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1. Introduction

Let G be a real reductive algebraic group and K C G a maximal compact
subgroup. Let V' be a Harish-Chandra module for (g, K') where g = Lie(G).

Every Harish-Chandra module admits a completion (globalization) to
a representation of G. Such a completion is in general not unique. First
and foremost is the smooth completion V*° of moderate growth, due to
Casselman-Wallach, which is unique up to isomorphism, see [5], [23, Sect. 11]
and [2]. Another completion is the G-module V¥ of analytic vectors in V>
with its natural compact-open topology.

Following Schmid [21, p. 316] we define the minimal completion of V' by
the convolution product

Vinin 1= C°(G) * V C V™

and endow it with a topology as follows: take a finite dimensional subspace
V¢ C V which generates V', and consider the surjective map

C(G)® Vf — Vinin-

The quotient topology on Vi, does not depend on the choice of the finite
dimensional generating subspace V; and thus induces a natural quotient
Hausdorff locally convex topology on Vi,i,. It is inherent in the construction
that Vipin embeds equivariantly and continuously into every completion of
V', hence the terminology.
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Next we review Schmid’s interpretation [21] of the Helgason conjecture.
The conjecture was stated in [9] and first proven in [12]. Let x be a char-
acter of the algebra D(G/K) of G-invariant differential operators on G/K.
The Helgason conjecture states that the Poisson transform for G/K is an
isomorphism between the space of hyperfunction sections of a line bundle
over the minimal boundary of G/K and the space C*°(G/K), of joint eigen-
functions of D(G/K) with eigencharacter x. Then Schmid’s interpretation
and extension of the Helgason conjecture is

(1.1) Vigin = V¥

as topological vector spaces, for all Harish-Chandra modules V. The equality
(1.1) was stated in [21, Theorem on p. 317] and proved in [13, Theorem 2.12].

The objective of this work is to understand the equality (1.1) quanti-
tatively. For that let G = KAN be an Iwasawa decomposition of G and
G = KAK the associated Cartan decomposition. Let || - || be a Cartan-
Killing norm on g, and define balls Ag C A for any R > 0 by Ar = exp(ag)
and ap := {X € a | |X| < R}. This gives us a family of balls Bp :=
KArRK C G, and we write O (G) C C°(G) for the subspace of functions
with support in Br. We define

VR = CR(G) * V

and endow it with the quotient topology. Note that each of the spaces Vﬁlin
is Fréchet and that

(1.2) Vinin = lim V™

R—o0

where the inductive limit is taken in the category of locally convex spaces.
Next we consider the filtration of V“. We recall that a vector v € V™ is
analytic if and only if it is K-analytic, i.e. the restricted orbit map

fo: K =V® kek-v

is analytic (see Lemma 4.1). Now for any r > 0 we define a K-bi-invariant
domain of K¢ by Kc¢(r) := K exp(it,), where

b ={Xet]|X]<r}

We define V¥ C V¥ to be the subspace of those v for which f, extends
holomorphically to K¢(r) and endow it with the Fréchet topology of uniform
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convergence on compacta in K¢ (r). We then obtain the filtration of V“ as
an inductive limit in the category of locally convex topological vector spaces

(1.3) Ve = lim V.

r—0

In this article we prove that the two filtrations (1.2) and (1.3) are continu-
ously sandwiched into each other: we prove the following two inclusions.

Analytic inclusion:
For all r > 0 there exists R = R(r) > 0 with V,* C Vo,

Geometric inclusion:
For all R > 0 there exists r = r(R) > 0 with V3" C V.

Observe that the equality (1.1) is a consequence already of the analytic
inclusion and the minimality of Vi,i,. In turn, the geometric inclusion could
be obtained from (1.1) and the Grothendieck factorization theorem [8, Ch. 4,
Sect. 5, Th. 1] (see also [19, Corollary 24.35]), but we give a direct proof.

By a Paley-Wiener type theorem for a Harish-Chandra module V' we
understand the existence of the geometric and analytic inclusions together
with bounds on the numbers 7(R) and R(r). In this article we prove such a
theorem.

To explain the terminology, we consider the following algebraic type of
Fourier transform

F=@ Fv:C2(G) = @ Hom ) (V. V),
VeHc VeHC

that is given by
Fvo(v) = dxv (VeHC,veV).

Here HC is the category of Harish-Chandra modules. A complete Paley-
Wiener theorem would be a description of the image under F of the filtration
of C°(G). A step towards that is the localized version, i.e. for a fixed V' € HC
a description for the image under Fy of the filtration of C2°(G) in terms
of the filtration on Homg r)(V,V*) induced from V*. Optimal estimates
of r(R) and R(r) determining the geometric and analytic inclusions are an
interesting open problem, even for groups of rank one.
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1.1. Geometric inclusion

What we termed geometric inclusion has a straightforward relation to a
problem concerning the complex geometry of the G-invariant crown domain
E C Zc = G¢/Kc of the attached Riemannian symmetric space Z = G/K.
The crown domain = was first defined in [1] as in (3.1)-(3.2) below and char-
acterized as the largest G-domain Z C = C Z¢ on which G acts properly. If
zp = K¢ is the standard base point, then the crown domain can alternatively
be defined as the connected component of the intersection

() 9NcAc - 20 = () kNcAc - 20
geG keK

which contains zg. The latter can also be rephrased by = C Z¢ being the
maximal G-invariant domain containing Z such that for every K-spherical
principal series representation V' = V) with A € ag. and non-zero K-spherical
vector v = v ) the orbit map

I G/K = V°, gK — mx(g)vi

extends as a holomorphic map to & — V. (See [18] and [17] for the fact
that every f\ extends holomorphically to Z, and [16, Sect. 4] for the fact
that = is maximal with respect to this property.)

Given R > 0 we define an Ad(K)-invariant open subset in € by

E(R) = {X et ’ eXp(iX)BR - 20 C E}O,

with the subscript indicating the connected component which contains 0 € €.
Proposition 1.1. The following assertions hold.

(i) For any r > 0 with ¢, C ¢(R) we have a continuous embedding
Vi c v
(ii) There exist constants ¢,C > 0 so that
(1.4) ¢, CER) if r<Ce

Assertion (i) is Proposition 5.1; assertion (ii) is Proposition 3.1.

It is an interesting problem to determine £(R) explicitly, and we do so
for two examples in Appendix A. The results in the appendix suggest that
the bound (1.4) is sharp modulo the constants ¢, C' > 0.
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1.2. Analytic inclusion

We now address the more interesting and much more difficult part, namely
the analytic inclusion, i.e. to find for given r > 0 an R = R(r) > 0 such
that V¥ C Vﬁ;‘;. The main theorem of this paper is (see Theorem 10.1 with
Remark 10.2):

Theorem 1.2. Let G be a real reductive algebraic group and V' be a Harish-
Chandra module. Then there exist constants ¢ > 0 and Rg > 0, only depend-
ing on G, with the following property: Given r > 0, then for all R > Ry
satisfying
(log R)*
RQ

one has a continuous embedding

<cr

‘/T‘Ld C Véﬂln'

As a corollary of this theorem we obtain Schmid’s identity (1.1), and we
can view Theorem 1.2 as a new quantitative version of it. In Appendix B
we give a short derivation of the Helgason conjecture from (1.1). Finally, in
Appendix C we give an application of our quantitative version to the factor-
ization of analytic eigenfunctions in terms of the Harish-Chandra spherical
function.

Let us now explain the idea of the proof. Standard techniques reduce
matters quickly to the case when V = V), is a principal series for which the
K-spherical vector is cyclic (see Lemma 4.4). Our approach is based on the
Paley-Wiener theorem of Helgason for the Fourier transform on G/K. Let
us briefly recall the statement. Let PW (ag, C>°(K/M))r be the C*°(K/M)-
valued Paley-Wiener space of holomorphic functions on the complexification
ag. of the Euclidean space a with growth rate R, see (6.1) for the formal
definition. We realize V) in the compact picture, where V* = C*(K/M)
as K-modules, and denote by vk x = 1k )/ the constant indicator function
of K/M. It is then easy to see that the spherical Fourier transform

F:C2(G) —» 00k, C2(K/M)), f (A ma(f)vra)

satisfies
F(CR(G)) € PW(ag, C*(K/M))R.
Let W be the Weyl group of X(g,a). For w € W we denote by

T 1 V& o CF(K /M) — VS ~ C(K/M)
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the normalized (i.e. fixing 15 /y/) intertwining operator and recall that A
Jw,» is meromorphic. With that we obtain an action of W on the space of
C*°(K/M)-valued meromorphic functions,

W x M(ag, C°(K/M)) — M(ag, C*°(K/M)), (w,f)—wo f,

(wo YA = Juw-nf(w™A) (A€ ag).

In this framework Helgason’s Paley-Wiener theorem [10] asserts that
F(CR(G)) = PWw (ac, CF(K/M))r,

where the subscript W refers to invariant functions for the action defined
above. However, from the geometric inclusion it follows that 7 (C% (G))(\) C
CH(G) = Vy C Vy. Thus we observe that the intertwining relations force
analyticity, i.e. we have

PWyy (ag, C*(K/M))r = PWw (ag, C¥(K/M))r,

and this observation was the motivation for our approach to the analytic
inclusion.

Fix A\g € af such that V), is cyclic for the K-spherical vector. We ex-
plicitly construct for any given analytic vector v € Vy’(r) a holomorphic
function

foiags = C®(K/M)
such that its average

A(fv) = Z wo fy

weWw

lies in the Paley-Wiener space for a certain R > 0 and such that A(f,)(A\o) =
v. The Paley-Wiener theorem then yields that v € C%(G) * V), proving the
theorem.

We point out that our proof is in essence an SL(2,R)-proof. More pre-
cisely, in Section 8 we provide a variety of estimates for products of I'-
functions, which lie at the core of the construction for G = SL(2,R). Given
the framework provided by Kostant in [14], the general case of a reductive
group G is then a consequence of the one-variable estimates in Section 8.
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2. Preliminaries

Let G be the real points of a connected algebraic reductive group defined
over R and let g be its Lie algebra. Subgroups of G are denoted by capitals.
The corresponding subalgebras are denoted by the corresponding fraktur
letter. The unitary dual of a subgroup S of G we denote by S.

We denote by gc = g ®r C the complexification of g and by G¢ the
group of complex points. We fix a Cartan involution 6 and write K for the
maximal compact subgroup that is fixed by 6. We also write 6 for the derived
automorphism of g. We write K¢ for the complexification of K, i.e. K¢ is
the subgroup of G¢ consisting of the fixed points for the analytic extension
of 6.

