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1. Introduction

Let G be a real reductive algebraic group and K ⊂ G a maximal compact
subgroup. Let V be a Harish-Chandra module for (g,K) where g = Lie(G).

Every Harish-Chandra module admits a completion (globalization) to
a representation of G. Such a completion is in general not unique. First
and foremost is the smooth completion V ∞ of moderate growth, due to
Casselman-Wallach, which is unique up to isomorphism, see [5], [23, Sect. 11]
and [2]. Another completion is the G-module V ω of analytic vectors in V ∞

with its natural compact-open topology.
Following Schmid [21, p. 316] we define the minimal completion of V by

the convolution product

Vmin := C∞
c (G) ∗ V ⊂ V ∞

and endow it with a topology as follows: take a finite dimensional subspace
Vf ⊂ V which generates V , and consider the surjective map

C∞
c (G)⊗ Vf � Vmin.

The quotient topology on Vmin does not depend on the choice of the finite
dimensional generating subspace Vf and thus induces a natural quotient
Hausdorff locally convex topology on Vmin. It is inherent in the construction
that Vmin embeds equivariantly and continuously into every completion of
V , hence the terminology.
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Next we review Schmid’s interpretation [21] of the Helgason conjecture.
The conjecture was stated in [9] and first proven in [12]. Let χ be a char-
acter of the algebra D(G/K) of G-invariant differential operators on G/K.
The Helgason conjecture states that the Poisson transform for G/K is an
isomorphism between the space of hyperfunction sections of a line bundle
over the minimal boundary of G/K and the space C∞(G/K)χ of joint eigen-
functions of D(G/K) with eigencharacter χ. Then Schmid’s interpretation
and extension of the Helgason conjecture is

(1.1) Vmin = V ω

as topological vector spaces, for all Harish-Chandra modules V . The equality
(1.1) was stated in [21, Theorem on p. 317] and proved in [13, Theorem 2.12].

The objective of this work is to understand the equality (1.1) quanti-
tatively. For that let G = KAN be an Iwasawa decomposition of G and
G = KAK the associated Cartan decomposition. Let ‖ · ‖ be a Cartan-
Killing norm on g, and define balls AR ⊂ A for any R > 0 by AR = exp(aR)
and aR := {X ∈ a | ‖X‖ ≤ R}. This gives us a family of balls BR :=
KARK ⊂ G, and we write C∞

R (G) ⊂ C∞
c (G) for the subspace of functions

with support in BR. We define

V min
R := C∞

R (G) ∗ V

and endow it with the quotient topology. Note that each of the spaces V min
R

is Fréchet and that

(1.2) Vmin = lim−→
R→∞

V min
R

where the inductive limit is taken in the category of locally convex spaces.
Next we consider the filtration of V ω. We recall that a vector v ∈ V ∞ is

analytic if and only if it is K-analytic, i.e. the restricted orbit map

fv : K → V ∞, k 	→ k · v

is analytic (see Lemma 4.1). Now for any r > 0 we define a K-bi-invariant
domain of KC by KC(r) := K exp(ikr), where

kr = {X ∈ k | ‖X‖ < r}.

We define V ω
r ⊂ V ω to be the subspace of those v for which fv extends

holomorphically to KC(r) and endow it with the Fréchet topology of uniform



A Paley-Wiener theorem for Harish-Chandra modules 691

convergence on compacta in KC(r). We then obtain the filtration of V ω as

an inductive limit in the category of locally convex topological vector spaces

(1.3) V ω = lim−→
r→0

V ω
r .

In this article we prove that the two filtrations (1.2) and (1.3) are continu-

ously sandwiched into each other: we prove the following two inclusions.

Analytic inclusion:

For all r > 0 there exists R = R(r) > 0 with V ω
r ⊂ V min

R .

Geometric inclusion:

For all R > 0 there exists r = r(R) > 0 with V min
R ⊂ V ω

r .

Observe that the equality (1.1) is a consequence already of the analytic

inclusion and the minimality of Vmin. In turn, the geometric inclusion could

be obtained from (1.1) and the Grothendieck factorization theorem [8, Ch. 4,

Sect. 5, Th. 1] (see also [19, Corollary 24.35]), but we give a direct proof.

By a Paley-Wiener type theorem for a Harish-Chandra module V we

understand the existence of the geometric and analytic inclusions together

with bounds on the numbers r(R) and R(r). In this article we prove such a

theorem.

To explain the terminology, we consider the following algebraic type of

Fourier transform

F =
⊕

V ∈HC
FV : C∞

c (G) →
⊕

V ∈HC
Hom(g,K)(V, V

ω),

that is given by

FV φ(v) = φ ∗ v (V ∈ HC, v ∈ V ).

Here HC is the category of Harish-Chandra modules. A complete Paley-

Wiener theorem would be a description of the image under F of the filtration

of C∞
c (G). A step towards that is the localized version, i.e. for a fixed V ∈ HC

a description for the image under FV of the filtration of C∞
c (G) in terms

of the filtration on Hom(g,K)(V, V
ω) induced from V ω. Optimal estimates

of r(R) and R(r) determining the geometric and analytic inclusions are an

interesting open problem, even for groups of rank one.
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1.1. Geometric inclusion

What we termed geometric inclusion has a straightforward relation to a
problem concerning the complex geometry of the G-invariant crown domain
Ξ ⊂ ZC = GC/KC of the attached Riemannian symmetric space Z = G/K.
The crown domain Ξ was first defined in [1] as in (3.1)-(3.2) below and char-
acterized as the largest G-domain Z ⊂ Ξ ⊂ ZC on which G acts properly. If
z0 = KC is the standard base point, then the crown domain can alternatively
be defined as the connected component of the intersection⋂

g∈G
gNCAC · z0 =

⋂
k∈K

kNCAC · z0

which contains z0. The latter can also be rephrased by Ξ ⊂ ZC being the
maximal G-invariant domain containing Z such that for every K-spherical
principal series representation V = Vλ with λ ∈ a∗

C
and non-zero K-spherical

vector vK = vK,λ the orbit map

fλ : G/K → V ∞
λ , gK 	→ πλ(g)vK,λ

extends as a holomorphic map to Ξ → V ∞
λ . (See [18] and [17] for the fact

that every fλ extends holomorphically to Ξ, and [16, Sect. 4] for the fact
that Ξ is maximal with respect to this property.)

Given R > 0 we define an Ad(K)-invariant open subset in k by

k(R) := {X ∈ k | exp(iX)BR · z0 ⊂ Ξ}0,

with the subscript indicating the connected component which contains 0 ∈ k.

Proposition 1.1. The following assertions hold.

(i) For any r > 0 with kr ⊂ k(R) we have a continuous embedding

V min
R ⊂ V ω

r .

(ii) There exist constants c, C > 0 so that

(1.4) kr ⊂ k(R) if r < Ce−cR.

Assertion (i) is Proposition 5.1; assertion (ii) is Proposition 3.1.
It is an interesting problem to determine k(R) explicitly, and we do so

for two examples in Appendix A. The results in the appendix suggest that
the bound (1.4) is sharp modulo the constants c, C > 0.
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1.2. Analytic inclusion

We now address the more interesting and much more difficult part, namely
the analytic inclusion, i.e. to find for given r > 0 an R = R(r) > 0 such
that V ω

r ⊂ V min
R(r). The main theorem of this paper is (see Theorem 10.1 with

Remark 10.2):

Theorem 1.2. Let G be a real reductive algebraic group and V be a Harish-
Chandra module. Then there exist constants c > 0 and R0 > 0, only depend-
ing on G, with the following property: Given r > 0, then for all R > R0

satisfying

(logR)2

R2
< cr

one has a continuous embedding

V ω
r ⊂ V min

R .

As a corollary of this theorem we obtain Schmid’s identity (1.1), and we
can view Theorem 1.2 as a new quantitative version of it. In Appendix B
we give a short derivation of the Helgason conjecture from (1.1). Finally, in
Appendix C we give an application of our quantitative version to the factor-
ization of analytic eigenfunctions in terms of the Harish-Chandra spherical
function.

Let us now explain the idea of the proof. Standard techniques reduce
matters quickly to the case when V = Vλ is a principal series for which the
K-spherical vector is cyclic (see Lemma 4.4). Our approach is based on the
Paley-Wiener theorem of Helgason for the Fourier transform on G/K. Let
us briefly recall the statement. Let PW(a∗

C
, C∞(K/M))R be the C∞(K/M)-

valued Paley-Wiener space of holomorphic functions on the complexification
a∗
C
of the Euclidean space a with growth rate R, see (6.1) for the formal

definition. We realize Vλ in the compact picture, where V ∞
λ = C∞(K/M)

as K-modules, and denote by vK,λ = 1K/M the constant indicator function
of K/M . It is then easy to see that the spherical Fourier transform

F : C∞
c (G) → O(a∗C, C

∞(K/M)), f 	→ (λ 	→ πλ(f)vK,λ)

satisfies

F(C∞
R (G)) ⊂ PW(a∗C, C

∞(K/M))R.

Let W be the Weyl group of Σ(g, a). For w ∈ W we denote by

Jw,λ : V ∞
λ 
 C∞(K/M) → V ∞

wλ 
 C∞(K/M)
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the normalized (i.e. fixing 1K/M ) intertwining operator and recall that λ 	→
Jw,λ is meromorphic. With that we obtain an action of W on the space of

C∞(K/M)-valued meromorphic functions,

W ×M(a∗C, C
∞(K/M)) → M(a∗C, C

∞(K/M)), (w, f) 	→ w ◦ f,

(w ◦ f)(λ) = Jw,w−1λf(w
−1λ) (λ ∈ a∗C).

In this framework Helgason’s Paley-Wiener theorem [10] asserts that

F(C∞
R (G)) = PWW (a∗C, C

∞(K/M))R,

where the subscript W refers to invariant functions for the action defined

above. However, from the geometric inclusion it follows that F(C∞
R (G))(λ) ⊂

C∞
R (G) ∗ Vλ ⊂ V ω

λ . Thus we observe that the intertwining relations force

analyticity, i.e. we have

PWW (a∗C, C
∞(K/M))R = PWW (a∗C, C

ω(K/M))R,

and this observation was the motivation for our approach to the analytic

inclusion.

Fix λ0 ∈ a∗
C
such that Vλ0

is cyclic for the K-spherical vector. We ex-

plicitly construct for any given analytic vector v ∈ V ω
λ0
(r) a holomorphic

function

fv : a∗C → C∞(K/M)

such that its average

A(fv) :=
∑
w∈W

w ◦ fv

lies in the Paley-Wiener space for a certain R > 0 and such that A(fv)(λ0) =

v. The Paley-Wiener theorem then yields that v ∈ C∞
R (G)∗Vλ0

, proving the

theorem.

We point out that our proof is in essence an SL(2,R)-proof. More pre-

cisely, in Section 8 we provide a variety of estimates for products of Γ-

functions, which lie at the core of the construction for G = SL(2,R). Given

the framework provided by Kostant in [14], the general case of a reductive

group G is then a consequence of the one-variable estimates in Section 8.



A Paley-Wiener theorem for Harish-Chandra modules 695

2. Preliminaries

Let G be the real points of a connected algebraic reductive group defined
over R and let g be its Lie algebra. Subgroups of G are denoted by capitals.
The corresponding subalgebras are denoted by the corresponding fraktur
letter. The unitary dual of a subgroup S of G we denote by Ŝ.

We denote by gC = g ⊗R C the complexification of g and by GC the
group of complex points. We fix a Cartan involution θ and write K for the
maximal compact subgroup that is fixed by θ. We also write θ for the derived
automorphism of g. We write KC for the complexification of K, i.e. KC is
the subgroup of GC consisting of the fixed points for the analytic extension
of θ.

The Cartan involution induces the infinitesimal Cartan decomposition
g = k ⊕ s. Let a ⊂ s be a maximal abelian subspace. Diagonalize g under
ad a to obtain the familiar root space decomposition

g = a⊕m⊕
⊕
α∈Σ

gα,

with m = zk(a) as usual. Let A be the connected subgroup of G with Lie
algebra a and let M = ZK(a). We fix an Iwasawa decomposition G = KAN
of G. We define the projections k : G → K and a : G → A by

g ∈ k(g)a(g)N (g ∈ G).

The set of restricted roots of a in g we denote by Σ and the positive system
determined by the Iwasawa decomposition by Σ+. We write W for the Weyl
group of Σ.

Let κ be the Killing form on g and let κ̃ be a non-degenerate Ad(G)-
invariant symmetric bilinear form on g such that its restriction to [g, g]
coincides with the restriction of κ and −κ̃( · , θ · ) is positive definite. We
write ‖ · ‖ for the corresponding norm on g.

3. The complex crown of a Riemannian symmetric space

The Riemannian symmetric space Z = G/K can be realized as a totally real
subvariety of the Stein symmetric space ZC = GC/KC:

Z = G/K ↪→ ZC, gK 	→ gKC.

