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This paper is a culmination of [CM21] on the study of multiple zeta
values (MZV’s) over function fields in positive characteristic. For
any finite place v of the rational function field k over a finite field,
we prove that the v-adic MZV’s satisfy the same k̄-algebraic rela-
tions that their corresponding ∞-adic MZV’s satisfy. Equivalently,
we show that the v-adic MZV’s form an algebra with multiplication
law given by the q-shuffle product which comes from the ∞-adic
MZV’s, and there is a well-defined k̄-algebra homomorphism from
the ∞-adic MZV’s to the v-adic MZV’s.
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1. Introduction

1.1. Classical conjecture

Let N be the set of positive integers. For a positive integer r, an r-tuple

s = (s1, . . . , sr) ∈ Nr is called an index, and called admissible if s1 > 1.

We put wt(s) :=
∑r

i=1 si and dep(s) := r. Classical real-valued multiple

zeta values (abbreviated as MZV’s) are generalizations of special values of

the Riemann zeta function at positive integers at least 2. The MZV at an

admissible index s = (s1, . . . , sr) is defined by the following series

ζ(s) :=
∑

n1>n2>···>nr≥1

1

ns1
1 · · ·nsr

r
∈ R×.
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The weight and depth of the presentation ζ(s) are defined by wt(s) and
dep(s) respectively.

MZV’s have deep properties and have appeared in recent decades in
connection with various topics including Grothendieck-Teichmüller groups,
Drinfeld associators and KZ equations and periods of mixed Tate motives
etc (see [An04, Br12, BGF19, DG05, Dr90, F11, Gon02, R02, Te02, Zh16]).
One of the core problems on the topic of MZV’s is to study their alge-
braic relations, and how to generate Q-linear relations among them has been
well-developed. For instance, the machinery of regularized double shuffle re-
lations [IKZ06] produces rich Q-linear relations among MZV’s of the same
weight.

Let p be a prime number. In the parallel but extremely different world,
namely the p-adic field, Furusho [F04] defined p-adic MZV’s. The starting
point is that for an admissible index s = (s1, . . . , sr) ∈ Nr, the MZV ζ(s) is
the limit of the one-variable multiple polylogarithm

Lis(z) :=
∑

n1>n2>···>nr≥1

zn1

ns1
1 · · ·nsr

r

for |z| < 1, z → 1. Furusho considered the one-variable p-adic multiple
polylogarithm Lis(z)p, which is the same power series as Lis(z), but treated
p-adically. He then made an analytic continuation of Lis(z)p by Coleman’s
p-adic iterated integration theory and then defined the p-adic MZV ζp(s) to
be a certain limit value at 1 of analytically continued function of Lis(z)p.
Related details are referred to Furusho’s paper [F04]. The weight and depth
of the presentation of the p-adic MZV ζp(s) are defined to be wt(s) and
dep(s) respectively.

Note that in the case of depth one, Furusho’s p-adic zeta value ζp(s)
equals the Kubota-Leopoldt p-adic zeta value at s up to a scalar multipli-
cation by (1 − p−s)−1. In particular, we have ζp(2n) = 0 for n ∈ N. As the
Kubota-Leopoldt p-adic zeta function p-adically interpolates the special val-
ues of Riemann zeta function at negative inetgers, one can ask the natural
question: what kind of spark can these two seemingly similar values, real-
valued MZV’s and p-adic MZV’s, but living in completely different worlds
have? The following fundamental conjecture gives an explicit connection
between these two kinds of MZV’s.

Conjecture 1.1.1. For any prime number p, the p-adic MZV’s satisfy the
same Q-algebraic relations that their corresponding real-valued MZV’s sat-
isfy. That is, if

f(ζ(s1), . . . , ζ(sm)) = 0
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for f ∈ Q[X1, . . . , Xm], then we have

f(ζp(s1), . . . , ζp(sm)) = 0.

Let Z (resp. Zp) be the Q-vector space spanned by 1 and all real-valued
MZV’s (resp. by 1 and all p-adic MZV’s). It is well-known that Z forms a
Q-algebra with two multiplication laws given by shuffle product and stuffle
product [R02, IKZ06, BGF19]. By [F04, BF06], one also knows that Zp forms
a Q-algebra with two multiplication laws given by shuffle product and stuffle
product as in the case of real-valued MZV’s. Therefore, the conjecture above
is equivalent to the following one.

Conjecture 1.1.2. For any prime number p, the following map

φp := (ζ(s) �→ ζp(s)) : Z � Zp

is a well-defined Q-algebra homomorphism.

There are several ways to illustrate the conjectures above.

1. Ihara, Kaneko and Zagier [IKZ06] gave a conjecture asserting that the
regularized double shuffle relations generate all Q-algebraic relations
among the real-valued MZV’s. Furusho-Jafari [FJ07] showed that the
p-adic MZV’s satisfy the regularized double shuffle relations. It follows
that combining Ihara-Kaneko-Zagier conjecture and Furusho-Jafari’s
result would imply Conjecture 1.1.1.

2. Clues of the formulation of the conjecture above also come from [F06,
F07]. For an integer n ≥ 2, we let Zn (resp. Zn,p) be the Q-vector
space spanned by real-valued MZV’s of weight n (resp. p-adic MZV’s
of weight n). Considering the graded algebra Z := Q ⊕

⊕
n≥2 Zn

(resp. Zp := Q⊕
⊕

n≥2 Zn,p), Furusho [F06, Conj. A] conjectured that

O(GRT 1) is isomorphic to Z/(π2) and in [F07, Sec. 3.1] he explained
that there is a surjection from O(GRT 1) to Zp. Here GRT 1 is the
unipotent part of the graded Grothendieck-Teichmüller group GRT ,
which is a pro-algebraic group over Q. For more details, see [F06, F07].
On the other hand, Goncharov’s direct sum conjecture [Gon97] for
MZV’s asserts that Z = Z, and on the p-adic side we have a natural
surjective Q-algebra homomorphism

Zp � Zp.

So, conjecturally the composite map

Z = Z � Z/(π2) � O(GRT 1) � Zp � Zp

gives rise to a surjective Q-algebra homomorphism from Z to Zp.
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Moreover, there is a motivic illustration (from Deligne/folklore) for a
conjectural surjective homomorphism Z � Zp, which the authors learned
from F. Brown’s talk on “motivic periods and applications ”in Hausdorff
Research Institute for Mathematics in 2018. First, Deligne also defined p-adic
MZV’s and Furusho showed in [F07] that Deligne’s p-adic MZV’s generate
the same space Zp. Let Zmot be the Q-algebra of motivic MZV’s, and one
knows that there is a Q-algebra homomorphism (see [Gon02] and [Br12])
addressed as the period map

Zmot � Z,

and the Grothendick periods conjecture for MZV’s predicts that this is an
isomorphism. On the other hand, from the p-adic period map one has a
Q-algebra homomorphism (cf. [F07, (3.11)])

Zmot/(ζmot(2)) � Zp,

and so conjecturally there is a Q-algebra homomorphism

Z � Zp.

The aim of this paper is to prove the precise analogue of Conjecture 1.1.1
in the setting of function fields in positive characteristic. Note that our
methods of proof are through logarithms of t-modules, which are entirely
different from the above points of view in the characteristic zero case.

1.2. The main result

Let q be a power of a prime number p, and let Fq be a finite field of q elements.
Let A := Fq[θ] be the polynomial ring with quotient field k := Fq(θ). We
let k∞ be the completion of k at the infinite place ∞, and C∞ be the ∞-
adic completion of a fixed algebraic closure of k∞. We let k̄ be an algebraic
closure of k and fix an embedding ι∞ : k ↪→ C∞ over k.

The ∞-adic multiple zeta values are defined by Thakur [T04]: for any
index s = (s1, . . . , sr) ∈ Nr, we define

ζA(s) :=
∑ 1

as11 · · · asrr
∈ k∞,

where the sum is over all monic polynomials a1, . . . , ar in A with the re-
striction degθ a1 > degθ a2 > · · · > degθ ar. For r = 1, the values above
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were introduced by Carlitz [Ca35] and called Carlitz zeta values. We call
wt(s) :=

∑r
i=1 si the weight and r := dep(s) the depth of the presentation

ζA(s). In [T10], Thakur showed that for any two indices s ∈ Nr and s′ ∈ Nr′ ,
one has

(1.2.1) ζA(s) · ζA(s′) =
∑
j

fjζA(sj)

for some finitely many fj ∈ Fp and sj ∈ Ndep(sj) depending on q with
wt(sj) = wt(s) + wt(s′) and dep(sj) ≤ dep(s) + dep(s′), where Fp is the
prime field of k. We simply call (1.2.1) the q-shuffle relations (or q-shuffle
product), which Thakur called sum-shuffle relations. Note that in our posi-
tive characteristic setting, the q-shuffle product is neither the classical shuffle
product nor stuffle product (see H.-J. Chen’s explicit formula (5.3.1)). Be-
cause of the q-shuffle product, the ∞-adic MZV’s form an Fp-algebra.

Given a monic irreducible polynomial v of A, we let kv be the completion
of k at v and let Cv be the v-adic completion of a fixed algebraic closure
of kv. Throughout this article, we always fix an embedding ιv : k̄ ↪→ Cv over
k once a finite place v is given. Based on the formula of ∞-adic MZV’s in
terms of Carlitz multiple polylogarithms (abbreviated as CMPL’s) estab-
lished in [C14], the first and third authors of the present paper introduced
the Carlitz multiple star polylogarithms (abbreviated as CMSPL’s) given in
(2.2.2) and derived the formula of ∞-adic MZV’s as k-linear combinations
of CMSPL’s at integral points in (2.3.4). In the depth one case, CMSPL’s
are reduced to Carlitz polylogarithms and such formula was established by
Anderson-Thakur [AT90].

Inspired by Furusho’s strategy for defining p-adic MZV’s [F04], for any
index s ∈ Nr the first and third authors treated CMSPL’s for v-adic con-
vergence in [CM19] and used action of certain t-modules for which v-adic
CMSPL’s can be extended to be defined at integral points. Then they used
the same formula of ∞-adic MZV’s (2.3.4) to define the v-adic MZV ζA(s)v
in (2.3.5) for any index s. As same as the case of ∞-adic MZV’s, the weight
and the depth of the presentation ζA(s)v are defined to be wt(s) and dep(s)
respectively. Note that Thakur [T04] also defined v-adic MZV’s but his def-
inition is different from ours, see Remark 2.3.6.

