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[rreducible components of affine Deligne-Lusztig

varieties

S1AN NIE*

We determine the top-dimensional irreducible components (and
their stabilizers in the Frobenius twisted centralizer group) of affine
Deligne-Lusztig varieties in the affine Grassmannian of a reductive
group, by constructing a natural map from the set of irreducible
components to the set of Mirkovié¢-Vilonen cycles. This in particu-
lar verifies a conjecture by Miaofen Chen and Xinwen Zhu.
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Introduction

0.1. Background

The notion of affine Deligne-Lusztig variety was first introduced by Rapoport
in [44], which plays an important role in understanding geometric and arith-
metic properties of Shimura varieties. Thanks to the uniformization theorem
by Rapoport and Zink [46], the Newton strata of Shimura varieties can be
described explicitly in terms of so-called Rapoport-Zink spaces, whose un-
derlying spaces are special cases of affine Deligne-Lusztig varieties.
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In [34] and [44], Kottwitz and Rapoport made several conjectures on ba-
sic properties of affine Deligne-Lusztig varieties. Most of them have been ver-
ified by a number of authors. We mention the works by Rapoport-Richartz
[45], Kottwitz [33], Gashi [6], and He [21], [23] on the “Mazur inequality”
criterion of non-emptiness; the works by Gortz-Haines-Kottwitz-Reuman
(8], He [24], He-Yu [26], Viehmann [48], Hamacher [10], and Zhu [55] on
the dimension formula; the works by Hartl-Viehmann [18], [19], Mili¢evié-
Viehmann [40], and Hamacher [11] on the irreducible components; and the
works by Viehmann [51], Chen-Kisin-Viehmann [3], and the author [41] on
the connected components in the hyperspecial case (see also [27], [4] for some
partial results in arbitrary parahoric case). For a thorough survey we refer to
the report [22]. These advances on affine Deligne-Lusztig varieties have found
several interesting applications in arithmetic geometry. For example, the di-
mension formula leads to a proof by Hamacher [11] for the Grothendieck
conjecture on the closure relations of Newton strata of Shimura varieties,
and the description of connected components in [3] plays an essential role
in the proof by Kisin [30] for the Langlands-Rapoport conjecture on mod p
points of Shimura varieties (see [56], [25] for recent progresses).

0.2. Main results

This paper is concerned with the parametrization problem of top-dimensional
irreducible components of affine Deligne-Lusztig varieties. The problem was
first considered by Xiao and Zhu in [53], where they solved the unrami-
fied case in order to prove certain cases of the Tate conjecture for Shimura
varieties. We will provide a complete parametrization in the general case.

To state the results, we introduce some notations. Let F' be a non-
archimedean local field with residue field F,. Let F be the completion of the
maximal unramified extension of F'. Denote by Of and O the valuation
rings of F' and F respectively. Let o be the Frobenius automorphism of F /F.

Let G be a connected reductive group over Op. Fix T' C B C GG, where T’
is a maximal torus and B = TU is a Borel subgroup with unipotent radical
U. Denote by Y the cocharacter group of T', and by Y the set of dominant
cocharacters determined by B. Let K = G(Op). Fix a uniformizer t € Op
and set t* = A(t) € G(F) for A € Y. Then we have the Cartan decomposition
for the affine Grassmannian

Gr = Grg = G(F)/K = Uyey+Gr3,
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where Gr), = Kt*K/K. For b € G(F) and p € YT, the attached affine
Deligne-Lusztig set is defined by

Xu(b) = X5 (b) = {g € G(F); 97 "bo(g) € Kt"K}/K,

which is a subscheme locally of finite type in the usual sense if char(F') > 0,
and in the sense of Bhatt-Scholze [2] and Zhu [55] if char(F') = 0. By left
multiplication it carries an action of the group

Ty =J¢ = {g € G(F); g 'bo(g) = b}.

Up to isomorphism, X, (b) only depends on the o-conjugacy class [b] = [b]g
of b. Thanks to Kottwitz [31], [b] is uniquely determined by two invariants:
the Kottwitz point kg (b) € m1(G)s = m1(G)/(1—0)(m1(G)) and the Newton
point vg(b) € Y = Y @R, see [17, §2.1]. Then X, (b) # 0 if and only if
ka(tt) = ka(b) and vg(b) < p°, where pu® denotes the o-average of u, and
< denotes the partial order on Yg such that v < v/ € Yg if v/ —v is a
non-negative linear combination of coroots in B. Moreover, in this case, its
dimension is given by

dim X,,(b) = (pa, 1 — va(b)) — %defg(b),

where pg is the half-sum of roots of B and defs(b) is the defect of b, see
(32, §1.9.1]. Let Irr*™PX,(b) denote the set of top-dimensional irreducible
components of X, (b).

The first goal of this paper is to give an explicit description of the set
Jp\Irr*P X, (b) of Jp-orbits of Irr*P X, (b). We invoke a conjecture by Miaofen
Chen and Xinwen Zhu which suggests a parametrization of Jp\Irr*P X, (b)
by certain Mirkovié-Vilonen cycles.

Recall that Mirkovié-Vilonen cycles are irreducible components of S* N
Gry for p € YT and A € Y, where S$* = U(F)#K/K and Gr, = G—rz We
write MV, = LUyMV ,(A) with MV ,(A) = Irr(S*NGr,,) the set of irreducible
componellts.

Let G be the Langlands dual of G defined over Q; with [ # char(k).
Denote by V,, = VMG the irreducible G-module of highest weight p. The crys-

tal basis (or the canonical basis) B, = IB%le of V,, was first constructed by
Lusztig [38] and Kashiwara [29]. In [1, Theorem 3.1], Braverman and Gaits-
gory proved that the set MV, of Mirkovi¢-Vilonen cycles admits a G-crystal
structure and gives rise to a crystal basis of V,, via the geometric Satake



438 Sian Nie

isomorphism [39]. In [53, §3.3], Xiao and Zhu constructed a canonical iso-
morphism B, = MV, using Littelmann’s path model [37], which we denote
by ¢ — Ss. The advantage of using B, is that its @—crystal structure is given
in a combinatorial way.

In [17, §2.1], Hamacher and Viehmann proved that, under the partial
order <, there is a unique maximal element \;(b) in the set

{A S YU = Y/(l - O.)Y7A = /{G(b)aéo < VG(b)}a

which is called “the best integral approximation” of v(b). Let V,,(Ag(b)) be
the sum of A\-weight spaces V,,(A) with A = A5 (b) € Y, whose basis in B,
and MV, is denoted by B, (A5 (b)) and MV, (A5 (b)) respectively.

Conjecture 0.1 (Chen-Zhu). There exist natural bijections
Jp\Ir' P X, (b) = MV, (A (b)) = Bpu(Ag (b))

In particular, |J\Irr"™P X, (b)| = dim V,,(A(b)).

Remark 0.1. If char(F) > 0, X,(b) is equi-dimensional by [19] and
Irr*P X, (b) coincides with the set of irreducible components of X, (b). If
char(F) = 0, the equi-dimensionality of X,,(b) is not fully established, see
[17, Theorem 3.4]. However, X,,(b) is always equi-dimensional if  is minus-
cule.

Remark 0.2. If g is minuscule and either G is split or b is superbasic,
Conjecture 0.1 is proved by Hamacher and Viehmann [17] using the method
of semi-modules, which originates in the work [5] by de Jong and Oort. If b is
unramified, that is, defg(b) = 0, it is proved by Xiao and Zhu [53] using the
geometric Satake. In both cases, the authors obtained complete descriptions
of Irr*P X, (b).

Remark 0.3. A complete description of Irr*®? X, (b) was also known for the
case where G is GL,, or GSp,,, and p is minuscule, see [49] and [50].

Remark 0.4. If the pair (G, p) is fully Hodge-Newton decomposable (see
19]), X,.(b) admits a nice stratification by classical Deligne-Lusztig varieties,
whose index set and closure relations are encoded in the Bruhat-Tits build-
ing of Jp. Such a stratification has important applications in arithmetic
geometry, including the Kudla-Rapoport program [35], [36] and Zhang’s
Arithmetic Fundamental Lemma [54]. We mention the works by Vollaard-
Wedhorn [52], Rapoport-Terstiege-Wilson [47], Howard-Pappas [15], [16],
and Gortz-He [7] for some of the typical examples.
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Let ICG (F’ ) be the standard Iwahori subgroup associated to the triple
T C B C @G, see §1.1. By Proposition 1.2, for b € G(F’), there is a unique
standard Levi subgroup T'C M C G and a superbasic element by; of M (F’ ),
unique up to M (F)-o-conjugation, such that [by] = [b] and vas(by) =
vi(b). Moreover, we may and do choose bys such that bMT(ﬁ’)b]T/[1 = T(F)
and b]\/[IMbJQ1 = I, where Iy = M(F)ﬂ[ is the standard Iwahori subgroup
of M(F) Take b = bys. Let P = MN be the standard parabolic subgroup

with N C U its unipotent radical. Using the Iwasawa decomposition G (F )=

v

N(F)M(F)K we have
Gr = N(F)M(F)K/K = Uyey N(F)Iy ' K /K.

For A € Y let 6 : N(F)I; — Gr be the map given by h s ht K.
Our first goal is to prove Conjecture 0.1.

Theorem 0.5. Let b and M be as above. Then there exists a map
7 =79 TP X, (0) = Bu(Ag(b)

such that for C € Irr*P X,,(b) we have

{(ht) Lo (N K h € (05)1(C)} = ex' So),

where X is the unique cocharacter such that N(F)Iyt*K/K N C is open
dense in C and ef\\/l is certain Weyl group element for M associated to A
(see §1.5). Moreover, v factors through a bijection

Ip\Irr*P X, (0) 2= B (Ag (D))

Remark 0.6. The equality |J,\Irr*™P X, (b)| = dim V,,(A; (b)), which is the
numerical version of Conjecture 0.1, is proved by Rong Zhou and Yihang
Zhu in [57] (even for the quasi-split case), and by the author in an earlier
version of this paper, using different approaches.

It is a remarkable feature that the tensor product of two crystals bases
is again a crystal basis. So there is a natural map

G G € G G G
© B =B X x B, — B © 9B — LB (Ac (b)),

where the first map is given by taking the tensor product, and the second
one is the canonical projection to highest weight G-crystals.
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On the other hand, there is also a “tensor structure” among affine
Deligne-Lusztig varieties coming from the geometric Satake. Consider the
product G? of d copies of G together with a Frobenius automorphism given
by

(917927 o 7gd) = (927 cee 7gd)0-(gl))'
For fie = (ji1,...,pq) € Y% and by = (1,...,1,b) € G*(F) with b € G(F),
we can define the affine Deligne-Lusztig variety X,,, (be) in a similar way. We

know (see Corollary 1.6) that the projection Gr¢ — Gr to the first factor
induces a map

pr: Irr* P X, (be) — LI, IrT* P X, (b),

which serves as the functor of taking tensor products.
Our second main result shows that the map 7 (for various ) preserves
the tensor structures on both sides.

Theorem 0.7. There is a Cartesian square

ad

Trrtop X, (bs) AN ng

. l

G ~
U Irrt°P X, (b) —— L, BS.

@ : G _ pa G
As a consequence, szBBM appe;zrs in the tensor product B, _dBm ® -A-~®BM,
then v“ is determined by v and Irr*P X, (b) = pr((® o 7" )~1(BY)).

Remark 0.8. The map v coincides with the natural constructions of [53]
and [17] for quasi-minuscule cocharacters, see [43, Lemme 1.1]. On the other
hand, we know that each highest weight module appears in some tensor
product of quasi-minuscule highest weight modules. Thus Theorem 0.7 gives
a characterization of the map v~ by the tensor structure of @—crystals.

Remark 0.9. As an essential application, Theorem 0.7, combined with
the construction of [17], provides a representation-theoretic construction of
Irr*°P X, (b) up to taking closures. Indeed, by the reduction method in [8, §5],
it suffices to consider the case where b is superbasic and G = Resg,pGLy,
with E//F a finite unramified extension. In this case, we can choose a mi-
nuscule cocharacter pe € Y for some d such that IBS appears in IB%S.. As 1o

is minuscule, both Irr*P X, (bs) and ~G* are explicitly constructed in [17].
Then Theorem 0.7 shows how to obtain Irr*P X, (b) from Irr*™P X, (be) by
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taking the projection pr. The key is to decompose the tensor product into
simple objects

G _pG G _ Gym!
IB%“_—IB%M®'--®IB%M—I_IH(IB%“)”‘M-,

which can be solved combinatorially using the “Littlewood-Richardson” rule
for G-crystals (see [37, §10]). Here m},, denotes the multiplicity with which

G : G
B, appears in B/ .

Remark 0.10. In the case mentioned above where G = Resg,pGLy, and b
is superbasic, Viehmann [48] and Hamacher [10] defined a decomposition of
X,,(b) using extended semi-modules (or extended EL-charts). In particular,
Jp\Irr*P X, (b) is parameterized by the set of equivalence classes of top ex-
tended semi-modules, that is, the semi-modules whose corresponding strata
are top-dimensional. However, it unclear how to construct all the top ex-
tended semi-modules if p is non-minuscule. It would be interesting to give
an explicit correspondence between the top extended semi-modules and the
crystal elements in B, (Ag(b)).

The third goal is to give an explicit construction of an irreducible com-
ponent from each Jy-orbit of Irr*P X, (b) and compute its stabilizer. Com-
bined with Theorem 0.5, this will provide a complete parametrization of
Irr*°P X, (b) in theory. If b is unramified, this task has been done by Xiao-
Zhu [53]. Otherwise, using Theorem 0.7, it suffices to consider the case where
G is adjoint, p is minuscule, and b is basic. To handle this case, we consider
the decomposition

X,u(b) = Urey X3 (b),

where each piece Xl;\(b) = It"K/K N X,(b) is a locally closed subset of
X, (b).

Theorem 0.11. Keep the assumptions on G,b, i as above.

(1) Xli‘(b) € Irr*P X, (b) if and only if X €Y is small;

(2) each Jp-orbit of Irr*™P X,,(b) has a representative of the form X, (b)
with A small;

(3) if X € Y is small, then the stabilizer of X}(b) in Jy is the standard
parahoric subgroup of type II(X), which is of maximal volume among all
parahoric subgroups of Jp.

We refer to §6.4 for the meanings of the smallness of A and the associ-
ated type II(A). As a consequence, we obtain the following result without
restrictions on G, b, and p.
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Theorem 0.12 (He-Zhou-Zhu). The stabilizer of each top-dimensional irre-
ducible component of X,,(b) in Iy is a parahoric subgroup of maximal volume.

Remark 0.13. Theorem 0.12 is first proved by He-Zhou-Zhu [28]. It is also
verified in [28] that a parahoric subgroup has maximal volume if and only if
its Weyl group has mazimal length (see Theorem 6.4). This gives an explicit
characterization of parahoric subgroups of maximal volume by their types.

The original proof in [28] is based on the twisted orbital integral method
(see [57]) and the Deligne-Lusztig reduction method (see [23]). Our proof
is based on the combinatorial properties of small cocharacters, which shows
that the stabilizers are parahoric subgroups of maximal length.

0.3. Strategy

Now we briefly discuss the strategy. First we reduced the problem to the case
where b is basic and G is simple and adjoint. If G’ has no non-zero minuscule
coweights, then b is unramified and the problem has been solved by Xiao-Zhu
[53]. Thus, it remains to consider the case where G has some non-zero minus-
cule cocharacter. In particular, any irreducible G-module appears in some
tensor product of irreducible G-modules with minuscule highest weights (see
Lemma 4.6). Combined with the geometric Satake, this observation enables
us to decompose the problem into three ingredients: (1) the construction of
v in the case where b is superbasic; (2) the equality

[Jp\Irr**P X, (b)] = dim V(A6 (D))

in the case where p is minuscule and b is basic; and (3) the construction
of irreducible components and the computation of their stabilizers in the
situation of (2).

The first ingredient is solved in §3 by combining the semi-module method
and Littelmann’s path model. For the second ingredients, we consider in §5
the following decomposition

X,u(b) = Urey X, (b).

In Proposition 2.9, we show that I N J, acts on IrrX I;\(b) transitively and

It P X, (b) = Uyearor T X7 (D),

where Affji’ is the set of coweights A such that dim X;(b) = dim X,(b).

In particular, the action of J, on IrrtOPXu(b) induces an equivalence rela-
tion on .ALOE, and the Jy-orbits of Irr*®P X, (b) are naturally parameterized
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by the corresponding equivalence classes of .AtOp Therefore, it remains to
show the number of these equivalence classes is equal to dim V), (Aq(b)).
To this end, we give an explicit description of A%p (see Proposition 5.12)
and reduce the question to the superbasic case, which has been solved by
Hamacher-Viehmann [17, Theorem 1.5]. Finally, to solve the last ingredient,
we introduce the notion of small cocharacters in §6. We prove that X [L\(b)
is irreducible if and only if A is small, and show its stabilizer is of maximal
length in this case. Here we will use a general result [57, Theorem 3.3.1]
by Zhou-Zhu showing that the stabilizers are parahoric subgroups, which
simplifies the original proof following [53].

Remark 0.14. Even if the simple adjoint group G has no non-zero minus-
cule cocharacters, the above approach still works but is more technically
involved, by using quasi-minuscule cocharacters instead.

0.4. Comparison with the work [57] by Zhou-Zhu

As mentioned before, this paper aims to give a complete parametrization of
Irrtop

X,,(b), which consists of three parts: the parametrization of J,\Irr*P X, (b);
the construction of representative irreducible components; and the computa-
tion of their stabilizers. The major overlap with [57] lies in the first part, see
Remark 0.6. A key new feature of this paper is that the (A;—crystal structure
plays an essential role in the construction, see Remark 0.8 & 0.9. This in
particular enables us to handle the type A case, which is not covered in [57].
There is a minor overlap in the third part, where the difference is that this
paper gives an algorithm for computing the stabilizers (see Theorem 0.11);
while the work by Zhou-Zhu produces extra interesting information on the
volumes of stabilizers, see [57, Theorem C & Remark 1.4.3].
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1. Preliminaries

We keep the notations in the introduction. Set Ky = H(O}) for any sub-
group H C G over Op.

1.1. Root system

Let R = (Y,®Y, X, ®,Sy) be the based root datum of G associated to the
triple T C B C G, where X and Y denote the (absolute) character and
cocharacter groups of T respectively; ® (resp. ®V) is the roots system (resp.
coroot system); Sy is the set of simple reflections. There is a natural perfect
pairing (,) : X x Y — Z.

