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Horizontal Delaunay surfaces with constant mean
curvature in S

2 × R and H
2 × R

∗
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We obtain a 1-parameter family of horizontal Delaunay surfaces
with positive constant mean curvature in S

2×R and H
2×R, being

the mean curvature larger than 1
2 in the latter case. These surfaces

are not equivariant but singly periodic, and they lie at bounded
distance from a horizontal geodesic. We study in detail the ge-
ometry of the whole family and show that horizontal unduloids
are properly embedded in H

2×R. We also find (among unduloids)
families of embedded constant mean curvature tori in S

2×R which
are continuous deformations from a stack of tangent spheres to a
horizontal invariant cylinder. These are the first non-equivariant
examples of embedded tori in S

2 × R, and have constant mean
curvature H > 1

2 . Finally, we prove that there are no properly im-
mersed surfaces with constant mean curvature H ≤ 1

2 at bounded
distance from a horizontal geodesic in H2 × R.
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1. Introduction

In 1841, Delaunay classified the H-surfaces in Euclidean space R3 with ro-
tational symmetry for all H > 0, where the prefix H indicates the sur-
face has constant mean curvature H. Rotationally invariant H-surfaces are
well known in Riemannian homogeneous simply connected three-manifolds
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admitting a 1-parameter group of rotations, namely in space forms M3(c)

of constant sectional curvature c ∈ R or in the so-called E(κ, τ)-spaces,

κ − 4τ2 �= 0, whose isometry group has dimension four, see [9, 23, 25, 27].

Delaunay-type surfaces show up in M3(c) when |H| > −c and in E(κ, τ)

when 4H2 + κ > 0, and they usually display similar geometric shapes de-

spite of the variety of the aforesaid ambient spaces; namely, they are es-

sentially spheres, cylinders, unduloids and nodoids. In E(κ, τ), the value of

H (if any) such that 4H2 + κ = 0 is usually called critical mean curvature

in the literature, because the geometric behaviors of surfaces with subcrit-

ical, critical and supercritical mean curvature are typically very different,

see [7, 14, 20, 16] and the references therein.

In space formsM3(c) with c ≤ 0, the only properly embeddedH-surfaces

with |H| > −c that stay at a bounded distance from a geodesic are De-

launay surfaces. This condition is often called cylindrical boundedness and

can be relaxed to the topological assumptions of finite genus and two ends,

see [11, 12]. On the contrary, cylindrical boundedness makes little sense in

the three-sphere S3, and proper embeddedness with two ends is naturally

replaced by assuming the surface is an embedded torus. Andrews and Li [2],

building upon the work of Brendle [4], characterized embedded H-tori in S3

as Delaunay surfaces invariant by rotations about a geodesic. Embeddedness

plays an essential role since there exist immersed non-rotational H-tori in

S3 constructed by Bobenko [3].

In the case of the product spaces M2(κ) × R = E(κ, 0), where M2(κ)

stands for the complete simply connected surface of constant curvature κ,

Mazet [20] characterized unduloids in H2(κ)×R as the only properly embed-

ded finite-topology H-surfaces which are cylindrically bounded with respect

to a vertical geodesic. His result also applies to the product of an hemi-

sphere of S2(κ) and the real line, though it cannot be extended to the whole

S2(κ) × R. This is a consequence of the fact that there do exist compact

non-rotational H-surfaces in S2(κ)× R, constructed by the authors in [17],

which are now proved embedded by Theorem 1.2 below. We have called

such examples horizontal unduloids, and they exist in both S2(κ) × R and

H2(κ)×R provided that 4H2 + κ > 0. The naming is motivated by the fact

that their shapes resemble those of Delaunay’s unduloids as well as by their

invariance under a discrete group of horizontal translations. They are cylin-

drically bounded with respect to a horizontal geodesic and, for a fixed value

of H, form a continuous 1-parameter family of H-surfaces from a stack of ro-

tationally invariant H-spheres to an H-cylinder (H-torus if κ > 0) invariant

under a continuous group of horizontal translations.
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In this paper we incorporate a 1-parameter family of horizontal nodoids
which completes the aforementioned family of unduloids in both S2(κ)× R

and H2(κ)×R. This is tackled by considering a Plateau problem over an ap-
propriate geodesic polygon in a three-manifold (locally isometric to a Berger
sphere), whose solution is conjugate —in the sense of Daniel [7]— to a fun-
damental piece of the desired nodoid, and then it is completed by successive
mirror symmetries of the ambient product space. It is important to men-
tion that the new polygons we have developed are not Nitsche contours in
the vertical direction (they have two horizontal components projecting onto
the same geodesic of S2(κ) via the Hopf fibration), and hence this is the
first conjugate construction in product spaces whose fundamental piece is
not a vertical graph. This is an additional difficulty, since most arguments
developed in literature strongly depend upon the graphical condition, and
also because the Plateau problem is not well posed to apply Meeks and
Yau’s solution [22] in a Berger sphere (as in the case of unduloids) but in
the universal cover of some subset. We will come up with a new approach
based on the comparison with subsets of Clifford tori to understand the inte-
rior points with vertical tangent plane, as well as finding a Killing direction
in which the surface is really a graph (this will be discussed in Section 4).
We will obtain a faithful depiction of the new surfaces, in particular showing
that they actually look like Delaunay’s nodoids (see Figure 7). The following
statement summarises the whole family of horizontal Delaunay H-surfaces.

Theorem 1.1. Fix κ ∈ R and a horizontal geodesic Γ ⊂ M2(κ)×{0}. There
exists a family Σ∗

λ,H , parametrized by λ ≥ 0 and H > 0 such that 4H2+κ >

0, of complete H-surfaces in M2(κ) × R, invariant under a discrete group
of translations along Γ with respect to which they are cylindrically bounded.
They are also symmetric about the totally geodesic surfaces M2(κ)×{0} and
Γ× R. Moreover:

(i) Σ∗
0,H is the H-cylinder (H-torus if κ > 0) invariant under the contin-

uous 1-parameter group of translations along Γ;
(ii) Σ∗

λ,H is the unduloid-type surface constructed in [17] if 0 < λ < π
2 ;

(iii) Σ∗
π

2
,H is a stack of tangent rotational H-spheres centered on Γ;

(iv) Σ∗
λ,H is a nodoid-type surface if λ > π

2 .

Although κ may be assumed equal to −1, 0 or 1 after scaling the metric,
we would rather keep it as a real number to understand how the case κ = 0
fits in the whole family. Observe that, if κ = 0, the surface Σ∗

λ,H is one

of the classical Delaunay H-surfaces in R3 (see Remarks 3.2 and 3.6), in
which case the parameter H represents a variation by homotheties once λ is
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fixed. Their conjugate minimal surfaces in the round sphere S3(H2) are the
so-called spherical helicoids (see Section 3.1 and also [17, Proposition 1]).

The authors [18] have recently constructed the first examples of compact
embedded H-surfaces in S2(κ) × R with genus g ≥ 2 and H < 1

2 , and the
existence of non-equivariant examples in the cases g = 1 or H ≥ 1

2 remained
unknown. Embeddedness is usually tough in conjugate constructions, spe-
cially when no Krust-type property holds true [5]. In [18], embeddedness was
achieved by proving the convexity of the boundary of the domain of S2(κ)
over which the compact surface is a bigraph using the estimates in [14]. As
for the present surfaces Σ∗

λ,H , we tackle embeddedness by identifying Killing

vector fields in Berger spheres and in M2(κ)×R that produce the same func-
tion in the kernel of the common stability operator of conjugate surfaces.
Irrespective of κ ∈ R, our proof goes through proving that the fundamen-
tal annulus is a maximal stable domain of Σ∗

λ,H , and from there we infer
that it is a graph with respect to a horizontal direction (see Proposition 4.2
and Figure 7). If κ ≤ 0, this establishes that horizontal unduloids are prop-
erly embedded (Proposition 4.4), as conjectured in [17], and hence induce
embedded tori in a quotient of H2(κ) × R. This conforms to the topolog-
ical classification of periodic compact embedded H-surfaces given in [21].
If κ > 0, among all surfaces given by Theorem 1.1, next result determines
which ones are compact and embedded, whose moduli space is represented in
Figure 1. Note that horizontal nodoids are not even Alexandrov-embedded
for any κ ∈ R.

Theorem 1.2. Fix κ > 0. For each integer m ≥ 2, there is a family Tm of
embedded H-tori in S2(κ)× R parametrized as

Tm =
{
Σ∗
λm(H),H : cot( π

2m) < 2H√
κ
≤

√
m2 − 1

}
.

where H �→ λm(H) is a continuous strictly decreasing function ranging from
π
2 to 0.

1. The family Tm is a continuous deformation (in which H varies) from a
stack of m tangent spheres evenly distributed along Γ to an equivariant
torus.

2. The surfaces Σ∗
λm(H),H , along with H-spheres Σ∗

π/2,H and H-cylinders
Σ∗
0,H for all H > 0, are the only compact embedded H-surfaces among

all Σ∗
λ,H (for all κ ∈ R).

