
Cambridge Journal of Mathematics

Volume 10, Number 4, 835–857, 2022

Free boundary minimal surfaces with connected
boundary and arbitrary genus

Alessandro Carlotto, Giada Franz, and Mario B. Schulz

We employ min-max techniques to show that the unit ball in R
3

contains embedded free boundary minimal surfaces with connected
boundary and arbitrary genus.

AMS 2000 subject classifications: Primary 53A10; secondary 49Q05,
58E12.

Keywords and phrases: Minimal surfaces, equivariant min-max the-
ory.

1. Introduction

Over the last decade, the work by Fraser and Schoen [5, 6, 7] on extremals

for Steklov eigenvalues has revitalised the study of free boundary minimal

surfaces, whose origins go back at least to Courant. The theory has been

developed in various interesting directions, yet many fundamental questions

remain open. One of the most basic ones can be phrased as follows: does the

unit ball of R3 contain free boundary minimal surfaces of any given genus

g ≥ 0 and any number of boundary components b ≥ 1? In spite of significant

advances, which we will survey below, the answer to such a question has

proven to be quite elusive, even in special cases such as g = b = 1 (which is

highlighted in Open Question 1 of the recent survey [17]). There is a well-

known analogy between the free boundary theory for the unit ball B3 ⊂
R
3 and the theory concerning closed minimal surfaces in the round three-

dimensional sphere S3: since for the latter Lawson proved in 1970 that there

indeed exist in the sphere embedded minimal surfaces of arbitrary genus,

there might be some reason to lean towards an affirmative answer. Here we

fully solve the problem for the class of free boundary minimal surfaces with

connected boundary:

Theorem 1.1. For each 1 ≤ g ∈ N there exists an embedded free boundary

minimal surface Mg in B3 with connected boundary, genus g and dihedral

symmetry Dg+1.
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The dihedral group Dn is the symmetry group of a regular n-sided poly-
gon. In our specific context, given 2 ≤ n ∈ N we shall define the dihedral
group Dn of order 2n to be the subgroup of Euclidean isometries (acting
on B3) generated by the rotation of angle 2π/n around the vertical axis
ξ0 := {(0, 0, r) : r ∈ [−1, 1]} and by the rotations of angle π around the
n horizontal axes ξk := {(r cos(kπ/n), r sin(kπ/n), 0) : r ∈ [−1, 1]} for
k ∈ {1, . . . , n}. We further define the singular locus of the dihedral group
action to be S := ξ0 ∪ ξ1 ∪ . . . ∪ ξn.

It follows from the proof of Theorem 1.1 that Mg contains the horizontal
axes ξ1, . . . , ξg+1. From a variational perspective, the surfaces in question are
unstable (i. e. they have positive Morse index); in fact the main estimate in [1]
implies that Mg has index at least �2g/3�, thus growing (at least) linearly
with the genus. In addition, these surfaces satisfy uniform, explicit lower
and upper bounds on both their area and the length of their boundary
curves (thanks to Corollary 3.8 below, and Theorem 2 in [23]). Although
they exhibit some analogies with the higher-symmetry Chen–Gackstatter
surfaces described in Section 5.5 of [11] (in particular: the same symmetry
group), we note that, in a precise sense, the surfaces we construct cannot
be regarded as the free boundary counterpart of known complete examples
in R

3, for indeed any complete embedded minimal surface with one end and
finite total curvature must be a flat plane.

Differently from the approach presented by Lawson in [15] each surface
Mg is constructed by means of global, variational methods. More specifically,
we employ the equivariant min-max theory developed by Ketover in [12] (for
the closed case), and specified to the free boundary setting, with some strik-
ing applications, in [13]. In applying such machinery to prove Theorem 1.1
we first need, for any positive integer g, to carefully design a suitable genus
g equivariant sweepout so to ensure that not only the natural mountain-pass
condition holds, but also (and more importantly) that the limit surface we
obtain is attained with multiplicity one. This is a general issue that arises
whenever one relies on min-max techniques, and it is in fact a rather deli-
cate point in our construction. In turn, this aspect is crucial to make sure
that both the number of boundary components and the genus are controlled
throughout the process, i. e. as we take the limit of a min-max sequence.

We refer the reader to Section 3 of [17] for a broad overview of existence
results, including those in higher-dimensional Euclidean balls or in the gen-
eral setting of compact Riemannian manifolds with boundary, while we will
focus here on the special case of B3. There, the first non-trivial examples
of (embedded) free boundary minimal surfaces, besides the flat disc and the
critical catenoid, were obtained by Fraser and Schoen in [7]: these have genus
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zero and b ≥ 2 boundary components. Through different methods, Folha–
Pacard–Zolotareva constructed in [4] examples having genus zero or one and
any sufficiently large number of boundary components. Later, Kapouleas
and Li developed in [9] methods to desingularise the formal union of a disc
and a critical catenoid to obtain free boundary minimal surfaces in B3 with
large genus and exactly three boundary components. Independently, as an-
ticipated above, Ketover proposed a totally different approach to construct
a sequence of surfaces that behaves, at least for large genus, exactly like the
one in [9]. To get a pictorial description, this family can be regarded as a free
boundary version of the Costa–Hoffman–Meeks minimal surfaces in R

3. A
different desingularisation scheme has been described, in the introduction of
[10], to construct free boundary minimal surfaces having connected bound-
ary and sufficiently large genus: such surfaces are obtained by regularising
the intersection of two orthogonal discs in B3 (by means of a suitable Scherk
surface). Finally, in the same article Kapouleas and Wiygul constructed, es-
sentially via perturbative methods, free boundary minimal surfaces in B3

having connected boundary and prescribed high genus. Roughly speaking,
what they presented is the base case for a more general procedure, that they
call stacking, which consists in considering a certain number of parallel discs,
joining them through suitable bridges and deforming the resulting objects
in order to obtain novel free boundary minimal surfaces in the Euclidean
ball.