In the following we view Z ⊂ ZC and write z0 = K ∈ Z for the standard
base point.
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We define the subgroups AC = exp(aC) and NC = exp(nC) of GC. We
note that NCACKC is a Zariski-open subset of GC. The maximal G ×KC-
invariant domain in GC containing e and contained in NCACKC is given
by

(3.1) Ξ̃ = G exp(iΩ)KC,

where Ω = {Y ∈ a | (∀α ∈ Σ)α(Y ) < π/2}. Taking right cosets by KC, we
obtain the G-domain

(3.2) Ξ := Ξ̃/KC ⊂ ZC = GC/KC,

commonly referred to as the crown domain. See [7] for the origin of the
notion, [17, Cor. 3.3] for the inclusion Ξ̃ ⊂ NCACKC and [16, Th. 4.3] for
the maximality.

We recall that Ξ is a contractible space. To be more precise, let Ω̂ =
Ad(K)Ω and note that Ω̂ is an open convex subset of s. As a consequence
of the Kostant convexity theorem it satisfies Ω̂∩ a = Ω and paΩ̂ = Ω, where
pa is the orthogonal projection s → a. The fiber map

G×K Ω̂ → Ξ; [g,X] 	→ g exp(iX) ·KC,

is a diffeomorphism by [1, Prop. 4, 5 and 7]. Since G/K 
 s and Ω̂ are both
contractible, also Ξ is contractible. In particular, Ξ is simply connected.

We denote by a : G → A the middle projection of the Iwasawa decom-
position G = KAN and note that a extends holomorphically to

Ξ̃−1 := {g−1 : g ∈ Ξ̃}.

Here the simply connectedness of Ξ plays a role to achieve a : Ξ̃−1 → AC

uniquely: A priori a is only defined as a map to AC/T2, where T2 := AC∩KC

is the 2-torsion subgroup of group AC. We denote the extension by the same
symbol.

Likewise one defines k : G → K, which extends holomorphically to Ξ̃−1

as well.
For R > 0 we define a ball in A by

AR := {exp(Y ) | Y ∈ a, ‖Y ‖ ≤ R}.

Related to that we define the ball BR ⊂ G by BR = KARK. We consider
the following subset of k:

(3.3) k(R) := {Y ∈ k | exp(iY )BR ⊂ Ξ̃}0.
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Note that k(R) is open, because BR ⊂ G is compact. Moreover, k(R) is

Ad(K)-invariant. Hence it is uniquely determined by its intersection with a

Cartan subalgebra t of k, i.e. k(R) is determined by

t(R) := t ∩ k(R).

Actually, it is sufficient to consider the intersection with a closed chamber

of t, say t+:

t(R)+ := t+ ∩ k(R).

For r > 0 let kr := {X ∈ k | ‖X‖ < r} and define the domains in KC

KC(r) := K exp(ikr).

Note that KC(r) is K-biinvariant, as kr is Ad(K)-invariant. Note further

that KC(r) =
(
KC(r)

)−1
, since kr = −kr.

In general it is an interesting problem to determine k(R) explicitly. We

do this in Appendix A for two cases, namely g = so(1, n) and g = su(1, 1),

the latter being treated in a way so that the generalization to Hermitian

symmetric spaces becomes apparent.

As a precise description of k(R) may be difficult to obtain in general,

one could instead determine the best possible r = r(R) > 0 with kr ⊂ k(R).

The following proposition gives a first bound which, given the results in

Appendix A, appears to be sharp up to constants.

Proposition 3.1. There exist constants C, c > 0 such that for all r,R > 0

one has

kr ⊂ k(R) (r < Ce−cR).

Proof. Let G = GL(n,R). We consider the standard Iwasawa decomposition

of G, i.e. K = O(n,R), A = diag(n,R>0) and N is the group of unipotent

upper triangular matrices. It suffices to consider this case, as any real reduc-

tive group can be embedded into G = GL(n,R) with compatible Iwasawa

decompositions. Here we remark that the possible incompatibility of the

Cartan-Killing norms is taken care of by the presence of the constants C

and c.

We recall that

Z = G/K → Sym(n,R)+, gK 	→ ggt,
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identifies Z with the positive definite symmetric matrices. In this matrix
picture ZC is identified with Sym(n,C)det�=0, the invertible symmetric ma-
trices. In case n ≥ 3, the crown domain Ξ ⊂ Sym(n,C)det �=0 is not explicitly
known. However, Ξ contains the so-called square root domain

(3.4) Ξ
1

2 = Sym(n,R)+ + iSym(n,R) ⊂ Sym(n,C)det�=0,

see [18, Sect. 8]. Let m =
[
n
2

]
and define for x ∈ Rm

D(x) =

⎛⎜⎝D1(x)
. . .

Dm(x)

⎞⎟⎠ ,

with

Dj(x) =

(
cosxj − sinxj
sinxj cosxj

)
.

In case n is even we have D(x) ∈ O(n,R), and in case of n odd we view
D(x) ∈ O(n,R) by means of the embedding

D(x) 	→
(
D(x)

1

)
.

Our choice of maximal torus T ⊂ K then is T = {D(x) | x ∈ Rm}.
Let now R > 0 and Y ∈ Sym(n,R)+ with spec(Y ) ⊂ [e−R, eR]. We then

seek an r > 0 such that for all x ∈ Rm with ‖x‖ < r and Y as above we

have D(ix)Y D(ix)t ∈ Ξ
1

2 . If we decompose D(ix) = U(x) + iV (x) into real
and imaginary parts, this amounts to

U(x)Y U(x)− V (x)Y V (x)t ∈ Sym(n,R)+,

by (3.4). With

S(x) =

⎛⎜⎜⎜⎜⎜⎝

(
0 − tanhx1

tanhx1 0

)
. . . (

0 − tanhxm
tanhxm 0

)
⎞⎟⎟⎟⎟⎟⎠

we can rewrite this as

(3.5) Y − S(x)Y S(x)t ∈ Sym(n,R)+.



A Paley-Wiener theorem for Harish-Chandra modules 699

Now note that

‖S(x)Y S(x)t‖op ≤ [tanh r]2‖Y ‖op ≤ [tanh r]2eR.

On the other hand, the smallest eigenvalue of Y is at least e−R. Hence (3.5)
is satisfied, provided [tanh r]2e2R < 1. As tanh r ≤ r, (3.5) is implied by
r2 < e−2R, and the assertion of the proposition follows.

4. Generalities on the filtration of V ω

4.1. Filtration by holomorphic extension

Let V be a Harish-Chandra module. The space V ω is defined as the space
of all analytic vectors in V ∞, i.e. V ω := (V ∞)ω, equipped with its nat-
ural compact-open topology. In the following we provide various standard
descriptions of V ω.

The first one is in terms of holomorphic extensions. For r > 0 we define

V ω
r := {v ∈ V ∞ | K � k 	→ k · v ∈ V ∞ extends holomorphically to KC(r)}

and endow this space with the Fréchet topology of uniform convergence on
compacta in KC(r).

Lemma 4.1. For any Harish-Chandra module V every K-analytic vector
is analytic. Moreover,

V ω = lim−→
r→0

V ω
r

as locally convex topological vector spaces.

Proof. From the definition it is easily checked that lim−→r→0
V ω
r describes the

space of analytic vectors for the representation on V ∞ restricted to K with
the topology of uniform convergence on K.

We recall the notion of Δ-analytic vectors from [6, Sect. 5] and that the
space of Δ-analytic vectors coincides with the space of analytic vectors for
any F-representation of a Lie group, and in particular for V ∞. Let C be the
Casimir element and let ΔK and ΔG be the standard Laplace elements in
U(k) and U(g), respectively. Then ΔG = C + 2ΔK . As ΔG differs from 2ΔK

by C, which acts finitely on V , it follows that any ΔK-analytic vector is
ΔG-analytic, and vice versa. This proves the first assertion.

The identity map from the space of G-analytic vectors to the space of
K-analytic vectors is continuous. The second assertion now follows from the
open mapping theorem (see [19, Theorem 24.30 and Remark 24.36]).
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4.2. Filtration by K-type decay

The next description of analytic vectors is by exponential decay of K-types.
A norm p on V is called G-continuous provided that the completion Vp of the
normed space (V, p) gives rise to a Banach-representation of G. We choose
a G-continuous norm p on V . Let V ∞ be the up to isomorphism unique
smooth completion of V with moderate growth, see [5], [23, Ch. 11] or [2].
We write a vector v ∈ V ∞ as a convergent sum

v =
∑
τ∈ ̂K

vτ ,

where vτ is contained in the K-isotypical component V [τ ] of V . For any
τ ∈ K̂ we denote by |τ | the norm of the highest weight of τ .

For r > 0 let us define

V ω(r) := {v ∈ V ∞ | (∀0 < r′ < r)
∑
τ∈ ̂K

er
′|τ |p(vτ ) < ∞}

and endow it with the Fréchet topology induced by the seminorms

v 	→
∑
τ∈ ̂K

er
′|τ |p(vτ ) (0 < r′ < r).

The space V ω(r) is independent of the choice of the G-continuous norm
p, as all these norms are polynomially comparable on the K-types, i.e. given
two G continuous norms p and q on V there exists a constant C > 0, so that
p|V [τ ] ≤ C(1 + |τ |)Cq|V [τ ] for all τ ∈ K̂, see [2, Th. 1.1].

Lemma 4.2. For every Harish-Chandra module V we have

V ω
r = V ω(r) (r > 0)

as topological vector spaces.

Proof. Let r > 0. We first prove the inclusion V ω(r) ⊂ V ω
r . For this let

v ∈ V ω(r) and 0 < r′ < r. Recall that KC(r
′) = K exp(itr′)K with tr′ =

{X ∈ t | ‖X‖ < r′}. Since the space V ω(r) is independent of the choice
of the G-continuous norm p, we may assume that p is Hermitian and K-
unitary. Any element t ∈ exp(itr′) acts semisimply on V [τ ] with eigenvalues
bounded by er

′|τ |. As p is K-unitary, it follows that

(4.1) sup
k∈KC(r′)

p(k · vτ ) ≤ er
′|τ |p(vτ ) (τ ∈ K̂).
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We recall that Vp is the Hilbert completion of V with respect to p and that

Vp is a Hilbert representation of G. Because v ∈ V ω(r), inequality (4.1) and

the fact that dimV [τ ] is polynomially bounded in |τ | imply that the orbit

map

fv : K → Vp, k 	→ k · v,

extends holomorphically to KC(r
′). Since this holds for all r′ < r, the func-

tion fv in fact extends holomorphically to KC(r). The image of fv is not

only in Vp, but in the K-smooth vectors of Vp. Since the Fréchet spaces of

K-smooth and G-smooth vectors in Vp are identical (see [2, Corollary 3.10]),

we obtain that fv is a holomorphic map with values in V ∞
p = V ∞. Thus we

have shown that V ω(r) ⊂ V ω
r . The embedding is continuous in view of (4.1).

For the converse inclusion V ω
r ⊂ V ω(r), we note that for an irreducible

Harish-Chandra module V the representation V ∞ can be embedded into the

space of smooth vectors of a minimal principal series module Vσ,λ. The latter

can be realized as the space of smooth functions f : G → Vσ satisfying

f(gman) = a−iλ−ρσ(m)−1f(g) (g ∈ G,man ∈ MAN).

Note that V ∞
σ,λ is naturally a G-module, with G acting on V ∞

σ,λ by left dis-

placements in the arguments, in symbols πσ,λ(g)(f) = f(g−1·). We write H
for C∞(K) equipped with the G-representation πλ given by(

πλ(g)f
)
(k) = a(g−1k)−iλ−ρf(k

(
g−1k)

) (
f ∈ H, g ∈ G, k ∈ K

)
.

We may embed V ∞ equivariantly into H⊗ Vσ. It therefore suffices to prove

that Hω
r ⊂ Hω(r).

We let p be the L2-norm on H, which is G-continuous. Note that K acts

also from the right on smooth functions on K, and therefore H carries a

representation of K ×K. From now on we consider H as a K ×K module.

For 0 < r′ < r we define a K ×K-invariant Hermitian norm on Hω
r by

qr′(v) :=

[∫
KC(r′)

|v(k)|2 dμ(k)
] 1

2

(v ∈ Hω
r ).

Here dμ is the measure on KC which in the polar decomposition KC =

K exp(it+)K is given by

dμ(k1 exp(it)k2) = dk1 dt dk2,
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with dk1,2 the Haar measure on K and dt the Lebesgue measure on t+. For

τ ∈ K̂ we define H[τ ] to be the τ⊗τ∨-isotypical component of H and denote

the restriction of p and qr′ to H[τ ] by pτ and qr′,τ , respectively. Since H[τ ] is

K ×K-irreducible, there exists a constant cr′,τ > 0, so that qr′,τ = cr′,τ · pτ .
We will estimate the constant from below by estimating qr′,τ (v) for a

matrix coefficient

v = mw1,w2
: k 	→ 〈w1, τ(k)w2〉,

where w1, w2 ∈ Vτ . Using the Schur-Weyl orthogonality relations we obtain

qr′,τ (v)
2 =

‖w1‖2
dim τ

∫
K

∫
t
+

r′

‖τ
(
exp(it)k

)
w2‖2 dk dt.