In [Go79], Goss defined a v-adic zeta function that interpolates Carlitz
zeta values at non-positive integers and obtained v-adic zeta values at pos-
itive integers, which are simply called Goss’ v-adic zeta values, which are
equal to Thakur’s v-adic MZV’s of depth one. In the depth one case, our
v-adic zeta value ζA(s)v is identical to Goss’ v-adic zeta value [Go79] at s
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multiplied by (1− v−s)−1 (see [AT90, Thm. 3.8.3. (II)]), and so ζA(n)v = 0
for all positive integers n divisible by q − 1 by the work of Goss. This phe-
nomenon is parallel to the p-adic case mentioned above.

Let Z ⊂ C∞ (resp. Zv ⊂ Cv) be the k-vector space spanned by 1 and
all ∞-adic MZV’s (resp. 1 and all v-adic MZV’s). It is shown in [CM21,
Cor. 6.4.3] that the map Z � Zv given by ζA(s) �→ ζA(s)v is a well-defined
k-linear map. Our main theorem stated below is a function field analogue of
Conjecture 1.1.1 but it is in stronger form as it is over algebraic coefficients.

Theorem 1.2.2. For any finite place v of k, the v-adic MZV’s satisfy the
same k̄-algebraic relations that their corresponding ∞-adic MZV’s satisfy.
That is, if

g(ζA(s1), . . . , ζA(sm)) = 0

for g ∈ k̄[X1, . . . , Xm], then we have

g(ζA(s1)v, . . . , ζA(sm)v) = 0.

Note that Z forms a k-algebra because of (1.2.1). The theorem above is
equivalent to the following.

Theorem 1.2.3. Let v be a finite place of k. Then the following hold.

1. v-adic MZV’s satisfy the q-shuffle relations in the sense that

ζA(s)v · ζA(s′)v =
∑
j

fjζA(sj)v

with notation given in (1.2.1).
2. Zv forms a k-algebra and the following map Z � Zv given by ζA(s) �→

ζA(s)v is a well-defined k̄-algebra homomorphism. In particular, the
kernel contains the principal ideal generated by ζA(q − 1).

The theorem above gives an affirmative answer of part of the questions
in [CM21, Rem. 6.4.4], which arose from numerical evidence using Sage-
Math. In Section 5.3 we give an example for computing the product of the
v-adic single zeta value ζA(1)v with itself for a very special q. As can be seen
from that example, a direct calculation proof of Theorem 1.2.3 is impracti-
cal because the definition of ζA(s)v is through the logarithm of a concrete
t-module, whose dimension is huge when wt(s) and dep(s) are large. In this
paper, we aim to prove Theorem 1.2.3 in a more robust way via the logarith-
mic points of view. Since we have shown in [CM21] that the map Z � Zv is
well-defined and k-linear, the statement (1) of Theorem 1.2.3 is equivalent
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to the statement (2). It is natural to ask about the kernel of the k-algebra
homomorphism Z � Zv given in Theorem 1.2.3. We conjecture that the
kernel in question is the principal ideal generated by the single zeta value
ζA(q − 1) and discuss some applications in Sec. 5.4.

1.3. Ideas of the proof

To sketch the key ideas of our proof, we first set up the following nota-
tion. Fix any finite place v of k. For any index s = (s1, . . . , sr) ∈ Nr, let
Li�s(z1, . . . , zr) be the Carlitz multiple star polylogarithm defined in (2.2.2).
We define

Ds,∞ := {(z1, . . . , zr) ∈ Cr
∞| |z1|∞ < q

s1q

q−1 and |zi|∞ ≤ q
siq

q−1 (2 ≤ i ≤ r)}
(1.3.1)

⊂ Cr
∞

and note that by [CM21, Rem. 4.1.3.] Li�s converges ∞-adically on Ds,∞.
Concerning v-adic convergence, Li�s converges on

DConv
s,v := {(z1, . . . , zr) ∈ Cr

v| |z1|v < 1 and |zi|v ≤ 1 (2 ≤ i ≤ r)} ⊂ Cr
v,

(1.3.2)

but by [CM19] it can be extended to be defined on the closed polydisc

(1.3.3) DDef
s,v := {(z1, . . . , zr) ∈ Cr

v| |zi|v ≤ 1 (1 ≤ i ≤ r)} ⊂ Cr
v.

Recall that for w ∈ {v,∞}, we have fixed an embedding ιw : k ↪→ Cw and
it naturally extends to k

r
by setting ιw(z1, . . . , zr) := (ιw(z1), . . . , ιw(zr)) ∈

Cr
w for each (z1, . . . , zr) ∈ k

r
. We then define the following common sets of

algebraic points

DConv

s,k
:= ι−1

∞

(
ι∞(k

dep s
) ∩ Ds,∞

)
∩ ι−1

v

(
ιv(k

dep s
) ∩ DConv

s,v

)
⊂ k

dep s
,

(1.3.4)

and

(1.3.5) DDef

s,k
:= ι−1

∞

(
ι∞(k

dep s
) ∩ Ds,∞

)
∩ ι−1

v

(
ιv(k

dep s
) ∩ DDef

s,v

)
⊂ k

dep s
.

Note that we identify k as a subfield of Cw via the embedding ιw for w ∈
{v,∞}. Thus, the notation Li�s(u)v (resp. Li�s(u)) is referred to

(1.3.6) Li�s(u)v := Li�s(ιv(u))v ∈ Cv (resp. Li�s(u) := Li�s(ι∞(u)) ∈ C∞)
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for u ∈ DDef

s,k
, and in this case we say that Li�s is defined (resp. converges) on

DDef

s,k
v-adically (resp. ∞-adically) when no confusion arises.

Definition 1.3.7. We define the following k-vector spaces.

• LConv

∞ := the k-vector space spanned by 1 and all Li�s(u) for s ∈ ∪r>0N
r

and u ∈ DConv

s,k
.

• LConv

v := the k-vector space spanned by 1 and all Li�s(u)v for s ∈
∪r>0N

r and u ∈ DConv

s,k
.

• LDef

∞ := the k-vector space spanned by 1 and all Li�s(u) for s ∈ ∪r>0N
r

and u ∈ DDef

s,k
.

• LDef

v := the k-vector space spanned by 1 and all Li�s(u)v for s ∈ ∪r>0N
r

and u ∈ DDef

s,k
.

As DConv

s,k
⊂ DDef

s,k
we have the natural inclusions:

LConv

∞ ⊂ LDef

∞ and LConv

v ⊂ LDef

v .

We illustrate our strategy via the following commutative diagram

(1.3.8) Z

[CM21]

[C14] LDef

∞

Thm. 5.1.5φv

Thm. 4.2.1 LConv

∞

Zv
Def. LDef

v LConv

v
=

with the following descriptions:

1. The inclusion Z ↪→ LDef

∞ follows from [CM21, Thm. 5.2.5] (see [C14,
Thm. 5.5.2] also).

2. The map Z � Zv given by ζA(s) �→ ζA(s)v is a well-defined k-linear
map by [CM21, Cor. 6.4.3].

3. We prove in Theorem 4.2.1 that the inclusion LConv

∞ ↪→ LDef

∞ is in fact
an equality.

4. We prove in Theorem 5.1.5 that the map φv : LDef

∞ � LDef

v given by
Li�s(u) �→ Li�s(u)v is a well-defined k-linear map.

5. By definition, the restriction of φv to LConv

∞ is a well-defined k-linear
map onto LConv

v .

With the above properties established, we mention that since the map
φv is surjective and LDef

∞ = LConv

∞ , it implies the equality LDef

v = LConv

v .
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Furthermore, because the CMSPL’s converge ∞-adically and v-adically on
DConv

s,k
, the values in LConv

∞ and LConv

v satisfy the stuffle relations respectively

(see (2.2.5) and (2.2.6)) and hence the map φv is a k-algebra homomorphism.
As the restriction of φv to Z is given by ζA(s) �→ ζA(s)v (see (2.3.4) and
(2.3.5)), we derive the desried k-algebra homomorphism Z � Zv.

1.4. Organization of this paper

In Sec. 2, we first review the theory of Anderson on his t-modules. We then
review CMSPL’s and describe stuffle relations. We further recall from [CM19,
CM21] how we relate CMSPL’s to coordinates of logarithms of certain t-
modules at specific points as is used to define v-adic MZV’s.

Sections 3 and 4 are the most technical parts, which are devoted to
proving Theorem 4.2.1. Given any Li�s(u) ∈ LDef

∞ , ie., u ∈ DDef

s,k
, we mention

that Li�s(u) is realized as the wt(s)-th coordinate of the logarithm of an
explicitly constructed t-module G defined over k at an algebraic point v ∈
G(k). To show that Li�s(u) ∈ LConv

∞ , the key of our strategy is to find a
suitable algebraic point v′ ∈ G(k), at which the logarithm logG converges
both ∞-adically and v-adically and we use techniques of division points to
do the trick. From the functional equation of logG, the wt(s)-th coordinate
of logG(v

′) is related to the value Li�s(u).
Moreover, we have to control the v-adic size of the point v′ as is needed

when defining the v-adic MZV ζA(s)v. However, Papanikolas’ computa-
tion [Pp] concerning the leading coefficient matrices of the tm-action of the
s-th tensor power of the Carlitz module C⊗s enables us to ensure that the
point v′ satisfies the desired properties. The crucial result is stated as The-
orem 3.1.1.

Section 4 is devoted to establishing a kind of algebraic functional equa-
tions for certain coordinate of the logarithm of certain explicit t-module at
any algebraic point whenever it is defined. The primary result is given as
Theorem 4.1.4, which is mainly used to prove the identity LDef

∞ = LConv

∞ .
In the final section, we use Yu’s sub-t-module theorem [Yu97] to prove in
Theorem 5.1.5 that the map φv is a well-defined k-linear map, and then give
a proof for Theorem 1.2.3.