So, to summarise, while interesting examples have been obtained in
abundance, on the one hand the gluing/desingularisation methodologies do
not (for their very nature) allow to obtain low-genus examples, and are only
asymptotically effective, while on the other hand non-trivial technical ob-
stacles arise if one aims at full topological control of min-max free boundary
minimal surfaces. In this paper we focus on those issues and take care of
them for the special sweepout family described in Section 2, which is enough
to prove Theorem 1.1. The only general result we invoke, as an input for
our main theorem, is the topological lower-semicontinuity theorem in [16]
which implies, in our case, that the genus of Mg is at most g. It turns out
that, in order to conclude that equality holds for the genus, we first need
to make sure that the boundary of Mg is indeed connected. The question of
controlling the number of boundary components in min-max constructions
is notoriously delicate. In that respect, Li writes [16, pp. 324]: “On the other
hand, we note that it is impossible to get a similar bound on the connec-
tivity (i. e., number of free boundary components) of the minimal surface.”
In the context of the present paper, the conclusion that the boundary of
Mg must be connected is achieved through a rather surprising application
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of Simon’s Lifting Lemma (cf. [3, Proposition 2.1]), which we present in Sec-

tion 4. From there, the full control on the genus of the min-max surfaces

we construct follows by the general characterisation of equivariant surfaces

given in Appendix B.

The questions whether some of the surfaces we construct are unique

for their given topological type, or whether they coincide (for large genus)

with the family constructed in [10] via stacking methods remain open, as

stands the related question whether Mg could be characterised in terms

of a maximising property for its first Steklov eigenvalue under the natural

normalisation constraint. Furthermore, it would certainly be interesting to

know how the family of free boundary minimal surfaces obtained, via k-

dimensional min-max schemes, in Corollary 1.4 of [18] (cf. Remark 1.8 in

[20]) compares to our examples, and to the other ones listed above.

2. Effective sweepouts

Definition 2.1 (cf. [13]). Let Dn be the dihedral group for some n ≥ 2. A

family {Σt}t∈[0,1] of closed subsets Σt ⊂ B3 with the following properties is

called Dn-sweepout of B
3.

(i) For all t ∈ ]0, 1[ the set Σt ⊂ B3 is a smooth, embedded, compact

surface with boundary ∂Σt = Σt ∩ ∂B3.

(ii) Σ0 and Σ1 are the union of a smooth, embedded, compact surface in

B3 and a (possibly empty) finite collection of arcs in B3.

(iii) Σt varies smoothly for t ∈ ]0, 1[, and continuously, in the sense of

varifolds, for t ∈ [0, 1].

(iv) Every Σt is Dn-equivariant, i. e. ϕ(Σt) = Σt for all ϕ ∈ Dn and all

0 ≤ t ≤ 1.

In this section we prove the following statement, one the existence of

effective sweepouts of any genus.

Lemma 2.2. Given 1 ≤ g ∈ N there exists a Dg+1-sweepout {Σt}t∈[0,1] of
B3 such that H 2(Σ0) = H 2(Σ1) = π and such that for every 0 < t < 1

• the surface Σt has genus g,

• the boundary of Σt is connected,

• the area of Σt is strictly less than 3π.

The idea behind our construction is to equivariantly glue three parallel

discs through suitably controlled ribbons.
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Remark 2.3. In a partly similar way Ketover [13, Theorem 5.1] glued two
discs in order to variationally construct free boundary minimal surfaces of
genus zero and b ≥ 2 boundary components (to be compared with the exis-
tence result by Fraser and Schoen [7, Theorem 1.1]).

Let 1 ≤ g ∈ N be fixed. Let D = {x ∈ B3 : x3 = 0} be the equatorial
disc in the closed unit ball and let Bε(p) = {x ∈ R

3 : |x−p| ≤ ε} denote the
closed ball of radius ε > 0 around any given p ∈ R

3. For all k ∈ {0, . . . , g}
we consider the points

p±k :=
(
cos

(
2k± 1

2

g+1 π
)
, sin

(
2k± 1

2

g+1 π
)
, 0
)

(1)

on the equator and the subsets

D±
ε := D \

g⋃
k=0

Bε(p
±
k ),(2)

as shown in Fig. 1, which we then scale and translate upwards (or down-
wards) to define

D±
t,ε :=

(√
1− t2D±

ε

)
± (0, 0, t)(3)

for all t ∈ [0, 1]. Now we connect the three sets D+
t,ε, D

−
t,ε and (D+

ε ∩D−
ε ) in a

Dg+1-equivariant way by means of 2(g+1) ribbons. Note that each of these

sets is a non-empty, connected subset ofB3 provided that ε < sin(π/(2g+2)).
Let 0 < t0 < 1 be a fixed, small value which will be specified later in (11).
For each t ∈ [t0, 1] we define

Ω±
t,ε :=

⋃
s∈[0,t]

D±
s,ε,

S±
t,ε := ∂Ω±

t,ε \ (∂B3 ∪D),

Σt := S+
t,ε ∪ S−

t,ε ∪ (D+
ε ∩D−

ε ).
(4)

In (4) the symbol ∂ refers to the topological boundary in R
3. Moreover, we

allow ε : [t0, 1[ → ]0, ε0] to be a continuous function of t, bounded from above
by some sufficiently small ε0 > 0 which we choose later in (11) depending
on t0 and g, such that ε(t) → 0 as t ↗ 1. Then we define Σ1 to be the
union of the equatorial disc D with the (shortest) geodesic arcs connecting
p+k with the north pole and p−k with the south pole for each k ∈ {0, . . . , g}.
The construction is visualised in the first, second and third image of Fig. 2.