Next we pick an orthonormal basis of weight vectors v1, . . . , vn ∈ Vτ and

expand the integrand. We thus obtain that the right-hand side is equal to

‖w1‖2
dim τ

n∑
j=1

∫
K

∫
t
+

r′

|〈τ(k)w2, τ(exp(it))vj〉|2 dk dt.

Now we apply Schur-Weyl once more. This yields

‖w1‖2‖w2‖2
dim(τ)2

n∑
j=1

∫
t
+

r′

‖τ(exp(it))vj‖2 dt.

Again by Schur-Weyl we note

‖w1‖2‖w2‖2
dim(τ)

= pτ (v)
2.

Let μτ be the highest weight of τ , and assume that v1 is a highest

weight vector with weight μτ . Then for all r′′ < r′ there exists a constant c,

independent of τ , so that

qr′,τ (v)
2 ≥ pτ (v)

2

dim(τ)

∫
t
+

r′

e2μτ (it) dt ≥ c2e2‖μτ‖r′′pτ (v)
2.

As ‖μτ‖ = |τ |, we conclude that for every r′′ < r′ there exists a constant

cr′′ > 0, so that

cr′,τ ≥ cr′′e
r′′|τ | (τ ∈ K̂).
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If v =
∑

τ∈ ̂K vτ ∈ Hω
r , then for all 0 < r′′ < r′ < r

∑
τ∈ ̂K

e|τ |r
′′
pτ (vτ ) ≤

1

cr′′

∑
τ∈ ̂K

qr′,τ (vτ ) =
1

cr′′
qr′(v) < ∞.

It follows that v ∈ Hω
r implies v ∈ Hω(r). Moreover, the embedding is

continuous.

4.3. Reduction to spherical principal series

It is our intention to show for a given Harish-Chandra module V and r > 0
that there is a continuous embedding

V ω(r) ⊂ V min
R

for some R = R(r) > 0. For λ ∈ a∗
C
we write Vλ for the spherical principal

series representation IndGP (Ciλ). We will first reduce the problem to the case
in which V = Vλ for some λ ∈ a∗

C
.

Every irreducible Harish-Chandra module V is a quotient

(4.2) Vλ ⊗ F � V

for some spherical principal series Vλ and finite dimensional representation
F of G, see [22, Sect. 2]. We first recall how this arises. By the Casselman
embedding theorem every irreducible Harish-Chandra module V is a quo-
tient of some minimal principal series module Vσ,λ = IndGP (Vσ ⊗ Ciλ) with

(σ, Vσ) ∈ M̂ and λ ∈ a∗
C
, i.e.

Vσ,λ � V.

Now, by op. cit. the M -representation (σ, Vσ) can be realized as the
quotient F/nF of a finite dimensional module F of G, i.e. Vσ = F/nF . By
the Mackey isomorphism we have

Vλ ⊗ F = IndGP (Ciλ)⊗ F 
 IndGP (Ciλ ⊗ F |P ).

Hence the P -morphism Ciλ ⊗ F |P → Ciλ ⊗ F/nF 
 Ciλ ⊗ Vσ gives rise to
the chain of quotients

Vλ ⊗ F � Vσ,λ � V.

This proves (4.2).
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Lemma 4.3. Let λ ∈ a∗
C
and F a finite dimensional representation of G.

The following assertions hold.

(i) Let r,R > 0. If V ω
λ (r) embeds continuously into C∞

R (G) ∗Vλ, then also
(Vλ ⊗ F )ω(r) embeds continuously into C∞

R (G) ∗ (Vλ ⊗ F ).
(ii) Let V be a Harish-Chandra module so that there exists a quotient map

� : Vλ ⊗ F → V . Then for every r > 0

V ω(r) = �
(
(Vλ ⊗ F )ω(r)

)
,

where the symbol � is also used for its the globalization to (Vλ ⊗F )∞.

Proof. First note that (Vλ⊗F )ω(r) = V ω
λ (r)⊗F , as F is in fact aGC-module.

To prove (i), it thus suffices to show that
(
C∞
R (G) ∗ Vλ

)
⊗ F continuously

embeds into C∞
R (G)∗ (Vλ⊗F ). The proof for this is analogous to [2, Lemma

9.4].
We move on to (ii). Let p be a K-invariant G-continuous Hermitian

norm on Vλ ⊗ F . Let q be the corresponding quotient norm on V . Then
q is G-continuous and K-invariant. Note that the definition of V ω(r) does
not depend on the choice of the G-continuous norm on V . Assertion (ii) now
follows, since V ω(r) as a K-module is a direct summand of (Vλ⊗F )ω(r).

4.4. Kostant’s condition

We would like to be more restrictive on the parameter λ of the quotient
Vλ ⊗ F � V .

Lemma 4.4. Every irreducible Harish-Chandra module V admits a quotient
Vλ ⊗ F � V , where F is an irreducible finite dimensional representation of
G and λ ∈ a∗

C
satisfies the Kostant condition

(4.3) Re(iλ)(α∨) ≥ 0 (α ∈ Σ+).

If (4.3) is satisfied, then Vλ = U(g)vK,λ is U(g)-cyclic for the K-fixed vector
vK,λ.

Proof. In view of (4.2), V admits a quotient Vλ⊗F � V , where F is a finite
dimensional representation of G. Let F ′ be a K-spherical finite dimensional
representation of lowest weight −μ ∈ a∗, where μ is dominant. Then M acts
trivially on the MA-module F ′/nF ′ 
 C−μ with A-weight −μ. In particular,
we obtain a quotient

Vλ−iμ ⊗ F ′ � Vλ.
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It follows that V admits a quotient Vλ−iμ⊗F ⊗F ′ � V . The first assertion
now follows by taking μ sufficiently large. The last assertion is [14, Th. 8].

5. The geometric inclusion

The goal of this section is to show that V min
R = C∞

R (G)∗V embeds into V ω(r)
for any r > 0 with kr ⊂ k(R). This reduces to the case where V = Vλ is the
spherical principal series representation with parameter λ ∈ a∗

C
. Elements

in V ∞
λ are uniquely determined by their restriction to K. This gives rise to

the compact model, in which

• V ∞
λ = C∞(K/M),

• V ω
λ = Cω(K/M),

• Vλ = C[KC/MC]

as K-modules. The main result of this section is the following.

Proposition 5.1. Let V be a Harish-Chandra module, and R > 0. Let r be
such that kr ⊂ k(R). Then we have the continuous embedding

V min
R ⊂ V ω(r).

Proof. We first reduce to the case where V = Vλ is a spherical principal
series. We recall from Section 4.3 that V is a quotient of some Vλ ⊗ F ,
with F a finite dimensional representation. Now all matrix coefficients of F
extend holomorphically to GC, and this completes the reduction to V = Vλ.

We work in the compact model of Vλ. Let v = π(f)w for some w ∈ V
and f ∈ C∞

R (G). Then we note that for k ∈ K

(5.1) v(k) = π(f)(w)(k) =

∫
BR

f(g)w(g−1k) dg.

Observe that w(g−1k) = w(k(g−1k))a(g−1k)−iλ−ρ. As w ∈ C[KC/MC], w is
a holomorphic function on KC/MC. Thus with BRKC(r) ⊂ Ξ̃−1 ⊂ KCACNC,
we conclude that a and k are defined on BRKC(r) and holomorphic. Thus
v extends to the holomorphic function on KC(r) given by (5.1). This shows
the continuous embedding for this case.

6. Preliminaries on the analytic inclusion

6.1. K-type expansion of functions on K/M

In the following we view functions on K/M as right M -invariant functions
on K. For any τ ∈ K̂ we fix a model (finite dimensional) Hilbert space Vτ .
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For τ ∈ K̂ we write τ∨ for the dual representation. We then obtain for each
τ ∈ K̂ a K ×K-equivariant realization of Vτ ⊗ Vτ∨ as polynomial functions
on K:

Vτ ⊗ Vτ∨ → C[KC], v ⊗ v∨ 	→ mv,v∨ ; mv,v∨(k) := v∨(k−1v),

where K × K acts on C[KC] by the left-right regular representation. We
arrive at the K ×K-isomorphism of K ×K-modules

C[KC] =
⊕
τ∈ ̂K

Vτ ⊗ Vτ∨ ,

and taking right M -invariants at the K-isomorphism of K-modules

C[KC/MC] =
⊕

τ∈ ̂KM

Vτ ⊗ V M
τ∨ ,

where K̂M ⊂ K̂ is the M -spherical part of K̂. Fix τ and identify Vτ∨ 
 V ∗
τ .

In particular, the unitary norm on Vτ induces the unitary dual norm on Vτ∨

and we write ‖ ·‖τ for the Hilbert-Schmidt norm on Vτ ⊗Vτ∨ . We recall that
‖ · ‖τ is independent of the particular unitary norm on Vτ (which is unique
up to positive scalar by Schur’s Lemma) and is thus intrinsically defined.
Any function on f ∈ C[KC] we now expand into K-types f =

∑
τ∈ ̂K fτ with

fτ ∈ Vτ ⊗Vτ∨ . With that we record the well known Fourier characterizations
of C∞(K) and Cω(K) as

C∞(K) = {f =
∑
τ∈ ̂K

fτ | (∀N ∈ N)
∑
τ∈ ̂K

(1 + |τ |)N‖fτ‖τ < ∞}

and

Cω(K) = {f =
∑
τ∈ ̂K

fτ | (∃r > 0)
∑
τ∈ ̂K

er|τ |‖fτ‖τ < ∞}.

Taking right M -invariants, we obtain corresponding Fourier characteriza-
tions of C∞(K/M) and Cω(K/M).

6.2. The Helgason Paley-Wiener theorem

We begin with a short review of the Fourier transform on Z = G/K and re-
collect some notation. For λ ∈ a∗

C
we denote by Vλ the Harish-Chandra mod-

ule of theK-spherical principal series with parameter λ as defined before. Re-
call that V ∞

λ = C∞(K/M) as K-module. We denote by vK,λ = 1K/M ∈ Vλ

the constant function.
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For everyR > 0 we let PW(a∗
C
, C∞(K/M))R be the space of holomorphic

functions f : a∗
C
→ C∞(K/M), so that for every continuous semi-norm q on

C∞(K/M) and N ∈ N one has

(6.1) sup
λ∈a∗

C

q(f(λ))(1 + ‖λ‖)Ne−R‖ Imλ‖ < ∞.

Further we denote

PW(a∗C, C
∞(K/M)) =

⋃
R>0

PW(a∗C, C
∞(K/M))R

and refer to it as the Paley-Wiener space on a∗
C
with values in C∞(K/M).

The Fourier transform on Z is then defined by

F : C∞
c (Z) → PW(a∗C, C

∞(K/M)),

f 	→ F(f); F(f)(λ) := πλ(f)vK,λ.

Note that

F(f)(λ)(kM) =

∫
Z
f(gK)a(g−1k)−iλ−ρ d(gK) (k ∈ K).

It is convenient to write F(f)(λ, kM) for F(f)(λ)(kM).
In order to describe the image of F , we recall the Weyl group W of

the restricted root system Σ = Σ(a, g). Attached to w ∈ W there is a
meromorphic family of standard intertwining operators

Iw,λ : V ∞
λ → V ∞

wλ.

Further we recall that Iw,λ(vK,λ) = cw(λ)vK,wλ for a meromorphic and
explicit function cw (w-partial Harish-Chandra c-function, calculated by
Gindikin-Karpelevic). We define the normalized intertwining operator by
Jw,λ := 1

cw(λ)Iw,λ. We recall that λ 	→ Jw,λ is meromorphic on a∗
C
, and

holomorphic on an open neighborhood of the cone

{λ ∈ a∗C : Re
(
iλ(α∨)

)
≥ 0 for all α ∈ Σ+ ∩ w−1Σ−}.

It is clear from the definitions that every Fourier transform φ = F(f) satisfies
the intertwining relations

(6.2) Jw,λ(φ(λ)) = φ(wλ) (w ∈ W,λ ∈ a∗C).
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Let PWW (a∗
C
, C∞(K/M)) be the subspace of PW(a∗

C
, C∞(K/M)) of

Paley-Wiener functions that satisfy all intertwining relations (6.2). Then a
slight reformulation of Helgason’s Paley-Wiener theorem [10, Theorem 8.3]
states that

(6.3) F(C∞
R (Z)) = PWW (a∗C, C

∞(K/M))R (R > 0).

See [20, Lemma 2.2].