2. Preliminaries

2.1. Notations

Table of Symbols 2.1.1. We use the following symbols throughout this
paper.
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N = the set of positive integers.
q = a power of a prime number p.
Fq = a finite field of q elements.
A = Fq[θ], the polynomial ring in the variable θ over Fq.
k = Fq(θ), the quotient field of A.
|·|∞ = the normalized absolute value on k for which |θ|∞ = q.
k∞ = Fq((1/θ)), the completion of k at the infinite place.

C∞ = k̂∞, the ∞-adic completion of an algebraic closure of k∞.
v = a monic irreducible polynomial in A.
|·|v = the normalized absolute value on k for which |v|v = q−1

v ,
where qv := qdegθ v.

kv = the completion of k at v.

Cv = k̂v, the v-adic completion of an algebraic closure of kv.

k = an algebraic closure of k.

ι∞ = a fixed embedding k ↪→ C∞ over k.

ιv = a fixed embedding k ↪→ Cv over k.

Λ̃ = (λr, . . . , λ1) for any r-tuple Λ = (λ1, . . . , λr) of symbols.
‖M‖w = maxi,j{|Mij |w} for M = (Mij) ∈ Mat�×m(Cw) where w = ∞

or w = v.
wt(s) =

∑r
i=1 si for an index s = (s1, . . . , sr) ∈ Nr.

dep(s) = r for an index s = (s1, . . . , sr) ∈ Nr.

As metioned in the introduction, for w ∈ {v,∞} we always identify k as
a subfield of Cw under ιw and further extend the identification to k

r
via ιw.

In what follows, given a subset D ⊂ Cr
w with nonempty intersection with

ιw(k
r
) we adopt the notation

(2.1.2) k
r ∩D := ι−1

w

(
ιw(k

r
) ∩D

)
⊂ k

r
.

We further use the notation ‖u‖w := ‖ιw(u)‖w for u ∈ k
r ∩ D. For any

F ∈ k[[z1, . . . , zr]]
d
↪→ Cw[[z1, . . . , zr]]

d, the notation F (u)v (resp. F (u)) is
referred to F (ιv(u))v (resp. F (ι∞(u))) in the case w = v (resp. w = ∞)
whenever it is defined. Finally, for an algebraic group G defined over k, we
understand that G(k) is identified as a subgroup of G(Cw) via ιw.

2.2. t-modules associated to CMSPL’s

2.2.1. Review of Anderson’s theory on t-modules. For any Fq-alge-
bra R, any matrix M = (Mij) ∈ Mat�×m(R) and any non-negative integer n,
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we define the n-th fold Frobenius twist byM (n) := (M qn

ij ). We then define the

non-commutative ring Matd(R)[τ ], whose elements are of the form
∑

i≥0 aiτ
i

with ai ∈ Matd(R) and ai = 0 for i � 0, and whose multiplication law is
given by

(
∑
i≥0

aiτ
i)(

∑
j≥0

bjτ
j) =

∑
i

∑
j

aib
(i)
j τ i+j .

We put R[τ ] := Mat1(R)[τ ] then we have natural identifications

Matd(R[τ ]) � Matd(R)[τ ] � EndFq
(Gd

a/R),

where EndFq
(Gd

a/R) is the ring of Fq-linear endomorphisms over R of the d-

dimensional additive group scheme Gd
a/R and τ corresponds to the Frobenius

operator (x1, . . . , xd)
tr �→ (xq1, . . . , x

q
d)

tr.
Let t be a new variable. Given an A-subalgebra R ⊂ k and a positive

integer d, a t-module of dimension d defined over R is an Fq-linear ring
homomorphism

[−] : Fq[t] → Matd(R[τ ])

so that ∂[t]−θ·Id is a nilpotent matrix. Here, for a ∈ Fq[t] we define ∂[a] := a0
whenever [a] =

∑m
i=0 aiτ

i for ai ∈ Matd(R). We denote by G = (Gd
a/R, [−]),

whose underlying space is the group scheme Gd
a over R and whose Fq[t]-

module structure is through the Fq-linear ring homomorphism [−], ie, for
any R-algebra R′, the Fq[t]-module structure on Gd

a/R(R
′) = (R′)d is given

by

a · x := [a](x)

for a ∈ Fq[t] and x ∈ (R′)d.
Fix a d-dimensional t-module G defined over R as above, and let K be

the fraction field of R. Anderson [A86, Sec. 2] (see also [Go96, p. 160–161]
and [NP22, Rem. 2.2.3]) showed that there is a d-variable Fq-linear formal
power series

expG ∈ K[[z1, . . . , zd]]
d

satisfying that expG(z) ≡ z (mod deg q) for z = (z1, . . . , zd)
tr, and as formal

power series identity we have

(2.2.1) expG ◦∂[a] = [a] ◦ expG

for all a ∈ Fq[t]. The power series expG is called the exponential map of G,
and it is shown by Anderson that in terms of ∞-adic convergence, it is an
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entire function from LieG(C∞) = Cd
∞ to G(C∞) = Cd

∞. The formal inverse

of expG is denoted by logG and is called the logarithm map of G. So as

formal power series one has the following propertities:

• logG(z) ≡ z (mod deg q).

• logG ◦[a] = ∂[a] ◦ logG for a ∈ Fq[t].

From the point of view of transcendence theory [Yu91, Yu97], the val-

ues of logarithms of t-modules at algebraic points provide rich resources of

interesting transcendental numbers. In this paper, we deepen this logarith-

mic perspective and such logarithmic interpretations for our special values

studied here provide the key approaches to prove Theorem 1.2.3.

2.2.2. CMSPL’s and stuffle relations. Let L0 := 1 and Li :=
∏i

j=1(θ−
θq

j

) for i ≥ 1. For any index s = (s1, . . . , sr) ∈ Nr, we define the s-th Carlitz

multiple polylogarithm (CMPL) as follows (see [C14]):

Lis(z1, . . . , zr) :=
∑

i1>···>ir≥0

zq
i1

1 . . . zq
ir

r

Ls1
i1
· · ·Lsr

ir

∈ k[[z1, . . . , zr]].

We also define the s-th Carlitz multiple star polylogarithm (CMSPL) as

follows (see [CM19]):

(2.2.2) Li�s(z1, . . . , zr) :=
∑

i1≥···≥ir≥0

zq
i1

1 · · · zq
ir

r

Ls1
i1
· · ·Lsr

ir

∈ k[[z1, . . . , zr]].

We denote by Lis(z1, . . . , zr)v (resp. Lis(z1, . . . , zr)) and Li�s(z1, . . . , zr)v
(resp. Li�s(z1, . . . , zr)) when we consider the v-adic (resp. ∞-adic) conver-

gence of those two infinite series.

In what follows, we describe the stuffle relations arising from CMSPL’s.

Let

X := {(s, u)|s ∈ N, u ∈ k, |u|∞ ≤ q
sq

q−1 , |u|v ≤ 1} ⊂ N× k

and

X0 := {(s, u)|s ∈ N, u ∈ k, |u|∞ < q
sq

q−1 , |u|v < 1} ⊂ X.

Let

h1CMSPL := k〈zs,u|(s, u) ∈ X〉
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be the non-commutative polynomial algebra over k generated by the vari-
ables {zs,u}(s,u)∈X and

h0CMSPL := k ⊕

⎛⎝ ⊕
(s,u)∈X0

zs,uh
1
CMSPL

⎞⎠ ⊂ h1CMSPL.

For any s = (s1, . . . , sr) ∈ Nr and u = (u1, . . . , ur) ∈ k
r
with (si, ui) ∈ X

for i = 1, . . . , r, we shall call zs1,r1 · · · zsr,ur
the monomial associated to the

pair (s,u), and vice versa.
We define the k-bilinear stuffle product � on h1CMSPL by

1 � w = w � 1 = w

and

zs,uw � zs′,u′w′ = zs,u(w � zs′,u′w′) + zs′,u′(zs,uw � w′)− zs+s′,uu′(w � w′)

for each (s, u), (s′, u′) ∈ X and w,w′ ∈ h1CMSPL (cf. [IKOO11, Sec. 2.1]).
Clearly, h0CMSPL is closed under �.

Now we define Li�(−) : h0CMSPL � LConv

∞ ⊂ C∞ and Li�(−)v : h
0
CMSPL �

LConv

v ⊂ Cv to be the k-linear maps given by Li�(1) := 1, Li�(1)v := 1, and

Li�(zs1,u1
· · · zsr,ur

) := Li�(s1,...,sr)(u1, . . . , ur),

and

Li�(zs1,u1
· · · zsr,ur

) := Li�(s1,...,sr)(u1, . . . , ur)v.

The following describes the stuffle relations for the convergent values of
CMSPL’s, and it may be well-known for experts but to be self-contained we
provide the detailed but short arguments here.

Proposition 2.2.3. The k-linear maps Li�(−) and Li�(−)v are multiplica-
tive in the sense that

Li�(w � w′) = Li�(w) · Li�(w′) and Li�(w � w′)v = Li�(w)v · Li�(w′)v

for each w,w′ ∈ h0CMSPL. In particular, LConv

∞ and LConv

v form k-algebras
and their generators satisfy the same stuffle relations in the sense that for
monomials w,w′ ∈ h0CMSPL with expression

(2.2.4) w � w′ =
∑
i

αiwi, αi ∈ Fp,
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we have

(2.2.5) Li�(w) · Li�(w′) = Li�(w � w′) =
∑
i

αiLi�(wi) in C∞

and

(2.2.6) Li�(w)v · Li�(w′)v = Li�(w � w′)v =
∑
i

αiLi�(wi)v in Cv.

Proof. For each non-negative integer n, we define the (truncated) k-linear
map Li�≤n given by Li�≤n(1) := 1 and

Li�≤n :=

⎛⎝zs1,u1
· · · zsr,ur

�→
∑

n≥i1≥···≥ir≥0

uq
i1

1 · · ·uq
ir

r

Ls1
i1
· · ·Lsr

ir

⎞⎠ : h0CMSPL → k.