Arriving at Σt0 , one would like to increase ε (as we further decrease t)
in order to retract the three sets D+

t,ε, D
−
t,ε and (D+

ε ∩D−
ε ) as illustrated in
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Figure 1: Top view of the sets D±
ε for ε = 1/4 and g = genus.

the fourth image of Fig. 2. However, this requires refined control on the area
of the widening ribbons as we point out in the following statement.

Lemma 2.4. Let Σt be as given in (4). Then its area satisfies

H 2(Σt) ≤ 3π − 2π
(
t2 − (g + 1)εt

)
.(5)

Proof. Obviously, the set S+
t,ε has the same area as S−

t,ε, by symmetry. Fur-

thermore S+
t,ε is the union of D+

t,ε defined in (3) with (g + 1) ribbons. By
construction,

H 2(D+
t,ε) ≤ π(1− t2), H 2(D+

ε ∩D−
ε ) ≤ π.(6)

The intersection of one ribbon with the horizontal plane at height s ∈ [0, t]
is an arc of length less than π

√
1− s2ε. Hence, using the coarea formula one

gets at once that the area of one ribbon is bounded from above by

∫ t

0

√
1 +

s2

1− s2

√
1− s2 πε ds = πεt.

Therefore,

H 2(Σt) = 2H 2(S+
t,ε) + H 2(D+

ε ∩D−
ε ) ≤ 2π(1− t2) + 2(g + 1)πεt+ π,

which allows to conclude by simply rearranging the terms.
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Figure 2: Construction of an effective sweepout in the case g = 2. In the first
three images, ε has been increased and relation (11) ignored for the sake of
clarity.
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Remark 2.5. Lemma 2.4 implies that if ε > 0 is small compared to t0, more

precisely, if (g + 1)ε < t0, then H 2(Σt) < 3π holds for all t ∈ [t0, 1]. In

estimate (6) we did not take into account that by definition (2) of D±
ε , small

balls of radius ε > 0 are removed around the points p±k (and thus similarly for

D±
t,ε). If we subtracted these contributions, one could then easily prove that

the inequality H 2(Σt0) < 3π would also hold for ε > 0 large compared to

t0. However, even the improved right-hand side of (5) would not stay below

3π if we increased ε continuously from small to large values. For instance,

that bound would be violated if one took ε = 2t0/(g+1). This is the reason

why we need to refine the construction for t < t0 and appeal to the so-called

catenoid estimate instead.

At this stage, it would be possible to proceed by appealing to a suitable

variant (for boundary points) of [14, Theorem 2.4]. However, for our specific

scopes we will work out the explicit construction in our Euclidean setting.

Fix 0 < r < sin(π/(2g + 2)) and 0 < h < min{tanh(1)/2, 1/5}r = r/5.

Moreover we choose h such that we also have that − log h > 8(g + 1). For

every s ≥ 0 consider the surfaces

Cr,h
s :=

{
x ∈ R

3 :
√

x21 + x22 =
r cosh(sx3)

cosh(sh)
, |x3| ≤ h

}
,(7)

which all span two parallel circles of radius r and distance 2h. If s is chosen

such that

rs = cosh(sh),(8)

then Cr,h
s is a subset of a (rescaled) catenoid and hence a minimal surface.

For our choices of r and h, equation (8) has two positive solutions s1(r, h) <

s2(r, h). The smaller one corresponds to the stable catenoid and the larger

one to the unstable catenoid.

The family of surfaces in question interpolates between the cylinder at

s = 0 and the union of a line segment with two discs of radius r which we

denote by Cr,h
∞ . The unstable catenoid can be regarded as the slice of largest

area in this family, as we prove in Appendix A. The catenoid estimate given

in [14, Proposition 2.1], combined with Lemma A.1, implies that we can

choose h possibly smaller (only depending on r) such that for all s ≥ 0

H 2(Cr,h
s ) ≤ H 2(Cr,h

∞ ) +
4πh2

(− log h)
= 2πr2 +

4πh2

(− log h)
.(9)
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Figure 3: Replacement of Σt0 ∩ Z±
k with V ±

k,s.

Let ER := {x ∈ R
3 : x21 +(x2 −R)2 + x23 < R2} be the ball of radius R > 1

around the point (0, R, 0). By symmetry, the catenoid estimate holds under
restriction to the half-space E∞ := {x ∈ R

3 : x2 > 0}, i. e.

sup
s≥0

H 2(Cr,h
s ∩ E∞) ≤ H 2(Cr,h

∞ ∩ E∞) +
2πh2

(− log h)
.

By a simple continuity argument, there exists R0 = R0(r, h) > 1 such that

sup
s≥0

H 2(Cr,h
s ∩ ER0

) ≤ H 2(Cr,h
∞ ∩ ER0

) +
4πh2

(− log h)
.

Hence, renaming r → r/R0 and h → h/R0 (which corresponds to rescaling
the whole picture by a factor of 1/R0), we obtain

sup
s≥0

H 2(Cr,h
s ∩ E1) ≤ H 2(Cr,h

∞ ∩ E1) +
4πh2

(− log h+ logR0)

≤ H 2(Cr,h
∞ ∩ E1) +

4πh2

(− log h)
.

(10)

Observe that the conditions imposed on the smallness of r, h and h/r are
still fulfilled.

