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Generalizing the Linearized Doubling approach, I:
General theory and new minimal surfaces and
self-shrinkers

NI1KOLAOS KAPOULEAS AND PETER MCGRATH

In Part I of this article we generalize the Linearized Doubling (LD)
approach, introduced in earlier work by NK, by proving a general
theorem stating that if 3 is a closed minimal surface embedded
in a Riemannian three-manifold (N, g) and its Jacobi operator has
trivial kernel, then given a suitable family of LD solutions on X,
a minimal surface M resembling two copies of ¥ joined by many
small catenoidal bridges can be constructed by PDE gluing meth-
ods. (An LD solution ¢ on ¥ is a singular solution of the Jacobi
equation with logarithmic singularities which in the construction
are replaced by catenoidal bridges.) We also determine the first
nontrivial term in the expansion for the area |M| of M in terms of
the sizes of its catenoidal bridges and confirm that it is negative;
|M| < 2|%] follows.

We demonstrate the applicability of the theorem by first con-
structing new doublings of the Clifford torus. We then construct in
Part IT families of LD solutions for general (O(2) x Z3)-symmetric
backgrounds (X, N, g). Combining with the theorem in Part I this
implies the construction of new minimal doublings for such back-
grounds. (Constructions for general backgrounds remain open.)
This generalizes our earlier work for ¥ = S ¢ N = S provid-
ing new constructions even in that case.

In Part III, applying the results of Parts I and II—appropriately
modified for the catenoid and the critical catenoid—we construct
new self-shrinkers of the mean curvature flow via doubling the
spherical self-shrinker or the Angenent torus, new complete em-
bedded minimal surfaces of finite total curvature in the Euclidean
three-space via doubling the catenoid, and new free boundary min-
imal surfaces in the unit ball via doubling the critical catenoid.
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1. Introduction
The general framework

Existence results for minimal surfaces have played a fundamental role in the
development of the theory of minimal surfaces and more generally of Differ-
ential Geometry. Particularly important are the cases of embedded minimal
(hyper)surfaces in Euclidean spaces or their quotients, embedded closed min-
imal (hyper)surfaces in the round spheres, properly embedded compact free
boundary minimal (hyper)surfaces in Euclidean balls, closed embedded self-
shrinkers for the mean curvature flow, and general closed embedded minimal
(hyper)surfaces in closed Riemannian manifolds. Geometers have worked in-
tensely on these directions and it is worth mentioning indicatively a sample
of non-gluing results: by Scherk [48], by Lawson [42], by Hsiang [18], by Kar-
cher-Pinkall-Sterling [39], by Hoffman-Meeks [16], by Fraser-Schoen [13], by
Hoffman-Traizet-White [17], by Marques-Neves [43], by Song [50], and by
Chodosh-Mantoulidis [9].

Gluing constructions by Partial Differential Equations (PDE gluing)
methods have been very successful as well and hold further great promise.
They are of two kinds: desingularization constructions [19,26,30,31,37,46]
where the new surfaces resemble the union of given minimal surfaces inter-
secting along curves except in the vicinity of the intersection curves where
they resemble singly periodic Scherk surfaces, and doubling constructions
[12,29, 33,34, 38,54] where the new surfaces resemble two (or more) copies
of a given minimal surface joined by small catenoidal bridges; see also the
survey articles [27,28].

We enumerate now some of the advantages of these gluing constructions.
First, they provide new minimal surfaces which are almost explicit with
well understood topology and geometry. In particular they are well suited
for establishing the existence of infinitely many topological types of minimal
surfaces in various situations. Second, the minimal surfaces constructed have
low area, close to the total area of the ingredients, and so are important in
classifications by increasing area. Third, the constructions are flexible, so
they can be adjusted to apply to various different settings. Finally, doubling
constructions hold great promise in high dimensions (for example [20]) where
very few existence results are currently known: even in Euclidean spaces the
only complete embedded minimal hypersurfaces of finite geometry are the
classical ones (hyperplane and high-dimensional catenoid). Note that new
minimal hypersurfaces obtained via doubling are smooth in all dimensions
by construction, similarly to the CMC hypersurfaces constructed in [7].
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Historically, PDE gluing methods have been applied extensively and
with great success in Gauge Theories by Donaldson [11], Taubes [51-53],
and others. The particular kind of methods discussed here originate from
Schoen’s [49] and NK’s [21], especially as they evolved and were systematized
in [23-25]. In the first doubling constructions [38] the catenoidal bridges
were attached to parallel copies of the given minimal surface to construct
the initial surfaces, one of which was perturbed then to minimality. This
approach turned out to be sufficient in some highly symmetric cases [34,
38, 54] where the symmetry does not allow horizontal forces and the surface
modulo the symmetry is simple enough—although the constructions were
still highly nontrivial.

In most cases however this approach is not sufficient and for this reason
NK introduced a powerful new approach called Linearized Doubling (LD)
[29]. The LD approach was originally applied to construct doublings of a
great two-sphere S? in the round three-sphere S? but was described for any
given minimal surface ¥ [29, Remark 3.21] embedded in a Riemannian three-
manifold N with an isometry of N fixing ¥ pointwise and exchanging its
sides.

Given now such a X let Ly, be its Jacobi operator (see 1.2(vi)). The
first step in the LD approach is to construct on X a suitable family of
Linearized Doubling (LD) solutions: an LD solution ¢ is a singular solution
of Ly = 0 with logarithmic singularities; equivalently ¢ can be considered
as a Green’s function for Ly with multiple singularities of various strengths.
In the second step the LD solutions are converted to approximately minimal
“initial surfaces” with the aid of chosen finite dimensional obstruction spaces
K[L] € C*°(X). The initial surface M corresponding to an LD solution ¢
consists of catenoidal bridges smoothly joined to the graphs of ¢ + v and
—p — v for some v € K[L] chosen to optimize the matching of the bridges
with the graphs. Each bridge is located in the vicinity of a singular point of
o and its size is given by the strength of the logarithmic singularity of ¢ at
the point. In the final step one of the initial surfaces is perturbed to exact
minimality providing the desired new minimal surface.

The LD approach effectively reduces doubling constructions to construc-
tions of suitable families of LD solutions. This is similar in spirit to the
reduction of constructions of CMC (hyper)surfaces [6,7,21,22,49] to con-
structions of suitable families of approximately balanced graphs, the LD
solutions playing the role of the graphs. The LD solutions used are also ap-
proximately balanced in the sense that they approximately satisfy a finite
number of “matching conditions”, some nonlinear [29, Definitions 3.3 and
3.4]. Not surprisingly, because of the PDE’s involved, the construction of
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approximately balanced LD solutions is much harder than the construction
of balanced graphs.

In the original article [29] the construction was carried out only in two
cases: when the singularities lie on two parallel circles of S?, and when they
lie on the equatorial circle and the poles. Subsequently in [33] this was ex-
tended to an arbitrary number of circles, optionally including the poles.
In both cases the constructions of the LD solutions make heavy use of the
O(2) x Zg symmetry of the background. Actually in [29,33] the construction
of LD solutions is reduced to the construction of what we called rotationally
invariant linearized doubling (RLD) solutions [33, Definition 3.5], which be-
ing O(2)-invariant, satisfy an ODE instead of a PDE and can be understood
by using appropriate flux quantities.

Brief discussion of the results

In Part I of this article we generalize the LD approach to apply to general
situations by proving Theorem 5.7, which we proceed to describe informally
after stating a helpful general definition.

Definition 1.1 (Surface doublings). Given a Riemannian three-manifold
(N,g) and a two-sided surface ¥ in N, we define a (surface) doubling M
over ¥ in N (equivalently we say M doubles ¥ in N ) to be a smooth surface
M in N satisfying the following.

(i) The nearest point projection s, to ¥ in N is well defined on M.

) X :=Mx(M) C 2 is closed with smooth boundary 85..

(iii) M is the union of the graphs of it and —i~ € CO(X) N C=(L\ I).
) ut+u =0 on ai, where the two graphs join smoothly with vertical

tangent planes, and 4" + 4~ > 0 close to oY in 2.

(v) By the above Ilg|; covers 3\ % twice, % once, and misses X\ .

We call (¥, N, g) the background of the doubling M , X its base surface, and
each connected component of X\ Y a doubling hole of M over X. Finally
if ¥ and M are minimal we call the doubling M minimal. In this article,
unless stated otherwise, ¥ and M are assumed embedded and connected, and
sout +4~ >0 on X (@t = a4~ > 0 in the special case of symmetric sides).

Theorem A (Theorem 5.7). We assume given a background (X, N, g) with
the base surface X a closed minimal two-sided surface embedded in the Rie-
mannian three-manifold (N, g) with Jacobi operator Ly, (see 1.2(vi)) of triv-
ial kernel on ¥ (see 1.1, 2.1 and 4.1). We assume given also a family of
LD solutions on ¥ with appropriately uniform features, sufficiently small
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singularity strengths, and prescribable—when small— “unbalancing content”
(see 5.2 for precise statements). There is then a smooth closed embedded
minimal surface M doubling X in N as in 1.1 satisfying the following.

(i) There is an LD solution ¢ in the given family with finite singular set
L C ¥, such that Vp € L and 7, > 0 the strength of the logarithmic
singularity of @ at p, there is a catenoidal bridge Iu(p C M in the
vicinity of p in N, with Iv(p a small perturbation of the image by the
Fermi exponential map exp?’N’g (see A.1) of a truncated catenoid in
T,N of size (waist radius) Tp.

(i) £ =3\ Lper D,, where each doubling hole D, C ¥ is a small smooth
perturbation of a geodesic disc in ¥ of center p and radius .

(iii) The complement of the catenoidal bridges in M s described graphically
by small perturbations of +¢, or more precisely of (¢ + vy), with

vy € JAC[L] chosen in 3.17 to optimize the matching of the catenoidal
bridges with the p-graphical part and J/%[L] C C*(X) a chosen (as in
3.11) finite dir@ensional obstruction space.

(iv) The genus of M is 2gs, — 1 + |L| where gx, is the genus of X.

(v) |M| = 2[%| — T pel 2 <1 + O(T;/2|log7'p\ )) , which implies also
|M| < 2|%|, where M| and |S| denote the areas of M and %.

M is constructed in the proof of Theorem A as a small perturbation of
one of the initial surfaces M|p, k| defined in 3.17 and parametrized by the
given LD solutions ¢ and parameters k satisfying (3.18). The construction
of the initial surfaces is similar but more involved than in [29,33] where no
k parameters are needed. The main new features are that each catenoidal
bridge can be elevated and tilted relative to X as prescribed by k, and
that v, # v_ when k # 0. In [29,33] k& # 0 would violate the symmetry
exchanging the two sides of the base surface; here however it introduces
dislocations which (consistently with the geometric principle [27,28]) allow
us to deal with the antisymmetric (with respect to approximate exchange of
the sides of X) component of the obstructions involved.

Surprisingly the asymmetry of the sides of 3 does not affect the nature
or study of the families of LD solutions required, or the definition of the
mismatch operator in 3.10. The construction and study of the initial sur-
faces however presents new challenges related to the introduction of new
parameters k, and the estimation of mean curvature induced by a general
Riemannian metric.

Theorem A (or 5.7) not only generalizes the LD approach to the general
case, but also makes the reduction to LD solutions explicit and systematic,
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unlike in [29,33], where the reduction was described case by case. It is there-
fore a very powerful tool reducing doubling constructions to constructions
of appropriate families of LD solutions, a much easier—but still very hard
and open in general—problem.

Note that although in Theorem A (or 5.7) ¥ is assumed to be a closed
surface, the theorem can be modified to apply to other situations, as for
example those in sections 11 or 12. Moreover in Theorem A(v) we determine
in full generality the first nontrivial term in the expansion of the area |]\Zf |
of M in terms of the sizes of its catenoidal bridges, a new result even for
the earlier doubling constructions. Finally we expect that Theorem A (or
5.7) will be an important step in proving a “general” doubling theorem
asserting without any symmetry assumptions that any base surface ¥ with
|A]? + Ric(v,v) > 0 has infinitely many minimal doublings.

As an example we next apply Theorem A to construct doublings of
the Clifford torus T? in Section 6. Recovering the doublings already known
[38,54] is fairly straightforward (see Remarks 6.6 and 5.23). The catenoidal
bridges in these doublings are located at the points of a k& x m rectangu-
lar lattice L with k,m large (m/k a priori bounded). We construct new
doublings by allowing any k£ > 3 (see Theorem 6.17 and for £ = 1,2 see
Remark 6.18), or by arranging for three bridges per fundamental domain
when k,m large (see Theorem 6.25). Further results not discussed in this
article are possible [32], with more bridges per fundamental domain and any
k > 3, and also different symmetry groups, including constructions gener-
alizing [47, Example 13] (related to torus knots). Note that the case of the
Clifford torus is unusual because the background has O(2) x O(2) symmetry;
the O(2) x Zg-symmetric backgrounds on which we concentrate in Part II
are less symmetric but more common.

In Part IT we construct families of LD solutions for O(2) x Zy-symmetric
backgrounds (X, N, g), which are then used to construct minimal doublings
via Theorem A. This generalizes our earlier work in [29,33] where families
of LD solutions are constructed in the case ¥ = S? ¢ N = S? and used
to construct minimal doublings of S?. The assumptions on the background
we choose in 7.2 are general enough to allow many interesting applications.
They imply that the base surface X is diffeomorphic to a sphere or torus
and the nontrivial orbits of the action of O(2) on ¥ are circles (see Lemma
7.4); we call these circles parallel. Calling S the generator of the Zy factor, it
follows that S fixes exactly one parallel circle when X is a sphere and exactly
two when X is a torus; we call these circles equatorial.

All constructions in [29,33] and in Parts IT and III of this article are
symmetric under a subgroup G,, < O(2) x Zz of order 4m; more precisely
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Gm = Doy X Zo with Doy, < O(2) a dihedral subgroup of order 2m (see 7.10).
The singularities of the LD solutions in these constructions concentrate on
a prescribed number k, of parallel circles and we assume m large in terms
of ko; we expect that other constructions are possible (beyond the scope of
this article) where k, is large and m is small or comparable to k..

Unlike in [29, 33] we do allow different numbers of singularities in the
ko parallel circles but in a limited way: we allow m or 2m singularities on
the various circles (see 9.18). Note that we use m = (mz)fil/ 2 4o prescribe
the numbers |m;| of singularities for the various circles, with the sign of m;
choosing one of the two possible alignments with respect to G,, (see 7.11 and
7.12). Although not presented in this article, this can be further generalized
to allowing the numbers m; to be multiples of m by any small factors.

Theorem B (Theorem 9.39). Given a background (3, N, g) satisfying As-
sumption 7.2 there is a minimum k™™ € N (see 7.23) such that for each
ko € N with ko > k™™ and any m € {m,—m, —2m}* /21 with m large
enough in terms of ko, there is a family of LD solutions satisfying the re-
quired assumptions (see 5.2) in Theorem A, with the singularities concentrat-
ing along ko parallel circles and the alignment and number of singularities
at each circle prescribed by the entries of m.

Combining this with Theorem A (or 5.7) we obtain

Theorem C (Theorem 9.40). Given (X,N,g), ko € N, and any m as in
Theorem B, there is a minimal doubling containing one catenoidal bridge
close to each singularity of one of the LD solutions in Theorem B and sat-
isfying (i)-(v) in Theorem A. Moreover as m — oo with fized ko the corre-
sponding minimal doublings converge in the appropriate sense to Y covered
twice.

In Part III of this article we apply Theorem C (that is 9.40) to construct
new closed embedded self-shrinkers of the mean curvature flow via doubling
the spherical self-shrinker in Theorem 10.5 or via doubling the Angenent
torus [2] in Theorem 10.7.

By adjusting the results and proofs in Parts II and III, we also construct
in Theorem 11.28 one-parameter families of new complete embedded mini-
mal surface doublings of the catenoid in the Euclidean three-space, each of
finite genus and total curvature, with four ends which are asymptotically
catenoidal (and for one value of the parameter of equal size), and with the
catenoidal bridges and doubling holes concentrating along any prescribed
number ko, > 2 of parallel circles. The latitudes of the parallel circles vary
with the parameter and are determined by the RLD solutions.
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We finally construct in Theorem 12.32 new compact embedded free
boundary minimal surfaces doubling the critical catenoid in the unit ball
B3, each with four boundary components and of finite genus, and with its
catenoidal bridges and doubling holes concentrating along either two or three
parallel circles in the interior of the critical catenoid.

Outline of strategy and main ideas

In this article we define in 2.14 catenoidal bridges K|[p, oy Ky C M, K]
as catenoids in cylindrical Fermi coordinates at a singular point p € ¥ of
the corresponding LD solution ¢, truncated at scale ~ 7' with fixed small
a as in 2.10. The strength 7, > 0 of the logarithmic singularity of ¢ at p
determines the size of the catenoid and K, = K; + Kp its elevation in the
normal direction and the tilt of its axis relative to the normal (see 3.17). The
construction of the bridges is simpler than in [29], at the expense that now
the bridges are only approximately minimal and their mean curvature has
to be estimated and corrected. The catenoidal bridges are then smoothly
attached to the graphs of £(¢ + v, ) at scale ~ 7* to form M{ep, k|.

The estimation of the mean curvature on the bridges is done in two
steps. First, we decompose the metric of NV in the vicinity of p as ¢ = g+ h,
where ¢ is a Euclidean metric induced by Fermi coordinates and h|p =0

~

(see 2.2). Klp,7p,k,] is exactly minimal with respect to g and the mean
curvature induced by g can be expressed in terms of tensor fields induced
by h. Second, using properties of cylindrical Fermi coordinates, we estimate
these tensors on K [p, Tp, K] in terms of the background geometry near p.

An important feature is that the dominant term in the mean curvature of
K (D, Tps ﬁp] is driven by the second fundamental form A> » and without the
observation that the projection of the mean curvature to the first harmonics
satisfies better estimates (see 2.32 and 2.34), this term would be too large
for our purposes when Az‘p # 0. (Note that in [38, 54| there are no first
harmonics because of the symmetries.) In the definition of the global Holder
norms (see 4.2) we use a stronger weight on the graphical regions and for
the first harmonics on the catenoidal regions. On the graphical regions this
parallels [29, 4.12] and leads to stronger final estimates (see 4.6) than those
in [38].

The proof of the area expansion in Theorem A(v) requires a detailed
understanding of the interplay between the geometries of the catenoidal

bridges and graphical regions. In particular each summand —WT]? in the

dominant term in the expansion for | M| — 2| is smaller in magnitude than
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a term of order 7'3] log 7,| appearing in the expansion of the area of the
corresponding bridge (see the catenoid estimate in [40]), and it is necessary
to observe a subtle cancellation (see 5.12 and 5.14) between these terms
and opposing terms arising from the exterior graphical region in order to
complete the expansion.

We now discuss the proof of Theorem B in Part II of this article. We
assume given an O(2) x Zs-symmetric background (X, N,g), k., and m
as in Theorem B, and we proceed to construct a family of LD solutions
with parameters (see 9.4) ¢ = ({1, @), and (when not all |m;|’s are equal)
more parameters ¢-. The LD solutions with vanishing ¢+ are mazimally
symmetric (see 9.5) with their logarithmic singularities equidistributed on
ko parallel circles we call singular. The parameters ¢ are used to dislocate
the maximally symmetric LD solutions in accordance with the geometric
principle; in the cases we examine in this article there is exactly one CL
parameter for each m; = —2m (see 9.16).

Our maximally symmetric LD solutions ¢ = o[¢;ko,m] := 1 ®[[o :
ko, m] are constructed in 9.5 and 8.15 so that their overall scale 71 is con-
trolled by ¢; and each ®[o : ko, m] is constructed from ¢[[o : ko, m]|, a
rotationally invariant (averaged) linearized doubling (RLD) solution which
can be recovered from ®[[o : ko, m|| by averaging on parallel circles.

RLD solutions (defined in 7.21) are easier to understand than LD so-
lutions because the Jacobi equation reduces to an ODE. They have deriva-
tive jumps instead of logarithmic singularities at the singular circles. We
construct them first and use the information they provide, for example the
position of the singular circles, to construct the maximally symmetric LD so-
lutions. Our constructions are facilitated by the observation that the classes
of LD and RLD solutions are invariant under conformal changes of the in-
trinsic metric, allowing us to work on the flat cylinder instead of X.

The main tools in studying existence and uniqueness for the RLD solu-
tions is a scale invariant flux Fj: (see 7.15), which amounts to the logarithmic
derivative of the RLD solution ¢ on the cylinder, with its monotonicity prop-
erties stated in 7.31. Balancing for an RLD solution ¢ amounts to horizontal
balancing, requiring equality of the two one-sided fluxes at a singular circle,
and wvertical balancing, requiring that the ratio of the fluxes at adjacent
singular circles equals the ratio |m;/m;i1| of the corresponding prescribed
numbers of singularities (see 7.29).

The parameters o = (o, &) prescribe the RLD unbalancing with o for
vertical and & for horizontal (see 7.24, 7.36, and 7.37). The effect of the pa-
rameters ¢ = (C1,0,&) on the mismatch of the LD solutions is confirmed
in 9.10 by using the equations in 9.7 and the estimates in 8.29 for the LD
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solutions constructed. Note that o prescribes (approximately) only differ-
ences of vertical mismatch, with (one) vertical mismatch prescribed (with
less precision) by (;. Finally the estimates for the LD solutions in 8.29 are
based on carefully decomposing each ® = ®[[o : ko, m|| as ¢ = G+d+ 9
(see 8.19), where G captures the singular part, D is rotationally invariant,
and @' is the part we estimate (@ and ® being explicit).

In Part III the applications of the earlier results are fairly straightfor-
ward. For the catenoid and the critical catenoid we need some modifications
to account for the noncompactness of the catenoid and the boundary of the
critical catenoid.

Because the catenoid has noncompact ends, each doubling constructed
in 11.28 is part of a one-parameter family of doublings for which the size of
the asymptotically catenoidal ends vary. At the level of the RLD solutions,
the additional parameter a (see 11.14) governs how far the RLD solution is
from being smooth at the ends. Finally we remark that since the catenoid
is conformally isomorphic to qu, the families of RLD and LD solutions we
use for the catenoid doubling when all the entries of m are equal, were
constructed and estimated already in [33].

For the critical catenoid, following [34] (see also [31]), we use an auxiliary
metric (see 12.18) to describe graphs; this is a device to ensure that graphs
behave well at the boundary. The free boundary condition for the doublings
at the boundary translates to a Robin condition for the LD and RLD solu-
tions. The Robin condition for the RLD solutions amounts to determining
the flux ij at the boundary (see 12.12). This does not allow RLD solutions
with small fluxes and restricts the number of singular circles to be either 2
or 3.

General notation and conventions

Notation 1.2. For (N, g) a Riemannian manifold, S C N a two-sided hyper-
surface equipped with a (smooth) unit normal v, and 2 C S, we introduce
the following notation where any of N, g, S or {2 may be omitted when clear
from context.

(i) We denote by Isom(N, g) the group of isometries of (NN, g).
(ii) For A C N we write d]X’g for the distance function from A with respect
to g and we define the tubular neighborhood of A of radius 6 > 0 by

Dg’g(d) = {p €EN: d%’g(p) < (5} . If A is finite we may just enumer-

ate its points in both cases, for example if A = {¢q} we write dg(p).
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(iii) We denote by exp™¥ the exponential map, by dom(exp™9) c TN
its maximal domain, and by inj™9 the injectivity radius of (N, g).
Similarly by exp]]gv’g ) dom(expi,v ) and injév 9 the same at p € N.

(iv) If h and k are symmetric covariant two-tensors on N, we define a two-
tensor h*, vk by requesting that in any local coordinates (hgy nk)i; =
Rikg* k.

(v) We denote the curvature endomorphism by RM9. the curvature tensor
by Rm™9, and the Ricci tensor by Ric™9, and we follow the convention
RN9(X,Y)Z == [Vx,Vy|Z-VxyZ for X,Y,Z € C®(T'S). We also
define an endomorphism field Ry := R(Y, )Y and a tensor Rm} ¥ :=
(R(Y,-)Y,-); note that then Ric(Y,Y) = —try y Rmy.

(vi) We let A% and B® denote respectively the scalar-valued second funda-
mental form and Weingarten map of S, and Lg the second variation of
area or Jacobi operator (well known also to provide the linearization of
the mean curvature change as in 5.1), defined by (VX,Y € C™(TS))

AS(X,Y):= (VxY,v) = (B%(X),Y), BS(X):=-Vxv,

1.3
(13) Ls = Ag +|A%? + Ric(v,v).

(vii) Given also a map X : ¥ — N and a vector field V' defined along X
satisfying V() € dom(exp™+9) for each p € ¥, we define

PyX=PY9X:% N by PyX=P X :=expM9oVoX.

(viii) Given also a function f : S — R satisfying |f|(p) < inj}]jmg Vp € Q, we
use the notation

Xg’]‘? = Pﬁ’glg, Graphg’g(f) = X;{’J?(Q),

where IS])V denotes the inclusion map of  in V. O

Notation 1.4. We denote by ggyc the standard Euclidean metric on R™ and
by gs the induced standard metric on S” := {v € R" : |v| = 1}. By standard
notation O(n) := Isom(S" !, gs) (recall 1.2(i) ). O

Our arguments require extensive use of cut-off functions and the follow-
ing will be helpful.

Definition 1.5. We fiz a smooth function ¥ : R — [0, 1] with the following
properties:

(i) ¥ is nondecreasing.
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(i) ¥ =1 on [1,00) and ¥ =0 on (—oo, —1].
(iii) ¥ — 1 is an odd function.

Given a,b € R with a # b, we define smooth functions ¢eysfa,b] : R —
[0,1] by

(1.6) Yeut[a, b] :== W o Ly,

where Ly, : R — R is the linear function defined by the requirements
Lop(a) = =3 and Lg4(b) = 3.
Clearly then tcyt[a, b] has the following properties:

(i) %eutla, b] is weakly monotone.
(ii) %eutla,b] =1 on a neighborhood of b and eyt [a, b] = 0 on a neighbor-
hood of a.
(ili) Yecut(a,b] + teut[b,a] =1 on R.

Suppose now we have two sections fy, f1 of some vector bundle over some
domain Q. (A special case is when the vector bundle is trivial and fy, f1 real-
valued functions). Suppose we also have some real-valued function d defined
on ). We define a new section

(1.7) W [a,b; d] (fo, f1) = Yeut]a, b] o d f1 + eus[b, a] o d fo.

Note that ¥[a, b; d](fo, f1) is then a section which depends linearly on the
pair (fo, f1) and transits from fy on Q, to f; on Qp, where Q, and €, are
subsets of € which contain d~!(a) and d~!(b) respectively, and are defined
by

Q,=d! ((—oo,a + %(b — a))) , Q=d! ((b - %(b - a),oo)) ;

when a < b, and

1 1
= (0 gla-0.9)),  2=a (o Ha-0).
when b < a. Clearly if fo, f1, and d are smooth then ¥[a, b; d]( fo, f1) is also
smooth.
In comparing equivalent norms or other quantities we will find the fol-
lowing notation useful.

Definition 1.8. We write a~b to mean that a,b € R\ {0}, ¢ € (1,00),
C

andl<%§c.

c —
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We use the standard notation Hu :CFB(Q,g) H to denote the standard
C*kP-norm of a function or more generally tensor field v on a domain
equipped with a Riemannian metric g. Actually the definition is completely
standard only when 8 = 0 because then we just use the covariant derivatives
and take a supremum norm when they are measured by g. When 5 # 0 we
have to use parallel transport along geodesic segments connecting any two
points of small enough distance and this may be a complication if small
enough geodesic balls are not convex. In this article we take care to avoid
situations where such a complication may arise and so we will not discuss
this issue further.

We adopt the following notation from [29] for weighted Holder norms.

Definition 1.9. Assuming that Q is a domain inside a manifold, g is a
Riemannian metric on the manifold, k € Ny, 8 € [0,1), u € C’{Zf(Q) or
more generally u s a C{Z’f tensor field (section of a vector bundle) on €2,
p, [ — (0,00) are given functions, and that the injectivity radius in the

manifold around each point = in the metric p~2(z) g is at least 1/10, we
define

s 2@ p.9.1) = sup Ju: CR(@QN By, p2(x) g)|
) ) ) IGQ f(z) ,

where By is a geodesic ball centered at x and of radius 1/100 in the metric
p~2(x) g. For simplicity we may omit any of B, p, or f, when 3 =0, p=1,
or f =1, respectively.

f can be thought of as a “weight” function because f(z) controls the size
of w in the vicinity of the point x. p can be thought of as a function which
determines the “natural scale” p(x) at the vicinity of each point x. Note
that if u scales nontrivially we can modify appropriately f by multiplying
by the appropriate power of p. Observe from the definition the following
multiplicative property:

(1.10) H wug : CHP(Q,p, g, f1f2)H <

C(k) Hul : CMP(Q,p, g, fl)H Hu2 : CPP(Q,p, g, f2)H-

Definition 1.11 (Tilting rotations R,). Let x : E? — (E?)* be a linear
map, where E? is a two-dimensional subspace of a three-dimensional Eu-
clidean vector space E® and (E*)* denotes the orthogonal complement of
E? in E3. By choosing a unit normal vector to E?, we can identify x with
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an element of (E%)*. We define R, to be the rotation of E® characterized by
R.(P) = Graphp k for P C E? a half-plane with OP = ker k when x # 0,
or the identity Idgs when k = 0.

Given also a function v : Q — R on Q C E? such that R,{(Graphg‘%U) is
graphical over E?, we define Tilt,(u) : Q' — R, with ' C E? a “shift” of
Q, by requesting RK(Graphgsu) = Graphg/3 Tilt, (u).

Part I: Generalizing the Linearized Doubling approach
2. Tilted catenoids
Untilted catenoids in T, N

Convention 2.1. In Parts I and II of this article we assume given a surface
Y smoothly immersed in a Riemannian three-manifold (N, g). To facilitate
the discussion we will assume, unless stated otherwise, that ¥ is connected
embedded minimal and two-sided with a chosen smooth unit normal vs.
Note however that most results can be modified to apply to situations where
some or all of these assumptions do not apply. As in 1.1 we will call X the
base surface and the data (X, N, g) the background, and we will not mention
the dependence of constants on it.

Definition 2.2 (Fermi coordinates about ). Given p € ¥ we choose for
(TpN, gl,) Cartesian coordinates (X,y,z) : T,N — R? satisfying (X,¥,%) o
vs(p) = (0,0,1); clearly then g|, = dx? + dy? + dz* on T,N and moreover
(X,y) restricted to T,X are Cartesian coordinates on T,% C T,N.

Following A.1, we define U := DE’N’g(injE’N’g/Q) C N and U* =
DE’g(injE’N’9/2) = X NU to simplify the notation, and then we extend
z to a coordinate system (x,y,z) on U by requesting (x,y,z) = (X,y,z) o
(e:><p§’]\[’g)*1 on U. We define also a Riemannian metric g on U and sym-
metric two-tensor fields h on U and h™ on U™ by

g = (expy ™) g, = dx® + dy® + d2?, h:=g-4g, ™ = Blys .

Finally we define Fermi cylindrical coordinates (r,0,z) on U= U\{x=
y = 0} by requesting x = rcos® and y = rsinf; we have then § = dr? +
v2d0% + dz2 on U and that &, := O, €p := Op/ |0plg, and €, := 0, define an
orthonormal frame {&;,&,&,} on (U,§).
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Notation 2.3. Let Cyl := S' x R € R? x R be the standard cylinder and x
the standard product metric on Cyl; we have then Isom(Cyl, x) = O(2) x
Isom(R, gpye) (recall 1.4). Let (d,s) be the standard coordinates on Cyl
defined by considering the covering Yy : R? — Cyl given by Yeq(¥,s) =
(cos ¥, sin,s) so that xy = d¥? + ds?. Finally, for s € R, we define a parallel
circle Cyl, := {Ycy1(¥,8) : ¥ € R} C Cyl and for I C R, we define Cyl; :=
U§61Cy1§. (|

Given p € N and 7 € Ry, we define a catenoid K[p, 7] € T,N ~ R?
of size 7 and its parametrization Xg = Xx[p, 7] : Cyl — K]p, 7] by taking
(recall 2.2)

p(s) := T coshs, z(s) :=71s, and

(2.4) (X,¥,2) o Xg o Yoy(9,8) = (p(s) cos ¥, p(s) sin ), z(s)).

From now on we will use Xk to identify K[p, 7] with Cyl; 9 and s can then
be considered as coordinates on K[p, 7] and by (2.4) and 2.3 we clearly have
(2.5) g = Xz (gl,) = p*(s) (d9° + ds®) = p* x.

Alternatively (X,7,z) H{(rcosd,rsin®d, pear(r)) : (r,9) € [1,00) x R} C

T,N is the part above the waist of K[p, 7], where the function ¢cat = @eat[7]
[T,00) — R is defined by

©Yeat[T](r) := T arccosh La— <logr —log 7 + log <1 +V1—712r72 ))
T

(2.6) 2r 11 7

By direct calculation or balancing considerations we have for future ref-
erence that

a<Pca‘c (I‘) _ T

(2.7) o —

-7

Lemma 2.8 (Area on untilted catenoidal bridges). For any 7 > 0 and any
r >, the area |K(r)| of K(r) := K[p, 7] N H;plzDng(r) satisfies

72 7,5 a@cat
K(r)=14/1——= | 2|D,""(r —I—/ cat ———dl | .
K@)l =11~ 5 (| TGRS <

Proof. Direct calculation using (2.7). O



314 Nikolaos Kapouleas and Peter McGrath

Tilted catenoids in T,,IN

Definition 2.9 (Spaces of affine functions). Given p € X let V[p] C C*>(T,X)
be the space of affine functions on T),3. Given a function v which is defined
on a neighborhood of p in ¥ and is differentiable at p we define £ v 1=
v(p) + dpv € V[p|. V& € V[p] let k = k1 + K be the unique decomposition
with k= € R and k € TS and let || := |s*| + ||. We define for later use
VIL] := D, VIp] for any finite L C X.

Convention 2.10. We fix now some a > 0 which we will assume as small in
absolute terms as needed. In the rest of this section we assume that 7 € R is
as small as needed in terms of a only and that & € V[p] satisfies || < 71+/6.

Definition 2.11 (Tilted catenoidal bridges). Given k € V[p] we define
pElr 8] TS\ Dy (97) = R by o5, (7, 5] 1= Tilta(@ear[r] 0 dg™) £ 1+
in the notation of Definitions 1.11 and 2.9, where in 1.11 we take E* = T,%,
E3 = T,N, and the normal vector to E? to be v.

Lemma 2.12 (Tilted catenoid asymptotics). For k € N, 7 € Ry and k €
V[p] as in 2.10 we have

Proof. If k vanishes it is enough to prove the following, which is true V7 € R
by (2.6) and (2.7) [29, Lemma 2.25].

Phlr. ] = Tlog(2/7) — 1 : C* (DG (87%) \ Dg"™(97), 1, 9,172 ) |
gC( (] + 7).

(2.13) | cat[T] — Tlog(2r/T) : C’k( (97,00), r,dr?,r72) || < C(k) T3

Clearly | 7log(2r/7) : C¥((97,87%), r,dr?)| < C(k) 7 |log 7|. Combin-
ing with (2.13), using 1.9, scaling, applying B.14, and taking in this proof
0= Dg”2(870‘) \ D(:)FPZ(QT), we conclude

lodaelrs K] = easlr] = 5 : CF (2.1, 9) || < O (k) (7| log 7| + |x])*.