Since lim
n→∞

Li�≤n(w) = Li�(w) in C∞ and lim
n→∞

Li�≤n(w) = Li�(w)v in Cv, it

suffices to show that

Li�≤n(w � w′) = Li�≤n(w) · Li�≤n(w
′)

for all w,w′ ∈ h0CMSPL and n ∈ Z≥0.
Because of linearity, we may assume that w and w′ are monomials. We

prove the desired claim by induction on the sum of total degrees of w and
w′. If w = 1 or w′ = 1, then the equality is clearly valid. Let w �= 1, w′ �= 1
and suppose that the equality holds for all n and for monomials whose total
degree is less than deg(w)+deg(w′). If we write w = zs,uw0 and w′ = zs′,u′w′

0,
then we have

Li�≤n(zs,uw0) · Li�≤n(zs′,u′w′
0)

=
∑

n≥i≥0

uq
i

Ls
i

Li�≤i(w0) · Li�≤i(zs′,u′w′
0) +

∑
n≥i≥0

(u′)q
i

Ls′
i

Li�≤i(zs,uw0) · Li�≤i(w
′
0)

−
∑

n≥i≥0

(uu′)q
i

Ls+s′

i

Li�≤i(w0) · Li�≤i(w
′
0)

=
∑

n≥i≥0

uq
i

Ls
i

Li�≤i(w0 � zs′,u′w′
0) +

∑
n≥i≥0

(u′)q
i

Ls′
i

Li�≤i(zs,uw � w′
0)

−
∑

n≥i≥0

(uu′)q
i

Ls+s′

i

Li�≤i(w0 � w
′
0)
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= Li�≤n(zs,u(w0 � zs′,u′w′
0)) + Li�≤n(zs′,u′(zs,uw0 � w

′
0))

− Li�≤n(zs+s′,uu′(w0 � w
′
0))

= Li�≤n(zs,uw0 � zs′,u′w′
0),

where the second identity comes from the induction hypothesis and the last

two identities follow from definitions.

2.2.3. The construction of Gs,u. Throughout this section, we fix s =

(s1, . . . , sr) ∈ Nr and u = (u1, . . . , ur) ∈ k
r
. For 1 ≤ i ≤ r, we set

(2.2.7) di := si + · · ·+ sr

and

(2.2.8) d := d1 + · · ·+ dr.

Let B be a d× d-matrix of the form⎛⎜⎝ B[11] · · · B[1r]
...

...

B[r1] · · · B[rr]

⎞⎟⎠
where B[m] is a d�×dm-matrix for each  andm. We call B[m] the (,m)-th

block sub-matrix of B.

For 1 ≤  ≤ m ≤ r, we set

N� :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 1
. . .

...
. . .

. . . 0

. . . 1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ Matd�

(k),

N :=

⎛⎜⎜⎜⎝
N1

N2

. . .

Nr

⎞⎟⎟⎟⎠ ∈ Matd(k),
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E[m] :=

⎛⎜⎜⎜⎜⎝
0 · · · · · · 0
...

. . .
...

0
. . .

...
1 0 · · · 0

⎞⎟⎟⎟⎟⎠ ∈ Matd�×dm
(k) (if  = m),

E[m] :=

⎛⎜⎜⎜⎜⎝
0 · · · · · · 0
...

. . .
...

0
. . .

...

(−1)m−�
∏m−1

e=� ue 0 · · · 0

⎞⎟⎟⎟⎟⎠ ∈ Matd�×dm
(k) (if  < m),

E :=

⎛⎜⎜⎜⎜⎝
E[11] E[12] · · · E[1r]

E[22]
. . .

...
. . . E[r − 1, r]

E[rr]

⎞⎟⎟⎟⎟⎠ ∈ Matd(k).

Also, we define the t-module Gs,u := (Gd
a, [−]) by

(2.2.9) [t] = θId +N + Eτ ∈ Matd(k[τ ]).

Note that Gs,u depends only on u1, . . . , ur−1. Finally, we define

(2.2.10) vs,u :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭d1
...
0

(−1)r−1u1 · · ·ur
0

⎫⎪⎪⎬⎪⎪⎭d2
...
0

(−1)r−2u2 · · ·ur
...

...
0

⎫⎪⎪⎬⎪⎪⎭dr
...
0
ur

∈ Gs,u(k).
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2.3. v-adic MZV’s

To review the definition of v-adic MZV’s, we need to recall how we extend
the defining domain of the v-adic CMSPL Li�s to DDef

s,v . Fix an r-tuple s =
(s1, . . . , sr) ∈ Nr and note that Li�s converges v-adically on DConv

s,v given in
(1.3.2) (see [CM19, Sec. 2.2]). Recall in Sec. 2.1.1 that we use the notation
Λ̃ := (λr, . . . , λ1) for any r-tuple Λ = (λ1, . . . , λr) of elements of a nonempty
set. The following result gives logarithmic interpretation for CMSPL’s at
algebraic points.

Theorem 2.3.1 ([CM19, Thm. 3.3.3] and [CM21, Thm. 4.2.3]). Fixing any
r-tuples s = (s1, . . . , sr) ∈ Nr and u = (u1, . . . , ur) ∈ k

r
, let Gs,u and vs,u

be defined as above.

1. If ũ = (ur, . . . , u1) ∈ k
r ∩ Ds̃,∞ ↪→ Cr

∞ (see (1.3.1)) and x = (xi) ∈
Gs,u(C∞) with |xd1+···dm−1+j |∞ < q−(dm−j)+ dmq

q−1 for each 1 ≤ m ≤ r
and 1 ≤ j ≤ dm, then logGs,u

(x) converges ∞-adically. In particular,
logGs,u

(vs,u) converges ∞-adically. Moreover, its wt(s)-th coordinate
is equal to

(−1)r−1 · Li�s̃(ũ) = (−1)r−1 · Li�(sr,...,s1)(ur, . . . , u1).

2. If ũ = (ur, . . . , u1) ∈ k
r ∩ DConv

s̃,v ↪→ Cr
v (see (1.3.2)) and x ∈ Gs,u(Cv)

with ‖x‖v < 1, then logGs,u
(x)v converges v-adically. In particular,

logGs,u
(vs,u)v converges v-adically. Moreover, its wt(s)-th coordinate

is equal to

(−1)r−1 · Li�s̃(ũ)v = (−1)r−1 · Li�(sr,...,s1)(ur, . . . , u1)v.

Remark 2.3.2. In fact, all coordinates of logGs,u
(vs,u) can be written ex-

plicitly in [CGM21], and the tractable coordinates (see Definition 5.1.4) of
logGs,u

(vs,u)v are given explicitly in [CM19].

We put v(t) := v|θ=t ∈ Fq[t]. Define the local ringOCv
:= {α ∈ Cv; |α|v ≤

1} and denote by mv the maximal ideal of OCv
. The purpose of constructing

Gs,u for given s and u is for the purpose of connecting Li�s̃(ũ) as well as
Li�s̃(ũ)v with a coordinate logarithm of the special algebraic point vs,u, where
the depth one case was established in [AT90]. The following provides an
approach to extend the v-adic defining domains of CMSPL’s.

Proposition 2.3.3 ([CM19, Prop. 4.1.1]). Let s = (s1, . . . , sr) ∈ Nr and
u := (u1, . . . , ur) ∈ k

r∩DDef
s,v (see (1.3.3)). Let Gs,u be the t-module defined in
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(2.2.9) and vs,u ∈ Gs,u(k) be defined in (2.2.10). Let  ≥ 1 be an integer such
that each image of ui in OCv

/mv
∼= Fqv is contained in Fq�v . Let d1, . . . , dr be

defined in (2.2.7). Then∣∣∣∣[v(t)d1� − 1][v(t)d2� − 1] · · · [v(t)dr� − 1]vs,u

∣∣∣∣
v
< 1.

In particular,

logGs,u

(
[v(t)d1� − 1][v(t)d2� − 1] · · · [v(t)dr� − 1]vs,u

)
v

converges in LieGs,u(Cv).

For any u ∈ k
r ∩ DDef

s,v (this is equivalent to ũ ∈ k
r ∩ DDef

s̃,v), let a ∈ Fq[t]

be nonzero such that
∣∣∣∣[a]vs,u

∣∣∣∣
v
< 1. The v-adic CMSPL Li�s̃ at ũ is defined

to be

Li�(sr,...,s1)(ur, . . . , u1)v

:=
(−1)r−1

a(θ)
×

(
the wt(s)-th coordinate of logGs,u

([a]vs,u)v

)
.

It is shown in [CM19] that the v-adic value Li�s̃(ũ)v for u ∈ k
r ∩ DDef

s,v is
independent of the choices of a(t) and the existence of such a(t) ∈ Fq[t] is
guaranteed by Proposition 2.3.3.

We now recall the formula expressing MZV’s as linear combinations of
CMSPL’s at integral points from [C14, Thm. 5.5.2] or [CM21, Thm. 5.2.5].
For any index s ∈ Nr, there are some explicit tuples s� ∈ Ndep(s�) with
dep(s�) ≤ dep(s) and wt(s�) = wt(s), some explicit elements b� ∈ k and
some explicit integral points

u� ∈ Adep(s�) ∩ Ds�,∞

so that

(2.3.4) ζA(s) =
∑
�

b� · (−1)dep(s�)−1 Li�s�
(u�) ∈ k∞.

So based on Proposition 2.3.3 Li�s�
(u�)v is defined. The v-adic MZV ζA(s)v

in [CM21] is defined by

(2.3.5) ζA(s)v :=
∑
�

b� · (−1)dep(s�)−1 Li�s�
(u�)v ∈ kv,
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which can be thought of an analogue of Furusho’s p-adic MZV’s. Such as the

∞-adic case, we define the weight and depth of the presentation ζA(s)v to be

wt(s) and dep(s) respectively. These ∞-adic MZV’s and v-adic MZV’s are

expressed in terms of CMSPL’s at integral points and have nice logarithmic

interpretations in [CM21], extending Anderson-Thakur’s work [AT90] from

depth one to arbitrary depth.

Remark 2.3.6. Another version of v-adic MZVs was defined by Thakur [T04]

using interpolation. For a positive integer s and a non-negative integer d,

we let

Sv,d(s) :=
∑ 1

as
∈ k,

where the sum is over all monic polynomials a ∈ A of degree d relatively

prime to v. For any index s = (s1, . . . , sr) ∈ Nr, Thakur’s interpolated v-adic

MZV at s is defined by

ζTha
A (s)v :=

∑
d1>···>dr≥0

Sv,d1
(s1) · · ·Sv,dr

(sr) ∈ kv.