The Cartan involution induces the infinitesimal Cartan decomposition
g=*E8®s. Let a C s be a maximal abelian subspace. Diagonalize g under
ad a to obtain the familiar root space decomposition

g=aomae P
acd

with m = 3¢(a) as usual. Let A be the connected subgroup of G with Lie
algebra a and let M = Zi(a). We fix an Iwasawa decomposition G = K AN
of G. We define the projections k : G —+ K and a: G — A by

g €k(ga(g)N (g€ G).

The set of restricted roots of a in g we denote by > and the positive system
determined by the Iwasawa decomposition by ¥*. We write W for the Weyl
group of .

Let s be the Killing form on g and let K be a non-degenerate Ad(G)-
invariant symmetric bilinear form on g such that its restriction to [g, g]
coincides with the restriction of x and —k(-,60-) is positive definite. We
write || - || for the corresponding norm on g.

3. The complex crown of a Riemannian symmetric space

The Riemannian symmetric space Z = G/K can be realized as a totally real
subvariety of the Stein symmetric space Z¢ = G¢/Kc:

Z = G/K‘—> Zc, gK — gKc.

In the following we view Z C Z¢ and write zg = K € Z for the standard
base point.
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We define the subgroups A¢ = exp(ac) and N¢ = exp(ng) of Ge. We
note that NcAcKc is a Zariski-open subset of G¢. The maximal G x K¢-
invariant domain in G¢ containing e and contained in NcAcKc is given
by

(3.1) = = Gexp(iQ)Kc,

where @ ={Y € a | (Va € £)a(Y) < 7/2}. Taking right cosets by K¢, we
obtain the G-domain

(3.2) E:=Z/Kc C Zc = Ge/Ke,

commonly referred to as the crown domain. See [7] for the origin of the
notion, [17, Cor. 3.3] for the inclusion E C NcAcKc and [16, Th. 4.3] for
the maximality.

We recall that = is a contractible space. To be more precise, let Q=
Ad(K)Q2 and note that (2 is an open convex subset of 5. As a consequence
of the Kostant convexity theorem it satisfies 2 Na = 2 and p,2 = 2, where
Pq is the orthogonal projection s — a. The fiber map

GxgQ =5 [g,X]— gexp(iX) - K,

is a diffeomorphism by [1, Prop. 4, 5 and 7]. Since G/K ~ s and Q are both
contractible, also Z is contractible. In particular, = is simply connected.

We denote by a : G — A the middle projection of the Iwasawa decom-
position G = KAN and note that a extends holomorphically to

=li={gt:gez}

Here the simply connectedness of = plays a role to achieve a : =1 Ac
uniquely: A priori a is only defined as a map to Ac¢/Ts, where Ty := AcN K¢
is the 2-torsion subgroup of group Ac. We denote the extension by the same
symbol. B

Likewise one defines k : G — K, which extends holomorphically to 21
as well.

For R > 0 we define a ball in A by

Ap = {exp(Y) | Y €, IV < R}

Related to that we define the ball B C G by B = KArK. We consider
the following subset of ¢:

(3.3) 8(R) :={Y € t|exp(iY)Bg C E}o.
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Note that €(R) is open, because B C G is compact. Moreover, ¢(R) is
Ad(K)-invariant. Hence it is uniquely determined by its intersection with a
Cartan subalgebra t of ¢, i.e. ¢(R) is determined by

t(R) = tNE(R).

Actually, it is sufficient to consider the intersection with a closed chamber
of t, say tT:

t(R)" =t NE(R).

For r > 0let ¢ := {X € t| || X]| <} and define the domains in K¢
Kc(r) := K exp(it,).

Note that Kc(r) is K-biinvariant, as €, is Ad(K)-invariant. Note further
that Kc(r) = (K@(T))fl, since ¢, = —¢,.

In general it is an interesting problem to determine €¢(R) explicitly. We
do this in Appendix A for two cases, namely g = so(1,n) and g = su(1,1),
the latter being treated in a way so that the generalization to Hermitian
symmetric spaces becomes apparent.

As a precise description of ¢(R) may be difficult to obtain in general,
one could instead determine the best possible r = r(R) > 0 with ¢, C ¢(R).
The following proposition gives a first bound which, given the results in
Appendix A, appears to be sharp up to constants.

Proposition 3.1. There exist constants C,c > 0 such that for all r,R > 0
one has

g CER)  (r<Cech).

Proof. Let G = GL(n,R). We consider the standard Iwasawa decomposition
of G, ie. K = O(n,R), A = diag(n,R~¢) and N is the group of unipotent
upper triangular matrices. It suffices to consider this case, as any real reduc-
tive group can be embedded into G = GL(n,R) with compatible Iwasawa
decompositions. Here we remark that the possible incompatibility of the
Cartan-Killing norms is taken care of by the presence of the constants C
and c.
We recall that

Z=G/K — Sym(n,R)+, 9K — gg',
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identifies Z with the positive definite symmetric matrices. In this matrix
picture Zc is identified with Sym(n,C)get0, the invertible symmetric ma-
trices. In case n > 3, the crown domain Z C Sym(n, C)get-£0 is not explicitly
known. However, = contains the so-called square root domain

(3.4) =2 = Sym(n,R)* + iSym(n, R) C Sym(n, C)get0,
see [18, Sect. 8]. Let m = [%] and define for z € R™

D1 (l’)

Dm(x)
with
cosx; —sinx;
Dj(x) - (sin xj cosmj) ’
J J

In case n is even we have D(z) € O(n,R), and in case of n odd we view
D(z) € O(n,R) by means of the embedding

D(z) s <D () 1) |

Our choice of maximal torus 7' C K then is T'= {D(z) | z € R™}.

Let now R > 0 and Y € Sym(n, R)T with spec(Y) C [e~F, e®]. We then
seek an 7 > 0 such that for all x € R™ with ||z]| < r and Y as above we
have D(iz)Y D(iz)! € =3. If we decompose D(iz) = U(z) + iV (x) into real
and imaginary parts, this amounts to

U(z)YU(z) — V(z)YV(x)" € Sym(n,R)*,

by (3.4). With

0 —tanh z1
tanh xq 0

S(z) =

0 —tanh x,,
tanh z,, 0

we can rewrite this as

(3.5) Y — S(z)YS(z)" € Sym(n,R)*.
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Now note that
HS(ZL’)YS(J:‘)tHOp < [tamh'r]2||Y||Op < [tanhr]zeR.

On the other hand, the smallest eigenvalue of Y is at least e~ . Hence (3.5)
is satisfied, provided [tanhr]?e** < 1. As tanhr < 7, (3.5) is implied by
r? < e 2 and the assertion of the proposition follows. O

4. Generalities on the filtration of V¢
4.1. Filtration by holomorphic extension

Let V be a Harish-Chandra module. The space V* is defined as the space
of all analytic vectors in V>, ie. V¥ := (V)  equipped with its nat-
ural compact-open topology. In the following we provide various standard
descriptions of V¥,

The first one is in terms of holomorphic extensions. For r > 0 we define

Ve ={veV>®| K>3k~ k-ve V™ extends holomorphically to K¢(r)}

and endow this space with the Fréchet topology of uniform convergence on
compacta in K¢(r).

Lemma 4.1. For any Harish-Chandra module V' every K-analytic vector
1s analytic. Moreover,
V¢ =lim V¥
b

as locally convex topological vector spaces.

V¥ describes the
r—0

Proof. From the definition it is easily checked that h%?
V' restricted to K with

space of analytic vectors for the representation on
the topology of uniform convergence on K.

We recall the notion of A-analytic vectors from [6, Sect. 5] and that the
space of A-analytic vectors coincides with the space of analytic vectors for
any F-representation of a Lie group, and in particular for V*>°. Let C be the
Casimir element and let Ax and Ag be the standard Laplace elements in
U (k) and U(g), respectively. Then Ag = C + 2Ak. As A differs from 2A g
by C, which acts finitely on V, it follows that any Ag-analytic vector is
Ag-analytic, and vice versa. This proves the first assertion.

The identity map from the space of G-analytic vectors to the space of
K-analytic vectors is continuous. The second assertion now follows from the
open mapping theorem (see [19, Theorem 24.30 and Remark 24.36]). O
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4.2. Filtration by K-type decay

The next description of analytic vectors is by exponential decay of K-types.
A norm p on V is called G-continuous provided that the completion V), of the
normed space (V,p) gives rise to a Banach-representation of G. We choose
a G-continuous norm p on V. Let V° be the up to isomorphism unique
smooth completion of V' with moderate growth, see [5], [23, Ch. 11] or [2].
We write a vector v € V' as a convergent sum

v = § Ur,

TGI?

where v, is contained in the K-isotypical component V7] of V. For any
7 € K we denote by |7| the norm of the highest weight of 7.
For r > 0 let us define

Ve(r)={veV®|(Mo<r <r) Z e"Ilp(v,) < o0}
TeK

and endow it with the Fréchet topology induced by the seminorms

v = Z e"Ilp(vy) 0 <7 <r).
ek

The space V¥ (r) is independent of the choice of the G-continuous norm
p, as all these norms are polynomially comparable on the K-types, i.e. given
two G continuous norms p and g on V_there exists a constant C' > 0, so that
plvi < C(1+ |T|)Cq|vm for all 7 € K, see [2, Th. 1.1].

Lemma 4.2. For every Harish-Chandra module V' we have
V=V (> 0)

as topological vector spaces.

Proof. Let r > 0. We first prove the inclusion V¥(r) C V,*. For this let
v € V¥r) and 0 < 7’ < r. Recall that K¢(r') = Kexp(it)K with t, =
{X € t ||| X] < r'}. Since the space V*(r) is independent of the choice
of the G-continuous norm p, we may assume that p is Hermitian and K-
unitary. Any element ¢ € exp(it,~) acts semisimply on V[r| with eigenvalues
bounded by eI, As p is K-unitary, it follows that

~

(4.1) sup pk-vy) < e 1lp(vy) (1 € K).
keKc(r')
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We recall that V), is the Hilbert completion of V' with respect to p and that
Vjp is a Hilbert representation of G. Because v € V“(r), inequality (4.1) and
the fact that dim V[r| is polynomially bounded in || imply that the orbit
map

fo i KV, kesk-u,

extends holomorphically to K¢(r'). Since this holds for all 7’ < r, the func-
tion f, in fact extends holomorphically to Kc¢(r). The image of f, is not
only in V), but in the K-smooth vectors of V). Since the Fréchet spaces of
K-smooth and G-smooth vectors in V,, are identical (see [2, Corollary 3.10]),
we obtain that f, is a holomorphic map with values in V>* = V. Thus we
have shown that V¥ (r) C V*. The embedding is continuous in view of (4.1).