Denote by ®* the set of (positive) roots appearing in B. Then & =
O P~ with &~ = —®T. For a € ®, we denote by s, the reflection which
sends A € Y to A—{a, A\)a" with ¥ € ®" the corresponding coroot of .. The
Frobenius map of G induces an automorphism of R of finite order, which is
still denoted by ¢. In particular, o acts on Yr as a linear transformation of
finite order.

Let Wy = Wg be the Weyl group of T' in GG, which is a reflection subgroup
of GL(YR) generated by Syp. The Iwahori-Weyl group of T in G is given by

W =Wg=Np(F)/Kr =Y x Wy = {t"w; A e Y,we Wy},

where Ny denotes the normalizer of T in G. We can embed W into the
group of affine transformations of Yg so that the action of w = t*w is given
by v — p + w(v). Let ®T be the set of (positive) roots appearing in Borel
subgroup B O T and let

A=Ag={veEYp;0<(a,v) <1l,a€®}

be the base alcove. Then we have W = W%, where W® = Z®Y x W, is the
affine Weyl group and € is the stabilizer of A. Let YT be the set of dominant
cocharacters. For x,n € Y we write x < 7 if n — x is a sum of positive roots.
Write x < n if x < 7. Here 7, ¥ are the dominant Wy-conjugate of n, x
respectively.

For a € @, let U, C G denote the corresponding root subgroup. We set

I=Kr [] Vatt0p) T] U-5(0;) € G(F),

aEd+ Bed+

which is called the standard Iwahori subgroup associated to 7' € B C G.
We have the Bruhat decomposition G(F) = U,y [W].
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1.2. Affine roots

Let ® = &g = & x Z be the set of (real) affine roots. Let a = a + k :=
(o, k) € ®. Denote by U, : Op — G(F), z — U,(zt*) the corresponding one-
parameter affine root subgroup. We can view a as an affine function such that
a(v) = —(a,v) + k for v € Yg, whose zero locus H, = {v € Yg;a(v) = 0}
is called an affine root hyperplane. Let s, = sy, = = ke Sa € W denote
the corresponding affine reflection. Set ®* = {a e ®;a(A) > 0}. Then
d = T P~ with &~ = —Pd*. The associated length function £ : W — N
is defined by £(0) = |®~ Nw(®)|. Let S* = {s4;a € ®,0(s,) = 1}. Then
W is generated by S® and (W%, S%) is a Coxeter system.

Let o € ®. Define @ = (a,0) € ®T if @ < 0 and & = (a,1) € &
otherwise. Then the map a — & gives an embedding of ¢ into T, whose
image is {a € ®;0 < a(A) < 1}. Let II be the set of roots o € ® such that &
is a simple affine root, namely, II consists of minus simple roots and highest
positive roots.

Lemma 1.1. Let w, @' € W. Then I0Iw'] C Upcglaw'l and TwId'] C
Uy < Twa'T. Consequently, WIt*K C ngwltx(A)K for A € Y. Here < is
the usual Bruhat order on W associated to £.

1.3. Levi subgroup

Let M O T be a (semistandard) Levi subgroup of G. By replacing the triple
T C B CGwithT C BNM C M, we can define <I>M, War, Wi, W,
Iy, @ M, A, Qu and so on as above. For v € Yg, we denote by M, the
Levi subgroup generated by T and U, for a € ® such that (a,v) = 0, and
denote by IV, the unipotent subgroup generated by Ug for 3 € ® such that
(B,v) > 0. We say M is standard if M = M, for some dominant vector
veYT.

1.4. Superbasic element

We say b € G(F’ ) is superbasic if none of its o-conjugates is contained in
a proper Levi subgroup of G. In particular, b is basic in G(F'), that is, the
Newton point v (b) is central for ®.

Proposition 1.2. If b € G(F) is basic, then there exists a unique stan-
dard Levi subgroup M C G such that M(F) N [b] is a (single) superbasic
o-conjugacy class of M(F).

The existence is known. The uniqueness is proved in Appendix B, which
is only used in the formulation of Theorem 0.5.
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1.5. The element ef

Let A € Y and v € ®. We set A, = —(}), that is, Ay = (7,A) if v < 0
and Ay = (7,A) — 1 otherwise. Let Uy (resp. U ) be the subgroup of G
generated by U, such that A, > 0 (resp. A, < 0). Notice that A, > 0 if and
only if (o, A —v) > 0 for any v € A. So Uy and U, are opposite maximal
unipotent subgroups normalized by T". Thus there exists a unique element
€\ = ef\; € Wy such that Uy = U = e,\Uegl. Here U denotes the unipotent
radical of B. Set I, = I Nt Kt~ and

I)T = KT(I/\ N U)\_) = KT(Iﬂ U)\_),
I = Kp(I,NUy) = Kt Kyt~

It follows from the Iwahori decomposition that Iy = I, I; = Ij\rI -
Let p: W x (6) — Wy x (¢) denote the natural projection, where (o) is
the finite cyclic subgroup of GL(YRr) generated by o.

Lemma 1.3. Let A\ €Y and o € ®. Then
(1) Ao + Aa = —1;
(2) sa(N) = A = Aaa’;
(3) Ao = w()\)p(w)(a) and €u(\) = p(w)e)\ for w e Q.

Proof. The first two statements follow directly by definition. We show the
last one. Write w = t"p(w) for some 7 € Y. Then

(p(w)(@), w(A)) = (a, A) + (p(w)(@), ).

By the statement (1) we may assume « > 0. Since w € €, (p(w)(a),n) = 0 if
p(w)(a) > 0 and (p(w)(a),n) = —1 otherwise. It follows that w(A)yw)@a) =
Ao In particular, Uy = P(@)U, and hence €w(n) = P(W)er. O

Lemma 1.4. Let \,n € Y such that n — X\ is minuscule. Then I, C Iy.

Proof. 1t suffices to show Uy (t““Op) C I for Ay < 0, where e, = 0if o <0
and e, = 1 otherwise. If A\, < 0, there is nothing to prove. Suppose A, > 0.
Then (o, A) > (a,n) and hence (o, \) = (a,n) + 1 as n — A is minuscule.
This means —1 < (o, n) < 0. If (a,n) = 0, then o > 0 (since A\, < 0) and
Ua(tO0p) = Us(tOp) = Ut @NOy) C If. If (a,n) = —1, then a < 0
(since Ao > 0) and Uy (tOp) = Ua(Op) = Ua(t<°"/\>(915) CI. O
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1.6. The convolution map

Let d € Z>1 and let G be the product of d copies of G. Let oo be the
Frobenius-type automorphism on G? given by

(glag% v 7gd) = (927 -y 9d, 0'(91))

We set be = (1,...,1,b) € G(F). Let e = (11, - - -, tta) € Y% be a dominant
cocharacter of G¢. Let X 1. (be) be the corresponding affine Deligne-Lusztig
variety in Gr? using automorphism o,. Consider the twisted product

GrZ. = Kt"K XK - XKKtudK/K

together with the convolution map
my, : Gry,, = Grz. = Gr)p,| = UM§|M.|GrZ

given by (91, --,9d4-1,94K) — g1--- 94K, where |pe| =p1 +---+pg € Y.

Theorem 1.5 ([39], [43], [20, Theorem 1.3]). Let notations be as above. Let
p €YY with p < |ue| and y € Gr},. Then

(1) dim m;_l(y) < (p, |ie| — 1), and moreover, the number of irreducible
components of m;.l (y) having dimension {p, |1e| — 1) equals the multiplicity
mb,, with which BS occurs in IB%S. = Bﬁl ® - ® Eﬁd.

(2) m;}(y) is equi-dimensional of dimension (p, |fte| — 1) if e is minus-
cule.

Here p = pg is the half sum of roots in ®+.

Thanks to Zhu [55, §3.1.3], there is a Cartesian square

X, (be) —— G(F) xx Gr,

Jpr lidemm

Uyl Xu(b) —— G(F) x g G},

where pr is the projection to the first factor; the lower horizontal map is
given by g1 K + (g1,9; bo(g91) K); the upper horizontal map is given by

(glKa cee 7gdK) = (91791_1927 cee aggjlgd7g(;1ba(gl)K)‘
Moreover, via the identification

Jbgjbu gH(Q?aQ)?
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the above Cartesian square is Jp-equivariant by left multiplication.

Corollary 1.6. Let the notation be as above. Then
Ir'P X, (be) = Uyey+me, 20 Ucerrtor x,, (5 I Ppr=1(0).
In particular,

Jb\IrrtopX,u. (bo) = Uerhmﬁ,;ﬁO |JC’E‘,]IZ,\Irr“OPX“(b) Irrtopprfl(c)

and hence

TP X, () = > mlt, [Tp\Irr™P X, (b)].
pneEY +

As a consequence, if Theorem 0.5 is true, then the diagram of Theorem 0.7
is Cartestan if it is commutative.

Proof. Using the same strategies of [8] and [10] we have
: 1 .
dim X, (be) = (p, |1te| — 1) — idef(b) = dim X,(b) + (p, |1te| — 11)-

Let p € YT and C € Irr*? X, (b). By Theorem 1.5 (1),
dim pr!(C) = dim C+(p, |pe|—p) = dim X, (b)+(p, |pte|— 1) < dim X, (ba),

and moreover, the number of irreducible components of pr=!(C) having

dimension dim X, (bs) is equal to m},, as desired. O

1.7. Tensor structure

Let pn € Y'. Recall that V, = Vf denotes the simple G-module of highest
weight p, and B, = Bg denotes the crystal basis of V},, which is a highest

weight G-crystal. We refer to [29], [37] and [53, §3.3] for the definition of
G-crystals and a realization of B, using Littelmann’s path model.
For A € Y, let B,()) be the set of basis elements of weight A\. Then

By (M) = dim V,(A),

where V,,()\) denotes the A-weight space of V/,.
Recall that MV, = MVS denotes the set of Mirkovié-Vilonen cycles
in Gry,. By [1, Theorem 3.1], MV, admits a @—crystal structure, which is
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isomorphic to B,. Let S1 € MV, (A1) and Sy € MV ,(A2) be two Mirkovié-
Vilonen cycles. The twisted product of Sy and 59 is

S1%Sy = (07) 7 (S1)t" xx, S2 C G(F) xx Cr,

where 67 : U(F) — Gr is given by u — ut™ K. The convolution of S; and
So is defined by

S1 Sy = m(S1xSy) N SA+re

where m : G(F) x g Gr — Gr denotes the usual convolution map. Note that
Sl * SQ = m(Sl >~<S2)

Following [53, Proposition 3.3.15], we fix from now on a bijection § — S
from B, to MV, for p € Y*, which is compatible with the tensor product
for G-crystals, that is, Ss,06, = Ss, *S5,-

1.8. Admissible set

Let P = M N be a standard parabolic subgroup with standard Levi subgroup
M = o(M) O T and unipotent radical N = o(N). Let £ be one of groups
I, M(F), N(F) and P(F). For n € Zsq set &, = £ N K, where K,, =
{9 € K = G(Oy);9g =1 mod t"}. Following [8], we say a subset D C &
is admissible if there exists some integer r > 0 such that DE. = D and
D/E C E/E, is a (bounded) locally closed subset. In this case, define

dimD = dimD/E, — dim &/&,,

and moreover, we can define topological notions for £, such as open/closed
subsets, irreducible/connected components and so on, by passing to the
quotient D/D,. These definitions are independent of the choice of r since
the natural quotient map £/&, — £/&,+1 is an affine space fiber bundle. For
instance, the irreducible components of D is defined to be the inverse images
of the irreducible components of D/E, C £/, under the natural projection
E — &/E,. We denote by IrrD the set of irreducible components of D in this
sense.

P
2. The set X, **(b)

Keep the notations in the introduction and §1. In this section, we introduce
a decomposition X, (b) = Ll/\eyX,Ij ’)‘(b) with respect to certain parabolic
subgroup P C G, and study the irreducible components of X 5 ’)‘(b).
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2.1. The set HF(C)

Let P = MN be a standard parabolic subgroup as in §1.8. Suppose that

v v

b € M(F') such that b is basic in M(F) and vy (b) = vg(b). Moreover,
we always assume that b € Np(F) is a lift of an element in Qp7, whose
image in W)y is still denote by b. Notice that b normalizes N (F)Iy;. Let
¢r . N(F)Ipr — N(F)I be the Lang’s map given by h s h~'bo(h)b~L.
For A € Y let 6% : N(F)Ip; — Gr be the map given by h — ht*K.

Let C C Gr be locally closed and irreducible. We define

HP(C) = H"(C;b) = ¢f ((65)71(C)) € N(F)I,

where A € Y such that N(F)Ipt*K/K NC is open dense in C. In this case,
the map v of Theorem 0.5 can be formulated by

{(ht") Yoo (MK h e (05)71(0)} =t HP (O "V K /K,

where bo()\) € Y is defined by the affine action of W x (¢) on Y, see §1.1.
For € Yt and A € Y we set X;"'(b) = N(F) [yt K/K N X, (b).

Lemma 2.1. The map C — HY(C) for C € Ier,))’P(b) induces a bijection
(N(F) Iy NI\ X P (b) = Ier (P Kt Kt~ 0 N(F)Ly).

In particular, HP(C; b) is invariant under left /right multiplication by Kr.

Proof. Note that btXK = !0 K and Kt Xb~1 = Kt~*X for y € Y. There-
fore,

O) " (X ®) = (¢f) (KK TN A N(F) Ty)
= (o)) MK KN 0 N(EF)yy),

As ¢!’ is an etale covering of N(F)Iy with Galois group N (F)Iy N Jp, the
map C + HP(C) for C € Ier,Q\’P(b) induces a bijection

(N(F) Iy N I\ X P (b) = Iee (P Kt Kt~ 0 N(F)Iy).

The proof is finished. O

Now we focus on the basic case. Let I4o, be the derived subgroup of 1.
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Corollary 2.2. Assume b is basic. Then the map C — H§ (C) for C €
MGy o
Irr X} (b) induces a bijection

(Taer N I\ X ¢ (b) = Tr (P KKt 0 T,

Here ngr(c> = ¢bG((‘9>C\;)71(C) N Ider)-

Proof. Note that [t*"K/K = I4t*K/K and that ¢ restricts to an etale
covering of Iy.r with Galois group Iqer N Jp. Then the statement follows in
the same way of Lemma 2.1. O

recall that p: W x (6) — Wy x (o) is the natural projection.

Lemma 2.3. Assume b is basic. For A €Y and C € Ierlj\’G(b) we have
Y HO ()T = plo) HE(Cib) V()

where w € Q, & € Np(F) is a lift of w, N = w()\), C' = wC and U =
wbo(w)~1. Note that the right hand side is independent of the choice of &
by Lemma 2.1.

Proof. As w € , we have wIw™! = I and hence
C'=wC Cwlt*K/K = II*VK/K.

So (0$)71(C") = w(0)~L(C)w~L, and the statement follows by definition.
O

Corollary 2.4. In the superbasic case, the map ¥© in Theorem 0.5 is in-
dependent of the choice of b.

Proof. Suppose b is superbasic and let b, ', A\, \',w,C,C’ be as in Lemma
2.3. Let %G (resp. 719 ) be the map 7“ in Theorem 0.5 defined with respect
to b (resp. b'). We need to show that 4 (C) = A (C”). By definition (for the
superbasic case), it suffices to show that

()" HE (O VKK = (§) 1N HE (O 1) TN KK,

which follows from Lemma 1.3 (3) and Lemma 2.3. O

Corollary 2.5. Assume b is basic. For A € Y there are natural bijections

(I NI)\Ir X (b) = T (PP KKt N 0 1y, ) & (Tger 0 Jp)\Ir X (b),
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where Iy, = INUy and Uy is as in §1.5. Moreover, for C € Ier,i"G(b) we
have

HY(C) = KrHE,(C) = Hg,.(C)Kr.

Proof. By Lemma 2.1 the map C — HY(C) for C € Ierﬁ"G(b) induces a
bijection

(a)
(I NI)\IrX 4 (b) = (PP K KN 0 1) 2 I (P K KN 01y,

where the second bijection follows from that
AKEN 0 T = I (K KN 0 D).
Similarly, by Corollary 2.2 we have

(b) (Iger N Ip)\Irr X ¢ () =2 Trr (P KKt 7™ 0 ;)
=~ (P K KN 0 1),

So the first statement follows.
By (a) and (b), there exist Z, 2’ € Irr(t* Kt* Kt~ N Iy ) such that

(Iy N1ger) 2 = HE,.(C) C HY(C) = I, 2.

In particular, Z = Z’. Moreover, K7 normalises t* Kt#Kt~b7(N) N Iy, , and
hence normalises each of its irreducible components. So we have

HE(C) =1, 2 = (I, Nlger) K72 = HS, (C)K7 = K- HG,, (O).
The second statement is proved. O
Lemma 2.6. For A\, x € Y there is a natural bijection
(MKt Kt XN Iy,) = Iir(KtHK /K Nt Xy ' K/K).
Proof. The map g — t~Xg~ 't gives a bijection
KKt XN Iy, = KK Nt Xy
By the definition of Uy we have Ky, C t~*y, t*. Therefore,

(KKt XN Iy,) = (Kt K Nt X, 1Y)/ Ky,)
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= Ir(Kt *K/K Nt X[y, t"K/K),
where the identity follows from that ¢~XIy;, t* /Ky, =t X[y, t"K/K. O
2.2. The minuscule and basic case

Suppose p € Y' is minuscule and b is basic. For D C W we set DN J, =
{0 € D;bo ()bt =0},

For A € Y we write X}(b) = X,°(b) = It"K/K N X,,(b). Let A5, and
Aibmp be the sets of A € Y such that X} (b) # 0 and dim X;‘(b) = dim X, (b)
respectively.

For o € @ define o = p(bo)i(a) € ® and & = (bo)i(&) € ® for i € Z,
where @ is as in §1.2 and p : W x (¢) — Wy x (o) is the natural projection.

For \ € AG define X! = —\ + bo()), and denote by Rib(/\) the set of

roots a € ¢ such that (a, AF) = —1 and A, > 1. By Lemma 2.7 (1) below,
this condition is equivalent to that (a, A*) = —1 and A, > 0.

Lemma 2.7. Let A € Y. Then we have (1) (0, \) = Ag1 — Ay fora € ®
and (2) W\ = p(w)(\) for @ € W N Jy.

Proof. Suppose b € t"W; for some 7 € Y. Then
(@, ) = =@, \) + (@, 1) + (a7, ).

As b € Q, bo preserves the fundamental alcove A and hence preserves the set
{B; B € ®}, see §1.2. Thus a, a~! are both positive or negative if (o, 7) = 0;
a<0and ot > 0if (,7) = —1; @ >0and a! < 0if (a,7) = 1. In all
cases we have (a, A%) = A1 — A, as desired. For @ € W N J,, it follows that

BN)F = —D(\)+bob(\) = —(A)+wbo(N) = p(i)(—A+bo(N) = p(@)(A\7).