3. A trick on division points

The main theme in this section is to demonstrate that we are able to find a

specific algebraic point at which the logarithm of the t-module in question

converges both ∞-adically and v-adically. This trick is achieved using the

uniformization of the t-module as well as its property of iterated extensions

of Carlitz tensor powers.

3.1. The crucial result

Recall the notation DDef

s,k
defined in (1.3.5). Note that expG is locally isometric

for any t-module G defined over k, so we can find a small domain DG ⊂
LieG(C∞) on which expG is an isometry (see [HJ20, Lem. 5.3]). For each

x ∈ OCv
, we denote by x the image of x in the residue field OCv

/mv
∼= Fqv .

For each  ∈ N, we define a local ring A(v),� by

A(v),� := {x ∈ k ∩ OCv
|x ∈ Fq�v},

where k ∩ OCv
is defined in (2.1.2). For each n ∈ N and x = (xi) ∈

Matn×1(OCv
), we define x := (xi) ∈ Matn×1(Fqv).
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Theorem 3.1.1. Let s = (s1, . . . , sr) ∈ Nr, u ∈ k
r
with ũ ∈ DDef

s̃,k
, and

Gs,u = (Gd
a, [−]) be the t-module defined in (2.2.9). Given any v ∈ Gs,u(k ∩

OCv
) such that logGs,u

(v) ∈ LieGs,u(C∞) converges ∞-adically, we pick a

positive integer  for which v ∈ Gs,u(A(v),�) and define

a(t) := (v(t)d1� − 1) · · · (v(t)dr� − 1).

For each n ∈ Z≥0, put

Zn := ∂[v(t)n]−1 logGs,u
(v) ∈ LieGs,u(C∞), vn := expGs,u

(Zn)∈Gs,u(C∞).

Then the following properties hold.

1. [v(t)n]vn = v and vn ∈ Gs,u(k).

2.
∣∣∣∣[a(t)]vn

∣∣∣∣
v
< 1 if n is divisible by lcm(d1, . . . , dr). In particular, in

this case logGs,u
([a(t)]vn)v converges v-adically (see Theorem 2.3.1).

3. limn→∞
∣∣∣∣Zn

∣∣∣∣
∞ = 0. In particular, logGs,u

([a(t)]vn), ∂[a(t)] logGs,u
(vn)

and Zn = ∂[v(t)n]−1 logGs,u
(v) converge ∞-adically for sufficiently

large n, and they are contained in DGs,u
.

In order to prove the theorem above, we need to establish some lemmas.

For any positive integer s, we denote by C⊗s = (Gs
a, [−]s) the s-th tensor

power of the Carlitz module, which is defined over A. Precisely,

[t]s :=

⎛⎜⎜⎜⎜⎝
θ 1 · · · 0

θ
. . .

...
. . . 1

θ

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
0 0 · · · 0
0 0 · · · 0
...

...
...

1 0 · · · 0

⎞⎟⎟⎟⎠ τ ∈ Mats(A[τ ]).(3.1.2)

By [Pp, Cor. 3.5.4] for each m ∈ Z≥0 with m ≡  (mod s) (0 <  ≤ s), the

leading coefficient matrix of [tm]s is of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · 0
...

. . .
...

0
. . .

...

1
. . .

. . .
...

∗ . . .
. . .

. . .
...

∗ ∗ 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where the (i, j)-th component is 1 (resp. 0) if i = j+s− (resp. i < j+s−).
Furthermore, we have

degτ [t
m]s =

⌈m
s

⌉
.

So the above properties directly lead to the following.

Lemma 3.1.3. Let s be a positive integer and let b(t) ∈ Fq[t] be a monic
polynomial such that degt b(t) is divisible by s. Then there exist polynomi-
als fij(X) ∈ XA[X] with degX fij(X) ≤ q(degt b(t))/s, and degX fij(X) <
q(degt b(t))/s if i ≤ j, so that for any x = (x1, . . . , xs)

tr ∈ C⊗s(k) = k
s
and

(y1, . . . , ys)
tr := [b(t)]sx, we have

xq
(degt b(t))/s

1 +

s∑
j=1

f1j(xj) = y1

xq
(degt b(t))/s

2 +

s∑
j=1

f2j(xj) = y2

...

xq
(degt b(t))/s

s +

s∑
j=1

fsj(xj) = ys.

(3.1.4)

Then Lemma 3.1.3 enables us to ensure the v-adic integrality of certain
v(t)n-division points in Gs,u.

Lemma 3.1.5. Given s = (s1, . . . , sr) ∈ Nr and u = (b1, . . . , ur) ∈ k
r
, let

Gs,u = (Gd
a, [−]) be the t-module defined in (2.2.9). Let n ∈ N be a positive

integer divisible by lcm(d1, . . . , dr). Fix any algebraic point v ∈ Gs,u(k) and
suppose that v′ ∈ Gs,u(k) satisfies [v(t)n]v′ = v. If u ∈ Ar

(v),� and v ∈
Gs,u(A(v),�) for some  ∈ N, then v′ also lies in Gs,u(A(v),�).

Proof. We write

[v(t)n] =

⎛⎜⎜⎜⎝
[v(t)n]d1

M12 · · · M1r

[v(t)n]d2
· · · M2r

. . .
...

[v(t)n]dr

⎞⎟⎟⎟⎠ ∈ Matd(k[τ ]),

and note that since u ∈ Ar
(v),�, we have Mij ∈ Matdi×dj

(A(v),�[τ ]) for all

i, j. Hence we have [v(t)n] ∈ Matd(A(v),�[τ ]) as [v(t)n]di
∈ Matdi

(A[τ ]) for
i = 1, . . . , r.
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We further write

v =

⎛⎜⎝ v1
...
vr

⎞⎟⎠ (vi ∈ Matdi×1(A(v),�)) and v′ =

⎛⎜⎝ v′
1
...
v′
r

⎞⎟⎠ (v′
i ∈ Matdi×1(k)),

then the equation [v(t)n]v′ = v is expressed as

(3.1.6) [v(t)n]di
v′
i = vi −

∑
i<j≤r

Mijv
′
j (1 ≤ i ≤ r).

By considering (3.1.6) for i = r first, followed by i = r − 1, . . . , i = 1
inductively, we are reduced to showing the case when r = 1, ie., s = (s).
Moreover, due to the fact [v(t)n] = [v(t)s] ◦ · · · ◦ [v(t)s] (ns times) we may
assume n = s.

Write v′ = (x1, . . . , xs)
tr and v = (y1, . . . , ys)

tr and then we have the
system of equations (3.1.4) for b(t) = v(t)s. Let 1 ≤ i ≤ s be the minimal
integer such that |xi|v = max1≤j≤s{|xj |v}. We first claim that v′ ∈ C⊗s(k∩
OCv

). Suppose on the contrary that |xi|v > 1. Recall that qv := qdegθ v =

q
degt b(t)

s . Then we have

|fij(xj)|v ≤ max{1, |xj |v}degX fij(X) ≤
{

|xi|degX fij(X)
v (j ≥ i)

max{1, |xj |v}qv (j < i)
< |xi|qvv

for each 1 ≤ j ≤ s. Therefore

1 < |xi|qvv =

∣∣∣∣∣∣xqvi +

s∑
j=1

fij(xj)

∣∣∣∣∣∣
v

= |yi|v ≤ 1

which leads to a contradiction, and hence v′ ∈ C⊗s(k ∩ OCv
).

By [AT90, Proposition 1.6.1], we have

[v(t)s]sv
′ ≡ v′ (degθ v) (mod mv).

So the relation [v(t)s]sv
′ ≡ v (mod mv) implies

v′(degθ v) = v ∈ C⊗s(Fq�v).

Since Fq�v is perfect, we have v′ ∈ C⊗s(Fq�v), and hence v′ ∈ C⊗s(A(v),�).
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In what follows, we need the notion of regular t-modules introduced by
Yu in [Yu97, p. 218].

Definition 3.1.7. Let G be a t-module defined over k. We say that G is
regular if there is a positive integer ν for which the a-torsion submodule of
G(k) is free of rank ν over Fq[t]/(a) for every nonzero polynomial a ∈ Fq[t].

The following proposition is needed in the following subsection, where
we prove Theorem 3.1.1. Moreover, it also enables us to apply Yu’s sub-
t-module theorem for the t-module Gs,u when proving Theorem 1.2.3 in
Section 5.

Proposition 3.1.8. For any s ∈ Nr and u ∈ k
r
with ũ ∈ Ds̃,∞ (see (1.3.1)),

the t-module Gs,u is regular.

Proof. The t-moduleGs,u is uniformizable by [CM19, Rem. 3.3.5] and [CM21,
Rem. 2.5.2]. Then by the same arguments of [CM21, Prop. 6.3.2], the desired
result follows.

Remark 3.1.9. An alternative proof of the above proposition pointed out by
the referee is given as follows. One can prove that Gs,u is an abelian t-module
in the sense of [A86, Sec. 1.1], then the desired result follows from [A86,
Prop. 1.8.3].

3.2. Proof of Theorem 3.1.1

Now we give a proof of Theorem 3.1.1. For each n ∈ Z≥0, we have

[v(t)n]vn := [v(t)n] expGs,u

(
∂[v(t)n]−1 logGs,u

(v)
)

= expGs,u

(
∂[v(t)n]∂[v(t)n]−1 logGs,u

(v)
)

= expGs,u

(
logGs,u

(v)
)
= v.

Denote by Gs,u[v(t)
n] the algebraic subgroup of v(t)n-torsion points of

Gs,u. As the algebraic variety defined by [v(t)n]X = v is a Gs,u[v(t)
n]-torsor,

it is a zero-dimensional variety defined over k since Gs,u is a regular t-module
by Proposition 3.1.8. Therefore we have

vn ∈ Gs,u(k),

whence proving the property (1).
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To prove the property (2), we mention that by Lemma 3.1.5, if n is
divisible by lcm(d1, . . . , dr) then we have

vn ∈ Gs,u(A(v),�).