6.3. Intertwining relations on K-types

For any τ ∈ K̂ and λ ∈ a∗
C
we have

(6.4) Vλ[τ ] = C∞(K/M)[τ ] = Vτ ⊗ V M
τ∨

as K-modules, where Vτ∨ = V ∗
τ . We denote by Jw,λ[τ ] the restriction of Jw,λ

to Vλ[τ ] and observe that Jw,λ[τ ] : Vλ[τ ] → Vwλ[τ ]. Within the identification
(6.4) we then obtain

Jw,λ[τ ] ∈ EndK(Vτ ⊗ V M
τ∨ ) 
 End(V M

τ∨ ).

Next we recall Kostant’s factorization of Jw,λ[τ ]. In general, if e ⊂ g

is a subspace, we denote by S(e) the symmetric algebra and by S	(e) the
image of S(e) in U(g) under the symmetrization map. From the Cartan
decomposition g = s + k and the PBW-theorem we thus obtain the direct
sum decomposition

U(g) = S	(s)⊕ U(g)k.

Next, according to [15, Th. 15] we have S(s) = H(s)⊗I(s), where H(s) de-
notes the harmonic polynomials on s∗

C
and I(s) the K-invariant polynomials

on s∗
C
. We derive the refined decomposition

(6.5) U(g) = H	(s)I	(s)⊕ U(g)k.

Consequently we have for all λ ∈ a∗
C
that

dπλ(U(g))vK,λ = dπλ(H	(s))vK,λ.

We recall from Lemma 4.4 that in case λ satisfies the Kostant condition
(4.3), the vector vK,λ is cyclic in Vλ for U(g). In general we have for each

τ ∈ K̂ the K-equivariant maps

Qτ (λ) : H	(s)[τ ] → Vλ[τ ] = Vτ ⊗ V M
τ∨ , D 	→ dπλ(D)vK,λ,
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which are isomorphisms if λ satisfies (4.3), see [14, Cor. to Prop. 4 and
Cor. to Th. 7]. (In [14] the polynomials Qτ are denoted by P τ . Compared
to the polynomials defined in [11, p. 238] there is a sign difference in the
argument.)

For fixed τ ∈ K̂M we recall that the assignment

a∗C � λ 	→ Qτ (λ) ∈ HomK(H	(s)[τ ], Vτ ⊗ V M
τ∨ )

is polynomial. Since Jw,λvK,λ = vK,wλ, we obtain the relation

Jw,λ[τ ] ◦Qτ (λ) = Qτ (wλ),

and as a consequence Kostant’s factorization

(6.6) Jw,λ[τ ] = Qτ (wλ) ◦Qτ (λ)
−1,

which exhibits Jw,λ[τ ] for fixed τ ∈ K̂M as a rational vector-valued function

a∗C � λ 	→ Jw,λ[τ ] ∈ End(V M
τ∨ ).

Remark 6.1. To understand the polynomial dependence of λ 	→ Qτ (λ)
better, it proves useful to introduce a normalization. Set

Q̃τ (λ) := Qτ (λ) ◦Qτ (0)
−1 ∈ EndK(Vτ ⊗ V M

τ∨ ) 
 End(V M
τ∨ ).

Hence Q̃τ (0) = id and we can, upon fixing a basis of the vector space V M
τ∨ ,

view Q̃τ as a polynomial function on a∗
C
with values in the space of l(τ)×l(τ)-

matrices, where l(τ) := dimV M
τ∨ .

Remark 6.2. In case G has real rank one, it was shown by Kostant in [14,
Theorem 6] that V M

τ∨ is one-dimensional for all τ ∈ K̂M . In this case, for

fixed τ ∈ K̂M the map

λ 	→ Q̃τ (λ)

is an explicitly computable polynomial in λ (see [11, Ch. III, Cor. 11.3]),
and consequently λ 	→ Jw,λ[τ ] is a scalar-valued rational function.

Specifically, let now G = SL(2,R) with K = SO(2,R) and A as before.
We identify K̂M with Z and a∗

C
with C via C � λ 	→ λρ. Then for n = τ ∈ Z

Q̃n(λ) =
Γ
(
1
2(iλ+ ρ)(α∨) + |n|

)
Γ
(
1
2ρ(α

∨)
)

Γ
(
1
2(iλ+ ρ)(α∨)

)
Γ
(
1
2ρ(α

∨) + |n|
) =

Γ
(
1
2(iλ+ 1) + |n|

)
Γ
(
1
2

)
Γ
(
1
2(iλ+ 1)

)
Γ
(
1
2 + |n|

)
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=
(1 + iλ)(3 + iλ) · . . . · (2|n| − 1 + iλ)

1 · 3 · . . . · (2|n| − 1)
.

Then, for all n ∈ Z = K̂M and λ ∈ C = a∗
C
and w ∈ W the non trivial

element, the map Jw,λ[n] is given by the scalar

Jw,λ[n] =
(1− iλ)(3− iλ) · . . . · (2|n| − 1− iλ)

(1 + iλ)(3 + iλ) · . . . · (2|n| − 1 + iλ)
.

7. Strategy of proof

In this section we describe the general strategy of proof for the analytic

inclusion. The approach is simpler when G/K has rank one, and therefore

we give a separate proof for that. The strategy for rank one is described

through the following Ansatz 1. The general case is treated in Ansatz 2.

7.1. Ansatz 1

We consider a spherical principal series module Vλ0
, where λ0 satisfies (4.3).

Let r > 0 and v ∈ V ω
λ0
(r), i.e. v =

∑
τ∈ ̂KM

vτ with vτ ∈ Vλ0
[τ ] = Vτ ⊗ V M

τ∨ ,

so that ∑
τ∈ ̂KM

er
′|τ |‖vτ‖τ < ∞ (0 < r′ < r).

We make the following ansatz. First, let

F (λ) = Fv(λ) =
∑

τ∈ ̂KM

uτ (λ),

where for each τ ∈ K̂M

a∗C � λ → uτ (λ) ∈ Vτ ⊗ V M
τ∨

is a certain holomorphic function such that uτ (λ0) = vτ . Specifically, we set

uτ (λ) = φτ (λ)Qτ (λ) ◦Qτ (λ0)
−1vτ ,

where φτ ∈ O(a∗
C
)W is a W -invariant holomorphic function with φτ (λ0) =

1. Suppose that the series defining F (λ) converges locally uniformly with
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respect to λ, so that Fv ∈ O(a∗
C
, C∞(K/M)). Then we observe with (6.6)

and the W -invariance of λ 	→ φτ (λ) that

Jw,λF (λ) =
∑

τ∈ ̂KM

φτ (λ)Jw,λ[τ ] ◦Qτ (λ) ◦Qτ (λ0)
−1vτ

=
∑

τ∈ ̂KM

φτ (λ)Qτ (wλ) ◦Qτ (λ0)
−1vτ = F (wλ).

In other words λ 	→ F (λ) satisfies the intertwining relations. If we can now
construct the φτ in such a way that F ∈ PW(a∗

C
, C∞(K/M))R for some

R = R(r), then the Paley-Wiener theorem (6.3) implies the existence of an
f ∈ C∞

R (Z) such that F(f) = F . In particular, we obtain v = πλ0
(f)vK,λ0

,
that is

V ω
λ0
(r) ⊂ C∞

R (G) ∗ Vλ0
.

We follow this ansatz for the rank one spaces in Section 9.

7.2. Ansatz 2

For the second ansatz we need some terminology. The space of C∞(K/M)-
valued meromorphic functions on a∗

C
will be denoted by M(a∗

C
, C∞(K/M)).

We recall that a vector-valued function f on a∗
C
is called meromorphic pro-

vided that for all λ0 ∈ a∗
C
there exists an open neighborhood U of λ0 and a

polynomial p(λ) so that λ 	→ p(λ)f(λ) extends to a holomorphic function on
U . In this regard we recall that V ∞

λ = C∞(K/M) as K-modules for every
λ ∈ a∗

C
. We then view an element f ∈ M(a∗

C
, C∞(K/M)) as a section of the

bundle
∐

λ∈a∗
C

V ∞
λ → a∗

C
, i.e. we consider f(λ) ∈ V ∞

λ . The key observation
is that the prescription

W ×M(a∗C, C
∞(K/M)) → M(a∗C, C

∞(K/M)), (w, f) 	→ w ◦ f ;

(w ◦ f)(λ) := Jw,w−1λf(w
−1λ) (λ ∈ a∗C),

defines an action of W and, moreover, a meromorphic function f satisfies
the intertwining relations if and only if it is W -invariant for this action.

Now we come to the ansatz proper. Fix λ0 ∈ a∗
C

which satisfies the
Kostant condition (4.3), and let Wλ0

⊂ W be the stabilizer of λ0. As λ0

satisfies (4.3), it follows that Jw,w−1λ0
= Jw,λ0

is defined for all w ∈ Wλ0

and constitutes an intertwining operator Jw,λ0
: V ∞

λ0
→ V ∞

λ0
for which

Jw,λ0
(vK,λ0

) = vK,λ0
. The fact that vK,λ0

is fixed by Jw,λ0
and that vK,λ0

is
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cyclic for Vλ0
(see Lemma 4.4) implies that Jw,λ0

is equal to the identity on

Vλ0
and hence also on V ∞

λ0
.

Let now v ∈ V ω
λ0
(r). Let further fv : a∗

C
→ C∞(K/M) be a holomorphic

function satisfying the properties

• fv(λ0) =
1

|Wλ0 |
v,

• fv(wλ0) = 0 if w ∈ W \Wλ0
.

Given a choice for fv, we define a meromorphic function by

A(fv) :=
∑
w∈W

w ◦ fv,

and note that A(fv) automatically satisfies the intertwining relations. More-

over,

(7.1) A(fv)(λ0) =
∑
w∈W

Jw,w−1λ0
fv(w

−1λ0) =
∑

w∈Wλ0

Jw,λ0
fv(λ0) = v,

i.e. A(fv) interpolates v at λ = λ0.

The difficulty is that the operators Jw,w−1λ have poles and the function fv
has to be chosen carefully, so that A(fv) is indeed holomorphic and satisfies

the Paley-Wiener condition for some R = R(r) > 0. The overall strategy is

to start with a simple minded function fv(λ) = pλ0
(λ)v for some polynomial

pλ0
and then modify fv along its K-isotypical components, i.e. for each τ ∈

K̂ we replace pλ0
(λ)vτ by φτ (λ)pλ0

(λ)vτ for some appropriate holomorphic

function φτ .

This ansatz is used for the general case in Section 10.

Remark 7.1. Compared to the first ansatz this approach is computation-

ally more complex, as we have to average over the Weyl group W , and in

addition the functions φτ have to be such that the poles of the rational

functions Jw,λ are canceled. However, the advantage of this ansatz is that

intertwining operators, in contrast to the Q-polynomials, factor into rank

one intertwiners, which can be explicitly computed and estimated.

7.3. An application of Helgason’s Paley-Wiener theorem

The following proposition will be used in the implementation of both ansat-

zes.
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We defineH to be theK representation L2(K/M). Accordingly, we write
H∞ and Hω for C∞(K/M) and Cω(K/M), respectively. For each r > 0 we
define a Fréchet space by

Hω(r) := {v ∈ Hω | (∀0 < r′ < r)
∑

τ∈ ̂KM

er
′|τ |‖vτ‖ < ∞}

with the indicated seminorms. We write Hτ for the τ -component of H.

Proposition 7.2. Let r,R > 0 and λ0 ∈ a∗
C
. Consider a family (Fτ )τ∈ ̂KM

of holomorphic functions Fτ : a∗
C
→ End(Hτ ) satisfying the following condi-

tions.

(i) For every τ ∈ K̂M we have Fτ (λ0) = id.
(ii) For every τ ∈ K̂M , w ∈ W and λ ∈ a∗

C
the intertwining relation holds

Fτ (w · λ) = Jw,λ ◦ Fτ (λ).

(iii) There exist a real number 0 < r′ < r, integers j, l ∈ N0, and a constant
C ′ > 0 so that for all τ ∈ K̂M and λ ∈ a∗

C

‖Fτ (λ)‖op ≤ C ′(1 + |τ |)j er′|τ | (1 + ‖λ‖)l eR ‖ Imλ‖.

Then for every ε > 0 a continuous linear map ϕ : Hω(r) → C∞
R+ε(G/K)

exists so that

v = ϕ(v) ∗ vK,λ0

(
v ∈ Hω(r)

)
.

Proof. For k ∈ N0, let pk be the continuous seminorm on H∞ given by

pk(u) =
∑

τ∈ ̂KM

(1 + |τ |)k‖uτ‖
(
u ∈ H∞)

.