The proof is finished. ]
Lemma 2.8. We have Rib(w()\)) = p(w)Rib()\) forweQnly, A€ Aib

Proof. Notice that p(w)(y)" = p(d)(v?) for v € ®, % € WNJ, and i € Z.
The statement now follows from Lemma 1.3 (3) and Lemma 2.7 (1). O

Proposition 2.9. Suppose p is minuscule and b is basic. Then \ € ‘Au bs

that is Xﬁ‘( ) # 0, if and only if N is conjugate to p by Wy. Moreover, in
this case,
(1) AKtKE N AT =1, H&eRfj’b(A) Ud(t<5’>‘>_1(915);
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(2) Xﬁ‘(b) is smooth and I N J, acts on IerfL‘(b) transitively;
(3) dim X3(6) = R, ()]

Proof. By Corollary 2.5 we have
(INI\ITX ) (b) 22 e (P KKt~ N A 1) 2 Tp (KK 0 ¢ [, 7).

As p is minuscule, we see that § # Kt K N t_’\IUAt/\tAh C UA(F)t)‘h, that is,

AE Afib, if and only if A7 is conjugate to p. Moreover, in this case,

K"K N UNF)Y = Ky, M Ky, = ([[U(0) [] Us(t 101",
a B

where «, § range over the roots of Uy such that (a, )\h) > 0and (3, \%) = —1
in any fixed orders. Here the root subgroups Ug commute with each other
since A! is minuscule. On the other hand, t = Iy t"tA = (11, Uy (t=™ O};))t’\h,
where ~ ranges over the roots of Uy (or A, > 0) in the above fixed order.
Thus
Ky, tN Ky, Nt My, MY = (Ky, [JUs o)1,
6
where ¢ ranges over Rﬁb()\) = {y € ®;(7,\%) = —1,\, > 1}. Therefore,

PRKEN N T = LNKHPK 0t My, M)W
= LMKy, tN Ky, Nt My M)W

= LMKy, H Us(t'Op))t ™
SeRS (M)
=1, H Ug(t<§’)\>71015).
JeRrS,(N)

So the statement (1) follows. The statement (2) follows from Corollary 2.5
by noticing that t* Kt*Kt~N) N T is smooth and irreducible.
As (0F) 71X (b)) = (¢§) MKt Kt~ N 1), we deduce by (1) that
dim X (b) = dim((65) (X, (0)) /1)
— dim((65) (X)) — dim I
= dim(P Kt KtN N 1) — dim I,
= [R,(V)]-

So the statement (3) follows. O

b)
b)
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2.3. The set HP*(C)

Let P = MN and b € M(L) be as in §2.1. Let G%, o4, bs, fte and pr be as
in §1.6. We also denote by pr the projections G4(F) — G(F) and Y¢ — Y
to the first factors.

Let C' € Trr'P X, (be) and e € Y such that (N (F)Iy)% K/ KN C
is open dense in C. By Corollary 1.6, pr(C) € Irr*P X, (b) for some € Y.
Let A = pr(\,). Then N(F)Iyt*K/K Npr(C) is open dense in pr(C). Set
A = beoe(Ne), r, = oL and 0y, = 6", By Lemma 2.1,

H'(C) = ¢, (6,1(C)) € (" K K4 1 (N (F) ) ).
So we can write
HP'(C) = H(C) x -+ x Hy(C),

where H,(C) € Trr(t’ Ktt Kt 0 N(F)Iy) for 1 < 7 < d with pe =
(11, - s f1d)s Ao = (A1, -, Ag) and AL = (A1, ATy,

Lemma 2.10. Let notations be as above. Then we have

HP(pr(C)) = () - Ha(C) € N(F) Iy

As a consequence,

t= HP (pr(C) e WK /K = t= M Hy (C)N - - - =2 Hy(C) MK /K.

Proof. As pr((N(F)Ip)%*K/KdnC) = pr(C), we see that

pr(6,,(C)) = (65)(pr(C)) € N(F)Lus.

On the other hand, the equality H"*(C) = ¢, (9;.1(0)) means that

Hi(C) x -+ x Hy(C) = {(hy  ha, ..., hy 1 hay by oo (hy)b™1);

In particular,
Hy(C) -+ Hg(C) = ¢y (pr(65,1(C))).

SOf’f(pé(C)) = o7 ((6)~"(pr(0))) = & (pr(65,'(C))) = H1(C) - "Hd(CD)
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3. The superbasic case

In this section, we assume that b is superbasic. For d € Z>1 let o,, b, [ie
and P = G be as in §1.6. Let C € Irrt‘)pXu.(b.) and let \¢ € Y% such that
(I‘t* K¢/ K?) N C is open dense in C. Following §2.3 let

HE(C) = Hi(C) x -+ x Hy(C) € Irr(t K9hs Kgbe7+(0e) A 1),

where H,(C) € Trr(t Ktt Kt N 1) for 1 < 7 < d with Ay = (A1, ..., Ag)
and AL = beoe(Ne) = ()\J{, e )\L). We set Xﬁ‘:(b.) = Xﬁ‘,”Gd(b.) for simplic-
ity.

The main result of this section is
Theorem 3.1. Let C, Ao, A} be as above. There is FEUC) = (11,0 ,74) €
IB%S’? such that

t_’\lHl(C)tX{ XK XK t_/\de(C)t)‘ZK/K = 6)\1571;( ce XSW,

where €y, = e/C\i is as in §1.5. Moreover, the map C — ~"(C) factors

through a bijection
I \IE'P X, (b) 2 BS (A (ba)).
In particular, Theorem 0.5 is true if b is superbasic by taking d = 1.
3.1. Reduction procedure

First we show how to pass to the case where G' = Resg/pGL,, with E/F an
unramified extension.

Lemma 3.2. Let f : G — G be a central isogeny. Then Theorem 3.1 is
true for G if and only if it is true for G'.

Proof. We still denote by f the induced maps G(F) — G'(F), Grg —
Gre and so on. Let ¢’ be the Frobenius automorphism of G’. Let C €
Irr'°P X, (be) and Ae € Y? such that 19 K4/K9N C is open dense in C.
Let we € m(G?) such that the corresponding connected component Gres,
contains C. Let K’ = G'(O}) and I' C K’ the Iwahori subgroup containing
f(I). Denote by u,, \,,C’,b,,w, the images of e, Ae, C,be,ws under f re-
spectively. Write Ao = (A1,...,Aq), be = (b1,...,b4), Ay = (\],...,\])) and
b, = (b),...,0).
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By [3, Corollary 2.4.2] and [17, Proposition 3.1], f induces a homeomor-
phism
Xy, (be) N Grie, =: X, (be)“* — X, (V) )9 1= X0 (b))% N GrG,d

So ¢’ € Irr*P X, (b)) and ' K"/ K'NC" is open dense in C”. Moreover,
as f(lger) = I}y, we have

FUOSHHO) N (Taer)™) = (65)7HC) N (Ther)?
FIHSH(C)) = HEx (O,

where H g;(C’) and H dGe'rd(C” ) are defined as in Corollary 2.2. By Corollary
2.3,

HY(C) = Hio (O)THO) = T(0) HEL(C);
HY'(C') = HGG (C)T"(0p) = T"™(0p) Hi, (C).
Therefore, f induces a surjection and hence a bijection

A H (O)N ¢+ X T H(OWN KK
— £ Her o (C)M Xf¢ -+ Xt Hyor o(OWN KK
2 N Hyor o (O X -+ X g 72 Her o OV K [ K
=t (Hy (CYN xger - x g t N H(CH KK,

where, as in §2.3 we write

Hder(C) = Hdenl(o) Koeee X Hder,d(c)
Ci’l‘d (C/) Hdel',l(cl) X X Hder’d(c/).

By Corollary 2.3, we have the following commutative diagram

(@) ((Taer)® N T )\IreX e (be) —— Trr( Kk K942 0 (1) 7wy, )

| |

(L) 0 T \IET Xt (b) " Tre(#Xe K0 K42 0 (1) () ),

where the right vertical leeCtiOIl follows from Lemma 2.6 and the homeo-
morphism f : Grgsy = GrG,d
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Let Jg. and J? be the kernels of the natural projections Jj,, — 71 (G%)

and Jy, — 71 (G’ d) respectively. Then we have a commutative diagram

TP NIET* P X, (be) s —— Jp, \Irr*P X, (Da)

| |

Jp NIt oP X (B))0 = Ty, \Irr*P X, (B

Thus the bijection Jp, \Irr*P X, (be) = Jp, \Irr**P X, (b,) follows from the
following commutative diagrams

(Zaer) N Jp)\IT™P X, (be)*s —— (19 N Jp)\Irt*P X, (be)** ——— J,?. \Irr*P X, (ba)“*

i l J

(Tep)® 01 T )\IET'P X (B)%0 — (1" 01 Ty )\Imr™P X (B, )%+ —— T, \Trr'*P X, (b))%,

where the left horizontal bijections follow from Corollary 2.3; the right hor-
izontal bijections follow from that Jg. =Iin Jp, and JO,. =rin Jy, as
be, b, are superbasic; the leftmost vertical bijection follows from the natural
bijection

((Taer)® N o )\ITX 2 (ba) 2 ((Ther)® 0 By )\ X2 (8))

in the commutative diagram (a). The proof is finished.
O

Let G,q denote the adjoint group of G. As b is superbasic, by [3, Lemma
3.11], Gag = []; Resg, pPGL,, for some unramified extensions F;/F. In view
of the following natural central isogenies

G — Gaq = [ [ Resp, /pPGLn, «— [ Resp,, /rGLu,,

we will assume in the rest of this section that G = Resg,rGL;, for some
unramified extension E/F by Lemma 3.2.

3.2. Reduction procedure in the minuscule case

. . . d
Now we consider the case where jiq is minuscule. Let A, ;, = .Af. p, and

AP, = Aff;,ffp be defined in §2.2. For Ay € A, b, set Al = bage(As),

)\E = —)de + )\i and )\ﬁ = 6;\}()&), where €, = 6§_d is defined in §1.5.
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Since pe is minuscule, we identify IB%gj canonically with the set of cochar-
acters in Y% which are conjugate to .. Moreover, for ¢, € ng, the corre-
sponding Mirkovié-Vilonen cycle is S¢, = (Ky)%t K9/ K.

Theorem 3.3 ([17, Proposition 1.6]). Assume pe is minuscule. For A\ €
A, b, we have
(1) Xﬁ‘: (be) is an affine space;

(2) Ao € AP, if and only if N, = 6,1 (A3) € B (Agu(b)).

Moreover, the maps \e — )\li and \e — X[L\: (be) induce a bijection

T\ P X, (be) 2 BE” (Mg (ba)).

As a consequence, for C' € Irr*°P X M.(b.) there exists \e € Afﬁpb. such

that C' = X, (bs). Define
Y9(C) = X € B, (Aga(be))-
Moreover, we write
H(\) = HE(0) = t* KUt K> 0 19 = Hy(\o) % - x Hy(N),

where H,(\) := H;(C) for 1 <7 < d as in §2.3.

Remark 3.4. In [17], the EL-charts for X,,, (bs) are parameterized by cochar-
acters Ao in Ay, 5, C Y42 (Z")4 with | = deg E/F. By [17, Corollary 4.18],
the map, sending Ao to its cotype, induces a bijection

T I X, (be) = BE (Aga (b))

Following [17, Definition 4.13], the cotype of e is equal to €:1<)\E), where
go lies in (Wp)? = (&,,)% such that

nXij(eij (k) +eij(k) < nlijei (k) + e (K)
for1 <i<d,1<j<land1 <k <k < n Thismeans that (A )., (o) = 0
for all positive roots a.. So €4 = €y, and the cotype of A\, coincides with 2.

By the definition of v&*, the second statement of Theorem 3.1 (for the
minuscule case) follows from Theorem 3.3. It remains to show the first state-
ment, which follows from the following result.
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Proposition 3.5. Let pe be minuscule and let A\ € Altf.pb.. For1l <a <
c<d,

t= e (Hy( M) X g - X g A Ho( AN K /K
= EAGKUt/\ba XK XK KUt)‘ZK/K

=€), X - XS,

where Ny = (A5, ..., %) and AL = (A, ... D).

As G = Resg,pGLy, we have GUF) = H‘iﬂ:l Gi(F), where | = deg E/F
and each Gj is isomorphic to GL,, over E. Moreover, o, sends G; to G;_1
for 1 <14 < dl with Gg+1 = G1. By Lemma 2.9 (1), we see that H(\s) only
depends on A\, € ALO.I?b., the image of be in (Qg)d and the induced action
of g, on the root system. Moreover, by Corollary 2.4, we can assume, by

replacing b with a suitable €2-o-conjugate, that

Let G’ = GL,, and let o) be the Frobenius automorphism of (G')# defined
in §1.6. Via the natural identification (over E)

dl
(Gl)dl _ HGz _ Gd,
=1

we see that the induced actions of o, and o, on the root system coincide.
Thus Proposition 3.5 for the triple (G'= Resg/pGLy, d, be) is a consequence
of its counterpart for the triple (G’ = GL,,dl, bs). So we will assume that
G = GL, when pu, is minuscule.

3.3. The minuscule case with G = GL,,

Assume G = GL,. Let T and B be the group of diagonal matrices and
the group of upper triangular matrices respectively. Let V = @?:1F e; be
the natural representation of G(F ). Then there are natural identifications
X = @ Ze;, Y = @ Ze! and Wy = S,,, where (e))1<i<n is the dual
basis to (e;)i1<i<n and &,, denotes the symmetric group. Then the natural
action of w € Wy on X is given by w(e;) = e, ;). Moreover, we have & =
{avij = e; —€j;1 < i # j < n} and the simple roots are a; = e; — e;41 for
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1 < i < n— 1. Notice that € is a free abelian group of rank one. We fix
a generator w € ) which sends e; to e;11 for i € Z, where e;4,, = te; for
j € Z. So we can assume b = w™ for some m € Z. As b is superbasic, m
is coprime to n. The embedding h +— (1,...,1,h) induces an identification
Y =Y, = (Y%),,, through which we have A\;(b) = Aga(be).

Suppose e € V¢ is minuscule. Let Ao = (A1,...,\q) € Ay, p.. Following
§3.2 we can define Al = (Al,... A1), A} = (Ai,.. AL, AL = (A, A
and H(Ae) = H1(Ae) X+ - X Hg(As). Notice that A=Ay forl1 <7 <d—1.

Lemma 3.6. Let \e € Ay, and 1 < a < c<d. Then
M H (AN X -+ X TN H AN K = Ky, 1% X g -+ x g Ky, VK.
Proof. Let R, p,(Ae) = U2 R-(Xe) C L2_,® be as in §2.2, where

Rr(Xe) ={a € ®;(Ar)a = 1, (o, AE) = (o, =Ar + ML) = —1}.

By the proof of Proposition 2.9, we have H(\s) = I\ X, where

o= [ UL o).
a€R- ()
Thus (Ao = (A)a — 1 > 0 and Uy (#02)7105) = Up(t6M0y) C I,

for a € R;(Xe), which means ¥, C I)\ for 1 <7 <d As )\T = Arp1 for
1<7<d—1, we have

A H AN X -+ X £ Ho 11 x e 6 Ho (AN K
= 17N Hy (A X - X 7 Ho (M) X e 672 Ho (NN K
= 1T Bttt X X A B gt X b L SN K
=ty N X X TN BN X A N K
= NI I e g NI T e x e (NI I K
= NI e g TN P x g TN TN K

by A
:KUAat a XKXKKUACt z:_[(’7

where the fifth equality follows from Lemma 1.4 that [ x, C I AL forl <7<d
since )\E = —)De + )\i is minuscule. The proof is finished. OJ
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Write €y, = (€1, ..., €q) € (8,)? with e, := egi for 1 < 7 < d. We define
ar; = € (i) +nA-(e,(7)) for 1 < 7 < d. By the definition of e, = €, (see also
Remark 3.4), ar1 > --- > a;,, is the arrangement of the integers i + nA-(7)
for 1 < i < n in the decreasing order. Define wy, = (wr)1<r<a € (6,)? such
that

b . ‘
(%) ri = {aTH,wT(z) —nX(i), ifl1<7<d-1;

A1y (i) — nAZ(i) +m, ifT=d.

Lemma 3.7. We have e, :elwl_l -

for1 <7 <d.

~w=t and hence N =w,_y - - wlel_l()\i)

Proof. Suppose 2 < 7 < d. Then ar; = a,_y -1 ;) + nX\._ (w1t (i), that
is,

e (8) + e (er (1)) = et (wry (D) +ndr 1 (e (wrdy (6) 0oy (wyy (1),

-1
T—1

(1)) By induction we have ¢, =ejw; ' - w .

O

which means e, (i) =€,_1(w

Lemma 3.8. Let 1 <7< dand1<i<j<n We have
(1) wr(i) > wr(j), that is, arq1w. (i) < Grg1w,(j) i and only if ar; —
ar; <n and N (5) — N2o.(i) = 1, in which case A, () — Crt1yw, (i) < T

(2) b(w,) = |[{a € ®; (Ar)a = 0,(AL)a < 0}].

Proof. By (%) we have

(i) Ar 41w, (3) = Ar+lw, (§) = i — Grj + n(Ai(Z) - )‘E-(]))
(€7 (i) + nAr(€-(2))) — (e-(J) + nAz(e-(4)))-

Then the first statement follows from that )\bT isminuscule. For 1 <k #1<n
we ave Aq,, > 0 if and only if & +nA(k) > I + nA(l). Then it follows from
(i) that the map v +— e,(7) gives a bijection between ®+ N —w-1(®*) and
the set {o € ®; (A;)o = 0, (M)a < 0}. The second statement is proved. [

For w € &,, we denote by supp(w) the set of integers 1 < i < n—1 such
that the simple reflection s,, appears in some/any reduced expression of w.

Lemma 3.9. Let 1 < 7 < dand 1 < i <n—1 such that i € supp(w,).
Then there are roots o, 3 > «; such that w; (o) < 0 and w(8) < 0. As a
consequence, Gr; — Grit1 <1 and Ar41i — Qr41,i4+1 < M.
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Proof. The first statement follows from that i € supp(w,). Let o =« j» €

®* such that w:!(a) < 0 and o; < . In other words, j <i < i+1 < j’ and

w;(j) > wy ' (4"). Then we have ar41,; — ar41,i41 < Gry1,j — Gry1,5 < 1 by

Lemma 3.8. The inequality a,; — a;;+1 < n follows in a similar way. ]

Lemma 3.10. We have dile’L\_'(b.) = (Do, e — N2) — L(w),). Here pe
denotes the half sum of positive roots of G¢.