Using that r2 < 8272 on 2, combining with (2.13), and observing that s
cancels out, we conclude

cp;c[T, k| — 1log(2r/7) — K : ok (Q,r,g, r72) H <
C(k) (7% + 7*(7|log 7| + |k])%) ,
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which implies the result by assuming 7 small enough as in 2.10. O

Definition 2.14 (Tilted catenoids in 7, N and catenoidal bridges in N).
Given p € ¥, x € [0,4] (where x may be omitted when x = 0), 7 > 0, and
k= kT + K € V[p|, we define an elevated and tilted by x model catenoid in
T,N of size T, a corresponding catenoidal bridge in N (slightly reduced if
x > 0), and its core (slightly expanded if x > 0), as follows (recall 2.3 and
1.11), where b is a large constant to be chosen later independently of the T
and K parameters.

Klp, 7, k] := Xk[p, 7, k] (Cyl) C T, N,
Ku[p,7.k] == Xp|p,7, K] (Cyl[r,2r%/(1 + z)]) C N,
and K, lp, 7,k = Xzlp, 7] (Cyl[r,b(1 + 2)7]) C Kylp,7,6] C N,
where  Xg[p, 7, k] := Ry 0 Xk[p, 7] + kT vs(p) : Cyl — TN,
Xilp, 7, 5] = exp) 9 o Xk p, 7, k] : Cyl = N,
and Cyl[r,r] :== Yeu ({(9,s) € R? : 7 coshs < r}) Vr € Ry.
Finally using the above maps we take the coordinates (9,s) on the cylinder

as in 2.3 to be coordinates on K[p,,x] and K|p, 7,5 also, where we also
define p(s) := T coshs as in 2.4.

Remark 2.15. Note that Definitions 2.11 and 2.14 are compatible in the
sense that (recall also 1.2(viii))

Graphg (gojat [T, K; Q]) U Graphg (—(pc_at[T, K; Q]) U I?[p, 7,k] C N,

is a connected smooth surface with boundary; where (only) here we use
Q:= DE(STO‘)\DE(QT) and o= [, k; Q] == o[, slo(expy) ™t : Q= R. O

Lemma 2.16 (Area on tilted catenoids in T,N). Fiz 7 > 0 and 7 = 75/%.
Then the area |K(7)| of K(T) := K[p, 7, ] N H:F:ZDOT”E(F), satisfies

_ _ 1 g | — Opg
K :2DTPE _ 2 _/ + cat cat dl
IK(T)| Dy (7)| — 77 T3 I Peat on + Peat an
+0(r?| log 7|),

where =, = X [, K] is as in 2.11.

Proof. In this proof, denote by K[p, 7](7) for K(7) as in 2.8 and by K|[p, 7, &|(F)
for K(7) as in 2.16. We first compare the areas |K[p, 7](7)| and |K[p, 7, ] (7).
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Using 2.14, we estimate the distance between any point on E)DT E(_) and its
nearest point on Il 5. (R_«(0K[p, 7, £](7))) is bounded by C(7 \/f|2+]/<;]7\ log 7).
It is not difficult to see from this and the bound |&| < 71+/¢ from 2.10 that

(2.17) Klp, 7)(7)| = [K[p, 7, £)(7)| + O(r"/*] log 7]).

Next, using 2.12 and 2.13 to expand ¢=, and 2.10 to estimate ||, it follows
that

Opeat yy _ L / ¢ 00d | — e
2.18 ca dl = ca cat | g1
( ) /é)DOTpZ( 7) Peat ™, 8 2 BDOTPZ(F) Socat a + Peat 877

+ O(723/4,

Finally, we have that \D =22 and \/T—72/72 =1 — % . .
The conclusion follows from combining this with 2.8, (2.17) and (2.18). O

Mean curvature on tilted catenoidal bridges in N

The final goal of this section is to estimate the mean curvature of a tilted
bridge K|p, 7, k] C N. We first introduce some convenient notation.

Notation 2.19. We denote by H and H the mean curvature of K[p, T,k C N
with respect to ¢ and g respectively. O

Appendlx C allows us to express H in terms of H and certain tensors
defined on K because the metric ¢ is Euclidean, H = 0 and the task is
reduced to estimating the tensors defined on K. To motivate the discussion,
we first consider the simplest situation in two model cases.

Ezample 2.20 (H on catenoidal bridges over 82 C S?). Let 82 be the equa-
torial two- sphere in the round three-sphere S3 c R*. Given p = (0,0,1, 0)

let K := K [p,7,0]. From A.4 and by calculation we find that the metric gX
and unit normal v induced by g on K are given by

g% =1%(1 — tanh? ssin? z)ds® 4 cos? zsin? r d6?,

= (tanhsd, — sec® zsech s 8r)/\/1 + tan2 zsech?ss,

Vi
where z = 75 on K. _
We use the formula AX = <X’fw k Xl X/g) Grn"dx®dz? | where

X =X [v([p, 7,0] is as in 2.14, we have renamed the cylinder coordinates
(x',2%) = (s,0), and Greek indices take the values 1 and 2 while Latin
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indices take the values 1,2, 3, corresponding to the coordinates r, 0, z; and
the Christoffel symbols in A.4; to find

e 1
\/1 +tan2zsech?s AK = [7‘2 tanhs <tanz + 3 sinh? s sin 2Z> - 7':| ds?

+ —(sin 2rsech s 4 sin” r sin 2z tanh s) d6?.

| =

Using that \/1 + tan2zsech®s = 1 + O(z?) and §sin2rsechs = 7 4+ O(x%)
we conclude

~

AR = (14 0(2%)) (1(—ds® + d6?) + O(r*z)ds® + O(x* + r?z)df?) .
Finally, using that r2¢% = 14 O(2?) and 12¢% = 1+ O(2% +r?) we estimate
’H = O (12% +1%|z| + 71%) .

Ezample 2.21 (H on catenoidal bridges over T C S3). Let T be the Clifford
torus in §* € R* ~ C2. Given p = (1/ﬂ, 1/v/2) € T, let K := K[p,7,0].
From A.3, the metric induced by g on K is

gt = r?(ds? + db?)
+1r?sin2z (tanh2 s cos 20ds? — 2 tanh s sin 20dsdf — cos 20d92) ,

where z = 7s and r = 7 coshs on K. As in [38, Lemma 3.18] or [54, Propo-
sition 4.28], it follows that

?H : C* <I\6,X,T’Z’ + 12|z| + 7'2> H < C.

The preceding examples show that the mean curvature on a catenoidal
bridge over qu C S satisfies better estimates than the mean curvature on a
bridge over T. This is due to the fact that qu is totally geodesic while T is
not. We will see more generally (see 2.28(iii) and (v) and 2.32(i) below) that
dominant terms in the mean curvature of a bridge K [p, 7, k] are driven by the
second fundamental form of 3 when AE} does not vanish. Unfortunately,
the resulting estimates on H will not be by themselves sufficient for our
applications, and it will be essential to observe later in 2.32(ii) and 2.34(ii)
that the projection onto the first harmonics Hi H of the mean curvature H
of such a bridge (to be defined in 2.31) satisfies a better estimate.

For the rest of the section, fix p € ¥ and let (r,6,z) be cylindrical Fermi
coordinates about X centered at p as in 2.2.
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Lemma 2.22. (i) h = LAY —22TTEAY 422 TTE (AY « A¥ +RmY) +23 he',
where h®" is a smooth symmetric two-tensor field on U.
(ii) trngh =tryg h> 4 22 115, (\AE\Q — Ric(vy, VE)) + 73 try,g ho.
(iii) |Vh:C*U,§)|| < C(k).
(iv) ||p¥ : C*U*, 1, g,1?)| < C(k).

Proof. (i) follows from Lemma A.5. (ii) follows from taking the trace of (i),
and (iii) follows from (i), using that ¢ is Euclidean. For (iv), recall that
g> = dr® + u(r,0)%d? where u(r,0) solves the Gauss-Jacobi initial value
problem

Ksu = i = i =1.
U + Ksyu = 0, r{r{l}u(r,@) 0, r{r(l)ur(r,O)

It follows that u(r,0) =1 — K%'”r?’ + O(r®) and consequently

(2.23) h* = f(r,0)d6?, where f(r,0) :=—(Ksl,/3)r* + 0.

This completes the proof of (iv). O

For the remainder of this section we use notation from Appendices B
and C and we abbreviate by writing K for K|p, T, &].

Lemma 2.24. For Xg = Xx[p, 7, k] and K = K[p, 7,k] C T,N, the follow-
ing hold with

=/

(2.25) 10 := cos ¥ T + sin ) cos O, T, W = —sin 9T + cos O cos O, .

) Xk

) 0sXk = 7sinhs (W + sin ¥ sin 0,,0,) — 7sin 0,0 + 7 cos 0,,0,.
(i) Oy Xk = p (W' + cos I sinb,0,).

)

) L=

vl + vt where v tanhscos @, — %sinﬁsin 0)0,

and vl .= —gw — tanhssin 6, ot.

Proof. Straightforward computation using (2.4), 2.25, and B.10(iii) implies
R.(?¥) = ¥, Ru(t") = cosf.vt +sinb.0,, and R.(d,) = cosb.0, —
sin 6, 7. O

Lemma 2.26 (cf. [38, Lemma 3.18]). The following hold.

(i) [lp*" : CH(K, x, p*)| < C(k).
(ii) ||z : C*(K, x; |z] + )| < C(k).
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(iii) (a) |Vh9h: CH(EK, x,p(le| + p) +7)I| < C(k).
(b) Va9 - CH(E, X, plz| + p?)|| < C(k).

(c) IVD"9h: CH(E, x)|| < C(k).
(iv) ||h =@ : CH(K, x, |z| + 7 + p2)|| < C(k).

Proof. The estimate in (i) with p is obvious, and the estimate in (i) with

p~t = 77 1sechs follows after observing that for each k > 1, 9¥(sechs) is a

polynomial expression in sechs and tanhs, each term of which contains a
factor of sechs. From Lemma 2.24 we have z = 7(cos 6, s+sinh s sin 6, sin 9),
which implies (ii). Using Lemma 2.22,

Vo, h = —2IT5 AT + 22115 (AT % A¥ + Rm>) 4 3220 + 23V he™,

Vah = Vgh™ — 22 VGITE AT + 22V 115 (A% « A¥ + Rm?>) + 2° Vho™,
where i is either ' or . Using this in conjunction with (ii) and Lemma
2.22(iv), we conclude

N -«

IV, 7k : CH(E, X)|| < C(k),

(2.27) oy Vot
IV 9h: CH(K, X, |z + p)|| < C(k).

Recalling from 2.24 that

0s = (7 sinhssin¥sinf,, + 7 cos 6,,)0,
+ 7 sinh s(cos ¥ ¥ + sin ¢ cos Hﬁﬁl) — Tsin 6, v+,
Oy =p (— sin 9 ¥ + cos ¥ cos B, T+ + cos ¥ sin 6, OZ) ,
v=—7p L(cosV T+ sin ¥ cos B,7") — tanhssin O, v+

+ (tanhscos 6, — 7p~ L sin¥sin 6,)d,,

we see that (iii) follows from the preceding. Finally, for (iv), we compute
that

h(w, T) = cos ¥ h(¥, T) + sin 9 cos O, (7, T),

h(@,T5) = cos 9 h(T, 7F) + sind cos 0, h(TH, 7).

The estimate follows from this by combining the results of (ii) and (iii) above
with Lemma 2.22(i). O

Lemma 2.28. The following hold.
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(i) [lo: C¥(K, x. p ( + |zl + 7))l < C(k).
(i) @ : C*(K.x, p?)|| < C(k). .
(iii) [Jtrz o — 272 tanhs (IIEAY) (&, &) : C*(K, x, p2(|z| + 7))| < O (k).
(iv) 153 : Ck(K X, 7(lz] + p* + 1)) < C(k).

(v) ||d1VK +27(22 — zsech? s — 7 tanhs)(ITA¥) (€, &) :

. CHME, x: P (7 + 1)) < C(k).
(vi) llo s C*(K, x, |z] + 7)|| < C(k).

Proof. Using Lemma 2.24 and Remark 2.25 we compute
ags = (p* — T2 (B, @) + 72 sin? O, h(TF, 7)) — 27 sin O,/ p? — T2h(W, T
agy = p*h(', @),

oy = —7psinO,.h(W, TH) + py/p? — 72h(@

(i) follows then from Lemma 2.26. The proof of (ii) is straightforward so we
proceed to (iii). Using 2.24 we compute

dss = (p* = T2)(V,h) (@, W) — 274/ p? — 72 5in 0, (V, h) (@, 7F)
+ 72sin? 0, (V, h) (T, 71),
amg = pz(V,,h) (117/, 117’)

Because tr N Q = Qg + Qyy, we have via 2.25

(229) trp a= P2 (Y h)(T,0) + p2 (Vo h) (T, 51) — 72(V,h) (&, @)
+ (1% — p?) sin? 0, (V, h)(T+, 71) — 27\/,02 — 725in 0,,(V,h) (@, 7).

Noting that (V,h)(¥,7) + (V,h) (T, 01) = try g (Voh) = Vo (trn g h) =
v(try g h), we have by 2.22 and 2.24 that

v (try gz h) = 2(tanhs cos 6, — sechssin9'sin 6,,) (JA¥[? — Ric(vs, vx)) 2
+0(2),
V”(tI'N?é h) = —Tp_lw' (trg@ h> + (|AE|2 — Ric(vy, 1/2)) 22)
- (tanhssin 0@”‘) (trs, g h¥ + (JA¥|? — Ric(vs, vs)) z*) + O(z%).

This and 2.26 imply that ||pv(trygh) : C’k(f?,x, p*(lz| + 7)) < C(k).
We now estimate the remaining terms. Using 2.22(i) and 2.24(v) we have

IV, h 4 2tanh sTTEAY : CF(K, x, |z + 7+ p2)|| < C(k).
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Estimating terms with sin 6, in (2.29) by Lemma 2.26 we obtain
|| tr N P2 (trn g h) — 272 tanhs (ITLA™) (8, &) : CHK, x, p*7)|| < C(k),
and (iii) with the estimate on tr @ follows. To prove (iv) we use

(2:30) B(X) = h(X,v) = h(X, )
= —7p~ 'h(X, @) — tanhssin 6, h(X,7),

to compute using Lemma 2.24

—77 3, = tanhs [h (@, @) — sin 20,.h(v+, o) )]
+ sin 0,.h (@, 71)(sinhs tanhs — 7p~1),
— By = Th(wW', @) + ptanhssin 6,.h(@, 75).

The estimate on S in (iv) follows from Lemma 2.26. We next compute
divf?,xﬁ = 5573 + @9719. We have

— 771 B s = sech?s [h(w, @) — sin? 0,.h(+, UL)]
+ sin O, h(@, 7) (smh s + 2sechstanhs)
+ tanhs[(Va,h) (@, @) — sin? 0,.(Vg, h)(UL,UL)]
+ sin 0, (V. h) (@, 7 ) (sinh s tanhs — 7p71).

(

Using this with 2.22(i), 2.24(ii), 2.26, and 2.25, we estimate

|| Bss — 27z sech’s (I A%) (€, €,) — 272 tanh s (I A®) (&, &)
L CHE, X0 (12l + 7)) || < Ch).

Next we compute

—ﬁgﬁ = —Th(w U))‘l‘Th( i _»,)
8 =/ =1 —
+ ptanhssin 6, Ex] (h(w )) + 7(Va, h) (W, ).

Using the minimality of ¥ and 2.22(i), we have

(T3, A%) (&, &) + (I154%) (€, &) : CH(K, x, p* + |2))]| < C (k).
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Combining this with 2.22(i), 2.24(iii), 2.26, 2.25 and the above we obtain
189,90 + 4r2(TEA®)(@, &) : CF(K,x, p* (7 + [2]) ]| < C(k).

Combining the preceding completes the estimate in (v) on div Xﬁ . Next

o = h(v,v) = k(v

7_2

= ?h(w, w) — 2% tanhssin 0, h(w, ¥) + tanh? s sin? 0, h (7, D)

and the estimate on o follows from 2.26. O

Definition 2.31. Given a function u defined on I\%, we define the projection
Hi(u) of u onto first harmonics by

1 2 1 2
Hi(u) = — </ u(s, ) cos 19d19> cost + — </ u(s, ) sin 19d19> sin 4.
0 0

s s

Lemma 2.32. The following hold.

(i) [I9*H : CH(K, x, (T + p*) (1] + 7))l < C (k).
(i) [Hi(p?H) : C*(K, x, p*(l2] + 7)) || < C(k).

Proof. (i) follows by combining the estimates in 2.28 with C.9, where we
note in particular that H = 0 because ¢ is Euclidean and that divf(,xﬁ =
p2divlv<’§ﬁ and tri a=p? triz s Q.

To prove the estimate in (ii) we will need a more refined expansion for
p?H: from C.8, and the estimates in 2.28, note first that

[H1(p*H —div B+ gtre &+ p*5(@,@))
L CF (K, x, P (Jz + 7)) | < O(k),

so it suffices to show that the estimate in (ii) holds when p?H is replaced by
divlv(’xﬁ, tr a, or p*(@,@)y. The estimate for p*(&, @) 4 follows by combin-
ing the estimates on a and & in 2.28(i) and (ii). The estimates on tr  and
divj f follow from 2.28(iii) and (v) using that II5A* (&, €;) is orthogonal
to first harmonics up to higher order terms involving || and p. O

The following lemma relates estimates on H, which will be crucial for

our main applications, to estimates on p?H, which are easy to compute due
to the geometry of K.
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Lemma 2.33. Given f € g’“(l\f) and n € Z, we have
1" f : C'“(K,X)HC("ZM I1f = CHE o p™™)])-

Proof. Using (1.10) with u; = p"ue = f,f1 = p", and fo = p™", we
estimate

< CE)|lp™ : CHE, x, p)IIf - CHE x, p ™|

< Okl = CH(E x, p ) IIMf = OF (K x, p7")
< C(k,n)|lf : CH(K,x, o7,

o™ f = CF (K, X)|

where in the second inequality we have used (1.10) iteratively and in the
third we have used 2.26(i).
Using (1.10) with uy = p~",ua = p" f, fi = p™", and fo = 1, we estimate
in an analogous way
1+ G X, ™) < O™ 2 CECR x, o~ 197 f = R, X))
< Ck,n)|p"f : C*(K,X)|-

Combining these estimates completes the proof. O

Corollary 2.34. (i) [|H : CHK,x,mp 2+ 1)|| < C(k)7|log T|.
(i) [HiH : C¥(K,x)| < C(k)7|log].

Proof. This follows from combining 2.32 with 2.33 and using that [z| <
Ct|logT| on K. O

Area of catenoidal bridges in IV
Lemma 2.35 (Area of truncated IV([p, 7,5 C N). Let K= I?[p, T, k] be as

in 2.14. Fiz 7 = 73/*. The area |K(F)| of K(7) := K N Hgl(DE(F)) satisfies
the following, where o=, = ¢ |1, K] is as in 2.11.

|K(7)| = 2| Dy (7)| — mr?

1 / < + 880?;;1; - B‘Pcat> 5/2
+ - Pea + Yo dl+ O(r log 7|).
92 6D§(F) t 877 t an ( | D

Proof. Since K is 2-dimensional, the determinant of the induced metric g =
g + « satisfies

det g = det g(1 + trg o + det of).
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Using that det § = r(s)* in the coordinates of (2.4), that 7 = 73/4, and 2.28
to estimate det of and tr a, it follows that v/det g = v/det g(1+O(7|log 7|))

on K (7) and consequently that
[K()lg = KMy + 07”2 log 7).

where we have used (recall 2.16) that |K (7)| 5 = O(7?) to estimate the error
term.

As a consequence of 2.22(iv), we have that |D§ (7)) = |Dg‘“2(?)| +0(7),
and that the length elements dl, and dl; on 8D5 (7) with respect to g and ¢
satisfy dly = (14 O(7?))dl;. The conclusion follows by combining 2.16 with
the preceding estimates. O

3. LD solutions and initial surfaces
Green’s functions and LD solutions

Definition 3.1 (Green’s functions). Given a Riemannian surface (3,g),
Ve C®(X), and p € X, we call G, a Green’s function for Ay + V' on 2
with singularity at p if it satisfies the following.

(i) G, e C®(Q\{p}) and (Ag+V)Gp =0 on Q\ {p}.
(i) G, —logd} is bounded on some deleted neighborhood of p in .

Clearly if G) is as in 3.1 and Q" C Q is also a neighborhood of p, then
G,,}Q,, is also a Green’s function for Ay + V on Q" with singularity at p.

Lemma 3.2. If G, € C* (2\ {p}) and CN?p € C™ (2\ {p}) are both Green’s
functions for Ay +V on Q with singularity at p as in Definition 3.1, then
Gp — Gy has a unique extension in C*°(12).

Proof. Clearly G}, — ép is a smooth and bounded solution of the Partial
Differential Equation on Q \ {p} by the definitions. By standard regularity
theory then the lemma follows [5]. O

Lemma 3.3. Given (X,9), V, and p € ¥ as in 3.1 there exists 6 > 0 such
that Ay +V on DE (8') satisfies the following V' € (0, 8] where r := dE.

(i) There is a Green’s function G, for Ay +V on DE (8') with singularity
at p satisfying

(3.4) HGP —logr: Ck(DE(Q’) \ {p},r,g,r2\ logr\)H < C(k).
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(ii) For any given uy € 02”3(8D§(é')) there is a unique solution u €
CQ”B(DE(Q’)) to the Dirichlet problem
(Ag+V)u=0 on D), u=uy on dDY(H).

Proof. (i) is standard, see for example [5]. (ii) follows easily by scaling to unit
size and treating A, + V as a small perturbation of the flat Laplacian. [J

Corollary 3.5. If G, and ép are both Green’s functions as in 3.3(i) sat-
isfying 3.4 for some § > 0, then the unique extension G € C'OO(DE(é)) of

G, — C~¥p (recall 3.2) satisfies G(p) =0 and dpG = 0.

Proof. By subtracting the two versions of (3.4) we conclude that |Gp—ép| <
Cr?|logr|, which implies the result by 3.2. O

Definition 3.6 (LD solutions). We call ¢ a linearized doubling (LD) solu-
tion on X when there exists a finite set L C X, called the singular set of ¢,
and a function T : L — R\ {0}, called the configuration of ¢, satisfying the
following, where 1, denotes the value of T at p € L.

(i) p e C®°(X\ L) and Lxp =0 on X\ L (recall 1.2(vi)).
(ii) Vp € L the function ¢ — 1, logdy is bounded on some deleted neighbor-
hood of p in X.

In other words LD solutions are Green’s functions for Ly, (recall 3.1) with
multiple singularities of various strengths; we call them solutions because
they satisfy the linearized equation as in 3.6(i).

Remark 3.7. In some constructions we will need to modify the definition of
LD solutions in 3.6 either by imposing boundary or decay conditions or by
relaxing the requirement Ly¢ = 0 on 3\ L. Note that although we usually
require Vp € L 7, > 0, in the definition we allow any 7, € R\ {0} to ensure
(by 3.2) that the LD solutions form a vector space, and those with singular
set a subset of a given finite set L' C X, a subspace. O

Mismatch and obstruction spaces

Convention 3.8 (The constants d,). Given L as in 3.6 we assume that for
each p € L a constant ¢, > 0 has been chosen so that the following are
satisfied.

(i) Vp,p' € L with p # p’ we have Dy'(96,) N D (95,) = 0.
(ii) Vp € L and V&' € (0,38,], Lx on Dy(8') satisfies 3.3(i)-(ii).
(i) Vp € L, 6, < inj5"M¥ (recall A.1).
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Lemma 3.9. Given ¢, L, and T as in 3.6 and assuming 3.8, Vp € L there
exist pp € C®(DF(26,)) and a Green’s function G, for Ls on D3 (26,) with
singularity at p satisfying 3.4 with 20, instead of &', such that the following
hold (recall 2.9).

(i) ¢ =&p+7Gp on D;(20,) \ {p}-
(ii) £,¢p = TpX — R is independent of the choices of 6, and G, and
depends only on .
(ili) @ o expy (v) = 7 log |v] + £,8p(v) + O(Jv[*log|v]) for small v € T,X.

Proof. The existence of G, follows from 3.8(ii) and (i) serves then as the
definition of @p. (ii) follows then from 3.5 and (iii) from a Taylor expansion
of ¢, combined with (3.4). O

Definition 3.10 (Mismatch of LD solutions [29, Definition 3.3]). Given
¢, L, and T as in 3.6 with 7, > 0 Vp € L, we define the mismatch of ¢,
Mz € V[L] (recall 2.9), by Mry = @, Mpp, where Myp € V[p| is
defined (recall 3.9 and 2.9) by requesting that for small v € T,X

poexp, (v) = 7,10g(2Jv]/p) + (Mpp) (v) + O(Jv|* log v]),
or equivalently by 3.9(iii) Mypp = E,0p + 1plog(7,/2).

Assumption 3.11 (Obstructlon spaces) Given L as in 3.6 we assume we
have chosen a subspace IK[ | =Der JC[ | € C*°(X) satisfying the follow-
ing, where the map &z, : IK[L} — V[L] (recall 2.9) is defined by &r(v) =
Dper Epv-

(i) The functions in K [p] are supported on D3 (46,).

(ii) The functions in K[p], where K[p] := EEHAC[p], are supported on D3 (46,)\
Dy (dp/4)-

() Er JAC[ L] — \7[ ] is a linear isomorphism.
v) [l < Co
norm of ;1 : V[L] — j%[L] with respect to the C%# (¥, g) norm on the
target and the maximum norm on the domain subject to the metric g
on X.

(v) V& = (k,)per € V[L] we have for each p € L

. —11 -
where 0yin := minyey, 6, and HE T H is the operator

I, 0 (exp3) ! — &1, - CH(DE(,), %, g, (d5)2)] < C(k) s, |-
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Remark 3.12. Given L as in 3.6 and constants d, as in 3.8, a possible defi-
nition of spaces X[p] satisfying 3.11 is by

~

K(p) = span ({®[5,, 20,1 d¥](us, 0)}7, )

where u;,7 = 1,2,3 are solutions of the Dirichlet problem Lxu; = 0 on
DE (30p), with corresponding boundary data u; = sinf, ug = cos,uz =1 on
ODE(?)(SP), where 6 is a local angular coordinate in geodesic polar coordinates
for DE((SP). In the constructions in this paper, we will use choices (see 9.19)

of K [L] and X[L] adapted to symmetries of the problems. O
Mismatch and conformal change of metric

We prove two lemmas now which will be useful in Part II.

Lemma 3.13 (Distance expansion under conformal change of metric). Con-
sider a metric g = e~ g on X, where w € C®(X). For each p € ¥ and q in
some open neighborhood of p in X,

log o) ~ logdla) + () + g (exp}) " (0))| < C (@300

Proof. In this proof, denote r = dj(q) and 7 = dg(q), where g € ¥ is close
to p. Let v and 7 be respectively the g- and g-geodesics joining p to q. We
have

P < / e~ Mgt = =)y <1 —~ %dpw(v’(o))r + O(r2)> ,
0
r< / e‘*’ﬁ(t))dt = ew(P)f (1 + %dpw(ﬁ'(O))f + 0(722)> ]
0

This implies that #/r = e ®) 4+ O(r) and consequently that |ry'(0) —
7%'(0)] < Cr?. We complete the proof by taking logarithms of both in-
equalities above and expanding. O

Lemma 3.14 (Mismatch expansion in a conformal metric). For given w €
C>®(%) and ¢ as in 3.10 we have for § := e **g and ¥p € L and small
w e TpX

p 0 expyd(w) = 7plog(2lwlg/7,) + (M) (w)
+ Tpw(p) + Tpdpw(w) /2 + O(|w\%log [w(g)-
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Proof. By 3.10 we have for small w € T),} that

p 0 expy I (w) = 7, log(2|wlg/ ) + 7 log(|vly/|wlg)
+ (Mpp) (v) + O(|v[g log [v]y),

where v € T,X denotes the unique small vector satisfying eXpE () =
exp§ Y(w), or equivalently v = (exp?’g Yo exp? Y(w). The proof is com-
pleted then by using 3.13 and that v = w + O(|w|f7). O

The initial surfaces and their regions

Each initial surface we construct depends not only on an LD solution ¢ as
in [29], but also on additional parameters k € V[L] controlling the elevation
and tilt of the catenoidal bridges in the vicinity of ¢’s singular set L. We
list now the conditions imposed on these data.

Convention 3.15 (Uniformity of LD solutions). We assume given ¢, L, and
T as in 3.6 with 7, > 0 Vp € L, and §,’s as in 3.8, satisfying the following
with a as in 2.10 and

Tinin := Min 7, Tmax := MAX Tp,
(3.16) pel -
8 =14 8 o i=mind, = 72
p = Tp (Vp S L), min * pel P min®

(i) 3.8 holds and—in accordance with 2.10—7p,ax is as small as needed in
terms of « only.

(ii) Vp € L we have 94, = 97" < 7,
) _1-a/100
)
)

cx/lOO < 5p .

(iii

(iv) Vp € L we have (8,) %[ ¢ : C*P(9D(6,), 9) || < 7 1—a/9
8/9

) lle+ €32\ Loy DR 0 < 5.

(vi) On X\ e D 2(07) we have Tng/ngp

Tmax < Tmin

Definition 3.17 (Initial surfaces). Given ¢, L, T and §,’s as in 3.15, and
K = (k,)per € V[L] satisfying (in accordance with 2.10)

(3.18) VpeL k| <7ite/S,
we define the smooth initial surface (recall 1.2(viii))

M = M|, ] == Graph{) (¢% )| J Graph (—¢? )| J | | Klp, 7. 5,);
peL
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where =X\ ||/ D 2(97,) and the functions (pi = gpﬂ (o, k] : Q2 — R are

defined as follows.

(i) Vp € L we have wil = [2(5’ 3(51’3, dg] (cpgzt[Tp,@p] o (exp?)_1 , ptuy)

on D3 (38) \ Dy (97p), where vy = —E M+ E R € ‘JAC[L]
(i) On B\ [,cr, DZ(30],) we have goil =@ +ug.

Lemma 3.19 (The gluing region). For M = M[p, K] as in 3.17 andVp € L
the following hold.

[0}

(i) H‘Pi — 7 logd® : €38 (DF(45) \DE((S’) (d) H <ts
H(pgl 38 (D2(45/) \DE((S/) (5/
(iii) ||( &,)2HY, : cos (D7 (30,) \ D3 (24,,), (6,)~ 2g)|| < 7';4_17“5&, where H',

denotes the pushforward of the mean curvature of the graph of j:cp“il to
> by Iy.

‘ < Ctp|log 7).

Proof. We have for each p € L on Q, := D>'(46)) \ D> (47, (recall 3.17)
(3.20)
Tp o—
(pftl = 1,Gp — 7plog 3p8L1(5L + 5 K+ \11[25' 35]’3, p](goi,cpi)

-1 _ _
where ¢ = @it[Tp,ﬁp] o (exp?) — 1,Gp + 1 log Eng 15; F SL K,
— Tp o— _
i = — Gy + mplog EL0y — £ My,
where 0 € V[L] is defined by 6% := (6¢)qer With b, the Kronecker delta.

By scaling the ambient metric to g’ := ((5;)*2g and expanding in linear and
higher order terms we have

(5/) H:t = (6/) ;CESO + (S Q(d’ 1 gl
Note that on €, we have

P — otilm ) = @ [267,35,:d] (0,55 —0,),

Lsp¥ = LxW (25,30, d5] (0., 72).
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Using these, we have

legll < € (mhog 7l + llp Il + IZ2ll)
I - Tplogdz I < (el + Ipl)

|@2enet - €% (2, 5)729) | < € (e, + 22l

Q-1 O™ (s (3)20) || < O leL I,

where in this proof we mean the C3/ (Qp, (6, )2 ) norm unless specified

otherwise. We conclude that if ||gp | <4y, (to control the quadratic terms),
then we have

|62 B = 022, (3)720) || < € (@) o8l + gy I+ 17 ).

Adding and subtracting (x,, + 7, log 3—;) o (exp;?)_1 in (3.20) we have p =
(I)+ (II)+ (II1I)+ (IV), where

2r
() o eXPE = Pt [T, £p] — Tplog — F K, (I1) = 7p(log d? - G),
Tp

(IT) = —7, log 2 S (=€), (V) =£((5,) o (expy) ™" — €'K).

Using the triangle inequality and estimating (I)-(IV) using 2.12, 3.3(i), and
3.11, we have

lp | < C(lkp| + 1) 7, 2% + Oy F2 log 7y .

Because Lxp, = 0 on €2, and », has vanishing value and differential
at p (recall 3.10, 3.11 and 3.20), it follows from standard linear theory that

[l < €660 s - €22 (0DF(5,), (6,)%9) .
Using 3.16, 3.15(ii) and 3.15(iv), 2.10, and 3.11 to estimate the right hand

side, we conclude that

1—

[EREeItAR T

1
5 142
E —|—C7’p+ “log 1| < Cmp

Combining with the above we complete the proof. O
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Remark 3.21 (Smallness of mean curvature). Note that the exponent in the
right-hand side of 3.19(%ii) is close to 1 + 2a- and hence > 1 + « as needed
to ensure that the correction of the initial surface will be small compared to
the size of the LD solution. O

Lemma 3.22. M defined in 3.17 (assuming 3.15) is embedded and moreover
the following hold.

(i) On 2\ per DE(&;,) we have %Téj{?ﬁ < <p:gtl.
.. 8/9
(i) [|o% - €27 (Z\ Lper, DE).9) || < 373

— 87-min‘

Proof. We first prove the estimates (i-ii): (i) on X\ | ], D7 (36;,) follows
from 3.15(vi) and 3.17, and on DX (44)) \ D;'(6;) for p € L from 3.19(i)
and 3.15(iii). (i) on X\ [y D (307 follows from 3.15(v) and 3.17(i),
and on Dy'(46)) \ D (6,) for p € L from 3.19(ii) and 3.15(iii). Finally, the
embeddedness of M follows from (i) and by comparing the rest of M with

standard catenoids. O

Definition 3.23 (Regions on the initial surfaces). We define the following
for L and M as in 3.17 and x € [0,4], where x may be omitted when x = 0
(recall 2.14).

(3.24a) S, =9\ yep DS (bp(1+2)) C X,
(3.24D) KoM = yep Kalp, 7 55,) € M,
(3.24c¢) K, [M] =y K, lp, 7, 5,) € K[M] C M.

We also define 71, : K[M] — R and Ilg : K[M] — Ky := Uper Klp, 7p, 15,

by taking 11, := 1 and Ilg = (expy ™)1 on each Kp, Ty Kip) -

Note that M determines L and so the above notation is legitimate.
Moreover Vp € L with , = 0 we have K,[p] = M NI ( DZ(26,/(1+x)));
when k, # 0 the two sides differ very little by the smallness of the tilt.

Notation 3.25. If f+ and f~ are functions supported on S’ (recall (3.24a)),
we define Jys(fT, f7) to be the function on M supported on (Ils|,,) " S’
defined by f* oIly on the graph of gpﬁ’rl and by f~ olly on the graph of

—(pg,l. O
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4. The linearized equation on the initial surfaces
Global norms and the mean curvature on the initial surfaces

In this section we state and prove Proposition 4.18 where we solve with esti-
mates the linearized equation on an initial surface M defined as in 3.17. We
also provide in 4.6 an estimate for the mean curvature in appropriate norm.
In this subsection we discuss the global norms we use but first we introduce
Assumption 4.1 which simplifies the analysis and implies also Lemma 5.22.

Assumption 4.1. In the rest of Part I of this article we assume 2.1 holds and
furthermore the base surface ¥ (recall 2.1) is closed and the kernel of Ly, is
trivial.