For the converse inclusion V* C V“(r), we note that for an irreducible
Harish-Chandra module V' the representation V°° can be embedded into the
space of smooth vectors of a minimal principal series module V; . The latter
can be realized as the space of smooth functions f : G — V, satisfying

flgman) = a=*Pa(m) " f(g) (9 € G,man € MAN).

Note that VX is naturally a G-module, with G' acting on V5 by left dis-
placements in the arguments, in symbols 7, (9)(f) = f(g~!). We write H
for C*°(K) equipped with the G-representation 7y given by

(ma(9)f) (k) = a(g™ k)" ?f(k(g k) (feH,g€CG keK).

We may embed V°° equivariantly into H ® V. It therefore suffices to prove
that HY C HY(r).

We let p be the L?-norm on H, which is G-continuous. Note that K acts
also from the right on smooth functions on K, and therefore H carries a
representation of K x K. From now on we consider H as a K x K module.
For 0 < 1’ < r we define a K x K-invariant Hermitian norm on H¥ by

2

= v(k)|? v “.
() = [ [ | wew)

Here dp is the measure on K¢ which in the polar decomposition K¢ =
K exp(itt)K is given by

du(lﬁ eXp(it)kQ) = dkl dt dkz,
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with dkq 2 the Haar measure on K and dt the Lebesgue measure on t*. For
7 € K we define H|[7] to be the T®@7V-isotypical component of H and denote
the restriction of p and g,» to H[r] by p; and ¢, -, respectively. Since H[7] is
K x K-irreducible, there exists a constant ¢, » > 0, so that ¢, » = ¢ 7 - pr.

We will estimate the constant from below by estimating ¢, -(v) for a
matrix coefficient

V= Moy, ¢ k= (w1, T(k)wa),
where wi,wy € V. Using the Schur-Weyl orthogonality relations we obtain

2
G 2 (v)? = n] // |7 (exp(it)k)wol|* dk dt.

dim 7

Next we pick an orthonormal basis of weight vectors vi,...,v, € V; and
expand the integrand. We thus obtain that the right-hand side is equal to

leHz - )
dimTZ t+ k)wa, eXP(Zt))v]H dk dt.

Now we apply Schur-Weyl once more. This yields

lwn [ [lwe]® <

I (exp(it))o; | dt.
Zl/t P

dim(7)?

Again by Schur-Weyl we note

||’LU1||2HU)2H2 =p (1})2
dim(7) T

Let p, be the highest weight of 7, and assume that v; is a highest
weight vector with weight . Then for all " < 1’ there exists a constant c,
independent of 7, so that

2
, 2 5 pr(v) / 20-(it) gt > (2e2lH I 2
ar 77'(1)) - dlm(T) o e Zce pT(v)

As ||ur|| = |7], we conclude that for every r” < 1’ there exists a constant
cq > 0, so that

~

"
Crrw > e 7] (1 € K).
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Ifv=> _pvr €HZ then for all 0 <o <7’ <7

" 1 1
Z e|7‘7” pT('UT) S o Z qT/,’T(UT) = ;qT/(U> < Q.
T T

TEIA( TGIA(

It follows that v € H¥ implies v € H¥(r). Moreover, the embedding is
continuous. 0

4.3. Reduction to spherical principal series

It is our intention to show for a given Harish-Chandra module V' and r > 0
that there is a continuous embedding

Ve(r) C v

for some R = R(r) > 0. For A € af we write V) for the spherical principal
series representation Ind%(C;y). We will first reduce the problem to the case
in which V' = V) for some A € ag.

Every irreducible Harish-Chandra module V' is a quotient

(4.2) WF —»V

for some spherical principal series V) and finite dimensional representation
F of G, see [22, Sect. 2]. We first recall how this arises. By the Casselman
embedding theorem every irreducible Harish-Chandra module V is a quo-
tient of some minimal principal series module V; ) = IndIGD(VU ® C;)) with
(0,Vy) € M and X € ag, ie.

Vor — V.

Now, by op. cit. the M-representation (o,V,) can be realized as the
quotient F'/nF of a finite dimensional module F' of G, i.e. V, = F/nF. By
the Mackey isomorphism we have

Va ® F = Ind$%(C;y) @ F ~ Ind%(Ci\ @ F|p).

Hence the P-morphism C;\ ® F|p — C;, ® F/nF ~ C;\ ® V,, gives rise to
the chain of quotients

WRF = Ve —»V.
This proves (4.2).
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Lemma 4.3. Let A\ € ap and F' a finite dimensional representation of G.
The following assertions hold.

(i) Letr,R > 0. If Vi*(r) embeds continuously into C3Y(G) * Vy, then also
(Vi@ F)“(r) embeds continuously into CF(G) * (VA ® F).

(ii) Let V' be a Harish-Chandra module so that there exists a quotient map
w:VA®F — V. Then for everyr >0

ve) = = (Vi@ F)*(r),

where the symbol w is also used for its the globalization to (V\ @ F)*°.

Proof. First note that (V\®F)“(r) = V¥ (r)®F, as F is in fact a Ge-module.
To prove (i), it thus suffices to show that (Cf(G) * Vy) ® F continuously
embeds into CF(G) * (VA ® F'). The proof for this is analogous to [2, Lemma
9.4].

We move on to (ii). Let p be a K-invariant G-continuous Hermitian
norm on V) ® F. Let ¢ be the corresponding quotient norm on V. Then
q is G-continuous and K-invariant. Note that the definition of V*(r) does
not depend on the choice of the G-continuous norm on V. Assertion (ii) now
follows, since V¥ (r) as a K-module is a direct summand of (Vx®@F)“(r). O

4.4. Kostant’s condition

We would like to be more restrictive on the parameter A of the quotient
WRF —» V.

Lemma 4.4. Fvery irreducible Harish-Chandra module V' admits a quotient
VN®F — V, where F is an irreducible finite dimensional representation of
G and \ € af. satisfies the Kostant condition

(4.3) Re(i))(a”) >0 (a e TT).

If (4.3) is satisfied, then V) = U(g)vi \ is U(g)-cyclic for the K -fized vector
VK \-

Proof. In view of (4.2), V admits a quotient V\® F — V| where F is a finite
dimensional representation of G. Let F’ be a K-spherical finite dimensional
representation of lowest weight —u € a*, where p is dominant. Then M acts
trivially on the M A-module F’/nF’ ~ C_,, with A-weight —pu. In particular,
we obtain a quotient

V)\*i/ﬁ ® F — V.
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It follows that V' admits a quotient Vy_;, ® F @ F' — V. The first assertion
now follows by taking u sufficiently large. The last assertion is [14, Th. 8]. O

5. The geometric inclusion

The goal of this section is to show that VE" = C%(G)*V embeds into V()
for any r > 0 with &. C ¢(R). This reduces to the case where V = V) is the
spherical principal series representation with parameter A € af. Elements
in Vy° are uniquely determined by their restriction to K. This gives rise to
the compact model, in which

o V= C=(K/M),
o V¥ =CY(K/M),
o V\ = C[Kc/Mc]

as K-modules. The main result of this section is the following.

Proposition 5.1. Let V' be a Harish-Chandra module, and R > 0. Let r be
such that €, C €(R). Then we have the continuous embedding

VE™ CVE(r).

Proof. We first reduce to the case where V' = V), is a spherical principal
series. We recall from Section 4.3 that V is a quotient of some V) ® F,
with F' a finite dimensional representation. Now all matrix coefficients of F
extend holomorphically to G¢, and this completes the reduction to V = V.

We work in the compact model of V). Let v = 7(f)w for some w € V
and f € C%(G). Then we note that for k € K

(5.1) v(k) = w(f)(w)(k) = : F(g)w(g™"k) dg.

Observe that w(g~ k) = w(k(g~'k))a(g~ k)~ 7. As w € C[Kc/Mc], w is
a holomorphic function on K¢/Mc. Thus with BrK¢(r) € 27! € KcAcNe,
we conclude that a and k are defined on BrKc(r) and holomorphic. Thus
v extends to the holomorphic function on K¢(r) given by (5.1). This shows
the continuous embedding for this case. O

6. Preliminaries on the analytic inclusion
6.1. K-type expansion of functions on K/M

In the following we view functions on K /M as right M-invariant functions
on K. For any 7 € K we fix a model (finite dimensional) Hilbert space V.
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For 7 € K we write 7V for the dual representation. We then obtain for each
7 € K a K x K-equivariant realization of V; ® Vv as polynomial functions
on K:

Ve @ Vov = C[Ke], v@0Y = mypv; myov (k) =0V (k™ ),

where K x K acts on C[K¢| by the left-right regular representation. We
arrive at the K x K-isomorphism of K x K-modules

=PV,

7'6]?

and taking right M-invariants at the K-isomorphism of K-modules

ClKe/Mc] = P V>0 VY,
reRy

where I M C K is the M -spherical part of K. Fix 7 and identify Vv ~ V*.
In particular, the unitary norm on V; induces the unitary dual norm on Vv
and we write || - || for the Hilbert-Schmidt norm on V; ® V-v. We recall that
| - ||+ is independent of the particular unitary norm on V, (which is unique
up to positive scalar by Schur’s Lemma) and is thus intrinsically defined.
Any function on f € C[Kc] we now expand into K-types f = > __p& fr with
fr € V- ®V,v. With that we record the well known Fourier characterizations

of C*(K) and C¥(K) as

CX(E)={f=)_ f|(UNeN) Y @+ T)Vfl; < oo}

rekk rek

and

CUR)={f=)_ f[Gr>0) > f]; < oo}
TGR TGR
Taking right M-invariants, we obtain corresponding Fourier characteriza-
tions of C*°(K /M) and C¥(K/M).

6.2. The Helgason Paley-Wiener theorem

We begin with a short review of the Fourier transform on Z = G/K and re-
collect some notation. For A € ag. we denote by V) the Harish-Chandra mod-
ule of the K-spherical principal series with parameter A as defined before. Re-
call that V* = C°°(K/M) as K-module. We denote by vi x = 1x/ns € Vi
the constant function.
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For every R > 0 we let PW (af, C*°(K/M)) R be the space of holomorphic
functions f : af — C°°(K /M), so that for every continuous semi-norm ¢ on
C>®(K/M) and N € N one has

(6.) sup g(F())(L+ A)Ne A < oo,
A€ag

Further we denote

PW(a, C%(K/M)) = | J PW(ag, O%(K/M))r
R>0

and refer to it as the Paley-Wiener space on ag with values in C*°(K/M).
The Fourier transform on Z is then defined by

F:C2(Z) = PW(as, C®(K/M)),
fr= FO) FOHA) = ma(fvra

Note that
F(HN) (kM) = /Z fgK)alg™ k)" P d(gK) (k€ K).