We recall that Σt was defined for all t ∈ [t0, 1] in (4), where we are free
to choose first t0 > 0 and then ε0 > 0 such that

t0 = h, ε0 =
t0

2(g + 1)
.(11)

By Lemma 2.4, this choice for ε0 ensures that for all t ∈ [t0, 1]

H 2(Σt) ≤ (3− t20)π.(12)
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For each k ∈ {0, . . . , g}, let

Z+
k := {x ∈ B3 : dist((x1, x2, 0), p

+
k ) < r, x3 > 0},

Z−
k := {x ∈ B3 : dist((x1, x2, 0), p

−
k ) < r, x3 < 0}

as shown in Fig. 3 and in Fig. 4 on the left. Note that, by the very way we
have defined our parameters it follows that r > 5t0 ≥ 10(g + 1)ε0. We shall
now replace Σt0 ∩Z+

k with a copy of the upper half of the surface Cr,t0
s ∩E1

after a suitable horizontal translation and rotation mapping 0 → p+k and
E1 → B3. Similarly, Σt0 ∩ Z−

k is replaced by a copy of the lower half of

Cr,t0
s ∩ E1. We denote those copies by V +

k,s and V −
k,s, respectively. Initially,

we choose s = s0 such that

r

cosh(s0t0)
= ε(t0)

which ensures a continuous gluing of V ±
k,s0

and D+
ε ∩ D−

ε ⊂ Σt0 at height
x3 = 0. Moreover, assuming that ε(t0) ∈ ]0, ε0[ is sufficiently small (so that
s0 will be very large), the surfaces Σt0∩Z±

k and V ±
k,s0

are arbitrarily close such

that we can continuously deform Σt0 ∩ Z+
k into V +

k,s0
without significantly

increasing the area. Then, as t decreases further from t0 to t0/2, we decrease
s from s0 to 0 and define Σt through similar gluings of V ±

k,s and Σt0 \Z±
k as

shown in Fig. 3 and Fig. 2, third and forth image. By (10) and by (12), we
have for all t ∈ [t0/2, t0[

H 2(Σt) ≤ H 2(Σt0)− (g + 1)H 2(Cr,t0
∞ ∩ E1) + (g + 1)H 2(Cr,t0

s ∩ E1)

≤ (3− t20)π + (g + 1)
4πt20

(− log t0)
< 3π,(13)

the last inequality relying on the fact that − log t0 > 8(g+1). Now, observe
further that

H 2(Σt0/2) ≤ 3π − 2(g + 1)
(π
2
r2 − 2πrt0

)

= 3π − (g + 1)π(r2 − 4rt0) < 3π,
(14)

where we have used that r > 5h = 5t0. It is now easy to see that it is
possible to define Σt for t ∈ [0, t0/2] in such a way H 2(Σt) is decreasing
as t decreases and Σ0 is the equatorial disc. Indeed, thanks to (14) we see
at once that by increasing r till the threshold value r = sin(π/(2g + 2)), so
by removing larger discs as we vary t ∈ [t0/4, t0/2] gives an area-decreasing
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Figure 4: Implementing the catenoid estimate and making a further retrac-
tion.

deformation; then, for t ∈ [0, t0/4] we can just perform a simple retraction
(see Fig. 4 and Fig. 2, fifth and sixth image).

Proof of Lemma 2.2. Let {Σt}t∈[0,1] be as constructed above. We define the
desired smooth surfaces by regularising Σt for all 0 < t < 1 equivariantly
(without renaming), a process which can be performed without violating
the strict 3π upper bound on the area. We note that at t = 0, the origin
is a singular point, where the genus of Σt collapses as t ↘ 0. However, for
0 < t < 1, we obtain a smooth family of genus g surfaces, as claimed.

3. Saturation of the sweepout and its width

In order to apply a min-max procedure, we need to consider a saturation of
the sweepout given by Lemma 2.2, as in [13, Section 3].

Definition 3.1. A smooth map Φ: [0, 1] × B3 → B3 is said to be a Dn-
isotopy for some 2 ≤ n ∈ N if

(i) Φt := Φ(t, ·) is a diffeomorphism of B3 for all 0 ≤ t ≤ 1;
(ii) Φ0 and Φ1 coincide with the identity map in B3;
(iii) ϕ ◦ Φt = Φt ◦ ϕ for all 0 ≤ t ≤ 1 and all ϕ ∈ Dn.

Definition 3.2. Given the Dg+1-sweepout {Σt}t∈[0,1] constructed in Lem-
ma 2.2, we define its Dg+1-saturation as

Π := {{Φt(Σt)}t∈[0,1] : Φ: [0, 1]×B3 → B3 is a Dg+1-isotopy}.
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Then the min-max width of Π is defined as

WΠ := inf
{Λt}∈Π

sup
t∈[0,1]

H 2(Λt).

In this section we prove that, in our context, the min-max width is

strictly larger than π. For this purpose, it is helpful to introduce some termi-

nology about finite perimeter sets (the reader is referred to e. g. [19, Chapter

12]).

Hereafter, any subset of the form {x ∈ B3 : x · v ≥ 0} for some v ∈ R
3

is called a half-ball.

Definition 3.3. We say that a finite perimeter set E ⊂ B3 is Dn-equivariant

if, for all ϕ ∈ Dn, the set ϕ(E) coincides either with E or B3 \ E up to a

negligible set.

Lemma 3.4. Let {Σt}t∈[0,1] be the Dg+1-sweepout in Lemma 2.2 and let Π

be its Dg+1-saturation. Then for every {Λt}t∈[0,1] ∈ Π there exists a family

{Ft}t∈[0,1] of Dg+1-equivariant finite perimeter sets such that the following

properties hold.

(i) F0 is the upper half-ball and F1 is the lower half-ball.

(ii) The family {Ft}t∈[0,1] is continuous in the sense of finite perimeter

sets, i. e. H 3(Ft�Ft0) → 0 whenever t → t0, where Ft�Ft0 := (Ft \
Ft0) ∪ (Ft0 \ Ft).

(iii) The finite perimeter sets Ft are Dg+1-equivariant for all 0 ≤ t ≤ 1.

(iv) For every 0 ≤ t ≤ 1, Λt is the relative boundary of Ft in B3; namely

Λt \ ∂B3 = ∂Ft \ ∂B3.