Definition 4.2. For k € N, B\ € (0,1), 7 € R, and Q a domain in X, M,
or Kyr, we define

Hu”kgyg = ju: Ck’ﬂ(Q 9.1,

where r := d% and g is the standard metric on ¥ when Q C X, r := d% olly
and g is the metric induced on M by the standard metric on N when Q C M,
andr = p(s) := 11, coshs (recall 2.4 and 3.23) and g is the metric induced by
each FEuclidean metric g|p on T,N Vp € L when Q C Kyr. Given also 7y € R
withy—7' € [1,2) we define fs7 € CO(M) by f57 = max(r?, Tg_a)ﬂ 7Y =
v max(ra_v,Tg*a)/Q) (note that f55 =17 whent' ™ > 71 1 “ /2) and for
QC M (recall 2.31)

Hu||k7gﬁﬁ/;g = ju: Ck’B(Q>r>ga fﬁﬁ’) | + HHlquﬁﬁ;meqM}'
Lemma 4.3. (i) If Tmax is small enough in terms of given € > 0, Qisa
domain in Mg (K[M)), Q := T, Q) c KM c M, k=0,27€R,
and f € C*P(Q), then we have (recall 1.8):

| f oIk |lk,8.4:0 It ||f”k755;§

(ii) If b is large enough in terms of given € > 0, Tyax is small enough in
terms of € and b, Q' is a domain in S" = ¥\ || ¢ DX (brp) (recall

(3.24a)), Q:=T3NY)N M, k=0,2, 7 €R, and f € C*P(Q'), then

ez
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Proof. To prove (i) it suffices to prove for each p € L and each K =
Klp, p, k| that

[f ol : C*HQN K, p. )l o If ol : CPP(QN K, p, g)]

The induced metric from g on K is g =g+ «, and so (i) follows from C.12
and the estimate on a in 2.28(i) by taking 7y.x small enough. To prove (ii)
let ¢ € S’ and consider the metric g, = (d¥(q))2g on N, where g is the
standard metric on N.In this metric M is locally the union of the graphs of
+ot - Where ot i = (d¥(q))! ftl. First suppose that dg (q) < 46, for some
p € L. Note that

08CAE@ /%) K g -
S ag O Pl

v da)|| < Cblogd,

where By = qu’g"(l/lO). It follows by combining this with 2.12 and 3.19,
and assuming b large enough, that

(44) @ : C*P(Blgg) || < CT3(d) ()~ + Cb~ ' logh
< Cb 34+ Cbtlogh < Cbllogh.

On the other hand, if d7(q) > 44/

min’

then by 3.15(v) we have

3, 8/9

Ik - C*(B,G,) || < O,

By comparing the metrics and appealing to the definitions we complete the
proof. O

Convention 4.5. From now on we assume that b (recall 3.23) is as large as
needed in absolute terms. We also fix some g € (0,1), v = , and +/

v—1= 3. Note that 1 — % > 2a and (1 —a) (y — 1) > 20. We Wlll suppress
the dependence of various constants on . O

We estimate now the mean curvature in terms of the global norm defined
in 4.2 and discussed in the introduction, by using the earlier estimates in
3.19 and 2.34.

Lemma 4.6. ||H — Jy(w™, w)|lo,gy—2.—2:m < T3,

where wt == L&, (-Mpp £ k).
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Proof. Note that Jy(wh,w™) =0 on K[M] and by 4.2 we have

[H = Jar(w™, w™))|

+ || H — JM(w+aw_) : CO”B(MJ’Q’ Jr—25=2)]l-

By 4.3(i) and 2.34 we have

||H1H||0”377_2;[§[M] < C‘;‘SLX”%H L COB(K,, 17 72))|

2—y)a 14+a/3
S Cglea‘g(T]g ) TP‘IOgTP’ S 7—max/ )

where here I\?p = I?[p, Tp, k] and we have used 3.15(iii). To estimate the
weighted norm of H, we use 2.34(i) in conjunction with the piecewise formula
for fy_2. 2 to see

p max

|H : Co’ﬂ(k[M],r,g,f7_277/_2)” < CmaLXTHO‘/QHong] < rlta/3,
pe

Finally, we consider the estimate on the exterior of the gluing region.

Let ¢ € M NI (e, D3 (36,)), define ¢ :=Isq’ € X\, D¥(34)) and

consider the metric g, := (d¥(¢)) 2g. In this metric M is locally the union
of the graphs of :I:gp?;, where gozj; = (d¥ (q))_lcp“j:l. By expanding H’, and H'
in linear and higher order terms, we find (recall 3.17)

(d7(q))*Hy = (dF(9)*w* + (dF(9)Qyz-

We estimate then

I(dE (@) (Hy — w™) : C*(By, g, (AL (@)
< (dZ(@)Qyz : C*P(By, 44, (A (@)
1 o
< Cw”%ﬂ L CP (B30I < i

where By := ng(l/IO), and we have used 3.15(v) and 2.10. Combining this
estimate with 3.19(iii), 2.32, 4.2, and 4.3(ii) we complete the proof. O

Lemma 4.7. (i) If3 € R, Tmax is small enough, and u € C%P (g (K[M))),
then we have

| £ar (uwollg) — (Lgu)ollg ”o’gﬁfz;f([]\/[} < Crax | u H2755;HK(1V<[M]) )

1 £0s (u oMl ) = (L) oMk llo 55, gpany < C 1t llo 51 meipany:
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(ii) If3 € R, Tumax is small enough, and u € C%P(S"), then for € € [0,1/2]
we have

[Ly{uclls} —{Lou} ollsllgs5 o mor @)

-1
< C b IOgb Trenlax || u ||2,,8ﬁ+51;§’ :

Proof. We first prove the first estimate of (i). By 4.2, 4.3(i), and the defini-
tions it suffices to prove that

102 (Lar — Ag — [ AR)uo Tglly 5 -z < Cralully 5.

where p is as in (2.4) on each K = Ivf[p,Tp,ﬁp], Q = Og(K[M)), Ly =
Ag+ A2+ Ric(vz, vjz), A and Ric are the second fundamental form on K

and the Ricci tensor induced by g, and A is the second fundamental form on
K induced by §. Recall from (2.5) that p~2§ is isometric to the flat metric
x on Cyl from 2.3, and also that pQAé is the Laplacian with respect to the
Y metric.

Estimating the difference in the Laplacians using C.10, we find

1p2(Ay — Ag)u o Ty : CO¥P(K N K[M),x,p7)||
< Clp~%a: CH (K, x)|||luo g : C*P(K N K[M],x,p)|
< O Jully

where we have used 2.28 to estimate . Next observe that

1P A — ARy o Tl - %2 (K 1 K[M), x, o)

< IPP(AR — 1AR) : C*P(E ) lullg 55

2
< 0722 ully sm0
where we have estimated p?(|A|2 — ]A\g) using C.11, estimated the tensors
using 2.28, and used that A = 7p(—ds? + df?) and that p2|/°1]§ = 2sech?s.

. o . . 2 .

Finally, we have the trivial estimate ||p*Ric(vj, vy )u o HKHO,ﬁﬁ;f([M} <
C’ngxHuHZ 550 combined with the preceding and the definitions, this con-
cludes the proof of the first estimate in (i). The proof of the second estimate
is similar, so we omit it.

We now prove (ii). In this case we apply the notation and observations
in the proof of 4.3(ii) including (4.4). We have then using scaling for the left
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hand side that for q € S’

(dF(@))? | Ly {uolly} —{Lyu} olly : COF(LIGN(BY), 3g) ||
< waeight(Q) H u - CQ,ﬁ(B(/p gq) H )

where here fyeight(¢) = bgé?i%:”) if g € DE(S&;) for some p € L and

fweight(Q) = Tri/ig otherwise. By the definitions it is enough then to check

that Vg € S’ we have

fweight (Q) (d%(Q) )61 < C b61_1 IOg b Tgax'

This follows from the definition of fyeight and the observation that x4 log x
is decreasing in x for x > b. This completes the proof. O

The definition of ’R?\f}p 4

We consider now the linearized equation modulo K[L] (recall 1.2(vi), 3.11,
and 3.25),

(4.8) Lyu=E+ Jy(wh, wg),

with B € C%%(M) given and u € C>#(M) and w} € K[L] the unknowns.
We will construct a linear map

(4.9) R COP (M) — C*P(M) @ K[L] ® K[L] & COP (M),
where using the notation

(410) By = Lyu — E = Iy (wp , wp ),
and RYE = (ul,wal,wE’l,El), VE e ¢ (M),

we will have that (u1,w}, |, wy ) is an approximate solution of (4.8) with
approximation error F in the sense that the norm of FE is small compared to
the norm of E. The approximate solution will be constructed by combining
semi-local approximate solutions. Before we proceed with the construction
we define some cut-off functions we will need.

Definition 4.11. We define o/ € C®(X) and ¢ € C®(M) by requesting
the following.
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(i) ¥ is supported on K[M] C M and ' on S’ C'S (recall 3.23).
(ii) ' =1 on S| and for each p € L we have

¢ =W [br,, 2b7p;d>] (0,1) on Dy(2b7,),
=W [20,, 0, d> olls] (0,1) on Klp).

Given E € C%P(M), we define ', € C%%(X) by requiring that they are
supported on S’ and that

(4.12) Ju(EY, EL) = (¢ olly) E.

Because of 4.1 and 3.11, there are unique v/, € C>#(%) and wi , € K[L]
such that

(4.13) Lyu!, = E + wil on ¥ and VpeL E&ul =0.

Note that Ly, (1 — ¢')uly) = [¢/, Ls]uly+(1—¢') E’ is supported on K [M]\
K[M] c K[M] C M. We define now E € C%(Ky;), by requesting that it
is supported on Ilx (K ,[M]) and that on K,[M] we have

(4.14) Eollx = (1—¢/ o) E+ Jar (Lx (1 —¢)d) , Ls (1 — ')’ )).

For k € {0,2}, we introduce a decomposition C*5(Ks) = C’l]f)’g(KM) @
C}’ffgh(K M) into subspaces of functions which satisfy the condition that their
restrictions to a parallel circle of a K[p, 7,,,] belong or are orthogonal
respectively to the span of the constants and the first harmonics on the

circle. We then have
(415) E = Elow + Ehigh7

with Elow € C’loo’fj(KM) and Ehigh € C}?{gh(KM) supported on Ik (K ,[M]) C
K-

Let Lx denote the linearized operator on Ky, (defined in 1.2(vi)), and
let Uow € CIQOVE(KM) and Upigh € Cﬁi’gh(KM) be solutions of (recall 3.23)
(4.16) L Uow = Blow, Lk Unigh = Ehigha

determined uniquely as follows. By separating variables the first equation
amounts to uncoupled ODE equations which are solved uniquely by assum-
ing vanishing initial data on the waist of the catenoids. For the second equa-
tion we can as usual change the metric conformally to h = %\A\Q g = Vgse,
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and then we can solve uniquely because the inhomogeneous term is clearly
orthogonal to the kernel. We conclude now the definition of R‘}ﬁp "

Definition 4.17. We define R as in 4.9 and 4.10 by taking Ry E =
(ul,wgl,wgl,El), where wjgl were defined in (4.13), E1 was defined in
(4.10), and

uy = @Eﬂo Ik + JM(l//u;,q//u',), where U := Uloy + Uhigh € C2’B(KM).
The main proposition

Proposition 4.18 (cf. [29, Proposition 4.17]). Recall that M is as in 3.17
and we assume that 3.11, 3.15, 4.1, and 4.5 hold. A linear map

Rar : COP (M) — CHP(M) x K[L] x K[L]

can be defined then by

RuE = (u,w},wg) = Z(un,wg?n,w};n) e O (M) x K[L] x K[L]

n=1

for E € CY%(M), where the sequence {(un,wgn,wgn,En)}neN is defined
inductively for n € N by

+ - — appr .
(un,wE’n,wEm,En) =—-Ry, En-1, Ey:= —FE.

Moreover the following hold.

(i) Lyu=E+ JM(wE,LLwQE).
(i) [full2,p0r < C(b)Sin > H4E HQO,B,V—ZM'
(ifi) [Jwg : C¥ (S, 9)|| < CoLin™ > 1 Ello,5.7-2001-

min

Proof. The proof is similar to the proof of [29, Proposition 4.17] but we
include it to keep the article self-contained. We subdivide the proof into five
steps:

Step 1: Estimates on v/, and wf%,l: We start by decomposing E’, and u/,
(defined as in (4.12) and (4.13)) into various parts which will be estimated
separately; £’ and u' are decomposed in analogous fashion. We clearly
have by the definitions and the equivalence of the norms as in 4.3 that

HEZ&-HOﬁ:’Y*Z;E <C HE

‘O,ﬁ,va;M-
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For each p € L, we use D.1 to define u),, € C*P(D3(26,)) satisfying
Eyuy, =0 and

w4 ll2,87:03(25,) < C B lo,84-2;5-

We define now v/, € C*#(X) supported on Uper D§(25p) by requesting
for each p € L that

Wl = W[28,,6,:d5] (0,4, ) on  D3(26,).

We clearly have

Huq/_ 2,875 = C||E||0,B,7—2;M-

Now E', — Lyu/{ vanishes on | |, D3 (5,) and therefore it is supported

on S =X\ D7 (6,). Moreover it satisfies

|E, — L

0,87-25 < C||Ello,gy—2,Mm-

Using the definition of the norms and the restricted support S} we conclude
that
. 0, —2-
1B, = Lsul] : C¥P(S,9)| < C 8127 ||E) — Lol llo g y25.
The last two estimates and standard linear theory (recall 4.1) imply that
the unique solution u/{ € C%#(¥) to Lyu!] = E', — Lxu!] satisfies

—9_
[ty 2 (S 9)ll < C oL 1Nz
By 3.11 there is a unique v, € K[L] (recall 3.11) such that Ey(uf +vy) =0
for each p € L. Moreover by the last estimate and 3.11, vy satisfies the
estimate

vg : CFA(S, )| + | Lsvs : COP(S, )|l < C 8t || Ello,s—2:01-

min

Combining now the definitions of v and vy we conclude that Ly (u/ +

u +vy) = E + Lyvy. By the definitions of /| and vy we clearly have

that £, (v +uY +v;) =0 Vp € L and hence

ro_n " + _
uly =ul +ul + vy and wE,l—EEer-
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Note now that Lyu!! = E' — Ly vanishes on ||,/ DZ(6,/4) and
by 3.11 so does Lxvy € K[L]. We conclude that for each p € L we have
Ls(u!+vy) = 0on D>(8,/4), and since we know already that £, (u/+v,) =
0, it follows that

"

vl +vill2p5s < CO mm||u/+”+v+ CHA(%, )],

where ¥ € (7,2). Combining with the earlier estimates for v/ and

vy we Conclude that

— 7+2
v

HU/+”+U+”2,B%E < C(‘)ﬁ ¥

min

We need the stronger decay for estimating F later. A similar estimate holds
with 7 instead of 5. Combining with the earlier estimate for /| and arguing
similarly for v’ we finally conclude that

—4-2
HU:I:HQ/B%E < C’5rnm g H E HU,,@,'ny;M-

Step 2: Estimates on u: By the definitions and 4.3 (with e = 1) we have
that

1 Ellosr—2xn < CUIEopr—20 + U 2855+ Ul ll2pq:5)
< 05_4 20 H E ”0,[3,772;1\47

min

where the second inequality follows from the previous estimate. By scaling
4.16, the definitions, and standard theory, we conclude that Vp € L

| Tiow : C*P(Kylp), 7 % gl,) | < CO) | T2E = C¥P(Ky[p), 7, % gl,) |
< CO)Y TN E losr—20

where K, [p] := k(K [p]) C K[p, 7p, ,,]. Using the fact that the ODE solu-
tions of the Jacobi equation correspondlng to constants grow at most log-
arithmically in p, and the ones corresponding to first harmonics at most
linearly in p, and that E is supported on |—|pe 1 K [p], we conclude by com-
paring weights and using that p > 7, on Kjs and v > 1, that

~ Ty ~
| tiow ll2,8vk0 < 177 "Utow ll2,8,1:x0 < C(0) | E llo,8,7y—2:Kn -

(Actually U)oy can be expressed explicitly in terms of Elow by using variation
of parameters and the ODE solutions corresponding to constants ¢eyen :=
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1—stanhs and ¢,qq := tanhs, and the ODE solutions corresponding to first
harmonics 1. := sechs and 1, := sinhs 4 ssechs.)
By scaling 4.16, standard linear theory, that £ is supported on | |, K, [p],

and that on each KK, [p] the conformal metrics 7, 2 g| pand h = $A|2g = v*gse
are uniformly equivalent, we conclude that Vp € L

| nign : CO(Klp, 7y, 5,)) | < C0) || 75 Enign = C*(Ky[p]) |
< CO) 1) [ Ello.pr—2%-

Similarly we obtain the second inequality below; the first inequality follows
by comparing weights as done earlier.

Y3 Kar S H TL_W ahigh H27B>O;KM S C(b) H EHOﬁ,'Y*QJKM'

Combining the above we obtain

~ 4—2
1@ 1257k < CO) S 2 E Nlo,6,4—201-

Step 3: A decomposition of Ey1: Using (4.10) and 4.17, (4.12), (4.14),
(4.15), and (4.16), we obtain

(4.19) Ey = FEy 1+ Ev 1+ B,
where Ey 1, Ey 11, Eq 111 € CY8(M) are defined by (recall 4.11),
By =[La, 9] (Tollg),
Evgr =1 (Lar (T 0Tk ) — (Lgit) o)
12 (uoHK)—E’oHK,
By =Ly { In@' ')} — Iy (L (@'dly), Ln(¥'ul)),

(4.20)

on K[M]\ K,[M], K[M], and S’ respectively, and to vanish elsewhere, and
we have used that Lyu/, = F/ + wf  which follows from (4.13).

Step 4: Estimates on uy and Fp: Using the definitions, 4.3 with e = 1,
and the estimates for v/, and @ above we conclude that

—4-2
wt ll2,50500 < CO) i NI B llo,pr—251-

By 4.3 we have |[ @ o T lly g5, gpam oy 5 Wl g 2 (RN 01 )
Using definitions 4.2 and 3.23 we conclude that

| wo Ik ||27/377;;V([M]\f(1[ M S Cng( ”) | u HZﬁJ;KMv
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and therefore we have by the definition of Ey ; and the preceding estimates

a(l—y)

| Evrllogr—2:m < Crgax 7 || tiow

2,6, 1| Unigh Nl 5 . e &, ()
< COTIRYOV E Jlo,80-2% 0 -

Applying now 4.7(i) with f = u and 4 = v and using the definition of U we
conclude that

HELU Hoﬂ,’Y*ZM < CTI%I%X HHHZB,V;KM'

We decompose now Ej jr = EﬁH[ + Ei”’ln where Ei”HI and Ei”’HI are
defined the same way as Ej r7; but with u/, replaced by «/L and u[ + vi
respectively. Applying 4.7(ii) with ¢, = 0, f = u/[, and ¥ = 7, we conclude
that

1EY 111 llogy—2m < Co 1 logh ([[u] |28 + [|u” |

287355 -
Applying 4.7(ii) with ¢ =5 — v, f = u/{ + vy, and 7 = v we obtain
| Ei’,’H[ ”076,7—2; M
< OO Mogh o (1 + villapas + 162 +v-ll285:5) -

Combining the above with the earlier estimates and using 3.15(ii) and 4.5
we conclude that

I B llo,8.7—2; M
< (C)82 + b logh + Co V2 logh 70707 | E

max max

0»/877727 M-

Step 5: The final iteration: By assuming b large enough and 7y,,x small
enough in terms of b we conclude using v — v — « > 0 and induction that

| Enllogr—2:m < 27" || Ello,gy—2; M-

The proof is then completed by using the earlier estimates. O

Corollary 4.21. Recall that we assume that 3.11, 3.15, 4.1, and 4.5 hold.
A linear map Ry, : COP(M) — C?B(M) x K[L] x K[L] can be defined such
that given E € C%P(M), the following hold.

(i) Layu=E + Jy(wh, wy) where Ry (E) = (u, wh, wg).
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0,8y=2,y'—2;M -

min

(i) [[wll2,pm0 + lwE : COP (S, g)|| < C(0)S, 0 2 || E
Proof. We first define Ec C9B(M), supported on I?[M], by

(4.22) E:=9yFE — H,(JE).

We then solve Lxii = E == E oHHE1 on Kj; and then estimate @ by modifying
Step 2 in the proof of Proposition 4.18. The modifications are necessary
because the support of the inhomogeneous term is much larger and the
decay is different. We decompose as in 4.15 and 4.16. To estimate Uy we
argue as before, utilizing the fact that there are no first Fourier modes, and
so the growth is only logarithmic; this is slower than the 4/ growth rate
allowed. To estimate upie, we first solve with Dirichlet boundary conditions
the equation Lxlann = Ehigh on the annuli (conformal to punctured discs)
of Kps \ Ug(K[M]) (cf. 3.23). By arguments which are standard by now
we estimate then Uann, and by cutting it off and subtracting from Upign,
we reduce without loss of generality to estimating Upig in the case Ehigh is
supported on |_|p€L K, [p] as in Step 2 of 4.18; this can be handled then as
in 4.18. We conclude that

(4.23) [aoklly 5. iz, < ClEl0,87-2 20
We then define E/ € C%# (M) by
(4.24) E':= E —QE — [Lar, (@ o Ig) — ¥ (Lar(@ o ) — (Lxa) o k),

(@, w}h, wy) == Ry E' € C2A(M) x K[L] x K[L], and R}, E := (¢ @i o lg +
U, wh, wz). It is straightforward to check that (i) holds by using 4.22, 4.24
and 4.18(i).

Using (4.24) for the first inequality, 4.7(i) and the definitions for the
second, and (4.23) and Definition 4.2 for the third, we have

1B Nlo,g 200 < C(IE = BB lo55-201 +

Near, @Oy 5 o iepam s + 130 (@0 Thi) — (L) o Tl o, )

< C(HEHOﬁﬁ—?ﬂ’—?;M + Hﬂo HK||2,57—YJ([M]\R1[M] + ||ﬂo HK||275,7_1;]V{L)
< C|E

0)ﬂ77_277/_2;M‘

Combining with 4.18, (4.23), and the definition of R, E, we complete the
proof. O
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5. Constructing minimal doublings from families of LD
solutions

The nonlinear terms

In this section we state and prove Theorem 5.7 which “automates” the con-
struction of a minimal doubling given a suitable family of LD solutions.
Continuing the discussion of the initial surfaces from the previous sections,
we first state and prove Lemma 5.1, where we discuss their perturbations
and the nonlinear terms in the resulting mean curvature.

Lemma 5.1. If M is an initial surface as in 4.18 and ¢ € C>P(M) sat-
isfies ||@ll2,8,y,y:m < T4 (recall 4.2), then (recalling 1.2(viii)) My =
GraphAN/[’g(gb) is a well-defined embedded surface. Moreover if Hy denotes the

mean curvature of My pulled back to M by X]\A}‘Z) : M — My and H the
mean curvature of M, then we have

—a/2
| Hy — H = L6 llog—20—201 < C ot 21613 5y rena-

Proof. Following the notation in the proof of 4.3 and by 4.4 we have that
for ¢ € S, the graph By of ¢ (or —p7,) over B in (%, g,) can be described
by an immersion X, : B, — By = X.4(By), such that there are coordinates
on By and a neighborhood in N of By, which has uniformly bounded Cc3h8
norms, the standard Euclidean metric on the domain is bounded by C X7 gq,
and the coefficients of g, in the target coordinates have uniformly bounded
38 norms. By the definition of the norm and since ||¢||2,5..:m < e/t
we have that the restriction of ¢ on By satisfies

[CHONSEE CQ’ff(B;’fq)H
< O(dr(g) " max ((A()7, T (A (@)) 18]12,8,7,7:0-
Since the right hand side is small in absolute terms we can conclude that

Graph]\B/[,’g ¢ is well defined and embedded. Using scaling for the left hand
side we further conclude that

14 (q)(Hy — H = Ly¢) : C¥P(By, gg)ll <
C(dr(g) max ((dr(q), 5 2(dL(@)) 613,501
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Rearranging this, we conclude that (recalling from 4.5 that v/ =~ — 1)

|Hy — H — Lo : COP(BY,3,)|l
< C(di(q)" ' max ((dz(0))" 2, Taas (AL(@) *) 16113.5.4:01
< Crot max ((dr (@))% 7ln®2(7/d1 () 2(AL(@)" ) 16112 5o

where we have used that v/ = 1/2. Finally, note that the components of
K[M] appropriately scaled are small perturbations of a fixed compact region
of the standard catenoid, which allows us to repeat the arguments above in
this case. By combining with the earlier estimates and using the definitions,
we conclude the estimate in the statement of the lemma. OJ

The fixed point theorem

Assumption 5.2 (Families of LD solutions). We assume 4.1 holds and that we
are given continuous families of the following parametrized by ¢ € Bp C P,
where P is a finite dimensional vector space and Bp C P a convex compact
subset containing the origin 0.

(i) Diffeomorphisms }'CE : ¥ — ¥ with 75 the identity on X.
(ii) Finite sets L = L[¢] = .FCELHO]] C X of cardinality |L| = |L[¢]| =
Z[o]|.
(iii) Configurations 7 = 7[¢] : L[¢] — R4.
(iv) LD solutions ¢ = ¢[¢] as in 3.6 of singular set L = L[] and configu-
ration 7 = 7[(].
(v) For each L = L[] constants 6, = [[C]] as in 3.8.
(vi) For each L = L[] a space JC[[C]] K[L[¢]] as in 3.11.
(vil) Linear isomorphisms Z¢ : V[¢] — P where V[(] := V[L[(]] (recall
2.9).

Moreover we assume the following are satisfied V¢ € Bp.

(a) H]—"CE : C*|| < C where the norm is defined with respect to some atlas
of ¥ and the constant C' depends only on the background (X, N, g).

(b) ¥p € L[O] we have FZ(D,(38,)) = Dy (30,) with ¢ := FZ(p).

(c) ¢ =¢[¢], L = L[], and 7 = 7[¢] satisfy 3.15, including the smallness
of Tmax in 3.15(i) which is now in terms of the constant C in (a) as
well.

(d) Vp € L[0] we have the uniformity condition 77 < 7, < 7'[11/ ? where
here 7, denotes the value of 7[0] at p and 7, the value of T[(] at

a = FE(p) € LICT.
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(¢) ¢ — Ze(Mppeel¢]) € 3Bp (prescribed unbalancing).
Definition 5.3. Assuming 5.2 we define a scaled push-forward map .7-'27 :
V[o] — V[<] by

F Ry + Fp)peLjo] = (Tq+ / (“(f?)*l(q) +(F¢ )*K(fg)fl(Q)))qeL[[CH’

where (‘Fg)*fﬁv(}}z)q(q) = %(]:cz)_l(q) o (d(]:cz)_1(q)f§)_1 S T;E and Tq de-
notes the value of T[C] at ¢ € L[(].
Definition 5.4 (Families of initial surfaces). Assuming 5.2 and following
3.17 we write
M[¢] = M[¢[¢], FEk] for ¢ =(¢, k) € Bp x Bypoy  where
Bypop = { "k + Fp)per : V€ L, 7 € [<1,1], [Fply < 1} c v[o].
Lemma 5.5 (Diffeomorphisms F¢). Assuming 5.2, there exists a family of

diffeomorphisms F¢ : M[0] — M_[[g]] satisfying the following, where here 0
denotes the zero element of P x V[0] and ¢ € Bp X By[qy is as in 5.4.

(i) F¢ depends continuously on €.
(i) For any u € C*#(M[(]) and E € C%P(M[(]) we have the following
equivalence of norms:

o Fell2,8,9,90]0] 3 lull2,89,7701¢0-
1E 0 Fe llo,sr—2-2:m10) 7 112 llo,g.y—2.~2:m1¢1-
Proof. Vp € L[0], we first define .7?5 : Cyl[— - Cyl[-Sc,quc,q] by ]?g ©
Yoni(0,5) = Yon (6, §2s), where ¢ := F(p) and so,p and s,q are defined by

the equations 7, coshsp, = 7,'/2 and 7, coshs¢ , = 7'/2.
We then define F¢ to map each AJ onto AZ, where

50,p,50,p]

MG =X glp, T 5} (C¥lr_sy  w0,) © ML,
Ag ::X]V([qvTqvﬁq](cyl[—sg,q,qu]) - M[[g]v

by requesting that

(5.6) fgoXIv([p, Tp,ﬁp] = X[V([q,Tq,ﬁq] oﬁé’.
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We next define the restriction of F¢ on M[0] \ K[M[0]] to be a map

onto M [(] \ K[M¢]] which preserves signs of the z coordinate (recall 2.2)
and satisfies

Hgo}"gz]:czoﬂg.

On the region K[M[0]] \ Upcrfo)Ap we apply the same definition as in
the above paragraph but with .FCE appropriately modified by using cut-off
functions so that the final definition provides an interpolation between the
two definitions above and satisfies (i).

Using 5.2(d) and 2.4, it is not difficult to check that for each p € L[0],

s ~ S¢.q-
P 1ic/logr,|
Using this and arguing as in the proof of 4.3, we conclude (ii). O

Theorem 5.7 (Theorem A). Assuming that 5.2 holds, there exist é =
(¢, &) € Bp x Byjo) and $ e COO(M[[Q]) (recall 5.4) satisfying (recall 4.2)

1Ny 5 onrer < T,
By s MIC]

such that the normal graph M := (M[[é]])&) is an embedded smooth closed
minimal surface doubling 3 in N as in 1.1, satisfying

M = Graph(*(ii*) U Graph ¥ (—ii"),
(5.8) where Y = Hz(M) =3\ |_|peL bp7 L= L[[é]L
and DE(Tp(l - Tg/g)) cD,cC DE(Tp(l + 7'5/9)) Vp € L.

Moreover M has genus 2gs, — 1+ |L| (where gs, is the genus of ) and its
area |M| satisfies

(5.9) M) =25 -7 > 72 (1+0(T;/2\1ogrpy)).
peL

Proof. We first define B ¢ C?#(M[0]) x P x V[0] by

(5.10)
B = {U € C2’B(M[[O]]) : HU||2,B,7,7’;M[[O]] < Tmax[[o]]1+a } X Bp X BV[[OH~
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We next define a map J : B — C?#(M[0]) x P x V[0] as follows; note
that the proof is based on finding a fixed point for J. Suppose (v,() €

B. Use 4.21 to define (u,wj,wy) = _R/M[[Q] (H — Jy(wh,w™)), where

wt = Ls&'(-Mpp £ k) as in 4.6. Define also ¢ € C*# (M[¢]) by
p:=wvo ]-'51 + u. We then have:

L Lyu+H = Jy(w™ +wh,w™ +wg).
2. By 4.6, 4.21, and the size of v in (5.10),

1+a/4

+
HU)H . CO,/B(Eag)H + ||¢ 2»5:7:7’§M|I£]] < Thax

3. Using 4.21 again we define (uq, wé,wé) = _7%\/[[[(}] (Hy — H — Lyo)

and we have Lyjug + Hy = H + Ly + JM(wa,wé).

2-a/4
4. Moreover by 5.1, Hw$ : 0075(2,9)" + HUQHZB,%V’;M[[QJ < 72ol

5. Combining the above we conclude
Lar(ug —voFg ')+ Hy = Ju(Lel ' pw", Lo€r n7),

where pt := —Mpp+ K+ ufl o and ufl o are defined by requesting
—1,,+ + +
that Ls& "py o = wi + wg-

We then define /J‘symv lJ‘asynU l"’?{lza M?gl, and J by

(5.11)

gy = BT BT, 2 =T T,

sym | asym |

QHH,Q = ,U]—;Q + IJ/[_-LQ7 2'u‘H,Q = “E,Q _ anj
j(%g) = (uQ o ]'—S, C + Zg(usym) , (}"27)—1(& o uasym))
- (UQ OJ:Q’ ¢— Zg(Mup), 0) + (0, ZC(M?E), _(}‘27)—1(”?;}2;1))‘

We are now ready for the fixed-point argument. Clearly B is convex.
Let ' € (0,8). The inclusion B < C*#(M[0]) x Bp x By[q] is compact
by the Ascoli-Arzela theorem. By inspecting the proofs of 4.18 and 4.21, it
is easy to see that R’MM depends continuously on ¢, and from this, 5.2(¢)

and 5.5(i), that 7 is continuous in the induced topology.

We next check that J(B) C B by analyzing the action of J on each
factor of B. By (4) above and 5.5 it follows that J maps the first factor
of B to itself. We see that J maps the second and third factors of B into
themselves using Schauder estimates, 5.2(¢), (5.11), (2) and (4) above, and
by 3.15.
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The Schauder fixed point theorem [14, Theorem 11.1] now implies there
is a fixed point (,¢) of J. Using (5.11) and the fixed point property in
conjunction with 5.2(e), 3.11, and 4.1, we see that ug = zv)o]-'gl and p =0,

where we use “”” to denote the various quantities for (v, ¢) = (v,¢). By (5),

we conclude the minimality of M. The smoothness follows from standard
regularity theory, and the embeddedness follows from 5.1, (2), and (4).
We now prove the existence of 4+ and ¥ = Y\yer Dp as in (5.8) which

satisfy the claimed properties. Consider the smooth function f : M — R de-
fined by f = (v,;,0:), where 0. is the gradient of the signed distance to
Y as in A.1. The set of points p where M fails to be graphical over ¥ in
a neighborhood of p is the level set f~!(0). From the smallness of $ and
the geometry of Mﬂé]], it is clear that f1(0) C Lper DY (27,). Moreover,

because the second fundamental form AM is nondegenerate in this neighbor-
hood, it follows from the implicit function theorem that f~1(0) is a union
of smooth curves whose projections under IIy;, bound smooth discs ﬁp cC X,
p € L which are perturbations of DE(TP). This discussion implies the exis-
tence of #¥ : ¥ — R satisfying (5.8). The claimed smoothness of #* follows
from standard regularity theory, since M is a minimal surface, and it fol-
lows from the embeddedness of M that &t +%~ >0on % \ oy, Finally, the

containment Dy (7,(1 — TS/Q)) c D, C DZ(mp(1 + Ts/g)) follows from the
estimate |||, B MIE] < 751:3/4 along with 4.2.
It only remains to prove the area bound (5.9); its proof will be broken

up into several steps estimating the areas of different portions of M. We
first estimate the area of a truncated catenoidal region.

3/4

Lemma 5.12. For anyp € L and 7 :=1," ", we have

T AT (DY ()| = 2 DS (F)| - 72

1/ < L Oty - aSOmt) 5/2
+ = Pea + Yo dl + O(r, log 7,1).
2 QDE(F) t 877 t 877 ( D ‘ p‘)

Proof. There is a domain Kr ¢ K = K|p, Tpy by C M [[éﬂ defined by re-

questing that M N Hil(DE (7)) = Graphglg((T)). Using A.8, it follows that

M N1 (D (M) = | K7

+ % /V (‘V(T)|2 _ 2&3[‘[ - (T)Z(’A‘Q + RiC(V, 1/) _ HQ)) do + O(Tjg}:r%))’

a
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where A and H are the second fundamental form and mean curvature of K

and we have used that HcI)H2 By sMIE] < T&i;?/ to estimate the error term.

From this last estimate, the estimate for H in 4.6, and the definition of the
global weighted norms in 4.2, it follows that

/ 21V [2do = O(Froms ), ; bHdo = O(Front=®),

/V CT>2(|Af(|2 + Ric(v,v) — H?)do = O(r3731;;).
K&

The conclusion now follows from combining these estimates with the esti-
mate on the area of K(7) = K N Hgl(DE (7)) from 2.35, using the closeness

of K(F) to Kr, and using 3.15(iii). O
Lemma 5.13. The functions 4t satisfy the following.
D) [l : €22\ Loy DEW@)]
< CTinax| 108 Tax| + Cllp : O (5 Ly, DF(8)))] < Crina.

s: v + 14+a/4
(11) For each pe LJ ”ui - Socat[Tpuﬁp]HQﬁ’%y;DE(5;/;)\D§(7—;/8) < Tma)?/ .