Furthermore, from [CM19, Prop. 4.1.1] the choice of a(t) implies that∣∣∣∣[a(t)]vn

∣∣∣∣
v
< 1

for each n ∈ N with lcm(d1, . . . , dr)|n.
Now we aim to show that

∣∣∣∣Zn

∣∣∣∣
∞ → 0 as n → ∞. Let Nb := ∂[b(t)] −

b(θ)Id for each nonzero polynomial b(t) ∈ Fq[t]. Then Nb is a nilpotent
matrix. Recall that N is the nilpotent matrix given in [t] in (2.2.9). Since

N ∈ Matd(Fp) and ∂[ti] = (θId +N)i = θiId +
∑

0≤j<i

(
i

j

)
θjN i−j (i ∈ Z≥0),

we have ||Nb||∞ < |b(θ)|∞. Therefore we have

∣∣∣∣∂[b(t)]−1
∣∣∣∣
∞ =

∣∣∣∣∣
∣∣∣∣∣b(θ)−1

(
d−1∑
�=0

(−Nb/b(θ))
�

)∣∣∣∣∣
∣∣∣∣∣
∞

= |b(θ)|−1
∞ → 0

as degt b(t) → ∞, and hence∣∣∣∣Zn

∣∣∣∣
∞ =

∣∣∣∣∂[v(t)n]−1 logGs,u
(v)

∣∣∣∣
∞ → 0 (n → ∞).

Finally, since expGs,u
(−), logGs,u

(−), [a(t)](−) and ∂[a(t)](−) are con-
tinuous, the second part of the property (3) follows.

4. The key identity

The main purpose of this section is to show Theorem 4.2.1.

4.1. Formula for the weight coordinate

In this subsection, we aim to give a formula for the wt(s)-th coordinate of
logGs,u

at algebraic points in terms of CMSPL’s for each s ∈ Nr and u ∈ k
r

with ũ ∈ Ds̃,∞. We first mention that the ∞-adic convergence domain of
logGs,u

is given in Theorem 2.3.1. We then recall that the wt(s)-th row of
the coefficient matrices of logGs,u

is explicitly given as follows.
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Proposition 4.1.1 ([CM19, Prop. 3.2.1], [Chen20, Prop. 3.2.2]). For any
s = (s1, . . . , sr) ∈ Nr and u = (u1, . . . , ur) ∈ k

r
, we let Gs,u be defined in

(2.2.9), di be given in (2.2.7) for i = 1, . . . , r and d be given in (2.2.8). We
put

logGs,u
:=

∑
i≥0

Piτ
i, P0 := Id, Pi ∈ Matd(k),

and write the wt(s)-th row of Pi as(
y<i>
1,1 , . . . , y<i>

1,d1
, y<i>

2,1 , . . . , y<i>
2,d2

, . . . , y<i>
r,1 , . . . , y<i>

r,dr

)
.

Then for each i ≥ 0, we have

(4.1.2) y<i>
1,j =

(θ − θq
i

)d1−j

Ld1

i

for 1 ≤ j ≤ d1,

and for each 2 ≤ m ≤ r and 1 ≤ j ≤ dm we have

(4.1.3) y<i>
m,j = (−1)m−1(θ − θq

i

)dm−j
∑

0≤i1≤···≤im−1<i

uq
i1

1 · · ·uq
im−1

m−1

Ls1
i1
· · ·Lsm−1

im−1
Ldm

i

.

As a consequence of the proposition above, we obtain the following cru-
cial identity.

Theorem 4.1.4 (cf. [Chen20, Thm. 3.2.9]). Fix any s = (s1, . . . , sr) ∈ Nr

and u = (u1, . . . , ur) ∈ k
r
with ũ ∈ Ds̃,∞ (see (1.3.1)). Let Gs,u be defined

in (2.2.9) and di be given in (2.2.7) for i = 1, . . . , r. If we set

x := (x1,1, . . . , x1,d1
, x2,1, . . . , x2,d2

, . . . , xr,1, . . . , xr,dr
)tr ∈ Gs,u(C∞),

and assume

|xm,j |∞ < q−(dm−j)+ dmq

q−1

for each 1 ≤ m ≤ r and 1 ≤ j ≤ dm, then

|θ�xm,j |∞ < q
dmq

q−1 (1 ≤ m ≤ r, 1 ≤ j ≤ dm, 0 ≤  ≤ dm − j)

and

|θ�xm,jum−1|∞ < q
dm−1q

q−1 (2 ≤ m ≤ r, 1 ≤ j ≤ dm, 0 ≤  ≤ dm − j),
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and the wt(s)-th coordinate of logGs,u
(x) is given by

d1∑
j=1

d1−j∑
�=0

(−1)�
(
d1 − j



)
θd1−j−� Li�d1

(θ�x1,j)

+
∑

2≤m≤r

(−1)m−1
dm∑
j=1

dm−j∑
�=0

(−1)�
(
dm − j



)
θdm−j−� ×{

Li�(dm,sm−1,...,s1)
(θ�xm,j , um−1, . . . , u1)

− Li�(dm−1,sm−2,...,s1)
(θ�xm,jum−1, um−2, . . . , u1)

}
,

where in the case of m = 2, we denote by

(dm−1, sm−2, . . . , s1) := (d1) and (θ�xm,jum−1, um−2, . . . , u1) := (θ�x2,ju1).

Proof. We use the same notations as in Proposition 4.1.1. First of all, we

note that since

|θ�xm,j |∞ < q� · q−(dm−j)+ dmq

q−1 ≤ qdm−j · q−(dm−j)+ dmq

q−1 = q
dmq

q−1

for each 1 ≤ m ≤ r, 1 ≤ j ≤ dm and 0 ≤  ≤ dm − j, and

|θ�xm,jum−1|∞ < q� · q−(dm−j)+ dmq

q−1 · q
sm−1q

q−1

≤ qdm−j · q−(dm−j)+ dmq

q−1 · q
sm−1q

q−1 = q
dm−1q

q−1 ,

for each 2 ≤ m ≤ r, 1 ≤ j ≤ dm and 0 ≤  ≤ dm − j, each CMSPL in

Theorem 4.1.4 converges ∞-adically.

According to Theorem 2.3.1, logGs,u
(x) converges ∞-adically. Since we

write logGs,u
=

∑∞
i=0 Piτ

i, the wt(s)-th coordinate of logGs,u
(x) is given by

∞∑
i=0

r∑
m=1

dm∑
j=1

y<i>
m,j x

qi

m,j .

We claim that the series

r∑
m=1

dm∑
j=1

∞∑
i=0

y<i>
m,j x

qi

m,j
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converges ∞-adically, and so it equals the wt(s)-th coordinate of logGs,u
(x).

To prove the claim above, we compute
∑∞

i=0 y
<i>
m,j x

qi

m,j for each 1 ≤ m ≤ r
and 1 ≤ j ≤ dm. When m = 1, we have

n∑
i=0

y<i>
1,j xq

i

1,j =

n∑
i=0

(θ − θq
i

)d1−j
xq

i

1,j

Ld1

i

=

n∑
i=0

d1−j∑
�=0

(
d1 − j



)
θd1−j−�(−θq

i

)�
xq

i

1,j

Ld1

i

=

d1−j∑
�=0

(−1)�
(
d1 − j



)
θd1−j−�

n∑
i=0

(θ�x1,j)
qi

Ld1

i

→
d1−j∑
�=0

(−1)�
(
d1 − j



)
θd1−j−� Li�d1

(θ�x1,j)

as n → ∞ for each 1 ≤ j ≤ d1. When 2 ≤ m ≤ r, we have

n∑
i=0

y<i>
m,j x

qi

m,j =

n∑
i=0

(−1)m−1(θ − θq
i

)dm−j
∑

0≤i1≤···≤im−1<i

uqi1

1 · · ·uq
im−1

m−1 xqi

m,j

Ls1
i1

· · ·Lsm−1

im−1
Ldm

i

=

n∑
i=0

(−1)m−1
dm−j∑
�=0

(
dm − j

�

)
θdm−j−�(−θq

i

)�
∑

0≤i1≤···≤im−1<i

uqi1

1 · · ·uq
im−1

m−1 xqi

m,j

Ls1
i1

· · ·Lsm−1

im−1
Ldm

i

= (−1)m−1
dm−j∑
�=0

(−1)�
(
dm − j

�

)
θdm−j−�

∑
0≤i1≤···≤im−1<im≤n

uqi1

1 · · ·uq
im−1

m−1 (θ�xm,j)
qim

Ls1
i1

· · ·Lsm−1

im−1
Ldm

im

→ (−1)m−1
dm−j∑
�=0

(−1)�
(
dm − j

�

)
θdm−j−� ×

{
Li�(dm,sm−1,...,s1)(θ

�xm,j , um−1, . . . , u1)

− Li�(dm−1,sm−2,...,s1)(θ
�xm,jum−1, um−2, . . . , u1)

}
as n → ∞ for each 1 ≤ j ≤ dm. Hence we complete the proof of the claim
as well as the desired identity.

4.2. Application of Theorem 4.1.4

Consider the following k-vector spaces

LConv

∞ ⊂ LDef

∞ ⊂ C∞

given in Definition 1.3.7. An important application of Theorem 4.1.4 is the
following equality, which is the key for us to prove Theorem 1.2.3 in the next
section.
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Theorem 4.2.1. Let notation be given in Definition 1.3.7. Then we have
the following equality

LConv

∞ = LDef

∞ .

Proof. Suppose n = (n1, . . . , nr) ∈ Nr and w = (w1, . . . , wr) ∈ DDef

n,k
(so

Li�n(w) ∈ LDef

∞ ), our goal is to show that Li�n(w) ∈ LConv

∞ .
Put

s := ñ = (nr, . . . , n1), u := w̃ = (wr, . . . , w1)

and write s = (s1, . . . , sr). Let Gs,u be defined in (2.2.9) and vs,u be defined
in (2.2.10). Let v := vs,u. For this v, we let a(t), n, Zn and vn be given as in
Theorem 3.1.1 by taking n sufficiently large and divisible by lcm(d1, . . . , dr)
so that all the properties of Theorem 3.1.1 hold. We claim the following:

• logGs,u
([v(t)n]vn) = ∂[v(t)n] logGs,u

(vn).
• logGs,u

([a(t)]vn) = ∂[a(t)] logGs,u
(vn).