It is convenient to write F(f)(A, kM) for F(f)(A)(kM).

In order to describe the image of F, we recall the Weyl group W of
the restricted root system Y. = 3(a,g). Attached to w € W there is a
meromorphic family of standard intertwining operators

Iw)\ . V)\OO —

Further we recall that I, x(vk ) = Cuw(A)vkwy for a meromorphic and
explicit function c¢,, (w-partial Harish-Chandra c-function, calculated by
Gindikin-Karpelevic). We define the normalized intertwining operator by
Ju ) = #()\)Iw»\. We recall that A ~— J, » is meromorphic on ag, and
holomorphic on an open neighborhood of the cone

{A€af:Re(iXa")) >0foralla € ST Nw 'S}

It is clear from the definitions that every Fourier transform ¢ = F( f) satisfies
the intertwining relations

(6.2) Ju(6N) = (wh)  (we W, A€ al).
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Let PWyy (a5, C*°(K/M)) be the subspace of PW(af, C>(K/M)) of
Paley-Wiener functions that satisfy all intertwining relations (6.2). Then a
slight reformulation of Helgason’s Paley-Wiener theorem [10, Theorem 8.3]
states that

(6.3) F(CR(Z)) = PWw(ag, C*(K/M))r  (R>0).
See [20, Lemma 2.2].
6.3. Intertwining relations on K-types

For any T € K and )\ € az we have
(6.4) W\[r] = C®(K/M)[r] =V, @ VM

as K{-modules, where Vv = V. We denote by J,, x[7] the restriction of Jy, x
to Vi[r] and observe that Jy, z[7] : VA[T] = Viya[7]. Within the identification
(6.4) we then obtain

JuwalT] € Endg(V; ® V) ~ End(VY).

Next we recall Kostant’s factorization of J, z[7]. In general, if ¢ C g
is a subspace, we denote by S(¢) the symmetric algebra and by S*(e) the
image of S(e) in U(g) under the symmetrization map. From the Cartan
decomposition g = s + £ and the PBW-theorem we thus obtain the direct
sum decomposition

U(g) = S™(s) ® U(g)t.

Next, according to [15, Th. 15] we have S(s) = H(s) ® Z(s), where H(s) de-
notes the harmonic polynomials on si and Z(s) the K-invariant polynomials
on s5. We derive the refined decomposition

(6.5) U(g) = H*(s)T*(s) D U(g)t.
Consequently we have for all A € af. that
dma(U(g))vien = drx(H*(s))vi a-

We recall from Lemma 4.4 that in case A satisfies the Kostant condition
(4.3), the vector vg y is cyclic in V) for U(g). In general we have for each

7€ K the K -equivariant maps

Q-(\) : H*(5)[7] = W[r] =V, @ VA, D dry(D)vk.a,
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which are isomorphisms if A satisfies (4.3), see [14, Cor. to Prop. 4 and
Cor. to Th. 7]. (In [14] the polynomials @, are denoted by P". Compared
to the polynomials defined in [11, p. 238] there is a sign difference in the
argument. )

For fixed 7 € K m we recall that the assignment

ak 3 A= Q- (\) € Homg (H*(s)[7], Vi @ V)
is polynomial. Since Jy, \Ux x» = Vi wx, We obtain the relation

JulT] 0 Qr(X) = Qr(wh),
and as a consequence Kostant’s factorization
(6.6) Jualr] = Qr(wA) 0 Q-(N) 7Y,
which exhibits J,, x[7] for fixed T € K M as a rational vector-valued function
at 3 A= Jya[7] € End(VA).

Remark 6.1. To understand the polynomial dependence of A — Q()\)
better, it proves useful to introduce a normalization. Set

Q-(\) = Qr(N) 0 Q,(0)"! € Endg (V; ® V) ~ End(VY).
Hence @T(O) = id and we can, upon fixing a basis of the vector space VTAf ,

view Q7 as a polynomial function on af, with values in the space of (1) xI(7)-
matrices, where [(7) := dim V.

Remark 6.2. In case G has real rank one, it was shown by Kostant in [14,
Theorem 6] that V2! is one-dimensional for all 7 € K. In this case, for
fixed 7 € Kj; the map

A= Qr(N)

is an explicitly computable polynomial in A (see [11, Ch. III, Cor. 11.3]),

and consequently A\ — Jy, A[7] is a scalar-valued rational function.
Specifically, let now G = SL(2,R) with K = SO(2,R) and A as before.

We identify K with Z and ag with Cvia C > A Ap. Then forn =7 € Z

~ r(

Qo = pet et e )

(At p)(@") T (2p(a”) +[nl) ~ T (

(iA+1)+[n)T(3)
(iA+1))T (2 +n|)

D[ D] =

1
2
1
2
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(14N B +iN) ... (2n| — 1 +i))
1-3-...-(2n[—1)

Then, for all n € Z = Ky and A € C = at and w € W the non trivial
element, the map J, \[n] is given by the scalar

(1—iX)(B—iX)-...-(2]n| —1—1i))

Tolnl = TN G TNy @ =1y

7. Strategy of proof

In this section we describe the general strategy of proof for the analytic
inclusion. The approach is simpler when G/K has rank one, and therefore
we give a separate proof for that. The strategy for rank one is described
through the following Ansatz 1. The general case is treated in Ansatz 2.

7.1. Ansatz 1

We consider a spherical principal series module V), where A\ satisfies (4.3).
Let r > 0 and v € V¥ (r), i.e. v =} vy with v, € V3 [7] = V, @ VM|
so that

TE[?]M

Z eI, < o0 0<r' <r).

TEI?JM

We make the following ansatz. First, let

F()‘) = Fv(>‘) = Z UT()‘)a

€K M
where for each 7 € K M
i3 A= u\)eV,oVY
is a certain holomorphic function such that u,(\g) = v;. Specifically, we set
ur(X) = ¢r(N)Qr(N) 0 Q- (No) " tor,

where ¢, € O(at)V is a W-invariant holomorphic function with ¢,(A\g) =
1. Suppose that the series defining F'(\) converges locally uniformly with
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respect to A, so that F,, € O(af, C*°(K/M)). Then we observe with (6.6)
and the W-invariance of A — ¢,(\) that

JuaFN) = Y ¢:(N)Juwalr] 0 Q- (A) 0 Q- (Ao) 'vr

reky

= > - NQr(wA) 0 Qr(Xo) vy = F(w)).

reky

In other words A — F'()) satisfies the intertwining relations. If we can now
construct the ¢, in such a way that ' € PW(ag, C*°(K/M))r for some
R = R(r), then the Paley-Wiener theorem (6.3) implies the existence of an
f € Cx(Z) such that F(f) = F'. In particular, we obtain v = my, (f)vk x,»
that is

Vi(r) CCR(G) * Vy,.

We follow this ansatz for the rank one spaces in Section 9.
7.2. Ansatz 2

For the second ansatz we need some terminology. The space of C*>°(K /M )-
valued meromorphic functions on af will be denoted by M(ag, C*°(K/M)).
We recall that a vector-valued function f on af is called meromorphic pro-
vided that for all \g € ai. there exists an open neighborhood U of A\g and a
polynomial p(A) so that A — p(A) f(A) extends to a holomorphic function on
U. In this regard we recall that V> = C*°(K /M) as K-modules for every
A € ai.. We then view an element f € M(ag, C>°(K/M)) as a section of the
bundle [[yc.. VX° — af, i.e. we consider f(A) € V*. The key observation
is that the prescription

W x M(ag, C°(K/M)) — M(ag, C*°(K/M)), (w,f)— wo f;

(w © f)(/\) = Jw,wfl)\f(w_l/\) ()‘ € a(?:):

defines an action of W and, moreover, a meromorphic function f satisfies
the intertwining relations if and only if it is W-invariant for this action.
Now we come to the ansatz proper. Fix A9 € af which satisfies the
Kostant condition (4.3), and let W), C W be the stabilizer of \g. As Ao
satisfies (4.3), it follows that Jy, ,-1n, = Ju,), is defined for all w € W),
and constitutes an intertwining operator Jy,y, : Vo — V@ for which
Jwre (Vi N,) = UK~ The fact that v , is fixed by Jy, 5, and that v y, is
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cyclic for V), (see Lemma 4.4) implies that J,, 5, is equal to the identity on
V), and hence also on Vy*.

Let now v € Vi’ (r). Let further f, : ag — C°°(K/M) be a holomorphic
function satisfying the properties

o fu(Ao) = |I/Vlko|v’
o fu(who) =0if we W\ Wy,.

Given a choice for f,, we define a meromorphic function by

fv) = Z U)Ofv,

weW

and note that A(f,) automatically satisfies the intertwining relations. More-
over,

(71) AN = D Jww-afolw™ X)) = D> Jusfolho) =1,

weW WEWAO

i.e. A(f,) interpolates v at A = Ap.

The difficulty is that the operators Jy, ,,-1) have poles and the function f,
has to be chosen carefully, so that A(f,) is indeed holomorphic and satisfies
the Paley-Wiener condition for some R = R(r) > 0. The overall strategy is
to start with a simple minded function f,(A) = py,(A)v for some polynomial
Dy, and then modify f, along its K-isotypical components, i.e. for each 7 €
K we replace py, (A)vr by ¢5(A)pa, (A)vr for some appropriate holomorphic
function ¢, .

This ansatz is used for the general case in Section 10.

Remark 7.1. Compared to the first ansatz this approach is computation-
ally more complex, as we have to average over the Weyl group W, and in
addition the functions ¢, have to be such that the poles of the rational
functions J,, » are canceled. However, the advantage of this ansatz is that
intertwining operators, in contrast to the @-polynomials, factor into rank
one intertwiners, which can be explicitly computed and estimated.

7.3. An application of Helgason’s Paley-Wiener theorem

The following proposition will be used in the implementation of both ansat-
zes.
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We define H to be the K representation L?(K/M). Accordingly, we write
H>* and H“ for C*°(K /M) and C¥(K /M), respectively. For each r > 0 we
define a Fréchet space by

M) i={v e HY [ (VO<r <) > e v < oo}
TGRI\/J
with the indicated seminorms. We write H for the 7-component of H.