Note that this family of seminorms determines the topology of H∞.
Let r′ < r′′ < r. It follows from (iii) that for λ ∈ a∗

C
, k ∈ N0 and

v ∈ Hω(r)∑
τ∈ ̂KM

(1 + |τ |)k‖Fτ (λ)(v)‖ ≤ C ′′(1 + ‖λ‖)l eR ‖ Imλ‖
∑

τ∈ ̂KM

er
′′|τ |‖vτ‖,(7.2)

where

C ′′ := C ′ sup
τ∈ ̂KM

(1 + |τ |)j+ke(r
′−r′′)|τ | < ∞.
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By definition
∑

τ∈ ̂KM
er

′′|τ |‖vτ‖ < ∞ for each v ∈ Hω(r). It follows from
(7.2) that for every v ∈ Hω(r) the series

Fv(λ) :=
∑

τ∈ ̂KM

Fτ (λ)(vτ )
(
λ ∈ a∗C

)
converges in H∞. The convergence is uniform for λ in compacta, and hence
Fv is a holomorphic H∞-valued function depending linearly on v.

Let ε > 0. We claim that there exists a θ ∈ C∞
ε (K\G/K) so that

θ ∗ vK,λ0
= vK,λ0

. To see this, first note that

C∞
c (K\G/K) ∗ vK,λ0

⊆ CvK,λ0
.

Consider now a Dirac sequence (θn)n∈N of functions θn ∈ C∞
1/n(K\G/K).

Since θn ∗vK,λ0
converges to vK,λ0

for n → ∞, there exists an m ∈ N so that
θn ∗ vK,λ0

�= 0 for all n > m. Let now n > m be so large that 1
n < ε. After a

rescaling of θn we obtain a function with the claimed property.
Since θ is K-invariant, its Fourier transform θ̂ = F(θ) is a W -invariant

scalar-valued holomorphic function on a∗
C
, and by the Paley-Wiener Theorem

(6.3) it satisfies for every N ∈ N0 the estimate

(7.3) sup
λ∈a∗

C

|θ̂(λ)|(1 + ‖λ‖)Ne−ε‖ Imλ‖ < ∞.

Moreover, since θ ∗ vK,λ0
= vK,λ0

we have

(7.4) θ̂(λ0) = 1.

For λ ∈ a∗
C
and v ∈ Hω(r) we define fv(λ) := θ̂(λ)Fv(λ) ∈ H∞. The

function fv : a∗
C
→ H∞ thus obtained is holomorphic. It follows from (7.4)

and assumption (i) that fv(λ0) = Fv(λ0) = v. In view of assumption (ii) the
function fv satisfies the intertwining relations (6.2). Finally, it follows from
the estimates (7.2) and (7.3) that there exist for every N ∈ N0 and k ∈ N0

a constant CN,k > 0, so that for every λ ∈ a∗
C
and v ∈ Hω(r)

(7.5) pk
(
fv(λ)

)
≤ CN,k(1 + ‖λ‖)−Ne(R+ε)‖ Imλ‖

∑
τ∈ ̂KM

er
′′|τ |‖vτ‖.

Now it follows from the Paley-Wiener theorem (6.3) that fv = F(ϕ′
v) for

some ϕ′
v ∈ C∞

R+ε(G/K). Set ϕv = ϕ′
v ∗ θ ∈ C∞

R+2ε(G/K). Note that ϕv

depends linearly on v and satisfies

ϕv ∗ vK,λ0
= ϕ′

v ∗ vK,λ0
= F(ϕ′

v)(λ0) = fv(λ0) = v.
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It remains to show continuity from Hω(r) to C∞
R+2ε(G/K) of the map

v 	→ ϕv. The space PWW (a∗
C
,H∞)R+ε is a subspace of L2

(
a∗,H, dλ

|c(λ)|2
)
. By

the Plancherel theorem for G/K and (7.5) we have

‖ϕ′
v‖2L2 =

∫
a∗

‖fv(λ)‖2
dλ

|c(λ)|2

≤
∫
a∗

p0
(
fv(λ)

)2 dλ

|c(λ)|2 ≤ c0

⎛⎝ ∑
τ∈ ̂KM

er
′′|τ |‖vτ‖

⎞⎠2

,

with

c0 = C2
N,0

∫
a∗
(1 + ‖λ‖)−2N dλ

|c(λ)|2 < ∞

for a sufficiently large N ∈ N. Finally for every continuous seminorm q on
C∞
R+2ε(G/K) there exists a constant c′ > 0, only depending on θ, so that

q(ϕv) ≤ c′‖ϕ′
v‖L2 .

The continuity follows.

8. An explicit construction in one variable

For every n ∈ N0 and R > 0 we define an entire function fn,R on C by

(8.1) fn,R(z) :=
sin(zRπ)

zRπ ·
∏n

j=1

(
1−

(
Rz
j

)2
) =

∞∏
j=n+1

(
1−

(
Rz

j

)2
)

for z ∈ C, invoking the product expansion of the sine function. Next we
define for n ∈ N0 a polynomial function qn on C by

(8.2) qn(z) :=

n∏
j=1

(
1 +

z

j

)
(z ∈ C).

Proposition 8.1. There exist c,R0 > 0 and for every r > 0 a constant
Cr > 0 so that the following assertion holds for every n ∈ N0.

Let r > 0 and R > R0 with

(8.3)
(logR)2

R2
< cr.
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Let V be a finite dimensional inner product space and P : C → End(V ) a

polynomial map such that

‖P (z)‖op ≤ qn(|z|)k (z ∈ C)

for some k ∈ N. Then

‖fn,R(z)kP (z)‖op ≤
[
Cr e

rneRπ | Im z|
]k

for all z ∈ C.

The proof is divided into several lemmas. Let

Fn,R(z) := fn,R(z)
kP (z).

The first two lemmas contain estimates of the function defined by

F̃n,R(z) := fn,R(z)qn(|z|),

for which we have

(8.4) ‖Fn,R(z)‖op ≤ |F̃n,R(z)|k (z ∈ C).

Lemma 8.2. There exists a constant C > 0, so that for all R > 3, n ∈ N0

and z ∈ C with |z| ≥ n
R we have

|F̃n,R(z)| ≤ CeRπ| Im z|.

Proof. By symmetry, we may assume that Re z ≥ 0 without loss of general-

ity. Note that

(8.5) F̃n,R(z) =
(1 + |z|) · · · (n+ |z|)
(1 +Rz) · · · (n+Rz)

· 1 · 2 · · ·n
(1−Rz) · · · (n−Rz)

· sin(πRz)

πRz
.

We claim that ∣∣∣∣ (1 + |z|) · · · (n+ |z|)
(1 +Rz) · · · (n+Rz)

∣∣∣∣ ≤ 1.

To prove the claim it suffices to show that for all 1 ≤ j ≤ n we have

j + |z| ≤ |j +Rz|.
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Since Re z ≥ 0, we have

|j +Rz|2 = R2|z|2 + 2Rj Re z + j2 ≥ R2|z|2 + j2.

For R ≥ 3 and |z| ≥ n
R the condition R2|z|2 ≥ |z|2 + 2n|z| is satisfied, and

hence

R2|z|2 + j2 ≥ |z|2 + 2n|z|+ j2 ≥ (j + |z|)2.

This proves the claim.

We further claim that∣∣∣∣ 1 · 2 · · · (n− 1)

(1−Rz) · · · (n− 1−Rz)

∣∣∣∣ ≤ 1

ifR|z| ≥ n. This is a direct consequence of the inequality |j−Rz| ≥ R|z|−j ≥
n− j.

Altogether, we obtain the estimate

|F̃n,R(z)| ≤
∣∣∣∣ n

n−Rz

∣∣∣∣ · ∣∣∣∣sin(πRz)

πRz

∣∣∣∣
=

n

R|z|

∣∣∣∣∣ sin
(
πRz

)
π(n−Rz)

∣∣∣∣∣ ≤
∣∣∣∣∣sin

(
π(n−Rz)

)
π(n−Rz)

∣∣∣∣∣ ≤ CeRπ| Im z|.

Lemma 8.3. There exists a constant c > 0 such that the following holds:

For all r > 0 there exists C > 0, so that for all n ∈ N0 and R > e with

(logR)2

R2
< cr,

we have

|F̃n,R(z)| ≤ Cern (0 ≤ z ≤ n
R).

Proof. Let n ∈ N0, R > 1 and z ≥ 0. We shall estimate F̃n,R(z) using

Stirling’s approximation. Euler’s reflection identity Γ(1 − x)Γ(x) = π
sin(πx)

and the functional equation of the Gamma function yield⎛⎝ n∏
j=1

(j +Rz)

⎞⎠⎛⎝ n∏
j=1

(j −Rz)

⎞⎠ πRz

sinπRz
= Γ(n+ 1−Rz)Γ(n+ 1 +Rz).
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This allows to rewrite (8.5) and express F̃n,R in terms of Gamma functions:

F̃n,R(z) =
Γ(n+ 1 + z)Γ(n+ 1)

Γ(1 + z)Γ(n+ 1 +Rz)Γ(n+ 1−Rz)
.

We recall Stirling’s approximation

(8.6) Γ(x) =

√
2π

x
e−xxx (1 +O(1/x))

for x → ∞. Applying Stirling to F̃n,R, we obtain that there exists a constant
c′ > 0, independent of n and R, so that for all z ∈ [0, n

R ]

(8.7) F̃n,R(z) ≤ c′
√

1 +
n

R
ehn,R(z),

where

hn,R(z) := (n+ 1 + z) log(n+ 1 + z) + (n+ 1) log(n+ 1)

− (1 + z) log(1 + z)− (n+ 1 +Rz) log(n+ 1 +Rz)

− (n+ 1−Rz) log(n+ 1−Rz).

Here we used the straightforward estimate for z ∈ [0, n
R ]

(1 + z)(n+ 1 +Rz)(n+ 1−Rz)

(n+ 1 + z)(n+ 1)
=

(1 + z)
(
(n+ 1)2 −R2z2

)
(n+ 1 + z)(n+ 1)

≤ 1 +
n

R

to estimate the square roots in (8.6).
The term (1+z) log(1+z) in hn,R(z) can be estimated below by z log(z).

With the substitution z = (n+ 1)x we then obtain

(8.8) hn,R(z) ≤ (n+ 1)HR(x)

where

HR(x) := (1 + x) log(1 + x)− x log(x)

− (1 +Rx) log(1 +Rx)− (1−Rx) log(1−Rx).

We will show

(8.9) HR(x) ≤ 4
(logR)2

R2
x ∈ (0, 1

R),



A Paley-Wiener theorem for Harish-Chandra modules 719

for all R ≥ e. We estimate the first two terms of HR(x) in a separate lemma.

Lemma 8.4. For every b ≥ e2 and 0 < x ≤ 1

(1 + x) log(1 + x)− x log x ≤ (log b)2

b
+ bx2.

Proof. Since (1 + x) log(1 + x) ≤ 2x for 0 < x ≤ 1 it suffices to show

2x− x log x =: φ(x) ≤ ψ(x) :=
(log b)2

b
+ bx2.

The functions φ and ψ are concave and convex, respectively. We will prove
the inequality by exhibiting a separating line of slope log b.

We have φ′(x) = 1− log x and hence φ′(x) = log b for x = e
b . Then

φ(x) ≤ φ( eb ) + log(b)(x− e
b ) =

e
b + log(b)x.

On the other hand ψ′(x) = 2bx = log b for x = log b
2b and therefore

ψ(x) ≥ ψ
( log b

2b

)
+ log(b)

(
x− log b

2b

)
=

3(log b)2

4b
+ log(b)x.

Hence ψ ≥ φ if 3
4(log b)

2 ≥ e and in particular if b ≥ e2.

We proceed with the proof of (8.9). Let

ϕ(t) = (1 + t) log(1 + t) + (1− t) log(1− t)

for 0 ≤ t < 1. Then ϕ(0) = ϕ′(0) = 0 and ϕ′′(t) = 1
1+t +

1
1−t ≥ 2. Hence

ϕ(t) ≥ t2.

Then for x ∈ (0, 1
R)

HR(x) ≤ (1 + x) log(1 + x)− x log x−R2x2.

We obtain (8.9) from Lemma 8.4 with b = R2.
We can now finish the proof of Lemma 8.3. Let 0 < c < 1

4 . If r > 0,

R ≥ e and log(R)2

R2 ≤ cr, then

|F̃n,R(z)| ≤ c′er
√
1 + n e4crn ≤ Cern, n ∈ N0, z ∈ [0, n

R ],

by (8.7) and (8.8), with a constant C > 0 depending only on c and r.



720 Heiko Gimperlein et al.

Proof of Proposition 8.1. By Lemma 8.2 and (8.4) we have for all R > 3,
n ∈ N0 and z ∈ C with |z| ≥ n

R

(8.10) ‖Fn,R(z)‖op ≤
[
CeRπ| Im z|

]k
.

It therefore suffices to estimate Fn,R(z) for z in D =
{
z ∈ C : |z| ≤ n

R

}
.

Note that

‖Fn,R(z)‖op = sup
v,w∈V

‖v‖=‖w‖=1

|〈Fn,R(z)v, w〉|,

and that the matrix coefficients 〈Fn,R(z)v, w〉 depend holomorphically on
z ∈ C.