(v) The volume of Ft is half the volume of B3 for all 0 ≤ t ≤ 1, i. e.

H 3(Ft) = H 3(B3)/2 for all 0 ≤ t ≤ 1.

Proof. By the construction of the sweepout {Σt}t∈[0,1] in Lemma 2.2, we

easily obtain that there exists a family {FΣ
t }t∈[0,1] of Dg+1-equivariant fi-

nite perimeter sets with properties (i)–(v). In particular, we can choose

{FΣ
t }t∈[0,1] such that FΣ

0 is the upper half-ball and FΣ
1 is the lower half-ball.

Now let us consider any other sweepout {Λt}t∈[0,1] ∈ Π. By definition

of saturation there exists a Dg+1-isotopy Φ: [0, 1] × B3 → B3 such that

Λt = Φt(Σt) for all 0 ≤ t ≤ 1. We want to prove that {Ft}t∈[0,1] defined
by Ft := Φt(F

Σ
t ) is a family of Dg+1-equivariant finite perimeter sets as

required in the statement. Observe that properties (i), (ii), (iii) and (iv) are

straightforward, hence we just need to check (v).
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Let us consider ψ ∈ Dg+1 given by the rotation (of angle π) around the
isotropy axis ξ1 and observe that ψ(FΣ

t ) = B3\FΣ
t for every t ∈ [0, 1]. Hence

we have that

ψ(Ft) = ψ(Φt(F
Σ
t )) = Φt(ψ(F

Σ
t )) = Φt(B

3 \ FΣ
t ) = B3 \ Φt(F

Σ
t ) = B3 \ Ft,

which proves H 3(Ft) = H 3(B3)/2 and concludes the proof.

We now denote by Ξ the set of all families of Dg+1-equivariant finite
perimeter sets for which properties (i)–(v) in Lemma 3.4 hold for some
Dg+1-sweepout {Λt}t∈[0,1] ∈ Π. Since there is a one-to-one correspondence
between Π and Ξ, we derive the following conclusion.

Corollary 3.5. Under the hypotheses of the previous lemma, we have that

WΠ = inf
{Ft}∈Ξ

sup
t∈[0,1]

P (Ft;B
3),

where P (Ft;B
3) denotes the relative perimeter of the finite perimeter set Ft

in B3.

In order to prove that WΠ is in fact strictly larger than π, we first need
the following stability lemma for the isoperimetric inequality.

Lemma 3.6 (Stability of the isoperimetric inequality). Fix 2 ≤ n ∈ N.
Then, for every ε > 0 there exists δ > 0 such that, given a Dn-equivariant
finite perimeter set F ⊂ B3 with Lebesgue measure H 3(F ) = H 3(B3)/2
and relative perimeter P (F ;B3) ≤ π+ δ, there exists a Dn-equivariant half-
ball F̃ with H 3(F�F̃ ) ≤ ε.

Proof. Towards a contradiction, assume that there exist ε > 0 and a se-
quence {Fk}k∈N of Dn-equivariant finite perimeter sets satisfying H 3(Fk) =
H 3(B3)/2 and P (Fk;B

3) ≤ π + δk for δk → 0 as well as H 3(Fk�F̃ ) ≥ ε
for every Dn-equivariant half-ball F̃ .

By the compactness theorem for finite perimeter sets (see [19, Theo-
rem 12.26]), there exists a Dn-equivariant finite perimeter set F∞ ⊂ B3

such that a subsequence of {Fk}k∈N, which we do not rename, satisfies
H 3(F∞�Fk) → 0 as k → ∞. In particular we have that H 3(F∞) =
H 3(B3)/2. Moreover, by lower semicontinuity of the perimeter ([19, Propo-
sition 12.15]), it holds

P (F∞;B3) ≤ lim inf
k→∞

P (Fk;B
3) = π.
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Hence, F∞ is a finite perimeter set in B3 with H 3(F∞) = H 3(B3)/2 and
P (F∞;B3) ≤ π, which implies that F∞ is a half-ball. Indeed, the reduced
boundary ∂∗F∞ ∩ B3 of F∞ in B3 is smooth analytic with constant mean
curvature by Theorem 27.4 in [19] (see pp. 386–389 therein for historical
notes) and thus it is an equatorial disc by [2, Satz 1] (see also [22, Theo-
rem 5]). However, this contradicts the choice of the sequence {Fk}k∈N and
concludes the proof.

Proposition 3.7. Fix 2 ≤ n ∈ N. Then, there exists δ0 > 0 with the follow-
ing property. Let {Ft}t∈[0,1] be a family of Dn-equivariant finite perimeter
sets in the unit ball B3 such that

(i) {Ft}t∈[0,1] is continuous in the sense of finite perimeter sets, i. e.
H 3(Ft�Ft0) → 0 whenever t → t0;

(ii) H 3(Ft) = H 3(B3)/2 for all 0 ≤ t ≤ 1;
(iii) F0 = B3 \ F1 up to a negligible set.

Then, supt∈[0,1] P (Ft;B
3) ≥ π + δ0.

Proof. Pick ε = H 3(B3)/12 = π/9 and consider δ0 > 0 to be the associated
δ given by Lemma 3.6. If

sup
t∈[0,1]

P (Ft;B
3) < π + δ0,

then for every t ∈ [0, 1] there exists a Dn-equivariant half-ball F̃t such that
H 3(Ft�F̃t) ≤ π/9. Note that the Dn-equivariant half-balls are the upper
and the lower half-balls and, for n = 2, also the two half-balls bounded by the
plane containing ξ0, ξ1 and the two half-balls bounded by the plane contain-
ing ξ0, ξ2. In any case we deduce that, for every t ∈ [0, 1], the Dn-equivariant
half-ball F̃t is uniquely determined. Therefore, by continuity of the family
{Ft}t∈[0,1], F̃t must be constant, but this contradicts the assumption that
F0 is the complement of F1 in B3.