Proposition 7.2. Let r,R > 0 and \g € af.. Consider a family (FT)ref(M
of holomorphic functions Fr : ai — End(H,) satisfying the following cond-
tions.

(i) For every T € I:(M we have Fr(X\g) = id.
(i1) For every T € Ky, w € W and X € af. the intertwining relation holds

Fr(w-X) = Jyxo Fr(A).

(7ii) There exist a real number 0 < v’ < r, integers j,l € Ng, and a constant
C" > 0 so that for all T € Ky and X € af

IE-(N)]lop < /(14 |7])7 €171 (1 4 | A|))! et IHm Al

Then for every e > 0 a continuous linear map ¢ : H*(r) — CF (G/K)
exists so that

v =(v) * VK, (v e H (r)).

Proof. For k € Ny, let p; be the continuous seminorm on H* given by

pe(w) = Y @+l (uweH>).

TEIA(M

Note that this family of seminorms determines the topology of H>.
Let 7 < " < r. It follows from (iii) that for A € af, k € Ny and
v € HY(r)

(7.2) D A+ DM IE ) @) < O+ A" RIEAEN eI,
TEI?M TEIA(M

where

C":=C" sup (1+|7))7 e < oo
TEIA(M
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By definition > % e”"I™l|uy|| < oo for each v € H¥(r). It follows from

(7.2) that for every v € H“(r) the series

Fy(\) == > F(N(w:) (Aeap)

TEI?JM

converges in H*°. The convergence is uniform for A in compacta, and hence
F, is a holomorphic H*°-valued function depending linearly on v.

Let ¢ > 0. We claim that there exists a § € C*®(K\G/K) so that
0 * vi ), = VK,)\,- L0 see this, first note that

CSO(K\G/K) *UK,AO g CUK)\O'

Consider now a Dirac sequence (6,,),en of functions 6, € Cf?n(K \G/K).
Since 0, * vk ), converges to vg , for n — oo, there exists an m € N so that
On *x v ), 7 0 for all n > m. Let now n > m be so large that % < €. After a
rescaling of 6, we obtain a function with the claimed property.

Since 6 is K-invariant, its Fourier transform § = F(0) is a W-invariant
scalar-valued holomorphic function on ag, and by the Paley-Wiener Theorem
(6.3) it satisfies for every N € Ny the estimate

(7.3) sup [0(V)|(1+ AN e A < oo,

A€ag

Moreover, since 6 * vg ), = Vk,), We have

~

(7.4) 6(Xo) = 1.

For A € af and v € H“(r) we define f,(\) = O(\)Fy(\) € H™. The
function f, : af — H™ thus obtained is holomorphic. It follows from (7.4)
and assumption (i) that f,(Ag) = Fy(A\g) = v. In view of assumption (ii) the
function f, satisfies the intertwining relations (6.2). Finally, it follows from
the estimates (7.2) and (7.3) that there exist for every N € Ny and k € Ny
a constant Cn > 0, so that for every A € af and v € H¥(r)

(7.5) i (fo(N)) < Onp(1+ A) Vel Fralim AR =il ),
TEI?IW

Now it follows from the Paley-Wiener theorem (6.3) that f, = F(¢)) for
some ¢, € CF, (G/K). Set ¢, = ¢, 0 € CF,(G/K). Note that ¢,
depends linearly on v and satisfies

Do * VKN, = P * Vix, = F (&) (M) = fo(Xo) = v.
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It remains to show continuity from H“(r) to Cf,,.(G/K) of the map
v = ¢, The space PWyy (ag, H*) gy is a subspace of L? (a*, H, \c(dA)S\?)' By
the Plancherel theorem for G/K and (7.5) we have

dA
I = [ IO o

< [ miaoy <ol e

a =
TeEK N

o
—~
>
N—
S
|

with

dA
co = C% / 14 A2 < 00
0 N,0 a*( H H) |C()\)|2

for a sufficiently large N € N. Finally for every continuous seminorm g on
C%.9(G/K) there exists a constant ¢’ > 0, only depending on 6, so that

q(pv) < [l ll 2

The continuity follows. O
8. An explicit construction in one variable

For every n € Ny and R > 0 we define an entire function f, r on C by

sin(zRm = 2\
(8.1)  far(2):= sz-H?l(g)(@Z)z) :j_lll (1 B <R7> )

for z € C, invoking the product expansion of the sine function. Next we
define for n € Ny a polynomial function g, on C by

(8.2) gn(2) = f[ (1 v f,) ( €C).

=1

Proposition 8.1. There exist ¢, Ry > 0 and for every r > 0 a constant
C, > 0 so that the following assertion holds for every n € Ny.
Let r >0 and R > Ry with

(log R)?
R2

(8.3)

< cr.
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Let V' be a finite dimensional inner product space and P : C — End(V) a
polynomial map such that

IP(2)llop < an(z)* (2 €C)

for some k € N. Then
k
| frr(2)P(2)lop < |C erneRfrumz\]

for all z € C.
The proof is divided into several lemmas. Let
Fn,R(Z) = fn,R(Z)kP(Z)‘

The first two lemmas contain estimates of the function defined by

For(2) = for(2)an(|2]),
for which we have
(8.4) 1Fnr(2)llop < [Fnr(2)[F (2€C).

Lemma 8.2. There exists a constant C > 0, so that for all R > 3, n € Ny
and z € C with |z| > % we have

|ﬁn,R(z)| < CeRTerZ‘.

Proof. By symmetry, we may assume that Re z > 0 without loss of general-
ity. Note that

~ (L) (n - 2]) 1-2--n sin(mRz)
(85) Fun(z) = (1+Rz)---(n+Rz) (1—Rz)---(n—Rz) 7Rz

We claim that
A+[z)-—-(ntl]z) |
(1+Rz)---(n+Rz)| ~—

To prove the claim it suffices to show that for all 1 < j < n we have

j+lzl < i+ Rzl
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Since Rez > 0, we have
lj + Rz|? = R?|z]> + 2Rj Re z + j* > R?|z|* + j°.

For R > 3 and |z| > % the condition R?|z|* > |z|* + 2n|z| is satisfied, and
hence

Rz + 7% > |2* + 202 + 5% > (5 + |2)%.
This proves the claim.
We further claim that
1-2---(n—1)
(1-Rz)---(n—1— Rz)

if R|z| > n. This is a direct consequence of the inequality |j—Rz| > R|z|—j >
n—j.
Altogether, we obtain the estimate

- n sin(rRz)
F, < :
’ ,R(Z)| = |n— Rz TRz
n sin (ﬂ'RZ) sin (77(” - RZ)) <C Rr|Im z|
= e .
Rlz||n(n—Rz)| = | m(n—Rz) |~

Lemma 8.3. There exists a constant ¢ > 0 such that the following holds:
For all v > 0 there exists C > 0, so that for alln € Ny and R > e with

(log R)?
R2

< cr,

we have

|Fo.r(z)| < Ce™ 0<z<

).

Proof. Let n € Ny, R > 1 and z > 0. We shall estimate ﬁmR(z) using
Stirling’s approximation. Euler’s reflection identity I'(1 — z)['(z) = Sinzrm)
and the functional equation of the Gamma function yield

=S

T T R
H(3+Rz) H(] — Rz) sisz%z =T(n+1—Rz)['(n+ 1+ Rz).
i=1 j=1
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This allows to rewrite (8.5) and express fn r in terms of Gamma functions:

By o) T(n+1+2)(n+1)
YT DA+ )0+ 1+ R2)l(n+1— Rz)’

We recall Stirling’s approximation

(8.6) I'(z) = \/?ema:m (14+0(1/x))

for x — oco. Applying Stirling to fn R, we obtain that there exists a constant
¢ >0, independent of n and R, so that for all z € [0, %]

(8.7) For(z) € 414 5 ehon),

where

hnr(2) == (n+1+2)log(n+ 14+ 2)+ (n+1)log(n + 1)
— (14 2)log(l+2) — (n+ 1+ Rz)log(n+ 1+ Rz)
—(n+1—Rz)log(n+1— Rz).

Here we used the straightforward estimate for z € [0, %]

(1+2)(n+1+Rz)(n+1—Rz) (1+42)((n+1)* - R?2?) <142
(n+1+4+2)(n+1)  (n+l+2)(n+1) R

to estimate the square roots in (8.6).
The term (14 2)log(1+%) in hy, r(2) can be estimated below by zlog(2).
With the substitution z = (n + 1)z we then obtain

(8-8) hn,r(2) < (n+ 1)Hpg(x)
where

Hp(x) = (14 x)log(l + x) — xlog(x)
— (1+ Rz)log(l+ Rx) — (1 — Rx)log(l — Rx).

‘We will show

(log R)?

(8.9) Hp(r) < 4

T € (O,%),
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for all R > e. We estimate the first two terms of Hr(x) in a separate lemma.

Lemma 8.4. For everyb> e and 0 < z <1

log b)?
(1+2)log(l+4+z) —zlogz < % + ba?.

Proof. Since (1 + z)log(1l + z) < 2z for 0 < x < 1 it suffices to show

2
2z —xlogx =: ¢(x) < Y(x) := (logTb) + ba?.

The functions ¢ and 1) are concave and convex, respectively. We will prove
the inequality by exhibiting a separating line of slope log b.
We have ¢'(x) = 1 —logz and hence ¢'(x) = logb for x = §. Then
¢(z) < () +log(b)(z — §) = § + log(b)z.

On the other hand ¢'(z) = 2bx = logb for x = % and therefore

log b log b) 3(log b)?

¢(x)2w<W>+log(b)(a:— ) = S+ log(b).

Hence ¢ > ¢ if %(log b)2 > e and in particular if b > 2. O
We proceed with the proof of (8.9). Let

o(t) = (1+1t)log(l+1t)+ (1 —t)log(l —1)
for 0 < ¢ < 1. Then ¢(0) = ¢/(0) = 0 and ¢”(t) = 135 + & > 2. Hence
p(t) > 1%,
Then for z € (0, %)
Hr(z) < (1 +2)log(1+z) — zloga — R%x?.