In particular, given κ > 0 and H >
√
κ
2 , there are (finitely many) com-

pact embedded H-unduloids in S2(κ) × R, and these are the first known
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Figure 1: The darker shaded region represents the moduli space of Σ∗
λ ⊂

S2(κ)×R, λ ∈ [0, π2 ], in terms of H√
κ
and m. Dotted horizontal segments in-

dicate compact embedded unduloids as solutions to the inequality (16) with
integer m. The vertical dashed line indicates that such embedded unduloids

exist if and only if H >
√
κ
2 .

embedded H-tori in S2(κ) × R (for any H) which are not equivariant. The

case H =
√
κ
2 occurs as a limit surface for m = 2 and consists of two

√
κ
2 -

spheres tangent along a common equator, each of which is a bigraph over

an hemisphere of S2(κ). As in [18], we find again an obstruction at H =
√
κ
2 ,

which gives additional evidence that this value is important for the exis-

tence of compact embedded H-surfaces in S2(κ) × R. It is fundamental to

remark that this value of H is not related to the aforementioned notion of

critical mean curvature. Note also that compact examples are dense in the

family Σ∗
λ,H , showing up just when λ satisfies a rationality condition (see

Remark 3.8), though they are never embedded if H ≤
√
κ
2 .

We are also interested in the maximum height that Σ∗
λ,H reaches over

the horizontal slice of symmetry. We will show that the maximum height

of Σ∗
λ,H is strictly increasing in the parameter λ (see Proposition 4.5). In

particular, the height of a horizontal unduloid is strictly between the heights

of the sphere and the cylinder. Also, horizontal nodoids are taller than the

corresponding H-spheres, so we can confirm that the Serrin-type height

estimates in [1], as well as the boundary curvature estimates in [15], fail

in general for symmetric surfaces which are not bigraphs even though their

heights might be bounded.

It is important to point out why the condition 4H2 + κ > 0 appears

naturally in Theorem 1.1. The many dissimilarities between supercritical,

critical and subcritical H-surfaces can be explained by the fact that their

conjugate minimal surfaces belong to Berger spheres S3b(4H
2+κ,H) if 4H2+
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κ > 0, the Heisenberg space Nil3 = E(0, H) if 4H2 + κ = 0, or the universal

cover of the special linear group S̃L2(R) = E(4H2 + κ,H) if 4H2 + κ <
0, whose geometries are really different. As a matter of fact, the required
geodesic polygons in our construction do not even exist in Nil3 or S̃L2(R).
This made us surmise the nonexistence of H-surfaces cylindrically bounded
with respect to a horizontal geodesic if 4H2 + κ ≤ 0.

Theorem 1.3. There exist properly immersed H-surfaces in M2(κ) × R

cylindrically bounded with respect to a horizontal geodesic if and only if
4H2 + κ > 0.

Existence in Theorem 1.3 is guaranteed by Theorem 1.1, and nonexis-
tence is a consequence of the fact that the family of equivariant H-cylinders
Σ∗
0,H ⊂ H2(κ) × R foliates H2(κ) × R minus a horizontal geodesic when H

ranges from
√
−κ
2 to +∞ (Lemma 3.4). This key property enables the appli-

cation of Mazet’s halfspace theorem for parabolic H-surfaces [19]. We would
like to remark that cylindrical boundedness seems to be a sharp assump-
tion in Theorem 1.3: on the one hand, there do exist properly immersed
H-surfaces in M2(κ)×R with 4H2 + κ ≤ 0 lying in a slab between two hor-
izontal slices, see [18]; on the other hand, there are H-surfaces in H2(κ)×R

with 4H2+κ < 0 at bounded distance from a totally geodesic vertical plane,
e.g., the equidistant vertical planes. Existence of such a surface in the critical
case 4H2 + κ = 0 is not hitherto known.

2. A foliation by horizontal H-cylinders

Consider the 1-parameter group of translations {Φt}t∈R along a given a
horizontal geodesic Γ ⊂ M2(κ)×R, i.e., the Φt are hyperbolic translations if
κ < 0, Euclidean translations in κ = 0, or rotations if κ > 0. If 4H2+κ > 0,
there is a unique H-cylinder CH invariant under the action of {Φt}t∈R,
see [9, 23] and also [14]. This is the surface Σ∗

0,H that appears in Theorem 1.1,

but at this moment we are interested in the fact that {CH :
√
−κ
2 < H <

+∞} produces a foliation when κ < 0. This property is evident if κ = 0 but
fails if κ > 0, see [15, Figure 2]. Therefore, we will assume κ = −1 in the
sequel after scaling the metric.

Consider the halfspace model of H2×R given by {(x, y, z) ∈ R3 : y > 0}
endowed with the Riemannian product metric y−2(dx2 + dy2) + dz2. In
this model, we can assume that Γ = {(0, y, 0) : y > 0} and Φt(x, y, z) =
(etx, ety, z). The surface P given by x2 + y2 = 1 is a totally geodesic
flat vertical plane, which can be parametrized isometrically as (r, h) �→
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(tanh(r), sech(r), h), where r is the hyperbolic distance to (1, 0) in H2 and
h is the projection onto the factor R. Therefore, a regular surface invariant
under Φt can be parametrized as

(1) φ(t, u) =
(
et tanh(r(u)), et sech(r(u)), h(u)

)
,

for some regular curve αH(u) = (r(u), h(u)) in the Euclidean (r, h)-plane.
Given H > 1

2 , by either checking the corresponding ODE, or by intersecting
the H-cylinders in [15, Proposition 2.2] with P , one can easily verify that
the surface CH corresponds to the choice

(2)

r(u) = arctanh

(
cos(u)

2H

)
,

h(u) =
2H√

4H2 − 1
arcsin

(
sin(u)√

4H2 − cos2(u)

)
.

This parametrization is 2π-periodic with u chosen such that the curve αH

has unit tangent vector (− sinu, cosu). This follows from computing

(3) α′
H(u) =

(
−2H sin(u)

4H2 − cos2(u)
,

2H cos(u)

4H2 − cos2(u)

)
.

Furthermore, αH(u) is also convex in the (r, h)-plane since its Euclidean
curvature with respect to the inward-pointing normal is

(4)
r′(u)h′′(u)− h′(u)r′′(u)

(r′(u)2 + h′(u)2)3/2
=

4H2 − cos2(u)

2H
> 0,

The surface CH is symmetric with respect to the totally geodesic surfaces
z = 0 and x = 0, whose intersection is Γ, so we will say that CH is centered
at Γ, see Figure 2. By means of the isometries of H2 × R, we can find a
unique family of horizontal H-cylinders centered at any horizontal geodesic
Γ ⊂ H2 × R.

The next two lemmas are directed to obtain two geometric conditions
that will enable the application of the halfspace theorem [19, Theorem 7].
This result applies to a parabolic properly embedded H0-surface Σ0 in a geo-
metrically bounded 3-manifold M3 such that an ε-half neighborhood M3(ε)
in the mean convex side of Σ0 is foliated by H-surfaces Σt with 0 < t < ε
with constant mean curvature H > H0 (in our case Σt will be a family
of horizontal cylinders in H2 × R). We remark that Σt is not necessarily
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equidistant to Σ0 and also H possibly depends on t. Moreover, it is assumed
that the second fundamental forms of the surfaces Σt are uniformly bounded
and M3(ε) is regular in the sense that there is a projection π : M3(ε) → Σ0

such that π|Σt
: Σt → Σ0 is a quasi-isometry, see [19, Definition 5]. Under

these conditions, the only properly immersed H-surfaces in M3(ε) such that
H > H0 (with respect to the right orientation) are the Σt.

Lemma 2.1. The family of horizontal H-cylinders {CH : 1
2 < H < ∞}

centered at some horizontal geodesic Γ ⊂ H2 × R foliates (H2 × R)− Γ.

Proof. We will assume that Γ is the y-axis without losing generality, which
reduces the problem to proving that the curves αH(u) = (r(u), h(u)) defined
by (2) foliate R2 − {(0, 0)} when H ranges from 1

2 to +∞. Observe that
αH(u) is convex and its width and height in R2 diverge as H → 1

2 , whilst
αH converges uniformly to (0, 0) asH → +∞. Therefore, the curves αH for a
large enough value of H and for H close to 1

2 do not intersect. Let us reason
by contradiction, assuming there is no such a foliation. Hence there exist
1
2 < H1 < H2 < +∞ such that αH1

and αH2
are tangent at some point.

Tangency implies that there is u0 ∈ [0, 2π] such that αH1
(u0) = αH2

(u0)
because of (2) and (3). In particular, the value of r(u0) coincides for H = H1

and H = H2, i.e.,

arctanh

(
cos(u0)

2H1

)
= arctanh

(
cos(u0)

2H2

)
.

Since H1 < H2, we infer that cos(u0) = 0, and hence we can assume by
symmetry that u0 = π

2 . Finally, taking into account that h(u0) = h(π2 ) =
2H√
4H2−1

arcsin( 1
2H ) is a strictly increasing function of H, we conclude that

it cannot give the same value for H = H1 and H = H2, and this gives the
desired contradiction.

Lemma 2.2. Horizontal H-cylinders have intrinsic linear area growth.

Proof. Assume that CH is centered at the y-axis and let p0 = (0, 1, h(π2 )) ∈
CH , which also belongs to the vertical plane P of equation x2 + y2 = 1.
Given ρ > 0, the intrinsic metric ball Bρ(p0) of CH centered at p0 with
radius ρ is contained in the region of CH between two vertical planes at
constant distance ρ from P . This vertical slab is in turn contained in the
slab between the two totally geodesic vertical planes Φ−ρ(P ) and Φρ(P ),
which yields the estimate Area(Bρ(p0)) ≤ Area(φ([−ρ, ρ]× [0, 2π])), i.e.,

Area(Bρ(p0)) ≤
∫ ρ

−ρ

(∫ 2π

0

4H2du

(4H2 − cos2(u))3/2

)
dt = 2Dρ,
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where the value D > 0 of the integral in braces does not depend on ρ.