Proof. We set

E={(ri,j);1<7<d1<i<j<nA\(j)—N(i) =1}
E'={(r,i,j) € E;ar; — arj > n}
E'"={(r,1,j);1<7<d,1<i<j<nw (i) >w(5)}

Then E = E' U E” by Lemma 3.8. Applying Proposition 2.9 (3) we have
dim X2 (ba) = [E'| = | E| = |E"| = (pa, N=A0)~L(w),) = (pe, f1e = X3) = £(w),),

where )\_ﬁ denotes the dominant conjugate of )\ﬁ, which equals pe by Propo-
sition 2.9. O

Lemma 3.11. If \s € AP, , then L(wy,) = S7_, L(w;) = n— 1, and

wy - wyp € 6, is a product of distinct simple reflections.

Proof. Let A, € Z" such that A\pn(i) = |22] — LMJ for 1 < i <

n n

n. As Ao € AP, Tt follows from [17, §4.4] that Y7, N = Ay and

dimX;L\: (be) = (pe, fte) — “5*. By Lemma 3.10,

dim X% (ba) = (pa, e — A3} — £(w),)

= (pe; tte) — (ps Am,n) — €(w,)

= <p.,u.> + nT_l - ﬁ(w)\.)

n—1
2 )

= <p0a ”°> -

where p is the half sum of positive roots of GL,. Thus f(w),) = n — 1.
Moreover, by () we see that €1(i) — exwq - w1(i) = a1i — A1y (i) = M
mod n for 1 < i< n. Sowy---w; €S, acts on {1,...,n} transitively as m
is coprime to n. This means that n — 1 < l(wg---wy) < l(wy,) =n—1 and
wgq - - -wq is a product of distinct simple reflections as desired. ]
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Lemma 3.12. Let \q € Azo.pb.. Let 1 <7 <d—1 andi € supp(w;). Then
)R (TN /\i> € Zso for T +1 <0< d.

Proof. By Lemma 3.11, i ¢ supp(w;) for 7+ 1 < I < d, and moreover, there
exists at most one integer 7 +1 < 7/ < ¢ (resp. 7+ 1 < 7”7 < ) such that
i — 1 € supp(w, ) (resp. i + 1 € supp(w;~)). Without loss of generality, we
assume such 7/, 7" exist. Therefore,
(i) for 7+ 1 < k < ¢ we have: (1) wg(i) # 4 if and only if £ = 7/ and
wr (i) <4 (2) wi(i+1) #i+1if and only if K = 7" and wrv (i +1) > i+ 1.
Using (i) and the equality from (x)

(0, Ap) = (@t L (5) — L (1)) — (Qhg — Qig1)

we deduce that

L

Z (a, )‘kl)c>

k=71+1
Ot (d) T A4l
- n
n Qi1 — Quilitl n Artlitl = QgL (i41)  Gr4li — Gr4li4l
n n n
>0,

where the inequality follows from that a,;41; —ar41,4+1 < n (by Lemma 3.9)

and that ar/ 1.4, ) = Q41 Q1 — Qi+l G4 1itl — Grrg L, (i41) >
0.

Proof of Proposition 3.5. By Lemma 3.7 we have )\i =ex, (Wr—1- - wg) THA2)
and Uy, =% (wr-1wa) ' T for q < k < d. By Lemma 3.6,
A Hy (AN X ¢ -+ X gt Ho AN K /K
= Ky, Y X - X Ky, 1NVK/K
= EAQKUt)‘Z X K wa_lKUt)‘ZHwa
X X (Wee - 'wa)ilKUt)\iwc—l cwe KK
= e\, Kpt™s x g wy 'Kyt o xg - x g w Kyt KK

Therefore, it suffices to show that for a < 7 < ¢—1 and i € supp(w;) we
have

SZ'KUt)‘bT+1 XK XK KUt)‘ch/K = KUt)‘bT+1 XK XK KUt)‘ZK/K.
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Set U; = U,,, U_; = U_,, and Ut = H0<a¢ai Uy for 1 <i<n-—1. Then
U = U;U' = U'U; and U’ is normalized by U; and U_;. As we can take
si = U (=1)U_;(1)U;(—1), the displayed equality above is equivalent to

U_i() Kyt X -+ xg Kpt K/K = Kyttt X -+ xg Kpt K/ K.

Define f, for 7 < ¢ < d such that f =1 and f, =t“f,_1/(1 + 2,f,-1)
with e, = (o, \?) for 7+ 1 < ¢ < ¢. We claim that

(i) for generic points (z741,...,2) € (Op)°" " we have 14 z,f,_1 € (’);
and f, € tZL:f+1ek(’)F COpforT+1<e<ec.

if « = 7 + 1, the claim is true by taking z;11 € Op \ {—1}. Suppose
it is true for ¢ — 1. Then f,_1 € tz;‘;lfﬂe’“(’)ﬁ C Op by Lemma 3.12. So
there exist generic points z, € O such that 1+ 2,f, 1 € (9; and hence
fi=tfi1/(1+2zf-1) € {2 k=41 € O} as desired. The claim (i) is proved.

Let (2r41,...,2:) € (O3)°"" be a generic point as in (i). Using (i) and
the commutator relation

z
1+ zf

Y1+ 2f)"* Ul ) for 1+ zf #0,

U_o(f)Ua(z) = Ual ﬁ

we deduce that

U—i(l)KUiUi(ZT+1)t>‘bf+1 XK - XK KU'iUz‘(Zc)t/\EK/K
C Kpt'+ g U_i(fri1) KuiUi(zr42) 42 X - x g KyiUi(2e)tV K /K

- KBt)‘i‘*'l XK XKKBt)‘ZK/K
= [(UtAbTJrl XK XK KUt)\ZK/K.

Therefore, KUt)‘iJrl X Xg K Ut)‘z K /K contains an open dense subset of
U_i(l)KUV‘L1 XK XK KUt’\'ZK/K as desired. O

3.4. The general case

Finally we consider the general case where po € Y¢ is an arbitrary dominant
cocharacter. The strategy is to reduce it to the minuscule case considered in
the previous subsection.

As G = Resg/pGLy,, there exist e € Z>4, a minuscule dominant cochar-
acter vy € Y and a sequence X of integers 1 = k) < -+ < kg < kgy1 =e+1
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such that p, = vg, +---+vg, -1 for 1 <7< d. Let pry : G° — G be the
projection given by (g1,...,9e) > (gk,,- - -, 9r,). By abuse of notation, we
still denote by b, the element (1,...,1,b) in G¢(F) and by o, the Frobenius
of G¢ given by (g1,...,9¢) — (92,---,9e,0(g1)). Then there is a Cartesian
square

X, (be) —— G(F) x g Cr,,

lprE Jid X gm3,

Upe<pie X (be) —— G(F) x ¢ G,
where m? : Gr,, — Gr,,, is the partial convolution map given by

(91,1 9e=1,9eK) = (Gky =+ Gha—1s -+ s Gk y *** Ghu—1>ky - 9 I);

the top horizontal map is given by

(glK7 .. 7g€K) = (917 91_1.927 cee 796_31965 gglba(gl)K)v
the bottom horizontal map is given by

(MK, ...,hgK) > (h1,hi hay ... byt by, hytbo(he) K).

For a dominant cocharacter e € Y¢ we denote by mv’ the multiplicity
with which VG appears in VG Here we view each G°- crystal as a G-

crystal via the embedding Gd < G° given by (hi,...,hq) — (hgk2 kl), cee
hglkd+1*kd)).

Proposition 3.13. We have

o \LT'P X, (be)| = D mily

Ne<[le

Jp \Ir*P X, (be)-

As a consequence, |Jp, \Irr'P X, (b, )| = dim VEd (Aq ().

Proof. The first statement follows similarly as Corollary 1.6. To show the
second one, we argue by induction on |ue|. If pe minuscule, it is proved in
Theorem 3.3. Suppose it is true for |ne| < |ue|. By the choice of v, we have
mipe = 1. Therefore,

o \Lr P X, (ba)| = Y mil:

e S#o

Jp \IT* P X, (b))
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= [Jp \Lr'P X, (be) | 4 ) mlls dim Vi, (A (b))

Ne<[le
= dim V,, (Ag (b))
= Z mz: dim V;, (Ag (b)),
Ne<He

where the second equality follows from the induction hypothesis, and the
last equality follows again from Theorem 3.3 as v, is minuscule. Therefore,
we have [Jp, \Irt*P X, (be)| = dim V},, (A (b)) as desired. O

Similar to the definition of ® in Theorem 0.7, let ®x; : Biﬁ — l_ln.IB%né.d
denote the map given by
((51,...,56) — (5k1 (=) "'®5k2717--'76kd (SRS ®5kd+171)'
Proof of Theorem 3.1. Let C € Irr*? X, (by). By Theorem 3.3 and Propo-
sition 3.13, there exists o € Agipb. such that & € BS (\g(b)) and C =

pry (X5 (ba)). Wiite &0 = (&1,....&), & = beou(&) = (€., &]) and
& = (€,...,€). Define

d

FEHC) = @5(8) = (71, -+, 7a) € UnBE (A (D)),

where v, = 512’7 & ®§ZT+1_1 € BC = l_IWIB%né for 1 <7 <d.
Let Ae = pry;(&) € Y. Then (I4* K9/K%) N C is open dense in C. So

(057)71(C) = pre((6g) "L (X5 (b)) € 17,

which means (by the proof of Lemma 2.10) that, for each 1 < 7 < d,

H(C) = Hy_ (&) Hy.,,—1(&),

where H,(C') and H(&,) are defined in §2.3 and §3.2 respectively. Thus for
1<a<e<d,

t= 2 Hy (C)N X ¢ -+ Xt H(CWMNK /K

T _ T
= m3 (t8 Hy, (€)% X +oo xc £ Hy |y (&)t en K/K)

= m%.(e,\aKUtgza XK XK KUtgzcﬂ’lK/K)

=€), 9y, X+ XSy,
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where the first equality follows from that A, = & and Al = ¢ | for
1 < 7 < d; the second equality follows from Proposition 3.5. In particular,
we have

t=> H (OWNEK/K =€) S,
by taking a = ¢ = 7. On the other hand, as C' C X, (bs) it follows that

N H(O) M K/K C Gr5,.

Thus, v, € IB%ET and hence v%*(C) € ]B%fid (Ag(b)). Now the first statement of
Theorem 3.1 follows by taking a =1 and ¢ = d.

As b, is superbasic, Jp, = (29NJ,,)(19NJs, ). By Lemma 2.3 and Lemma
2.5, the map C' — 7Gd(C) defined in the previous paragraph induces a map

T\ P X, (be) = BE (g (D).

Then we have the following commutative diagram

Ge

IrrX,,, (be) ——— ng (Ac(b))

PTEJ l@z
Gd

Ln, Irr X, (b) —— Un, BnGd (Ag (b))

As 79" is bijective and mf; = 1, the map J,, \Irt*P X, (bs) 7, ]B%ﬁd (Aa ()

is surjective and hence bijective by Proposition 3.13. O
4. Proof of Theorem 0.5 and 0.7

4.1. Irreducible components of SZLVT]

Let P = MN and b € M(F) be as in §2.1. For u € Y+ we denote by I, ps
the set of M-dominant cocharacters n such that

Sy, = N(F)t"K/K NG, # 0.

Define I,u,,b,M = {77 el M) = HM(b) S 7T1(M)U}.
Proposition 4.1 ([8, Proposition 5.4.2]). Let n € I, n, then

dim S, < (o, +m) — 2{par, ).
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Moreover, let Eﬁfn be the set of irreducible components of Sﬁ{n with the max-
imal possible dimension (p, u+n) — 2{pam,n). Then |E/]1Vﬂ7’ equals the multi-

plicity with which 153717\7 appears in Bf.

For n € I, ar recall that 9,]7\7 . N(F) — Grp is the map given by n —
nt"Kp. Let ZN € IrrS’fX77 and g = ht"h' € Ky t"Ky, with h,h' € Ky;. We
define

O) 1 (ZN) x g = h(6)) " (ZN)h g € P(F);
ZN % (gKm) = (0, (Z") x g)Kp/Kp C Grp,

which do not depend on the choices of h, h’ € K since the connected group
Ky NtTK it fixes S lﬂv , and hence fixes each of its irreducible components,
by left multiplication. For DM C K"Ky we set

(65)"H(ZY) % DM = Ugepu (6;)H(ZN) % g;
ZN % (DMK /Ky) = Ugepn ZN % (9K ).
Notice that ZN « (DM Ky /Kyr) = ((0))1(ZY) « DM)Kp/Kp.

Lemma 4.2. Let ZN € Ir]rS/])C7 and g € Kyt"Kyr. Then we have

(1) h((6Y)"1(2ZN) % g) = (BY)"1(2N) % (hg) for h € K
(2) u((@év)*l(ZN) *g) = (9,]7V)*1(ZN) xg forue Ky.

Proof. The first statement follows by definition. The second one follows from
that Ky Z = ZV since Ky fixes Sﬁ{n and hence fixes each of its irreducible
components by left multiplication. O

4.2. Iwasawa decomposition of X, (b)
Notice that the natural projection P = M N — M induces a map
ﬂ : Xu(b) — GI"G = Gl“p — GI"M.

Let n € I, n and let Xé\/[ (b) be the affine Deligne-Lusztig variety defined
for M. For ZV € IrrSY, and CM C XM (b) we define

X2V (b) = {gKp € 7HCM); g7 bo(g)Kp € ZV % G 5} € Grp,
where Gr;M = Kpt"Kyr /K. Notice that the natural projection

N o )
Z7 % Gry = Gry gy
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is a fiber bundle with fibers isomorphic to ZV.

Proposition 4.3. Let CM C XT]]V[(b) be locally closed and irreducible. Then

(1) B~HCM) = Ugnemsy, Xii 7 (b);

(2) dim XfN’CM(b) < dim X, (b), where the equality holds if and only if
dim CM = dim X}/ (b) and ZV € £,

(8) N(F) N Jy acts transitively on IerEN’CM(b);

(4) XfN’CM(b) is irreducible if M is the centralizer of vp;

AP ((\4bo(\) _ (gNY=1( 7N XM (M bo (A

(5) t—*H (C’N)t M()—(Hn) (ZN) s (t A HM (CM)he(N)

if C eTrrX/ " (b) and CM € e X, for some A€ Y.

Here X#’M(b) = IMt)‘KM/KMﬁXéV[(b), and HM(CM) is define in §2.1
forG=M.

Proof. Let mK s € Xf]\/[(b). By definition,
B mKy) = {mnKp;n *m bo(m)o(n)Kp € S;JXn * (b K ) }-

So (1) follows. Moreover, as vy (b) = vg(b) is dominant, it follows from [8,
Proposition 5.3.2] that

dim(X7"CY (b) N B~ H(mE ) = dim 2N — (2p,m).
Therefore, by Proposition 4.1 we have
dim X 7" (b) = dim CM + dim Z~ — 2(p, )
< {pm,m) — %defM(b) + {ps o +m) — 2(prr,m) — 2(pN, M)
= (p, ) — {pn,m) — %defc(b)
= (.~ vt () — et (0
= dim X, (b),

where the equality holds if and only if dim C* = dim X/ (b) and ZV € £ .
So (2) follows.

The statement (3) follows similarly as [17, Proposition 5.6] which deals
with the minuscule case. Notice that for minuscule  the sets .S j)’ n=KnNt"K/K
and N(F)Nt "KtHK =t (Hév)_l(SlJXn)t" are irreducible. For general case
we only needs to replace N(F) Nt "Kt*K in [17, Claim 1 on page 1630]
with the irreducible set t*"(é?f]v)*l(ZN)t" for ZN € IrrS}Xn.
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v

The statement (4) follows from (3) and that N(F')NJ, = {1}.
It follows by definition that

t_)\HP(XZN’CM (b))tba()\) — (97J7\7)—1(ZN) % (t_)‘HM(CM)th()\)).

By (3), all the irreducible components of X ZM.CM (b) are conjugate under
N(F)NJy. Thus HP(C) = HP(XZ"CY (b)) for C € TrrXZ™-CY (b), and (5)
follows. O

Corollary 4.4. The map
(ZN, CM) 5 M X7 (0) = (P(F) N J)Iee X7 (b)
induces a bijection
(P(F) N Ip)\Irr* P X, (b) = Uper,, BN, % (T\Ir'P XM (b)),

As a consequence, |J\Irt*P X, (b)| < dim V,,(Ac(b)).
Proof. The bijection follows from Proposition 4.3 (1), (2), (3). Choose P =

o

M N such that b is superbasic in M (F'). Then

T\ P X, ()] < |(P(E) N I\ P X, (b)]
= 3 ) I XY ()

WGI[A,,b,M

= > [EN I dim VY (A (b))
NEl b, m

= dim V,,(Ap (b))
= dim V,,(A¢(0)),

where the second equality follows from Proposition 3.13 dealing with the
subperbasic case, and the last one follows from that \,,(b) = Az (D). O

4.3. The numerical identity

In this subsection we prove the numerical version of Theorem 0.5.

Proposition 4.5. We have |J,\Irr*P X, (b)| = dim V(A (b)) if p is minus-
cule and b is basic.

The proof is given in §5.
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Lemma 4.6. If G is simple, adjoint and has some nonzero minuscule
cocharacter, then each irreducible G-module appears in some tensor prod-
uct of irreducible G-modules with minuscule highest weights.

Proof. Let p € Y. By the assumption on G, there exists a dominant and
minuscule cocharacter e € Y¢ for some d € Zs1 such that u < |ue| and

hence Gr, € my,, (Gr,,). By Theorem 1.5 (2), VMG appears in VMG. as desired.
Il

Remark 4.7. The condition in Lemma 4.6 is equivalent to that G is simple,
adjoint, and any/some of its absolute factors is of classical type or Eg type
or E7 type.

Proposition 4.8. We have [J,\Irr*P X, (b)| = dim V,,(Ag (b)) if b is basic.
First we reduce Proposition 4.8 to the adjoint case.
Lemma 4.9. Proposition 4.8 is true for G if it is true for G = Gaq.

