+) and θ = (em+en)+(e1−em)+(e1−en)
is decomposable in Φ(v,+), a contradiction.

Suppose αn,−θ ∈ Φ(v,+). Then αn = 2en → 2em+1 and −θ → −2em,
which means 2em+1,−2em ∈ Φ(v,+). Let λ ∈ Y (v,−αm). Then λ−αm

= 0
and λ2em+1

, λ−2em � 0, which means λ(m + 1) = λ(m), λ(m + 1) > 0,
λ(m) � 0, a contradiction. Thus Π(v,+) = Π \ {−αm} as desired.

Case(4.3.2): n = 2m+1. Suppose αi, αn−i ∈ Φ(v,+) for some 1 � i � m.
Then

αn−i = en−i − en−i+1 → en−i + en → em+1 + em+2;

αi = ei − ei+1 → e1 − em+1 → e1 − em+2.

So em+1 + em+2, e1 − em+1, e1 − em+2 ∈ Φ(v,+) and θ = (em+1 + em+2) +
(e1− em+1)+ (e1− em+2) is decomposable in Φ(v,+), a contradiction. Thus
Π(v,+) = Π \ {−αn, θ} as desired.
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A.2.4. Type An−1. The simple roots are αi = ei−ei+1 for 1 � i � n−1.
Let ς0 be the automorphism exchanging αi and αn−i for 1 � i � n− 1.

Case(4.4.1): σ = id. Suppose 〈b〉 = 〈ωh〉 for some 1 � h � n− 1 dividing
n. Then

Φ+
Mb

= {ei − ej ∈ Φ+; i− j ∈ hZ}.

If h = 1, then v = 0 and Π(v,+) = ∅ as desired. Suppose h � 2 and we can
assume α1 ∈ Π(v,+). If αi ∈ Φ(v,+) for some 2 � i � h, then

α1 = e1 − e2 → e1 − ei → e1 − eh

αi = ei − ei+1 → ei − eh+1.

So e1 − eh+1, e1 − eh and their 〈p(bσ)〉-conjugates are contained in Φ(v,+).
Hence

θ = (e1 − eh+1) + (eh+1 − e2h+1) + · · ·+ (en−2h+1 − en−h+1) + (en−h+1 − en)

is decomposable in Φ(v,+), a contradiction. Thus Π(v,+) = Π \ O, where
O is any p(bσ)-orbit of Π.

Case(4.4.2): σ = ς0, b = ω1 and n � 4 is even. Let m = n/2 � 2. Then
we have

Φ+
Mb

= {e1 − em+1}.

Suppose αi, αn+1−i ∈ Φ(v,+) for some 2 � i � m− 1, then m � 3 and

αi = ei − ei+1 → ei − en+1−i → e1 − en+1−i

αn+1−i = en+1−i − en+2−i → en+1−i − en.

So e1−en+1−i, en+1−i−en ∈ Φ(v,+) and θ = (e1−en+1−i)+(en+1−i−en) is
decomposable in Φ(v,+), a contradiction. Suppose α1, αm ∈ Φ(v,+), then
α1 → e1−em and αm → em−en. So θ = (e1−em)+(em−en) is decomposable
in Φ(v,+), a contradiction. Thus Π(v,+) equals Π \ {−αm,−αm+1} or Π \
{−α1, θ} as desired.

A.2.5. Type E6. The simple roots αi for 1 � i � 6 are labeled as in [12,
§11.4]. We can assume σ = id and b = ω1. Then we have

V p(bσ) = Rα∨
4 ⊕ R(α∨

2 + α∨
3 + 2α∨

4 + α∨
5 ).
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Suppose α = αi ∈ Φ(v,+) with i = 2 or i = 4. Let β = α2 + α3 + α4 + α5

and γ = β + α1 + α4 + α6. Then

α → β → β + α4 → γ.

So β, γ ∈ Φ(v,+) and θ = β+γ is decomposable in Φ(v,+), a contradiction.
Thus Π(v,+) = Π \ {−α1,−α6, θ} as desired.

A.2.6. Type E7. The simple roots αi for 1 � i � 7 are labeled as in [12,
§11.4]. We can assume σ = id and b = ω7. Then we have

Φ+
Mb

= {γ + α3, γ + α5 + α6 − α1, γ + α5},

where γ = α1+α2+α3+2α4+α5+α6+α7. Suppose α = αi ∈ Φ(v,+) for
some 1 � i � 6. Let ξ = γ + α3 + α5 − α7. Then γ − β, ξ − β /∈ Z�0Π0 for
β ∈ Φ+

Mb
, which implies that

α → γ and α → ξ.

So γ, ξ ∈ Φ(v,+) and θ = γ+ ξ is decomposable in Φ(v,+), a contradiction.
Thus Π(v,+) = Π \ {−α7, θ} as desired.