Proof of Theorem 1.3. If 4H2 + κ > 0, then existence follows from Theo-
rem 1.1. If κ = H = 0, then non-existence follows from Hoffman and Meeks’
halfspace theorem for minimal surfaces in R3, see [8]. Otherwise, we can
assume, after rescaling the metric, that κ = −1, and argue by contradiction
supposing the existence of a properly immersed H0-surface S � H2×R with
0 ≤ H0 ≤ 1

2 , cylindrically bounded with respect to the y-axis in the halfspace
model. Up to a vertical translation, we can also assume that S ⊂ H2 × R+,
and consider the family of horizontal H-cylinders CH given by (2) cen-
tered at the horizontal geodesic Γ = {(0, y,−1) : y > 0}. Since they foliate
(H2 × R) − Γ by Lemma 2.1 and S is cylindrically bounded, there exists a
cylinder CHout

for some Hout >
1
2 such that S ⊂ Ω, being Ω the intersection

of H2 × R+ and the mean convex side of CHout
. Thus Ω is foliated by the

surfaces CH ∩ Ω with Hout ≤ H ≤ Hin for some Hin > 1
2 (see Figure 2).

Figure 2: The foliation by horizontal cylinders CH centered at the geodesic
Γ = {(0, y,−1) : y > 0}. The H0-surface S lies in the shaded region Ω in the
mean convex side of CHout

. The surface CHin
separates Ω and Γ. The curve

H �→ αH(u) in dotted lines represents the projection onto CHout
.

Lemma 2.2 yields the parabolicity of the leaves of the foliation. The
surface S lies in the mean convex side of the CHout

and has mean curvature
H0 ≤ 1

2 , which is strictly less than the mean curvature of the leaves, with the
right orientation in order to apply [19, Theorem 7]. This halfspace theorem
implies that S must be one of the cylinders in the foliation, and this is the
contradiction we seek. It remains to verify that the foliation is regular in the
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sense of [19, Definition 5]. In the parametrization given by (2), the shape
operator A of CH has norm

‖A‖2 = 4H2−2 det(A) =
3− 16H2 + 64H4 + 4(1− 4H2) cos(2u) + cos(4u)

16H2
,

which is uniformly bounded for Hout ≤ H ≤ Hin. Moreover, the region Ω is
geometrically bounded since H2 × R has bounded sectional curvature, so it
suffices to show that there is a uniformly quasi-isometric projection sending
all leaves CH ∩ Ω with Hout ≤ H ≤ Hin onto CHout

∩ Ω. Note that all hori-
zontal H-cylinders are 2π-periodic in the parameter u and they are invariant
in the parameter t, so we can project onto CHout

∩ Ω by just preserving the
parameters (t, u) given by (1), i.e. by sending αH(u) �→ αHout

(u) (dotted line
in Figure 2). Periodicity in the parameter u plus compactness of the interval
[Hout, Hin] ensure this defines a uniformly quasi-isometric map.

3. The construction of horizontal nodoids

This section is devoted to obtain the surfaces Σ∗
λ,H of Theorem 1.1 as an ex-

tension of the construction of horizontal unduloids. However, the arguments
we will employ are significantly more involved than those in [17], since the
fundamental piece is no longer a vertical graph for λ > π

2 . In the sequel we
will omit the dependence on H, which will be fixed throughout the section.

3.1. Conjugate immersions

Given κ, τ ∈ R such that κ > 0 and τ �= 0, the Berger sphere S3b(κ, τ) is
the usual 3-sphere S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1} equipped with the
Riemannian metric

g(X,Y ) = 4
κ

[
〈X,Y 〉+

(
4τ2

κ − 1
)
〈X,V 〉〈Y, V 〉

]
,

where 〈 , 〉 stands for the usual round metric in S3, and V is the vector
field defined by V(z,w) = (iz, iw). If κ = 4τ2, then S3b(4τ

2, τ) is a round
sphere of constant sectional curvature τ2; otherwise, it is a homogeneous
Riemannian manifold with isometry group of dimension 4 (see [26, Section 2]
for more details). The Hopf fibration Π : S3b(κ, τ) → S2(κ) ⊂ R3 given by
Π(z, w) = 2√

κ

(
zw̄, 12(|z|2 − |w|2)

)
is a Riemannian submersion. The fibers

of Π are geodesics tangent to the unit Killing field ξ̃ = κ
4τ V , and both the

horizontal and vertical geodesics (with respect to Π) are great circles. We
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remark that the length of all vertical geodesics is 8τπ
κ , whereas the length of

all horizontal geodesics is 4π√
κ
.

However, Berger spheres are not suitable for solving our Plateau problem
(see Remark 3.1). We will use the following Riemannian three-manifold,
which is locally isometric to a Berger sphere but topologically different:

(5) M(κ, τ) =

(
Dκ × R,

dx2 + dy2

(1 + κ
4 (x

2 + y2))2
+

(
dz +

τ(ydx− xdy)

1 + κ
4 (x

2 + y2)

)2
)
,

where Dκ = {(x, y) ∈ R2 : 1+ κ
4 (x

2+y2) > 0}, see [7]. There is a Riemannian
covering map Θ : M(κ, τ) → S3b(κ, τ)− {(eiθ, 0) : θ ∈ R}, explicitly given by

(6) Θ(x, y, z) =
1√

1 + κ
4 (x

2 + y2)

(√
κ
2 (y + ix) exp(i κ

4τ z), exp(i
κ
4τ z)

)
.

Hence M(κ, τ) is the universal cover of S3b(κ, τ) minus a vertical fiber, and
the lifted Hopf fibration Π : M(κ, τ) → R2 (also denoted by Π) acquires the
simple form Π(x, y, z) = (x, y). Although M(κ, τ) provides a unified model
for all E(κ, τ)-spaces, it fails to be global or complete if κ > 0.

In the discussion of the properties of conjugate surfaces we will make
use of three types of minimal surfaces in Berger spheres as barriers:

• The horizontal umbrella centered at p ∈ S3b(κ, τ) is the union of all
horizontal geodesics through p. Horizontal umbrellas are minimal great
spheres.
The horizontal plane z = 4τ

κ c in M(κ, τ) corresponds to a half of the
horizontal umbrella centered at (0, eic) via Θ.

• A Clifford torus is the preimage of a geodesic of S2(κ) by the Hopf
fibration. Clifford tori have identically zero Gauss curvature, and they
are the only minimal surfaces of S3b(κ, τ) which are everywhere vertical.
The vertical cylinders (x−a)2+(y− b2) = 4

κ +(a2+ b2) in M(κ, τ), as
well as the vertical planes ax + by = 0 containing the z-axis, are the
minimal surfaces that correspond to Clifford tori via Θ.

• A spherical helicoid is the minimal surface consisting of points (z, w) ∈
S3b(κ, τ) such that Im(zwc) = 0, c ∈ [−1, 1]. It is obtained by moving
a horizontal geodesic by a screw motion group of isometries along an
intersecting vertical geodesic (see [17, Section 4]). If c = 0, then the
spherical helicoid is the minimal sphere Im(z) = 0, and if c = 1 then
it is the Clifford torus Im(zw) = 0.

The helicoid Hc = {(x, y, z) ∈ R3 : x cos(κ(c−1)
4τ z) = y sin(κ(c−1)

4τ z)}
corresponds to the spherical helicoid Im(zwc) = 0 via Θ.
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Given a simply connected Riemannian surface Σ, as a particular case of
Daniel sister correspondence, there is an isometric duality between minimal
immersions φ̃ : Σ → S3b(4H

2 + κ,H) and H-immersions φ : Σ → M2(κ)×R,
as long as H,κ ∈ R satisfy 4H2 + κ > 0 and H > 0. These immersions will
be called conjugate in the sequel and determine each other up to ambient
isometries, see [7]. It should be noticed that the orientation of conjugate im-
mersions must be compatible in the sense that there is a π

2 -rotation J in TΣ

such that {dφ̃p(v), dφ̃p(Jv), Ñp} and {dφp(v), dφp(Jv), Np} are positively
oriented in S3b(4H

2+κ,H) and M2(κ)×R, respectively, for all nonzero tan-

gent vectors v ∈ TpΣ. Here Ñ is the unit normal to φ̃ with respect to which
the mean curvature is computed and N is the unit normal to φ defining the
same angle function ν ∈ C∞(Σ), i.e., ν = 〈N, ξ〉 = 〈Ñ , ξ̃〉, where ξ = ∂t is
the unit Killing vector field in M2(κ) × R in the positive direction of the
factor R. In this particular case of Daniel correspondence, the π

2 -rotation
actually reflects some extrinsic geometric behaviour (see [7, 17, 24]):

• The tangential projections T = ξ − νN and T̃ = ξ̃ − νÑ of the unit
Killing vector fields are intrinsically rotated by π

2 , i.e., dφ−1(T ) =

Jdφ̃−1(T̃ ), as well as the shape operators S and S̃ of the immersions
are related by S = JS̃ +H id.

• Any horizontal or vertical geodesic curvature line in the initial surface
becomes a plane line of symmetry in the conjugate one. Therefore,
given a curve α in Σ, if φ̃ ◦ α is a horizontal (resp. vertical) geodesic,
then φ ◦ α is contained in a totally geodesic vertical (resp. horizontal)
surface, which the immersion meets orthogonally [17, Lemma 1].