¥ 1+a/4
Proof. Recall that M = Graph’’ M(d)) that Hd)Hzgaw MIE] < Tme/*, and
with @ =X\ |,c; D, (T;/ ) we have from 3.17 that

M) NTI5H(Q) = Graphdy (%) U Graphy? (—p?).

Recall also from Lemma 3.22(ii) and its proof that the estimate

% - CHEEN || Dy (5,), 9)ll
peL

< Cmax| 108 Toax| + Clle : C*A(S\ | | DY) < CT82

max
peEL

holds. Using these estimates and the smallness assumptions on Tyax, we
can apply B.9 to conclude (i). Items (ii) also follows from B.9, combined
with the definition of the norms in 4.2, the fact that ¢ = @, [Tps K] ON

DE(8,)\ DE(r;/%), and 2.12. O

Lemma 5.14. The following estimate holds.



Generalizing the Linearized Doubling approach, 1 351

BN | DR = 22] - 23 D2 ()
pEL peEL

oot _ Oy,
_ - + cat cat 5/2 1
Z /E)DE( 3/4 (Socat 87’] + Peat (97’] > ds + Z O(Tp | 0g TPD‘

pEL peL

Proof. By applying A.10 with u = 4% on Q; := ¥\ | | d,), we have

pEL P (
(5.15)

1
| Graphl¥9(ii*)] = |0 - —/ it Loutdo +/ + O e O,
2 Jo, oo, O
where we have used the minimality of ¥ and 5.13(i) to estimate the error
terms. By applying A.10 with v = 4% on Qg := | | o (D;'(6;) \ DE(T5/4)),
we have

pEL

1
(5.16) | Graphyy? (it )\—|QQ|—§/ ut Lyitdo
Qs

out
+ - / V+—ds + — / T ——ds + O(|L Tri)’lax 10g Tmax|?),
) [t s+ Ol 108 Tl

pEL

where we have used 5.13(ii) to estimate the error term.
We now estimate the integrals of 4+ Lsu". From the minimality of ¥

and M, it follows that on ¥\ Uper D3 (r, 3/4)

(5.17)  |Lx@t| < Clat? + OV + CIV2a| (ja*| + |Va*|)
(notice there are no |V2u*|? or |V2u*||Va®| terms; see e.g. [21, Lemma C.2]

or [9, Appendix A]). Working this into (5.15) and estimating using 5.13(i)
reveals that

(5.18) | Graphg, 79( = |Ql|+/ at a—ds+0( 33,
00,  On

A similar estimate of [, 4" Lsutdo, using 5.13(ii) to estimate, reveals that

(5.19) | Graphgy?(it)| = Q] + - Z/ 4/ i g ds
pGL ODZ (T

it
— ut——ds + o(r>/? log 7,1).
L% 3 063 g )
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Since Q0 := X\ | | ¢/, DE (7‘5/4) is the disjoint union of ; and 9, adding the
estimates (5.18) and (5.19) implies that

(5.20) ’Grathg ’_|E’ Z’DE(TSM)’
peEL
53 B e S0 s
pEL ODF(r peEL

Next, using 5.13(ii) and 2.12, it follows for any p € L that

(5.21)
out ol
1]+—ds—/ o =t g — O(T2F /8724 log Tax]).
/6135(73/4) on oy 9 |

The conclusion follows by combining (5.21) with (5.20) and the completely
analogous estimates for \Graphg’g (—u7)|, and using 3.15(iii) to estimate
the error terms involving 7y« in terms of 7,. O

The proof of (5.9) follows now by adding the estimates provided by 5.12
for each p € L on |M N I, (DE( 3/4))], to the estimate in 5.14, and noting

in particular that the boundary terms cancel. This completes the proof of
Theorem 5.7. U

The following observation which follows from 4.1 will be useful in con-
structing and studying LD solutions.

Lemma 5.22 (Existence and uniqueness for LD solutions [29, Lemma
3.10]). Given finite L C ¥ and a function T : L — R, there exists a unique
LD solution ¢ = ¢[1| of singular set L' :== {p € L : 7, # 0} and configura-
. Moreover, ¢ depends linearly on T.

Proof. We define ¢1 € C°(X \ L) by requesting that it is supported on
UpeL,(DE(%p)) and @1 = ¥[6,,20,; d>](7,Gp,0) on D>(26,) for each p €
L’. Note that Ly € C°(X) (by assigning 0 values on L') and it is sup-
ported on UPGL,(DE(% )\D3 (6,)) Using 4.1, there is a unique @ € C®(%)
such that Lyps = —Lxp1. We then define ¢ = @1 + s and the conclusion
follows. O

Remark 5.23 (Index, nullity, and characterizations of minimal doublings).
It is interesting that currently no characterizations of doublings are known,
even under strong assumptions, for example given bridge positions and any
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further information. This means that even a small modification in the con-
struction process would lead in principle to different minimal surfaces, even
though the new ones would strongly resemble the previous ones. The only
known such characterizations for minimal surfaces in the round three-sphere
are for Lawson surfaces [36].

Since it seems very likely that surfaces strongly resembling each other by
their constructions are actually congruent, it is customary in the literature
to discuss them as if they were known to be. In this article we also adhere
to this and we consider the doublings in Remark 6.6 the same with the ones
in [54] and also (for square lattices) with the ones constructed in [38] or
[40]; similarly surfaces constructed as in Remark 9.41 in the case all m; = m
with surfaces constructed in [33]. Proving however that such surfaces are
congruent remains at the moment an interesting open problem. We hope that
eventually index, nullity and characterization results will be provided for the
surfaces constructed in Theorem 5.7, similarly to the results in [35,36], and
with the same generality as in the area estimate (5.9). O

6. New minimal surfaces via doubling the Clifford torus

Symmetries and LD solutions

Let T := {(z1,22) € C?: |z1| = |z2| = 1/v2} C S* C C? be the Clifford
torus in the unit three-sphere (S, g). We recall that doublings of the Clifford
torus with catenoidal bridges centered at the points of a square m x m (large
m € N) lattice L C T were first constructed in [38]; this was extended in
[54] to rectangular lattices k x m (large k,m € N and a priori bounded
m/k). These results can easily be reproduced by constructing the required
LD solutions and applying Theorem 5.7 (see Remark 6.6). Our main focus
in this section however is to construct new doublings in the following cases:
first, when the necks are centered at the points of a lattice with m/k not
constrained (see 6.3) and second, less symmetric doublings where there are
three different bridges up to symmetries. These new constructions are only
indicative of the possibilities and many more are carried out in [32] with
other symmetry groups or more necks per fundamental domain.

We briefly recall now some notation from [38, 54]. Given an oriented
circle C' in S3, write R% for the rotation by 6 about C. Define the circles
C :={z =0} and C+ := {z; = 0}. We have

0 0

RY. (21,29) = (e¥21,29), and R%(z1,22) = (21,¢"29).
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Define the following symmetries of C? and the domain of the coordinates
(x,y,2) defined in A.3:
(6.1)

X(z1,22) = (71, 22), Y(21,22) = (21,22), Z(21,22) = (22, 21),

X'(x,y.2) = (x+ h,y,2), Y (xy.2) = (y+hz) VheR,

X(X7Y7 Z) - (_vaaz)a X(X7Y7Z) = (X7 _y7Z)7 Z(X7Y7Z) = (Y7X7 _Z)'
With E the parametrization map in A.3, these satisfy the relations

62) EoX=XoE, EoY=YoE, EoZ=ZoE,
6.2

~ ~h ~ ~ ~h ~
EoX'=RY?oE and EoY =RY’oE VheR.

Assumption 6.3. We fix k,m € N with £ > 3, m > k, and assume m is as
large as needed in absolute terms.

We define the symmetry group G, a point pg € T, a lattice L, and set of
parallel circles Ly, by

2 2m 1 -
§=Glk,m]:= (R4, RZ.XY), po:=—7(1,1)=E(0,0,0),
(6.4) (o one T2

L=Llk,m]:=Gpo, and Lpw:={RiRlpo:0€R,icZ}.

If X is a function space consisting of functions defined on a domain 2 C T
and € is invariant under the action of G, we use a subscript “sym” to denote
the subspace Xgym C X consisting of those functions f € X which are
invariant under the action of G.

The linearized operator is L = Ar + 4, and it is easy to see that
(ker L1)sym is trivial. By Lemma 5.22 there is therefore a unique §-symmetric
LD solution ® = ®[k, m] with singular set L and satisfying 7, = 1 ¥p € L.
For convenience, we define the scaled metric, scaled linear operator, and
scaled coordinates (X,y) on T by

_ L1 4 o
(6:5)  gi=m?g,  Lri=—3lr=Aj+—5,  (XF):=mlxy).

We define § = 1/(100m) and for p € L define 4, = .

Remark 6.6 (Applying the LD approach in the cases of [38,54]). We first
sketch the construction of the required LD solutions ®. Integrating L1 ® =
0 over T and integrating by parts, we find ]Z—’ZZ = ﬁffb. Define G €
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Sym(T\ L) by requesting that G is supported on DT(36) and satisfies
there G = W[26, 36; d; (G, — log4,0) (where Gy is a Green’s function for
Lt as in 3.1) and define & € C (T) by requesting & = G+ km + @,

sSym
From this decomposition, est1matyes on the average and oscﬂlatory parts
of G and the uniform boundedness of m/k, we conclude that L has no
small eigenvalues when restricted to functions that have average zero, hence
12" - Cym(T, 9)|| < C(j)-
For some ¢ fixed independently of m, define now Bp := [—¢,c] C P :=
R, LD solutions ¢ = ¢[(] := 7® = %ece_i_rq) for ¢ € Bp, and Vgym|[L]
the subspace of V[L] consisting of the G-invariant elements. Clearly Viym L]
is one dimensional and may be identified with R. Using the definition of 7
and the estimate on @', it follows that the map Z¢ : Vgym[L] — P defined
by Ze(p) = Lp satisfies [( — Z¢(Mrp)| < C for a constant C' independent
of ¢. After restricting to spaces adapted to the symmetries and choosing ¢
to be large enough in terms of C', we can then apply Theorem 5.7 because
the remaining assumptions are easy to check. O

Definition 6.7. Given a function ¢ on some domain ) C T, we define a
rotationally invariant function @aye on the union € of the orbit circles of
{R% : 0 € R} on which ¢ is integrable (whether contained in Q@ or not), by
requesting that on each such circle C’,

, 1= avg .
C
C/

We also define posc on QN QY by Posc ' = @ — Pavg-

Lemma 6.8. Pavg = 55507y cos (V2 — 2d} ) and Davely,, = g,
where F := v/2tan (\/_k)

Proof. Since L1®ayg = 0 on T \ Ly, and the distance between neighboring
circles of Lpar is v/27/k, the symmetries imply that Dog = C cos( 27 —
QdTw) for some C' # 0. By integrating L7® = 0 on Q, ., = DTW(Q) \

D7 (€1), where 0 < €1 << €2 and integrating by parts, we obtain
0
/ —P + / 49 = 0,
o0, ., On .

where 7 is the unit outward conormal field along 0€, .,. By taking the
limit as €1 N\, 0 first and then as €2 \, 0, we obtain by using the logarithmic
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behavior near L and the preceding that
2mrm = 427 C sin (\/5%) ,

which implies the conclusion. O

We introduce now the following decomposition. Note that we could as-
sume (but is not necessary) that G), is rotationally invariant, in which case
it is uniquely determined and can be expressed in terms of Bessel functions.

Definition 6.9. Define G € C,(T \ L) and ®,%, E' € C5,(T) by re-
questing that

G = ®[26,36;d})(G, — logdcos(2d] ),0) on DF(34),
~ 2 3 m .
O =00,, T [E Yooy dTpa ] (ﬁ sm(2d'£pm_), 0> on DT _(3/m),

that G =0 on T\ D7 (36), P = Dovg on T\ Dgpar(ii/m), and
(6.10) d=G+d+d, E =-L(G+ ).
Remark 6.11. Note that from Lemma 6.8 and the fact that

cos (\/5% — 2d}5w> = cos (\/5%) cos <2d}£par> + sin <\/§%) sin <2dTLw>
that ® as defined in 6.9 is indeed smooth across Lpar. O
We estimate the average and oscillatory parts of ® separately.
Lemma 6.12. E' vanishes on D7 (26) and E,
Moreover:
(i) IG : Cm(T\ DE(6),9)]| < C().
(i) I : Chym(T, 9)I| < C(5)-
(iii) (|19 : Chym (T, 9| < C().
In (ii), the same estimate holds if E' is replaced with either E,,, or E{

osc*

is supported on D%pal‘(?)c;).

SC

Proof. Because G is supported on D7 (38)\ L, (i) follows using (3.4) and Def-

inition 6.9. The statements on the support c of E" and EOSC follow from Defini-
tion 6.9, from which we also see that B/ = L1 ®¥[2, 3; dT g ](2\/— s.1m(2dT _),0)

on DTr _(3/m)\ DT _(2/m). Thus, when restricted to this set, the bound
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in (ii) follows from the uniform bounds on the cutoff in the g metric. It fol-
lows from 6.9 that E’ vanishes on D%p (2/m)\ DL(36). On DEP (36), note

ar ar

that £r® = 0. Since £1G = 0 on D7 (26), when restricted to DEP (36) the

ar

required bound in (ii) follows from (i). Finally, we can replace E’' by E,

Vg
/
or By

To prove (iii) it suffices to prove that the estimate holds when &' =
P, + DL is replaced by either @/ , or ®!

avg avg osc*

for ®,. Note by 6.9 that on DEP (2/m),

ar

in (ii) by taking averages and subtracting.
We first prove the estimate

m . N
;Vg = ﬁ sm(ZdaM) — Glayg-

Note that the left hand side is smooth and the discontinuities on the right
hand side cancel. Using that L1®/ , = F/ ,, on DEP (3/m) we have

avg an7 ar
2&/ 4 / /
(6'13) 8§(I)avg + W(I)avg - Eavgv

where X := mx. On a neighborhood of GDEP (2/m), we have that @avg =

0 from Definition 6.9. It follows that |®,.,| < C and |0% ®},| < C on

A%

GDEP (2/m). Using this as initial data for the ODE and bounds of the

ar

inhomogeneous term from (ii) yields the C? bounds on Dy in (iii). Higher
derivative estimates follow inductively from differentiating (6.13) and again
using (ii).

This establishes the bound on DEP (2/m), and the proof of the estimate

on D%par (3/m) \D%par(Z /m) is even easier since éa\,g = 0 there, so we omit
the details.

We now estimate ®/ .. For n € N and [ € {0,1,...}, we define ¢y, €
Caym(T) by

sym

Dun(x,y) 1= cos <%%z) <%§>

Clearly {¢¢n : n € N,£ > 0} is a complete orthogonal set for the subspace
of (L*(T))sym consisting of functions with zero average; moreover,

1/ k2

~ 4
,C']r(ﬁgn = )\g nqbgn, where )\gn == —262 + n2 + —-
' T ' 2\m m
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For appropriate coefficients E(/,’fc’n, we have then

/ } : 14n l 2 : 1 /én
Eosc - Eosc (Z)f,n’ and (I>osc A[ nEosc
£>0,neN

since L1®/ .- Since n > 1, )\Z}L is bounded by a constant independent

osc
of £,n,m, and k prov1ded m is large enough. The required bound on @/

now follows from the bound in (ii). O
Configurations with a single singularity modulo symmetries

Definition 6.14 (Obstruction spaces). Let f]ACsym[L],Vsym[L] be the sub-
spaces of K[L],V[L] consisting of the G-invariant elements, where X[L] =
@D, Xlpl, and Vp € L, Kp] is defined as in 5.12.

Since § is generated by reflections, Vym[L] is one-dimensional and may
be identified with R.

For some ¢ > 0 fixed independently of m, define Bp := [—¢,c] C P:=R
and LD solutions

1 m
(6.15) 0 =[] =7®:= —e‘e 2r®, (€ Bp.
m

Proposition 6.16. There is an absolute constant C (independent of c)
such that for m large enough (depending on c ), the map Z¢ : Veyn[¢] — P
defined by Z¢(n) = Lu satisfies |¢ — Z¢(Mpy)| < C.

Proof. For any p € L, expanding %Mpcp (recall 3.10) using 3.9 and 6.10, we
find

%Mpgo 2F+log(25>+¢>() ¢+ ®'(p) + log(50),

where the second equality uses (6.15). The conclusion follows from using
6.12(iii) to estimate ®’(p). O

Theorem 6.17. There exists an absolute constant ¢ > 0 such that for all
(k,m) € N? satisfying 6.3 and m large enough in terms of ¢, there exists a
genus mk + 1, Gk, m|-invariant doubling of T by applying Theorem 5.7.

Proof. After the obvious trivial modifications to Theorem 5.7 and its proof
to restrict to §-symmetric data, we need only to check that 5.2 holds.

It was noted above that 4.1 holds in the space of §-symmetric functions.
Define diffeomorphisms .Fgr : T — Tasin5.2(i) by I = Idr. L[¢], 7[¢], and
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©[¢] as in 5.2(ii)-(iv) were defined in 6.4 and (6.15). Next, 6,[¢] = 1/(100m)
as in 5.2(v) was defined earlier, and the spaces Kgym[L], I]ACSym [L], and Vgym L]
defined in 6.14 satisfy 3.11, verifying 5.2(vi). Finally, isomorphisms Z as in
5.2(vii) were defined in 6.16.

We now check 5.2(a)-(e): (a)-(b) hold trivially. For 5.2(c) we must verify
that 3.15 holds: Convention 3.8 clearly holds for all large enough m. Because
k>3, F =+2tan (v2%) > 0, and consequently 7 in (6.15) can be made
as small as needed by taking m large. Then 3.15(ii)-(iii) follow immediately
using that Vp € L, 7, = 7 and §, = 1/(100m), where 7. Because k > 3,

we have % < 5 and consequently from Lemma 6.8 that @,z > 0. In

particular, it follows from 6.8 that ®,,, > cmk for some ¢ > 0. The estimates
in 3.15(iv)-(vi) now follow easily using that ¢ = 7@, the decomposition of &
in 6.9, and the estimates on G and @' in 6.12. This completes the verification
of 5.2(c).

Next, 5.2(d) holds trivially since 7, = 7 Vp € L, where 7 is as in (6.15).
5.2(e) holds by 6.16 by taking ¢ large enough. This completes the proof. [

Remark 6.18 (The cases where kK = 1 and k = 2). In the proof of 6.17 we
used that k£ > 3 (recall 6.3)—which implies that ®4,, > 0 to verify that
3.15(vi) holds. While 3.15(vi) is necessary in Theorem 5.7 to ensure the
embeddedness of the resulting surfaces, a modified version of 5.7 holds—
without requiring 3.15(vi)—which produces immersed doublings. This mod-
ified theorem produces immersed doublings when k& = 1: to see this, note that
although when k& = 1 we no longer have ®,,, > 0 and consequently 3.15(vi)
does not hold, the rest of 5.2 holds. In particular, 7 can still be made arbi-
trarily small by taking m large since F' = v/2tan(v/2m) > 0. On the other
hand, the construction fails when k = 2 because F = v/2tan(v/2/27) < 0
and 7 cannot be made as small as needed. O

Configurations with three singularities modulo symmetries

In this subsection we construct and estimate G-symmetric LD solutions on
T (recall (6.4)) which have three singularities on each fundamental domain,
and apply Theorem 5.7 to construct corresponding minimal surfaces. To
simplify the estimates, we assume in this subsection that m/k < C for a
fixed constant C1 > 0. To begin, for py as defined in (6.4), define

2 2
p1 = Ré’LpOa p2 = Rgp(h L = L[kj,m] = U L’L = U 9pz
=0 =0
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and define for i = 0, 1,2 the G-invariant LD solution ®; = ®;[k, m] satisfying
Tp = 1Vpe L.

\ /n |
[ % |
Fe======————=- @------------- )
| P2 ]
. . 1 \/EW
¢ 7o ¥
: : :
L e e e e e e e e e - - - - . _____________ J

Figure 1: A fundamental domain (for the group generated by rotations) with
three singularities pg, p1, and ps. Dotted lines indicate reflectional symme-
tries.

For ¢ > 0 to be determined later, we define Bp := [—c,c]| X [%, %}2,
and for V¢ = (¢, 01,02) € Bp an LD solution

2
1 o
619 = = gi (I)l h = = — ¢ _3E’
(6.19) ¢ = p[¢] ;ez , where 1 =71[(] —ete

and by convention we define oy := —o1 — 3.
Since each of pg, p1, p2 and their G-orbits are fixed by a pair of orthog-

onal reflections in G, Vsym[¢] := Vsym[L] is three-dimensional and may be
identified with R3.

Proposition 6.20. There is an absolute constant C' (independent of ¢ ) such
that for k,m as in 6.3, mk large enough (depending on c ), and m/k < Cy
the map Z¢ : Voym[C] — P defined by

a7
21 i —2 —2
(6.21) <ZM (Ho + iz = 21), g (o + [in uz))

where here L = T(fo, fi1, f12) satisfies { — Z¢(Mpyp) € [-C,C] x [ o ]2.

Em > Em

Proof. Using 6.9 and (6.19), for each i € {0,1,2}, u; := Mp © satisfies

km 2 2 e’iT
g; ;i &/ o; L
Ni:47r, e +<E e <I>j> +e log<25>
7=0
km

=0
=37 +0 ) L 0(C) + (140 log Z
N km 7i) 98 55

pPi
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where we have expanded the exponentials and used that Z?:o o; = 0. The-
refore,

2
1 km T c? c?
2 > i =3—— +log = —_— | = = .
(6.23) 3Z;M 34ﬂ+°3ﬁ+0<0+km> <+0<c+km>

Using (6.22), that Z?:o o; =0, and (6.19), we calculate

1 km c?
=22 —p1 —po) = —3—-—02 + O | C+ — ),
3 4 km
(6.24) )
Lo — iz — o) = =385 40 (0 4+ £
3 M1 — H2 — o) = . o1 o )

The proof is concluded by combining (6.23) and (6.24). O

Theorem 6.25. Given C7 > 0, there exists an absolute constant ¢ > 0 such
that for all (k,m) € N? satisfying 6.3, m large enough in terms of c, and
m/k < Cy, there exists a genus 3mk + 1, Gk, m]-invariant doubling of T by
applying Theorem 5.7.

Proof. The proof consists of checking the hypotheses of Theorem 5.7 and is
very similar to the proof of 6.17, so we only give a sketch pointing out some
of the differences. Although now 7 takes three distinct values, Assumption
5.2(d) still holds because of 6.19. The map Z¢ defined in 6.20 is clearly
a linear isomorphism for each ¢ € Bp, and so by 6.20 Assumption 5.2(¢)
holds. O

Part II: Construction of LD solutions on O(2) X Z,
symmetric backgrounds

7. RLD solutions
Symmetries

Definition 7.1 (Symmetries on Cyl). We define the group O(2) X Za, where
O(2) was defined in 1.4 and Zo := {Id,S}. By convention, we identify each
element of O(2) or Za with its image under the inclusion O(2) — O(2) X Z»
or Zy — O(2) X Zs.

Fiz an orientation on S' and define for ¢ € R the rotation ©, € O(2)
of S' by angle c in accordance with the given orientation and the reflection
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O, € O(2) determined by requesting that ©,. reverses orientation and has
fized-point set {£(cosc,sinc)} C S.

Let O(2) act on St by the usual isometric action, Zs act on R by re-
questing that Ss = —s Vs € R, and O(2) x Zy act on Cyl := S x R (recall
2.3) by the product action with respect to the actions of O(2) on S' and Zs
on R just defined.

Finally, for c € R we define the reflection S, € Isom(Cyl, x) by S.(p,s) :=
(p,2¢c —s).

Assumption 7.2 (Assumptions on the background). In Part II we assume
the following:

(i) Convention 2.1 holds and ¥ is orientable and closed.

(ii) The embedding of ¥ in N is equivariant with respect to effective,
isometric actions of O(2) x Zg on ¥ and on N. Moreover, the action
of S on ¥ is orientation reversing.

(iii) |AJ?> + Ric(v,v) > 0 on X.

(iv) ker Ly is trivial modulo the O(2) x Zz action on X.

Definition 7.3 (Parallel circles and equatorial circles). We call the non-
trivial orbits of the action of O(2) on X parallel circles and those fized by S
equatorial.

Lemma 7.4. 7.2 implies that the following hold.

(i) X is diffeomorphic to a sphere or to a torus.

(ii) There is an O(2) X Zg-equivariant (with respect to the actions in 7.2
and in 7.1) map Xy : Cyl; — X, for some I = (—1,1),0 < 1 < o0
(recall 2.3), which is a conformal diffeomorphism onto its image and
satisfies the following.

(a) If X is a torus then ¥ contains ezactly two equatorial circles and
| < 0o. Moreover Xy, extends to a covering map Xx : Cyl — ¥
satisfying Xs. o S; = Xx. and the equatorial circles are Xx(Cyly)
and Xx(Cyly). Furthermore the image of Xy is ¥\ Xx(Cyl;).

(b) If ¥ is a sphere then I = R and the image of Xx is X minus two
points with the ends of Cyl mapped to deleted neighborhoods of
the points removed. Moreover Xx(Cyly) is the unique equatorial
circle of .

Proof. Since ¥ admits an effective circle action, a result of Kobayashi [41,
Corollary 4] implies that ¥ has nonnegative Euler characteristic. Item (i)
follows from this since ¥ is orientable.
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Next, we claim that ¥ has no exceptional orbits under the action of
SO(2). To see this, consider a SO(2)-orbit circle S C ¥ and choose (since
Y is orientable) a unit normal field v on S in ¥. Since exp™ commutes with
50(2), S. := {expy(zv(p)) : p € S} is a SO(2)-orbit for all z € R, and
smoothness implies the S, are of the same orbit type for all z € (—¢, €) and
e > 0 small enough. Since the principal orbits are dense, S is a principal
orbit and (since SO(2) acts effectively) is in particular covered exactly once
by SO(2).

The quotient of the principal orbits of ¥ by SO(2) is diffeomorphic to
R or S!, corresponding to the cases where ¥ is respectively a sphere or
torus. Observe that the Zy action descends to the quotient and (by 7.2(ii))
S reverses orientation. The corresponding fixed point set is then either a
single point (when ¥ is a sphere) or a pair of points (when ¥ is a torus).
The existence of a conformal map Xy as in (ii) and (a) and (b) now follows
easily. O

Remark 7.5. Occasionally, we will use the diffeomorphism Xy : Cyl; —
Xx(Cyly) in 7.4(ii) to use the standard coordinates (s,?) on Cyl as a co-
ordinate system on Xy (Cyl) C 3. To simplify notation, later we will also
occasionally identify Cyl; with X5(Cyl;) C 3; for example, in Section 8
we will identify configurations L[s;m] defined in 7.11 with their images
Xs(L[s;ym]) C ¥ in order to define an appropriate class of LD solutions

(see 8.13 and 8.15) on X. O
Notation 7.6. We denote w € C°°(Cyl;) the function satisfying X&g = e*“y
(recall 7.4(ii)). O

Remark 7.7. In Sections 2 and 12 7.2(i) does not apply since the catenoid is
not compact and the critical catenoid is a compact annulus with boundary.
The theory in this section then has to be modified accordingly (see for
example Lemma 12.14). O

We call a function defined on an O(2)-invariant domain of ¥ or of Cyl
which is constant on each O(2) orbit a rotationally invariant function. The
following notation will simplify the presentation.

Notation 7.8. Consider a function space X consisting of functions defined
on a domain 2, where Q C Cyl or Q C X. If Q is a union of O(2) orbits,
we use a subscript “s” to denote the subspace of functions Xy consisting of
rotationally invariant functions, which are therefore constant on each O(2)
orbit. If moreover Q is invariant under O(2) x Zsy, we use a subscript “|s|”
to denote the subspace of O(2) x Zs-invariant functions. O
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Notation 7.9. If Q C Cyl or Q C Xx(Cyl;) is a domain and u € C?()
has one-sided partial derivatives at s = s, then we denote these partial
derivatives by using the notation

ou ou
Ot u(s) = s s:s—i—’ O—u(s) = — s -
If u is C!, we use the abbreviation u := %. In that case, Ou = O1u =
—0_u. O

Definition 7.10 (Symmetry groups). We define H,, = <@27r/mv§> and
Gm = (©ps O jm) X (S) for m € N (recall 7.1). Clearly Hy, is an index 2
subgroup of Gm < O(2) X Zz and <Q07Q7r/m> < O(2) is a dihedral group of
order 2m.

Definition 7.11 ((s,m)-symmetric sets and configurations). Given s €
[0,00) ors:=(s1,...,s) € R¥ such that 0 <s; < --- < sy <, we define

k
Lpar[ﬁ] = Cyl{i§}7 Lpar[s] = U Lpar [Si]v

i=1

and we denote the number of connected components (circles) of Lpar[s] by
ko[s]. For m € N we define

Lis; £m)| := Lyer[£m] N Lpar[s],  where

Ler[m] := G Limer[1], Lyer[1] :={(1,0)} x R,
Lmer[_m] = @w/mLmer [m]

Given then m := (my,...,mg) € (Z\ {0})* we call a set L C ¥ or a
configuration T : L — R4 (s, m)-rotational if L := Ule L; with each L; C
Lpar[si] containing |my;| points in each component of Lpar[si] (i = 1,....k);
we denote then the average value of the restriction T|LI_ by 1;. We call such
an L or T (s, m)-symmetric if we moreover have L; = L[s;; m;] and that the
restriction T|p s G, -invariant—hence T(L;) = {7;} —for eachi = 1,.... k.
An (s, m)-symmetric set L is then uniquely determined and will be denoted
by L[s;m]. Finally we denote by m € N the greatest common divisor of
|mil, ..., |mg|, so that the stabilizer in O(2) x Za of an (s, m)-symmetric L
or T i G-

Remark 7.12. Tt is worth noting the following:
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(i) ko[s] =2k if s; > 0 and ko[s] =2k — 1 if sy = 0.

(ii) In the case where ¥ is a torus, we could allow s; = [ in the construc-
tions later in Part II. In order to simplify the presentation, however,
we do not discuss this case.

(iii) Lis;+m] are the only subsets of Lpar[s] which are invariant under Gy,
and contain exactly m points equidistributed on each circle of Lpq,[s]
(2m in total if s # 0). The sign of +m encodes the choice between
these two subsets in L[s; m].

(iv) An (s,m)-rotational set L as in 7.11 has cardinality |L| = |mq| +
25°% |mi| if sy = 0 and |L| = 23°% | |my| points if s; > 0.

(v) Note that an (s, m)-symmetric configuration 7 is uniquely determined
by {Ti}fzr 0

Basic facts and definitions

We will estimate our LD solutions by comparing them with corresponding
rotationally invariant solutions. We therefore need to define the appropriate
class of rotationally invariant solutions of the linearized equation. We begin
with some notation from [33].

Definition 7.13. Let RY := {(a;)ien : a; € R}. For any k € N, we identify
R* with a subspace of RN by the map (a1, ...,ax) — (ai,...,a,,0,0,...).
We consider the normed space (Kl (RN, | - \51), where

(HRY) = {a = (a;)ien € RV : Z la;| < oo}, lalp = Z |la;].
i=1

=1

Remark 7.14. If o = (0;)ien € 0 (RN), &€ = (&)ien € £ (RN) and some
positive numbers F;1, i € N, satisfy

oo Fii1p +Fipq— ¢ = Fiy — Fi ieN
E+ +F_ ) 1 Fl++F_ ’

then note that ||, < 1 and for any 1 < j <i < oo that

] _1"‘5@ i;;o. ] _1"—51 Zi;]lo, )
F’*‘Hﬁj(e =T _1—£j(e =
L-& siig 1-& s,

Fio = g, (50 ) B = g (2 7 Fi

and therefore sup{ Fj1 };en ;inf{Fl-i}ieN with F := i}gt: (elcrlu)_ 0
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Definition 7.15 (Scale invariant flux). If ¢ € C2(Q), where either ) =
Cyligp or @ = X5(Cyly)) (recall 2.3 and 7.8), (a,b) C I, and ¢ is piece-
wise smooth and nonzero on 2, we define Fi : (a,b) = R by

Fo(s) = a;i(;) — 9. log |9](s).

Remark 7.16. Note that F? = F5 Ve € R\ {0}. O

Definition 7.17 (Subdivisions of cylindrical domains). Given s as in 7.11
and a domain 2, where Q C Cyl (or Q C X), we will denote by Q° the
subdivision of Q by Lpa(s] (or of Xs(Lparls])): Q¥ is the abstract surface
which is the disjoint union of the Q N A’s, where A is the closure of any
connected component (a disk or an annulus) of Cyl\ Lpar[s] (or of ¥\
Xs(Lpar[s]) ). Clearly functions on 2 can be thought of as functions on Q°
as well.

Note for example that a function defined on © which is in C*°(Q°) is
also in C%(£2) but not necessarily in C*(Q); it is “piecewise smooth” on ().

Definition 7.18. We define an operator L, on Cyl; by

82 82
- _ 2w L
(7.19) Ly =A+V =eYLy, where A, := 52 + 502

V € CX(Cyly) is defined by V = e** X3(|A]> + Ric(v,v)), and w as in 7.6.

Is|

When ¢ is rotationally invariant, note also that the equation £,¢ = 0
amounts to the ODE

d%¢

2 —
(7.20) 7s2

+V(s)¢p =0.
Definition 7.21 (RLD solutions, cf. [33, 3.5]). Given 2 = ¥ or Q =
X5(Cyly) C X, we say ¢ € C () is a rotationally invariant (averaged)

Is|

linearized doubling (RLD) solution on § if
(i) ¢ > 0.
(ii) Thereis k € N and s® € [0,1)¥ as in 7.11, such that ¢ € C (Qs¢) and

s|
Lsp =0 on ",
(iii) Fori=1,...,k, F?(s?) >0 and F?(s?) > 0.
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We call s? the singular or (derivative) jump latitudes, and the circles con-
tained in Lpar[s?] singular circles, of ¢. If ¢(0) = 1, we say ¢ is a unit RLD
solution. We say that an RLD solution on Xx(Cyly) is smooth at the ends
if it can be extended smoothly to X.

Remark 7.22. Note that to allow the construction of immersed doublings we
can simply relax 7.21(%) to requiring gb(s?) #0fori=1,... k. If ¢ > 0 fails
then, the constructed doublings will not be embedded, as for kK =1 in 6.18.
On the other hand 7.21 (i17) is always necessary to ensure positive size for the
catenoidal bridges, so its violation makes the construction impossible, as for
k=2in6.18 or k, = 1 in 12.11. Finally note that by Lemma 7.4, X5 (Cyl;)
is either 3 with two points (when ¥ is a sphere) or a circle (when ¥ is
a torus) removed. We will first study RLD solutions on X5 (Cyl;), instead
of on X, in order to facilitate the parametrization of the families of RLD
solutions. O

Definition 7.23. Define k2™ = min ko[s?], where the minimum is over all
RLD solutions ¢.

Definition 7.24 (Quantities associated to RLD solutions, cf. [33, 3.6]).
Given ¢ as in 7.21, define

F* =(F) F{)}_ e R, FO —(FP)E, e RE,
_ _ k
o =(o?)k=} e R, & =(¢f), e R,

where fori=1,....;kand j=1,...,k—1,

F{ =F{(sD), 2F? =Ff, + F},

¢ o} ¢

(7.25) ot _Fin e T F
* b) 7 .

Fj¢ Fj—)i-_{_ﬂ(ﬁ—

We define o® := (0’¢,£¢) € RE=1 x R¥ and call the entries of o® the flux
ratios of ¢.