Corollary 3.8. Let {Σt}t∈[0,1] be the Dg+1-sweepout given by Lemma 2.2
and let Π be its Dg+1-saturation given in Definition 3.2. Then the min-max
width of Π is larger than π and smaller than 3π, namely π < WΠ < 3π.

4. Controlling the topology

In this section we prove Theorem 1.1. By Corollary 3.8, all conditions for
applying Theorem 3.2 in [13], in particular the mountain-pass condition

WΠ > max{H 2(Σ0),H
2(Σ1)},
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are satisfied. We thus obtain a min-max sequence {Σj}j∈N consisting of
Dg+1-equivariant surfaces and converging in the sense of varifolds to mΓ,
where Γ is a smooth, properly embedded, compact connected free boundary
minimal surface in B3, and the multiplicitym is a positive integer. Moreover,
the following statements hold.

(i) The surface Γ contains the horizontal axes ξ1, . . . , ξg+1 and intersects
ξ0 orthogonally.

(ii) The integer m is odd.
(iii) m genus(Γ) ≤ g.

Remark 4.1. Observe that statement (i) is a consequence of the Dg+1-
equivariance (cf. also Lemma 3.4 and Lemma 3.5 in [12]). Point (ii) follows
from the invariance with respect to the rotation of angle π around the axes
ξ1, . . . , ξg+1 and its (self-contained) proof can be found at the end of Section
7.3 in [13]. Most importantly, for what concerns our application, we note that
a weaker version of (iii) is sufficient, namely the inequality genus(Γ) ≤ g,
which is given by Theorem 9.1 in [16] (based on [3, Theorem 0.6], written
for the closed case).

Lemma 4.2. The multiplicity m is equal to 1 and Γ is not a (topological)
disc.

Proof. Fraser and Schoen (see [5, Theorem 5.4]) proved that any free bound-
ary minimal surface in B3 has area at least π. By varifold convergence of
the min-max sequence, it holds mH 2(Γ) = WΠ. By Corollary 3.8, π <
mH 2(Γ) < 3π whence we conclude m < 3. In fact, m = 1 since m must be
odd by (ii). As a result, H 2(Γ) > π, which implies that Γ is not isometric to
the equatorial disc. However, according to [21], the equatorial disc is the only
possible free boundary minimal disc in B3 up to ambient isometries.

To control the boundary of Γ we will first need the following elementary
result, which applies to any proper equivariant surface in B3, irrespective of
minimality.

Lemma 4.3. Let Γ ⊂ B3 be any smooth, properly embedded, Dg+1-equi-
variant surface which contains the horizontal axes ξ1, . . . , ξg+1. Then their
endpoints qk := (cos(kπ/(g + 1)), sin(kπ/(g + 1)), 0) for k ∈ {1, . . . , 2g + 2}
are all contained in the same connected component of ∂Γ.

Proof. Given k ∈ {1, . . . , g + 1}, there exists a connected component σ of
∂Γ containing the point qk because ξk ⊂ Γ and Γ is properly embedded.
Let ψk ∈ Dg+1 be the rotation of angle π around ξk. Since ∂Γ is Dg+1-
equivariant, we have in particular ψk(σ) ⊂ ∂Γ. In fact, ψk(σ) = σ because
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σ is a connected component of ∂Γ intersecting ψk(σ) at least in the point
qk = ψk(qk). Moreover, as Γ is properly embedded and smooth, σ ⊂ ∂B3

must be a smooth, simple closed curve. Any such curve divides ∂B3 into
two connected open domains A′ and A′′. We then note that ψk leaves the
set ∂A′ = σ = ∂A′′ invariant, and that A′ = ψk(A

′′). It follows that A′ and
A′′ have the same area because ψk is an isometry. Moreover, A′ = ψk(A

′′)
implies that the antipodal point qk+g+1 ∈ ξk, which is fixed under ψk, must
also be contained in σ because it cannot be contained in A′ nor A′′.

Now suppose, for the sake of a contradiction, that the point q� belongs
to a different connected component ς of ∂Γ, for some � ∈ {1, . . . , g + 1}
with � �= k. Then either ς ⊂ A′ or ς ⊂ A′′ because σ and ς are disjoint by
definition. However, the whole argument in the previous paragraph applies
to ς as well. Yet, in either case (i. e. both when ς ⊂ A′ and ς ⊂ A′′), it
is impossible that ς divides ∂B3 into two domains of equal area, and this
concludes the proof.

Lemma 4.4. The number of boundary components of Γ is 1.

Proof. Suppose, towards a contradiction, that ∂Γ has more than one con-
nected component. Then Lemma 4.3 implies that one connected component,
say γ, of ∂Γ is disjoint from S = ξ0 ∪ ξ1 ∪ . . .∪ ξg+1. Recall that the vertical
axis ξ0 is always disjoint from ∂Γ because Γ ⊂ B3 is properly embedded
and intersects ξ0 orthogonally by item (i) above. Moreover, let γ̃ be a simple
closed curve in the interior of Γ \ S that is homotopic to γ in Γ \ S (it is
sufficient to slightly push γ towards the interior of Γ).

Let then δ > 0 be so small that

UδΓ := {x ∈ B3 : distR3(x,Γ) < δ}

is a tubular neighbourhood of Γ in B3. Since Γ is connected and thus it is
not a disc (since it has at least two boundary components), γ and γ̃ are not
contractible in UδΓ.