For the sake of simplicity, in the sequel we will use the notation Σ̃ and Σ
for conjugate (immersed) surfaces. The surface Σ̃ will be the solution of
a Plateau problem over a geodesic polygon in S3b(4H

2 + κ,H) consisting
of vertical and horizontal geodesic segments making right angles at the ver-
texes. This guarantees that Σ̃ can be smoothly extended across its boundary
by successive axial symmetries about such geodesic segments to produce a
complete smooth minimal immersion Σ̃∗, see [6]. Similarly, the conjugate im-
mersed H-surface Σ can be extended to a complete H-surface Σ∗ by means
of mirror symmetries about totally geodesic horizontal and vertical planes
in M2(κ)× R containing the boundary components, see [17].

3.2. Solving the Plateau problem

Assume that H,κ ∈ R are such that H > 0 and 4H2 + κ > 0. For each
λ ≥ 0, consider the closed polygon Γ̃λ ⊂ M(4H2+κ,H), consisting of three
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horizontal geodesics h̃0, h̃1 and h̃2, and one vertical geodesic ṽ, parametrized
by the following expressions:

h̃0(s) =
(
0, 2√

4H2+κ

cos(2s)
1+sin(2s) , 0

)
, s ∈

[
0, π2

]
,

h̃1(s) =
(

2√
4H2+κ

cos(2s), 2√
4H2+κ

sin(2s), 4H
4H2+κ

(
s− π

4

))
, s ∈

[
π
4 ,

λ
2

]
,

h̃2(s) =
(

2√
4H2+κ

cos(2s), 2√
4H2+κ

sin(2s), 4H
4H2+κ(s+

π
4 )
)
, s ∈

[
−π

4 ,
λ
2

]
,

ṽ(s) =
(

2√
4H2+κ

cos(λ), 2√
4H2+κ

sin(λ), 4H
4H2+κ(s+

λ
2 − π

4 )
)
, s ∈

[
0, π2

]
.

By abuse of the notation, h̃0, h̃1, h̃2, and ṽ will be often treated as sets rather
than parametrizations in the sequel. Moreover, Γ̃λ is a geodesic quadrilateral
whose vertexes will be labeled as 1̃, 2̃, 3̃ and 4̃, as shown in Figure 3.

Figure 3: A faithful representation of the polygon Γ̃λ for different values of
λ. The barriers T (vertical cylinder) and S (helicoid) demarcate the mean

convex solid Ω. The dotted line (see central figure) represents the curve δ̃ of
zeros of the angle function defined in Proposition 3.3.

Remark 3.1. For each λ ∈ [0, π2 ], the polygon Θ(Γ̃λ) ⊂ S3b(4H
2+κ,H) ⊂ C2

is, up to the isometry (z, w) �→ 1√
2

(
e−iπ

4 (z+iw), ei
π

4 (z−iw)
)
, the same as in

the construction of the horizontal unduloids [17, Secion 5.1]. However, the
barriers we used to solve the Plateau problem in [17] are no longer valid if
λ > π

2 . Furthermore, the polygon Θ(Γ̃λ) has self-intersections if λ ≥ 7π
2 , so

the resulting Plateau problem is ill-posed in S3b(4H
2+κ,H). This is why we

use the locally isometric model M(4H2 + κ,H) throughout this section.

Let T be the vertical minimal cylinder that corresponds to the Clifford
torus |z|2 = |w|2 in S3 ⊂ C2, and let S be the minimal helicoid H−1. In the
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model M(4H2 + κ,H), these surfaces are given by

T =
{
(x, y, z) ∈ R

3 : x2 + y2 = 4
4H2+κ

}
,

S =
{
(x, y, z) ∈ R

3 : x cos
(
4H2+κ
2H z

)
+ y sin

(
4H2+κ
2H z

)
= 0

}
.

The interior of the cylinder will be denoted by G, and it is divided by S in
two connected components. The closure of the component that contains ṽ is

Ω =
{
(x, y, z) ∈ R

3 : x2 + y2 ≤ 4
4H2+κ , x cos

(
4H2+κ
2H z

)
+ y sin

(
4H2+κ
2H z

)
≥ 0

}
and satisfies that Γ̃λ ⊂ ∂Ω for any λ ≥ 0. Besides, Ω is a mean-convex solid
in the sense of Meeks and Yau [22] so the Plateau problem with boundary
Γ̃λ can be solved. This produces an embedded closed minimal disk Σ̃λ ⊂ Ω
with boundary ∂Σ̃λ = Γ̃λ, which will play the role of the initial minimal
surface in the conjugate construction. We will show in Proposition 4.1 that
the solution Σ̃λ is unique and hence depends continuously on λ.

We highlight the following special cases, depicted in Figure 4:

• If λ = 0, then Θ(Σ̃0) is part of the spherical helicoid Im(z2 +w2) = 0.
• If λ = π

2 , then Θ(Σ̃π

2
) is part of the minimal sphere Im(z − w) = 0.

• If λ = 3π
2 , then Θ(Σ̃ 3π

2
) is part of (the Berger-sphere version of) Law-

son’s Klein bottle η1,1 ⊂ S3, see [26, Theorem 2].

Figure 4: From left to right: polygon Γ̃λ for λ = 0 (Σ̃0 is a spherical helicoid
with axis 1̃4), λ = π

2 (Σ̃π

2
is the horizontal umbrella centered at 3̃) and

λ = 3π
2 where 3̃, 1̃ and 4̃ are on the same vertical geodesic.

Remark 3.2. If κ = 0, the Berger sphere S3b(4H
2 + κ,H) is the three-sphere

S3(H2) of constant sectional curvature H2, and the lengths of the geodesic
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segments 1̃4 and 2̃3 coincide (they are a quarter of the length of a great
circle of S3(H2)). The completion of Σ̃λ is invariant under a continuous 1-
parameter family of screw motions, which are composition of translations
and suitable rotations about 3̃4. In particular, Σ̃λ is an equivariant minimal
surface if κ = 0. However, if κ �= 0, this argument fails since there are no
screw motions with axis 3̃4, and the geodesic arcs 1̃4 and 2̃3 (see Figure 4)
have different lengths.

3.3. The analysis of the angle function

Next proposition gives some insight into the behaviour of the angle function
νλ : Σ̃λ → [−1, 1], whose sign is chosen such that νλ(2̃) = 1. It will be
fundamental in the study of the conjugate surface.

Proposition 3.3. Let Σ̃λ be the compact minimal disk spanning Γ̃λ with
λ > π

2 , and consider the angle function νλ of Σ̃λ such that νλ(2̃) = 1.

(a) The only points in which νλ takes the values 1 and −1 are 2̃ and 3̃,
respectively.

(b) The set of points in which νλ vanishes consists of ṽ and a certain

interior regular curve δ̃ ⊂ Σ̃λ with endpoints in ṽ and h̃0 (see Figure 3).

(c) Given p ∈ h̃0((0,
π
2 ))∪ h̃1((

π
4 ,+∞))∪ h̃2((

−π
4 ,+∞)), the function λ �→

νλ(p) is continuous in the interval where it is defined.

• It is strictly increasing (possibly changing sign) if p ∈ h̃0((0,
π
2 )).

• It is positive and strictly increasing if p ∈ h̃1((
π
4 ,+∞)).

• It is negative and strictly decreasing if p ∈ h̃2((
−π
4 ,+∞)).

The proof of items (a) and (b) essentially relies on comparing Σ̃λ with
two types of surfaces, Up and Tp, tangent to Σ̃λ at some p ∈ Σ̃λ. On the one

hand, if νλ(p)
2 = 1, consider the umbrella U ′

p tangent to Σ̃λ at p, and define
Up as the closure of the connected component of U ′

p∩G that contains p. The
interior of Up is a vertical graph in G, and if ṽ lies in ∂Up ⊂ T then Π(p)

and Π(ṽ) are opposite points of the great circle Π(T ) ⊂ R2 and p ∈ ∂Γ̃λ. On
the other hand, if νλ(p) = 0, consider the Clifford torus T ′

p tangent to Σ̃λ at
an interior point p, and define Tp as the closure of the connected component
of (T ′

p ∩ G) − S containing p. Note that Tp is a vertical quadrilateral with
boundary in S ∪ T : three of its sides lie in S if T ′

p contains the z-axis (see
Figure 5 center), otherwise only two of the sides lie in S (see Figure 5 left
and right).
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Figure 5: Each figure indicates two possible connected components Tp (in
turquoise) for a Clifford torus T ′

p inside the mean convex solid Ω. From left
to right: a general case, a case in which T ′

p contains the axis of S, and a case

in which T ′
p contains ṽ = 1̃4.

Lemma 3.4. Assume that p ∈ Σ̃λ is an interior point with νλ(p) = 0. Then
the intersection of Σ̃λ and the vertical quadrilateral Tp does not contain any
closed curve.

Proof. Let T ′
p be the Clifford torus containing Tp. Notice that T ′

p �= T be-

cause otherwise Σ̃λ and T are tangent at the interior point p, in contradiction
with the maximum principle. Write T ∩ T ′

p = γ1 ∪ γ2, where γ1 and γ2 are
vertical geodesics whose projections by Π are opposite points in Π(T ) ⊂ R2.
Assume by contradiction that there is a closed curve β ⊂ Tp ∩ Σ̃λ. Taking

into account that Σ̃λ is a disk, that implies the existence of another disk
D ⊂ Σ̃λ with boundary β.