Remark 7.26. By the S symmetry 5(175 = 0 when s‘f =0. 0

Remark 7.27. Using (7.25) (see also Remark 7.14), we recover F?¢ from Fld’
and o? by

i—1 _¢ .
(1.28)  Ff,=(£&)F,  FL=Q£&)(&=)F), i>1
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In Proposition 7.36 we construct RLD solutions ¢ by prescribing F{bf and
a?. O
In our applications later in Part II, we will primarily be interested (see

8.15(iii) and 9.7) in RLD solutions which are close to being “balanced” in
the sense of the following definition.

Definition 7.29 (Balanced RLD solutions). Given m := (mq,...,my) €
(Z\{ON)¥ we define ¢ = ¢lm] = (¢;);=] € R¥"' and ¢ = ¢m] := (#,0) €
RFXRF by efi := |mji1/mj| for j =1,...,k—1. We call an RLD solution
¢ balanced with respect to m if it satisfies a® = ¢lm)] (recall 7.24).

The corresponding definition of balanced RLD solutions in [33, Defini-
tion 3.5] asserted instead that &® = 0, which occurs in the context of 7.29
when all the m;’s have the same absolute value. This difference is explained
by the fact that in the constructions of [33], the intersection of an LD solu-
tion’s singular set with Lpay[s;] consisted of some number m € N points for
each i € {1,...,k}, whereas the singular sets of the LD solutions we study
later in Part II more generally have |m;| € N points on each component of
Lpar[si] (see 7.11 and 8.15) for i € {1,...,k}, and the |m;|’s need not all be
equal.

Existence and uniqueness of RLD solutions

Lemma 7.30 (Existence and properties of ¢eng). The following hold.

(i) V as defined in 7.18 satisfies V. > 0. There exists C > 0 and for
each j € N, C(j) > 0 such that for all s € Cyly, V(S)ije*mS' and

9V (s) < C(j)e 2.

(ii) There exists a unique ponq € C°(Cyly) satisfying

Lydena = 0, E;r} dena(s) =1, and E;r} FPi(s) = 0.

(iii) For all large enough s, Ffe“d (s) < Ce™% for some C > 0.
(iv) An RLD solution ¢ as in 7.21 is smooth at the ends if and only if
Fp, = F{™(sp).

Proof. Ttems (i)-(iii) follow easily from 7.2, 7.4, and 7.18 and are trivial in
the case ¥ is a torus. In the case ¥ is a sphere, items (i)-(iii) follow easily
from the fact that the conformal map Xy maps the ends of Cyl to punctured
disks on 3. Finally, (iv) follows from 7.21 , item (ii) above, and uniqueness
for ODE solutions. O
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Lemma 7.31 (Flux monotonicity). Suppose ¢ € C° (Cyl[mb]), ¢ >0, and
Ly =0.

(i) Fors € (a,b), de( )= V(s) + (F(_j’(s))2 > 0.
(i) F2(b)+ F2(a) = [PV (s) + (F°(s))*ds.

Proof. The equalities are calculations using (7.20) and 7.15. The inequality
n (i) follows from 7.30. O

Definition 7.32. Given F € R and s € I, we define H = HI[F;s] €
C°(Cyly) by requesting that it satisfies the equation L, H = 0 with initial
data H(s) =1 and FH(s) = F. We also define ¢even := H|[0;0)].

aFH[F s|

(s) = V(s) + F?
s s = WHFEe)P
L OFTE 1

W) —5F ) = ErFEgee

Proof. By direct calculation, switching the order of differentiation, and using

7.31, we find
oOFf
2(0)
Os \ Ou
where H = H[F';s] and u is either s or F'. It follows that

oFt  oFf  (H(s)\
8;: (s) = 8—J(§) <m> :

Lemma 7.33. (i) > 0.

> 0.

Differentiating both sides of the equation F', = F' with respect to s

yields the first equality in

oFft  OFf )

I H
where the second equality follows from 7.31. Observing also that daifg@) =1
and combining the above completes the proof. ]

Definition 7.34. Define Fipas" := limg » F*"(s) if ¢eyen > 0 on Cyl; and
Ffﬁavx 1= o0 otherwise.

Lemma 7.35. If X is a sphere, Foeen = o0.
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Proof. If ¥ is a sphere, then I = R, and then it follows from (7.19), that
V >0, and that Ogeyven(0) = 0 that @eyen has a root sfgget € (0,00). O

We are now ready to parametrize families of RLD solutions by their
flux ratios and Ffﬁ_. The notation differs slightly depending on whether the
total number of circles ko (recall 7.11) is even (Proposition 7.36) or odd
(Proposition 7.37).

Proposition 7.36 (Existence and uniqueness of RLD solutions, k. even).
Given F € (O,Frﬁzv,i“) and

o =(0,8) = ((0:)8, ()72 ) € £ (RY) @ ¢ (RY)

satisfying ]§|goo < 1, there is a unique k = k[F;o] € N and a unique unit
RLD solution ¢ = qb[F o] on X5 (Cyl;) satisfying the following.

(a) FY = F ands? > 0.
(b) @ = a|, where k = k[F;a)] € N is the number of jump latitudes of
(recall 7.21) and o, := ((UZ)Z 1,(§])J 1) € RF1 x Rk,

Moreover the following hold.

(i) s(f, . si are increasing smooth functions of F' for fixed o.
(ii) k[F;a] is a nonincreasing function of F'. Further, there exists ko € N
and a decreasing sequence {agey 1., Apev o, ...} such that k[F; g =
k if and only if F € [ag o, 0k—1,0)-
(iii) The restriction of ¢[F';a] on any compact subset of Cyl; depends con-
tinuously on F' and o.

Proof. Suppose ¢ is a unit RLD solution satisfying (a) and (b). Because
s‘f > 0, the symmetries imply that 5 ®even O & neighborhood of Cyl,.
But then 7.21(i)-(ii), the flux monotomclty (Lemma 7.31), and Remark 7.14
inductively determine s® and qb uniquely on Cyl;. This concludes the unique-
ness part.

We next construct a family of RLD solutions $[F ; o] satisfying (a) and
(b). By the hypotheses, 7.34, and 7.31, there is a unique s; € (0,) such
that geven is positive on Cyl_g oy and F' = [even (s1). By Remark 7.14,
there is a unique extension QE[F ;0] of Poven| Oyl to a maximal domain
Cyl(_q,q) and a unique (a priori possibly infinite) sequence s = (s1,s2,...)

such that <$ > 0, L’X$ =0 on Cylf_a?a), and Fi)(sz) = F;1, where F;_ .= F
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and all other Fj4 are defined by requesting the identities in 7.14 hold. To
show that ¢ is an RLD solution, we need only show that ¢ = [ and s is a
finite sequence. By Remark 7.14 and Lemma 7.31,

Sit1 ~

2 e (P + Fu) = [ Vo) + (F2(s) s,

Sq

where E is as in 7.14. This implies a uniform in 4 lower bound on s;;1 — s;.
Therefore a = [. In the case [ = oo we show there are finitely many jump lat-
itudes by estimating an upper bound for s; in terms of F' and o specifically,
we claim that if ¢ has a jump at s; ;1 and s; is large enough that ¢enq > 0 on
(sj,1) (recall 7.30), then Ff(sj) < Ff_’d (s;), which using the comparability
of all the fluxes to F with the fact from 7.30 that limg_,oo Ffe“d (s) =0,
implies that s; cannot be arbitrarily large.

The claim follows by observing that Ff - Ff“d cannot change sign on
(85,8j+1) as Ff and Fj_’d satisfy the same first order equation 7.31(i), while

Ff changes sign and Ffd remains positive on (sj,s;41). This concludes the
proof of the existence and uniqueness of ¢[F’; o| satisfying (a)-(b).
Since as above F = Fo (s‘f), 7.31 implies s‘f is increasing as a function

of F.. By 7.14, F2¢_ = %e”lF. By combining this with both parts of Lemma

7.33, it follows that sg is increasing as a function of F. Using this and arguing

inductively shows that s? is a strictly increasing function of F for 2 < j < k.

That k[F'; o] is nonincreasing in F' and the existence the sequence follows
easily from the monotonicity of si in (ii). To complete the proof of (ii), we
must show that k€% is well defined, that is independent of o. If Frﬁggi“ < 00,

min
by the flux monotonicity 7.31 it is easy to see that this is true and moreover
that kY. = 1. Suppose then that Ffﬁa; = 00, and consider RLD solutions

¢ = o|F,al, ¢ = ¢[F', '] for o,0’ € £* (RY) ® ¢ (RY) fixed and variable
F,F' € (0, Fﬁ{x“) By choosing F' large enough in terms of I and o, we may
ensure that Fj__); > Fj; for all ¢ such that both of the preceding are defined.
By 7.31 and 7.33, this implies that k[F; o] > k[F’;¢’]. On the other hand,
by choosing F’ small enough in terms of F' and o, it follows analogously
that k[F;o] < k[F';¢’], and together these inequalities prove that k2 is
well defined.

Finally, (iii) follows from (7.28) and smooth dependence of ODE solu-
tions on initial conditions. ]
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Proposition 7.37 (Existence and uniqueness of RLD solutions, k., odd).
Given F € (0,00) and

o= (0,8 = ((0:)2, ()32, ) € £ (RY) & ¢ (RY)

satisfying |&lp < 1 and &L = 0, there is a unique k = k[F;o] € N and a
unique unit RLD solution gb qb[ ;o] on X5(Cyly) satisfying the following.

(a) Ffj_Ff’i_F and s = 0.
b g¢ = o|, where k = k[F; o] € N is the number of jump latitudes ofcb
k
(recall 7.21) and o, := ((Uz), 1,(53)] 1) € RF-1 x RF.

Moreover the following hold.

(i) sg’, ey si are increasing smooth functions of F' for fized o.
(ii) k[F;@a] is a nonincreasing function of F. Further, there exists k%39 € N
and a decreasing sequence {byoaa_ o, bpoad &, ... } such that k[F;a] =k

if and only if F' € [byo,br—1,0)-
(iii) The restriction of ¢[F';a] on any compact subset of Cyl; depends con-
tinuously on F and o.

Proof. We omit the details of the proof, which are very similar to the proof
of 7.36. Note however that the assumption & = 0 is necessary (recall 7.26)
due to the symmetry about s‘f = 0. U
Remark 7.38. It is clear that any RLD solution is a constant multiple of a
¢[F; o] asin 7.36 or a ¢[F; o] as in 7.37. O
Remark 7.39. RLD solutions with k:OAodd were constructed on S? in [33,
Lemma 7.22], where they were called ¢eq[F; o). O

Estimates on RLD solutions

We proceed to estimate the families of RLD solutions just constructed. To
avoid unnecessary notational difficulties, we state and prove the next re-
sults for the families of RLD solutions ¢ with k, even and leave the trivial
modifications for the families of solutions qg with ko odd to the reader.

Definition 7.40. We define for k € N, k > k2% the domain S C R x

RF=1 x RF by

min

Sy = { (F (o0)kL (gj);v:l) L F e (0,ar-10) and |E]p < 1},
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where ap—1,6 15 as i 7.36. By 7.13 and 7.36, Sp+1 C S C R x RY x RN,

Lemma 7.41 (Recursive formulas for the derivatives of s;). An RLD solu-
tion ¢ = ¢[F; a] as in 7.36 has k > k&, jumps if and only if F € (0, a5-1,0)

or equivalently by 7.40, (F, a|,) € Sk. The kth jump latitude si, depends only
on F and a|,, and can be considered as a smooth function defined on Sy.

Alternatively, we can consider each F' as a smooth function of F1 = Fld) and
o, and then we have for k =1

(7.42) (V(s1) + (F¢ ) )g;ll =1-¢, (V(s1) + (Fff)g—z = —Fy,
and for k > 1 the recursive formulas (note S, C Sy_1)
(7.43) (V(si) + () )32 (V) + (F{ 1) )6(;”}11 <$(%(’:)1)>2+
+ (L4 &) (e “2“1)@(;';)1)) (1= &)( )
(744) (Vi) + (FL) )gz’; = (V(sien) + (FLLL) )32’2]1@(%5(’;)1))
+ 1+ 5k_1)%(ezf’f o) (%)2 ~F(1- gk)(%(ezzk‘f ),

o 2
() (Viow) + (FE ) 2 = (Vs + (7, )7) o (B,

9¢ 0%\ o(sk)
. Z;c;f o1 7$(Sk_1) ? _ 5 Zf;1l 4]
+0j(k-1) (e )Fl =~ 5Jk(e )Fl‘
b(sk)

Proof. Below, we compute partial derivatives of s with respect to F1,si_1,
and the entries of o|,, from which the smoothness claimed follows immedi-
ately. To this end, we recall from (7.28) and 7.32 that on Cyly, | o

~

(7.46) 6= p(se-1)H [(1 +§k71)(@z;:12m)F1§5k71}-
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For H as in (7.46) and using (7.28), we find
(7.47) FH(sp) = (1 - &) (e ™) F.

Items (7.43)-(7.45) then follow by using the chain rule to differentiate (7.47)
and Lemma 7.31 and both parts of 7.33 to calculate the partial derivatives
of F. O

Lemma 7.48 (Estimates for large k). For all (F,o) € Ski1 \ Skio with
|o|pr bounded and €|~ < 1/10, the RLD solution ¢ = ¢[F; o] satisfies the
following, where C' denotes constants depending only on an upper bound of

|0"gl.

1
(i) Fy o and sy, < %log Ck.

C
<%

(ii) For 2 < i < k we have & <8 —8i_1 < C and )log
(iii) |1 - o(s) : CO (Cyl[,sk’sk]) | < Clogk.

ﬁ(si)
¢(Si—1)

Proof. By Lemma 7.31 we conclude that the maximum of ]Ff\ is achieved
at the jump latitudes. Using also 7.14 we conclude (where E in 7.14 depends
only on an upper bound of |o|; by the hypotheses) that

o\ k¥l o k1 3
(7.49) max [F2(s)| = max Fj ~ min £

Since (Z has £+ 1 jumps, we may argue as in the proof of 7.36, and by using
also (7.49) and 7.30

1 ~
(7.50) =P < B < P (sy) < Cen™

By using Lemma 7.31 on Cyljgg,j, ..., Cyl and summing, we find

[Sk—lysk}
(7.51) F{ +F 4+ F = / V(s) + (F2(s))* ds.
0

Next using 7.24, (7.49), and (7.50) to estimate (7.51), we find

e
(7.52) f/o V($)ds < (2 — )Fy < E (V]2 o,y + Esn(EL (51))?)



Generalizing the Linearized Doubling approach, 1 375

from which we conclude using 7.30 the first part of (i) and then by (7.50)
and 7.30 the rest of (i). For (ii), 7.31(ii) and the mean value theorem imply
that for some s’ € (s;_1,$;),

FY oy + B
V() + (FO())?

Estimating a trivial upper bound for V, using (i) and (7.49) gives the first
inequality in the first part of (ii), and using that ﬁ < % and using
(7.50) and 7.30, we conclude s; — s;_; < C'. Using then Definition 7.15 and
part (i), we have

(7.53) S; — S;—1 =

log A¢(Si) < / ‘Ffﬁ }ds < _/ g
P(si-1) Si— Tk
which completes the proof of (ii), and (iii) follows similarly. O

Corollary 7.54 (Estimates for the derivatives of si). If ¢ = gg[F, ol is an
RLD solution as in 7.36, s = s®Fel (F , Olpi1) € Sker (recall 7.40), and

|€]p < min( 167 k) the following estimates hold, where C' depends only on
an upper bound of |o g .

() (Vo) + (FY)*) 9 o k.
(ii) )(V(sk) + (F,;’_)2) Osi
(iii) )(V(sk) +(F2)?) f’?

Proof. We first prove (i). To simplify notation in this proof, we denote

<C,i1=1,...,k—1.

< k,]zl,...,k.

" 2
Peim (Vi) + (FL)) S5 Qe im <¢§’;)1’) ,
V(se) + (F,j})2
Vi) + (B2 )

T1:=Qr1(1+ §k—1)(625€;12 ) 4+ (1—&)(e iy ).

Ry =

In this notation, (7.43) from Lemma 7.41 is equivalent to the equation

(7.55) Py =Ry 1Qk-1P—1 + T
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from which we conclude by applying (7.43) recursively

k—1 k—1 k—1
(7.56) Py =P1HQiRi+Z (Tz H QjRj>-
i=1 i—1

j=i+1

From (7.42) it follows that P =1 —&;. By 7.14, 7.48, and the assumptions,
the following estimates hold:

(7.57) Qi ~ 1, R ~ 1, Ti~1, i=1,....k—1.
14+C/k 14+C/k C
Combining (7.57) with (7.56) completes the proof of (i). Proofs of (ii) and

(iii) are similar and use respectively (7.45) and (7.44) in place of (7.43), so
we omit the details. O

Smooth at the ends RLD solutions

We concentrate now on smooth at the ends RLD solutions and we introduce
a unified notation in terms of their flux ratios and total number &, of parallel
circles:

Lemma 7.58 (RLD solutions ¢lo : ko]). Given ko € N with ko > kMin
(recall 7.23) and o = (o,€) € RF 1 x RF, k := [k.,/2], satisfying |€|p~ < 1
and & = 0 if ko is odd, there is a unique, smooth at the ends, unit RLD
solution, (recall 7.21) ¢ = @la : ko) satisfying ko [s‘ﬂ — ko and 0% = 0.

Proof. Recall from Proposition 7.36 that ngb[ ol has k > kS jump latitudes
precisely when F' € [ay o, a5—1,) and from 7.37 that $|F; o] has k > kodd

jump latitudes when F' € [by &,br—1,4). By 7.30 and the ﬂux monotonicity
in 7.36(i) and 7.37(i), there exist unique a; » € [tk o, ak—1,) for all k > kS¥
such that gg[zik,g;g] is smooth at the ends, and unique Ek,g € bro,bk-1.0)
for all k > k°d such that gg[gk o; 0] is smooth at the ends. To complete
the proof, we need only show that {2k ,2k°d — 1} is a set of consecutive
natural numbers.

For this, first consider ¢ = (0,0) and the smooth-at-the ends RLD

solution ¢ = qb[bkodd o). For £ close to 1, define ¢’ = (0, (£,0,...)) and
the RLD solution ¢ = ¢[(1 — {)bkodd o3 0'], which satisfies F1 = bkodd = F1

and Fi)t = Ffft for all ¢ > 1 such that both of the preceding are defined.
On the other hand, by choosing & close enough to 1, we can ensure that

qus_ =(1- 5)@;333& is as small as desired. By 7.31 and 7.33, it follows
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that for £ close enough to 1, k. [Sq;] = Qkfnc}ﬂ. An analogous argument shows

that we can find an RLD solution ¢ with ko[s?] = 2k + 1, and these two
assertions complete the proof. O
Remark 7.59. In the case that I = R, it may be the case that aj o = a o, as

was the case for example in [33, Prop. 3.14]. If I is a finite interval however,

compactness guarantees that 5k,g > Ak o- O
— o+
IR " 9lo 7]

’ LA

. A

N \
v N, v Y !
L

v

-2 -1 0 1 2

0.9 : : : :
-1 0 1 2

Figure 2: Profiles of RLD solutions (}E[g : 7] and g/b\[g : 8] with respectively 7
and 8 singular circles. In each case o = 0 and V = 2sech?s, corresponding
to the case where ¥ is an equatorial S? in S?. The right image depicts the
same profiles over a wider domain, to emphasize the smooth at the ends
behavior.

Convention 7.60. Hereafter, we assume ko, € N with k, > k™" is given, and
define k € N by k = [ko/2], i.e. ko = 2k if ko is even and ko = 2k — 1 if ko
is odd.

Lemma 7.61 (Characterization of low k).

(i) kM =1 4f and only if Gena > 0 on Cylpp,py-
(ii) k™™ = 2 if and only if for some sf)g‘gft’ > 0, Pena > 0 on (sfggz,l),
Gend (s229) = 0 and ¢eyen > 0 on (0, s‘fg(‘;é].

(iii) &2 > 3 4f and only if for some 0 < gloven sf)g;;;‘, ®end > 0 on

ToOot
(tosis1): Gena(siiat) = 0, deven > 0 0n (0, 55z, and Geven(sioi”) = 0.
Proof. We first prove (i). If ¢ena > 0 on Cyljy;), then clearly the function
on C@T(Cyl(o)) defined by s — ¢Penq(|s|) is an RLD solution with ko = 1, so

Emin = 1. Conversely, if k™" = 1, then in the notation of 7.37(ii), $[F;g]
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has only one jump latitude for F' € [b1 ,bo o). By the flux monotonicity
7.31 there is a unique F' in this interval such that 5[F;g] (8) = Pend(]s])-
By 7.21(i), it follows that ¢ena > 0 on Cyly ;). The proofs of (ii)-(iii) are
straightforward from 7.31, so we omit the details. O

Remark 7.62. If ¥ is a torus, recall from 7.4 that S fixes the two equatorial
circles X5 (Cyly) and Xx(Cyl;). Up to redefining X, we could interchange
the role of which equatorial circle Cyl, maps to, which would interchange the
roles of Geven and ¢eng. This would lead to slightly different classes of RLD
solutions; in particular if either ¢eyen > 0 Or ¢eng > 0 on Cyl[OJ), we would
have k™" = 1 with respect to at least one of these choices (recall 7.61(i)).
It would also be possible (recall Remark 7.12(ii)) to consider an expanded
class of RLD solutions which have jumps on both equators, although we
have not considered this case for the sake of simplicity. O

Proposition 7.63. Suppose ¢ = $[g : k:o] and ¢ = @lo’ : ko] are as in 7.58,
where @ = (0,€) € RFI x RF o' = (0/,¢') € RF1 x RF satisfy |€|p~ <
min(llo, —) 1€ |0~ < mln(lo, k) There is a constant C' > 0 depending only
on an upper bound of |o|pn and |o'|p such that

= - C
‘Eﬁ —E‘%x < % (o' — oo + € — &le=) .

Proof. Observe that the conclusion follows from the estimate

(7.64) |7y - F‘b\ <= (jo' — olo + 1€ — &li).
since for any ¢ € {1,...,k} we have (taking + or — in every instance of +
below)

F —F%| = ’(1 + ) (S B — (1) (S ) FP| <

’(1 + 52)(62;11 a,’) _ (1 + fi)(ezj;ll ol)

FY' (1) (5 ) | Y -

We now prove (7.64). Fix k € N and consider the map defined by

F(ri ) = ) — e )

(7.65) )
—(1+ ) (5 ) By - R (s,
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where qg[F ;o] is as in 7.36 and the second equality uses (7.28). Clearly,
F(F1,o) =0 if and only if (;AS[F;Q] is smooth at the ends. Now let (Fy,0) €
F~1({0}) be arbitrary.

It follows from Lemma 7.31 and 7.33 that F is C'; below we estimate
the partial derivatives of F at (F1, o). Differentiating (7.65) with respect to
F1 and using 7.31, we compute

(7.66) oF

o S ) (Vi) + (FL)Y) gk

(Fr.0) OF

)

(Fl ,0)

and similarly the derivatives with respect to o; and §;. By combining with
Corollary 7.54, we estimate that for j € {1,...,k} and i € {1,...,k — 1},

oF.
OF,

oOF
Jdo;

OF

(7.67) 5

~ k7
(Fra) ©

<,

e
~ k

(F1,0) (Fi,0)

where C > 0 is a constant independent of k.

By the implicit function theorem, F~! ({0}) is a graph of a function of
o in the vicinity of any given (F1,a) € F~!({0}), and moreover (abusing
notation slightly), fori € {1,...,k— 1} and j € {1,...,k},

om| < oF )1 OF
601- o N 6F1 o 80‘1' o ’
(7.68) z (o) 7 )
on| __(oz| Yo
% o OFilr o)) Ol ing
The conclusion follows by combining this with the estimates (7.67). O

8. LD solutions from RLD solutions
Basic facts

Given m € Z\ {0}, we define a scaled metric X = X[m] on Cyl and scaled
coordinates (S[m],0[m]) defined by

(8.1) X:=m’, F=|mls, 0=|mlo.

We also define corresponding a scaled linear operator

(8.2) Lipm) =D +m ™V =m™°L,.
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Definition 8.3. Givens € Ry and m € Z\ {0}, we define a shifted coordi-
nate s =75[s, m] by

S:=5—|m[s = |m[(s —5).

Definition 8.4. Given m € Z \ {0}, we define
(8.5) o[m] := 1/(9|ml).

Given s, s, and m as in 7.11, for i = 1,...,k we define 6; := d[m;] and
define nested open sets Dﬁs.m] (30[m]) C V[s;m] C Q[s; m], where

s m] := D 2y (3/|ml) = D2 3),
Q'[s;m] = DX[_ 1 (2/Im]) = DXE?][s] (2).

We also define Q[s;m] := Ule Q[si;my] and Q' [s;m] := Ul.f_l Ysi;m).

R

Figure 3: A schematic of connected components of the neighborhoods of
Lpar[s] (defined in 8.4) near latitude s.

Definition 8.6 (Antisymmetry operators). Given a domain Q@ C Cyl sat-
isfying Sy(2) = Q for some s € R (recall 7.1), we define operators Rs and
As, each acting on real-valued functions defined on €, by Rsu =uoS, and
Asu = u — Rgu. )

Lemma 8.7. Lets € (2,00) and m € Z\ {0}. The following hold:

(1) For all u,v € C°Q[s;m]), As (wv) = v Asv + Agu Rgv.
(ii) For allu € C*(Q[s;m)]), [As, Lxlu = m~2AV Rgu.
(i) ||V :Ci(Q,x)|| < CU) ||V :C%(9Q,x H holds for any domain Q C
Cle
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(iv) H.ASV CI (Q H

Proof. (i) follows from a stralghtforward computation, and (ii) follows from
(i) and a similar computation, using the fact that A commutes with Aj. (iii)
follows from 7.30. (iv) is a discrete version of (iii) which follows from the
mean value theorem and (iii). O

Lemma 8.8 (Green’s functions [33, Lemma 2.28]). There exists € > 0 de-
pending only on V' such that for any p € Cyl, there exists a Green’s function
Gy for L, on Dy(e) satisfying:

HG; —logr: Cj(D;f(e) \ {p},r, X,r2] logr])} < C(j), where r= d]’g.

Proof. This follows from 3.3 and 7.30. O
Definition 8.9 ([33, Definition 2.21]). Given a,b,c € R and s € Ry, we
define (recall 7.11)

6 =0dla,bis) € CF(Cyl@), j=jle;s] € CRp(Cyl®)

by requesting they satisfy the initial data

¢(s) =a,  0p(s)=0b,  j(s)=0,  0Oyj(s) =0-4(s) =c,

and the ODEs Ly¢ =0 on Cyl? and Lyj=0on Cyl©9),

Remark 8.10. Note that ¢ depends linearly on the pair (a,b) € R? and J
depends linearly on ¢ € R. O

Lemma 8.11 ([33, Lemma 2.23]). For all m € N large enough and s €
(3, 00), the following estimates hold (recall 7.8).

m’

() [ ¢l1,0:8] =1+ €L (Qsima] ¥ H<0 ).

(i) || jlrms 8] — |31 - Cfm&;m]\LparH, D| < ctym?.
(if) || Aso[1,055) = € (Qsim] ¥ H<c )/m?.

(iv) Agi[m;ﬂiC\s\(Q[ﬁ;m]\Lpar[_h m)) | < ¢G)/m?

Proof. The proof is an ODE comparison argument which is only superficially
different than the proof of [33, Lemma 2.23]—here we use properties of V'
established in 8.7 instead of properties of 2sech?s as in [33]—so we omit the
details. O
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Maximally symmetric LD solutions from RLD solutions

For convenience and uniformity, we now identify Cyl; with Xx(Cyl;) C ¥
(recall Remark 7.5), which allows us to study LD solutions on the cylinder
instead of on X.

Definition 8.12. Given a function ¢ on some domain 2 C Cyl or Q C X,
we define a rotationally invariant function @a.ye on the union Q' of the O(2)
orbits on which ¢ is integrable (whether contained in Q or not), by requesting
that on each such orbit C,

Cave |~ 1= avg .
avg|C c

We also define posc on QN Q' by Qosc ' = @ — Qavg-

Lemma 8.13 (9,,-Symmetric LD solutions, cf. [29, Lemma 3.10]). Form €
N large enough (depending only on 3) the following hold.

(i) ker Ly, is trivial modulo the G, action on X.
(ii) Given a Gm-invariant invariant configuration T : L — R there ezists
a unique Gy, -invariant LD solution ¢ = ¢|[T] of configuration T.

Proof. Item (i) follows from the triviality of ker Ly, modulo O(2) X Z3 in 7.2,
by taking m large enough. Item (ii) follows from (i) and applying Lemma
5.22. O

Lemma 8.14 (Vertical balancing, [33, Lemma 4.5]). Suppose ¢ is an LD
solution whose configuration T and singular set L are (s, m)-rotational as
in 7.11. Then the following hold.

(1) Qavg € C=(Cyl1$), where Lyar = Lpar[s].
(i) On Cyl, pave satisfies the ODE Ly payg = 0.
(ii) [ma|7i = 04 Pava(si) + O pavg(si), i=1,... k.

Proof. To prove (i) and (ii), we need to check that ¢ is integrable on each
circle contained in Lp,, and that ¢aye is continuous there also. But these
follow easily from the logarithmic behavior of ¢ (recall 3.6). We now prove
item (iii). Fix ¢ € {1,...,k}. For 0 < €1 << €2 we consider the domain
Qeyer = D%par[si](eg) \ D} (€1). By integrating £y = 0 on Q, ., and inte-
grating by parts we obtain

0
/ —p+ / V=0,
o0, ., On Q

€1:€2
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where 7 is the unit outward conormal field along d€), .,. By taking the limit
as €1 \ 0 first and then as ez N\, 0, we obtain (7ii) by using the logarithmic
behavior near L. O

Lemma 8.15 (Normalized maximally symmetric LD solutions). Given ko >
kM and k as in 7.60, m € (Z\ {0})* with m (as in 7.11) large enough as
in 8.13, and & = (0,&) € RF1 x R* with |€|;~ < 1, there is a unique
Gm-invariant LD solution ® = ®[[o : ko, m|| characterized by the following
requirements where ¢ = glm)] is as in 7.29.

() ¢ = o : koym| := oy is a multiple of P[¢+ o : ko (recall 7.58).

(b) The singular set of ® is L = Lo : ko,m| := L[s[g + o : ko|;m]
(recall 7.11).

(¢) The configuration ' := 7'la : ko,m|| of ® is a (s[g+ & : ko], m)-
symmetric configuration as in 7.11 satisfying 71 = 1 (normalizing con-
dition).

Moreover, the following hold.
9(si)

||

(i) Forie{l,...,k} we have 1] = 2Fi¢. Moreover 1/ is independent

~

of m and satisfies 7| = 7![[@ : ko,m|| := gi[[i:::i ::]]((:i)) (e by 7).
(i) ¢ffe : ko,m] = | dld+ o : ko).

Jd+ o : ko](s1) 2FPETH

(ili) On Qsiymi], ¢ = @, + j,, where ¢, == TZ’Q[‘;}J (e~ Ximi o), @gi;si]

[

and j == l[ 5 TZ-’;SZ}.

Proof. Let m be as in 8.13 and suppose ® is a Gp,-invariant LD solution
satisfying (a)-(c). Let ¢ be such that ¢ = c¢¢ and i € {1,...,k}. Using
Lemma 8.14 to solve for 7/, we immediately conclude 7/ = qﬁ(si)QFf /|mil;
furthermore using Lemma 8.14, (a)-(c) above, (7.25), and the definition of
& in 7.29, we compute

<)

[

il o) P Imal (sy)

)T |mal @) Y _ i 9(s:) (et ave) = 289 (it

(s1)

<)

= 0y o _ 90s1)y i

Ly

We conclude from these equations that (a)-(c) imply (i) and (ii). In partic-
ular, the second equation in (i) determines 7/ and hence uniqueness follows
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from Lemma 8.13.
To prove existence we define L by (b) and 7’ by the second equation

in (i). Using 8.13 we then define ® := ¢[7'] and we verify that ®,,, = cé,
where c is defined by 05(31)2F1¢ = |my|: Let i € {1,...,k}. By Lemma 8.14,
it follows that |m;|7] = 2<I>avg(s,~)Fq)

™. By the definitions of 7/ and ¢, we

have |m;|7] = cgg(sl-)QFf. Since Fj’ = Ficd), by equating the right hand sides
of the preceding equations, we conclude that the function f := c¢ — Py,
satisfies

(8.16) O+ f(si) +0-f(si) =0, i=1,...,k.

This amounts to the vanishing of the derivative jumps of f at each s;. Clearly
f is smooth at the ends and satisfies £, f = 0 in between the s;. Hence we
conclude f € C“;T(Z) and satisfies Lnf = 0 everywhere. By 7.2(iv), we
conclude f = 0.

It remains to check (iii). By 8.14 (%), m;7] = 01 ¢(s;) + O_p(s;), so from
the definition of j in 8.9,

010 +0.¢

a+ll(sl) = a*ll(sl) 2

(si)-
Therefore, ¢ — J; satisfies

_049-0¢

04(6 - )(s0) = =

(si) = —0_(¢ — j,)(si)-

Hence, ¢ — j, € CL(Qsi;m;]) and L (¢ — J;) = 0. By uniqueness of ODE
solutions, ¢ —j = QZ Finally, the expressions for Ql and J; follow from this,
(i) above, (7.25), 8.10, and 7.29. O

Decomposition and estimates of LD solutions ® = ®[[o : ko, m ||

We now decompose and estimate a ® = ®[[o : ko, m| as in 8.15. In order
to get good estimates, we assume the following.

Assumption 8.17. We assume that m may be taken as large as needed in
terms of k.

Notation 8.18. Consider a function space X consisting of functions defined
on a domain 2 C Cyl. If © is invariant under the action of G, for some
m € Z\{0} (recall 7.10), we use a subscript “sym[m]” to denote the subspace
Xgym[m] C X consisting of those functions f € X which are invariant under
the action of 9‘@. O



Generalizing the Linearized Doubling approach, 1 385

Definition 8.19 (Decompositions of & = ®[[a : ko, m||). We first define a
decomposition ® = Zle ®; by applying 8.13 and requesting that ®; is an
LD solution with singular set L; = L[s;;m;] (recall 7.11). We define then
the following Vi € {1,...,k}.

G; e C™ (Cle \ Li) by requesting that is it is supported on D (36;)

sym[m;
and G; = T/‘I’[2(51, 36;; d3] (G — ¢[log 6;, 0;5],0) on DX(36;) (Vp € L;).

P, € CH ‘(Cyll) by ®; := ®; avg—\Ianf T |7pr& [57]} (Zi’()) on Q[s;; my)
and ®; := ¥; ave on Cylp \ Q[s;;my] (recall 8.12 and 8. 15(111))

o El e C® (Cyl;) by requesting that ®; = G+ O + @ on Cyl;\ L;

sym[m ]

and B} := Ly, ®; on Cylp (clearly supported on Qsi;my] ).
We then define G € C>(Cyl;\L), ® € Cl | (Cyly), and @', E'eC> . (Cyl;)

sym[m]
byG=5F G, ®=F &, & =" 8 and E' := X% | El. Clearly
then ® = G+ ® + @ on Cyl; \ L, ® := qﬁ on Cyl; \ Q[s;m], and & =
2 3 . ; :
¥ | W?d)ﬁpm[sﬂ (¢:0) =o-¥ Lm\ TnEe }] (4,,0) on Qsi; mi]
(Vie{l,....k}), with ¢,¢,,j, as in 8.15.