We obtain (8.9) from Lemma 8.4 with b = R2.
We can now finish the proof of Lemma 8.3. Let 0 < ¢ <

R > e and bg}%—ff < ¢r, then

JIfr >0,

PN,

’ﬁn,R<z)‘ < e /1 +n€4crn <Ce™, neNyze [0, }%],

by (8.7) and (8.8), with a constant C' > 0 depending only on ¢ and r.  [J
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Proof of Proposition 8.1. By Lemma 8.2 and (8.4) we have for all R > 3,
n € No and z € C with 2| > &

k
(8.10) | Fo(2)lop < |Cem 1]

It therefore suffices to estimate Fy, g(z) for zin D= {z € C: |z| < %}.
Note that

||Fn,R(Z)”0p = sup |<Fn,R(Z)U7w>‘,
v,weV
lvll=]lwl=1

and that the matrix coefficients (F), r(z)v,w) depend holomorphically on
z € C.

Let D1 = DN Cy where Cy denotes the closed upper/lower half plane.
By the maximum modulus principle a holomorphic function in D4 assumes
its maximum modulus on aDi, i.e. on the union of the semicircle 9D N C+
and the segment DNR = [~ %, %]. We apply the principle to the holomorphic
function

<Fn7R(Z)U, w) e:l:iRkTrz

on Dy, which by (8.10) is bounded in absolute value by C¥ on 9D N C..

On the other hand, with ¢ as in Lemma 8.3 it follows that for all r
satisfying (8.3) there exists a constant C, such that |(F, p(2)v, w) eFFm2|
is bounded by [Cre™]¥ for z € [~ %, L]. Assuming as we may that C, > C,
we obtain

|<Fn,R(Z)'Ua w> e:l:iRkTr2| < [Crern]k
for all z € D4. This implies the proposition. O

The following lemma will be used in the next two sections.

Lemma 8.5. Let R > 0 and zo € C. Assume Rzy ¢ Z\{0}. Then

inf .
i ()] > 0
Proof. With (8.1) we observe that f, r(z) = 0 if and only if Rz € Z and
|z| > %. In particular the assumption on zo implies fy, r(z0) # 0 for all
n € Np.
If n > N := [R|z|| then

o= TT (1= (20 = 1T (1= (P2)7) = st

Jj=n+1 j=N+1
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Hence
Inf | fa.r(20)] = min {|fo,r(20)], .- -, |fn-1,8(20)|, fn,r(|20]) } >0

by the first observation in the proof. O

We end this section with a remark that will be useful when Proposition
8.1 is applied in Sections 9 and 10.

Remark 8.6. Let P(R,r) be any proposition depending on two variables
R,r > 0. Then the proposition

(log R)?

3¢, Ry > 0%r > 0,R > Ry : (T<cr = P(R,r))

possesses a scaling invariance. Let a, A > 0 and B € R. Then

(log S)?
52

3d, S5 > 0¥s > 0,5 > Sp : ( <ds = P(AS+B,as))
is an equivalent proposition. This follows from the observation that there
exist constants Cy, C7,Co > 0 so that for all R > Cj

log R < log(AR + B) < CQIOgR'

Ci—p~ = AR+ B — R

9. The rank one cases

Using the construction from the previous section we can now complete the
argument in case G is of real rank one. Let o € X be the indivisible root.

Then

g292a+ga+a+m+g—a+g—2a

with a = Ra¥. We set m,, := dim g® and ma, = dim g>*. Then

p= §(ma + 2maq ).

The goal of this section is to prove the following

Theorem 9.1. Let G be a group of real rank one and V), a representation
of the K -spherical principal series with Ao satisfying (4.3). Then there exist
positive constants ¢, Ry > 0 independent of Ag, such that for all R,r > 0
with R > Ry and (lolg%—f”)z < cr, we have a continuous embedding

Vi(r) c CR(G) *vip, = (VAO)gin.
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Remark 9.2. With the theorem above we can prove Theorem 1.2 for groups
of real rank one. Let ¢ and Ry be as above. Then Theorem 9.1 and Lemma
4.2 imply that the conclusion of Theorem 1.2 is valid for V = V) . For a
general irreducible Harish-Chandra module V' the conclusion then follows
from Lemmas 4.3 and 4.4.

In order to prepare for the proof of Theorem 9.1, we introduce some
new notation. As mentioned in Remark 6.2, the normalized @-matrices from
Remark 6.1 are scalar-valued and are given by explicit formulas from [11,
Ch. III, Cor. 11.3]. This corollary invokes non-negative integers 0 < r < s
which are defined in [11, Ch. III, Th. 11.2] for each 7 € Kj;. From the proof
of that theorem it follows that r and s have the same parity if mg, # 0. It
further follows from the equation for s and r on page 346 in op. cit. that
there exists an m > 0, independent of 7, such that

(9.1) s < ml.

We may and will take m € N. In order to express the Q()) in an efficient
way, we introduce some new notation.

For elements 0 < a < b with b — a € Ng, we define polynomials in the
complex plane by

_ I'(z+bIl(a) (2+a)(z+a+1)---(2+b—1)
(92) Fa,b(z) E F(Z + a)F(b) - a(a + 1) - (b — 1)

For later reference we note the following estimates by the polynomials
introduced in (8.2):

Go—a|2) ifa>1
93) Tas(2)] < Tap(l2) < 4 -
EQbfa(|ZD ifa<1.

The inequality for a > 1 follows from

el taty _q, lel oy Lol
a-+7 a-+y 14

for each j > 0, and the other one is then a consequence of

(lz| +a)b

Lop(l2]) = ([ b)a

a+1b41(]2])-
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We also note that
(9.4) Tap(2)| >1 (Re(z) > 0).

Next we define positive half integers. In case mo, = 0 we set

aV Mg v

(0%
arimp(g) =5t and b= o) s

and note that b, — a, = s € Ny.

For my, > 0 we first note that p(o‘Q—v) = 7> +maq =: d € N is a positive
integer greater or equal to 2, as my, is even when mg, > 0. Further we define
positive half integers by

aV, d 1
al == ’O(T):E and bl := §(s+r—|—d)
and
2 1 2.1
a;z = §(d+1—m2a) and b7 := §(s—r+d+1—m2a).
Then both bl —al = (s +r) and b2 — a? = (s — r) are non-negative
integers.

Having defined these constants, we rephrase [11, Ch. III, Cor. 11.3] as
follows:

Lemma 9.3. Let G be a group of real rank one and T € I?M. Then the
following assertions hold:

1. If moo =0, then a, > % and

@/T()\) = FaT,bT (7)‘(%\/))

2. If maq >0, then al > a2 > 1 and

\% \

~ e’ e
Qr(A) = Larp2 (A=) Laz g2 (A (=)
9.1. Proof of Theorem 9.1 in case of mg, = 0
We identify ap. with C via

Cr—ag, 2z za,
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i.e. A = za € ag identifies with z € C. In these coordinates we then have
Qr(2) = 'ma may4(i2),

and it follows from (9.3) that |Q,(2)| < (1 + 2s)qs(|2]).
We recall from (9.1) that s < m|7| for every 7 € K3, and that m € N.
We write [7] € N for the smallest integer greater or equal than |7|. We thus

obtain the bound

(9-5) Q- (2)| < (14 2m[7])dpu-1(|2]).

We recall the functions f;,, r, depending on R > 0, as defined in (8.1). Let
zo € C be so that Ay = zpa. We assume that Rz is not a non-zero integer.
Then f, r(20) # 0 for all n € Ny. For 7 € IA(M we define the W-symmetric
entire function
frn[71,R(2)

C—>C; 2z .
¢ fm(T],R(ZO)

Now given Ao = zpa € af satisfying (4.3), we follow Ansatz 1 in Section 7.1
and define

Fr(2) = 6:(2)Q+(2)Qr(20) " € Endg (V, @ VM) ~C (2 € C).

Let Fr:af = Endg(V; ® VM) be given by

F.(za) = Fr(z) (z € C).

It is immediate that F; satisfies the conditions (i) and (ii) in Proposition
7.2 with H, =V, @ VA,

We continue by investigating condition (iii). For that we need to control
the normalizing factors @T(zo) and fy,1-1,r(20). By (4.3) the real part of iz
is non-negative, and hence it follows from (9.4) that

Q- (20)] > 1 (€ Ku).

Likewise, Lemma 8.5 gives a positive lower bound for | f,,,1+1,r(20)|, uniformly
in 7.

Let ¢, Ry > 0 be as in Proposition 8.1, and assume that R > Ry and
(10%—5)2 < cr. By perturbing R to a slightly smaller value we can ensure Rz

2
is not an integer, as assumed before. Let ' < r be such that % <er.
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From Proposition 8.1 and (9.5) it follows that there exists a constant C' > 0
so that

[Er (V)] < O+ |7]) eIl emBllze HmAlL (X € ax 7 € Ky).

By Proposition 7.2 this implies Vi’ (mr) C C3%, (G/K) * vk ),, where A =
7|3a"||. By Remark 8.6 the continuous embedding in the theorem follows.
Finally, as vg ), is U(g)-cyclic by Lemma 4.4, we have C¥(G) * vk, =
(V)\o)rﬁin'

9.2. Proof of Theorem 9.1 in case of msy > 0
We now identify ag with C via
Cr ag, zm 2za.
From Lemma 9.3 we then have
Qr(2) = Tar b1 (i2)Ta2 2 (i2).
As before we apply (9.3). The result is now
Qr(—il2]) < [gmrr(12D]*
Next we define the W-symmetric entire function

[fm]—ﬂ (Z)]2
[fm[ﬂ (20)]2

and argue along the same lines as before. This concludes the proof of The-
orem 9.1.

¢T(Z) =

10. The general higher rank case

The goal of this section is to prove the following

Theorem 10.1. Let V), be a representation of the K-spherical principal
series with g satisfying (4.3). Then there exist positive constants ¢, Ry in-

2
dependent of Xy, such that for all R, > 0 with R > Ry and % < cr we
have a continuous embedding

Vi(r) C CR(G) *vip, = (VAO)gin.
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Remark 10.2. By the arguments in Remark 9.2 we obtain Theorem 1.2 of
the introduction from Theorem 10.1 together with the reduction in Section 4.

To prepare for the proof of Theorem 10.1 we determine some estimates of
the intertwining operators J,, . We start by recalling the standard procedure
by which the study of J,,  is reduced to rank one.

10.1. Factorization of intertwining operators

Let w € W and write
w = 8182...Sn

as a reduced expression with simple reflections s; associated to simple roots
a; € I1. Set

ij:Sj+1"'8n€W (1§]§n)

Then the reduced expression of w satisfies the condition

(10.1) w;ila; et (1<j<n)
and
(10.2) wj_laj # w; Loy (1<j<k<n).