Let D± = D ∩C± where C± denotes the closed upper/lower half plane.
By the maximum modulus principle a holomorphic function in D± assumes
its maximum modulus on ∂D±, i.e. on the union of the semicircle ∂D ∩C±
and the segmentD∩R = [− n

R ,
n
R ]. We apply the principle to the holomorphic

function

〈Fn,R(z)v, w〉 e±iRkπz

on D±, which by (8.10) is bounded in absolute value by Ck on ∂D ∩ C±.
On the other hand, with c as in Lemma 8.3 it follows that for all r

satisfying (8.3) there exists a constant Cr such that |〈Fn,R(z)v, w〉 e±iRkπz|
is bounded by [Cre

rn]k for z ∈ [− n
R ,

n
R ]. Assuming as we may that Cr ≥ C,

we obtain

|〈Fn,R(z)v, w〉 e±iRkπz| ≤ [Cre
rn]k

for all z ∈ D±. This implies the proposition.

The following lemma will be used in the next two sections.

Lemma 8.5. Let R > 0 and z0 ∈ C. Assume Rz0 /∈ Z\{0}. Then

inf
n∈N0

|fn,R(z0)| > 0.

Proof. With (8.1) we observe that fn,R(z) = 0 if and only if Rz ∈ Z and
|z| > n

R . In particular the assumption on z0 implies fn,R(z0) �= 0 for all
n ∈ N0.

If n ≥ N := �R|z0|� then

|fn,R(z0)| ≥
∞∏

j=n+1

(
1−

(R|z0|
j

)2
)

≥
∞∏

j=N+1

(
1−

(R|z0|
j

)2
)

= fN,R(|z0|).
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Hence

inf
n∈N0

|fn,R(z0)| ≥ min
{
|f0,R(z0)|, . . . , |fN−1,R(z0)|, fN,R(|z0|)

}
> 0

by the first observation in the proof.

We end this section with a remark that will be useful when Proposition
8.1 is applied in Sections 9 and 10.

Remark 8.6. Let P (R, r) be any proposition depending on two variables
R, r > 0. Then the proposition

∃c,R0 > 0 ∀r > 0, R > R0 :
( (logR)2

R2
< cr ⇒ P (R, r)

)
possesses a scaling invariance. Let a,A > 0 and B ∈ R. Then

∃d, S0 > 0 ∀s > 0, S > S0 :
( (logS)2

S2
< ds ⇒ P (AS +B, as)

)
is an equivalent proposition. This follows from the observation that there
exist constants C0, C1, C2 > 0 so that for all R > C0

C1
logR

R
≤ log(AR+B)

AR+B
≤ C2

logR

R
.

9. The rank one cases

Using the construction from the previous section we can now complete the
argument in case G is of real rank one. Let α ∈ Σ+ be the indivisible root.
Then

g = g2α + gα + a+m+ g−α + g−2α

with a = Rα∨. We set mα := dim gα and m2α = dim g2α. Then

ρ =
1

2
(mα + 2m2α)α.

The goal of this section is to prove the following

Theorem 9.1. Let G be a group of real rank one and Vλ0
a representation

of the K-spherical principal series with λ0 satisfying (4.3). Then there exist
positive constants c,R0 > 0 independent of λ0, such that for all R, r > 0

with R > R0 and (logR)2

R2 < cr, we have a continuous embedding

V ω
λ0
(r) ⊂ C∞

R (G) ∗ vK,λ0
=

(
Vλ0

)min

R
.
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Remark 9.2. With the theorem above we can prove Theorem 1.2 for groups

of real rank one. Let c and R0 be as above. Then Theorem 9.1 and Lemma

4.2 imply that the conclusion of Theorem 1.2 is valid for V = Vλ0
. For a

general irreducible Harish-Chandra module V the conclusion then follows

from Lemmas 4.3 and 4.4.

In order to prepare for the proof of Theorem 9.1, we introduce some

new notation. As mentioned in Remark 6.2, the normalized Q-matrices from

Remark 6.1 are scalar-valued and are given by explicit formulas from [11,

Ch. III, Cor. 11.3]. This corollary invokes non-negative integers 0 ≤ r ≤ s

which are defined in [11, Ch. III, Th. 11.2] for each τ ∈ K̂M . From the proof

of that theorem it follows that r and s have the same parity if m2α �= 0. It

further follows from the equation for s and r on page 346 in op. cit. that

there exists an m > 0, independent of τ , such that

(9.1) s ≤ m|τ |.

We may and will take m ∈ N. In order to express the Q̃τ (λ) in an efficient

way, we introduce some new notation.

For elements 0 < a ≤ b with b − a ∈ N0, we define polynomials in the

complex plane by

(9.2) Γa,b(z) :=
Γ(z + b)Γ(a)

Γ(z + a)Γ(b)
=

(z + a)(z + a+ 1) · · · (z + b− 1)

a(a+ 1) · · · (b− 1)
.

For later reference we note the following estimates by the polynomials

introduced in (8.2):

(9.3) |Γa,b(z)| ≤ Γa,b(|z|) ≤

⎧⎨⎩qb−a(|z|) if a ≥ 1

b
a qb−a(|z|) if a < 1.

The inequality for a ≥ 1 follows from

|z|+ a+ j

a+ j
= 1 +

|z|
a+ j

≤ 1 +
|z|

1 + j

for each j ≥ 0, and the other one is then a consequence of

Γa,b(|z|) =
(|z|+ a) b

(|z|+ b) a
Γa+1,b+1(|z|).
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We also note that

(9.4) |Γa,b(z)| ≥ 1 (Re(z) ≥ 0).

Next we define positive half integers. In case m2α = 0 we set

aτ := ρ(
α∨

2
) =

mα

2
and bτ := ρ(

α∨

2
) + s,

and note that bτ − aτ = s ∈ N0.
For m2α > 0 we first note that ρ(α

∨

2 ) = mα

2 +m2α =: d ∈ N is a positive
integer greater or equal to 2, as mα is even when m2α > 0. Further we define
positive half integers by

a1τ := ρ(
α∨

4
) =

d

2
and b1τ :=

1

2
(s+ r + d)

and

a2τ :=
1

2
(d+ 1−m2α) and b2τ :=

1

2
(s− r + d+ 1−m2α).

Then both b1τ − a1τ = 1
2(s + r) and b2τ − a2τ = 1

2(s − r) are non-negative
integers.

Having defined these constants, we rephrase [11, Ch. III, Cor. 11.3] as
follows:

Lemma 9.3. Let G be a group of real rank one and τ ∈ K̂M . Then the
following assertions hold:

1. If m2α = 0, then aτ ≥ 1
2 and

Q̃τ (λ) = Γaτ ,bτ (iλ(
α∨

2
)).

2. If m2α > 0, then a1τ ≥ a2τ ≥ 1 and

Q̃τ (λ) = Γa1
τ ,b

1
τ
(iλ(

α∨

4
)) Γa2

τ ,b
2
τ
(iλ(

α∨

4
)).

9.1. Proof of Theorem 9.1 in case of m2α = 0

We identify a∗
C
with C via

C 	→ a∗C, z 	→ zα,
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i.e. λ = zα ∈ a∗
C
identifies with z ∈ C. In these coordinates we then have

Q̃τ (z) = Γmα
2

,mα
2

+s(iz),

and it follows from (9.3) that |Q̃τ (z)| ≤ (1 + 2s)qs(|z|).
We recall from (9.1) that s ≤ m|τ | for every τ ∈ K̂M , and that m ∈ N.

We write �τ� ∈ N for the smallest integer greater or equal than |τ |. We thus
obtain the bound

(9.5) |Q̃τ (z)| ≤ (1 + 2m�τ�)qm
τ�(|z|).

We recall the functions fn,R, depending on R > 0, as defined in (8.1). Let
z0 ∈ C be so that λ0 = z0α. We assume that Rz0 is not a non-zero integer.
Then fn,R(z0) �= 0 for all n ∈ N0. For τ ∈ K̂M we define the W -symmetric
entire function

φτ : C → C; z 	→
fm
τ�,R(z)

fm
τ�,R(z0)
.

Now given λ0 = z0α ∈ a∗
C
satisfying (4.3), we follow Ansatz 1 in Section 7.1

and define

F̃τ (z) = φτ (z)Q̃τ (z)Q̃τ (z0)
−1 ∈ EndK(Vτ ⊗ V M

τ∨ ) 
 C (z ∈ C).

Let Fτ : a∗
C
→ EndK(Vτ ⊗ V M

τ∨ ) be given by

Fτ (zα) = F̃τ (z) (z ∈ C).

It is immediate that Fτ satisfies the conditions (i) and (ii) in Proposition
7.2 with Hτ = Vτ ⊗ V M

τ∨ .

We continue by investigating condition (iii). For that we need to control
the normalizing factors Q̃τ (z0) and fm
τ�,R(z0). By (4.3) the real part of iz0
is non-negative, and hence it follows from (9.4) that

|Q̃τ (z0)| ≥ 1 (τ ∈ K̂M ).

Likewise, Lemma 8.5 gives a positive lower bound for |fm
τ�,R(z0)|, uniformly
in τ .

Let c,R0 > 0 be as in Proposition 8.1, and assume that R > R0 and
(logR)2

R2 < cr. By perturbing R to a slightly smaller value we can ensure Rz0

is not an integer, as assumed before. Let r′ < r be such that (logR)2

R2 < cr′.
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From Proposition 8.1 and (9.5) it follows that there exists a constant C > 0
so that

|Fτ (λ)| ≤ C(1 + |τ |) er′m|τ | eπR‖ 1

2
α∨‖ ‖ Imλ‖ (

λ ∈ a∗C, τ ∈ K̂M

)
.

By Proposition 7.2 this implies V ω
λ0
(mr) ⊂ C∞

AR+ε(G/K) ∗ vK,λ0
, where A =

π‖1
2α

∨‖. By Remark 8.6 the continuous embedding in the theorem follows.
Finally, as vK,λ0

is U(g)-cyclic by Lemma 4.4, we have C∞
R (G) ∗ vK,λ0

=
(Vλ0

)min
R .

9.2. Proof of Theorem 9.1 in case of m2α > 0

We now identify a∗
C
with C via

C 	→ a∗C, z 	→ 2zα.

From Lemma 9.3 we then have

Q̃τ (z) = Γa1
τ ,b

1
τ
(iz)Γa2

τ ,b
2
τ
(iz).

As before we apply (9.3). The result is now

Q̃τ (−i|z|) ≤ [qm
τ�(|z|)]2.

Next we define the W -symmetric entire function

φτ (z) :=
[fm
τ�(z)]

2

[fm
τ�(z0)]2

and argue along the same lines as before. This concludes the proof of The-
orem 9.1.

10. The general higher rank case

The goal of this section is to prove the following

Theorem 10.1. Let Vλ0
be a representation of the K-spherical principal

series with λ0 satisfying (4.3). Then there exist positive constants c,R0 in-

dependent of λ0, such that for all R, r > 0 with R > R0 and (logR)2

R2 < cr we
have a continuous embedding

V ω
λ0
(r) ⊂ C∞

R (G) ∗ vK,λ0
=

(
Vλ0

)min

R
.



726 Heiko Gimperlein et al.

Remark 10.2. By the arguments in Remark 9.2 we obtain Theorem 1.2 of
the introduction from Theorem 10.1 together with the reduction in Section 4.

To prepare for the proof of Theorem 10.1 we determine some estimates of
the intertwining operators Jw,λ. We start by recalling the standard procedure
by which the study of Jw,λ is reduced to rank one.

10.1. Factorization of intertwining operators

Let w ∈ W and write

w = s1s2 · · · sn
as a reduced expression with simple reflections si associated to simple roots
αi ∈ Π. Set

wj := sj+1 · · · sn ∈ W (1 ≤ j ≤ n).

Then the reduced expression of w satisfies the condition

(10.1) w−1
j αj ∈ Σ+ (1 ≤ j ≤ n)

and

(10.2) w−1
j αj �= w−1

k αk (1 ≤ j < k ≤ n).

See [3, VI.1.6 Corollaire 2]. Essential for our reasoning is the factorization

(10.3) Jw,λ = Js1,w1λ ◦ Js2,w2λ ◦ · · · Jsn−1,wn−1λ ◦ Jsn,λ,

with each

Jsj ,wjλ : V ∞
wjλ → V ∞

wj−1λ

a rank one intertwiner.

10.2. Rank one intertwining operators

Let sα ∈ W be the reflection in a simple root α ∈ Σ+. When restricted to a
specific K-type τ ∈ K̂M , each Jsα,λ[τ ] is an element of End(V M

τ∨ ) depending
rationally on λ. We will describe the entries of a diagonal matrix for it.