We estimate the average and oscillatory parts of ® separately. The de-
composition & = G+ ® + &’ is designed so that &' is small in comparison
to @ (cf. Proposition 8.29 below). We have the following characterization of
(D/

avg®

Lemma 8.20. @ ZZ 1 Pi avg where <I>’ = (P))avg is supported on

avg 7,avg

Q[si; my] and satisfies Ly, ]<I> =FE] = (E!)avg and

1,avg 7 avg

(8.21) @/

iavg —

‘IJ [%‘\7 %’ dzpdr[st}} (1'6’ 0) on Q[S“ mZ] \ Q/[S“ mZ]?
i~ - (Gz’)avg7 on Q/[Si; ml]

Proof Taklng averages of & = G+®+®' and rearranging establishes @/

¢— d— Gavg Applying L5, to both sides of thls decomposition and usmg
the definition of E/ in 8.19 establishes Ly = E! Finally, (8.21)

X[mi } z avg i,avg"
follows from the decomposition @avg = ¢ — P — Gavg by substituting the

expression for ® from 8.19 and using that G; = 0 on Q[s;;ms] \Q[s;mg]. O

In order to estimate ®/ . we will need the following lemma.

osc

Lemma 8.22 (cf. [29, Lemma 5.23]). Given E € C’sym[m }(Cle) with Eayg =

0 and E supported on DY (36;) for somei € {1,...,k}, there is a unique

par[Si]

ueC*? (Cyl) solving Lsm, u = E and satisfying the following.

sym[m;]



386 Nikolaos Kapouleas and Peter McGrath

(i) vavg = 0.
.. ~ _lmil g g,
(i) H“‘Cf;ﬁl[mi](Cyl,x[mi],e e 1‘)H
< CHE : Cgﬁl[mi] (Dfpa,[si](%i)vﬁmi] ) H
(i) [JAsue: C20 (DY (38:), Xlmi])|
< C|E: Cg}lrﬂn[mi] (Dfpar[si] (363), Xlma] ) || /m?

+C||AE : Co (DY 1(38),XTma] ).

sym[m;]

Proof. The existence and uniqueness of u is clear, and (i) follows since
L5m, )t = Fayg = 0. For (ii), let uy be the solution on Cyl of Agp,,ju1 = F,
subject to the condition that u; — 0 as s — Fo00. By standard theory and
separation of variables, we have

|us ijvil[mi} (CyL, Klmil, e 551 |
< Cl|E: €%, (DY (36, XImal)]|

sym|[m;]
Note that (u1)avg clearly vanishes. Define now inductively a sequence (u;)jen,
uj; € C’;’,ﬁl[m_]((}yl) by requesting that for each j > 2, Agp, qu; = —m;QVuj_l
and u; — 0 as s — F00. Estimating u; in the same fashion used to estimate
u1, we have for ¢ > 2

~ _Imil g —g,
luj = €25, (CyL, Rlmil, e 5151 |
< Cm;||uj_1 - C%P (Dfpar[si}(?’fsi)yi[mi])H.

sym([m;]
Note now that u = » 2%, u;, and the estimates above imply (i).
Applying A, to both sides of the equation Ly, ju = E and using Lemma
8.7(ii), we obtain

E)Z[ml] ‘Asiu = ASiE - mi_2“451V RSiu‘

Although Ag E — m; 2 A5,V Rsu is not supported on Dfpar[s,v](%i)’ it has
average zero, so a straightforward modification of the argument proving
(ii) by replacing the assumption that the inhomogeneous term is compactly
supported with the assumption (from (ii) above) that the right hand side

has exponential decay away from DY [5_1(35), we conclude that

[ Asu: C20 (DY 1(30:), Xmi)|

sym[m;]
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< C|AGE : Con (DY (30:), XImi] )|+

sym[m;]
-2 0,8 ~
+ C||m; 2 A, VRsu : C omlmi] (wa[si](?)éi), xXIma] ) ||-
iii) follows after using (1.10), Lemma 8.7(iv), and part (i) above to estimate
iii) foll f i L 7(i d i) ab i
the last term. OJ

We are now ready to begin estimating ®’'. We will estimate @;Ng and

separately, by estlmatmg each <I>z avg and P! osc 1N the decompositions

Dy ZZ 1 Pl aver Pave ZZ 1 @i ose (recall 8.19 and 8.20). To estimate
®! and P/ We will use that they satisfy the equations Ly, ®;

7,avg ?,08C

(I),

osc

,avg

Ei ave and Lg Fim } 08¢ E{ osc We first establish relevant estimates for
E! E! avg and EZ’ osc and then estimate @/ avg and P! osct

Lemma 8.23. For eachi=1,...,k, E] vanishes on Dy (20;) and FEj ...
supported on Df [s‘](3f5i). The followmg hold.

(i) HG sym[m}(DX (35>\DX( i) > X[mg H<C ‘

(i) [|As, Gi: Sym[m](DX (36:) \ D (26:) , X[mi] )| < CGY/mal.

(1) || B €y (Qsis ], X)) H C(j)

(iv) || As Ef - Sym[m](DfPar[si](Sdi), m))|| < C@)/Imal, fori e {1,... k}.
In either (iii) or (i), the same estimate holds if E! is replaced with either
B avg 07 B ose:

Proof. (i) follows from Lemma 8.8, Definition 8.19, and uniform bounds on
the 7/’s which follow from 8.15(i) and 7.48(ii). For (ii), it suffices to prove
for any i = 1,...,k and any p € L[s;; m;] the estimate

|4 Gi - C(DX(38;) \ DX(28:), X[mi] )|| < C(5)/Imal.
By Definition 8.19, we have A,G; = (I) — (II) on DX(35;) \ DX(26;), where

(I) :=W[24;, 30;; A
(8.24)
(I1) :=[24;, 30;; A

X|(r.A,,GX, 0),
]( /As <15[10g5¢,0;si],0).

From Lemma 8.8 and the uniform bounds on the cutoff ¥, we conclude that
(1) : C7(Dx(35;) \ Dy(268;),X[mi])|l < C(j)/|m|, and by Lemma 8.11(iii),
that [|(11) : CI(DY(368;) \ Dy(28;),x[mi])|l < C(5)|mi|~3log|m;|. These
estimates complete the proof of (ii).
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The statements on the support of E! and E] .. follow from Defini-

1,0SC

tion 8.19, from which we also see that E] = = L5im) ¥ [2,3;d§£:ti[]si]] (L,O)
on Qfs;;my] \ Q[si; mi]. Thus, when restricted to Q[s;;m;] \ ©'[si;m;], the
bound in (iii) follows from 8.9, 8.15(iii), and the uniform bounds of the cut-
off. It remains to estimate E; on '[s;; m;]. By 8.19, E! vanishes on Q'[s;; m;]\
DXW[ 1(30:). Note that Ly, ]<I> =0 on DX o [s.](30i). Since Ly G; = 0 on
D¥(26;), when restricted to DX s (300), the required bound in (iii) follows
from (i). With the preceding, thls completes the proof of (iii).

For (iv), we have using 8.19 that As, B} = —As, Lgjm,) Gi on D%W[Si] (36;).
Since E] vanishes on wa 5] (26;), it is only necessary to prove the estimate
on the set difference. Using 8.7(ii) to switch the order of Ly, and As, we
find that

ASiEz{ =Lz Xlms] ASlG —my QASlV’R El on Dfpm[si](géi) \Df (2(5,)

par[si]
Using (ii) to estimate the first term on the right and Lemma 8.7(iv) and (iii)
to estimate the second term, we obtain (ii). Finally, we can replace E; by
E!  or E!__ in either (iii) or (iv) by taking averages and subtracting. [J

1,avg ?,08C

Lemma 8.25 (Estimates for @, ). Vi € {1,...,k} the following hold.

1,avg

(Qfsimil, [ Dl <ci).
L CL(DY 1 (38:), Xlmi) ) || < C )/ Iml.

) @), CY

tavg s

(11) Forie{l,...,

Proof. Fix i € {1,...,k}. We first establish the estimate on Q'[s;;m;]. By
(8.21),

P e = i['rgi‘T{;Sz}*(Gi)avg on  Q[s;;my].

Note that the left hand side is smooth and the discontinuities on the right

hand side cancel. Using that Lqmn,)P; g = £ 4y from (8.19), on Qs;;m]
we have (where s =7§[s;, m;] is as in 8. 3)
(8.26) 020, 4y s @, =F!

: S zavg ’m2|2 ‘m7,| i,avg i,avg”

On a neighborhood of 9€[s;; m;], we have that éavg = 0 from Definition
8.19. This combined with estimates on j from Lemma 8.11 implies that

‘(I) < C and

i ave tavg| < C on 9Q'[s;;m;]. Using this as initial data for
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the ODE and bounds of the inhomogeneous term from Lemma 8.23 yields
the C? bounds in (i). Higher derivative estimates follow inductively from
differentiating (8.26) and again using Lemma 8.23. This establishes (i) on
Q'[si; m;]. The proof of the estimate (i) on Q[s;;m;] \ ©'[s;;m;] follows in a
similar way using (8.21) but is even easier since there (Gj)avg = 0, so we
omit the details.

By (8.26) and Lemma 8.7(ii), As®; ,,, satisfies (recall 8.3 for the relation
of s and 3)

1
(827) X[m ] ASq i,avg +— m2 A V,R'SZCI); avg ASz i,avg"

The C? bounds in (ii) follow in a similar way by using Lemma 8. 11(iii)—(iv)
to estimate the initial data on 9D} s }(35 ), estimates on AgE from

1,avg
Lemma 8.23(iv), and estimates on As V and ®; v from Lemma 8.7(iv) and
(i) above. Higher derivative bounds follow inductively from differentiating

(8.27) and using Lemma 8.7(iv) and Lemma 8.23(iv). O
Lemma 8.28 (Estimates for @, Vi e {1,...,k} the following hold.

3 OSC)

(1) (a) (|90 : CLippm (CYL X e—m\lsl—sil)H < ().
H'A (bl ,08C ngm[m}( [b]( )H < C /|m1|

(ii) H@OSC ngm[m] (Cyl;, x )H < C( ).

(iif) HA Pose ngm[m] (Dfpar[s}(Sé) [ )H < C(j)/Imql.

Proof. We first complete the proof in the case where Cyl; = Cyl and leave
the modifications for the case where [ < oo (when ¥ is a torus) to the end.
(i) follows directly from applying Lemma 8.22 to E! osc using Lemma 8.23
and Schauder regularity for the higher derivative estimates. For small k,

(ii) follows from (i). On the other hand, Lemma 7.48(ii) implies that for all
i,j € {1,...,k}, [sj —sil > | | . Using this with part (i) above, we estimate

Hq>OSC sym Cyl X H <C zgﬂgze mHs| si|

k—1

<C()) eer <),

=0

where we have used Assumption 8.17. This completes the proof of (ii). Now
fix some i € {1,...,k}. As before, fori,j € {1,...,k}, [sj —s;] > | | . Using
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the definitions and (i) above,

[ABhee Ol (DY 30). )| < [[AsB] e Clyra (DY, 30).7)|
+ D [MA®) sc : Clyan (D, 01 39), %)
JFi
< £ (1) 19 ose : Corn(DF o 30), %)
J#i
< @—FC(?")Ze_m‘SFSi'
" i
C(r) Sy o(r)
< 7—1—0(7‘);6 < -,

where we have used Assumption 8.17.

We now address the case when ¥ is a torus, that is when Cyl; is a proper
subset of Cyl. In this case we must lift all of our functions to functions on
Cyl which are invariant under the translation Sg; : Cyl — Cyl defined by
s — s + 2. More precisely, we define for each i € {1,...,k} and j € Z
Ez/ osc? Ez/j osc € Cgy sym[m; ](Cyl) by Ez Jrosc — Ez/ osc © SJQZ’ EZ osc — Z]GZ E/,j,osw

e O (Cyl) by using 8.22 and requesting that £

7 j osc sym[m ]
Il / _ Y
Ezg osc? and q)z ,0sCc ZjeZ (I)’,j osc*

Finally, we use 8.22 to establish exponential decay for each P’

sim] i jose =

0SC,1,j away

from Lpar[s; +20j] and complete the proof; we omit the details because they
are similar to those from the proof when Cyl; = Cyl. O

Proposition 8.29 (cf. [33, Proposition 4.18]). The following hold.

< > 2 cgym[m] (1,71 < CG).
i) || As®" : C (wa[sl}( X)| < C)/ max; myl, (i € {1,...,k}).

sym [m]

Proof. Because of the estimates on ®/_. established in Proposition 8.28(ii),

it is enough to prove the estimate (i) for @;,,, and this follows from 8.20

and 8.25. 0

0osc
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9. Families of LD solutions on O(2) X Zs symmetric
backgrounds

The family of LD solutions

For the applications at hand, it will be convenient to use definitions of K[L]
and X [L] (recall 3.11) which exploit the symmetries of the problem. When
Mmax > M, we will also need to consider LD solutions with more general
singular sets than the ones studied in Section 8.

Definition 9.1 (The space Vsym[L L]). Given L = Uk L; which is a small
Sm-symmetric perturbation of an L = L[s;m] as in 7.11, define the sub-
space Vym[L L] of V[L] (recall 2.9) consisting of elements equivariant under
the obvious action of Gm on V[L], an inner product (-, '>V[Z] by (-, '>V[E} =
> pei (s Iy, where (ag+ards+azdf, ap+ayds +ahdf) vy == aoap +aral +
asaly, and a decomposition

k
Vsym [Z] = @ sym z @VT ©® VL ], where

=1
VI[L] = {(a + bds)pezi € Voyml[Li] : a,b € R}

and V-[L;] is the orthogonal complement of VT [L;] in Veym [Ls].

We will need to convert estimates on the cylinder—particularly those
established for @ in Section 8—into estimates on ¥ with the g metric. Be-
fore doing this we need the following lemma, which compares the geometry
induced by the metrics x and g.

Lemma 9.2. Suppose u € C7(Q) for a domain Q C Cyl. Then

lu = C7(Q, )| < C()lu: C7 (L I +supe “P A+ flw: CEQ N

Proof. In this proof we denote objects computed with respect to ¢ = €%y
by a hat, so for example the Levi-Civita connection of ¢ is denoted by V.
Taking covariant derivatives of VJ/u with respect to g, we find

J
(VIW)iywiim = (Viyiyn — D (VUi peoi, T

s=1
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Recall the formula for the Christoffel symbols computed with respect to the
conformal metric g = e?*x:

re. =r1b

P [
mi, T 0b w. + 5i5w,m — Gmi 97wy

Combining the preceding, we find

k
(V]u)ilu.mm = (V]u)il...ij;m — Z(V]u)il...m...ijw,is

=1

J
_ (vju)il-nijw,m + Z(§ju)i1~~pmijgmis (Vw)p.

s=1
The conclusion now follows by a straightforward inductive argument. O

Definition 9.3 (The constants d,, cf. 3.8). For each p € L we define a
constant 6, > 0 by requesting that the set of 0p’s is invariant under the

action of G, on L and that for i = 1,...,k we have 6, = e~ 2(6P)§ =
L le—Qw(S(p))‘

m;

Definition 9.4 (The space of parameters). We define P := PT©PL, where

k k
Pl =R*  PL=PP = PrImVIL]
i=1 i=1

The continuous parameters of the LD solutions are

¢=(",¢h) € Bp i=cBp i=c(Bpr x Bp.),
where CT = (C1,0) = (Q1,0,€6) € QB713T, (1eR, oc Rk_l, £e ]Rk,

1 1 2k—1 &
Bl—r = —1 1 RN B]_ — >< Bl
P [ y ]X |: m’m:| s pL 2 P
B, 1= [—e /e e/ | m VIR

and ¢ > 0 is a constant which can be taken as large as needed in terms of k
but is independent of m.

We now define a family ¢[¢ ] of LD solutions parametrized by ¢' €
Bpt and choose the overall scale so that we have approximate matching.
The singular sets of the p[¢ '] are (s,m)-symmetric singular sets (recall
7.11) and (p[¢ " ])avg is close to being balanced in the sense of 7.29.
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Definition 9.5 (Maximally symmetric LD solutions ¢[¢']). Given ¢ €
Bpt as in 9.4, we define using 8.15 the LD solution

p=¢l¢" ] = ¢l¢" ko, m] ==m1®[[a : ko,m ],
(9.6) where 11 =7[¢T] = 1[¢T; ko, m] =265V
:2e<1e_|m1|/2F1¢/9|m1|,

and we denote the singular set and configuration of ¢ by

L=L[¢"] = L[¢ s ko,m] =L[s[g + & : ko;m] C Lyac[sle + o : koll,

T = T[[CT]] = THCT; ko,m] =11 7'[[@ : ko, m].

Note that p, L and T are Gy, -invariant by 8.15. We call the jump circles of
¢lla : ko, m|| (whose union is Lps[s[@+ o : ko]]) the singular circles of ¢.

Lemma 9.7 (Matching equations for ¢[¢]). Given ¢' € Bp+ we have for
©=[¢"] as in 9.5 that Mo = X+ XN with X\ = (7,(pp + |milp,ds))per, €
VTIL] and N = (1p(fip + |mi|ii pds + miipdf))per, € Veym[L] where Vi €
{1,...,k} and ¥p € L; we deﬁne (with @, and @ .. = (®))osc defined in
8.12 and 8.19) Hp = Hi, /L;) = /”L{L'? cI>/;zréi,osc :: Z];ﬁ (I>],oscf

i-1 (D;w p (I);osc
[ = ‘ml, (e—Zzzlm _1) + g( )+ ( )+C1+10g7_ —W(p)

2Ry 7! 7!
1 1 09, 1 09; 1 dw
I ¢ _ - ~Tavg ,08C . ow
sk 25Z + |mg|T!  Os (p) + |m;|T!  Os Q 2|m;| Os ().
~ L _ 1 ! ( ) 1 0P i,osc( ) ~o0 . __ 1 0o’ i,osc( )
Hp = TZ'/ #1i,08C p), /’Lp ‘mZ’T s p), /’Lp T mTiI Y p).

Proof. The decomposition XA + X’ is chosen so that A is the part which has
to be G, -invariant and X is the part which may not be S|, |-invariant.
Expanding now %Mpcp (recall 3.10) using 3.14, 3.9 and 8.19 and equating
coefficients with A + X’ we reduce the proof to confirming

e (42)+ 420

Mp+/7p:

/
G+ 7 _1 Loo' 10w
| (py, + 1) = p; S( si) + ’8s() 283(13).
18¢ 1 09/ 10w

Mk, = 700 —(p) + T—{W(P) - 5%(17)-



394 Nikolaos Kapouleas and Peter McGrath

Using 8.15(iii) to substitute the data for ¢, substituting 71 from (9.6), and
using the rotational invariance of ¢. and w, we further reduce to

)

Sl s o'(p)
fip + I =—(€ = ’—1)+ + ¢ +log Ty —w(p
P P 2F1¢ ! ( )

; 0P’ 1 Ow
98 Vo ey = male 1 _low
(9.8)  |mi| (g, + 1) 5 i = as() 258()
109
mily = — g (p).

This follows by considering average and oscillatory parts and using that

P .
®; osc 18 Gjm,|-Symmetric. O

Notation 9.9. Given a = (a;)%_, € R¥ k > 2, we define @da € R*! by
requesting that (@a); = aj41 —aj, j =1,...,k — 1. It is useful to think of
@a as a discrete derivative of a. O

Corollary 9.10 (Matching Estimates for ¢[¢]). Let ¢T € Bpr and ¢ =
©[¢T] as in 9.5. There is an absolute constant C (independent of ¢ ) such
that for m large enough (depending on c), the following hold, where p :=
(i), = (uh)k_ | and pi, 1 are as defined as in 9.7:

(i) [¢t—m| <C.

(i) |o+ 250u| < c/m.

(ifi) € —2p/]p < C/m.
(iv) For any p € Li, and fip, iy, fiy as in 9.7, |fip| + |1iy] + [fig] < Ce™cx.

Proof. Taking ¢ = 1 in the first equation of 9.7 we obtain for any p € L;

(911> -G = avg( )Jrq)losc( ) UJ(Sl).

Given i > 2, fix p; € L; and p;—1 € L;_1, compute p; — p;—1 using 9.7,

P
multiply through by ﬁi‘ and rearrange to see

2F?

OF ([ ®he(Pi)  Phyg(piz1 /
|m1| ( av7g—/( ) av}]g_/( = ) + log T +w(si) — w(si1)>
) i—1 Ti—1
2F1¢ (I); osc( ) (I); 1osc(pi71) QQ
+ A +0(=).
|| Ti Ti—1 m
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Next, from 9.7 we have for ¢ = 1,...,k and any p; € L;

1 (2 00, 2 0! Ow >

I _ - [~ ) gos¢ o W
(9.13) 2l — & ot 770 (pz)+7i, e (i) = 5 (i)

Using 8.29 to estimate the terms involving ®’, using 9.14 to bound the 7/
terms, and using the boundedness of the s; from Lemma 7.48 and uniform
bounds on w on compact sets, we deduce the inequalities |(1 — p1| < C,

‘0' + fgﬂ @u‘é < C/m, and |€ —2p/|,.. < C/m, which together complete
the proof of (i)-(iii). For (iv), we use the definition of iy, fi;,, fi; in 9.7 and
estimate the oscillatory terms using 8.22 and arguing as in the proof of
8.28. 0

Lemma 9.14. For ® as in Definition 8.15 and 1 < j <1 < k, we have

7 :¢(Sz‘) (62;';;0,) ~ 1
T 9(s)) 1+Cloek

Proof. The first equality follows from 8.15(i). We have then
i—1
(9.15) T o(s5) Zl:j k m

where the estimates follow from Lemma 7.48, Definition 9.5 and 9.4. O

¢t dislocations

When not all |m;|’s are equal we need to expand our families of LD solu-
tions. We first determine the spaces V*[L;] in some simple cases and define
configurations for the corresponding families.

Lemma 9.16. Given L; = L[s;;m;] as in 7.11 and m; € {£m, £2m,+£3m},
A= ()\;J;)peLi € VYL as defined in 9.1 has the form determined by the
following, except that b =0 when s; = 0.

(a) Form; =+m: >‘2J9_ =0Vpe L.

(b) Form; = —2m: A =a df|,, for some a € R, where p; := (e'zm ,s;).

(c) For m; =2m: )\ii =x(a+bds|, ) for some a,b € R, where p;y :=
(ei(ﬁiﬁ),si).

(d) Form; = 3m: )\Ifi+ =2(a+bdsl|, ) and Ay =—a—b ds|, +cdf|,

for some a,b,c € R, where p;y := ((1,0),s;), pi— = (eis%,si)
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(e) Form; = —3m: )\;i+ = 2(a+b ds|pi+)'c"md Ay = —a—'bﬂdslpi_ +cdf|,
for some a,b,c € R, where p; := (e"m,s;), pi— := (e'3m,s;).

Proof. This follows immediately using the definitions of L; in 7.11, V*[L;]
in 9.1, and the symmetries. O

Definition 9.17 (Configurations with ¢1). Given ¢ = ¢! + ¢+ € Bp,
we define a Sm-mvarmnt T =7[¢] = T[¢ ko, m] - L — R, which is a
perturbation of T[] defined in 9.5, by L = L[¢] = UZ 1 L;, where L; =

Li[¢] := Smpi if mi = +m, —2m and L; = L;[¢] := L+|_|L with Li =
Gmpi+ otherwise, and where p;, Tp,, pi+, and 7, are defined as follows (wzth
71 and T, as in 9.5); except we have 5 =0 when s; = 0.

a) For m; = +m: p; = (e'GnFma) s;) and 7, = 71 7).
Ppi 7

(b) For m; = —2m: p; : (ezm (m+€2) ,8i) and Tp, = T17;, where E; € Pt~
R.
(¢c) For m; = 2m: pix = (ei(ﬁiﬁ),si + &), Tp, = etoir 7/, where

(54, &) € Pi- ~ R2. )
(d) For m; = 3m: pi := ((1,0),s; + 26), pie = (Gt s, — &), and
Tps = €% 7! where (01,51,45 ) € P+ ~ R3.
(e) For m; = —3m: piy = (e'm 1S+ 26), pi— = (ei(ﬁ+§?),8i — &), and
o = X017 where (54,&,€) € P ~R3,
Note that 7[¢] in 9.17 is equal to 7[¢ ] as defined in 9.5 when ¢+ =
In order to keep the presentation simple we assume now the following.

Assumption 9.18. We assume in the rest of the article that k,m,m are
as in 7.11 satisfying 8.17, and furthermore that m; € {m,—m,—-2m} Vi €

1,....k}.

Definition 9.19 (The spaces .’Ksym[ L] and Ksym[L L]). Given L as in 9.17 we
define

Kegm|L] = @ sym|L @Jcsym L] & X&m[Li,

where K. (L] = span{V;, V/}k_ with V;,V! € C . (Cyl;) defined by

sym sym [m]

requesting that they are supported on D%(Qéi) and Vp € L; they satisfy

Vi :=W[0;, 265; Az (¢[1, 0;5(p)], 0),

(9.20) V/ =W [5;,26;; dX](¢[0, 1;5(p)], 0),

on DX(26;);
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and IKSLym[N-] = span{V,° : i € {1,...,k} withm; = —2m}, with V? €
C’Sym[m}(CyII) defined by requesting that it is supported on DX (2(5 ) and
Vi? = W0, 20;; dpy J(u; — olui (pi), Osug (pi);si], 0)  on Dy (24:),

where ul is the solution of the Dirichlet problem Lyu; = 0 on Dy, (38;)
with boundary data on dDY,(36;) given by ul(e,s) = sin(f — 0(p;)), where
0(pi) == o (31 + &) (recall 9.17).

Lemma 9.21. The spaces JACSym[[C]] (as in 9.19) satisfy parts (i)-(v) of As-
sumption 3.11.

Proof. Ttems (i) and (ii) of 3.11 follow from Definition 9.19, the definition
of 9; in 9.3, and Lemma 3.13, where we note we can bound %—“S’ on Q[s;;my]
by a constant depending on k using that s; < C'logk from 7.48.

Next, observe that £, @ Keym[L] = Veym[L ] sphts as a direct sum of

maps, 1, = @le(é'g ® EZL‘), where Eg K;;,m[ ] = VT[L;] and SL :
Kyl Lil = V- (Li]-

Next, by the definitions and using that g = e?*x (recall 7.2) we see that
gl 7 is invertible for each i =1, ...,k and moreover that
(9.22) (el <(a + bds)pdi) = aV; + bV},

Now fix i € {1,...,k} with m; = —2m. Since £, V;° = ui(p;) + dp,u; =
80 L (pg)do (recall the definitions of V,° and uj in 9.19), it follows from the
definition of u; that E is an 1som0rphlsm as well.

Next, it is easy to see from (9.20) that the estimates

Vi € (ORI < CG). IV (Ol R < CG)

hold for ¢ € {1,...,k}. Now using 9.2 to convert these estimates to estimates
where the norm ¥ is replaced first with x and then with ¢ = e*’y, we con-
clude that H(Sg)*lH < C(k)m**#, and analogously, H(Sé‘)*lH < C(k)ym2th,
where we have extended the notation for norms in 3.111(iv) in the obvious
way. Then using from 9.3 that J,, = L =20(P) and combining the preced-
ing, we conclude 3.11(iv) holds. Finally, 3.11(v) holds from the preceding
and Taylor’s theorem. O

We now define the full family of LD solutions we use. Note that when
¢t # 0 the singular sets of the LD solutions are (s, m)-rotational (recall
7.11), but not (s, m)-symmetric, perturbations of the ones with ¢+ = 0.
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Definition 9.23 (LD solutions [¢]). Given ¢ = ¢ + ¢t € Bp, we define
using 8.13 the LD solution ¢ = ¢[C] = ¢[T[C]], where T[] is as in 9.17.

Definition 9.24. Given p € Cyl, we define Z, : V[p] — R3 by Z,(u+p/'ds+
pedo) = (p, 1, p1°).

Green’s functions on Cyl

In order to study the effect of the ¢+ parameters on the mismatch of an LD
solution ¢[¢] defined in 9.23, we will first study a G,,-invariant LD solution
®,,, whose singular set is a single L[s;m]. In particular in 9.28, we estimate
E,Pm for certain points p € Lpar [s]\ L[s; m]. Later in 9.29 and 9.31, this will
be used to compare the mismatch of ¢[¢] to that of ¢[¢T].

Given m > 2, s € R, consider the G,,-invariant LD solution ®,,[7] (recall
8.13), where Vp € L[s;m], T takes the value 1. Because of the symmetries,
there is a function G,, : R?\ L,, — R uniquely determined by the condition

(9.25) Dy 0 Yoy1(0,5) = G (mb,m(s — 8)) = G (0,3),

where Ly, := {(2rk, m(s+s)) : k € Z} C R2, 0 := mf and § := m(s—s). Note
that G, € C®°(R?\ Ly,) and satisfies £L;G,, = 0, where Ly = Ay +m ™2V
and ¥ = ds? + db?.

Lemma 9.26. There exist ¢, € C*°(R?), depending only on’s and satisfying
Libm =0, such that on compact subsets of R?\ Leo, where Loy := {(27k,0) :

k € Z}, the functions Gy, + ¢, converge smoothly to the singly periodic
harmonic function G : R?\ Loo — R defined [1] by

~ 1 ) 5 . ~
G00(0> S) = 5 log (Sln2 5 + Slnh2 %) .

Proof. We first consider the average parts G, avg and Goo avg- It follows from
the vertical balancing lemma 8.14 that Gy, avg and G avg have the same
derivative jump at § = 0, that is (recall 7.9)

(aJer,avg + 87Gm,avg)(0) — (8+Goo,avg + afCTYoo,avg)(O)-

For each m € N, there is a unique ¢,,, € C*°(R?) such that ¢,, depends only
on s, Ly¢n,, = 0, and

Gm,avg(o) + ¢m(0) = Goo,avg(o),
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(8+Gm7avg - 8—Gm,avg)(0) + a¢m(0) = (a-l-Goo,avg - a—Goo,avg)(O)-

It follows that G, ave +@m converges smoothly to G ave 0N compact subsets
of R?\ {s = 0}.

In the rest of this proof, denote 7 := dj _, Dy, := Dy (1/5), and Dy, :=
D’Em(l/&')). We define G,, = Yo é&’?, for éﬁ,’i) defined as follows: C:’%g) S
C*®(Dy, \ Ly,) is defined by requesting that E;éﬁg) =0, éﬁﬁ) depends only
on r, G vanishes on 0D, and GY = log(51) + O((£)? log £); G e
C?*B(Dy,), on Dy, is the solution of the Dirichlet problem

AGH = —m™2(V - V(0)GY on Dy
(NJ%) =0 on 0D«

and on D, \ Dy solves the analogous Dirichlet problem with V(0) replaced
with V(—2sm); and for k € N, G ¢ C%*8(D,y,) is the solution of the
Dirichlet problem

Agéﬁ,’frl) =-m2VG® on D,
éﬁ,ﬁ””:O on O0Dy,.

By the preceding and standard regularity theory, it follows that ém €
C*®(Dy, \ L ) that £~C~¥m = 0 on D, and that on each compact subset
of Deo \ Loo, Gy converges smoothly to log(5r) as m — oo.

We next define decompositions G, := G + G, and G = G + G
where Gm,Goo are defined by requesting that they are supported on D
and D, respectively and satisfy

@m :‘I’[%,%;T](ém,()), @00 = \Il[l_l()’%;T](log(E)r)’O)'
Clearly G converges smoothly to Goo 01 compact subsets of R?\ L. Since

! ~ ! ~
L35G 0sc = —L53Gmose and  AG oo = A5G oscs

by using the smooth convergence of @ to CA}OO, separation of variables (ar-
guing as in 8.22, including using the exponential decay away from Ly, of the
oscillatory modes), it follows that G’m osc Smoothly converges to GOO osc Ol
compact subsets of R?. Combined with the preceding analysis of the average

parts, this completes the proof. ]
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Remark 9.27. Although we do not need it here, one can compute Gog ave (S) =
‘%l —log 2. O

(i) p(en ™) s) = @ ( w,8) + O(IE° ).
(i) 8%’5'L<e#<”+§°>,§>= = (e, 8) + O(1€%]).
(i) Lo (e (™) 5) = (=] + 0(1)) + O(I€°]).

Proof. For item (i), we have via Taylor’s theorem

By (e ") 5) = Gou(m +E°,0)
NoaGm ~o im ~o
= Gm(m,0) + & —==(m, 0) + O(l¢ ) = @m(em,s) +O(E°),

where we have used that %(w, 0) = 0 by symmetry. This proves (i). Next,
we have

0P o in ~ 092G ~
m ok rE) gy = IOm = | 720 Cm o2
B (e ,8) P (em,s)+¢& gsvag(“’()”o(’f 1),

and item (ii) follows from this and 9.26. Finally, in similar fashion we have

0o, 4 (r4+£°) 0G, ~ ~ 62Gm ~ 19
—\eém 5 S :—~7T+£an :go ~ 7T,0 +O é’o )
% ( ) % ( ) Py (m,0) + O(1€°[%)
where we have used that aG (m,0) = 0 by symmetry. Item (iii) then follows
by using Lemma 9.26 and the direct calculation 2 ag (r,0) =—1/4. O

Matching estimates
In the last part of this section, given ¢ = ¢ +¢* € Bp, we will need to com-
pare the LD solutions [¢ '] and ¢[¢] defined in 9.5 and 9.23 respectively.

To avoid confusion, we will denote hereafter = o[¢] and ¢ = [¢']. It
will be useful to consider the decompositions

k k
p=> % o=>_ vi
=1 =1

where @;, @; are G,,-invariant and have singular sets L; and L;.
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Corollary 9.29. Suppose i € {1,...,k} and m; = —2m. Then (recall 9.24)
~ 702 o m= co
25, M3 Bi = 2 Mppi = 73 (O(&12), mO(IE 1), =& (1 + 0(1) + O(E71)))

Proof. We have ¢; = @i+ +¢i— and @; = @iy +pi—, where Qi+, @i, it, pi-
are H,,-invariant and the singular sets of ¢;+ and ;, are respectively H,,p;
and H,,p;. By symmetry, we have

ZﬁiMﬁi (ZH— = ZpiMpiSDi‘i"

Next, from Lemma 9.28, we have (recall 2.9)
~ co co m co
25,8581~ — Zp.Lp i = mi(O(E 1), mO(I7]), =& (1 + o(1) + O(€7])))

The conclusion now follows by combining these equations. O
Lemma 9.30. Given i,j € {1,...,k} with i # j, the following hold.
(1) 25,5, (@) — w5) = 75(0(e” & ),mO(e” €% ), mO(e™&x)).

Pi=p;
(11) Zﬁiéﬁi% - Zp'iépi@j = Tj(O(efa%mO(efﬂ),mO(efﬁ)),

Proof. Note first that ¢; = ¢; if |m;| = m, so (i) holds trivially in that case.
Now suppose that m; = —2m. Since @;avg = @j,avg, We need only establish
(i) when @; — ; is replaced with @josc — @josc. The required estimate in
(i) now follows from Lemma 8.22 and arguing as in the proof of 8.28, using
7.48(ii) to see that [s; — s;| > s

CTk;L | Ttem (ii) follows in similar fashion from
8.22. 0

Lemma 9.31 (Matching Estimates for ¢[C]). Let ¢ = ¢t 4+ ¢t € Bp,
3 =[], ¢ = [¢T] be as in 9.23 and 9.5. For each i € {1,...,k} such
that m; = —2m, the following holds.