Thanks to Proposition 4.10 in [16], without loss of generality we can
assume that the min-max sequence {Σj}j∈N is outer almost minimising (see
[16, Definition 3.6]) in sufficiently small annuli. Therefore, by Simon’s Lifting
Lemma (see [3, Proposition 2.1] and [16, Section 9]), for every j sufficiently
large there exists a closed curve γj ⊂ Σj∩UδΓ that is homotopic to γ̃ in UδΓ
(note that we can apply the lemma since γ̃ is contained in the interior of Γ).
In fact, given any ρ > 0, it follows from the proof in Section 4.3 of [3] that
γj can be taken in Uργ̃ := {x ∈ B3 : distR3(x, γ̃) < ρ}. Hence, choosing ρ
such that Uργ̃ ⊂ Uδ/2Γ \ S, we can guarantee that γj ⊂ (Σj ∩Uδ/2Γ) \ S for
every j sufficiently large.
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Now observe that Σj is diffeomorphic to an element Σtj of the sweep-
out given by Lemma 2.2 for some 0 < tj < 1, through a Dg+1-equivariant
diffeomorphism. Thus, both connected components of Σj \ (ξ1 ∪ . . . ∪ ξg+1)
are topological discs, hence γj ⊂ Σj \S is contractible. Let us denote by Dj

a disc in the interior of Σj such that ∂Dj = γj . We claim that γj bounds
a disc in UδΓ as well, which would contradict the existence of γ, since γj is
homotopic to γ̃ in UδΓ and γ̃ is not contractible there.

We will now exploit an argument similar to the one in Section 2.4 of [3].
Since the min-max sequence {Σj}j∈N converges in the sense of varifolds to
Γ, it follows that given any η > 0 there exists J = J(δ, η) ∈ N such that, for
every j ≥ J ,

H 2(Σj \ Uδ/2Γ) < η.

Defining VsΓ := ∂(UsΓ) ∩B3 for s ∈ ]0, δ[, we observe that {VsΓ}s∈]0,δ[ is a
smooth foliation of UδΓ and we can apply the coarea formula to conclude

∫ δ

δ/2
H 1(Σj ∩ VsΓ) ≤ H 2(Σj \ Uδ/2Γ) < η,

for every j sufficiently large. Thus, there exists a subset I ⊂ ]δ/2, δ[ of
measure at least δ/4 such that for all s ∈ I

H 1(Σj ∩ VsΓ) <
4η

δ
.

By Sard’s theorem there exists s ∈ I such that the intersection Ξj
s := Σj∩VsΓ

is transverse. This implies that any connected component of Ξj
s is smooth

and either a simple closed curve or an arc connecting two points of ∂Σj in
VsΓ.

There exists λ > 0 (depending on Γ and δ) such that for any s ∈ ]δ/2, δ[
any simple closed curve in VsΓ with length less than λ bounds an embedded
disc in VsΓ. At this stage, we may choose η > 0 such that 4η < λδ and then
j ≥ J(δ, η) to ensure that the length of each connected component of Ξj

s

is less than λ. Now observe that Dj ∩ VsΓ ⊂ Σj ∩ VsΓ = Ξj
s. In particular,

Dj ∩ VsΓ consists of a finite number of simple closed curves (since Dj is
contained in the interior of Σj) of length less than λ and thus each connected
component of Dj ∩ VsΓ bounds a disc in VsΓ.

Hence, defining Gj ⊂ UδΓ as the connected component of Dj ∩ UsΓ
containing ∂Dj = γj , it is possible to cap the boundary components of Gj

lying in VsΓ with discs (contained in UδΓ) in such a way that the resulting
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surface, which we denote by D̃j , satisfies ∂D̃j = ∂Dj = γj (for recall that
γj ⊂ Uδ/2Γ). Note that D̃j is a topological disc since it is obtained from the
topological disc Dj by removing interior discs and then gluing discs with
those same boundaries. Therefore it follows that γ̃j = ∂D̃j is contractible in
UδΓ, which contradicts the initial choice of γ.

Lemma 4.5. The genus of Γ is g.

Proof. By Lemmata 4.2 and 4.4, Γ is not a topological disc and has con-
nected boundary. Moreover, again by Lemma 4.2, m = 1 and, as a result
(invoking fact (iii) in the weaker form needed for multiplicity one, cf. Re-
mark 4.1), genus(Γ) ≤ g. Because of this fact, and recalling that Γ con-
tains the origin due to item (i) above, Lemma B.1 applies, which proves the
claim.

Proof of Theorem 1.1. According to Lemmata 4.4 and 4.5, the free bound-
ary minimal surface Mg = Γ has genus g and connected boundary. As said
before, Γ inherits the dihedral symmetry Dg+1 from the min-max sequence
{Σj}j∈N, which completes the proof.

Appendix A. Maximality of the unstable catenoid

In Section 2, we introduced the surfaces Cr,h
s , parametrised by s ≥ 0, inter-

polating between the cylinder Cr,h
0 of radius r and height 2h (for s = 0) and

the union of two discs of radius r with a line segment (as one lets s → ∞).

As we remarked, Cr,h
s is minimal if s is a solution to equation (8). Said

t0 > 0 the only positive solution of cosh(t) = t sinh(t), equation (8) has two
positive solutions s1 and s2 provided that 0 < h < r/ sinh(t0) (note that the
number 1/ sinh(t0) is bounded from below by 0.6627). In our notation, s2 is
the larger solution and corresponds to the so-called unstable catenoid. In this
appendix we show that, as soon as we are willing to impose a slightly more
restrictive condition on the ratio h/r, such a surface has largest area among
all elements of the family in question. As a result, estimate (9), which plays
an essential role in Section 2, follows at once from [14, Proposition 2.1].

Lemma A.1. The unstable catenoid has largest area among all surfaces in
the family {Cr,h

s }s≥0 provided that 0 < 2h < r tanh(1).