Observe that β lies in the intersection of minimal surfaces (an equian-
gular set of curves), so β can be assumed to be a piecewise smooth Jordan
curve with interior positive angles at its vertexes, where Σ̃λ and Tp are tan-
gent. (Here, we recall that the aforesaid structure of the intersection applies
up to the boundary and beyond because the surface Σ̃λ extends smoothly by
axial symmetry about its boundary components, see [6, Proposition 3.9].)
In particular, Σ̃λ must be vertical at the vertexes of β. This implies that β
cannot contain 2̃ or 3̃, where Σ̃λ is horizontal. On the one hand, the curve β
cannot reach any interior point of h̃1 or h̃2 since, were it the case, β reaches
one of the vertices of the quadrilateral Tp and hence it must be one of the

vertices of β. This means that Σ̃λ is vertical at some point in the interior of
h̃1 or h̃2, and this goes against the boundary maximum principle when one
compares Σ̃p and T at that point. On the other hand, we can slightly move
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the disk D so that β does not reach ṽ either. More precisely, if β ∩ ṽ �= ∅,
then ṽ ⊂ Tp ∩ γ1 (swapping γ1 and γ2 if necessary) and thus β ∩ γ1 �= ∅.
Since β does not intersect h̃1 or h̃2, this implies that β ∩ γ2 = ∅, and hence
we can move D inside G away from γ1 ∪ γ2 by an isometry preserving T ′

p,
e.g., the lift to M(κ, τ) of a sufficiently small translation along Π(T ′

p).
Therefore, we have found a minimal disk D ⊂ G such that ∂D ⊂ T ′

p−T .
The family of vertical cylinders containing γ1 ∪ γ2 (i.e., the lifts of great
circles of S2(4H2 + κ) containing the antipodal points Π(γ1) and Π(γ2))
form an open-book minimal foliation of G, whence the maximum principle
with respect to this foliation implies that D (and hence Σ̃λ) is contained
in one of the cylinders, which is the contradiction. It is important to notice
that there could be points of the interior of h̃0 in Tp, but they do not belong
to T and therefore do not concern the above arguments.

We also need to understand the local picture around a point in which
the angle function and some of its derivatives vanish. Next lemma is stated
for an arbitrary E(κ, τ)-space, and we believe it is true for all n ∈ N.

Lemma 3.5. Let Σ ⊂ E(κ, τ) be a minimal surface with angle function
ν(p) = 0 at some p ∈ Σ, and let Tp be the vertical minimal cylinder tangent
to Σ at p. If the derivatives of ν at p vanish up to order n ∈ {1, 2}, then
Tp ∩ Σ consists of at least n+ 2 curves meeting in a equiangular way at p.

Proof. The intersection of two minimal surfaces is a family of regular curves
meeting equiangularly at points where the surfaces are tangent, and the
number of curves at such points is the order of contact plus one. As the
argument is local, we will use the model given by (5) and assume that
p = (0, 0, 0) and Tp = {(x, y, z) ∈ Dκ × R : x = 0} up to an ambient
isometry. Therefore, Σ can be expressed as x = f(y, z) around p, and the
tangency condition reads

(7) f(0, 0) = 0, fy(0, 0) = 0, fz(0, 0) = 0.

It is a harsh computation to work out the mean curvature H(y, z) and the
angle function ν(y, z) of Σ. Since we are only interested on their values at
p, we can employ (7) to simplify the calculations and to obtain

(8)
H(0, 0) = 1

2 (fyy(0, 0) + fzz(0, 0)) = 0,

νy(0, 0) = −fyz(0, 0), νz(0, 0) = −fzz(0, 0).

From (8), we deduce that ∇ν(p) = 0 if and only if fyy(0, 0) = fyz(0, 0) =
fzz(0, 0) = 0, i.e., if and only if Σ and Tp agree up to the second order at p.
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If the derivatives of ν vanish up to the second order, then the derivatives
of f also vanish up to the second order. Another long computation using
this yields

(9) νyy(0, 0)=−fyyz(0, 0), νyz(0, 0)=−fyzz(0, 0), νzz(0, 0)=−fzzz(0, 0).

Taking derivatives in the expression of the mean curvature and evaluating
at (0, 0), we also get that the following must vanish:

(10)
Hy(0, 0) =

1
2(fyyy(0, 0) + fyzz(0, 0)),

Hz(0, 0) =
1
2(fyyz(0, 0) + fzzz(0, 0)).

From (9) and (10), it follows that ∇ν(p) = 0 and ∇2ν(p) = 0 if and only if
Σ and Tp coincide up to the third order at p.

Proof of Proposition 3.3. Since two horizontal geodesics meet at 2̃ and 3̃,
it is clear that νλ equals ±1 at these points. The choice νλ(2̃) = 1 implies
that Ñ , the unit normal to Σ̃λ, points towards the interior of one of the
components of G − (S ∪ Σ̃λ). It follows that νλ is positive along h̃1 and

negative along h̃2, and cannot be zero in the interior of h̃1 or h̃2 by the
boundary maximum principle with respect to T , whose angle function is
identically zero (see Claim 1 below).

Conversely, assume that p ∈ Σ̃λ is such that νλ(p)
2 = 1 which is not a

vertex Γ̃λ, and let us reach a contradiction. In particular p does not belong to
ṽ (along which νλ vanishes). The minimal surfaces Up and Σ̃λ are tangent at
p, so their intersection contains (at least) two curves meeting transversally
at p. We will finish the proof of item (a) by distinguish two cases:

1. If λ > π and p = h̃2(
λ−π
2 ), then ∂Up contains ṽ and part of h̃2, whereas

h̃0 ∪ h̃1 is under Up. This means that Up can be used as a barrier in

the solution of the Plateau problem and hence Up ∩ Σ̃λ ⊂ ṽ ∪ h̃2. This
contradicts the above assertion that there are at least two curves in
the intersection around p.

2. Otherwise, no matter whether p is in the interior or in the horizon-
tal boundary of Σ̃λ, ∂Up does not intersect ṽ, and there are interior

curves in the intersection Up ∩ Σ̃λ with endpoints in Up ∩ Γ̃λ. Some
of the horizontal geodesics joining these endpoints with p (which are
contained in Up by definition of umbrella but not necessarily in Σ̃λ),

together with part of h̃0 ∪ h̃1 ∪ h̃2, form a closed horizontal geodesic
triangle or quadrilateral in G. It projects injectively via the Hopf fi-
bration Π to the boundary a certain geodesic triangle or quadrilateral
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in an hemisphere of S2(4H2 + κ). This contradicts the fact that the
bundle curvature is not zero (see [13, Proposition 2.8]).

As for item (b), since νλ lies in the kernel of the stability operator of Σ̃λ,
the nodal set Z = {p ∈ Σ̃λ : νλ(p) = 0} forms a set of regular curves
with endpoints in Γ̃λ and transverse intersections precisely at points with
∇νλ = 0. Observe that ṽ ⊂ Z since ṽ is a vertical geodesic, but Z must
also contain other components because νλ changes sign along h̃0 in view of
item (a). We will prove that points of Z not lying in ṽ belong to a single

regular curve δ̃ joining a certain point of qv ∈ ṽ (such that ∇νλ(qv) = 0)

and some point qh ∈ h̃0 (at which the change of sign takes place). This is a
consequence of the following five claims:
Claim 1. There are no points in h̃1 or h̃2 with νλ = 0 rather than 1̃ or 4̃.

If there are points in the interior of h̃1 or h̃2 with νλ = 0 then Σ̃λ is
tangent to the Clifford torus T , but this goes against the boundary maximum
principle for minimal surfaces.
Claim 2. There is exactly one point qh ∈ h̃0 such that νλ(qh) = 0.

Reasoning by contradiction, assume there are p, q ∈ h̃0 such that νλ(p) =
νλ(q) = 0 so the tangent cylinders T ′

p and T ′
q contained the z-axis. This

means that there is an interior curve γp ⊂ Tp ∩ Σ̃λ (resp. γq ⊂ Tq ∩ Σ̃λ) with

one endpoint equal to p (resp. q) and the other endpoint in Tp ∩ Γ̃λ (resp.

Tq ∩ Γ̃λ). Since Tp (resp. Tq) contains the z-axis, there are two possibilities
for Tp (resp. Tq), one of them containing 2̃ and the other one containing
3̃. The latter is not possible since it is not contained in the mean convex
body Ω. It follows that Tp = Tq have one vertical side over the z-axis and 2̃
belongs to the other vertical side, whilst the other two sides are horizontal
geodesics lying in S. This implies that Tp ∩ Γ̃λ = Tq ∩ Γ̃λ consists of a half

of h̃0 and one isolated point in h̃2, and hence one can find a closed curve in
γp ∪ γq ∪ h̃0 in contradiction with Lemma 3.4.

Claim 3. There are no interior points of Σ̃λ in which νλ = 0 and ∇νλ = 0.

Reasoning by contradiction, assume there is such an interior point p, and
consider the vertical quadrilateral Tp tangent to Σ̃λ at p, see Figure 5. By

Lemma 3.5, Tp ∩ Σ̃λ contains (at least) three curves meeting transversally

at p with (at least) six endpoints in ∂Tp ∩ Γ̃λ. If two of the endpoints lie
in ṽ, then the corresponding two curves, along with a segment of ṽ, form
a closed curve in Tp contradicting Lemma 3.4. If two of the endpoints lie

in h̃0, then either they coincide (and the corresponding two curves again
contradict Lemma 3.4) or they are different (and hence Tp contains part of

h̃0 so νλ = 0 at two different points, in contradiction with Claim 2). This
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means that Tp intersects each of the curves h̃0, ṽ at most once, and h̃1 and

h̃2 at most twice. Nonetheless, it cannot intersect h̃1 and h̃2 twice and also
h̃0, whence at least two of the six endpoints of the three curves meeting at
p coincide by the pidgeonhole principle. The corresponding curves from p
form a closed curve in Tp that goes against Lemma 3.4.
Claim 4. There is exactly one point qv ∈ ṽ such that ∇νλ(qv) = 0.