1 ~ 1 o _m -0 _m
_.ZﬁiMﬁiSO = :ZPIMI%SD + (O(lgz |2 te Ck) ) m0(|£z ‘ te c’“) )

3 7

m= zo —
- Zgz (1+0(1))+O(|f¢|2+m6 Ck)>
Proof. We have Z5 M, = Z,, My, + (I) + (II) + (I11), where

(I) = ZﬁzM@&Z - ZpiMpiSDiv (II) = Z Zﬁiéﬁi(&j - ‘Pj)v
JFi
(1) = Z5.E50) — Zp.Ep 5
i#i
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The conclusion now follows from dividing through by 7;, combining 9.29 and
9.30 to estimate (1), (II), and (I1I), and using from 9.14 that 7;/7; = 7;/7/ =
O(1). O
Definition 9.32. Let { € Bp. Define a linear map Z¢ : Vsym[Z] — P by
requesting that Z¢ has the direct sum decomposition Z¢ = ZCT @ (@le Zé‘i),
where ZcT :VT[L] = PT and ZC“ : VL[Li] — Pt are defined as follows:
given AT = (1, (pp + milpyds)) ez, define
2Fy
AT = (12 a2 )
where = (i)f_y, W' = ()k_y are such that ¥p € Li, pp = puis p, = i}
Given i € {1,...,k}, we define ZC“ to be the trivial map if |m;| = m, and
if m; = —2m we define
ZéZ(AzL) = —4n; where A\ = (rimji; d6)

Di? peL;”

Proposition 9.33. Let ¢ = ¢ + ¢t € Bp and § = ¢[¢] be as in 9.23.
There is an absolute constant C' (independent of ¢ ) such that for m large
enough (depending on ¢ ), the map Z¢ defined in 9.32 satisfies (recall 9.4)

(9.34) ¢ — Ze(Mpie9) € CB71;.

Proof. Define i = ()%, @' = (@)r_,, and p° = (E$)¥_, by requesting
that fori=1,...,k,

1 ~ -~ -~ ~0
— 25 M, p = (s |mal i, mi).
(2
Note that g = 0 when |m;| = 1 by symmetry. By the definitions, (9.34) is

equivalent to the following inequalities, where the final one holds only for
those 7 where m; = —2m:

¢

- 2F7
(9.35) |¢1— | < C, o+ |m—i|¢” < C/m,
goo
€ — 20| < C/m, &5 + 47ig|/ < Cem™/e.

The conclusion now follows from combining the estimates in 9.10 and 9.31
and taking ¢ large enough in terms of k and the constant C in 9.31. O
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Main results of Part I1

Lemma 9.36 (Estimates on the LD solutions). Let @[] be as in Definition
9.23. Then
(i) mk Cf(\’) |log 7;|, and C(c) > 1 depends only on c.
c

(i) 1[¢; ko, m] Cf(\J)ﬁ[[O;ko,m]], and C(c) > 1 depends only on c.

(iv) Forie {1,...,k}, H%go : C28 (D). (26:) \ DX.(6:),X)|| < Cmk.

)
)
(iii) On Cyl\ | ,ep DE’X(TPQO‘) we have ¢ > Tiemk for some ¢ > 0.
)
(V) [l : C*A(EN\ Uyer Dy X (727), X1 < Cri(mk + (725,) 7% |log 722, ).

Proof. (i) follows from the definitions of 7; in (9.6) and 9.17, using 7.48 and
9.14. For (ii), we denote for convenience in this proof ¢ = ¢[g + o : ko, m)|
and ¢' = ¢[d : ko, m]. We have

RIS | 7~ FY
log ————| = — | < Ck
“nokml| T[T e | T

where the equality uses (9.6) and the estimate uses 7.63, 7.48(i), and 9.4.
This establishes (ii).

For items (iii)-(v), note that it suffices to prove each estimate when
©[¢] is replaced with @[¢ '] as defined in 9.5, since the former is a small
perturbation of the latter (recall 9.17 and 9.23).

Estimating ®’ using Lemma 8.28 and using 8.8, 9.14, and (9.6) to bound
é, we have

|CA}\ <aCmk and |®|<C on Cyl\ |_| DE’X(TSQ)-
peL

On the other hand, it is easy to see from Definition 8.19, 7.48(iii), and
8.15(ii) that there is an absolute constant ¢ > 0 such that ® > emk, so (iii)
follows from the decomposition (recall 8.19) ¢[¢] = 71® = 71(® + ' + G)
by taking m large enough and « small enough.

We next prove (iv). By 8.15(iii), 8.19, and 9.5, on the domain under
consideration we have
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The estimate in (iv) now follows from this decomposition using 7.48 and
8.11 to estimate the ¢ term, 8.29(i) and 9.14 to estimate £ @', and 8.23(i)

to estimate @Z
For (v), by Lemmas 8.8 and 8.23, we have
(937) |G CEA O\ DY (), 0)|| < C28) P log )

sym min min

Combined with the preceding estimates, this completes the proof of (v). O

Lemma 9.38. There exists a family of diffeomorphisms FCE DI NGNS
Bp satisfying 5.2(a)-(b).

Proof. The proof is essentially the same as the first part of the proof [33,
Lemma 6.7], but we give the details for completeness. Let ¢ € Bp. For ease
of notation, denote the positive s-coordinates of the circles Ly, [0] by s and
likewise the coordinates of the circles in Ly, [¢] by s’. We define ]:CE X=X
to be an O(2) x Zy covariant diffeomorphism satisfying ]:CE(XE(p,S)) =
Xs(p, fe(s)), where fe € C°(R) is a diffeomorphism satisfying f¢(s) =
s, —s;+son (s; —50,s; +50) for each i = 1,..., k. By choosing f¢ carefully,
we can ensure 5.2(a) and (b) hold. O

Theorem 9.39 (Theorem B). Given a background as in 2.1 satisfying 7.2,
ko > kI (recall 7.28), and m € {m, —m, —2m}* where k = [ko/2], there
are positive constants ¢, m depending only on ko such that if m > m (im-
plying 9.18), then 5.2 holds with { € Bp := QB%) as in 9.4, .FCZ as in 9.38,
L[C] C Lpar[s@+ o : ko]] and T[C] as in 9.17, ¢[C] as in 9.23, 6,[C] as in
9.3, Keym[¢] as in 9.19, and Z¢ as in 9.52.

Proof. Clearly P as defined in 9.4 is finite dimensional and Bp C P is
compact and convex.

We now check the properties 5.2(a)-(¢e): (a)-(b) follow from 9.38. Next,
we verify that the LD solutions ¢[¢] satisfy 3.15: the smallness of Ty in
3.15(i) follows from 9.36(i), and 3.8 holds from (8.5) and taking m large
enough. Convention 3.15(ii) follows from 9.36(i) by taking m large enough,
and 3.15(iii) follows from 9.14 and 9.36(i) also by taking m large enough.

We will prove 3.15(iv)-(v) by suitably modifying the estimates in 9.36(iv)-
(v). For (iii), first note that by 3.13 and 9.3, dDy9(6,,) C Dy.X(25). Then,
using 9.2, we can switch the metric with which the norm on the left hand
side of 9.36(iv) is computed with respect to from Y to x and then from x
to g = e**x at the cost of multiplying the right hand side by powers of m
and constants depending on the norms of w. 3.15(iv) then follows because
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we can ensure that any polynomial in m of bounded degree is bounded by
T;@;a/g by taking m large enough and using 9.36(i).

3.15(v) follows in an analogous way: first, using the smallness of 7,, and
the boundedness of w and its derivatives in the x metric in the vicinity of L,
we have that DEZ,’X(T;C“) c DY (75:). Next, note that the estimate in 3.15(v)
holds when X in the domain is replaced with Q := Cyl_g, _3/mm g, +3/m] DY
using Lemma 9.2 to convert the estimate in 9.36(v) to one where the metric
X is replaced with ¢ at the cost of powers of m and constants depending on
the norms of w on Q. Finally, on ¥\ Q, note that ¢ = 71 (® 4+ ®’), so using
the exponential decay of ® away from Ly, from Lemma 8.28 and that @’
satisfies [,X(f =0 on X\ 2 we conclude the estimate 3.15(v) on X\ Q. Next,
3.15(vi) follows from 9.36(iii) and that ¢ = 71 ® using the smallness of Tyax.
This finishes the verification of 3.15 and thus the verification of 5.2(¢).

Next, the uniformity condition 5.2(d) follows from 9.36(ii) and 9.14.
Finally, the prescribed unbalancing condition 5.2 (¢) follows from Proposition
9.33 by taking ¢ large enough in terms of the constant C' in 9.33. O

We now construct embedded minimal doublings of ¥ by combining The-
orems 9.39 and 5.7:

Theorem 9.40 (Theorem C). With the same assumptions and notation as
in Theorem 9.39, there are ¢ = (¢, k) € Bp X By[g (recall 9.4) and & €

C'OO(M[@]]) (recall 5.4) satisfying HCT)HZB,WV’;M[@] < itald (recall 4.2), such

that the normal graph M := (M[[é]])qv) is a Gpy-invariant closed embedded
minimal doubling over ¥ in N (recall 1.1), which contains one catenoidal
bridge and has one doubling hole close to each point of L[(] (recall 9.17), is
of genus 2gs; — 1 + |L| where gs, is the genus of & and |L| = |L[(]| is as in
7.12(iv), and satisfies the remaining conclusions of Theorem 5.7. Moreover
for each fized ko, the surfaces M converge to 2% in the sense of varifolds as
m — 00.

Proof. Since ¥ is closed and embedded (recall 4.1) and Assumption 5.2 holds
by 9.39, we may apply Theorem 5.7 to conclude the existence of M as above,
for all large enough m. M has the claimed genus because the construction
connects two copies of X by |L| bridges. O

Remark 9.41. Theorem 9.40 applies also in the case studied in [33] for
the background (X, N,g) with ¥ = §2 ¢ N = §?, providing new mini-
mal doublings even for that background, because of the ability to prescribe
m; € {m,—m,—2m} Vi € {1,...,k}, whereas the doublings in [33] had all
m; = m. O
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Part III: New minimal surfaces and self-shrinkers via
doubling

10. Doubling the spherical shrinker and the Angenent torus

Definition 10.1. We call the minimal hypersurfaces in (R"“‘l,e_%&ij)
self-shrinkers.

The following well-known lemma catalogs several equivalent characteri-
zations of self-shrinkers:

Lemma 10.2 (cf. [10, Section 1]). Let X" C R"*L be a smooth oriented
hypersurface. The following are equivalent.

(i) H="22,
(ii) The one-parameter family of hypersurfaces ¥y : ¥ x (—o0, 0] — R+
defined by Xy(p,t) = /—tp flows by mean curvature.
(iii) ¥ <R”+1,e’lml

2n (51-]-) 18 minimal.
(iv) ¥ c R*™! is a critical point for the area (or volume) induced by the

Gaussian metric e_%éij.
In this section we consider the ambient Riemannian three-manifold in
the background is taken to be (N, g) = (R3, e~ l#17/44).
The spherical shrinker

By 10.2(i) S%,, := S*(2) is a self-shrinker, and is clearly O(2) x Zo-invariant
in the sense of 7.2. The Jacobi operator is [30, Lemma C.2]

Lg =e (D) +1) =+ (As2r) +14).-

=

Note that ker Lgz is trivial since 4 is not an eigenvalue of Agz(1y. Next, note
that Xg2 : Cyl = ¥ and w defined by

(10.3) Xsz2 (p,s) = 2(sechsp, tanhs), ) = 4¢ 1 sech?s

are as in the conclusion of Lemma 7.4, and that V = 4sech?s (recall 7.18).

Lemma 10.4. ¢eyen and ¢enq satisfy the following (recall 7.32 and 7.30):
¢eveu

root

(1) @even s strictly decreasing on [0,00), and has a unique root s €

(0,00).



Generalizing the Linearized Doubling approach, 1 407

(ii) ¢end(0) < 0, ¢ena is strictly increasing on [0,00), and has a unique

root spent € (0, ez,

Proof. A straightforward consequence of the fact that 4 is between the first
two nonzero eigenvalues (2 and 6 respectively) of the Laplacian on S?(1). [

Theorem 10.5 (Doublings of the spherical shrinker S?, ). Given any integer
ko > 2, any m € N large enough depending only on k., and any m €&
{m, —m, —2771}““0/2W , there is a G, -invariant closed embedded doubling M of
Sghr as a self-shrinker for the mean curvature flow, containing one catenoidal
bridge and with one doubling hole close to each point of L C Lpar, with Lpar
the union of ko parallel circles in Sghr and L a finite set whose number of
points and their alignment at each circle is prescribed by m as in 9.17 and
9.5. The genus of M is |L| — 1 with |L| as in 7.12(iv). Finally as m — oo
with fized ko the doublings M converge in the varifold sense to Sshr covered
twice.

Proof. Tt follows that k™" = 2 by combining Lemma 7.61(ii) and 10.4(ii).
The discussion above shows that 7.2 holds, so the existence of the doublings
follows immediately from Theorem 9.40. O

The Angenent torus

In [2], Angenent constructed an embedded and O(2) x Zs-invariant (in the
sense of 7.2(ii)) self-shrinking torus, which we denote in this subsection by
Tshr-

Lemma 10.6. Ric(v,v) > 0 on Tyy,.
Proof. We have (see e.g. the proof of [30, Proposition C.2])

i _ =2 (r-19)%  |z)?
= 1 1 -~ 7
Ric(v,v) =e < + 16 6 )

where above x and vy are the position vector field and the Euclidean unit
normal to Ty, and the norms and dot product are computed with respect
to the Euclidean metric. From [45, Proposition 2.1] (see also [3]), we have
that maxzer,,, |z| < 3.4 and the conclusion follows. O

shr

Theorem 10.7 (Doublings of the Angenent torus Tg). There exists kmin ¢

N such that if ko > k2™, m € N is large enough depending only on ko, and
m € {m,—m, —2m}[k /21 there is a Gm-invariant doubling M of Tenr as a
self-shrinker for the mean curvature flow, containing one catenoidal bridge
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and with one doubling hole close to each point of L C Lpar, with Ly, the
union of ko parallel circles in Sghr and L a finite set whose number of points
and their alignment at each circle is prescribed by m as in 9.17 and 9.5.
The genus of M is |L| + 1 with |L| as in 7.12(w). Finally as m — co with
fized ko the doublings M converge in the varifold sense to Sghr covered twice.

Proof. In order to apply Theorem 9.40, we need only check that 7.2 holds.
7.2(i)-(ii) hold by the discussion above. It follows from 10.6 that |A|? +
Ric(v,v) > 0 on Ty, and therefore that 7.2(iii) holds. Finally, it was checked
in [45, Theorem 2.7] that the intersection of ker Lt with the set of O(2) x
Zo-invariant functions on Ty, is trivial. O

Remark 10.8. Although we have not done so here, it would be interesting
to determine the minimum number k2™ of circles (recall 7.23) associated to
the doublings of Ty, in Theorem 10.7. ]

11. Doubling the catenoid

In this section, let (IV, g) be Euclidean three-space and ¥ be the Euclidean
catenoid K parametrized by Xi : Cyl — R?, where Xg(p,s) = (coshsp,s).
Clearly (X, N, g) is O(2) x Zo-invariant in the sense of 7.2(ii), and Xk satisfies
7.4(i1) with I = R. Moreover, V' and w as in 7.6 and 7.18 satisfy

(11.1) V(s) = 2sech?s, () = coshs.

Remark 11.2. The linearized operator Ls2 = Agz + 2 of an equatorial sphere
S? ¢ S? is conformally related to Ly by

Ly =A AQ—&A 2
v =Ax + |A]" = 5 ( vigee T )’

where v : ¥ — S? is the Gauss map, so RLD and LD studied in [33] can be
pulled back by v to LD solutions on .. Because of this, we may use results

from sections 7 and 8 in this section. O
Definition 11.3 ([33, 2.18]). Define ¢even € Ci3j(Cyl) and ¢oaa € C°(Cyl)
by

(11.4) ®even(s) = 1 —stanhs, ®odd(s) = tanhs.

Lemma 11.5 ([33, 2.19]). ¢even and ¢oqq are even and odd in s respectively
and satisfy Lygeven = 0 and Lypoga = 0. Peven 15 strictly decreasing on
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[0,00) and has a unique 100t Spoot € (0,00). Poaq @s strictly increasing in R.

The Wronskian W [¢even, Podd] satisfies

W[¢even7 (bodd] (S) = ¢even(s)a¢odd<s) - 8¢even(s>¢odd(s) =1.

Proof. Straightforward calculation using Definition 11.3 and (7.20). O

Remark 11.6. By straightforward computations (recall Lemma 11.5),

H(s) = (F{'(s) — F)oad(s) deven(s) + (= FL"(5) + F) beven(s) Poda(s)-

Note also that when s > 0, H[F;s|(s) = ¢[1, F;s](s) (recall 8.9). O

Notation 11.7. Given ¢[Fy; ] as in 7.36, we define for i € {1,...,k — 1}
numbers AZ’, B; by QZ)[FLQ] = Ai¢even + Bi¢odd on Cyl[ u

In contrast to the situation for the smooth at the ends K-RLD solution

~ ~

¢lo : ko], ¢[F; o] as defined in 7.36 above becomes severely distorted on
Cyl as I’ /" ay, o. The following lemma makes this precise.

Si,Sz‘+1] :

Sk ,Sk+1)

Lemma 11.8. Let ¢ = @[Fy; o] be as in 7.36, where F € [@kt1.0,0ko). The
following hold.

(i) imp »q, , 8i = silage; @] fori=1,...,k and limp »,, _ sp11 = o0.

~

QAﬁ(ASHl) —0.

(i) imp 7, , @(Sk+1) = 0 and imp »,, o)

Proof. (i) follows immediately from Proposition 7.36(iii). Since by 7.15 Ff(s) =
d(log ¢) on any domain on which ¢ is smooth, we have by integrating on
(Sk,Sk+1) that

~

(11.9) log <%) _ —/+ F(s) ds.

Reparametrizing the integral in (11.9) by (F‘_ﬁ
have

o)) (recall 7.31(i)), we

(11.10) log <($§(:r)1)> =)+ (1I), where

0 Fl,
(I) ;:—/ I ar un ;:—/0 mdf
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Note that (I) and (II) have opposite signs. To estimate (I), recall from the
proof of 7.36 that Ff(s) < Fj_’d (s) on (sg,s'), where 8’ € (sg, sk+1) is defined
by requesting that Fj_’(s’) = 0. Using 7.30, we conclude that Ff(s) < CV(s)

on (sk,s'), and from this we estimate |(I)| < C’F,f:r. For (II), we estimate

Fy ¢

k41— 1 F

(11.11) 11 / YT gp= Dieg (14 th)),

Since limg 7q, , 8" = 00, it follows that limp »,, , V(") = 0 and we conclude
the proof of (ii). O
Lemma 11.12. Let ¢ = (0,&) € (' (RY) & > (RY) satisfy €]~ < 75.

There exist constants ¢; > 0,C7 > 0, depending only on |o|pn, such that for
k € N, we have (recall 7.36) ax o+ €3 /k* < ar—1. and on [ay.q, Ao+ €5/ k]
we have % Py —k (Recall also Aglagq;0] =0).

Remark 11.13. Lemma 11.12 is similar to [33, Lemma 7.4], except that in
the present case, we are interested in the behavior of Ax[F; o] to the right
of ay, s instead of to the left, as was the case in [33]. O

Proof. We omit the proof because it is almost identical to the proof of [33,
Lemma 7.4]. O

Definition 11.14. Let ¢y := ¢;/C1 > 0 with ¢, and Cy > 0 as in the
statement of Lemma 11.12. Given ko € 2N and k := ko/2, o as in 11.12,
and a € (—ey/k, 0], we define dlo, a : ko] := ¢[F; a], where F € (ko) Qo +
gQ/k:z]Aand AplF;o] = a. If a = 0, we may suppress T and write QAS[Q,O :
ko] = ¢lo : kol.

By modifying the proof of 11.12 and statement of 11.14, we can analo-
gously define for a € (e,/k, 0] RLD solutions ¢[o, a : ko] and ko odd, ko > 1.
Moreover, by a straightforward modification of the statement and proof of
8.15, we construct for ko, € N satisfying k, > 1 LD solutions ®[[a, a : ko, m ||
whose average is a multiple of ¢[g+ o, a : ko|. For each a € (—ey/k, 0], we
define LD solutions ¢[¢ '] and ¢[¢] as in 9.5 and 9.23 but with the modified
definition of @[, a : ko, m||.

Because > = K is noncompact, we must modify the definition of the
initial surfaces (recall 3.17), and we will need the following.

Definition 11.15. We define Ycore C % = K to be the convex hull in the x
or g metric (recall 2.3) of Lpar[si + 1], and also Eeng := X\ Ecore-
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Definition 11.16. Given ¢ = ¢[¢] as above and k as in 3.18 we define the
smooth initial surface

M = M[p, K] := Grath U Grath U |_| K D, Tp, &
peL

where Q =X\ | | ¢
defined as follows:
(i) On Xcore, (pfé is defined as in (i)-(ii) of 3.17.
(ii) On Xend, goftl = \11[1,2;di>:r[sd](go, gof;d), where goé';d € C®(Xenq) are

. . 3
the unique functions whose graphs Graphﬂéend(:lzwécnd) over Xend are
catenoidal ends with vertical axes and initial values

DZ(97,) and the functions Lpi = go‘il [0, k] : Q= R are

O . Opay
(pild(pk) = Pavg (k) Td(pk) = sli(nslk S &

3 1 3 l
We define also Mepq := Gmph%end (cpi) U Graphﬂéend(gog )
and  Meope 1= Graph%core(gpil YU Graphﬂécore(cpg,l ).

We need now to update the definition of the global norms to deal with
the ends.

Definition 11.17. Fork € N, € (0,1),7 € R, we define

lally 55 20nr = Wolly 55 2rpg .+ 1 s CFP (Mg, = |A\29)H,
BAA M BAA s Meore

where the first term on the right hand side is as in 4.2 and |A| above is the
length of the second fundamental form on Mgyg.

_ 1+a/3
Lemma 11.18. ||H — Jy(wb,w™)||o,8y—21—2.m < T,

Proof. Arguing as in the proof of 4.6 and using that the graphs of j:goild
have zero mean curvature, we need only estimate the mean curvature on the
transition region in 11.16(ii). We have via 11.16(ii) that

I 2,
o = o+ [1,2;d X[S ]](vagtnd — ) on EendﬂD Lo [Sk](Q)

Using 3.15(v ) and the initial values in 11.16(ii), note that Hcp;tnd —p
CF(Zena N D [Sk}( )| < 732 Tt now follows expanding H', in linear and
higher order terms as in the proof of 3.19 that

27
| : COF(Sena N DY (2), 9)]| < 722

max>
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where H', denotes the pushforward of the mean curvature of the graph of
ﬂ to K by Ilg. This concludes the proof. O

Definition 11.19. We define smooth surfaces ¥y := Yeore UGraphy,_ (¢),
where ¢!y € C°(Xenq) are defined by requesting that ¢’y := t@end 0N Lena \

Ea
D%pm[sk]@) and ¢’ = W[1,2; defr[Sk}] (0, £pend) 0N Tend-

Remark 11.20. Note that in the metric h := 3|A|?g the ends of ¥4 are
isometric to spherical caps with the poles removed. O

We next modify the definition of R}"" to deal with the ends. For this,
let E € C% (M), and let E, be as in 4.12. Using 4.1, 3.11, and that h

sym[m]
is very close to the round metric on S?, there are unique v/, € Csym[m](Ei)

and wi 7.1 € Keymm)[L] such that
1
(11.21) (Ap +2)u)y = §|A|2(E;E +wp,) on i

Notation 11.22. If f* are functions supported on X \ Uper DE(pr) we

define Jp/(f*, f7) to be the function on M supported on M\| |, DX (97,)

defined by f* oIly, on the graph of <pil and by f~ oIly_ on the graph of
gl
—p7. U

Note in particular 11.21 implies

Lyu!, = E/ + waEJ on  Yeore and

(11.23) S
Lydu(uy,u”) =Ey on Meq\ D Lpar sk](S)

We define RY"" exactly as in 4.17, except using the modified definitions of
u/y and Jys just discussed. Further, we define Ry as in the statement of
4.18 and Ry, as in the proof of 4.21.

Define (u wi,wy) = =R, (H—Jy(wh,w™)). Using 11.18, the proof of
4.18,11.17, and (11.21), it is not difficult to see (using separation of variables
to estimate u on the ends) that
(11.24) iz : COP (2, ) + Nullegrins < T/ ™.

IIl ax

We next modify the estimates of the quadratic terms. Given ¢ € C*8(M)

M < Tm:f/ , we have by arguing as in the proof of 5.1 and

using 11.17 that

(11.25) |Hg — H — Lardllo,py—2—200 < T2
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Finally, define (uQ,wg,wé) = —R);(Hy — H — Lpr¢). Arguing as above,
we have
(11.26) ng : Co’ﬁ(zag)H + llugll2,87y:m < Tél/az;'

Lemma 11.27. There exists a family of diffeomorphisms ]-“? : K — K,
¢ € Bp satisfying 5.2(a)-(b).

Proof. We omit the proof, which is very similar to the proof of 9.38. O

Theorem 11.28 (Main Theorem for doublings of the catenoid). Given any
integer ko > 2, any m € N large enough depending only on ko, any m €
{m, —m, —2m}%/21 and any a € (—ey/k,0] (recall 11.14), there is a Gy-
mwvariant complete embedded minimal doubling M of K in R3, containing one
catenoidal bridge and with one doubling hole close to each point of L C Lyar,
with Lpar the union of ko parallel circles in K with latitudes varying with
a, and with the number of points of L and their alignment at each circle
prescribed by m as in 9.17 and 9.5. Moreover, M has finite total curvature,
its genus is |L| — 1 with |L| as in 7.12(iv), and has ezxactly four ends. Its
ends are asymptotically catenoidal, and when a = 0 of equal asymptotic
size. Finally as m — oo with fixed ko the minimal doublings converge in the
appropriate sense to K covered twice.

Proof. We apply the steps of the proofs of Theorems 5.7 and 9.39—with
small modifications because K is noncompact. We first check that Assump-
tion 7.2 holds, except for the condition in 7.2(i) that ¥ is closed. Clearly
7.2(ii)-(iii) hold. Using the Gauss map, we can conformally identify K with
a twice punctured sphere (recall 11.2), and therefore 7.2(iv) holds when
considering solutions which extend to the poles of the sphere.

By a straightforward modification of the arguments in the proof of 9.39,
Assumption 5.2 holds, where ]-'? are as in 11.27 and the isomorphisms Z¢
are as in 9.32. We may then apply the steps in the proof of Theorem 5.7
except that we use the estimates (11.24) and (11.25) to replace items (2)
and (4) in the proof of 5.7. This concludes the proof. O

Remark 11.29. Note that Theorem 11.28 produces a one-parameter family
of doublings, with the parameter a € (—¢y/k,0] (as in 11.14) governing the
latitudes of the outermost circles where catenoidal bridges are placed.

Remark 11.30. It is possible to construct doublings of K with k, = 1. How-
ever, these would necessarily be immersed but not embedded because the
corresponding LD solutions would be negative on the ends of K (recall 7.37,
11.3, and 11.7), so we do not study these examples in detail. ]
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12. Doubling the critical catenoid

Definition 12.1. Let (M™,g) be a Riemannian manifold and Q@ C M be a
domain with smooth boundary. A smooth, properly immersed (in the sense
that intersections with compact subsets of Q are compact) submanifold X¥ C

Q is a free boundary minimal submanifold if its mean curvature vanishes,
0% C 092, and X is orthogonal to 9) along OX.

Let B3 := {x € R? : |z| < 1} equipped with the standard Euclidean
metric. By standard calculations the linearized equation for free boundary
minimal surfaces in B? at a free boundary minimal surface ¥ in  := B3
defined as in 12.1, with unit normal (smooth) field v and unit outward
conormal field n along 9%, is given (see for example [31, 2.25, (2.31) and
(2.41)]) by the boundary value problem

Au+|APu =0 on X,

12.2
( ) —%—Fu =0 on O0X.

Definition 12.3. Define I := (—Sroot, Sroot) (recall 11.5) and an immersion
Xk, : Cyl; — R3 by

sech Spoot

12.4 Xg, = —— X .
( ) Ko Sroot KlelI

We call the image of Xk, the critical catenoid and denote it by K.

It is easy to check that Ky is a free boundary minimal surface in B3.
Moreover, using (2.5)

h TOO
(12.5) ew(s) = 27 Sroot coshs, V(s) = 2sech?s,

Sroot

and it is straightforward to see that assumptions 7.2(ii),(iii) hold.
When ¥ = Ky, we have by (12.4) that (12.2) is equivalent to

(12.6) {ﬁxu =0 on Cyly

ou
Sroota_,7 =u on Lpar[sroot]-

Lemma 12.7. There are no nontrivial O(2) x Zaz-invariant solutions of
(12.2) on Ky.

Proof. This was checked in Lemma 3.18 and Remark 3.20 of [31]. O
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Definition 12.8. Define a rotationally invariant function ¢eriy € CS°(Cyl)
by

(12-9) Gerit (S) = (SGChQ Sroot — tanh2 Sroot)¢even(s) - a¢even(sroot)¢odd (S)

Lemma 12.10. ¢ is strictly increasing on [0, Syo0t], has a unique root

sfoot‘ € (0, Sr00t), and satisfies srooth“‘“(smot) =1.

Proof. Straightforward computation from 12.8. O

Remark 12.11. ¢t appeared also in [31, equation 3.19], although there it
was called ¢popin. Note also that 12.10 shows that the construction fails for
ko = 1 because 7.21 (iii) is violated (see 7.22). O

Lemma 12.12. For a function ¢ € C’ﬁS' (Cyl;y), the Robin boundary condition

in (12.6) is equivalent to the flux condition smoth(smot) =1.

Proof. This is immediate from the symmetries and the definition of Ff in
7.15. ]

Definition 12.13. We say ¢ € C%(Cyll) is a Kg-RLD solution if ¢ is
an RLD solution in the sense of Definition 7.21 which satisfies also the
condition srootFj_’(sroot) =1.

By Definition 12.13 and Lemma 12.12, it follows that any Kg-RLD so-
lution ¢ coincides with a constant multiple of ¢t on Cyl[sf’smt].

In contrast to the situation for the RLD solutions established in Propo-
sition 7.36, the number of possible parallel circles of a Kg-RLD solution with
o? = 0 is limited:

Lemma 12.14. Suppose ¢ is a Kg-RLD solution satisfying o® = 0. Then
ko[s?] < 3.

Proof. Suppose first that s; > 0. Let $ = ég[F, 0] be as in 7.36, where
in this proof F := Ff“"“ (Sroot)- A numerical calculation establishes that
sg [F';0] ~ 2.414 > s;00t- The result then follows from the flux monotonicity
and 7.36(1).

Next suppose that s; = 0. Let ¢ = ¢[F'; 0] (recall 7.37). It follows from
Lemma 7.33(i) that S?[F; 0] > sJ[F;0] ~ 2.414 > s, where sg[F; 0] is as
in the above paragraph. Using again the flux monotonicity this completes
the proof. O

Proposition 12.15 (Ky-RLD existence and uniqueness). The following
hold.
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(i) (Two parallel circles) Given o = & € R satisfying || < 1, there is a

unique unit Kyg-RLD solution ¢ = qﬁ[a : 2] satisfying ko [Sﬂ =2 and

g¢ = £. Moreover s‘f € (Sfoot,sroot)

(ii) (Three parallel circles) There exists ¢, > 0 such that for all o =
(a 5) (—€1,00) X (—€1,€) there is a unique unit Ko-RLD solution

¢ = qS[a' 3] satisfying ko [S¢] =3 and 0'¢ = (0,¢).

Proof. We first prove (i). By 7.31, 11.5, and 12.10, the function u : (sﬁjg{,smot) —
(0,00) defined by u = Ff”“ / F? is a strictly decreasing diffeomorphism.

Therefore, there is a unique s € (s f)oot,smot) such that u(s;) = fg, equiv-
alently

Fd)crit S _ F¢even S
(12.16) f="% (51) = F=(s1)

F—(fcrit (Sl) + Fif)even (Sl).

By 7.14, (12.16), and 7.36, $[2 : &) := ¢[F**"(s1); &']|cy1,, where o’ =
(0,(£,0,0,...)) (recall 7.13), is an Ky-RLD solution satisfying the condi-
tions in (i ) The uniqueness is clear.

Proof of (ii): We first consider the case where (0,£) = (0,0). Note first

that syt ~ 1.1997. Given F' > 0, denote in this proof ¢ = QVS[F, 0] (recall
the notation of 7.39), where we recall that ¢ satisfies ¢ = Geven + FPodd On
Cylio ) (so that in particular Ff(()) = F) and F‘f(s‘f) = F. By numerical
computations, we have the following:

90 1100, P (s909) & 1,152,

i~ 1157, FO (571 & 902,

Differentiating the equation F ¢(sl) = F implicitly with respect to F' and

using 7.31, we conclude that 881 > 0. In combination with the flux mono-
tonicity 7.31 applied to ¢crit, thls and the preceding numerical calculations
show that there is a unique F° > 0 such that Ff(s‘f) = Fft(s‘f) This
concludes the proof of (ii) in the case where (0,¢) = (0,0).

The general case follows from the smooth dependence of s; oIl on o=

(0,€), the fact that 851 > 0 and the flux monotonicity by taking ¢, > 0
small enough, in 51mllar fashion to the case discussed above. O

By 12.14 and 7.29, the only RLD solutions ¢ with all |m;|’s equal have
ko[s?] < 3. Proposition 12.15 constructs RLD solutions with k,[s?] = 3, but

fed
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1.2 ¢

1.1+

1]
0.9 ¢
0.8 +
0.7 +
0.6 +

0.5 | .

>
>

—Sroot —-.5 0 5 Sroot

Figure 4: Profiles of the Ky-RLD solutions ¢[0 : 2] and ¢[0 : 3].

in a limited way: by 12.15(ii), the parameter o must be bounded below by
—€;. On the other hand, a balanced RLD solution with m = (£2m, £m)
would have 0 = —log2 by 7.29, and it can be checked as in the proof of
12.14 and 12.15 that no such balanced RLD solutions with ko[s?] = 3 exist.

LD solutions

Assumption 12.17. We assume ko, € {2,3}, m € N is as large as needed
in terms of ko, m = (£m) when k, = 2, and m = (£m,+m) or m =
(£m,—2m) when k, = 3.

Now that we are equipped with Ks-RLD solutions, we can apply the
analysis of Section 8—with only small, mostly notational modifications, to
construct and estimate LD solutions corresponding to the RLD solutions
just constructed in Proposition 12.15. For brevity, we remark only that the
obvious modification of Lemma 8.15—which constructs LD solutions from
RLD solutions—holds because by Lemma 12.7, the boundary value problem
(12.2) has trivial kernel on Ky. The remaining estimates and decompositions
of the corresponding LD solutions hold essentially exactly as in Section 8.

Initial surfaces

To construct the initial surfaces and later also to perturb the initial surfaces,
it will be useful to deform a surface which meets B3 orthogonally without
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leaving the ball. To do this, we adopt an approach from [34] and introduce
an auxiliary metric g4 which makes the boundary S? = 9B? totally geodesic.
For numbers r, 7 satisfying 0 < r < 7 < 1 which we will fix later, we define

1
(12.18) ga = 0%g, where Q:= W [r,7;dJ](1,0) + d—g‘I’ [r,7;d3] (0,1).

For the purposes of the following discussion, let .S be a properly embed-
ded surface in B?; later we will take either S = Ky or S to be an initial
surface defined below.

Note that the unit normal to 0.5 with respect to g4 which points in the
same direction as v is (2 0 X)~'v. Now denote X : S — R3 the inclusion
map. Given u € C?(S), we define the perturbation Xz : Ky — R3 by @ of
Ky by

594 (_U(p)v(p)
Xa(p) = expy (W) '

For u sufficiently small, X3 is an immersion, and then we denote the corre-
sponding Euclidean normal by v.