Appendix B. Proof of Proposition 1.2

Let b ∈ Ω be basic. Let J ⊆ S0 be a minimal σ-stable subset such that
[b] ∩ MJ(F̆ ) �= ∅. Then [b] ∩ MJ(F̆ ) is a superbasic σ-conjugacy class of
M(F̆ ). Suppose there is another minimal σ-stable subset J ′ ⊆ S0 such that
[b]∩MJ ′(F̆ ) �= ∅. To prove Lemma 1.2, we have to show that J = J ′. Choose
x ∈ ΩJ and x′ ∈ ΩJ ′ such that x, x′ ∈ [b]. Let JW J

0 be the set of elements
w ∈ W0 which are minimal in its double coset WJ ′wWJ . For u ∈ W0 we set
suppσ(u) = ∪i∈Zσi(supp(u)) ⊆ S0, where supp(u) ⊆ S0 is the set of simple
reflections that appear in some/any reduced expression of u.

Following [13], we say w̃ ∈ W̃ is σ-straight if

�(w̃σ(w̃) · · ·σn−1(w̃)) = n�(w̃) for n ∈ Z�1.

Moreover, we say a σ-conjugacy class of W̃ is straight if it contains some
σ-straight element. By [13, Proposition 3.2], the σ-conjugacy classes of x
and x′ are straight. Moreover, as x, x′ ∈ [b], these two straight σ-conjugacy
classes coincide by [13, Theorem 3.3]. Thus there exists w̃ ∈ W̃ such that
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w̃x = x′σ(w̃). Write p(w̃) = uzw−1 with u ∈ WJ ′ , w ∈ WJ and z ∈ J ′
W J

0 .
By taking the projection p, we have

zw−1p(x)σ(w) = u−1p(x′)σ(u)σ(z).

Notice that z, σ(z) ∈ J ′
W J

0 . Moreover, we have suppσ(w
−1p(x)σ(w)) = J

and suppσ(u
−1p(x′)σ(u)) = J ′ by the minimality of J and J ′. This means

that z = σ(z) and zJz−1 = J ′. So Proposition 1.2 follows from the following
lemma.

Lemma B.1. Let J ⊆ S0 be a minimal σ-stable subset such that [b] ∩
MJ(F̆ ) �= ∅. If there exists z = σ(z) ∈ W J

0 such that zJz−1 ⊆ S0, then
zJz−1 = J .

Proof. It suffices to consider the case where G = Gad and S0 is connected.
If b is unramified, that is, 1 ∈ [b], then we can take J = ∅ and the statement
is trivial. So we assume that b is not unramified. By the discussion above, it
suffices to show the statement for some fixed J , and we can take J as follows.

Let v be a generic point of Y
p(bσ)
R

, that is, if 〈α, v〉 = 0 for some α ∈ Φ, then

〈α, Y p(bσ)
R

〉 = 0. Then we take J to be the set of simple reflections s such
that s(v̄) = v̄, where v̄ is the unique dominant W0-conjugate of v. Then
[b]∩MJ(F̆ ) is a superbasic σ-conjugacy class of MJ(F̆ ) by [14, Lemma 3.1].

Case(1): S0 is of type An−1 for n � 2. Take the simple roots as αi =
ei − ei+1 for 1 � i � n− 1. Let ω1 be the generater of Ω ∼= Z/nZ such that
ω1 ∈ t�

∨
1 W0, where �∨

1 is the fundamental coweight corresponding to the
simple root α1. Assume b = ωm

1 for some m ∈ Z.
Case(1.1): σ = id. Let h be the greatest common divisor of m and n,

and f = n/h. Then we can take

J = {si+jf ; 1 � i � f − 1, 0 � j � h− 1}.

Here, and in the sequel, si denotes the simple reflection corresponding to
the simple root αi. By assumption, z sends each of the subsets

Dj = {1 + jf, 2 + jf, . . . , (j + 1)f}, 0 � j � h− 1

to a subset of the form

{k + 1, k + 2, · · · k + f} ⊆ {1, 2, · · · , n}.

This implies that z permutes the sets Dj for 0 � j � h − 1. In particular,
zJz−1 = J as desired.
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Case(1.2): σ is of order 2. In this case, σ sends αi to αn−i for 1 � i � n−1.
As b is not unramified, n is even. Moreover, we can take b = ω1 and

J = {sn/2}.

Noticing that zJz−1 ⊆ S0 is σ-stable and that sn/2 is the unique simple
reflection fixed by σ, we deduce that zJz−1 = J as desired.

Case(2): S0 is of type Bn for n � 2. Then σ = id and b is of order 2 (since
it is not unramified). Take the simple roots as αn = en and αi = ei − ei+1

for 1 � i � n− 1. Then we can take

J = {sn}.

Noticing that αn is the unique short simple root, we have z(αn) = αn and
zJz−1 = J as desired.

Case(3): S0 is of type Cn for n � 3. Then σ = id and b is of order 2.
Take the simple roots as αn = 2en and αi = ei − ei+1 for 1 � i � n− 1. We
can take

J = {s1, s3, . . . , s2�n−1

2
�+1}.

If n is odd, J corresponds to the unique orthogonal subset of (n + 1)/2
simple roots, which means zJz−1 = J as desired. If n is even, J corresponds
to the unique orthogonal subset of n/2 short simple roots, which also means
zJz−1 = J as desired.