Reasoning by contradiction, assume that there exist p, q ∈ ṽ such that
∇νλ(p) = ∇νλ(q) = 0. Thus, consider the vertical quadrilaterals Tp and Tq

tangent to Σ̃λ at p and q, respectively. By Lemma 3.5, there are (at least)
three curves in Tp ∩ Σ̃λ (resp. Tq ∩ Σ̃λ) meeting transversally at p (resp. q),
being one of them ṽ itself. Let us distinguish two cases:

1. If π
2 < λ < 3π

2 , then both (Tp ∩ Γ̃λ) − ṽ and (Tq ∩ Γ̃λ) − ṽ consist of

at most one point in h̃2 and one point in h̃0, we deduce that the two
interior curves γ0p , γ

2
p ⊂ Tp∩Σ̃λ and γ0q , γ

2
q ⊂ Tq∩Σ̃λ can be chosen such

that γip and γiq have endpoints in h̃i for i ∈ {0, 2} (see Figure 6 left).

Note that if both curves arrived in h̃0 or h̃2, then Tp or Tq would be

tangent to the Clifford torus containing h̃0 or h̃2, which is obviously
not possible. Hence γip and γiq end at h̃i for each i ∈ {1, 2}. Notice

that γ2p and γ2q have the same endpoint in h̃2 because the projections
Π(Tp),Π(Tq) ⊂ S2(4H2 + κ) are great circles, which intersect at two
antipodal points (see Figure 6 right). Assume without loss of generality
that p is closer to 4̃ than q, so the curves γ0p and γ2q intersect at some
interior point. This implies that Tp = Tq and there exists a closed
curve contained in ṽ ∪ γ0p ∪ γ2q ⊂ Tp, which contradicts Lemma 3.4.

2. If λ ≥ 3π
2 , then (Tp ∩ Γ̃λ)− ṽ and (Tq ∩ Γ̃λ)− ṽ consist of at most one

point in h̃2 and one point in h̃1 rather than h̃0. The reasoning in item
(1) can be mimicked by substituting h̃0 with h̃1. Note that the new

curves γ1p and γ1q ending in h̃1 do have the same endpoint in this case.

Claim 5. There is exactly one interior curve δ̃ ⊂ Σ̃λ where νλ vanishes.
Due to the previous claims, it suffices to show that at the point qv ∈ ṽ

(given by Claim 4) no more than two curves of Z meet (being ṽ one of

them), and at the point qh ∈ h̃0 (given by Claim 2), there is only one curve,
i.e., ∇νλ(qh) �= 0 (see Figure 3). On the one hand, if there are (at least)
two interior curves of Z meeting at qv, then the vertical quadrilateral Tqv

intersects Σ̃λ in at least four curves by Lemma 3.5 (case n = 2), one of them
being ṽ, so there are at least three interior curves in Σ̃λ ∩ Tqv around qv.

Since Tqv intersects Γ̃λ in ṽ, in one point of h̃2 and in at most one point
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Figure 6: Case π
2 < λ < 3π

2 in Claim 4: schematic representation of the

geodesic polygon Γ̃λ (left) and its Hopf projection to S2(4H2 + κ) (right).
The Clifford tori Tp and Tq project to great circles containing Π(p) = Π(q)

so they intersect the polygon Γ̃λ in two points a and b along h̃0 and in the
same point c along h̃2.

of either h̃0 or h̃1, it follows that there is a minimal disk contained in Σ̃λ

with boundary in Tqv contradicting Lemma 3.4 as in previous claims. On the

other hand, if ∇νλ(qh) = 0, then Tqh intersects Σ̃λ in at least three curves

by Lemma 3.5, being h̃0 one of them. Since Tqh ∩ Γ̃λ consists of h̃0 and one

point in h̃2, this leads to the same contradiction as in the case of qv.

As for item (c), let π
2 ≤ λ1 < λ2, and observe that h̃1((

π
4 ,

λ1

2 )) ⊂
h̃1((

π
4 ,

λ2

2 )) and h̃2((
−π
4 , λ1

2 )) ⊂ h̃2((−π
4 ,

λ2

2 )), whereas h̃0 does not depend
on λ. This means that, for each p in the horizontal boundary, the function
λ �→ νλ(p) is defined and continuous on an interval of the form [λ0,+∞) for

some λ0 depending on p. As Γ̃λ1
lies in the boundary of the mean convex

open subset of Ω bounded by S, T and Σ̃λ2
, the surface Σ̃λ2

can be seen as
a barrier for Σ̃λ1

, and hence Σ̃λ1
and Σ̃λ2

are ordered along their common

boundary. Since the angle function does not take values ±1 in the interior of
the horizontal boundary components, the monotonicity properties in item

(c) follow from comparing the normal vector fields to Σ̃λ1
and Σ̃λ2

along their
common boundary. Note that this monotonicity is strict as a consequence
of the boundary maximum principle for minimal surfaces. In the case of h̃1
and h̃2, νλ additionally does not change sign due to item (b).

3.4. The conjugate H-immersion

Let Σλ ⊂ M2(κ)×R be the conjugate of the surface Σ̃λ defined in Section 3.2.
Therefore, Σλ is a compact H-surface whose boundary Γλ consists of three
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curves h0, h1 and h2 contained in vertical planes P0, P1 and P2, respectively,
and a curve v lying in a slice, which will be assumed to be M2(κ)×{0} after
a vertical translation (see Section 3.1 and Figure 7). Note that Σλ has angles
of π

2 at its vertexes 1, 2, 3 and 4, so it becomes a complete H-surface Σ∗
λ by

successive mirror symmetries about P0, P1, P2 and M2(κ) × {0}. The case
λ ∈ [0, π2 ] was described in [17, Theorem 1] so we will assume that λ > π

2 in
the sequel.

Figure 7: Conjugate polygon Γλ for λ < π
2 (left), λ > π

2 (center) and the
fundamental annulus Aλ for λ > π

2 (right) obtained by reflecting Σλ in the
vertical plane containing h0 and the slice containing v.

Remark 3.6. If κ = 0, then Remark 3.2 ensures that Σ̃λ is equivariant. The
uniqueness in Lawson correspondence (up to ambient isometries) implies
that Σ∗

λ ⊂ R3 is also equivariant. Due to the above geometric depiction of
Σ∗
λ, along with the fact that it stays at bounded distance from the straight

line Γ = P0 ∩ (R2 × {0}), we easily infer that Σ∗
λ is one of the classical

Delaunay H-surfaces in R3, and it is rotationally invariant about Γ.

For each i ∈ {0, 1, 2}, we can express hi = (βi, zi) ∈ M2(κ) × R, and
it follows that ‖β′

i‖ = |νλ| and |z′i| = (1 − ν2λ)
1/2 because Σ∗

λ intersects Pi

orthogonally, see [17, Section 5.2]. In view of Proposition 3.3, we deduce
that β1, β2, z0, z1 and z2 are injective by Rolle’s theorem, and β0 can be
split into two injective subcurves by cutting at the point where the angle
function νλ changes sign. Since the vertical planes P1 and P2 are orthogonal
to P0, it follows that Σ

∗
λ is invariant under horizontal translations of length

2�0(λ), where

�i(λ) = −
∫
hi

νλ, μi(λ) =

∫
hi

√
1− ν2λ(11)

denote, respectively, the (signed) length of the projection of hi to M2(κ) and
the difference of heights of the endpoints of hi, for i ∈ {0, 1, 2}, see Figure 7.
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Corollary 3.7. The functions λ �→ �i(λ) satisfy the following monotonicity

properties:

(a) λ �→ �0(λ) is strictly decreasing and positive on [0,+∞),

(b) λ �→ �1(λ) is strictly decreasing on [0,+∞) with �1(
π
2 ) = 0,

(c) λ �→ �2(λ) is strictly increasing and positive on [0,+∞).

Proof. Using the monotonicity of the angle function in Proposition 3.3 for

λ ≥ π
2 and in [17] for 0 ≤ λ ≤ π

2 , we get that, if 0 ≤ λ1 < λ2, then

�0(λ1) = −
∫
h0

νλ1
> −

∫
h0

νλ2
= �0(λ2).

The helicoid S, as a barrier for the solution of the Plateau problem, lies above

Σ̃λ in a neighbourhood of h̃0 in the modelM(4H2+κ,H), see Figure 3. Since

both νλ and νS , the angle function of the helicoid, do not take the values

±1 in the interior of h̃0, one easily infers that −1 < νλ < νS < 1 along h̃0
for all λ > 0. Since the helicoid is symmetric with respect to its axis, we

deduce that
∫
˜h0

νS = 0 and hence �0(λ) =
∫
˜h0
(−νλ) > 0 for all λ > 0.

We will finish by discussing only item (b), because item (c) follows from

similar arguments. Proposition 3.3 and [17] again yield the estimate

�1(λ1) = −
∫
h1([

π

4
,
λ1
2
])
νλ1

> −
∫
h1([

π

4
,
λ1
2
])
νλ2

> −
∫
h1([

π

4
,
λ2
2
])
νλ2

= �1(λ2).