On a neighborhood of dS in S we define the function ¢ := dj; near
0Ky, we can take o to be a coordinate on S whose associated coordinate
vector field J, is then the inward pointing unit conormal to S along 95. We
define also the boundary angle function O[u] : S — R by

(12.19) Od] := g(Xa, va).

It is shown in [34] that the condition O[u] = 0 is equivalent to the
condition that u satisfies the Neumann condition @ , = 0.

Next, let L denote the linearized operator associated to the Euclidean
mean curvature of Xz computed at w = 0. The following lemma from [34]
relates £ to the usual Jacobi operator Lg on S and relates the equation
0s,ulps = 0 to a Robin boundary condition (recall 12.2) for an associated
function wu.

Lemma 12.20 ([34, Lemma 5.19]). Given u € C?(S), if we define u €
C2(8) by u:= (o X)) 1u, then

(i) Lt = Lsu.

(i) Ootlys = (05 + 1) ulyg -
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Definition 12.21 (The initial surfaces). Given ¢, kK, and goﬂ as in 3.17

we define cﬁftl =(Q oX)gpftl (recall 12.20). We then define the smooth initial
surface M = M|, K] in the same way as in 3.17, except that we replace the
graphs by

Graph]gg’g“ (&f’:) and Graph]gs’g" (- G ).

Convention 12.22. We now fix r and 7 so that r is large enough that
Uper DE 9(49;,) is contained in the set where g coincides with the Euclidean
metric. Note this is possible from 12.15.

Lemma 12.23. |[H — Ja(wb, w ) |log- 2201 < Tome’®.

Proof. Because g4 only differs from being Euclidean outside the ball Dgg "9 (r),
by convention 12.22, and repeating the estimates in the proof of 3.17, we
need only estimate the Euclidean mean curvature portions of the graphs

Graphgg’g’* ((ﬁil) and Graphgg’g" (- & )

outside this ball.
By using Lemma 12.20 and arguing as in the proof of [34, Lemma 7.8]
we can bound these terms and the proof is complete. O

We conclude this subsection with a discussion of perturbations of the
initial surfaces. If ¢ € C'(M) is appropriately small, we denote M, =
Graphﬂf;’gf‘(qﬁ), where ¢ = (20 X)¢, and here X : M — R3 is the in-
clusion map. We have the following estimate (recall 5.1 on the nonlinear
terms of the mean curvature of My:

Lemma 12.24. If M is as in 12.21 and ¢ € C?P (M) satisfies || ¢|l2,5m <

7'&1:3/4, then My is well defined as above, is embedded, and if Hy is the Eu-
clidean mean curvature of My pulled back to M and H is the mean curvature
of M, then we have

—a/2

|| H¢ - H - £M¢ 0,B,’7—2,’y/—2;M S CTmln ” QS ”%757777/;]\4.

Proof. Although My is defined as the normal graph of gz~5 with respect to the
auxiliary metric g4, Lemma 12.20 shows that the linear terms are given by
L ¢ = Lyr¢. The proof then essentially the same as that of 12.24 (see also
[34, Lemma 7.8]), so we omit the details. O
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The linearized equation on the initial surfaces

Because the linearized equation on the initial surfaces is a boundary value
problem, we need to modify the definition of R{/*" in Definition 4.17: we will
define Ry (E, E%) = (uy, wg 1 Wg 1, B, E9) for given (E, E9) € CY8(M)x
C98(OM), where u1 will be an approximate solution to the linearized equa-
tion modulo K[L], that is the boundary value problem (recall 1.2(vi))

{EMUZE+JM(wE’wE) where wj; € K[L]

(9 + 1)lonru = E

w% , are the K[L] terms, and Fj, E? are the approximation errors defined

by

Ei:=Lyu — F— JM(wE’l,wE’l),

(12.25)
E? := (05 + 1)|onsu1 — E2.

Before proceeding with the definition, we need to modify the definition
of Jyr from 3.25 and define an analogous operator Jy,s for the boundary.

Notation 12.26. If f* and f~ are functions supported on S (recall (3. 24a)),
we define Jy/(f1, f7) to be the function on M supported on (II¥ ’M )~ts’
defined by f*oII? on Graphgg’gf‘ (Gﬂl) and by f~ oIl on the Graph]é 94 (=
~ql
7).

If fd and f? are functions defined on 0Ky, we define JaM(f+, f ) to be
the function defined on 9M defined by 2 o I on Grath Ko (P ) and by
f2 oIl on Graph;, ’g“( 7. O

We follow the discussion before Definition 4.17 with the following small

modifications: just after the definition of E', in (4.12), we define E{ €
C98(0Kp) by requesting that

(12.27) Jon (B2, E?) = E°.

We then replace the equation (4.13) defining v/, € C*#(%) and wi
with the equation

(12.28)

Leu', = E +
{ ot + 1 Wp) and VpeL &l =0.

(05 + 1)]or, vy = Ei
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We now define R = (us, wEl, wg 1, B, E?), where uy, wEl, and w |
are defined as in 4.17, and Ej, E{ are defined as in (12.25).

We are now ready to state and prove an appropriately modified version
of 4.21 in the present setting. Note that in the statement below we only
need to solve with homogeneous boundary value data because of the way we
perturb using the auxiliary metric.

Proposition 12.29. Recall that we assume that 2.10, 4.1, 3.11, 3.15, and
4.5 hold. A linear map Ry : COP(M) — C?P(M) x K[L] x K[L] can be
defined then by

RyE = (u,wh,wg) =Y (tn,wh ,, wy,) € C*P(M) x K[L] x K[L]
n=1

for E € COB(M), where {(un, w}, ,wp ., En, E9)}nen is defined inductively
forn e N by

(tny W s W 1y By EY) = —R¥P(E,_1, B2 ) Ey:=—E, EJ=0.

Moreover the following hold.

(i) Lyu=E + Jy(w},wy) and (05 + 1)|opu = 0.

. —4-2

(i) Nlull2,8y,7m < C(0)05 i| 120g Tminl[| Ello,8,7-2. —2:M-
(i) [[wf : COP (S, 9)|| < ol N Ello,gr—207—2:01-

min

Proof. We need only check that (0, +1)|saru = 0. Using (12.25) and (12.27)
and pulling back to 0Ky we have

(12.30) EYy = (W5, )* 05 + Dty = (55 )0 — O5)|ow, 4,
where the second equality follows by combining with (12.28) and using that

EJ =0.
It follows by a straightforward inductive argument that

(12.31)
((H%ﬁ% ) 0o + ujy = Ei - Ezafli and Ezi - <(Hgf<a)*aa = O )i

We have then for any n € N

n
(W5, ) 05 +1) D ujse = B
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Estimating the smallness of E?i using (12.30) and inductively estimating
E?, using (12.31), we conclude that for any n € N,

H(ag + Dloar Y ui s CHF(OM, g)H <27",
=1

and from this we conclude that (9, + 1)|gasu = 0. O
The main theorem

Theorem 12.32 (Main Theorem for doublings of the critical catenoid).
Let ko € {2,3}. For all m € N sufficiently large and m = (£m) in the case
ko =2, and m = (£m,—2m) or m = (£m,+m) in the case ko = 3, there
is a G -invariant compact embedded doubling M of Ky as a free boundary
minimal surface in B, with four boundary components and genus |L| — 1
where |L| = 2m, or 5m, or 3m respectively. M contains one catenoidal
bridge and one doubling hole close to each point of L, where L C Lya with
Lyar the union of ko parallel circles, with the number of points and their
alignment at each circle prescribed by m as in 9.17 and 9.5. Moreover, as
m — oo with fized ko, the minimal doublings converge in the appropriate
sense to Ky covered twice.

Proof. The structure of the proof is the same as that of 10.5, except that
Theorem 5.7 cannot be applied directly because of the boundary and the
free boundary condition. However, we can still carry out steps (1)-(6) in the
proof of 5.7, where we use 12.29 instead of 4.21 and 12.24 to estimate the
quadratic terms instead of 5.1. We then conclude a fixed point of the map J
in (5.11). It follows as in 5.7 that (M [[é]]) ¢ is smooth and minimal; moreover

(M [[é [)4 intersects OB3 orthogonally because ¢ satisfies the Robin boundary

condition (9, +1)|a7¢ = 0 (recall 12.29(i), the discussion just below (12.19),
and 12.20). O

Appendices
A. Fermi coordinates
In this appendix we define a modification of the standard exponential map
we call Fermi exponential map, and we collect some facts about the corre-

sponding Fermi coordinates in Lemma A.5, most of which can be found for
example in [15].
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Definition A.1 (Fermi exponential map). We assume given a hypersurface
" in a Riemannian manifold (N" "1, g) and a unit normal v, € T,N at
some p € Y. For 6 > 0 we define

~ )
DE’N’Q((S) ={v+zy, 1 veE DOTP aly (0) C 1,3, z € (—6,0) } C T,N.

For small enough §, the map exp,%’N’g : ZA?I?’N’Q((S) — N, defined by

eXpE’N’g(v + z1p) = expflv’g(zuv) Vo+zy, € ﬁE’N’g(é) with v € T,%,

where q := eXpE’g(v) and v, € TyN 1s the unit normal to ¥ at g pointing to
the same side ofDE’(S( d) (which is two-sided) as vy, is a diffeomorphism onto
its image which we will denote by DE Ng(5) C N. We define the injectivity
radius 11135 N9 of (B, N, g) at p to be the supremum of such &’s. Finally when
0 < inj§7N’g we define on DE’N’g(cs) the following.

(a) Iy : DE’N’Q(é) — XN DE’N’Q(d) is the mearest point projection in
(DE’N’Q((S) ,g). Alternatively Ils, corresponds through exp%’N’g to or-
thogonal projection to TpX in (TN, gl,).

(b) z: DE’N’Q((S) — (—6,0) is the szgned distance from XN DENQ((;) in
(Dy"N9(6), ). Alternatively z o expy ™9 (v) v, is the orthogonal pro-
jection of v to (vp) in (TN, gl,,) Vv € Dy N9(5).

(c) A foliation by the level sets ¥, :=z"1(z) C DE’N’Q(é) for z € (—0,9).

(d) Tensor fields g=*, A™* and B>”* by requesting that on each level set
>, they are equal to the first and second fundamental forms and Wein-
garten map of ¥, respectively.

Remark A.2. Note if 3 and N are both complete with respect to g in A.1 and
3} is two-sided, then exp? N9 15 well defined on T,N by the same definition,
even in the case injE’Nﬂ < 00. O
Ezample A.3 (Clifford torus, cf. [38, p. 263-264]). We identify R* with C2
and let N := S € C2, T := {(21,22) € C?: |z1| = |2 = 1/V2} C §?
be the Clifford torus, and p = (1/v/2,1/v/2) € T. There is then a linear
isomorphism F : R3 — T, S? such that the map E = expT S 90F R &SP
(called @ in [38]) satlsﬁes

E(x,y,z) = (sin(z + %)eﬁ"i, cos(z + 7)e ‘/_W) €S?cC?
and E*g = (1 + sin 2z)dx? + (1 — sin 2z)dy? + dz°.
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Ezample A.4 (Cylindrical Fermi coordinates about S2, in S?). Let N :=
S3 C R4, qu be the equatorial two-sphere in the round three-sphere S?, and
p=(0,0,1,0) € qu. There is then a “spherical coordinates parametrization”

o ~ 2 Q3 o
E : R? — T,S3 such that the map F := expieq’S YoE R — S? (which is
equivalent to the map O in [29, (2.2)]) satisfies

E(r,0,z) =(sinr cos # cos z,sin rsin 6 cos z, cos r cos z, sin z),

E*g =cos’z (dr2 + sin? rd@z) + dz?,
and the only nonvanishing Christoffel symbols in the (r, 0, z) coordinates are

=1 =19 =T% = —tanz, I = —sinrcosr,

Y% =TY =cotr, T?% =coszsinz, I%, =sin’rsinzcosz. 0

Lemma A.5 (Properties of Fermi coordinates). Assuming § < injE’N 9 as
in A.1, and with the same notation, the following hold on DE’N’Q(é) C N.

= g>* 4 dz?.

is a smooth symmetric two-tensor on Dy"""9(8) C N.

Proof. (i) follows immediately from Definition A.1. Next we compute
(A6) (Laég)w = Gijz = <V8,iaza 8J> + <8’La vajaz>a

where the indices i, j refer to the ¥ exponential coordinates. With (i), this
implies g, = %gzz,i = 0 and (ii) follows, since g;, = d;, on 3. (iii) follows
from (A.6) and (ii). Next note that any X satisfying [X,0,] = 0 satisfies
Vo, X = Vx0, = —BX; then

(Vo,B) X = -V, Vx0, — B(Vy,X) = —R(9,, X)d, + B>X.

The first equation of (iv) follows after noting that £y B¥* = Vg, B—(V,)o
B*? 4+ B¥?0V0, and the second equation follows from the first by lowering
an index and using (iii). (v) follows via the preceding parts and Taylor’s
theorem. O
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Remark A.7. Straightforward calculations using A.5 recover the usual for-
mulas for the first variations of volume dV>?* and mean curvature H>»”
along the parallel surfaces >,:

Lg dVZ? = (divy, 0,) dV>* = HZ*dV*>7,
Lo, H™* = Ly tr B¥* = tr (Ly, B>*) = |B**|? 4+ Ric(0,,0,). O

Lemma A.8. Let ¥ be a two-sided hypersurface in a Riemannian manifold
(N,g) and Q C ¥ a precompact domain. For u € C1(Q) with ||u : C1(Q, g)|
small, the pullback of the area form do, on Graphg’g(u) by ng Q=

Graphg’g(u) (recall 1.2(viii)) satisfies
((ng)*dau) = (1 —uH + %\Vu]Q — u;(\AZ]Q + Ric(v,v) — H?)

+O(luf + [ul|dul?) ) do,

where do is the Riemannian area form on 3.

Proof. From the definitions and A.5(v), we have

(A.9) (ng)*g = g~ — 2uA” 4 du ® du + u?(A¥ x A + Rm,) + O(|ul?).

For any square matrix M, recall that

det(I+M)=1+tr M + %((trM)Q —tr M%) + O(|M]?),

where [ is the identity matrix. From this and (A.9), it follows that

det ((Xg{:’)*g) = det g™ (1 — 2uH + |Vul?

— wA(| A% + Ric(v,v) — 2H?) + O(luf’ + [ulldul?)).

By taking square roots and using that v14+2x =1+ %m — %xZ + O(a3) for
x near zero, the conclusion now follows. ]

Lemma A.10. Let ¥, N, g,Q, and u be as in A.8. If moreover u € C?()
and 082 is smooth, then

(Graph ()| = |0 - /

1
qua——/uEgudU
Q 2 Ja
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1 ou 1
+ = u—ds+—/u2H2da+/O ul® + |ul|dul?)do.
5 | oty | [ O(uf* + ullau)

Proof. This follows from integrating (Xg 9V*do, over  via A.8 and inte-
grating [, 3|Vu|?do by parts. O

B. Perturbations of graphs

Definition B.1 (Vector fields and sliding). We assume given a Riemannian
manifold (X, g), an open set Q C X, and a vector field V' defined on a domain
containing 2 satisfying V), € dom(exp™9) for each p € Q. We define then
Dy =Dy : @ = 8 by Dy := exp™ oVl = PRI, where I5 : Q — 2 is
the inclusion (recall 1.2(vii)). We also define Qy := QN Dy ().

Lemma B.2. IfQ,V, and Dy are as in B.1 and [ € C“(ﬁv), then
If oDy — f: CHQ)l| < C(R)|If : CHHQ9)IIIV = CH(, g)]I.

If Dy is moreover a diffeomorphism and ||V : C*(Q, g)| is small enough,
then additionally

If oDyt — [ CHQy)|| < CR)IIf - CHFHQ, 9) [V = CH(Q, g)]l.

Proof. This is a consequence of the mean value theorem and a straightfor-
ward induction argument. O

Assumption B.3. We now assume given the following:

(i) A two-sided hypersurface ¥ with a choice of a unit normal v in a

Riemannian manifold (N, g).

(i) A domain Q := D2*Y(8) C X for some p € ¥ and § > 0 satisfying
20 < injE’N’g (recall A.1).

(iii) A function v € C°(Q2) with |lu : C*(£2, g)| as small as needed in terms
of 9.

(iv) A vector field V along Graph*¥(u) with H(ng)*f/ : CH(Q, 9)|| as
small as needed in terms of 4.

Definition B.4. We define a decomposition V=vT4+vt by requesting
that V- = (V,0.)0,, where z is the signed distance from ¥ N DE’N’Q(Q(;) in
DE’N’9(25) as in A.1.
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Lemma B.5. Given u and V as in B. 3, there is a wvector field V. on
uniquely determined by Dy = Iy o Ps XQ’ug and a function w : Dy (Q) — R

Ng _ XNg

uniquely determined by PNgX Do ()0 © Dy. In other words, the

diagram
N expN:9 oV N

(B'G) Xguﬂ\ Jj XIZJ)VV(Q)
Q-2 Dy(Q)

commutes. Moreover, the following hold.
@) [V C’“(Q 9l < CRIXL VT C’“(Q 9)ll-
(i) flw— (X539 (V,0:) —u: CHQ)| < CR)|(XTVT: CHQ,9)]
(s C’““(Q,Q)H + II(XQ,U) V : CFH(Q, g))).

Proof. By the smallness assumptions in B.3, we may assume that P}; X, le (Q)

Dy™N9(26). Since Iy : Dy*™N9(26) — D;9(26) is smooth and exp™9 is in-
vertible on D, >-9(25), the stated condition on V is equivalent to

(B.7) V = (exp™9)lollgo PngXNg

The estimate (i) follows from (B.7) and the fact that the differential of the
exponential map at 0 is the identity. Now combining (i) with the smallness
assumption on V in B.3(iv) and the implicit function theorem, it follows
that Dy is a dlffeomorphism, so in particular w is uniquely determined by

the equation X ( Y = P~XN’9 o D*1

Next, note from (B.6) that woDy = zoexp™+9 oVoX ’g , where z is the
signed distance function from ¥ as in A.1(b). From this and the fact that
the differential of the exponential map at zero is the identity, it follows that

(B.8) [lwoDy — (Xq9)(V,0:) —u: CHQ)|
N,g\* N,g\*17
< CRNXGD VT CHQ 9 II(X5 D)V : CHQ, ).
The conclusion follows from this by using Lemma B.2 in conjunction with
item (i). O

Corollary B.9 (Graphs over graphs). Let ¥, N,g,d, and u be as in B.3.
Fiz a function v € C*(Q), and define a vector field V along Graphy, ’g( )
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by V = (vo Xg’{f)yu, where vy, is the unit normal to Graphg’g(u) which has
positive inner product with 0,. Then B.3(iv) holds provided ||v : C*(Q, g)||
is small enough in terms of 6. Moreover, the function w in B.5 satisfies

lw—v—w: C*Q)|| < Ck) [lu: C*HQ, )| v : CHQ,9)].
Proof. First observe that in Fermi coordinates

0, — VI u
14 ]du|§z,u

where g™ is as in A.1(d). It follows from this and the definitions that

Vy =

I(XEDV  CRQ,g)ll < CR) v : CHQ, g)[[[u: CHHQ)]],
I(XYD (V. 8.) — v CHQ,g)|| < Clk) v : CHQu)lJu - CFTHQ, g%

The conclusion follows from combining these estimates with B.5(ii). O
Tilted graphs

In this part, we study tilting rotations R, defined in 1.11. Given vector spaces
E? E3 as in 1.11, choose orientations for E? and E® and further identify E3
with R? by choosing an orthonormal frame.

Lemma B.10. R, depends smoothly on k. Moreover, the following hold.

(i) For k # 0, Ry is the right-handed rotation of angle 0, about ¥, where
05 = arctan|k[, |k| = supj = k(v), and {7,7+} is the positively
oriented orthonormal frame for R? defined by requesting that k =
[6l(T, ).

(ii) For any @ € R3, R, (W) = (cos 0, )W+ (sin 0, )T x 6+ (1 —cos O, ) (0, 7) 7.

Proof. By 1.11 we have R,, = exp(‘%Kﬁ), where exp : 50(3) — SO(3) is
the exponential map and K, € s0(3) is defined by requesting that K,v =
(k(e2), —r(e1),0) x v for v € R3, where here x is the cross product. Since K,

and \%I depend smoothly on &, the smoothness of R, follows. By properties
of the exponential map, R, is a right-handed rotation of angle 6, about
vector ﬁ(m(eg), —#(e1),0), which is 7 since clearly v+ = ﬁ(/{(el), k(e2),0).

(ii) is easy to check and is known as Rodrigues’ formula. O
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We now specialize the results of B.5 to the case where (N, g) = (R3, 8;;),
¥ =R2 § > 0is fixed (recall B.3) and V is induced by a tilting rotation R,
in the following sense.

Lemma B.11. Given k as in 1.11, there is a vector field V along Graphg’g(u)
uniquely defined by

(B.12) PyX = R0 X390

Moreover, item (i) below holds, and if || < 1/10, then items (ii)-(iv) below
hold, where Rq is the smallest radius such that Q C Do(Rg).

(i) VoX39 = (cos,—1) X7+ (sin 0,) 7 x X319+ (1 —cos 0, ) (X9, 9) 7.

Proof. Because exp;f)v’gu_)’ =p+ 0 for any p € N = R3 and any @ € T,N =
T,R3, the condition (B.12) is equivalent to item (i) by B.10(ii). Items (ii)
and (iii) then follow from the definitions by estimating (i).

Next, using (i) we compute
Nyg\+ /T . _ N,
(B.13) (Xq)(V,0z) = (cos b — Lu+ (sin ) (T x X7, 0:).

Note that ('x ng, d,) = <Xg7’g 74). Ttem (iv) follows by estimating (B.13)

u’?

using this and the fact that x = |k|[(7, ). O

Corollary B.14. If || is small enough in terms of Rq and 0, then B.3(iv)
holds. Moreover, the function k, = w in B.5 satisfies

s = = s ()| < CRY(A+ Ra) (Jlu: CHHQ))] + w)?’.

Proof. The smallness assumption B.3(iv) on V follows from B.11(ii) by tak-
ing |k| small enough. Therefore, the assumptions of B.5 apply, so in partic-
ular Dy is a diffeomorphism. Using that the exponential map in Euclidean
space amounts to addition, we conclude from (B.6) that (recall 1.2(viii))
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Dy + (uyx o Dy)0, = Vo (Ig’ + u,0,) + ud,, which implies

ug,—u—r=I)+{I)+ (I1I), where
(I) :==uo Dyt —u,
(1) = (X)9)*(V,0.) o Dyt — ko DY,
(II1) := ko D! — k.

The estimate now follows by combining the preceding with B.2 and the
estimates in B.11. U

C. Mean curvature with respect to a perturbed metric

Let (N™, g) be a Riemannian manifold with Levi-Civita connection V.

Definition C.1. We define a Christoffel-inspired operator

C : C®°(Sym?*(T'N)) — C*(Sym*(TN) @ T*N)
by 2(CT)(X,Y,2) = (VxT)Y,Z)+ (VyT)(X,Z) - (VzT)(X,Y).

Remark C.2. The operator C above was defined in [4, Section 6.b], although
there it was denoted by [l. O

Fix another Riemannian metric g on N and define h := g—g. We denote
various quantities when defined with respect to g with a hat. By a calculation
[8, Lemma A.2] using the Koszul formula,

(C.3)  G(VxY —VxY,Z)=(Ch)(X,Y,Z) forall X,Y,ZecT,N.

Lemma C.4 (Mean curvature under a change of metric). Let S C N be a
two-sided hypersurface with unit normal field v.

(i) 7= (v~ B)/|v— B and v — B2 = 1+ 0 — |82 — G(B%, BY),
—~ ~ 1~ —~
(i) |v — ﬁﬁ|§AS = A® + Sym (AS *g O+ Vsﬂ) — 50~ (Ca) = B,
(iii) |v — Bﬁbfls = H +divg g — S trgya + (Sym (V98) — 34, a>g

—trs,((CSa) =A%) — ((C%a) = B, @),

where the symmetric two-tensor fields o, a, and &, differential one-form [3,
vector fields 8% and B%, and function o, are defined by requesting that for
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peS, XY €T,S,
a(X,Y) =h(X,Y), B(X) = h(X, 1), o(p) :Ah(yp, Vp)s
a(X,Y)=(V,,h)(X,Y), g X)=8(X), §B X)=pX)
and  A(X,Y)=9(X",Y) - g(X,Y),

where here X? and Y? are computed with respect to g. Moreover we have,

Bt = Bt + (@ Y, and (in any local coordinates) Qi = §klgikgjz — Gij =
k

o s} k1l kol _qlp
ZPZl(_l)paiklg ! lallkzg 22 CQ_oky1 9 P lalp—lj'

Proof. Given X € T,S, note that g(v — BH,X) = 0. Therefore [y = ﬁa,
where II is the g-orthogonal projection onto T,S, and (i) follows, where the
formula for |v — 5”% is a direct calculation. Next we compute (where in this
proof we write A in place of A% since no confusion will arise)
v — BAGAX, X) = G(Vx X + Vx X — VxX,v — )
= §lv.v = B)A(X, X) + (Ch)(X, X, ) = (Ch)(X, X, )
= |v = B A, X) + (Ch)(X, X, v) — (Ch)(X, X, %),

where the second and third equalities use (C.3) and that §(ﬁa, v— 55) =0.
Using C.1, we calculate

(Ch)(X, X, 1) = (Vxch)(X,v) — %(vym(x, X)
— X(h(X, 1)) — h(VxX,v) — h(X,Vxv) — %a(x, X)
= X(B(X)) — B (VEX) — 0A(X, X) + a(X, B(X)) - %a(x, X)

= (VEB)(X) ~ 0 A(X, X) + (4 % 0) (X, X) ~ Ja(X, X).

Using (C.3) and that V-—V=V5_V54 40— Av, we find
(Ch)(X, X, B7) = (CFa) (X, X, BF) - (v, B A(X, X)
= (C%a)(X, X, B%) — B(BHA(X, X).
Substituting these items above and simplifying using (i) establishes (ii).

Taking the trace of (ii) with respect to gs and simplifying (note in particular
that trg5(A *¢ g) = trgy A = H) establishes (iii).
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Finally, let [¢g] and [o] denote matrix representations of gg and « and
note that

(lg) + [o)™ = (1d+ [g] o)) " g™ = D (=1 ([ a]) " [o) 7,

k=0

which implies the coordinate expression for & and the identity ﬁg = [t +
(@ = Bt O
Remark C.5. The proof of Lemma C.4 above is self-contained and done

independently from [44], but we note that (i) and (ii) are consistent with
results therein. O

Remark C.6. When g = e?“g for some w € C*°(N), it follows that
B=F=0, [v-Flg=c" ASxG=c"45% a=2"v(w)g,

and C.4(i) reduces to the usual transformation rule A = e¥ (4 — (O,w)g)
for the second fundamental form under a conformal change of metric. [

Remark C.7. When g is the ambient metric in a local system of Fermi
coordinates about a hypersurface 3 as in A.1, we define g = g|, + dz* and
S = 3,, a parallel hypersurface. We have by A.5

G=3ly, +d*, P=v=0, o=0, B=0,
a = —2zA% + 72 (A¥ x A¥ + Rm, ) + O(2%),
a = —2A% + 22(A* x A¥ 4+ Rm,) + O(z%),

so that C.4(iii) implies the usual formula for the mean curvature of H*
(note that H> = H>):

N 1 -1,
H™ = H” = S trs &+ o {a,@) + 0 (2°)

= H” + (JA”* +Ric(Z,2))z+ O (z°). O

Corollary C.8. HS —HS -5 = (HS +5) ((1+ 5)"1/2 — 1)

+(145) 712 ((Sym (V98) @)y — trsg((C5a) o ) — ((C%a) = 5F,@), ) .

where here & := divgyf — L trg,a — 3(Q,a)y and 7 := o — B(B*).

Proof. This follows immediately from dividing through C.4(iii) by |I/—BE|§ =
(1+5)Y? (recall C.4(i)) and subtracting H¥ + & from both sides. O
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Corollary C.9. Suppose o, 3, and o all have small enough C*(S, g) norm
i terms of k. Then

|HS : C*(S,g)l| < C(k) (HHS L CH(S,g)l + 118 - C*FL(S, 9)|

Hltrsg @: C(S,g)ll + (1 + [l@: C*(S, g)ll) [la - Ck“(Syg)H) :

Proof. From the definition of BH and the coordinate expression for @, it
follows that [|5* : C*(S, g)|| < C(K)[|8: C*(S,g)[I(1 + [l : C*(S, g)|). Using
the notation in the proof of C.8, we have then

Jw: C¥(S,9)ll < C) (Il : CH(S,g) ] + 118+ C(S,9) 1)
(Sym (V58) @), : C*(8,9)ll < C(R)llar: CX(S, 9)][18 : C*1(S,g)l
1@, ) : C*(S,9)| < CR)lar: C*(S, g)lllla : C*(S.g)]|.

Using the preceding, we also estimate

| trsg((CSa) = B%) : CH(S, g)| + [ ((C5a) = B%,@), : C¥(S, 9)]
< C(k)a: C*(S, g)ll[18: CH(S, g)l-

Combining the estimates with the expansion in C.8 completes the proof. [
Lemma C.10. Let u € C%(S) and X be a vector field on S.
(i) Vu = Vu+ (a = Vu).
(i) divX = divX + trs ((C%) - X) + (@, (Coa) = X),.
(iil) Au = Aut(divg 4@)(Vu)+(trs, @) Auttrg o ((C¥a)=(Vut(@-Vu)))
+@, (C%a) = (Vu + (@ = Vu)h)),.

(iv) As long as a has small enough C*+1(S, g) norm in terms of k, then
1A — Au: C¥(S, g)|| < C(k)lla: C*F1(S, g)||[lu : C*+2(S, 9).

Proof. (i) and (ii) follow from the following calculations in coordinates:

(Vu)' =3 = g7uj + g™ " Gy,

divX = §75(Va, X + Vo, X — Vo, X, ;)
77(9(Va,X,05) + (Coa)(X, ;,05))

= divX + (¢” 4+ a"7)(C%a) (X, d;, 0;).
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(iii) follows by combining (i) and (ii) and observing that
div(a — Vu) = (diva)(Vu) + (trgg @) Au.

Finally, (iv) follows immediately from estimating (iii). O

Lemma C.11. Suppose o, 3, and o all have small enough C*T1(S, g) norm
in terms of k. Then

1A% = 1A% [ < C(’f)( (lollox + N1Bllerss + llaller) 14712
- ~ 2
+ (IBlleer + ll@les) 1A% ex + (I1Bller + 1@ler) ),
where here || - ||cx is short hand for the C*(S, g) norm.
Proof. We first compute using C.4(ii) that

[A52 —|AS2 = (0 — |82 — (8%, 5%))| A%)2 + 2(A, Ty + T2,

where here T := Sym (A% x5 a + V98) — $a — (C%a) - 65. Using this and
the assumptions, we estimate

e S S
1A%E 145l < O (((lollcs + [18llexss + llaliex) 1452
- ~ 2
+ (1Blows +11lloe) 145or + (I8lloe + lallor)” )
Next, we compute
A5 — | A7 = 2(A% x, @, A% + A% 5, G5,
and using this and C.4 to estimate || AS||cx we conclude
A2 = [A%2llox < C(R)ledlon | A%|[
< O(k)llallox (A% ox + [[allox + 1Bllows).
By the triangle inequality, combining these estimates finishes the proof. [J

Lemma C.12. Let u be a C* tensor field on N and let ¢ > 0. If ||h :
CK(N, g)|| is small enough in terms of k and ¢, then

(C.13) s CHN,G| r+ llu: CE(N, )]
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Proof. We first consider the case where k& = 0. Since g(u,u) — g(u,u) is a
sum of g-inner products of contractions of u and h, we have that

[llw: CONG)II* = fJu - CON, g)|IP| < Cllh = CON, g)l[lu: C°(N, 9)]I%,

which implies (C.13) when k = 0, where we have used that ||k : C°(N, g)||
is small. R R

Using that the Christoffel symbols of V and V satisfy Ffj - Ffj = Féj hy+
(Ch);jk, substituting into the formula for the components of Vu, estimating,
and using (C.13) when k& = 0, we find

(C.14) IVu: CON,G)| < (L+C|lh: CH(N. g)|})]|u: C(N. ).

Interchanging the roles of g and g in (C.14) and using (C.14) also to estimate
|k : CYH(N, )|, we have

IVu: CO(N, g)| < (1 +Cllh: CHN, @) )l|u : CH(N, 9]

<
< (1+C|lh: CYN, g)[D[lu: C*(N,g)|l.

With the preceding, this proves (C.13) when k£ = 1, and the result for general
k follows inductively. O

D. Weighted decay estimates

We prove a weighted estimate on surfaces for solutions of inhomogeneous lin-
ear equations which is analogous to estimates in other gluing constructions,
e.g. in [7,24,29]. The proof relies on analogous estimates in the Euclidean
setting established in [7, Proposition C.1(i)].

Lemma D.1. Given a closed Riemannian Surface (X2,g), V € C®(X),
B €(0,1), and v € (1,2), there exists € > 0 such that for any e € (0,€] and

any p € X, there is a linear map Ry : COP(D¥(e)) — C*P(D3(€)) so that

if E € C%(D¥(€)) and u =Ry (E), then

(i) (Ag+V)u=E.
(ii) u(p) = dpu = 0.
(iii) [lu: C*P(DF(e),dy, g, (d))]| < CIIE - COP(Dyi(e), dy, g, (dy) 2]

Proof. In [7, Proposition C.1(i)], it was shown that the conclusion of Lemma
D.1 holds when (32, g) = (R?,4;;) and V = 0. By identifying Dg’g(e) with

DOT”Z’Q” (e) using the exponential map, considering the Euclidean Laplacian
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Ay, and its corresponding right inverse R : C%?(D3(e)) — C*#(D3(e))
from [7, Proposition C.1(i)], taking ¢ small enough, and rescaling D (¢) to
be of unit size, we may assume that Id—£LR = (A, —£L)R has operator norm
less than 1. We then define Ry = R > 0% ((Id—LR)" = R Y0 (((A—L)R)™.
Item (i) follows by inspection, and (ii) and (iii) follow from the corresponding
items established in [7, Proposition C.1(i)]. O

Corollary D.2. Let X,V,3,¢, and p be as in D.1. There exists C' > 0 such
that for any € € (0,¢€] and any v € C*P (D> (¢)) satisfying (Ag+V)v =0 on
D3 (€) and E,v =0, the following estimate holds.

lv: C*2(DF(e), dy), g, (d3)")[| < Cllv : C*# (D} (e), dy, g, (d}))].

Proof. Suppose € and v are as above. Define v € C’Q’ﬂ(Dg(e) \ D>(e/2)) to
be the radial extension of v|aﬁ(e) and define ¢ € 02’5(D§(26)) by ¢ =
Wle, €/2; d?](ﬁ, 0). By the definitions, the following estimate holds.

(D-3) lp : C*P(DF(e), d}),9)]| < Cllv: C** (0D (e), dy), 9)]|-

By applying Lemma D.1 with £ = (A, + V)¢, there exists u € CQ’ﬁ(DE(e))
satisfying (Ay + V) (u — ) =0, E,u =0, and

lu: C**(D¥(e),dy, 9, (d})"]| < Cll : C**(DF(e), 4y, . (d;))l]
< Cllv: C**(@DF(e), &y, g, (d) )],

where the last inequality follows from (D.3) and the definitions.

On the other hand, by the definition of ¢ and the proof of Lemma D.1
we have that the restriction of v — ¢ 4 u to 9D} (¢) is a linear combination
of constants and first harmonics. Since £,(v — ¢ +u) = 0, it follows from
the smallness of € that v = ¢ — u. The claimed estimate now follows from
this and the preceding. O
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