Proof. Choose w € 71(G) such that X,(b)* := X,(b) N Gr* # 0, where Gr*
is the corresponding connected component of Gr. By [3, Corollary 2.4.2] and
[17, Proposition 3.1], the natural projection G — G,q induces a universal
homeomorphism X, (b) 5 X fiaq (Dad )1, where [1aq, byq and wyq denote the
images of i, b and w respectively under the natural projection G — G,q. Let
Iy, Jp. be the kernels of the natural projections J, — m1(G), Jp,, = 71(Gaq)
respectively. Notice that X, (b) = (2N Jp) X, (b)* as b € 2 is basic. By
Corollary 4.4,
dim V(A (b)) > [T\ P X, ()] = [T\ P X, (b)“]

> 00, P X ()] = 0, \T P X, ()|
=dimV),,(Ag,, (bad)) = dim Vy,(Ac (b)),

where the second last equality follows by assumption. O

Proof of Proposition 4.8 by assuming Proposition 4.5. By Lemma 4.9, we
can assume G is adjoint and simple. If the coweight lattice equals the coroot
lattice, then b is unramified and the statement is proved in [53, Theorem
4.4.14]. So we will assume G has a nonzero minuscule coweight. By Lemma
4.6, there exists a minuscule and dominant cocharacter pe € Y% for some

d € Z>1 such that ]B%f appears in Bﬁ, that is, mb, # 0. By Proposition 4.5,

dim V. (A (b)) = 115, \In*P X ., (bs)|
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= Z my, | Jp\Irr X, (b)|

v |
< Y mp, dmvEQL0)
U< ||
= dim V& (Ag(b)).
where the second equality follows from Corollary 1.6, and the inequality

follows from Corollary 4.4. Thus [J,\Irr X, (b)| = dim V,(A(D)) if mj,, #
0. O

Theorem 4.10. We have |J,\Irr*™P X, (b)| = dim V,,(Ag(b)). In particular,
(P(F) N Jp)\Irr*P X, (b) = Jp\Trr'°P X, (b).
Proof. By Corollary 4.4 we have

[(P(F) NI\ P X, (0) = D[S0, 1T\ P X)) ()]
UISTPRNYS

= Y = dim VM (A (0)
nEI;A,,b,M

= dim V,.(A¢ (b)),

where the second equality follows from Proposition 4.8 since b is basic in

9

M (F). Now the first statement follows by taking M to be the centralizer of
v (b), in which case P(F)NJ, = JM = Jj. The second statement follows from

the equality |(P(F) N Jp)\Irr*P X, (b)| = dim V,,(Ag (b)) = |[Tp\Irr*P X, (b)].
0

4.4. Decomposition of MV-cycles

Notice that each @—crystal restricts to an M- -crystal. For § € Bf we denote
by S é\/[ the corresponding Mirkovié-Vilonen cycle in Gryy.

Lemma 4.11. Let § € Bf and let n € I, pr such that 6 lies in a highest

weight M—crystal isomorphic to IB%{;A/[. Then there exists a unique irreducible
component Zév € Efxn such that

S5 = ZN SV

Here we view Sé\/[ as its open dense subset lying in Grf%M.
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Proof. Let x € I, - Let ZN € E!JXX and £ € IB%;M\()\) for some A € Y. Then
ZN « Sg/[ C S* is irreducible as the natural projection ZV Sé\/[ — Sé\/[ isa

fiber bundle with fibers isomorphic to ZV. Moreover,

dim ZV # S = dim Z" + dim S
= (p, 1+ x) — 2{par, X) + (par, X + A)
= (p,+A) + (pn,x — A)
= (p,n+A)
= dim(S* N Gry,),

where the fourth equality follows from that x — A € Z®},. Therefore,

Z % S} € Irr(S7 1 Gry,) = MV, (A) = BS(A).

Hence the map (ZV,¢) — ZN % Sé‘/[ gives an embedding
N M ~ G
Uy (=N < BM) < MV, =B,

which is bijective since |ZLV X

By[ = ]Bﬁ by Proposition 4.1. Thus
there exist unique x € I, ¢ € BM and Zév € ZfXK such that S5 =

zN *Sé\/[. It remains to show ¢ = & € B}, that is, 7p(Ss5) = S with
wp : Grp — Grjs the natural projection. In view of the construction of MV
cycles using Littelmann’s path model [53, Proposition 3.3.12 & 3.3.15], it
suffices to consider the case where p is a quasi-minuscule cocharacter of G.
Then the statement follows from the explicit construction in [53, §3.2.5 &
Definition 3.3.6]. O

4.5. Proof of Theorem 0.5

Take P = MN such that b is superbasic in M(F). Let C € Trr*P X, (b). By

Corollary 4.4, there exist n € I,y and A € Y such that C' C XEN’CA’M(I))
for some (ZN,CMM) e £ x Irr X, such that CAM Irr X (b). In
particular, (N(EF)Iyt*K/K) N C is open dense in C. Let yM(CMM) e

B%(AM(b)) be as in Theorem 3.1 such that

tNHM(CANM) o Ky, Ky = e%S%(W) C Gryy.
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By Lemma 4.11, there exists v(C) € B,(A(b)) such that

ZN * S,A;,\j[v[(cx,M) = S’Y(C)'

By Proposition 4.3 (5),

tAHP () NK K = ZN x 1Sy ey = €4 ZN S grary = € Sy (o).

So the first statement follows.
Let C' € Irr*™P X, (b) be a conjugate of C under J,. By Theorem 4.10, C

v

and C are conjugate under P(F') N Jp, which, combined with Corollary 4.4,
implies that C’ C XfN’CAI'M(b) for some N € Y and CV'M ¢ Ierf,‘/’M(b)
such that CAM and CY-M are conjugate by Ji. By Theorem 3.1, we have

yM(CNAM) = 4M(CA)

and hence v(C”") = v(C). So v is invariant on the J,-orbits of Irr*P X, (b).

It remains to show ~ induces a bijection J,\Irr*? X, (b) = B, (A (b)). By
Theorem 4.10 it suffices to show it is surjective. Let 6 € B, (Ag(b)). Suppose
o€ 1837]7‘7 (Ag(b)) for some n € I, pr. It follows from Theorem 3.1 that there
exists CM ¢ IrrtOPXéW (b) such that

PM(CM) = 6 € BY (A ().

Let ¢ € Y and CPM e XM (b) such that C&M = CM | Let zZy e i,
be as in Lemma 4.11 such that S5 = Z « SM. By the construction in the

previous paragraph, we have v(C) = § for any C € Ierfév’C(b‘M(b). So v is
surjective as desired.

4.6. Proof of Theorem 0.7

Let C € Irr*P X, (by) and C’ € Irr*P X, (b) for some p € YT such that C7 =
pr(C). One should not confuse with the notation in the previous subsection.
Assume y* (C) =9 = (711,---,74) € IB%S’?. By Corollary 1.6, it suffices to
show that

YO =1 ® - Q4.
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It follows from Corollary 4.4 that there exist ZN* = (ZV,--- 2 e Eﬁ[jn-

and CA-M* ¢ Ier,?‘:’Md (be) for some ne € I, pya and Ao € Y such that
Cre:M* ¢ Irrme%d (be) and

Nd7cx.,1v1dr

(i) CC X (ba).-

Let 2" = (fod)’l(vad) = (2V,---,Z). By (i) and Proposition 4.3

(ii) t—e P (C)tb.a.(A.) = ZN? % (t—A.HMd (C)\.,Md)tb.a.(k.)).
Set Ao = (A1, -+, M), AL = beoe(Ae) = (AL, ..., A]) and

HP'(C) = Hi(C) x -+ x Hy(C);
HMY(CAMYY = Hy (O M) x -+ x Hy(CH M7,

Applying Theorem 0.5 (for C and C*+-M* respectively) and Lemma 4.11 we
have

MGG = t= A HPU(CWM KA/ K = ZN* x (-2 HM (CA M)A ) K/ Jed

P
= e\ ZN « S

In particular, for 1 < 7 < d we have

(iii) S, = () TZN « (A H (COMYPK K = ZN + SM.

Let A = pr(Ae) = A1. As C7 = pr(C) C Gr, we see that N(F)It*K/KNC’
is open dense in C’. By Theorem 0.5,

ex Sy(c)
=t HP(C"t*MK/K
= t=MH (C)M - =M Hy(C) K| K
= (2] # (=M H (CAMYE)) - (Z)) % (72 Hy(CAo M) P0)) K K
= m(ZY # (M H (COM YN ) x g+ X g (2 5 (E20 Hg(CroM)120)) K/K)

= m(eM(Z) + SMYx-- " (Z) « SM))

= e%m(&y X oo XSy,)
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_ Mg ... a
- 6)\18’71 *"'*S’Yd

_ Mo
=€) S’Yl@"'@’Y(J’

where m : G(F) X - -+ X g G(F) x g Gr — Gr is the usual convolution map;
the second equality follows from Lemma 2.10; the third one follows from (ii)
and that Al = (\l,... )ALy = (Mg, ..., A, b (A1)); the fifth one follows from
Lemma 4.2, Theorem 3.1 and (iii). So y(C') =71 ® - -+ ® 4 as desired.

5. Proof of Proposition 4.5

We keep the notations in §1. Let i € Y™ be minuscule, and let b € G(ﬁ‘) be
basic which is a lift of an element in €. To prove Proposition 4.5, we assume
by Lemma 4.9 that G is simple and adjoint. Then o acts transitively on the
connected components of (the Dynkin diagram of) Sy. Let d be the number
of connected components of Sy.

For simplicity, we also denote by w € W NJ, = {z € W;bo(z)b~! =z}
some lift of @ in Np(F) that lies in J.

5.1. Orthogonal subset of roots

We say a subset D C ® is strongly orthogonal if '+ ¢ ® for any 8,3 € D.
In particular, if D is strongly orthogonal, then it is orthogonal, that is,
(B',8Y) =0 for any 3 # ' € D.

Let a € ®. Set O, = {a';i € Z} and Oz = {a';i € Z}, where o' and &
are as in §2.2. Let Wp_ be the parabolic subgroup of W generated by s i for

8 € O. Recall that II is the set of minus simple roots and highest roots of
.

Lemma 5.1. Let o € II such that We, is finite. Let W, be the longest
element of Wo.. Then Wo. NJy, = {1,W} and one of the following cases
occurs:

(1) {a®,aV) = —1, |Ou| = 2d, Oy e is strongly orthogonal (as|Oaqaa| =
d) and wa - ngoa_'_ad Sé;

(2) Oq is strongly orthogonal and hence Wa = [[5cp, Sg-

In particular, any affine reflection of W N Jy is equal to Hceoa s¢ for
some a = (v,k) € ® x Z = & such that O, is strongly orthogonal.
Proof. The first statement follows from a case-by-case analysis. The “In par-

ticular” part follows by noticing that each reflection of W N J is conjugate
to some W, as in the first statement. O
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5.2. Characterization of A;CEE

Let A € Y. Let X)(b) = INK/K 0 X,u(b), Aup = AGy, AP = AP an
R(\) = RLOP()\) be as in §2.2. By Proposition 2.9, A € A,; if and only if
M = —X+bo()) is conjugate to p by Wy.

Let V =Y ®z R and VP9 = {4 € V;p(bo)(v) = v}. Define

VEbo) — £ e VPO (4 1) = 0 & (a, VPP?)) = 0, Vo € B},

gen

which is open dense in Vr(o) Notice that Vg%(fg) NY # (. Let M, DO T be
the Levi subgroup with root system {a € ®; (a, VP(9)) = 0}. By definition,

for any v € Vg%(n ?) the centralizer M, (see §1.3) of v in G coincides with Mp,.

Fix v € Vg%(fa) NY. Denote by v the unique dominant Wy-conjugate

of v. Let z be the minimal element of Wy such that z(v) = v. Let N, =
[Toca;avy>0 Ua- Set M = My = *M, = M, and by = zbo(z)~1. By [14,

Lemma 3.1], by is a lift of some element in 7, and is superbasic in M (F).

Lemma 5.2. Let A€ A, and a € & — ®y,. Then O, N O_y =0 and

RO (0aU0- ) < 5 3 (8.9,

BEO.

where the equality holds if and only if either A\g = 0 for B € Oy or Ag <
for B € Og.

Proof. As p is minuscule, it follows from Proposition 2.9 and Lemma 2.7 (1)
that A" is minuscule and that

(i) A1 = Ay = (7, A% € {0,£1} for v € ®.

By assumption, we have (o, v) # 0 and hence O, N O_, = 0. By symmetry,
we may assume A, > 0 and there exist integers

0=by<c1<by < < <b =0,
such that for 1 < k < r we have
Aai <Oforbp 1 +1<i<cpand Ay =20 forcp +1 < j < b
It follows from (i) that

(ii) if by_1 < ¢, then )\abk_lJrl = dger = —1 and Ayep+1 = )‘abk‘—l =0.
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If b1 < ¢ for some 1 < k < r, we have

[R(A) N {£a’; by +1< i <
= |[R(\) N {—a’;bp—1 +1 <i < o}
= [{br—1+1<i<epAgior >
= {br—1+ 1< i< s dagi-t < =1, Agim1 — Agi = 1}

= b1 +1<i< gy dgi-t — A =1} — 1

2
i=br_1+1
11 &
_ _ .= (N
- + 9 ' Z ‘<Oé a)‘ >|>
i=bi_1+1

where the first equality follows from that A,: < 0 and hence o' ¢ R())
for by_1 +1 < i < ¢; the third one follows from that A_, = —1 — A, for
v € ®; the fourth one follows from that Api < —1 for b1 +1 < @ < ¢
but 1+ A s 141 = Apy = 0 by (ii); the fifth one follows from (i) and
the equality > 5%, | Aai-t — Aai = Agrecr — Aaer = 1 by (ii); the last one
follows from (i).

Similarly, for 1 < k < 7,

|R(A )ﬂ{:l:oz o+ 1 <i< b}
P

|{ck+1 bk,)\ 17)\06 — Oci’I = ]_}|
C\Hat+1<i< bk, Aai ~Awist =1} — 1, otherwise
br ; )
_ 5 Zz a1 [(a, A%)], if b1 = ¢4,
-l- ZZ il [(a®, \F)|,  otherwise.

where the second equality follows from that A\,: > 0 for ¢ +1 < ¢ < b, and
that Ager = 0 if and only if by_1 = ¢p.
Therefore,

1
[BA) N (O UO-a)l < 5 > B AR,
BEO.

where the equality holds if and only if b1 = ¢ for 1 < k < r, that is,
Ag = 0 for B € O,. The proof is finished. O
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Lemma 5.3. Let a € II (see §1.2). Then W, is infinite if and only if
O, =1I. Moreover, in this case, My = G.

Proof. 1t follows from a case-by-case analysis on the Dynkin diagram of
So. O

For n € Y let 7™ be the unique Wjs-conjugate of n which is M-
dominant.

Lemma 5.4. For A € A, the map o — z(«) gives a bijection R(A\)N®yy, =
R%)\h) bM( 2(N)). As a consequence, |[R(A) NPy, | < dlmXZ(/\h)(bM). Here the

subset R 208) bar (2(N\)) C @y is defined in §2.2 for G = M, b = by, and
= z(\%).
Proof. Since z(@&b) = &}, we have Aq = 2()) () for a € ®yy,. Hence the

first statement follows. The second statement follows from Proposition 2.9

that |RM,, , (2(\))] —dunX(()\h)) (bar). O

Corollary 5.5. Let A € A,;. Then \ € AtOp if and only if (1) z(\) €
A%;f)f’b and (2) for each a € ® — Dy, ezther Ag = 0 for B € O or
Mg < =1 for B € On. Here Az()\h) by U5 defined in §5.2 for G = M, b = by,

and p = z()\“)M

z(AB),b

Proof. As A is conjugate to u, we have
1
aE‘bLUUCDNU
Therefore,
dile;\(b) = |R(\)|
= |R(A) N @py, |+ [R(A) N (D — Py )|
= |RA) N @y | + Z IR(\) N £O)|

< |R(N) m@MbH > e, A%

a€<I>N,
= [RO\) N ®ag| + (o, N) — (par, 200 )

. —M
< dim X2 (bar) + (p, 1) — (par, () )
= dim X, (b),
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where O ranges over p(bo)-orbits of @, and moreover, by Lemma 5.2 and
Lemma 5.4 the equality holds if and only if the conditions (1) and (2) hold.
The proof is finished. ]

5.3. The action of W, N Jp on IrrX,,(b)

Notice that Jp is generated by I NJp, QN J, and Wp, NJp for a € I1. In this
subsection we study the action of Wp_ N J, on Irr X, (b). Assume that We,
is finite and let w, be the longest element of W, .

Lemma 5.6. Let o, Wy be as in §5.3. Then {Ag; f € On} = {—wWa(N)g; 8 €
On} for XeY.

Proof. Recall that Ag = —(X) for 5 € ®. The statement follows by noticing
that W, sends O to —O4. O

Lemma 5.7. Let o, W, be as in §5.5. Let A € Y such that either A\g > 1
for B € Oy or \g < —1 for B € On. For v € ® with A, > 0 we have

Wa () p(ina)(y) = 0. If, moreover, X € Ay p, then p(a)R(N) = R(Wa (X))

Proof. We argue by contradiction. Set @ = w,, A = w(\) and 7/ = p(0) (7).
Suppose A, > 0 but X, <0, that is,

(i) (7, A) =0, and v < 0 if (y,\) = 0;

(i) (/,N) <0, and v > 0if (/,\) =0.

By assumption and Lemma 5.1, we have

(i) Ag =2 1 or A\g < —1if § € ® is a sum of roots in O,.