See [3, VI.1.6 Corollaire 2]. Essential for our reasoning is the factorization

(10.3) Jwr = s 00 © Jsy 0o © 0 s wn A © sy n

)

with each
. Y/00 0
Jsjij)‘ : Vw])\ — ijflA

a rank one intertwiner.
10.2. Rank one intertwining operators

Let so € W be the reflection in a simple root o € 7. When restricted to a

specific K-type 7 € Ky, each Js, A[7] is an element of End(V,/) depending

rationally on A. We will describe the entries of a diagonal matrix for it.
Let g be the semisimple rank one subalgebra of g generated by «. Then

gaZQQQ@ga@aa@ma@g—a@g—Qa
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with a, = Ra" and m,<m an ideal. In particular, the Cartan decomposition
g = £®s descends to g, and we obtain with €, := g, Nt a maximal compact
subalgebra of g,. We denote by G, := (exp(ga)) the analytic subgroup of G
associated to go, by K, := exp(t,) the maximal compact subgroup of G,
with Lie algebra ¢,, and by M, the group M N K,. Note that M normalizes
G. Hence if we branch Vv with respect to K, then

VM= € m@)vM,
56%:1%,1

where m(d) denotes the multiplicity of § in 7V|f,_ . By [14, Theorem 6] each
V(;M” is one-dimensional. We choose an orthonormal basis (depending on )
of V¥ of vectors from these one-dimensional subspaces.

For elements % <a < bwith a,b € %N and b — a € Ny, we recall the
polynomials I', 5 (2) from (9.2). With respect to the chosen basis the operator
Js. A[7] is of diagonal form, say

D-(\) = diag(d; (), ..., di{ (),

T

and each diagonal entry is of the form (see (6.6), Lemma 9.3)

\%

Lo, (=X (22))Tar oy, (—iA(25))

La,b (IA(2)) Ty, (IA(2))

(10.4) df(\) =

QR

(1 <k <i(r)),

where 7, = 2 and o’ = b}, if my, = 0, and otherwise 7, = 4. The parameters
a and o’ depend only on «, and for all 7 € K the parameters by and b},
satisfy

b, —a' <b—a<m|r| (1 <k<Ir))

for some m € N independent of 7 and . Therefore we may and shall assume
that by, b, < m|7| for all non-trivial 7.

10.3. Cancellation of poles and estimate

Let o € X% be a simple root and let 7 € K M- In the following lemma we
determine a polynomial on af which cancels the poles of J,_ x[7]. Moreover,
we give an estimate of the product of Js_ »[7] with this polynomial.

As in Section 9 we write [7] = [|7||. We define the following polynomial
on C,

(10.5) er(2) = PLnr41(2)2 Tt 2 (2)%,
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and recall the polynomials g, (z) from (8.2). In particular, we see from (9.3)
that we can estimate the polynomial e (z) by

(10.6) ler(2)] < (L4 2[71)% g (J21)*

for all z € C and all 7 € K.
Lemma 10.3. Let o € X1 be simple.

(i) The map at — End(VA) given by

A= eT(i)\(f‘Y—Q))JSmA[T]
is polynomial for every T in K.
(ii) There exists a constant C > 0 such that

ler (IAE)) Tey Al lop < CL+ ) gougo (|AE)])®

for every T € K and )\ € ag.

Proof. We may assume |7| # 0 since J,;_x[7] =1 for the trivial K-type. We
fix a simple root o € X" and define polynomials dlﬁ’+ and dﬁ’_ to be the
numerator and denominator in (10.4), respectively. Then

Next we make the following observation: I', 3(z) divides I'q p1r(2) for all
n € No, and Iy p(2) divides I'y—p, (2) for all n € Ny such that a —n > % It
follows that

dy=(Ner (iA(%))
for all k, and this implies (i). Moreover, together with (9.4) it implies

e (IA(5D) | _ er(IA(5)
OV DY)

) < e(re)

for all A € af.. For the numerator d’ﬁ’+()\) we find

et V] < e (IMEDD)
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also for all A € ag.. Hence

N raV av )2
e (IM(55)) A7 (V)] < e (IM(5)1)
for all indices k. By (10.6) this implies (ii). O
10.4. Application of Proposition 8.1

The following lemma contains the main estimate for the proof of Theorem
10.1. Recall from (8.1) the functions f, r. We will determine an estimate
for a product of these functions with J, . For this we use Lemma 10.3,
Proposition 8.1 and the factorization (10.3).

Let

h:=8 .
m max || -]

Lemma 10.4. There exist ¢, Ry > 0 and for every r > 0 a constant C, > 0
so that for every R > Ry with

(10.7) (10%%)2 .
one has
H( H fmm,R(A(c;_:))seT(M(g—:))) JwlT] .

aext

4 8 hR ||Im A =]
< G, (1 |r])t il Al

forallTEI?,)\Eaf{: and w € W.

Proof. Let ¢, Ry be as in Proposition 8.1 and let » > 0. We first show that
there exists a constant C, > 0 such that if R > Ry satisfies (10.7) then
(10.8)

| Fmapr R ) ex (IA(ZD)) o, A7, < Cr(1+ |7 eBmrilehfiliimAl

forall T € K, X € af. and all simple roots a € £+,
We apply Proposition 8.1 with n = m[7] and

P(2) = (14 |7)) " er(i2) s, 2ulT),
where

n=A2) "I € al

fed
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The estimate in Lemma 10.3 ensures the proposition is applicable. Hence

o < (1 + |7_|)4 [Cr erm!’ﬂ eTrRHImzH]S‘

1 Fmprt, 2 (2)° €x(82) Jo ulr]|
By inserting z = A(%) and [7] < || 4+ 1 we obtain (10.8) for some C, > 0.
Let w € W and consider the factorization (10.3) of J, x. By submulti-

plicativity of the operator norm we obtain from (10.8) that

1_v -1 v
J

(T o220 e 5259 i

< [Cr(l + ’7_|)4 e8mr|T\ehR||Im)\||}”‘

op

The w;laj are all distinct and positive by (10.2) and (10.1), respectively.

Hence each factor of the above product over j occurs exactly once in

IT [ e (NE0)" er (iA(20))].

aext

On the other hand, since by (10.6) the scalar valued polynomial e, satisfies
the estimate

ler(2)] < (1 + 2|7 g (12)* < L+ 207]) g ([21)°,

we obtain in analogy with (10.8) that

\%

[t ROED® er (ME))| < (1 + [yt hRIm Al

for every o € ¥*. We apply this estimate to the roots a € ¥+ which are
not of the form fwj_laj for any j and obtain the estimate as stated in the
lemma. O

10.5. Conclusion of proof

We can now give the proof of Theorem 10.1, following Ansatz 2 from Section
7.2. Recall that Ao satisfies (4.3), that is,

Re(io(a”)) > 0

for all & € ¥1. We define the following functions on af.
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I. We choose a polynomial py, : ag — C such that

{p,\o()\o) = W

ol

p)\o(wko) =0 (’U) ceW \ W)\O),

where Wy, C /V\V is the stabilizer of .
II. For each 7 € Kjs we define a polynomial

HaGE* €r (Z)\(:_:))
[aes- er(B(57))

It follows from (10.5) and (9.4) that

pr(A) ==

(10.9) ler (iRo(22))] > 1

for all o € X,
III. For every R > 0 for which

(10.10) Va e ST RA(2) ¢ Z\{0},

we define for each n € Ny an entire function on ag by

\%

— [oes+ f"yR(A(i_a))
Unn ) = g R Oa(eD)

By (10.10) and Lemma 8.5 there exists a constant cg > 0 so that

(10.11) \fn,R(Ao(%))! > CR

foralln € Ngand o € 7.

After these definitions we let
(257-(/\) = pT()‘)[wm[T],R()‘)]B

for 7 € Ky, and we define F; : a% — End(V;) by

Fr(\) = ¢r(w Npag(w N Jpw-alr] (A€ ap).

weWw

731

We are going to apply Proposition 7.2 to F, and for that we need to verify
its conditions (i)-(iii). As explained in Section 7.2, condition (i) follows from
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the fact that vk ), is cyclic for V), (see (7.1)), and (ii) is an automatic
consequence of the cocycle condition

J’LUQ,ILM)\ o le)\ = Jw2w1,)\

for the intertwining operators.

Let ¢, Ry be as in Lemma 10.4, and let » > 0 and R > Ry satisfy (10.7).
Let " < r be such that

log R)?
—( 022 ) <er'.

By perturbing R to a slightly smaller value we may assume that (10.10) is
valid. It follows from Lemma 10.4 together with the denominator estimates
(10.9)-(10.11) that there exists a constant C' > 0 so that for every A € af

and 7 € Ky
+ ’
T op = Ao A ’
IE (M) lop < C(1+ 7)o 7l (1 4 || A||)desPro AR TmA

where a = 8m|X"| and A = h|XT|. This gives the remaining condition (iii)
of Proposition 7.2, and with that can conclude that there is a continuous
embedding

Vio(ar) C CRpye(G) * vk xy-
By Remark 8.6 this implies the continuous embedding in Theorem 10.1.

Finally, as vg ), is U(g)-cyclic by Lemma 4.4, we have C¥(G) * vk, =
(Vag) ™.

Appendix A. The domains ¢(R)

We recall the open Ad(K)-invariant domains ¢(R), with R > 0, from (3.3).
In this appendix we describe these in two interesting examples.

A.1. The unit disc: G = SU(1,1)

While treating this example we use a notation so that the generalization
to general Hermitian symmetric spaces becomes straightforward. First note
that G¢ = SL(2,C) acts transitively on the projective space P!(C). We
identify P*(C) with C U {oc} via the map

P!(C) — C U {oo}, <c< . ) - 2.
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We define the subgroups of G
10 :
e 0 cosht sinht
K_{ke o (0 e‘i9> ‘QER}’ A_{at_ <Sinht cosht) |teR}

and note that K¢ = {(g 291> | z € C*}. Further we define unipotent

abelian subgroups of G¢ by

P+;={<é i)!zeC} and P;={<i g)|z€C}.

Note that PT and P~ are the stabilizers of oo and 0, respectively. Then
both KcP* are Borel subgroups of G¢ with KcPT N KcP~ = Kc. Hence,
Zc = G /K is realized as an open affine subvariety of the projective variety
G(C/K(CP+ X Gc/K((;P_ via

gKc = (9KcP*,gKcP™).