The first inequality follows by distinguishing cases depending on whether λ1

and λ2 lie in [0, π2 ] or in (π2 ,+∞), plus the fact that λ �→ νλ is positive and

increasing along h1 if λ ≥ π
2 , and negative and increasing if 0 ≤ λ ≤ π

2 . In

the second inequality, we have enlarged [π4 ,
λ1

2 ] to [π4 ,
λ2

2 ] taking the signs into

account. Notice that �1(
π
2 ) = 0 because h1 reduces to a point for λ = π

2 .

Remark 3.8 (Compactness). Assuming that κ > 0, the surface Σ∗
λ is compact

if and only if �0(λ) is a rational multiple of 2π√
κ
, the length of a great circle

of S2(κ). Since �0(λ) is a positive continuous strictly decreasing function,

we deduce that compact examples abound in the family Σ∗
λ for λ ≥ 0. If

the rationality condition does not hold, then Σ∗
λ becomes dense in an open

subset of S2(κ)× R.

If κ ≤ 0, then item (a) of Corollary 3.7 evidences that P1 and P2 never

coincide, whence Σ∗
λ is a proper non-compact H-surface for all λ ≥ 0.
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4. The geometry of horizontal Delaunay surfaces

This section is devoted to prove further properties of Delaunay surfaces,
with special emphasis on embeddedness. We will develop a new approach
that relies on finding a function in the kernel of the stability operator of con-
jugate surfaces that is produced simultaneously by two 1-parameter groups
of isometric deformations: the group {Φt}t∈R in M2(κ) × R defined in Sec-
tion 2, and the group {Φ̃t}t∈R in the Berger sphere S3b(4H

2+κ,H) given by

Φ̃t(z, w) = (e−
it

2 z, e
it

2 w).

4.1. Uniqueness

In the model M(4H2 + κ,H) given by Equation (5), the aforesaid group
{Φ̃t}t∈R corresponds to the screw-motions

(12) Φ̃t(x, y, z) =
(
x cos t− y sin t, y cos t+ x sin t, z + 2H

4H2+κ t
)
,

and it is associated with the Killing vector field X̃ = −y∂x+x∂y+
2H

4H2+κ∂z.
This field has no zeros and gives rise to a Killing submersion Π0 : M(κ, τ) →
(R2, ds2) in the sense of [13], such that Π0(x, y, z) = (u, v) if and only if there
exists t ∈ R such that Φ̃t(u, v, 0) = (x, y, z); in particular, Π0(x, y, 0) = (x, y)
for all (x, y) ∈ R2. Note that the metric ds2 that makes Π0 Riemannian has
not constant curvature, the Killing vector field X̃ has not constant length,
and the bundle curvature is not constant. The horizontal geodesics h̃1 and
h̃2 become vertical with respect to Π0, whereas h̃0 and ṽ are transversal to
the fibers of Π0. Moreover, Π0(Γ̃λ) bounds a half-circle D0 ⊂ R2, so (D0, Γ̃λ)
is a Nitsche contour with respect to Π0 in the sense we explain next.

Given an arbitrary Killing submersion Π : E → M whose fibers have
infinite length, a Nitsche contour in E is a pair (D,Γ), where D ⊂ M is a
relatively compact domain and Γ ⊂ E is a Jordan curve with a piecewise-
regular parametrization γ : [a, b] → Γ verifying the following conditions:

(a) There is a partition a = t1 < s1 ≤ t2 < . . . ≤ tr < sr ≤ tr+1 = b such
that γ(a) = γ(b) and, for any j ∈ {1, . . . , r}, the component γ|[tj ,sj ] is
a nowhere vertical curve and γ|[sj ,tj+1] is a vertical segment;

(b) The projection Π ◦ γ parametrizes ∂D injectively except at vertical
segments.

So, ∂D is regular except at the points Π(ti), that will be called the vertexes
of D. As a consequence of the following proposition, the Nitsche condition
will imply the uniqueness of Σ̃λ inside the mean convex body Ω, which in
turn implies that Σ̃λ depends unambiguously and continuously on λ ≥ 0.
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Proposition 4.1. Let (D,Γ) be a Nitsche contour such that D is simply
connected, Π−1(Π(α)) is a minimal surface for each non-vertical component
α ⊂ Γ, and the interior angle at each vertex of D is at most π. There is a
unique minimal surface Σ ⊂ Π−1(D) with boundary Γ and the interior of Σ
is a graph over D in the direction of Π.

Sketch of the proof. The existence of Σ follows from the classical result by
Meeks and Yau [22] since Π−1(D) is a mean-convex body by the hypothesis
in the statement. If Σ is assumed to be a graph, its uniqueness is similar
to the unitary case [14, Proposition 3.8]. Let u, v ∈ C1(D) define graphs
over D parametrized by Fu, Fv : D → E, Fu(x) = φu(x)(F0(x)) and Fv(x) =

φv(x)(F0(x)), where F0 : D → E is a smooth section and φt is the 1-parameter
group of vertical translations in E associated to the Killing vector field. The
proof can be adapted literally by taking into account that the formula in [14,
Lemma 1.39] generalizes to:

(13)

〈
Gu

Wu
− Gv

Wv
, Gu−Gv

〉
=

1

2μ2
(Wu +Wv)‖Nu −Nv‖2 ≥ 0,

where Nu and Nv stand for the upward-pointing unit normal vector fields
to Fu and Fv, respectively, Gu and Gv are their generalized gradients, and
Wu =

√
1 + μ2‖Gu‖2 and Wv =

√
1 + μ2‖Gv‖2 are their area elements.

Here, the smooth function μ ∈ C∞(M) is the (possibly non-constant) length
of the Killing vector field. Under these assumptions, if both u and v define
minimal graphs with boundary the same Nitsche contour, then u = v.

The boundary Γ can be slightly deformed from above and from below to
produce a sequence of graphs Γ+

n and Γ−
n over ∂D as in [17, Proposition 2]

that converge to Γ from above and below, respectively, as n → ∞. By a
standard application of the maximum principle, it follows that the solutions
Σ+
n and Σ−

n of the Plateau problems over Γ+
n and Γ−

n are graphs over D,
and hence unique by the above argument. Finally, again by the maximum
principle (as n → ∞) and a sandwich argument in between Σ+

n and Σ−
n , we

find that any solution of the Plateau problem with boundary Γ must be also
a graph, so Σ is unique.

4.2. Stability of the fundamental annulus

To deal with the global geometry, we will drop the model M(4H2 + κ,H)
throughout the rest of the paper, and assume that Σ̃λ is immersed in
S3b(4H

2 + κ,H) ⊂ C2 via the local isometry Θ given by Equation (6). De-

fine Σ̃∗
λ ⊂ S3b(4H

2 + κ,H) as the complete (immersed) minimal surface in
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S3b(4H
2+κ,H) we obtain by extending Σ̃λ across its boundary. The Killing

field X̃ is also globally expressed as X̃(z,w) =
i
2(−z, w).

The fact that Σ̃λ ⊂ S3b(4H
2+κ,H) is transversal to X̃ makes us consider

the smooth function u = 〈X̃, Ñ〉, which is positive in the interior of Σ̃λ and

vanishes along h̃1 and h̃2. Since X̃ is Killing, the function u lies in the kernel
of the stability operator of Σ̃λ, given by

(14) L = Δ− 2K + 4H2 + κ(1 + ν2λ).

Recall that a closed domain D of a complete Riemannian surface is called
(strongly) stable if the first eigenvalue of its stability operator is non-negative,
i.e., if

λ1(D) = inf

{∫
D fLf∫
D f2

: f ∈ C∞
0 (D), f �≡ 0

}
≥ 0,

where C∞
0 (D) denotes the set of compactly supported smooth functions on

D. Observe that Σ∗
λ cannot be stable as a whole for any λ ≥ 0 because it is

orientable and parabolic (it has linear area growth by an estimate similar to
Lemma 2.2), and therefore its stability would contradict [16, Theorem 2].

Let Aλ be the H-annulus in M2(κ) × R that extends Σλ by means of
mirror symmetries across P0 and M2(κ)×{0} (see Figure 7 right). It consists
of four copies of Σλ and will be called the fundamental annulus of Σ∗

λ. Next
proposition shows that Aλ is a nodal set of the function u and hence stable.

Proposition 4.2. The annulus Aλ is a maximal stable domain of Σ∗
λ for

all λ > 0.

Proof. We will begin by showing that the smooth function u = 〈X̃, Ñ〉
inherits the symmetries of Σ̃∗

λ. If Rγ denotes the axial symmetry about a

horizontal or vertical geodesic containing a boundary component γ ⊂ Γ̃λ,
then it is easy to check that

R
˜h0
(z, w) = (z, w), Rṽ(z, w) = (ie−iλw,−ieiλz),

R
˜h1
(z, w) = (w, z), R

˜h2
(z, w) = (−w,−z).

It turns out that Φ̃t ◦ Rγ = Rγ ◦ Φ̃−t (and hence (Rγ)∗X̃ = −X̃) if γ is

either h̃0 or ṽ; on the contrary, one has Φ̃t ◦ Rγ = Rγ ◦ Φ̃t (and hence

(Rγ)∗X̃ = X̃) if γ is h̃1 or h̃2. On the other hand, (Rγ)∗Ñ = −Ñ for any

of the four boundary components, where Ñ is the extended unit normal to
Σ̃∗
λ. We deduce that u is preserved by the symmetries about ṽ or h̃0, and
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sent to −u by the symmetries about h̃1 or h̃2 (note that u = 0 along h̃1 and

h̃2 because these curves are tangent to X̃).