Let gα be the semisimple rank one subalgebra of g generated by α. Then

gα = g2α ⊕ gα ⊕ aα ⊕mα ⊕ g−α ⊕ g−2α
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with aα = Rα∨ and mα�m an ideal. In particular, the Cartan decomposition
g = k⊕s descends to gα, and we obtain with kα := gα∩k a maximal compact
subalgebra of gα. We denote by Gα := 〈exp(gα)〉 the analytic subgroup of G
associated to gα, by Kα := exp(kα) the maximal compact subgroup of Gα

with Lie algebra kα, and by Mα the group M ∩Kα. Note that M normalizes
Gα. Hence if we branch Vτ∨ with respect to Kα, then

V M
τ∨ =

⊕
δ∈̂KαMα

m(δ)V Mα

δ ,

where m(δ) denotes the multiplicity of δ in τ∨|Kα
. By [14, Theorem 6] each

V Mα

δ is one-dimensional. We choose an orthonormal basis (depending on j)
of V M

τ∨ of vectors from these one-dimensional subspaces.
For elements 1

2 ≤ a ≤ b with a, b ∈ 1
2N and b − a ∈ N0, we recall the

polynomials Γa,b(z) from (9.2). With respect to the chosen basis the operator
Jsα,λ[τ ] is of diagonal form, say

Dτ (λ) = diag(d1τ (λ), . . . , d
l(τ)
τ (λ)),

and each diagonal entry is of the form (see (6.6), Lemma 9.3)

(10.4) dkτ (λ) =
Γa,bk(−iλ(α

∨

γα
))Γa′,b′k(−iλ(α

∨

γα
))

Γa,bk(iλ(
α∨

γα
))Γa′,b′k(iλ(

α∨

γα
))

(1 ≤ k ≤ l(τ)),

where γα = 2 and a′ = b′k if m2α = 0, and otherwise γα = 4. The parameters

a and a′ depend only on α, and for all τ ∈ K̂ the parameters bk and b′k
satisfy

b′k − a′ ≤ bk − a ≤ m|τ | (1 ≤ k ≤ l(τ))

for some m ∈ N independent of τ and α. Therefore we may and shall assume
that bk, b

′
k ≤ m|τ | for all non-trivial τ .

10.3. Cancellation of poles and estimate

Let α ∈ Σ+ be a simple root and let τ ∈ K̂M . In the following lemma we
determine a polynomial on a∗

C
which cancels the poles of Jsα,λ[τ ]. Moreover,

we give an estimate of the product of Jsα,λ[τ ] with this polynomial.
As in Section 9 we write �τ� = �|τ |�. We define the following polynomial

on C,

(10.5) eτ (z) := Γ1,m
τ�+1(z)
2 Γ 1

2
,m
τ�+ 1

2
(z)2,
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and recall the polynomials qn(z) from (8.2). In particular, we see from (9.3)
that we can estimate the polynomial eτ (z) by

(10.6) |eτ (z)| ≤ (1 + 2�τ�)2 qm
τ�(|z|)4

for all z ∈ C and all τ ∈ K̂.

Lemma 10.3. Let α ∈ Σ+ be simple.

(i) The map a∗
C
→ End(V M

τ∨ ) given by

λ 	→ eτ
(
iλ(α

∨

γα
)
)
Jsα,λ[τ ]

is polynomial for every τ in K̂.
(ii) There exists a constant C > 0 such that

‖ eτ
(
iλ(α

∨

γα
)
)
Jsα,λ[τ ] ‖op ≤ C(1 + |τ |)4 qm
τ�

(∣∣λ(α∨

γα
)
∣∣)8

for every τ ∈ K̂ and λ ∈ a∗
C
.

Proof. We may assume |τ | �= 0 since Jsα,λ[τ ] = 1 for the trivial K-type. We

fix a simple root α ∈ Σ+ and define polynomials dk,+τ and dk,−τ to be the
numerator and denominator in (10.4), respectively. Then

dkτ (λ) =
dk,+τ (λ)

dk,−τ (λ)
.

Next we make the following observation: Γa,b(z) divides Γa,b+n(z) for all
n ∈ N0, and Γa,b(z) divides Γa−n,b(z) for all n ∈ N0 such that a− n ≥ 1

2 . It
follows that

dk,−τ (λ)
∣∣eτ(iλ(α∨

γα
)
)

for all k, and this implies (i). Moreover, together with (9.4) it implies∣∣∣∣∣eτ
(
iλ(α

∨

γα
)
)

dk,−τ (λ)

∣∣∣∣∣ ≤ eτ
(
|λ(α∨

γα
)|
)

dk,−τ (|λ|)
≤ eτ

(
|λ(α∨

γα
)|
)

for all λ ∈ a∗
C
. For the numerator dk,+τ (λ) we find∣∣dk,+τ (λ)

∣∣ ≤ eτ
(
|λ(α∨

γα
)|
)
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also for all λ ∈ a∗
C
. Hence∣∣eτ(iλ(α∨

γα
)
)
dkτ (λ)

∣∣ ≤ eτ
(
|λ(α∨

γα
)|
)2

for all indices k. By (10.6) this implies (ii).

10.4. Application of Proposition 8.1

The following lemma contains the main estimate for the proof of Theorem
10.1. Recall from (8.1) the functions fn,R. We will determine an estimate
for a product of these functions with Jw,λ. For this we use Lemma 10.3,
Proposition 8.1 and the factorization (10.3).

Let

h := 8π max
α∈Σ+

‖α∨

γα
‖.

Lemma 10.4. There exist c,R0 > 0 and for every r > 0 a constant Cr > 0
so that for every R > R0 with

(10.7)
(logR)2

R2
< cr

one has∥∥∥( ∏
α∈Σ+

fm
τ�,R
(
λ(α

∨

γα
)
)8

eτ
(
iλ(α

∨

γα
)
))

Jw,λ[τ ]
∥∥∥
op

≤ Cr

[
(1 + |τ |)4 e8mr|τ |ehR ‖Imλ‖

]|Σ+|

for all τ ∈ K̂, λ ∈ a∗
C
and w ∈ W .

Proof. Let c, R0 be as in Proposition 8.1 and let r > 0. We first show that
there exists a constant Cr > 0 such that if R > R0 satisfies (10.7) then
(10.8)∥∥fm
τ�,R

(
λ(α

∨

γα
)
)8

eτ
(
iλ(α

∨

γα
)
)
Jsα,λ[τ ]

∥∥
op

≤ Cr(1 + |τ |)4 e8mr|τ |ehR ‖Imλ‖

for all τ ∈ K̂, λ ∈ a∗
C
and all simple roots α ∈ Σ+.

We apply Proposition 8.1 with n = m�τ� and

P (z) = (1 + |τ |)−4 eτ (iz) Jsα,zμ[τ ],

where

μ = λ(α
∨

γα
)−1λ ∈ a∗C.
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The estimate in Lemma 10.3 ensures the proposition is applicable. Hence∥∥fm
τ�,R(z)
8 eτ (iz) Jsα,zμ[τ ]

∥∥
op

≤ (1 + |τ |)4 [Cr e
rm
τ�eπR ‖Im z‖]8.

By inserting z = λ(α
∨

γα
) and �τ� ≤ |τ |+ 1 we obtain (10.8) for some Cr > 0.

Let w ∈ W and consider the factorization (10.3) of Jw,λ. By submulti-
plicativity of the operator norm we obtain from (10.8) that

∥∥∥( n∏
j=1

fm
τ�,R
(
λ(

w−1
j α∨

j

γαj

)
)8

eτ
(
iλ(

w−1
j α∨

j

γαj

)
))

Jw,λ[τ ]
∥∥∥
op

≤
[
Cr(1 + |τ |)4 e8mr|τ |ehR ‖Imλ‖]n.

The w−1
j αj are all distinct and positive by (10.2) and (10.1), respectively.

Hence each factor of the above product over j occurs exactly once in∏
α∈Σ+

[
fm
τ�,R

(
λ(α

∨

γα
)
)8

eτ
(
iλ(α

∨

γα
)
)]
.

On the other hand, since by (10.6) the scalar valued polynomial eτ satisfies
the estimate

|eτ (z)| ≤ (1 + 2|τ |)2qm
τ�(|z|)4 ≤ (1 + 2|τ |)4qm
τ�(|z|)8,

we obtain in analogy with (10.8) that∣∣fm
τ�,R(λ(
α∨

γα
))8 eτ (λ(

α∨

γα
))
∣∣ ≤ Cr(1 + |τ |)4e8mr|τ |ehR ‖Imλ‖

for every α ∈ Σ+. We apply this estimate to the roots α ∈ Σ+ which are
not of the form w−1

j αj for any j and obtain the estimate as stated in the
lemma.

10.5. Conclusion of proof

We can now give the proof of Theorem 10.1, following Ansatz 2 from Section
7.2. Recall that λ0 satisfies (4.3), that is,

Re(iλ0(α
∨)) ≥ 0

for all α ∈ Σ+. We define the following functions on a∗
C
.
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I. We choose a polynomial pλ0
: a∗

C
→ C such that{

pλ0
(λ0) =

1
|Wλ0 |

,

pλ0
(wλ0) = 0 (w ∈ W \Wλ0

),

where Wλ0
⊂ W is the stabilizer of λ0.

II. For each τ ∈ K̂M we define a polynomial

pτ (λ) :=

∏
α∈Σ+ eτ

(
iλ(α

∨

γα
)
)∏

α∈Σ+ eτ
(
iλ0(

α∨

γα
)
) .

It follows from (10.5) and (9.4) that

(10.9) |eτ
(
iλ0(

α∨

γα
)
)
| ≥ 1

for all α ∈ Σ+.
III. For every R > 0 for which

(10.10) ∀α ∈ Σ+ : Rλ0(
α∨

γα
) /∈ Z\{0},

we define for each n ∈ N0 an entire function on a∗
C
by

ψn,R(λ) :=

∏
α∈Σ+ fn,R

(
λ(α

∨

γα
)
)∏

α∈Σ+ fn,R
(
λ0(

α∨

γα
)
) .

By (10.10) and Lemma 8.5 there exists a constant cR > 0 so that

(10.11) |fn,R
(
λ0(

α∨

γα
)
)
| ≥ cR

for all n ∈ N0 and α ∈ Σ+.

After these definitions we let

φτ (λ) := pτ (λ)[ψm
τ�,R(λ)]
8

for τ ∈ K̂M , and we define Fτ : a∗
C
→ End(Vτ ) by

Fτ (λ) =
∑
w∈W

φτ (w
−1λ)pλ0

(w−1λ)Jw,w−1λ[τ ] (λ ∈ a∗C).

We are going to apply Proposition 7.2 to Fτ , and for that we need to verify
its conditions (i)-(iii). As explained in Section 7.2, condition (i) follows from
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the fact that vK,λ0
is cyclic for Vλ0

(see (7.1)), and (ii) is an automatic
consequence of the cocycle condition

Jw2,w1λ ◦ Jw1,λ = Jw2w1,λ

for the intertwining operators.

Let c,R0 be as in Lemma 10.4, and let r > 0 and R > R0 satisfy (10.7).
Let r′ < r be such that

(logR)2

R2
< cr′.

By perturbing R to a slightly smaller value we may assume that (10.10) is
valid. It follows from Lemma 10.4 together with the denominator estimates
(10.9)-(10.11) that there exists a constant C > 0 so that for every λ ∈ a∗

C

and τ ∈ K̂M

‖Fτ (λ)‖op ≤ C(1 + |τ |)4|Σ+| ear
′|τ | (1 + ‖λ‖)deg pλ0eAR ‖ Imλ‖,

where a = 8m|Σ+| and A = h|Σ+|. This gives the remaining condition (iii)
of Proposition 7.2, and with that can conclude that there is a continuous
embedding

V ω
λ0
(ar) ⊂ C∞

AR+ε(G) ∗ vK,λ0
.

By Remark 8.6 this implies the continuous embedding in Theorem 10.1.
Finally, as vK,λ0

is U(g)-cyclic by Lemma 4.4, we have C∞
R (G) ∗ vK,λ0

=
(Vλ0

)min
R .

Appendix A. The domains k(R)

We recall the open Ad(K)-invariant domains k(R), with R > 0, from (3.3).
In this appendix we describe these in two interesting examples.

A.1. The unit disc: G = SU(1, 1)

While treating this example we use a notation so that the generalization
to general Hermitian symmetric spaces becomes straightforward. First note
that GC = SL(2,C) acts transitively on the projective space P1(C). We
identify P1(C) with C ∪ {∞} via the map

P
1(C) → C ∪ {∞}, C

(
z
1

)
	→ z.
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We define the subgroups of G

K =

{
kθ :=

(
eiθ 0
0 e−iθ

)
| θ ∈ R

}
, A =

{
at =

(
cosh t sinh t
sinh t cosh t

)
| t ∈ R

}

and note that KC =

{(
z 0
0 z−1

)
| z ∈ C∗

}
. Further we define unipotent

abelian subgroups of GC by

P+ :=

{(
1 z
0 1

)
| z ∈ C

}
and P− :=

{(
1 0
z 1

)
| z ∈ C

}
.