More concretely, if we identify G¢/Kc Pt x Geo/KcP~ with PY(C) x P(C)
via

Gc/KcPt x Go/KcP~ — PYC) x P1(C)
(1 KcP*, gaKcP™) = (977(0), 92(0)),
then Z¢ is given by
Ze =PHC) x PH(C) \ {(z,w) : w # ¢(2)},

where ¢ is the automorphism of P*(C) which is induced from the linear map
C? 3 (21, 22) = (—21,22) € C2.
Let us denote by D = {z € C | |z|] < 1} the open unit disk (i.e. the
bounded realization of G/K) and note that
Z=G/K ={(2,Z) : z€ D} C Z¢.
Now one has that that the crown domain is given by

==DxDcC Z.

(A similar result holds for general Hermitian symmetric spaces, see [4, Sect.
3] or [18, Th. 7.7].) For R > 0 we note that

AR:{%GAHHSRA@}
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Now we calculate
kipas - 20 = (629 tanht, e %% tanh t) € Zc.

This is contained in Z = D x D precisely if § € (—r,r), when r > 0 is
determined by e?" tanh % = 1. Thus we have shown:

Proposition A.1. Let G = SU(1,1), R > 0. Then
t(R) ={Y et| Y] < Br/V8},

)
where Br = 3 log (coth(%)).

A.2. The hyperboloids: G = SO,(1,n)

Let G = SO,(1,n) with K = SO(n,R) being embedded into G as the lower
right corner. (The group G does not satisfy the condition that it is the
group of real points of a connected algebraic reductive group defined over
R. Instead one could consider the group SO(1,n), which would satisfy this
condition, but for convenience of notation we rather work with its connected
component.) Consider the following quadratic form on C"*!

2

O(u) =ug —ud — ... —u?

and let u - v be the bilinear pairing obtained by polarization. Then
Z=G/K ={zcR"™ | 0(z) = 1,20 > 0},

Zc = Ge/Ke = {u e C"™ | O(u) =1}
and
E={u=z+iye€ Zc|O(x) > 0,29 > 0},
see [7, p. 96]. The canonical base point in Z¢ is given by zo = (1,0...,0)” €
Zc

Set [ = [5] and note that [ is the rank of K. Our choice and parametriza-

tion of t are as follows:
(A1) R'S 8= (B1,...,0) > Tp:= diag(0, AU, ..., BU) € t

where
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and the first zero in the diagonal matrix means the zero 1 x 1-matrix in case
n is even and the zero 2 x 2-matrix if n is odd.

With the standard choice of A and R’ := R/+/2(n — 1) we have
cosht 0 sinht
AR = 0 1 0 | [t| < R
sinht 0 cosht

and an easy computation yields
cosht n ! .
KAR -z = " |ueR"te[-R, R, ||ul|z=|sinht|.

In the sequel we only treat the case of n = 2l being even; the odd case
requires just a small modification.
With kg = exp(iT3) we obtain from (A.1) that

cosht

cosh t uy cosh 51 — tug sinh 5y
ks = | 4uq sinh By + wus cosh 51

The right hand side is now in the crown domain if and only if
O( Reks <Cozht> ) >0,

cosh?t — cosh? By (u? 4+ u3) — ... — cosh® Bj(u?_; +u?) > 0.

i.e.

There is no loss of generality in restricting our attention to the closure t*
of a chamber in t, i.e. we may assume that 81 > B2 > ... > fi_1 > |5 > 0.
Then the condition from above for all u with [Ju||2 = | sinh ¢| means nothing
else as

cosh?t — (cosh? f1) sinh?¢ > 0

for all ¢t € [-R’, R']. A short calculation reformulates that in

inh .
|sinh 5] < sinh R’

We have thus shown:
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Proposition A.2. For G = SO,(1,n), R > 0 and the notation introduced
from above one has that

. 1
t(R)+ = {Tg etr ‘ ’Slnhﬁﬂ < sinhR’} )

where R' = R/\/2(n — 1).
Appendix B. The Helgason conjecture

In this appendix we briefly describe how (1.1) implies the Helgason conjec-
ture. We are essentially following Schmid’s approach from [21].
For A € ai. we define the Poisson transform

Pr: Vi = C®(G/K), v (gi—)/

| wloh) dk).

This map admits a continuous extension to the space V,* = (V). Let
D(G/K) be the commutative algebra of G-invariant differential operators
on G/K. As before, let vi y be the K-fixed vector in V) with vk x(e) = 1.
Note that

(B.1) Pa(w)(g) = (97" v,ok,-2) (v EW).

The algebra U (g)® /U(g)® NU(g)t acts from the right on smooth functions
on G/K. In fact D(G/K) is isomorphic to U (g)’ /U(g)* N (g)t. Note that
U(g)X acts by scalars on Cvg _y, and hence D(G/K) acts by a character x
on the image of Py. We write C*°(G/K), for the space of joint eigenfunctions
of D(G/K) with eigencharacter x .

The following theorem is the Helgason conjecture, which was first proven
in [12].

Theorem B.1. Let A € ag be so that the K-spherical vector v _y in V_y
is U(g)-cyclic. Then Py defines a G-equivariant isomorphism

(B.2) Ve = C%(G/K)y

of topological vector spaces.

Remark B.2. By Lemma 4.4 vk _y is U(g)-cyclic if —\ satisfies (4.3).
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We derive the theorem from (1.1). We recall Schmid’s maximal global-
ization of a Harish-Chandra module V,

Vinax = Hom(g,K) (Vvv COO(G))a

where V'V is the dual Harish-Chandra module of V, i.e. the space of K-finite
vectors in the algebraic dual of V. Further, C*°(G) is considered as a (g, K )-
module, where g and K act via the right-regular representation. We provide
Vimax With a topology as follows. The space

(B.3) E :=Homc (VY,C®(G))

is a countable product of copies of the Fréchet space C°°(G) and hence is a
Fréchet space. Now Vinax = Homg i) (VY,C>°(G)) is a closed subspace and
as such inherits the structure of a Fréchet space. Moreover, the G-action on
Vimax 1S continuous.

Lemma B.3. For any Harish-Chandra module V', the maximal globalization
Vinax 18 a reflexive Fréchet space.

Proof. First we recall that C*°(G) is reflexive. As the space E from (B.3)
is a countable product of reflexive Fréchet spaces, it is reflexive by [19,

Prop. 24.3]. Now Vinax is a closed subspace of E and as such reflexive by [19,
Prop. 23.26]. O

By taking matrix coeflicients one sees that any globalization of V' embeds
continuously into Vi ax. Here by globalization we understand a completion of
V' to a representation of G on a complete Hausdorff topological vector space
E = V. Note that the assignment V + V. is a functor from the category
of Harish-Chandra modules to the category of continuous representations.
We define V% as the continuous dual of (VV)¥ equipped with the strong
topology.

Proposition B.4. For every Harish-Chandra module V' we have
Vinax = |

as topological G-modules.

Proof. We now use Schmid’s identity (1.1). As Vi, = V¢ for all Harish-
Chandra modules V', it suffices to show that Vi,ax = (V)

min*
We recall from Lemma B.3 that Vi, is reflexive. Since V. is a global-

ization of V'V there exists an embedding (VY)myin — V.- Taking duals we
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obtain a map Vipax — (V) ;- On the other hand (V) . is a globalization

min* min

of V and hence embeds into Viyax. As these maps restrict to the identity on
V., it follows that Viax = (VV)!,, as asserted. O

Proposition B.5. Let A\ € af be so that the K-spherical vector vy _y in
V_» is U(g)-cyclic. Then

(V/\)max = COO(G/K))\

as topological G-modules.
For the proof of the proposition we need the following lemma.

Lemma B.6. Let A € af.. If vk _y is U(g)-cyclic in V_y, then

Vo = U(9) Su(g)etu(g)x Cuk,—x
as (g, K)-modules.

Proof. By assumption the natural map U(g) ®u(g)e4u(g)x Cvr,—x — Vox
of (g, K)-modules is surjective. It remains to prove injectivity. Recall from
(6.5) that U(g) = H*(s)I*(s) @ U(g)E. Since T*(s) = H*(s)Z*(s) NU(g)¥,
we have as K-modules

Ll(g) ®u(g)g+u(g)K (C’I)K7,)\ = H*(S)I*(E) ®Z*(5) (CUK,,/\ ~ 7‘[*(5).

By Kostant-Rallis [15] the right-hand side is K-isomorphic to C[K/M]. Since
V_, is K-isomorphic to C[K/M] as well, the assertion follows from the finite
dimensionality of the K-isotypes. O

Proof of Proposition B.5. By Lemma B.6, we have the following equalities
of G-modules,

(V)\)max = HOHI(QJ() (V,)\, COO(G))
= Homq k) (U(8) Qu(g)etuu(a)< Cvx,—x, C=(G))
= Hom(y(g)e+u(g)<.x) (Cvr -2, C(G))
= Homu(g)K (C’UK’,)\, COO(G/K))

The assertion now follows from the definition of C*°(G/K). O

Proof of Theorem B.1. In view of Proposition B.4 and Proposition B.5, both
sides of (B.2) are isomorphic to (V))max. Furthermore, as vg _y is U(g)-
cyclic, it follows from (B.1) that P is injective, and hence bijective, on the
space of K-finite vectors. The theorem now follows from the functoriality of
the maximal globalizations. O
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Appendix C. An application to eigenfunctions on Z = G/K

We recall the crown domain = C Z¢, the natural G-extension of Z inside of
Zc. Also we recall from the preceding appendix that V) max = C*°(Z)y for
every spherical principal series V), A € ag. We mentioned in the introduc-
tion that for every K-spherical Harish-Chandra module V' with K-spherical
vector vg that the orbit map

fo:G/K = V™ gKw— g vk

extends holomorphically to Z, see [18, Th. 1.1]. Therefore, every D(Z)-
eigenfunction extends holomorphically to Z, and thus we obtain C*(Z), =
O(E) s i.e.

V)\,max = O(E>)\

by Prop. B.5. Now for every r > 0 we define K-invariant enlargements of =
inside of Z¢ by

Zc(r) := Ke(r) - 2 = exp(it,) - 2 C Z¢.

It is not clear whether Zc(r) is simply connected. Out of precaution we pass
to the simply connected cover Z¢(r) of Z¢(r). Note that K acts naturally on
the complex manifold Z¢(r). From the definition of Vi and V¥ C Vi max =
O(Z)x we thus obtain

Ve = O(Ze(r)a

7/r_

Hence the fact that Vi C V) wmin(R) for (10%5%)

implies the following

< cr (see Theorem 10.1)

Theorem C.1. Let —\ € af satisfying (4.3) and r,R > 0 such that

—(10%%5)2 < cr. Then any f € O(Zc(r))x can be factorized as

f=1xox

where ¢y is the Harish-Chandra spherical function in C*°(G/K)y and ¢ €
Cr(G).
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