Observe that u also produces a smooth function in the kernel of the
stability operator of Σ∗

λ because Σ∗
λ and Σ̃∗

λ share the same stability opera-
tor (14), see [7, Proposition 5.12]. Since axial symmetries in S3b(4H

2+κ,H)
correspond to mirror symmetries in M2(κ)× R, it follows that the symme-
tries with respect to P0 and M2(κ)×{0} preserve u, whereas the symmetries
with respect to P1 and P2 send u to −u. Proposition 4.1 guarantees that
u > 0 on the interior of Σ̃λ, whence it remains positive in the interior of Aλ

by the aforesaid symmetries and vanishes identically along ∂Aλ. We deduce
from classical elliptic theory that we have first eigenvalues λ1(Aλ) = 0 and
λ1(D) < 0 for any open domain D ⊂ Σ∗

λ containing Aλ.

If X is the Killing field associated with the group {Φt}t∈R of translations
along the axis Γ = P0 ∩ (M2(κ)×{0}), next corollary reveals that 〈X,N〉 is
proportional to 〈X̃, Ñ〉. Note that the constant of proportionality actually
depends on λ because it goes to zero as λ → 0.

Corollary 4.3. If λ > 0, the fundamental piece Σλ is tangent to X only on
h1 ∪ h2.

Proof. The function w = 〈X,N〉 belongs to the kernel of the stability oper-
ator L of Aλ. Since P1 and P2 are orthogonal to X, we have that w vanishes
identically along h1 and h2. Taking into account that w lies in the eigenspace
of L associated with 0 = λ1(Aλ) and this subspace is 1-dimensional, there
exists a ∈ R (depending on λ) such that w = au. Observe that, if w is
identically zero, then Σ∗

λ is invariant by {Φt}t∈R, which only occurs when
λ = 0, but this case is excluded by assumption. Therefore, if λ > 0, then w
is either positive or negative on the interior of Aλ, i.e., the interior of Aλ is
transversal to X. As the interiors of h0 and v lie in the interior of Aλ, we
deduce that they are also transversal to X.

4.3. Embeddedness of unduloids

Just like in the vertical case, we infer from the description in Section 3.4
that horizontal nodoids are not even Alexandrov-embedded for any λ > π

2 .
On the contrary, we can say precisely when unduloids are embedded, which
settles the question of embeddedness posed in [17].

Proposition 4.4. If κ ≤ 0, horizontal unduloids are properly embedded and
non-compact.
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Proof. We will fix 0 < λ < π
2 . Properness and non-compactness of Σλ are

discussed in Remark 3.8. As for embeddedness, we will begin by showing
that each integral curve of X intersects Aλ at most in a point. Otherwise,
consider the vertical plane P ⊂ H2(κ)×R containing two points of Aλ in the
same integral curve, so these two points lie at the same height with respect
to H2 × {0}. From the fact that νλ does not vanish in the interior of Σλ, it
is easy to realize that the height function restricted to P ∩ Σλ must have
an interior critical point (between the two points at the same height), so X
is tangent at such a critical point and we reach the desired contradiction.
Thus Aλ is an H-graph in the direction of X, so it is embedded.

The complete surface Σ∗
λ will be embedded if Aλ is contained in the

vertical slab demarcated by P1 and P2, which follows from the fact that v is
actually contained in that slab. To see this, note that the geodesic curvature
κg of v computed as a curve of the slice M2(κ) × R with respect to the
normal vector field N pointing inside the domain Π(Aλ) ⊂ M2(κ) × {0}
admits an upper bound κg ≤ (4H2 − κ)/4H (i.e., it is bounded by the
geodesic curvature of the equator of the H-sphere, see [15, Theorem 3.3]).
Reasoning by contradiction, if v escapes the slab, then the length from one
of its endpoints to the first escape point would be at least half of the length
of the equator of the H-sphere, but this is twice the length of v so we have
a contradiction (note that v is orthogonal to P1 and P2 from inside the slab
at its endpoints, see also [17, p. 714]).

However, if κ > 0, embeddedness finds an essential obstruction whenever
Σλ reaches the vertical geodesics P1∩P2, i.e., if the projection of Σλ to S2(κ)
runs over any of the poles defined by the great circle Γ = P0∩ (S2(κ)×{0}).
Proof of Theorem 1.2. Assume that κ > 0. Observe that λ �→ �0(λ) is pos-
itive and decreasing by Corollary 3.7, so it ranges from �0(0) to �0(

π
2 ). On

the one hand, �0(0) is the length of h̃0, a quarter of the length of a horizontal
geodesic of S3b(4H

2 + κ,H); on the other hand, �0(
π
2 ) is the radius of the

domain (as a bigraph) of an H-sphere and can be computed from [14, p.
1268] after rescaling the metric. This gives the estimate

(15)
2√
κ
arctan

√
κ

2H
= �0(

π
2 ) < �0(λ) < �0(0) =

π√
4H2 + κ

.

For a fixed H > 0, we are interested in values of λ ∈ (0, π2 ) such that
�0(λ) = π

m
√
κ

for some m ∈ N, i.e., such that Σ∗
λ consists of 2m copies

of Aλ and closes its period in one turn around the axis Γ, for otherwise
embeddedness fails (see also Remark 3.8). Equation (15) allows us to say
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that such compact H-unduloids are in correspondence with integers m ≥ 1
satisfying

(16)

√
4H2 + κ√

κ
< m <

π

2 arctan(
√
κ

2H )
.

If H ≤
√
κ
2 , no integer value of m satisfies (16), but it is easy to realize that

there actually exist such integer values of m for all H >
√
κ
2 (see Figure 1).

For a fixed integer m ≥ 2, the inequality (16) holds true if and only if
2H√
κ
∈ (cot( π

2m),
√
m2 − 1). As λ �→ �0(λ) is continuous and strictly decreas-

ing, there exists a unique value λ = λm(H) such that �0(λm(H)) = π
m
√
κ
in

the aforesaid range for H. This yields the existence of the family Tm in the
statement, and the limit cases follow from the monotonicity of the family:

• If 2H√
κ
= cot( π

2m), then m = π

2 arctan(
√

κ

2H
)
, and hence �0(

π
2 ) = �0(λ). This

means that λ = π
2 and the surface reduces to a stack of m tangent

H-spheres.
• Likewise, if 2H√

κ
=

√
m2 − 1, then λ = 0, and the surface is an H-

cylinder.

It remains to prove that all these examples are embedded. On the one hand,
observe that �2(

π
2 ) is the radius of the circle of S2(κ) over which the H-

sphere Σ∗
π/2 is a bigraph. This radius is at most a quarter of the length of a

great circle of S2(κ) if H >
√
κ
2 . Using the fact that 0 < �2(λ) < �2(

π
2 ) (see

Corollary 3.7), we deduce that h2 does not reach P1∩P2. On the other hand,
again by Corollary 3.7, we have �1(λ) ≤ �1(0) = �2(0) ≤ �2(λ), where we have
used that Σ∗

0 is invariant by {Φt}t∈R, whence h1 does not intersect P1 ∩ P2

either. This implies that Σλ∩P1∩P2 = ∅ because otherwise the annulus Aλ

would have an interior point lying in P1 ∩ P2; since X identically vanishes
on P1 ∩ P2, this would contradict Corollary 4.3. Once we have ensured Σ∗

λ
is away from P1 ∩ P2, the same argument as in the proof of Proposition 4.4
ensures that Aλ is embedded and lies in the wedge between P1 and P2, so
we are done.

4.4. Maximum height

Since Σ∗
λ is periodic in a horizontal direction, we can ensure the existence

of a point with maximum height over the horizontal plane of symmetry
M2(κ) × {0}. This point must be the vertex 3 in view of Proposition 3.3,
and hence the maximum height is μ2(λ), see Figure 7.
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Proposition 4.5. The maximum height of the horizontal Delaunay surface
Σ∗
λ is strictly increasing as a function of λ.

Proof. We will prove that μ2(λ1) < μ2(λ2) whenever 0 ≤ λ1 < λ2. Using
the 1-parameter group of screw-motions {Φ̃t}, let Σ̃′

λ1
= Φ̃λ2−λ1

(Σ̃λ1
). Then

Σ̃′
λ1

and Σ̃λ2
are Killing graphs and their boundaries are Nitsche contours

over the same domain of R2 for the Killing submersion Π0. Moreover, these
boundaries are ordered as Nitsche contours in the sense of [14, Proposi-
tion 3.8], so Σ̃′

λ1
is located above Σ̃λ2

in the model M(4H2 + κ,H) (alter-

natively, we could argue that Σ̃′
λ1

acts as a barrier in the solution of the

Plateau problem for Γ̃λ2
).

This enables a comparison of the angle functions of Σ̃′
λ1

and Σ̃λ2
along

their common boundary. Equivalently, the angle functions of Σ̃λ1
and Σ̃λ2

are comparable through Φ̃λ2−λ1
(note that this isometry preserves the angle

function), and we get that −1 < νλ1
< νλ2

◦ Φ̃λ2−λ1
< 0, and hence

(17)
√

1− ν2λ1
<

√
1− (νλ2

◦ Φ̃λ2−λ1
)2

on h2((
−π
4 , λ1

2 )). Integrating (17) along this curve and then enlarging the

interval to (−π
4 , λ2

2 ) in the same fashion as the proof of Corollary 3.7, we
deduce that the maximum heights satisfy μ2(λ1) < μ2(λ2).

Remark 4.6. The very same argument as in the proof of Proposition 4.5
shows that μ1(λ) is also a strictly increasing function of λ.
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