Case(1): (a?,a") # —1. Then O, is orthogonal and @ = 1, = [sco. 55
So N = w(A) = p(W)(A — D sco.ne+ BY) and hence (y,N) = (v, A —
> pepna+ BY), where B = {8 € Oq; (v,8Y) # 0}. If E C @7, then (7, X) =
(7,A). By (i) and (ii) this implies that 4/ > 0, v < 0 and (y,\) = 0. As
E consists of minus simple roots and 7' = p(w)(y) = ([[5cx 55)(7), we de-
duce that 7 is a sum of roots in F, contradicting (iii) since A, = 0. Thus
E contains a unique highest root 6 of ®* and (7', \) = (y,A — V). By
(i), (ii) and that (v,0Y) # 0, we have (7,0Y) > 1. If vy = 6 € O,, then
7 = —6 < 0 (since O, is orthogonal). As Ay > 0 and v € O,, by (iii) we
have (A,7) = Ay +12>2.So X, = (7,A) =2 > 2 —2 =0, which is a contra-
diction. So v # +6 and hence (7,60") = 1 (since 0 is a long root). By (i) and
(ii) we have 0 < (v,A) < 1. If (v, A) = 1, then v = ([[ e p_ggy 58)(v—0) > 0
by (ii). Asy—0 € &, v—0 is a sum of roots in F — {6}, contradicting that
O is strongly orthogonal by Lemma 5.1 (2). So (7,A) = 0 and hence v < 0
by (i). In particular, (y,6") < 0 as 6" is dominant, which contradicts that

(v,60Y) = 1.
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Case(2): (ad,a") = —1. Let £ = a + a?. Then |O¢| = d and @ = W, =
[Iseo, 55 by Lemma 5.1. So X' = w(A) = p(@0)(A = gep,ne+ B*) and hence
(Vs N) = (VA = Y pepres BY), where E = {8 € O; (7,/Bv> # 0}. Notice
that F consists of at most one element. If E = (), then v =~ and (7, \) =
{7, \), contradicting (i) and (ii). So E = {£%} for some 1 < ig < d. If £ < 0,
then o', a’*? are both minus simple roots and (', X') = (v, A). By (i) and
(ii) we have o/ > 0, v < 0 and (v, A) = 0. As 7' = s¢i0 (V) = Saio Saio+aSaio (7),
we deduce that v is a sum of roots in {a, a’+?}, contradicting (iii). So £ >
0 and (7, \) = (7, A\— (£)Y). Moreover, as £ = a% 4 a+? exactly one of
{a, oot} is a positive highest root. By symmetry, we can assume a® < 0
and ofot? > 0. By (ii) and that (v, (¢%)V) # 0 we have (v, (£€°)V) > 1. If
v =&, then 7/ = —&% < 0. By (iii) we have (\,7) = A, + 1 > 2 and hence
Ay = (7,A) =2 > 2—2 = 0, which is a contradiction. So v # +¢% and
(7, (€)Y) =1 (since &% is a long root), which means 7' = sgi, () =7 — £™.
By (i) and (ii) we have 0 < (y,A) < 1. If (y,\) = 1, then (y/,\) =
and hence 0 < 7' = 7 — & = (y — afTd) — ¥ < —a’ by (ii), where the
last inequality follows from that a’+? is a positive highest root. As —a;,
is a simple root, we deduce that v/ = —a® and hence v = a®t¢ € O,
contradicting (iii) since Ay = 0. So (7, A) = 0 and hence v < 0 by (i), which
together with the equality 4/ = v — &% € & implies that 0 < 4/ + afot? =
v —a < —a%. So vy —a =0, that is, v = a’ € O,, which contradicts
(iii) since A, = 0. The first statement is proved.

Let v € R(\), that is, (y,A!) = —1 and A,—1 > 0. By Lemma 2.7 and
the first statement of the lemma we have

(p(@)(7), W(N)*) = (p(W)(7), p(W) (A1) = (7, ) = —

and W(A)p(@)(y)-1+ = D(N)pi)(y-1) = 0, that is, p(w)(y) € R(1w(A)) and hence
p(W)R(A) C R(w(N)). By symmetry (see Lemma 5.6), we have p(w)R(\) =
R(w(A)). The second statement follows. O

Lemma 5.8. Let o, W, be as in §5.3. For \ € Amp we have

(1) either A\g = 0 for B € Oy or A\g < —1 forﬁ € Oq;

(2) if X # wa(N) € .ALOIE’, then either A\g > 1 for B € Oy, or \g < —1 for
B € Oy;

(3) if N € Wo,(\) N A, then X = X or N = @a()).

Proof. The first statement follows from Lemma 5.3 and Corollary 5.5 (2).
Suppose A # s () € A;OE. By Lemma 5.6 we have

{)\B;ﬁ € Oa} = {_wa()‘)ﬁ;ﬁ € Oa}a
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which, together with (1), implies that either Ag = 0 for 3 € O, or A\g > 1
for B € O or A\g < —1 for f € On. By Lemma 1.3 (2), the first case implies
that A = w4 (), contradicting our assumption. So the statement (2) follows.

Suppose X' € Wo, (A) N ALO’bp. By (1) and the equality x3 = —f(x) for
B € ®and xy €Y, we see that A and N are contained in the union of

{y € Ya; By) <0,8 € Oy} and {y € Yi; B(y) > 0,5 € Oa},

which are the closed anti-dominant Weyl chamber and the open dominant
Weyl chamber for We. respectively. Therefore, as X' € Wp. (), we see
that A = X" if they are both dominant or both anti-dominant for W, and
N = 14(N) otherwise. The statement (3) is proved. O

Corollary 5.9. Let o, W, be as in §5.3. For \ € .Afsz we have

(1) Wa X (b) = X(b ) if Ag =0 for some € Oq;

(2) wa X, (b) C X“’” '(b) if As < —1 for § € Oa.
Proof. Let X € Afﬁg such that Irr X ;L\ intersects Irr(wq X} (b)). By Lemma
1.1, N € Wo,(A). Thus A = X or X = w,(A) by Lemma 5.8 (3). If A3 =0
for some B € O,, then N = X\ by Lemma 5.8 (2). So the statement (1)

follows.
Suppose A\g < —1 for B € O4. Then SEt)‘ > t* for B € O,. Thus

(W) = L(y) + £(t)) and
W It K C T 'K = ItPV K.

So u]aXl;\(b) C X;f“()‘) (b) and the statement (2) follows. O

5.4. Equivalence relations on .Atob and LO,E('U)

For \,\ € AZOE, we write A ~ N if JyIrr X (b) = JpIrr X)) (b). Notice that

JbIer)‘(b) -is a single Jy-orbit of IrrX,(b) by Proposition 2.9.

Let v € Vg;;(l?a) NY. Let Amp( ) (resp. A, p(v)) denote the set of A € .ALOp
(resp. A € A, p) such that A, > 0 for « € ®y,. Here @y, = {a € @; (o, v) >
0} is the set of roots in N,,.

Lemma 5.10. Let \ € .AtOp Then \ ~ x for some x € Awp( ).

Proof. Let n € Z. By Lemma 1.1, t"" Tt'"K C Up<pr Itz K. Let xppn € Y
such that [tz K = [tX+ K for x < t*. Then tm’Ier/i‘(b) C Upep Irr X7 (b).
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Thus for sufficiently large n we have (xzn)a = 0 for z < t* and o € Dy,
So the statement follows. O

Lemma 5.11. Let \,\ € A:Zf such that A\ ~ X. Then there exists a
sequence X = Ao, M,..., A\ = N € Afsz such that A; = Wq,(Ni—1) and
R(N\;) = p(Wa,)R(Ni—1) for 1 < i < r, where Wy, € QN Jp or Wy, is the
longest element of Wo,, ~ for some a; € 11.

Proof. By assumption, there exist C' € Irr X /;\(b) and g € Jp such that gC C

X' (b). Since b € Q, Jp is generated by I'NJy, QNJ, and Wo, NJy for a € I
such that Wy, is finite. We may assume ¢ lies in one of the sets I NJy, 2NJ,
and Wo, NJp. If g € TN Jp, then A = X and there is nothing to prove. If
g = w for some w € QN Jy, then WIPK/K = I[t*MNK/K. Hence N = w())
and R(\') = p(w)R(A) by Lemma 2.8. Suppose g € Wo, NJp = {1,w,},
where W, is the unique longest element of Wp_. Then X equals A or wq ()
by Lemma 5.8 (3). So we can assume that A # X = w,(\) and it remains to
show R(N') = p(wa)R(N). The statement follows from Lemma 5.8 (2) and
Lemma 5.7. O

oo t t
Proposition 5.12. We have A;E = Uv,ep(WmJb)(v)AM?E(v’).

Proof. Let \ € AELOE. By Lemma 5.10, there exist v/ € p(W N Jy)(v) and
X € ALOE(U’) such that A ~ x. By Lemma 5.11, we can assume that y # \ =

w(y) € Alel))v where (1) w € QNJp or (2) W = W, for some « € 1T as in §5.3.
It suffices to show A € Aleb)(p(w)(v’)), that is, Apay(8) = W(X)p(a)(s) = 0 for
B € ®n,,. Notice that xg > 0 for 3 € ®x ,. Then the case (1) follows from
Lemma 1.3 (3), and the case (2) follows from Lemma 5.8 (2) and Lemma

5.7 as desired. O
5.5. The action of W N J, on V%

Notice that W N J, preserves the affine space V? = {v € V;bo(v) = v}.
Via the restriction to V% we can identify W N J, with an affine reflection
group of V% whose affine root hyperplanes are H, N V% for a € d* with
Vb £ H,NV £ (). Moreover, ANV is an alcove for W*NJ,, with respect
to which the simple affine reflections are the longest elements of Wy, for
a € II with W, finite. We fix a special point ¢’ in the closure of A NV
for We N J.
We recall a lemma on root systems.
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Lemma 5.13. Let E be some ecuclidean space and let ¥ C E be a root
system. Let vi,vy € E be two regular points for ¥ (that is, not contained
in any root hyperplane of ¥). Then there exists root hyperplanes Hy, ..., H,
separating vy from vy such that sg, -+ sg, (v1) and vy are in the same Weyl
chamber.

Lemma 5.14. Let €’ be as in §5.5. Let v € Vg’;ﬁ’”). Then for w € W N Jy
there exist affine root hyperplanes Hy, . .., H, of V¥ passing through e’ such
that

(1) H; separates €' +v from e’ + p(0)~(v) for 1 <i < r;

(2) € +v=-spg, sy (e+p@)1w)).

Moreover, sy, = Hﬁeoai 55 for some a; € ® such that O, is strongly
orthogonal.

Proof. First note that V?®?) is the underlining vector space of the affine
space V. As p(d) preserves VP(9) we see that v, p(w)~(v) € Vg%(r]fg).
Hence €’ + v, e’ + p(w)(v) are regular points for the root system associated
to WeNJ, with origin ¢’. By Lemma 5.13, there are affine root hyperplanes
Hy,...,H, of V% (passing through ¢’) separating ¢/ +v from €’ + p() ! (v)
such that sy, --- sy, (€' + p(w)~1(v)) and € + v are contained in the same
Weyl chamber of V% with origin ¢/. Suppose ¢ + v # sg, ---sm,. (e +
p(w)~Y(v)), that is, v # p(sy, -+ sy~ 1) (v) € Wy(v). Then there exists
a € ® whose root hyperplane H, separates v from p(sg, ---sg,w ') (v). In
particular, H, N V% is an affine root hyperplane for W¢ N J,. As € is a
special point for W N Jp, there exists some affine root hyperplane H of V%
passing through e’ which is parallel to H, N V. Then H separates ¢’ + v
from sg, ---sg. (' + p(w)~1(v)), contradicting our assumption. So we have
¢ +v=spy, sy (e+pw)t(v)) as desired.

Now we show the “Moreover” part. By Lemma 5.1, there exists a; =
(i, ki) € ®+ such that O,, is strongly orthogonal and sg, = Haeoai Sq by

viewing sg, as an element of W N Jp. Notice that ¢/ € H; = H,, N Vo
that is, a;(e’) = —(ay,€’) + k; = 0. As € lies in the closure of A, we have
[{vi, )| < 1, which together with the inclusion a; € ®+ implies that either
a; > 0and k; =1 or o; < 0 and k; = 0. In either case, a; = &; and the
proof is finished. O

5.6. Characterization of the equivalence relation

Let v, z, M, bys be as in §5.2. We give an explicit description of the equiv-

. t
alence relation ~ on Aﬂobp(v).
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Lemma 5.15. Let \,\ € .ALOE(U) such that X ~ X. Then N = y()\) for
some y € Qpg, N Jp.

Proof. First note that it suffices to find an element y € W N J, such that
p(y)(v) = v and X' = y(\). Indeed, the conditions p(y)(v) = v and y € Jp
imply that y € Wy, and y(V*) = V. Noticing that V% C Ay, (since
VP N A # (), we have y(Apy,) = Any, and hence y € Qyy,.

By Lemma 5.11, there is @ € W N J, such that A = @()\) and R(X) =
p(W)R(A). If p(w)(v) = v, the statement follows as in the above paragraph.
Suppose p(w)(v) # v. Let €/, H; and «; for 1 < i < r be as in Lemma
5.14. We construct xz; € W N J;, such that p(x;) = p(sg,) and z;(A) = X as
follows.

As H; separates €’ + v from e’ +p()~!(v), without loss of generality we
may assume that

(i, v) < 0 < (o, p(w0) " (v)) = (p() (), v).

Let o € O_,,. As v € VP®9) and that p(w) commutes with p(bo), we have

(p(w)(a),v) = (p(w)(—ay),v) < 0.

So —p(w)(«a) € ®y,. Moreover, as X' € A, ,(v), we have X" >0 and

p(w)(@)

/

/
Ap@) = TAplaye) 1S L

By definition, p(w)(a) ¢ R()\) and hence R(N) N p(w)O—,, = (). Therefore,
R(A)NO_y, =0 as R(N) = p(0)R(N).

We claim that Ag is invariant for 8 € O_,, C ®y,. Otherwise, there
exists € € O_,, such that (£, \) = A\e1 — A¢ # 0 (see Lemma 2.7). Since A
is minuscule and

STBA) = > A=A =0,

BEO ., BEO_q,

there exists v € O,a such that (y,A%) = A\,-+ — A, = —1. On the other
hand, we have A,-1 > 0 since A € AtOp(v) and v~ ! € O_,, C ®y,. So
~v € R(A), which contradlcts that R(\) ﬂ O_q, = 0. The claim is proved.
Let ¢; = \g = —A_g —1 € Z for § € O_,,, which is a constant by the
above claim. Let ¥; = 3 5c0, A0V = (—¢; — 1) > 5c0., §V and z; = tYisy,.
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Then p(x;) = p(sy,) and t¥ € W2 N J,. Moreover, by Lemma 1.3 (2) and
that O,, is orthogonal (see Lemma 5.14) we have

l’ H35 ¢z+)\_z)‘5év

0€0,, 0€0,,

Thus x; satisfies our requirements.

Let y = wxy - - 21 € W N Jp. Then it follows that y(A\) = w(\) = X and
p(y)(v) = p(W)p(sm,) - p(sm,)(v) = v as desired. O
Lemma 5.16. Let \ € Afﬁi)(v) and w € Qp, N Jy. Then W(X) € Apup.
Moreover, if W(X) € A, p(v), then w(\) € .Afzg(v) and X ~ W(\).

Proof. Let x = w(\). By Lemma 2.7, X% € W)y, (\*) and hence x € A,
by Proposition 2.9. As w € Qpy, N Jp, it follows the same way as Lemma
2.8 that p(w)(R(A\) N @y, ) = R(x) N ®pr,. Combining Proposition 2.9 with
Lemma 5.4 we have

(a) dim X205 (bar) = [R(x) N @, | = [R(N) N @ |
= dim X[y (bar) = dim Xy (bar),

where the third equality follows from Corollary 5.5 (1) by noticing that

A€ A;OE, and the last one follows from that z(x%), z(\") are conjugate by

W

Suppose x € A,p(v). Then xg > 0 and x_g = —xg — 1 < —1 for
B € ®p,, which together with (a) implies that x € Amp by Corollary 5.5.
For n € A, (v) we have —(8,7) = n_g > 0 for G <I>N = —®y,. Then

ItnK/K = IMbINUINﬂtnK/K = IMbINvtnK/K,

which implies that t"'[t"K/K C It""*"K/K for n € Zs. In particular,
" XX(b) € X"TX(b) and hence x ~ nv + x for n € Zsg. Choose n suffi-
ciently large so that wt"Iy,t™"™" C Iy, w. Then
W™ X, (b) C Wt I K/ K

= 0t Iy, IN KK

= Iy, (™ Iy "NV K K

C Iy, Iy, wt" K/ K

C It"™XK/K.

Therefore, ﬁ)t”“X/i‘(b) C X"*X(b) and hence A ~ nv+x ~ x as desired. [J
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Combining Lemma 5.15 with Lemma 5.16 we have

Corollary 5.17. Let \,\ € Afﬁbp(v). Then A ~ X if and only if N = w(\)
for some w € Qpr, N Jp.

5.7. End of the proof

Let v, z, M, by be as in §5.2. Recall that I, ps is the set of Wi -orbits of
Wo(p), and Iy, = {n € Luars sar(t7) = riar(bar)}. Let A5 (v) denote

the set of equivalence classes of AZOE(U) with respect to ~ defined in §5.4.

For n € I, p,, v let A%E’p = Agﬂljt’gi be defined in §5.2. Similarly we can

. . M 1M
define an equivalence relation ~j; on .,477 éf\fp, and denote by .,477 éf\fp the set

of corresponding equivalence classes. As by is superbasic in M (F'), we have
X ~m X € A%Z?p if and only if ¥/ = w(x) for some w € Q) QJ%.

9]

Proof of Proposition 4.5. We show that there are bijections
t v, Tt v TM 1t
Jb\II‘I‘ OpX;U«(b) — A/fji)(’l)) — unelu,blu,MAnybA?p’

where U1 and Wy are given by A +— JplrrX}(b) and A — z()) respectively.
Indeed, by Proposition 2.9 and Lemma 5.10 we see that ¥, is bijective.

Let A\ € .Az(jf(v). By Corollary 5.5, z(\) € .Ai\/([/’\tffbM and 2(\F) € I, 5,0
Moreover, by Lemma 2.7 and Corollary 5.17 we deduce that

A~ X € AP (0) & 2(0) ~ar 2(X) € AT,

So Wy is well defined. On the other hand, let x € A%I;thp with n € I, p,, M-

By Corollary 5.5 and 5.17, the map x — nv + z~1(x) with n > 0 induces
the inverse map of Wy. So W, is also bijective.
Therefore,

TN\ PX, (b)) = > [ANGP;

7,bm
nelu,bM,M

= > dm V(b))

ﬂelu,bM,M

= 3 dim VM (A (bar)

n€lum
= dim Vi, (Aps (bar))
= dim V(A (b)),
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where the second equality follows from [17, Theorem 1.5]; the fourth one
follows from that V,, = @,

M

VnM as p is minuscule. The proof is finished.
O

6. The stabilizer in J,

In this section, we give an algorithm to compute the stabilizer Ny, (C) of
C € Ir"™P X, (b) in Jp.

6.1. Reduction to the adjoint case

Let Gaq be the adjoint quotient of G. By [3, §2], the natural projection
f: G = G,q induces a Cartesian square

where the vertical maps are the natural projections; p.q and b,q are the
images of p and b under f respectively. In particular, the stabilizer Ny, (C)
can be computed from the stabilizer Nj, (Caq) of Cag = f(C) in Jp,, via
the following natural Cartesian square

f
Ny, (C) - NJbad (Cad)

| J

n—7r g

ad ?
where the vertical maps are the natural inclusions, and Jg is the kernel of

the natural projection J, — m1(G). Thus we can assume G is adjoint and
simple.

6.2. Reduction to the basic case

Now we show how to pass to the case where b is basic. Let P = M N and
B+ Xu(b) = Gras be as in §2.1 such that M is the centralizer of vg(b). In
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particular, Jp, = J{,\/[. Let n € I, pr such that X,J]V[(b) contains an open dense
subset of 3(C). Let

cM =p(C)NXM(b) € X (b).