Proof. As defined in (7), the surface Cr,h
s is obtained by rotating the graph

of ρ : [−h, h] → R given by

ρ(z) =
r cosh(sz)

cosh(sh)
(15)
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around the vertical axis. Being a surface of revolution, the mean curvature
of Cr,h

s is easily computed to be

H =
ρρ′′ − (ρ′)2 − 1(
1 + (ρ′)2

)3/2
ρ
.(16)

We notice that the denominator of (16) is strictly positive and that the
numerator

ρρ′′ − (ρ′)2 − 1 =
r2s2

cosh2(sh)
− 1(17)

is independent of z. In particular, it follows that H has the same sign of the
function rs− cosh(sh). Recalling equation (8), the inequality rs > cosh(sh)
is equivalent to s1 < s < s2 by strict convexity of s → cosh(sh). In this

case H > 0, which implies for s ∈ ]s1, s2[ the area of Cr,h
s is an increasing

function of s. Conversely, if s > s2 or if s < s1, then H < 0 and the area of
Cr,h
s is decreasing in s. This shows that the area of Cr,h

s has a local minimum
at s1 and a local maximum at s2. In order to prove the claim that s2 is in
fact a global maximum, it remains to check H 2(Cr,h

s2 ) > H 2(Cr,h
0 ), i. e. that

the unstable catenoid has larger area than the cylinder provided that h/r is
sufficiently small.

The area A(s) = H 2(Cr,h
s ) can be computed using the formula

A(s) = 4π

∫ h

0
ρ
√

(ρ′)2 + 1 dz.

With ρ as defined in (15), which in particular satisfies ρ′′ = s2ρ, the function
f = 4πρ

√
(ρ′)2 + 1 has a primitive given by

F =
2π

s2

(
asinh

(
ρ′
)
+ ρ′

√
(ρ′)2 + 1

)
.

Since ρ′(0) = 0 and ρ′(h) = rs tanh(sh), we obtain

A(s) = F (h)− F (0)

=
2π

s2

(
asinh

(
rs tanh(sh)

)
+ rs tanh(sh)

√
1 + r2s2 tanh2(sh)

)
.

(18)

Comparing the derivatives of s → rs and s → cosh(sh) at the intersection
s = s2, we obtain

r ≤ h sinh(s2h) < h cosh(s2h) = rs2h
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which implies s2h > 1. In turn, this yields

A(s2) =
2π

s22

(
s2h+ rs2 tanh(s2h) cosh(s2h)

)

=
2πh

s2
+ 2πr2 tanh(s2h) > 2πr2 tanh(1).

The assumption 2h < r tanh(1) then implies A(s2) > 4πrh = H 2(Cr,h
0 )

which completes the proof.

Appendix B. Structure of equivariant surfaces

Lemma B.1. Let 1 ≤ g ∈ N and let Γ ⊂ B3 be a compact, connected,
properly embedded, Dg+1-equivariant surface with genus γ ∈ {1, . . . , g} and
one boundary component. Moreover, assume that Γ contains the origin. Then
Γ has genus γ = g.

Proof. In the case g = 1, there is nothing to prove. Therefore, let us assume
g ≥ 2. Since the given surface Γ is Dg+1-equivariant any intersection with
the axis ξ0 is orthogonal, hence (by embeddedness) Γ ∩ ξ0 shall consist of a
finite set of points. Furthermore, since Γ contains the origin, it will intersect
the vertical axis ξ0 in 2j + 1 many points, where j is a nonnegative integer;
also note that the poles (0, 0, 1) and (0, 0,−1) cannot be contained in Γ since
it is properly embedded by assumption.

Let Cg+1 < Dg+1 be the cyclic subgroup of order (g+1) which is gener-
ated by the rotation of angle 2π/(g+1) around ξ0. The quotient Γ

′ = Γ/Cg+1

is a compact topological surface with boundary, i. e. a compact topological
space in which every point has an open neighbourhood homeomorphic to
some open subset of the (closed) half-plane. In particular, its Euler char-
acteristic χ(Γ′) is well-defined. Since the boundary of Γ is connected and
disjoint from the singular locus ξ0 of the Cg+1-group action, the quotient
Γ′ also has connected boundary homeomorphic to a circle. Moreover, Γ′ is
orientable since every element of Cg+1 is orientation-preserving on Γ, which
follows from the fact that the unit normal to Γ at the origin is fixed under
the action of Cg+1. Being orientable with connected boundary, Γ′ has Euler
characteristic χ(Γ′) = 1− 2γ′ for some integer γ′ ≥ 0. A suitable version of
the Riemann–Hurwitz formula (see Remark B.2 below) implies

1− 2γ = χ(Γ) = (g + 1)χ(Γ′)− (2j + 1)g = (g + 1)(1− 2γ′)− 2jg − g,

which is equivalent to γ = (g + 1)γ′ + jg. The assumption γ ∈ {1, . . . , g}
then enforces γ′ = 0 and j = 1 which proves γ = g.
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Remark B.2 (Riemann–Hurwitz formula, see e. g. Chapter IV.3 in [8]). Let
Γ and Γ′ be as in the proof of Lemma B.1. Let T ′ be a triangulation of Γ′

such that every branch point of Γ′ is a vertex. Away from the branch points,
the canonical projection Γ → Γ′ is a covering map. Therefore, after refining
T ′ if necessary, the preimage of every triangle is a disjoint union of triangles
in Γ which leads to a triangulation T of Γ. Note that T has (g+1) times as
many faces and edges as T ′. However, the (2j + 1) many branch points in
Γ′ (which correspond to the points in Γ∩ ξ0) have only one preimage rather
than (g + 1). By the very definition of Euler characteristic we then have

χ(Γ) = (g + 1)χ(Γ′)− (2j + 1)g.

It is appropriate to note that, since Γ′ is actually an orbifold, one could
get to the same conclusions by invoking, in lieu of the Riemann–Hurwitz
formula, a suitable version of the Gauss–Bonnet theorem for surfaces with
conical singularities.
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