We mention that although we have the functional equations of logGs,u
as

formal power series, one can not argue directly that the two identities above
follow from the functional equations as logGs,u

is not entire.
Assume the claim first. Then we have

∂[v(t)n] logGs,u
([a(t)]vn) = ∂[v(t)n]∂[a(t)] logGs,u

(vn)

= ∂[a(t)] logGs,u
([v(t)n]vn)

= ∂[a(t)] logGs,u
(vs,u),

where the first and second equalities follow from the claim. By Theorem 2.3.1
and comparing the wt(s)-th coordinates of the both sides, we have

Li�n(w) = Li�s̃(ũ) =
(−1)r−1

a(θ)
×

(
wt(s)-th coordinate of ∂[a(t)] logGs,u

(vs,u)
)

=
(−1)r−1vn

a(θ)
×
(
wt(s)-th coordinate of logGs,u

([a(t)]vn)
)
.

Here we used the fact that the wt(s)-th component of the wt(s)-th row of
∂[b(t)] is b(θ) and the other components are zero for each b(t) ∈ Fq[t]. By
Theorem 3.1.1 we have that

∣∣∣∣[a(t)]vn

∣∣∣∣
v
< 1. Since ‖u‖v = ‖w‖v ≤ 1, by

putting x := [a(t)]vn into Theorem 4.1.4 we see that the first coordinate
of each CMSPL appearing in the formula of Theorem 4.1.4 has the v-adic
absolute value strictly less than one and hence the right hand side of the
equation above is in LConv

∞ .
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Now, we prove the claim above. We first recall that DGs,u
is the domain

on which expGs,u
is an isometry. Since Zn ∈ DGs,u

and vn := expGs,u
(Zn),

we have logGs,u
(vn) = Zn. It follows that we obtain the first desired identity

logGs,u
([v(t)n]vn) = logGs,u

(v) = ∂[v(t)n]Zn = ∂[v(t)n] logGs,u
(vn) ,

where the second equality comes from the definition of Zn given in Theo-
rem 3.1.1. Since

logGs,u
([a(t)]vn) , ∂[a(t)] logGs,u

(vn)

belong to DGs,u
, on which expGs,u

is an isometry, the second desired identity

logGs,u
([a(t)]vn) = ∂[a(t)] logGs,u

(vn)

follows from the functional equations of expGs,u
and its entireness:

expGs,u

(
logGs,u

([a(t)]vn)
)
= [a(t)]vn = expGs,u

(
∂[a(t)] logGs,u

(vn)
)
.

5. Main theorem and proof

The primary goal of this section is to prove Theorem 1.2.3.

5.1. Yu’s sub-t-module theorem

In our function field setting, we have the following analogue of Wüstholz’s
theory, called Yu’s sub-t-module theorem.

Theorem 5.1.1 ([Yu97, Thm. 0.1]). Let G be a regular t-module defined
over k. Let Z be a vector in LieG(C∞) such that expG(Z) ∈ G(k). Then
the smallest linear subspace in LieG(C∞) defined over k, which is invariant
under ∂[t] and contains Z, is the tangent space at the origin of a sub-t-

module H of G over k.

Here, a sub-t-module of G over k is a connected algebraic subgroup
of G defined over k which is invariant under the [t]-action. The following

lemma plays a crucial role so that we can apply Yu’s sub-t-module theorem
appropriately to prove Theorem 5.1.5.
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Lemma 5.1.2. Let s ∈ Nr be an index and u ∈ k
r
such that ũ ∈ k

r ∩ DDef
s̃,v.

For any point x ∈ Gs,u(Cv) with ‖x‖v < 1 and any ε > 0, there exists

n ∈ Z≥0 such that
∣∣∣∣[v(t)n]x∣∣∣∣

v
< ε.

Proof. For each ε > 0, we set

aε := {x ∈ OCv
| |x|v < ε}.

Since Gs,u is defined over k ∩ OCv
, it is clear that the Fq[t]-action [−] on

Gs,u induces an Fq[t]-action on (OCv
/aε)

d via [−] where d is given in (2.2.8),

and without confusion we denote by Gs,u(OCv
/aε) for the Fq[t]-module

((OCv
/aε)

d , [−]). Note that by definition we have the following equivalence∣∣∣∣[v(t)n]x∣∣∣∣
v
< ε ⇐⇒ [v(t)n](x mod aε) = 0 in Gs,u(OCv

/aε).

We prove the lemma by induction on the depth r = dep(s). When r = 1

and s = (s), by [AT90, Proposition 1.6.1], we have fij(X) ∈ vXA[X] (1 ≤
i, j ≤ r) for b(t) = v(t)s in Lemma 3.1.3. Therefore we have

∣∣∣∣[v(t)s]x∣∣∣∣
v
≤ max{‖x‖qvv , ‖x‖v/qv} =

{
‖x‖qvv (if ‖x‖v ≥ q

−1/(qv−1)
v )

‖x‖v/qv (if ‖x‖v ≤ q
−1/(qv−1)
v )

.

(5.1.3)

We set xi := [v(t)is]x. If ‖xi‖v > q
−1/(qv−1)
v for all i ∈ Z≥0, then q

−1/(qv−1)
v <

‖xi‖v ≤ ‖x‖q
i
v
v for all i ∈ Z≥0, where the second inequality comes from

(5.1.3). Since ‖x‖v < 1, we have a contradiction. Therefore there exists

i0 ∈ Z≥0 such that ‖xi0‖v ≤ q
−1/(qv−1)
v . Then we have

‖xi‖v ≤ ‖xi0‖v/qi−i0
v (i ≥ i0)

and hence ‖xi‖v → 0 (i → ∞).

Let r ≥ 2 and assume that the lemma holds for G′ := G(s2,...,sr),(u2,...,ur).

Let π : Gs,u � G′ be the natural projection given by

π
(
(x1,1, . . . , x1,d1

, x2,1, . . . , x2,d2
, . . . )tr

)
:= (x2,1, . . . , x2,d2

, . . . )tr.

Then we have the following exact sequence of Fq[t]-modules

0 C⊗wt(s)(OCv
/aε) Gs,u(OCv

/aε)
πε

G′(OCv
/aε) 0,
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which is induced from the short exact sequence of t-modules

0 C⊗wt(s) Gs,u
π

G′ 0.

By the induction hypothesis, there exists n′ ∈ Z≥0 such that

πε

(
[v(t)n

′
](x mod aε)

)
= [v(t)n

′
] (πε(x mod aε)) = 0

and hence [v(t)n
′
](x mod aε) ∈ kerπε = C⊗wt(s)(OCv

/aε). By the argument
of the depth one case, there exists n1 ∈ Z≥0 such that

[v(t)n1 ]
(
[v(t)n

′
](x mod aε)

)
= 0,

whence deriving

[v(t)n1+n′
](x mod aε) = 0.

We recall the notion of tractable coordinates introduced by Brownawell-
Papanikolas, which is convenient for us when applying Yu’s sub-t-module
theorem.

Definition 5.1.4. Let G = (Gd
a, [−]) be a t-module over k and let X =

(X1, . . . , Xd)
tr be the coordinates of LieG. The i-th coordinate Xi is called

tractable if the i-th coordinate of ∂[a(t)]X is equal to a(θ) · Xi for each
a(t) ∈ Fq[t].

By the definition of the t-module Gs,u in (2.2.9), the (d1 + · · · + di)-th
coordinate of LieGs,u is tractable for each 1 ≤ i ≤ r. In particular, the
wt(s)-th coordinate of LieGs,u is tractable.

Theorem 5.1.5. The map

φv := (Li�s(u) �→ Li�s(u)v) : L
Def

∞ � LDef

v

is a well-defined k-linear map.

Proof. Suppose that we have α0+
∑m

i=1 αi Li
�
ni
(wi) = 0 for α0, α1, . . . , αm ∈

k (not all zero), ni ∈
⋃

r>0N
r, wi ∈ DDef

ni,∞. Our aim is to show that

α0 +

m∑
i=1

αi Li
�
ni
(wi)v = 0.
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We set si := ñi and ui := w̃i and define the t-module

G := Ga ⊕
m⊕
i=1

Gsi,ui

with diagonal t-action, where Ga is referred to the trivial t-module with

exponential and logarithm maps given by the identity map z �→ z.

LetX0 be the coordinate of LieGa andXi be the coordinates of LieGsi,ui

for i = 1, . . . ,m. Put ji := wt(si) and define Xiji to be the ji-th coor-

dinate of Xi which is tractable in LieGsi,ui
for i = 1, . . . ,m. So X :=(

X0,X
tr
1 , . . . ,X

tr
m

)tr
are coordinates of LieG and {X0, X1j1 . . . , Xmjm} are

tractable coordinates.

Put v := (1) ⊕
⊕m

i=1 vsi,ui
∈ G(k). By Theorem 2.3.3, there exists a

nonzero polynomial a(t) ∈ Fq[t] such that
∣∣∣∣[a(t)]v∣∣∣∣

v
< 1. By Theorem 2.3.1

we have that logG converges∞-adically (resp. v-adically) at v (resp. [a(t)]v).

Note that ∂[a(t)] logG (v) is the column vector whose entries are the con-

catenation of a(θ) and the column vectors

∂[a(t)] logGs1,u1
(vs1,u1

), . . . , ∂[a(t)] logGsm,um
(vsm,um

),

and logG ([a(t)]v)v is the column vector whose entries are the concatenation

of a(θ) and the column vectors

logGs1,u1
([a(t)]vs1,u1

)v, . . . , logGsm,um
([a(t)]vsm,um

)v.

Furthermore, by Theorem 2.3.1 the value (−1)dep(ni)−1a(θ) Li�ni
(wi) (resp.

(−1)dep(ni)−1a(θ) Li�ni
(wi)v) occurs as the ji-th coordinate of the vector

∂[a(t)] logGsi,ui
(vsi,ui

) (resp. logGsi,ui
([a(t)]vsi,ui

)v) for i = 1, . . . ,m.