By Proposition 4.3 (1) and (4), C = XEN’CM(b) for some ZV € fon. Note
that ijN’CM(b) = XEN’jCAI(b) for j € JM = Jj. So we have Ny, (C) =

6.3. Reduction to the minuscule case

Assume b is basic. If G has no nonzero minuscule cocharacters, then b is
unramified and Ny, (C) is determined in [53, Theorem 4.4.14]. Otherwise,
by Lemma, 4.6, there exists a dominant minuscule cocharacter po € Y for

some d € Zx1 such that IB%/? occurs in
G _ nG G
B, =B, ® - ®B,.

Let X, (bs) be as in §1.6. By Theorem 0.7, there exists C’ € Irr*™P X, (bs)
such that

pr(C’) = C C Gr,

~

and moreover, the map g — (g,...,g) gives an isomorphism Nj, (C) =

NJ]b. (C/)
6.4. Small cocharacters

In the rest of the section we assume that G = G,q is simple, e is minuscule
and b is basic. By abuse of notation, we write X, (b) for X,,, (bs) by assuming
that p is minuscule in the rest of this section. Then we can adopt the notation
in §5.

Let v € Vg%(n )AY. For D C ® we set D(v,+) ={a € D;{a,v) > 0}. We
say A € A’ bp is v-small if \ € Amp( ) (see §5.4) and for each « € II(v, +)
(see §1.2) there exists S € Oq such that \g = 0. We say v is permissible if
v-small cocharacters exist.

We say \ € Au is small if it is v-small for some v € ‘/éé(rllm) NY, and
we define II(\) to be the set of roots o € II — &y, such that A\g > 0 for
some/any 3 € O, (see Corollary 5.5). By definition, II(A\) = II(v, +) if A is
v-small.
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Lemma 6.1. If \ € Awp 1s not small, then there exists a € 11 such that
Wo, is finite and A\g > 1 for B € O,

Proof. By Proposition 5.12, there exists v € Vg%(n )Y such that A € Awp( )
As X is not v-small, there exists a € II(v, +) — ®py, such that Ag > 1 for
B € On. Moreover, Wp, is finite by Lemma 5.3. O

Proposition 6.2. For each C € Irt*P X, (b) there exists small X € .AtOp
such that C' € JpIrr X (D).
Proof. Recall the dominance order < on Y defined in §1.1. For n,x € Y

write n < x if either n < x (see §1.1 for the definition of <) or n € Wy(x)
and x < 7. Let A be a minimal cocharacter in the set

{x € 4} C € Bl XX (b)}

under the partial order <. We show that X is small.
Suppose A is not small. Let o € IT as in Lemma 6.1, and let w = w, € Jp
be the maximal element of Wy_.. By Lemma 5.1,

w=1ds= [] sz
)

where O, is orthogonal with v = « if (ad,av) # —1,and v = a? +
otherwise. In particular, A\g > 1 for 8 € O,. Let X = w(\). By Corollary 5.9,
e .A;OE and C' € Jplrr X} (b) = JpIrr X} (b). Moreover, as O, is orthogonal,

N =d(\) =p@A- Y BY).

BED+NO,

If T N O, # 0, we have X < Asince (8,\) = \g+1>2for f € T NO,.
Otherwise,
N =p@)(A)=r- > A8 >\
BEO,
Thus, in either case we have )\ < \, contradicting the choice of X. So A is
small as desired. ]

We say a root a € ®(v,+) is indecomposable (in ®(v,+)) if it is not a
sum of roots in ®(v,+) \ {a}.

Lemma 6.3. Let v € 1@%@”) NY be permissible. Then each root of 11(v, +)
is indecomposable in ®(v,+).
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Proof. For a € II(v,+) set Y'(v,a) = {\ € Y; g = 0,A3 > Ofor § €
®(v,+)}. We claim that

(a) Y'(v, @) # 0.

By assumption, there is a v-small cocharacter x. By definition, x €
Y'(v,7) for some v € O,. By Lemma 1.3 (3), Y'(v,a) and Y'(v,v) are
conjugate by (bo). So (a) is proved.

Suppose o = Y ..p oy for some o # a; € ®(v,+). Let A € Y'(v, )
by (a). Then A\, = 0 and (@, A\) > Ao, =2 0 fori € D.If a < 0is a
minus simple root, then there exists i9 € D such that «o;, > 0. Hence A\, =
(0, A) = (@iy, A) = Ao, +1 > 1, which is a contradiction. If a > 0 is the
highest root, then there exist iy # iy € D such that «;,,«;, > 0. Again
we have (o, \) > (a;,, A\) + (@i,, A) > 2 and hence A\, > 1, which is also a
contradiction. So « is indecomposable as desired. O

Let J = p(bo)(J) C II such that the corresponding parabolic subgroup
Wy (generated by sg for a € J) is finite. By a standard parahoric subgroup
of type J we mean a subgroup of J; generated by I NJ, and W;NJ,. We say
a standard parahoric subgroup of type J is of maximal length if the length,
of the maximal element of Wy, is maximal among all standard parahoric

subgroups of J,. The following result will be proved in Appendix A.
Proposition 6.4. Ifv € Vg[é(r?g) NY is permissible, then the parahoric sub-
group of type (v, +) is of mazimal length.

6.5. Irreducibility implies smallness

Suppose A € .ALOE is not small. Let a € II be as in Lemma 6.1, and let w =
wq € Wo, be the longest element. Suppose X [L\(b) is irreducible. By Lemma

5.6, Lemma 5.8 and Corollary 5.9 (2), A # w(\) € Afﬁi’ and fJ)X;f(A)(b) C
X ;} (b). Hence wX gj @) (b) = X;}(b) is also irreducible. In particular,

BNy, (X 0)o! = Ny, (X2 (0)).

Notice that w € W* N J, and Ny, (X;f()‘)(b))),NJb(Xﬁ(b)) are both stan-
dard parahoric subgroups containing I N J,. Thus w € Ny, (X,f(’\) (b)) =

Ny, (X})(b)), which is a contradiction. So X /i‘(b) is not irreducible as desired.
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6.6. Smallness implies irreducibility

Now we show X ;‘(b) is irreducible if A is small. We need some results on
permissible vectors introduced in §6.4.

Let (,) : V x V — R be the Killing form such that (3,7Y) = 2(%?/’,}5)) for
B,~ € ®. For any p(bo)-orbit O of Il we set 7o = 3 ¢ and rd = Egeo £V,
Then we have the identification rp = wré via the bilinear form (,),

where ¢ is any/some root in O.

Lemma 6.5. Ifv € Vg%(ém)ﬂY is permissible, then {r}; O € Il(v,+)/(p(bo))}

is a basis of VP9,

Proof. By Proposition 6.4, II(v,+) is a maximal proper p(bo)-stable subset
of II. Hence {r%; O € I(v,+)/(p(bo))} is linearly independent, and more-
over,

(v, +)/(p(bo))| = [T1/{p(bo))| — 1 = dim VP®).
So the statement follows. 0

Lemma 6.6. Let v € Vg%(ﬁo) NY be permissible. Let v be an indecomposable
root in ®(v,+). Then there exists a € II(v, +) such that v —a € @y, LI{0}.

Proof. Suppose (v,") <0 for g € (v, +). Then (r%,ry) <0 for 0,0 €
(IL(v,+)/{p(bo))) U{O~}. Thus the set

{ro; 0 € (v, +) /{p(bo)) } LU {ry, } € (v, +)

is linearly independent, which contradicts Lemma 6.5.

Thus (v, a") > 0 for some « € II(v, +). Notice that « is indecomposable
in ®(v,+) by Lemma 6.3. If v = «, the statement follows. Otherwise, ¢ :=
a —y is also a root. Suppose (d,v) # 0. Then o = v+ 6 (resp. 7 = a+ (—0))
is indecomposable if (§,v) > 0 (resp. (4,v) < 0), which contradicts that «
and 7 are indecomposable in ®(v,+). So we have (4,v) = 0, that is, 6 € ®yy,
as desired. O

Corollary 6.7. Let v,v' € Vg%(r?a) NY be permissible. Then there exists
e € QNJ, such that Ti(p(e)(v),+) = (v, +) and hence ®(p(e)(v),+) =
OV, +).

Proof. By Proposition 6.4, one checks (using that G is adjoint) that there
exists € € QN Jp such that

(p(e)(v), +) = p(e)(I(v, +)) = I(v', +).
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By replacing v with p(¢)(v), we may assume further II(v, +) = II(v/, +), and
it remains to show ®(v,+) = ®(¢v', +). Otherwise, there exists an indecom-
posable root v in ®(v,+) such that (y,v’) < 0. By Lemma 6.6, there exists
a € II(v,+) = II(v', +) such that y—a € @5y, LU{0}. Hence (y,v") = (o, v) >
0, which contradicts our assumption. So ®(v,+) = ®(v', +) as desired. [

Proposition 6.8. Let \,\ € ALOE be small cocharacters such that X ~ X.

Then X\, X' are conjugate under QN Jy. In particular, Xﬁ‘(b) and Xﬁ‘/(b) are
conjugate by QN Jp.

Proof. By Proposition 5.12, there exist permissible vectors v, v" € Vgpe(r?a)

such that A\, \" are v-small and v’-small respectively. In particular, v,v" are
both permissible. By Corollary 6.7, there exists ¢ € 2 N J such that

p(e) (@', +)) = 2(p(e)(v), +) = ®(v, +).

Thus e(\) is also v-small. By replacing X" with e(\'), we may assume \, X
are both v-small. By Lemma 5.15, there exists x € 7, N J, such that
x(A) = N. Tt suffices to show z € Q.

First we claim that

(a) z(&) is a simple affine root for each « € II(v, +).

Indeed, let v = p(z)(e) € ®(v,+). As X is v-small, we may assume
Aa = 0 (by replacing « by a suitable (p(bo))-conjugate). Then we have

Us(a) = 2Uaa™" = 2t Ua(Op)t o™ = t*"WU, (0p)t "N C 1,

where the last inclusion follows from that z:(\) = \ is v-small. So 2(&@) € &7,
By Lemma 6.3, « is indecomposable in ®(v, +). Hence 7 is also indecompos-
able in ® (v, +). Applying Lemma 6.6 we deduce that there exists 8 € II(v, +)
such that either v =  or v = 8+ ¢ for some 6 € ®,7,. By symmetry,
2 1(3) € ®*. In the former case, 2(&@) = 3 + m for some m € Z30. Then
& = 27 (8) +m, which means m = 0 since & is simple and x~ (B) e dt. So
we have x(&) = 3 as desired. In the latter case, we have :U( y=B+d+m
for some m € Zso. As § € By, and € Qyy,, we have z7(0) € (I>+ Then

a=a"YB) +271(d) +m,

which is a contradiction since @& is simple but 2=1(8),2~*(6) € ®*. Thus
(a) is proved.

By (a) we see that z permutes the hyperplanes Hp for O € I1(v,+) /(p(bo)),
where

o ={h e V";a(h) =0 for any/some a € O}
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whose underlining vector space is

Vo = {r € VP (q,r) = 0 for any/some o € O}
— {7‘ c ‘/p(bo—)7 <ro77"> — O — (’[”(\6,7")}.

By Lemma 6.5, the subspaces Vi are distinct and their intersection Np Ve
is trivial. On the other hand, as x € Qyy,, p(z) is product of reflections s,
such that (o, v) = 0 = (a, V) In particular, p(z) acts on V) trivially,
which means z acts on V" as a translation by some vector ¢ € V?(?) Thus
x fixes each Hp and hence ¢ € NpVp = {0}, that is, 2 acts trivially on V%7,
In particular, z fixes the nonempty subset ANV which means z € QN J,
as desired. O

We recall the following result in [57, Theorem 3.1.1].

Theorem 6.9. Let Z be an irreducible component of X, (b). Then the sta-
bilizer of Z in Jy is a parahoric subgroup of Jp.

Corollary 6.10. Let \ € AE&E’. Then Xl;\(b) 1s irreducible if and only if \
is small.

Proof. In view of §6.5, it remains to show the “if” part. Let \ € Azobp be

small. Thanks to Theorem 6.9, there exists C" € J,Irr X} (b) whose stabilizer
in J, contains I N J,. Let X € ALOE such that C' € Ierﬁ"(b). As INJy
fixes C', and acts transitively on IrrX l/)/ (b) (by Lemma 2.9), we see that

X} (b) = C' is irreducible, and hence \" is small. Noticing that A ~ X', we
deduce by Proposition 6.8 that X [L\(b) is also irreducible as desired. O

6.7. Computation of the stabilizer

Suppose C' = X}(b) € Irr*°P X, (b) with A small. Notice that Jj is generated
by INJy, QNJp, and the longest element w, of Wp_ for a € IT such that Wp,
is finite. by definition, I N J, € Ny, (C). So Ny, (C) is a standard parahoric
subgroup of J,, and it remains to determine which @, fixes C'. By Lemma
5.8, either A\g < —1 for B € Oy or Ag = 0 for B € O,. In the former case, we
have a ¢ II(\) and w,C # C by Corollary 5.9 (2) and Lemma 5.6. Suppose
the latter case occurs. Then « € II(A\) and Ag = 0 for some € O, since A
small. So wC' = C by Corollary 5.9 (1). Therefore, Ny, (C) is the parahoric
subgroup of J, generated by I N J, and the longest element w, of Wp_ for
a € II(N). Moreover, Ny, (C) is of maximal length by Proposition 6.4.
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Appendix A. Proof of Proposition 6.4
We assume that b is basic and G is simple and adjoint.
A.1. Reduction to absolutely simple case

For practical computation, we need to pass to the case where G is absolutely
simple, that is, the root system ® of G is irreducible. By assumption,

G(')FZGlXH'XGh,

where each G; is an absolutely simple factor of G and the Frobenius auto-
morphism o sends G; to G;_1 for i € Z/hZ. Let

T G(/)F — Gl
be the projection to the first factor, which induces an identification
Jo=T5 =T, = I,

where b, = 7w (bo(b)---o" (b)) € G1(F) and the Frobenius automorphism
of Gy is given by .
The following lemma follows similarly as Corollary 1.6.

Lemma A.1. The projection w induces a Jp-equivariant map
7 It P X, (b) — I_ImhrlrmeEl1 (by).

Moreover, Ny,(C) = Ny, (7(C)) for C' € Irr X, (b).

Now we can assume G is absolutely simple by Lemma A.1. Moreover,
we adopt the notation in §6.3. Notice that Vg%(,fa) is an open dense subset
of VP(9) Notice that the diagonal map gives an isomorphism VP(b9) =
(Vdyplbeos),

Fix v € Vg%(rlfg) NY and let z, My, M,by; be as in §5.2. Notice that by,

is a superbasic element of M(EF). We define Y (v) = {A € Y; o > 0,Var €
O (v, +)}.

The following lemma is a reformulation of Corollary 5.5 and small cochar-
acters in §6.4.
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Lemma A.2. Let \q = (A1,...,\q) € Y. Then we have

(1) \e € AG t°p if and only if (1) N\; € Y(v) for 1 < i < d and
(2) z(\e) = (2 (Al),...,z(Ad)) e ANLAP  where bary = (1,...,1,by) €
MY(E).

(2) Xe is v-small if Xe € AG mp and for each p(bo)-orbit O in II(v,+)
we have (Ai)q = 0 for some o 6 O and 1 <1< d.

To prove Proposition 6.4, we need some properties of permissible vectors
introduced in §6.4. Let M’ D T be a Levi subgroup and let \,n € Y. Define

HM’()HU) = {fy S ©M’;A’y 2 Oﬂh < _1} - _HM’(TI7)\)

Lemma A.3. For \,n € Y we have
(0) b (N)pvo)(y) = Ay for v € @;
(1) Har, (A ) %Mb(A ¥) U Mg, (o) for X € Y
(2) 2(Har, (A ) = Har(2(A), 2(n)));
(3) p(bo)(Hag, (A ) = Hag, (b (), bo(n)).

Proof. Note that (1) follows by definition, and (3) follows from (0) which
is proved in Lemma 1.3 (3). As z(@}&b) = &}, we have 2(A),(n) = Ao for
a € ®yy,, from which (2) follows. O

Corollary A.4. Let A\ = (A\1,...,\g) € Aid7’gf)p. For 1 <i<d we have
|Har, (Ni, bo ()] < def(b),
where def(b) denotes the defect of b.

Proof. By Lemma A.2 (2), z(\,) € .Aiv([/\ oLop .- Moreover, by is superbasic
in M(F). By Lemma A.3 we have

det(b) = rkp(M)
= |HM(Z()\ ,2(A2))[ 4 4 R (2(Aa-1), 2(Aa)) |

,2(bo (A1)

+ - —|—|7'le()\(1 1,)\d)’+|7-[Mb()\d,bO'()\1))|

+ [Hag, (A bo (A1)

,bo ( )|+ [Hag, (Ai, bo(Ar))]

N —
ISy
~—

where rkp (M) denote the F-semisimple rank of M, and the second equality
follows from Lemma 3.8 and Lemma 3.10. ]
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For a € II(v, +) we define
Y(v,a) ={X € Y(v); \a =0, |Har, (X, bo(N))| < def(b)}.

Lemma A.5. Ifv € Vg%(r?a) NY is permissible, then we have Y (v, ) # ()
for a € (v, +).

Proof. By assumption, there is a v-small cocharacter \g = (A1,...,\g). By
definition, there exists a (p(bo))-conjugate v of o such that (A\;), = 0 for
some 1 < i < d. Moreover, we have |Hpz, (Ai, bo(N;))| < def(b) by Lemma
A4. So \j € Y(v,7v). By Lemma A.3, Y(v,7v) and Y (v,«) are conjugate
under (bo). So the statement follows. O

For a, 5 € ® we write « — [ if there exists a sequence a = Y9, Y1, - - -, Yr =
3 of roots in ® — @, such that v; —v;_1 € ®T is a simple root for 1 < i < 7.

Lemma A.6. Assume v € Vgpe(ém) NY is permissible. If « — B with o €

®(v,+), then 5 € ®(v,+).

Proof. We can assume 3 — « is a simple root. Notice that (,v) # 0 since
B¢ Oy, =Ppy,. If ¢ O(v,+), then —f € &(v,+). Thus =+« € (v, +)
is decomposable in ®(v,+), contradicting Lemma 6.3. O

A.2. The classification

Now we apply Lemma 6.3 and Lemma A.5 to prove Proposition 6.4 when b
is ramified, that is, b € € and the identity 1 are not o-conjugate under (2
(noticing that G is adjoint).