Note that P+ and P− are the stabilizers of ∞ and 0, respectively. Then
both KCP

± are Borel subgroups of GC with KCP
+ ∩KCP

− = KC. Hence,
ZC = GC/KC is realized as an open affine subvariety of the projective variety
GC/KCP

+ ×GC/KCP
− via

gKC 	→ (gKCP
+, gKCP

−).

More concretely, if we identify GC/KCP
+ ×GC/KCP

− with P1(C)× P1(C)
via

GC/KCP
+ ×GC/KCP

− → P
1(C)× P

1(C)

(g1KCP
+, g2KCP

−) 	→ (g−t
1 (0), g2(0)),

then ZC is given by

ZC = P
1(C)× P

1(C) \ {(z, w) : w �= φ(z)},

where φ is the automorphism of P1(C) which is induced from the linear map
C2 � (z1, z2) 	→ (−z1, z2) ∈ C2.

Let us denote by D = {z ∈ C | |z| < 1} the open unit disk (i.e. the
bounded realization of G/K) and note that

Z = G/K = {(z, z) : z ∈ D} ⊂ ZC.

Now one has that that the crown domain is given by

Ξ = D ×D ⊂ ZC.

(A similar result holds for general Hermitian symmetric spaces, see [4, Sect.
3] or [18, Th. 7.7].) For R > 0 we note that

AR =
{
at ∈ A | |t| ≤ R/

√
8
}
.
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Now we calculate

kiθat · z0 = (e2θ tanh t, e−2θ tanh t) ∈ ZC.

This is contained in Ξ = D × D precisely if θ ∈ (−r, r), when r > 0 is
determined by e2r tanh R√

8
= 1. Thus we have shown:

Proposition A.1. Let G = SU(1, 1), R > 0. Then

k(R) = {Y ∈ k | ‖Y ‖ < βR/
√
8},

where βR = 1
2 log

(
coth( R√

8
)
)
.

A.2. The hyperboloids: G = SOo(1, n)

Let G = SOo(1, n) with K = SO(n,R) being embedded into G as the lower
right corner. (The group G does not satisfy the condition that it is the
group of real points of a connected algebraic reductive group defined over
R. Instead one could consider the group SO(1, n), which would satisfy this
condition, but for convenience of notation we rather work with its connected
component.) Consider the following quadratic form on Cn+1

�(u) = u20 − u21 − . . .− u2n

and let u · v be the bilinear pairing obtained by polarization. Then

Z = G/K = {x ∈ R
n+1 | �(x) = 1, x0 > 0},

ZC = GC/KC = {u ∈ C
n+1 | �(u) = 1}

and

Ξ = {u = x+ iy ∈ ZC | �(x) > 0, x0 > 0},
see [7, p. 96]. The canonical base point in ZC is given by z0 = (1, 0 . . . , 0)T ∈
ZC.

Set l =
[
n
2

]
and note that l is the rank ofK. Our choice and parametriza-

tion of t are as follows:

(A.1) R
l � β = (β1, . . . , βl) 	→ Tβ := diag(0, β1U, . . . , βlU) ∈ t

where

U =

(
0 −1
1 0

)
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and the first zero in the diagonal matrix means the zero 1×1-matrix in case
n is even and the zero 2× 2-matrix if n is odd.

With the standard choice of A and R′ := R/
√

2(n− 1) we have

AR =

⎧⎨⎩
⎛⎝cosh t 0 sinh t

0 1 0
sinh t 0 cosh t

⎞⎠ | |t| ≤ R′

⎫⎬⎭
and an easy computation yields

KAR · z0 =
{(

cosh t
u

)
| u ∈ R

n, t ∈ [−R′, R′], ‖u‖2 = | sinh t|
}
.

In the sequel we only treat the case of n = 2l being even; the odd case
requires just a small modification.

With kβ = exp(iTβ) we obtain from (A.1) that

kβ

(
cosh t
u

)
=

⎛⎜⎜⎜⎝
cosh t

u1 coshβ1 − iu2 sinhβ1
iu1 sinhβ1 + u2 coshβ1

...

⎞⎟⎟⎟⎠ .

The right hand side is now in the crown domain if and only if

�
(
Re kβ

(
cosh t
u

))
> 0,

i.e.

cosh2 t− cosh2 β1(u
2
1 + u22)− . . .− cosh2 βl(u

2
n−1 + u2n) > 0.

There is no loss of generality in restricting our attention to the closure t+

of a chamber in t, i.e. we may assume that β1 ≥ β2 ≥ . . . ≥ βl−1 ≥ |βl| ≥ 0.
Then the condition from above for all u with ‖u‖2 = | sinh t| means nothing
else as

cosh2 t− (cosh2 β1) sinh
2 t > 0

for all t ∈ [−R′, R′]. A short calculation reformulates that in

| sinhβ1| <
1

sinhR′ .

We have thus shown:
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Proposition A.2. For G = SOo(1, n), R > 0 and the notation introduced

from above one has that

t(R)+ =

{
Tβ ∈ t+ | | sinhβ1| <

1

sinhR′

}
,

where R′ = R/
√

2(n− 1).

Appendix B. The Helgason conjecture

In this appendix we briefly describe how (1.1) implies the Helgason conjec-

ture. We are essentially following Schmid’s approach from [21].

For λ ∈ a∗
C
we define the Poisson transform

Pλ : V ∞
λ → C∞(G/K), v 	→

(
g 	→

∫
K
v(gk) dk

)
.

This map admits a continuous extension to the space V −ω
λ := (V ω

−λ)
′. Let

D(G/K) be the commutative algebra of G-invariant differential operators

on G/K. As before, let vK,λ be the K-fixed vector in Vλ with vK,λ(e) = 1.

Note that

(B.1) Pλ(v)(g) = 〈g−1 · v, vK,−λ〉 (v ∈ Vλ).

The algebra U(g)K/U(g)K ∩ U(g)k acts from the right on smooth functions

on G/K. In fact D(G/K) is isomorphic to U(g)K/U(g)K ∩U(g)k. Note that

U(g)K acts by scalars on CvK,−λ, and hence D(G/K) acts by a character χλ

on the image of Pλ. We write C∞(G/K)λ for the space of joint eigenfunctions

of D(G/K) with eigencharacter χλ.

The following theorem is the Helgason conjecture, which was first proven

in [12].

Theorem B.1. Let λ ∈ a∗
C
be so that the K-spherical vector vK,−λ in V−λ

is U(g)-cyclic. Then Pλ defines a G-equivariant isomorphism

(B.2) V −ω
λ → C∞(G/K)λ

of topological vector spaces.

Remark B.2. By Lemma 4.4 vK,−λ is U(g)-cyclic if −λ satisfies (4.3).
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We derive the theorem from (1.1). We recall Schmid’s maximal global-
ization of a Harish-Chandra module V ,

Vmax = Hom(g,K)

(
V ∨, C∞(G)

)
,

where V ∨ is the dual Harish-Chandra module of V , i.e. the space of K-finite
vectors in the algebraic dual of V . Further, C∞(G) is considered as a (g,K)-
module, where g and K act via the right-regular representation. We provide
Vmax with a topology as follows. The space

(B.3) E := HomC

(
V ∨, C∞(G)

)
is a countable product of copies of the Fréchet space C∞(G) and hence is a
Fréchet space. Now Vmax = Hom(g,K)(V

∨, C∞(G)) is a closed subspace and
as such inherits the structure of a Fréchet space. Moreover, the G-action on
Vmax is continuous.

Lemma B.3. For any Harish-Chandra module V , the maximal globalization
Vmax is a reflexive Fréchet space.

Proof. First we recall that C∞(G) is reflexive. As the space E from (B.3)
is a countable product of reflexive Fréchet spaces, it is reflexive by [19,
Prop. 24.3]. Now Vmax is a closed subspace of E and as such reflexive by [19,
Prop. 23.26].

By taking matrix coefficients one sees that any globalization of V embeds
continuously into Vmax. Here by globalization we understand a completion of
V to a representation of G on a complete Hausdorff topological vector space
E = V . Note that the assignment V 	→ Vmax is a functor from the category
of Harish-Chandra modules to the category of continuous representations.
We define V −ω as the continuous dual of (V ∨)ω equipped with the strong
topology.

Proposition B.4. For every Harish-Chandra module V we have

Vmax = V −ω

as topological G-modules.

Proof. We now use Schmid’s identity (1.1). As Vmin = V ω for all Harish-
Chandra modules V , it suffices to show that Vmax = (V ∨)′min.

We recall from Lemma B.3 that Vmax is reflexive. Since V ′
max is a global-

ization of V ∨ there exists an embedding (V ∨)min → V ′
max. Taking duals we
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obtain a map Vmax → (V ∨)′min. On the other hand (V ∨)′min is a globalization
of V and hence embeds into Vmax. As these maps restrict to the identity on
V , it follows that Vmax = (V ∨)′min as asserted.

Proposition B.5. Let λ ∈ a∗
C
be so that the K-spherical vector vK,−λ in

V−λ is U(g)-cyclic. Then

(Vλ)max = C∞(G/K)λ

as topological G-modules.

For the proof of the proposition we need the following lemma.

Lemma B.6. Let λ ∈ a∗
C
. If vK,−λ is U(g)-cyclic in V−λ, then

V−λ = U(g)⊗U(g)k+U(g)K CvK,−λ

as (g,K)-modules.

Proof. By assumption the natural map U(g) ⊗U(g)k+U(g)K CvK,−λ → V−λ

of (g,K)-modules is surjective. It remains to prove injectivity. Recall from
(6.5) that U(g) = H	(s)I	(s) ⊕ U(g)k. Since I	(s) = H	(s)I	(s) ∩ U(g)K ,
we have as K-modules

U(g)⊗U(g)k+U(g)K CvK,−λ = H	(s)I	(s)⊗I�(s) CvK,−λ 
 H	(s).

By Kostant-Rallis [15] the right-hand side isK-isomorphic to C[K/M ]. Since
V−λ is K-isomorphic to C[K/M ] as well, the assertion follows from the finite
dimensionality of the K-isotypes.

Proof of Proposition B.5. By Lemma B.6, we have the following equalities
of G-modules,

(Vλ)max = Hom(g,K)

(
V−λ, C

∞(G)
)

= Hom(g,K)

(
U(g)⊗U(g)k+U(g)K CvK,−λ, C

∞(G)
)

= Hom(U(g)k+U(g)K ,K)

(
CvK,−λ, C

∞(G)
)

= HomU(g)K
(
CvK,−λ, C

∞(G/K)
)
.

The assertion now follows from the definition of C∞(G/K)λ.

Proof of Theorem B.1. In view of Proposition B.4 and Proposition B.5, both
sides of (B.2) are isomorphic to (Vλ)max. Furthermore, as vK,−λ is U(g)-
cyclic, it follows from (B.1) that Pλ is injective, and hence bijective, on the
space of K-finite vectors. The theorem now follows from the functoriality of
the maximal globalizations.
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Appendix C. An application to eigenfunctions on Z = G/K

We recall the crown domain Ξ ⊂ ZC, the natural G-extension of Z inside of
ZC. Also we recall from the preceding appendix that Vλ,max = C∞(Z)λ for
every spherical principal series Vλ, λ ∈ a∗

C
. We mentioned in the introduc-

tion that for every K-spherical Harish-Chandra module V with K-spherical
vector vK that the orbit map

fv : G/K → V ∞, gK 	→ g · vK

extends holomorphically to Ξ, see [18, Th. 1.1]. Therefore, every D(Z)-
eigenfunction extends holomorphically to Ξ, and thus we obtain C∞(Z)λ =
O(Ξ)λ, i.e.

Vλ,max = O(Ξ)λ

by Prop. B.5. Now for every r > 0 we define K-invariant enlargements of Ξ
inside of ZC by

ZC(r) := KC(r) · Ξ = exp(ikr) · Ξ ⊂ ZC.

It is not clear whether ZC(r) is simply connected. Out of precaution we pass
to the simply connected cover Z̃C(r) of ZC(r). Note that K acts naturally on
the complex manifold Z̃C(r). From the definition of V ω

λ,r and V ω
λ ⊂ Vλ,max =

O(Ξ)λ we thus obtain

V ω
λ,r = O(Z̃C(r))λ.

Hence the fact that V ω
λ,r ⊂ Vλ,min(R) for (logR)2

R2 < cr (see Theorem 10.1)
implies the following

Theorem C.1. Let −λ ∈ a∗
C

satisfying (4.3) and r,R > 0 such that
(logR)2

R2 < cr. Then any f ∈ O(Z̃C(r))λ can be factorized as

f = ψ ∗ φλ

where φλ is the Harish-Chandra spherical function in C∞(G/K)λ and ψ ∈
C∞
R (G).
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