Case(4): S0 is of type Dn for n � 4. Take the simple roots as αn =
en−1+en and αi = ei−ei+1 for 1 � i � n−1. As b is not unramified, we have
σ2 = 1. The Weyl group W0 is the set of permutations w of {±1, . . . ,±n}
such that z(±i) = ±z(i) for 1 � i � n and sgn(w) = 0 ∈ Z/2Z, where

sgn(w) = |{1 � i � n; iw(i) < 0}| mod 2.

Case(4.1): σ = id. If b ∈ t�
∨
1 W0, we can take

J = {sn−1, sn}.

As zJz−1 ⊆ S0, z preserves the set {±(n− 1),±n} and hence zJz−1 = J as
desired. If b ∈ t�

∨
nW0, we can take

J =

⎧⎪⎨⎪⎩
J1 := {s1, s3 · · · , sn−3, sn−1}, if n is even, n

2 is even;

J2 := {s1, s3 · · · , sn−3, sn}, if n is even, n
2 is odd;

J0 := {s1, s3 · · · , sn−2, sn−1, sn}, otherwise.
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Suppose n, n/2 are even and that J �= zJz−1 ⊆ S0. Then zJz−1 = zJ1z
−1 =

J2 because J1, J2 correspond to the only two maximal orthogonal subset
of simple roots which do not contain {sn−1, sn}. By composing z with a
suitable element in the symmetric group of {1, . . . , n}, we can assume that
z(α1+2j) = α1+2j for 0 � j � n/2− 2 and z(αn−1) = αn. This implies that
sgn(z) = 1, which is a contradiction as desired. The case where n is even
and n/2 is odd follows in a similar way. Suppose n is odd. Then J = J0
is the unique Dynkin subdiagram of S0 which is of type (A1)

n−3

2 × A3. So
zJz−1 = J as desired.

Case(4.1): σ is of order 2. By symmetry, we can assume σ(αn) = αn−1.
As b is not unramified, we can assume b ∈ t�

∨
nW0. We can take

J =

{
{s1, s3 · · · , sn−3, sn−1, sn}, if n is even;

{s1, s3 · · · , sn−2}, otherwise.

If n is even, then J corresponds to the unique orthogonal subset of (n+2)/2
simple roots. So zJz−1 = J as desired. If n is odd, then J corresponds to
the unique orthogonal σ-stable subset of (n−1)/2 simple roots except αn−1

and αn. So zJz−1 = J as desired.
Case(5): S0 is of type E6. As b is not unramified, σ = id and we can

assume b ∈ t�
∨
1 W0. Here, and in the sequel, we using the labeling of E6 and

E7 as in [12, §11]. We can take

J = {s1, s3, s5, s6}.

Then zJz−1 = J since J ⊆ S0 is the unique Dynkin subdiagram of type
A2 ×A2.

Case(6): S0 is of type E7. Then σ = id and b ∈ t�
∨
7 W0. We can take

J = {s2, s5, s7}.

Then the statement is verified by computer or by the Lusztig-Spaltenstein
algorithm. The proof is finished.
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[9] U. Görtz, X. He, S. Nie, Fully Hodge-Newton decomposable Shimura

varieties, Peking Math. J. 2 (2019), 99–154.

[10] P. Hamacher, The dimension of affine Deligne-Lusztig varieties in the

affine Grassmannian, IMRN 23 (2015), 12804–12839.

[11] P. Hamacher, The geometry of Newton strata in the reduction modulo p

of Shimura varieties of PEL type, Duke Math. J. 164 (2015), 2809–2895.

[12] J. Humphreys, Introduction to Lie algebras and representation theory,

Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-

Berlin, 1972.

[13] X. He, S. Nie, Minimal length elements of extended affine Weyl groups,

Compositio Math. 150 (2014), 1903–1927.

[14] X. He, S. Nie, On the acceptable elements, IMRN (2018), 907–931.

[15] B. Howard, G. Pappas, On the supersingular locus of the GU(2, 2)

Shimura variety, Algebra Number Theory 8 (2014), 1659–1699.

[16] B. Howard, G. Pappas, Rapoport-Zink spaces for spinor groups,

arXiv:1509.03914 (2015), to appear in Compos. Math.

[17] P. Hamacher, E. Viehmann, Irreducible components of minuscule affine

Deligne-Lusztig varieties, Algebra Number Theory 12 (2018), 1611–

1634.

https://arxiv.org/abs/1509.03914


508 Sian Nie

[18] U. Hartl, E. Viehmann, The Newton stratification on deformations of
local G-shtukas, J. Reine Angew. Math. 656 (2011), 87–129.

[19] U. Hartl, E. Viehmann,, Foliations in deformation sapces of local G-
shtukas, Adv. Math. 299 (2012), 54–78.

[20] T. Haines, Equidimensionality of convolution morphisms and applica-
tions to saturation problems, appendix with M. Kapovich and J. Millson,
Adv. Math., 207 (2006), 297–327.

[21] X. He, Geometric and homological properties of affine Deligne-Lusztig
varieties, Ann. Math. 179 (2014), 367–404.

[22] X. He, Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig
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