We argue by a case-by-case analysis on the (connected) Dynkin diagram
of Sp. The simple roots ; of &1 are labeled as in [12, §11.4]. If the funda-
mental coweight w,;” of «; is minuscule, we denote by w; € QN t=' Wy the
unique length zero element. Let 8 > 0 denote the highest root.

For classical types we fix an ambient vector space Vp = @ Re) (of )
and its dual Vj = @' ;Re; together with a pairing (,) between Vj and Vi
such that <6i7 6;/> = (52'73‘.

A.2.1. Type D,,. The simple roots are a; = ¢; —e;41 for 1 <i<n—1
and a, = e,_1 + €.

Case(4.1.1): 0 = id and b = wy. Then V) = @~ 'Re? and &, =
e; £ en}. Suppose o; € (v, +) for some 2 < i < n — 2. Then
{

O = €; —€j41 —7 € — €p—1 —7 €1 — €p_1;
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Q=€ —€i4] —> € —€p —> € +en_1 —>ea+ep_1.
So eg + en—1,e1 — ep—1 € P(v,+) by Lemma A.6. Hence
0= (ea+en—1)+ (e1 —en_1) € (v, +)

is decomposable in ® (v, +), contradicting Lemma 6.3. Suppose o, (y, a1 €
®(v,+). Then we have o, — €3 + €, and ay,—1 — e3 — e,. Hence eg t e, €
®(v,+) and 6 = a1 + (e2 + ep) + (e2 — ey) is decomposable in ®(v,+), a
contradiction. Thus II(v,+) equals 1T\ {—a1,0} or II\ {—ap—1,—a,} as
desired.

Case(4.1.2): n is odd and bo is of order 4. Let m = (n —1)/2 > 2. Then
we have VPO = @™ R(ey — ey, ;) and

@X/[b ={e;+ept1-i;2<i<m}pU{er tept1,e1 L en, emi1 ent.

Denote by T C M" (resp. T C M for 2 < i < m) the Levi subgroup
of My, whose set of positive roots is {e1 & e,11,€1 £ €y, emt1 £ €} (resp.

{ei + ent1-i}).
Suppose a;, ap—; € ®(v,+) for some 2 < i < m — 1. Then m > 3 and

Qp—j = €n—j — €p—jtl —> €p—j —€p —> €p—j + €p_1 — Em+1
+ en—1 = em41 + Em42;
O = €; — €i41 —7 € — €m41 7 €2 — €m41;
Qi = € — €i4+1 —> € — €m+42 > €1 ~ Em42.
SO emt1 + €m+2,€2 — emi1,€1 — emia € ©(v,4) and 0 = (€41 + €my2) +
(e2 — €m+1) + (61 — ém42) is decomposable, a contradiction.

Suppose ay, € ®(v,+). Then a,, — €py2 + €, and hence e, 12 + €, €
®(v,+), that is, v(m +2) > 0 as v(n) =v(m+ 1) = v(1) = 0. Thus

—Qm41 = €m+2 — €m+1,€m+2 T €1,emia T ey € H(U, +)

Let A € Y (v, —am41). Then A_, = 0 and Ac, ,,4e,5 Ae,, ote, = 0, which
means A\(m + 1) = A(m + 2) and

1=Am+1) < A1) <A(m+1), 1=A(m+1) < An) < A(m+1)—1.
It follows that |Hpz (A, bo(A))| = 4 because

em+1 T €1, emi1 £ en € Han (A ba(N)).



500 Sian Nie

On the other hand, one checks that |Hys: (A, bo(N))| = 1 for 2 < ¢ < m. Thus

Har, b A)] = 3 [Hars (A bo (V)] = m +3 > m +2 = def (),
j=1

contradicting Lemma A.4. Thus II(v, +) = I\ {—yn, —am41} as desired.

Case(4.1.3): n is even and bo is of order 4. Let m = n/2 > 2. Then we
have VP(t) = g R(ey — ey ;_;) and

(I)Xﬁ ={ei+ept1-i;2<i<m}U{e; ey}
Suppose a;, ap—; € P(v,+) for some 2 < ¢ < m — 1. Then m > 3 and

Qp_j =€n—j — En_itl —> Ep_j+ €p — Ep_j+ en_it2 — €m + €mi2;
Qi = €; — €j41 —7 €2 — Em42;

Q; = €; — €11 —7 €1 — €.

S0 em+temi2, €2—€mi2,e1—em € ®(v,+) and 0 = (e +emi2)+(e2—emt2)+
(e1—epm) is decomposable in ®(v, +), a contradiction. Suppose aq, @p—1, vy €
®(v,+4). Then ap—1 — e3 — e, and oy, — €2 + €,,. So eg £ e, € ®(v,+) and
0 = a1+ (e2 +e,) + (e2 — ey) is decomposable in ®(v,+), a contradiction.
Therefore, II(v,+) = II\ {—a,,} as desired.

Case(4.1.4): bo is of order 2 and b € {wy—1,w,}. Let m = |n/2| > 2.
Then we have VP9) = g™ R(ey — ey ,_;) and

@X/[b ={ei+ept1-i € ;1 <i <m}.
Suppose a;, ap—; € ®(v,+) for some 2 < i < m. Then

Qp—j = €pn—ij — €n—i+1 —7 En—; + en — e2 + en;

Q; = €; —€;11 —7 €1 — €n.

So ey + en,e1 — ey, € ®(v,+) and 0 = (ea + e,) + (e1 — e,,) is decompos-
able in ®(v,+), a contradiction. It is also impossible that oy, an—1,q, €
®(v,+) as in Case(4.1.3). Therefore, we deduce that II(v,+) equals II \
{—an—1,—pbo)(an-1)} or I\ {—au, —p(bo)(a,)} as desired.
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A.2.2. Type B,,. Thesimpleroots are a; = e;—e;4+1 for 1 <7 < n—1 and
an = e,. We can assume o = id and b = w;. In this case, VP®9) = @ ,Re)
and @j\r/lb = {e1}. Suppose «; € ®(v,+) for some 2 < i < n — 1. Then

Q=¢€; —€i+] —> €2 —€n —> €2 — €3+ €, — e+ en.

So ea — e, e1 + e, € D(v,+) and 6 = (e2 — e,) + (e1 + €,,) is decomposable
in ®(v,+), a contradiction.

Suppose a1 € ®(v,+). Then ay — e; — e, € ®(v,+), which means
v(n) < 0 as v(1l) = 0. So we have —a,, = —en, te; — e, € ®(v,+). Let
A € Y(v,—ay). Then A_,, = 0 and Aye,—e, > 0, which means \(n) = 0,
A1) = A(n) =2 1 and —A(1) — A(n) > 0, a contradiction. Thus II(v,+) =
IT\ {—a,} as desired.

A.2.3. Type C,. The simple roots are a; = e; —e; 1 for 1 <4
and oy, = 2e,. We can assume o = id and b = wy,. Let m = |[n/2| >
VPlo) = o R(ef — ey, q_;) and

<n-—1
1. Then

(I)Lb = {6’1' +ent1—pl<i<m+ 1}.

Case(4.3.1): n = 2m. Suppose a;, ap—; € ®(v,+) for some 1 <7 < m—1.
Then m > 2 and

Qp—j = €n—j — €p—jt+1 —> €p—j T € —> €y, + €n;

Q =€ —€j41 —7 €1 — Em —7 €1 — €n

So emtén,e1—em,e1—en € D(v,+) and 0 = (e +e5,)+ (€1 —em)+(e1—¢€n)
is decomposable in ®(v,+), a contradiction.

Suppose a,, —0 € ®(v,+). Then o, = 2e, — 2€,41 and —0 — —2e,,,
which means 2e,,+1, —2e, € ®(v,+). Let A € Y (v, —a;,). Then A_,,, =0
and Ao, .., A—2¢,, = 0, which means A(m + 1) = A(m), A(m + 1) > 0,
A(m) < 0, a contradiction. Thus (v, +) = I\ {—a;,} as desired.

Case(4.3.2): n = 2m+1. Suppose a;, ap—; € (v, +) for some 1 < i < m.
Then

Qp—j = €n—i — Epn—jt1 —> En—j T €n —> Emy1 + Em42;

O = €; —€j41 —> €1 — €yl — €1 — Em42.

SO €mt1 + €mi2,€1 — emi1,€1 — emy2 € (v, +) and 0 = (eny1 + €my2) +
(e1 — em+1) + (€1 — emy2) is decomposable in ®(v,+), a contradiction. Thus
(v, 4+) =11\ {—an, 8} as desired.
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A.2.4. Type Ap—1. The simple roots are a; = e; —e;41 for 1 <i < n—1.
Let ¢y be the automorphism exchanging «; and «a;,—; for 1 <i<n—1.

Case(4.4.1): o = id. Suppose (b) = (wy,) for some 1 < h < n—1 dividing
n. Then

®y, = {ei—ej € ®Fi—j € WZ}.

If h =1, then v = 0 and II(v,+) = () as desired. Suppose h > 2 and we can
assume o1 € II(v,+). If o; € (v, +) for some 2 < i < h, then

] = €] —€ey —» €1 —€ — el — e
O = € — €j41 —7 € — €p41.

So e1 — epy1, €1 — ey, and their (p(bo))-conjugates are contained in @ (v, +).
Hence

0= (e1 —ent1) + (ent1 —€2n41) + -+ (en—2n+1 — €n—h+1) + (En—ht1 — €n)

is decomposable in ®(v,+), a contradiction. Thus II(v,4) = II \ O, where
O is any p(bo)-orbit of II.

Case(4.4.2): 0 = ¢y, b =w; and n > 4 is even. Let m = n/2 > 2. Then
we have

(I)JJ\FL, ={e1 — em+1}.

Suppose «;, pt1—i € (v, +) for some 2 < i < m — 1, then m > 3 and

O = €; — €41 —7 € — Entl—i —7 €1 — Ent1—

Optl1—i = Eptl—f — Cn42—4 —7 Eptl—f — Cp.

So e1—ent1—isent1—i—en € P(v,+) and 0 = (e1 —ept1-i) + (ent1-i —en) is
decomposable in ®(v,+), a contradiction. Suppose oy, a,, € ®(v,+), then
a1 = e1—epm and ay, — e —ep. S0 0 = (e1—en )+ (em—ey) is decomposable
in ®(v,+), a contradiction. Thus II(v,+) equals IT \ {—aun, —m41} or IT'\
{—aq,0} as desired.

A.2.5. Type Eg. The simple roots a; for 1 < i < 6 are labeled as in [12,
§11.4]. We can assume o = id and b = w;. Then we have

veto) — Ray @ R(ay + o + 20y + ay).
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Suppose a = «; € ®(v,+) with i =2 or i = 4. Let 8 = as + a3 + a4 + a5
and v =0+ a1 + a4 + ag. Then

a—pB—=B+as— 1.

So 8,7 € ®(v,+) and 6 = S+ is decomposable in ®(v, +), a contradiction.
Thus (v, +) = I\ {—aq, —ag, 0} as desired.

A.2.6. Type E7. The simple roots «; for 1 < i < 7 are labeled as in [12,
§11.4]. We can assume o = id and b = wy. Then we have

‘I)Jz\%b ={v+a3,7+as+as— 1,7+ as},

where v = a1 + a2 + ag + 204 + a5 + ag + 7. Suppose o = «; € ®(v, +) for
some 1 <7< 6. Let { =v+ az+ a5 —ar. Then v — 5, — 5 ¢ Z>olly for
8 e @'At[b, which implies that

a—vand a — &

So v,£ € ®(v,+) and 6 = v+ ¢ is decomposable in ®(v, +), a contradiction.
Thus II(v,+) =11\ {—a7, 8} as desired.

Appendix B. Proof of Proposition 1.2

Let b € Q be basic. Let J C Sy be a minimal o-stable subset such that
[b] N M(F) # 0. Then [b] N M;(F) is a superbasic o-conjugacy class of
M (F). Suppose there is another minimal o-stable subset J' C Sg such that
[B)N My (F) # . To prove Lemma, 1.2, we have to show that J = .J’. Choose
r € Qy and 2’ € Q such that z,2" € [b]. Let /W be the set of elements
w € Wy which are minimal in its double coset W wW . For u € Wy we set
supp, (u) = Ujezo (supp(u)) C Sp, where supp(u) C Sy is the set of simple
reflections that appear in some/any reduced expression of u.
Following [13], we say W € W is o-straight if

(o () -+ 0" () = nb(w) for n € Zs.

Moreover, we say a o-conjugacy class of W is straight if it contains some
o-straight element. By [13, Proposition 3.2], the o-conjugacy classes of x
and 2z’ are straight. Moreover, as z,z’ € [b], these two straight o-conjugacy
classes coincide by [13, Theorem 3.3]. Thus there exists w € W such that



504 Sian Nie

wx = 2’0 (). Write p() = uzw™! with u € Wy, w € Wy and 2z € 7' Wy.
By taking the projection p, we have

2w ip(x)o(w) = utp(a)o(u)o(2).

Notice that z,0(z) € 7'Wy. Moreover, we have supp,(w™'p(z)o(w)) = J
and supp, (u'p(z’')o(u)) = J' by the minimality of J and J’. This means
that 2 = 0(2) and zJz~! = J'. So Proposition 1.2 follows from the following
lemma.

Lemma B.1. Let J C Sg be a minimal o-stable subset such that [b] N
My (F) # 0. If there exists 2 = o(2) € Wy such that zJz~' C Sy, then
zJz 7t =J.

Proof. 1t suffices to consider the case where G = G,q and Sy is connected.
If b is unramified, that is, 1 € [b], then we can take J = () and the statement
is trivial. So we assume that b is not unramified. By the discussion above, it
suffices to show the statement for some fixed J, and we can take J as follows.
Let v be a generic point of Yﬂg(ba), that is, if (o, v) = 0 for some a € @, then

(v, Yﬂg(ba)> = 0. Then we take J to be the set of simple reflections s such
that s(v) = v, where v is the unique dominant Wy-conjugate of v. Then
[6] N M ;(F) is a superbasic o-conjugacy class of M;(F) by [14, Lemma 3.1].

Case(1): Sg is of type A,—1 for n > 2. Take the simple roots as o; =
ei — €41 for 1 < i< n—1. Let wy be the generater of Q = Z/nZ such that
wi € t= Wy, where @y is the fundamental coweight corresponding to the
simple root a;. Assume b = w{” for some m € Z.

Case(1.1): ¢ = id. Let h be the greatest common divisor of m and n,
and f =n/h. Then we can take

J={si1jl1<i<f-1,0<j<h—1}

Here, and in the sequel, s; denotes the simple reflection corresponding to
the simple root «;. By assumption, z sends each of the subsets

Di={1+jf.2+jf,....0+1f}, 0<j<h-1
to a subset of the form
{k+1,k+2,k+ [} C{1,2,--- ,n}.

This implies that z permutes the sets D; for 0 < j < h — 1. In particular,
zJz~t = J as desired.
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Case(1.2): o is of order 2. In this case, o sends «; to ay,—; for 1 <i < n—1.
As b is not unramified, n is even. Moreover, we can take b = wy and

J = {Sn/Z}'

Noticing that zJz~! C Sy is o-stable and that s, /2 1s the unique simple
reflection fixed by o, we deduce that zJz~! = J as desired.

Case(2): Sg is of type By, for n > 2. Then o = id and b is of order 2 (since
it is not unramified). Take the simple roots as a,, = e, and a; = €; — €;41
for 1 <7< n—1. Then we can take

J = {sn}.

Noticing that «, is the unique short simple root, we have z(«,) = a, and
zJz71 = J as desired.

Case(3): Sg is of type Cy, for n > 3. Then ¢ = id and b is of order 2.
Take the simple roots as «,, = 2¢e,, and o; = e; —e;41 for 1 <i<n—1. We
can take

J = {81753’ . .,S2Lanlj+1}.

If n is odd, J corresponds to the unique orthogonal subset of (n + 1)/2
simple roots, which means zJz~! = J as desired. If n is even, J corresponds
to the unique orthogonal subset of n/2 short simple roots, which also means
2Jz~1 = J as desired.

Case(4): Sy is of type D, for n > 4. Take the simple roots as «a;, =
en—1+en, and a; = e;—e;4q for 1 < i < n—1. As bis not unramified, we have
02 = 1. The Weyl group Wy is the set of permutations w of {£1,...,4n}
such that z(+i) = +2(7) for 1 <i < n and sgn(w) =0 € Z/27Z, where

sgn(w) = {1 <i < njiw(i) <0} mod 2.
Case(4.1): ¢ = id. If b € t¥ W, we can take
J ={sn—1,5n}

As 2J271 C Sy, 2 preserves the set {+(n —1),+n} and hence zJ27! = J as
desired. If b € %7 Wy, we can take

is even;

is odd;

Ji:={s1,83 " ,Sn—3,Sn—1}, if n is even,

IS N3

J=1qJy:={s1,83 " ,Sn—3,5n}, if n is even,

Jo:={s1,83" ,Sn—2,5n-1,5n}, Otherwise.
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Suppose n,n/2 are even and that J # zJz~1 C Sg. Then zJz 7! = z.J127! =
Jo because Jp, Jo correspond to the only two maximal orthogonal subset
of simple roots which do not contain {s,_1,s,}. By composing z with a
suitable element in the symmetric group of {1,...,n}, we can assume that
z(a1425) = o495 for 0 < j < n/2 —2 and z(ap—1) = a,,. This implies that
sgn(z) = 1, which is a contradiction as desired. The case where n is even
and n/2 is odd follows in a similar way. Suppose n is odd. Then J = Jy
is the unique Dynkin subdiagram of Sy which is of type (Al)? x As. So
zJz~! = J as desired.

Case(4.1): o is of order 2. By symmetry, we can assume o(ay,) = 1.
As b is not unramified, we can assume b € t%» Wy. We can take

7 {{81,53 - Sp—3,8n—1,5n}, if mis even;

{51,583+ ,sn—2}, otherwise.

If n is even, then J corresponds to the unique orthogonal subset of (n+2)/2
simple roots. So zJz~! = J as desired. If n is odd, then J corresponds to
the unique orthogonal o-stable subset of (n —1)/2 simple roots except o, 1
and ay,. So zJz~ 1 = J as desired.

Case(5): Sp is of type Eg. As b is not unramified, ¢ = id and we can
assume b € % Wy. Here, and in the sequel, we using the labeling of Fg and
E; as in [12, §11]. We can take

J = {s1,53, 55,56}

Then zJz~! = J since J C Sy is the unique Dynkin subdiagram of type
A2 X A2.
Case(6): Sy is of type E7. Then 0 =id and b € t%7 Wy. We can take

J = {327 S5, 57}'
Then the statement is verified by computer or by the Lusztig-Spaltenstein
algorithm. The proof is finished. O
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