Let V be the smallest k-linear subvariety of LieG for which

• V (C∞) contains the vector ∂[a(t)] logG(v).
• V is invariant under the ∂[t]-action.

By Yu’s sub-t-module theorem, we have V = LieH for some sub-t-module

H of G defined over k. We note that the hyperplane

α0X0 + (−1)dep(n1)−1α1X1j1 + · · ·+ (−1)dep(nm)−1αmXmjm = 0

is a k-linear subvariety of LieG and contains the vector ∂[a(t)] logG(v) as a

C∞-valued point and is invariant under the ∂[t]-action. It follows from the
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definition of V that

V = LieH

⊂
{
α0X0 + (−1)dep(n1)−1α1X1j1 + · · ·+ (−1)dep(nm)−1αmXmjm = 0

}
.

As ∂[a(t)] logG(v) ∈ LieH(C∞) ⊆ LieG(C∞), we have that

[a(t)]v = expG (∂[a(t)] logG(v)) = expH (∂[a(t)] logG(v)) ∈ H(k).

By putting x := [a(t)]v in Lemma 5.1.2, there exisits n ∈ Z≥0 such that
[v(t)n][a(t)]v ∈ H(k) is v-adically small. Then by the same arguments at
the top of p.99 of [CM21, Thm. 6.4.1], we have that

logG([v(t)
na(t)]v)v = logH([v(t)na(t)]v)v ∈ LieH(Cv),

and hence this vector is a Cv-valued point of the hyperplane above. That is,
the desired linear relation holds.

5.2. Proof of Theorem 1.2.3

Now we give a proof of Theorem 1.2.3. We first note that by (2.3.4) and
(2.3.5) we have Z∞ ⊂ LDef

∞ , Zv ⊂ LDef

v , φv(Z) = Zv and φv(ζA(s)) =
ζA(s)v for each index s. We note that Theorem 4.2.1 implies LDef

v = LConv

v as
explained in (1.3.8). Therefore, we have the following commutative diagram:

Z

φv|Z

LDef

∞

φv

LConv

∞ h0CMSPL

Li�(−)

Li�(−)v

Zv LDef

v LConv

v

where the commutativity φv ◦ Li�(−) = Li�(−)v comes from the definitions
of φv, Li�(−) and Li�(−)v.

Note that LDef

∞ and LDef

v form k-algebras by Proposition 2.2.3. We first
show that the map φv is a k-algebra homomorphism. Indeed, for each x, x′ ∈
LDef

∞ , let w,w′ ∈ h0CMSPL such that Li�(w) = x and Li�(w′) = x′. Since
Li�(−) and Li�(−)v are multiplicative in the sense of Proposition 2.2.3, we
have

φv(x · x′) = φv(Li�(w) · Li�(w′)) = φv(Li�(w � w′)) = Li�(w � w′)v

= Li�(w)v · Li�(w′)v = φv(Li�(w)) · φv(Li�(w′)) = φv(x) · φv(x
′).
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Next we show that v-adic MZV’s satisfy the q-shuffle relations. Let s

and s′ be two indices and let fj ∈ Fp and sj ∈ Ndep(sj) be as in (1.2.1). Then
we have

ζA(s)v · ζA(s′)v = φv(ζA(s)) · φv(ζA(s
′)) = φv(ζA(s) · ζA(s′))

= φv

⎛⎝∑
j

fjζA(sj)

⎞⎠ =
∑
j

fjφv(ζA(sj)) =
∑
j

fjζA(sj)v.

Therefore Theorem 1.2.3 (1) holds. In particular, Zv is closed under the
product, and hence φv|Z is a k-algebra homomorphism. This shows Theorem
1.2.3 (2).

Remark 5.2.1. In the proof above, we verify the identity

LDef

v = LConv

v ,

which generalizes [Chen20, Cor. 3.2.11] for v-adic CMSPL’s at integral points.

Remark 5.2.2. The definition of ζA(s)v in (2.3.5) a priori depends on the
extensions of the v-adic CMSPL’s Li�s�

to DDef
s�,v. However, by Theorems 4.2.1

and 5.1.5, ζA(s)v is the image of ζA(s) via the homomorphism φv : L
Conv

∞ →
LConv

v which is ‘canonical’ once we fix embeddings k ↪→ C∞ and k ↪→ Cv

over k. Note that the definition of ζA(s)v does not depend on the choice of
such embeddings. Indeed, if we take another pair of embeddings with φ′

v as
the corresponding homomorphism, then the equality φv(ζA(s)) = ζA(s)v =
φ′
v(ζA(s)) is still valid in kv.

5.3. An example

We provide an example of direct computations for Theorem 1.2.3 (1). Recall
Huei-Jeng Chen’s explicit formula [Ch15] for the product of two Carlitz zeta
values

ζA(r)ζA(s) = ζA(r, s) + ζA(s, r) + ζA(r + s)

(5.3.1)

+
∑

i+j=r+s, (q−1)|j

[
(−1)s−1

(
j − 1

s− 1

)
+ (−1)r−1

(
j − 1

r − 1

)]
ζA(i, j).

Now, we compute the simplest case ζA(1)θ · ζA(1)θ for q = 2� ( ∈ N).
Note that even for this simplest case, it still involves heavy computation
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on the explicit action of Carlitz tensor powers. In fact, to verify the valid-
ity of the q-shuffle product of v-adic MZV’s by direct computations seems
impractical.

We start by specializing r = 1 and s = 1 in Huei-Jeng Chen’s formula
and we get

ζA(1) · ζA(1) = ζA(2)

as the characteristic of the base field is 2. Note that this relation also follows
from the definition of MZV’s directly. To verify

ζA(1)θ · ζA(1)θ = ζA(2)θ,

we recall that the Anderson-Thakur polynomials [AT90, AT09]Hn−1 is equal
to 1 if 1 ≤ n ≤ q. In this case, we have

ζA(n)θ = Li�n(1)θ

(see [CM21, Sec. 5, Sec. 6] for details). So our task is to calculate Li�n(1)θ.
By definition, Li�n(1)θ is given by

1

θn − 1
×

(
n-th coordinate of logC⊗n

(
[tn − 1]

(
(0, . . . , 0, 1)tr

))
θ

)
,

where C⊗n stands for the n-th tensor power of the Carlitz module defined
in (3.1.2). One can show that [Chen20, Ex. 3.2.12]

[tn − 1]
(
(0, . . . , 0, 1)tr

)
=

((
n

1

)
θ,

(
n

2

)
θ2, . . . ,

(
n

n− 1

)
θn−1, θn

)tr

and consequently

Li�n(1)θ =
1

θn − 1

⎛⎝Li�n(θ
n)θ +

∑
1≤j<n

j∑
i=0

(−1)i+j

(
j

i

)
θi Li�n

((
n

j

)
θn−i

)
θ

⎞⎠
by using [Chen20, Thm. 3.2.9]. In particular, we derive that

Li�1(1)θ =
1

θ − 1
Li�1(θ)θ

and

Li�2(1)θ =
1

θ2 − 1
Li�2(θ

2)θ
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because of characteristic 2. Then it is clear to see that

ζA(1)θ · ζA(1)θ = Li�1(1)θ · Li�1(1)θ =
1

(θ − 1)2
Li�1(θ)θ · Li�1(θ)θ

=
1

θ2 − 1
Li�2(θ

2)θ = Li�2(1)θ = ζA(2)θ.

5.4. A conjecture

In what follows, we conjecture that the kernel of the k-algebra homomor-
phism in Theorem 1.2.3 is generated by ζA(q − 1).

Conjecture 5.4.1. For any finite place v of k, we have the following k-
algebra isomorphism

Z/(ζA(q − 1)) ∼= Zv.

The conjecture above would imply the following important consequences:

(i) Zv
∼= Zv′ for any finite places v, v′ of k.

(ii) Zv is a graded k-algebra (graded by weights) defined over k.

Note that in [C14, Thm. 2.2.1], the first author of the present paper showed
that Z forms a graded k-algebra (graded by weights) that is defined over k.
That is:

• ∞-adic MZV’s of different weights are linearly independent over k.
• k-linear independence of ∞-adic MZV’s implies k-linear independence.

So the statement (ii) above is the v-adic analogue of [C14, Thm. 2.2.1]
for ∞-adic MZV’s. We mention that in the case of p-adic MZV’s, one has
Furusho-Yamashita’s conjecture [Ya10, Conj. 5] asserting that nonzero p-
adic MZV’s of different weights are linearly independent over Q, and this
is the p-adic analogue of Goncharov’s direct sum conjecture [Gon97] for
real-valued MZV’s.

Now, we consider the k-subalgebra Z1 ⊂ Z generated by the ∞-adic sin-
gle zeta values, namely the∞-adic MZV’s of depth one, and the k-subalgebra

Z1
v ⊂ Zv generated by the v-adic single zeta values. When we restrict the

k-algebra homomorphism given in Theorem 1.2.3 to Z1
, we obtain the sur-

jective k-algebra homomorphism

Z1 � Z1
v.

It is shown in [CY07] that all the algebraic relations among ∞-adic
single zeta values are generated by Euler-Carlitz relations, namely ζA((q −
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1)n)/ζA(q − 1)n ∈ k for n ∈ N, and the p-th power relations, ie., ζA(pn) =
ζA(n)

p for n ∈ N. Recall that by [Go79] we have the trivial zeros ζA((q −
1)n)v = 0 for n ∈ N. Chang-Yu’s conjecture in [CY07, p. 323] asserts that all
the algebraic relations among Goss’ v-adic zeta values come from the trivial
zeros above and the p-th power relations, and hence it implies that the kernel

of the k-algebra homomorphism Z1 � Z1
v is generated by ζA(q−1) in Z1

. So
Chang-Yu’s conjecture matches with the phenomenon of Conjecture 5.4.1.

Remark 5.4.2. By Theorem 4.2.1, the surjection φv in Theorem 5.1.5 is a
k-algebra homomorphism. Thus we have the induced surjective k-algebra
homomorphism

LDef

∞ /(π̃q−1) � LDef

v .

However, due to the lack of computational evidence we can not predict
whether the above homomorphism is an isomorphism or not.
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