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Generalizing the Linearized Doubling approach, I:
General theory and new minimal surfaces and

self-shrinkers

Nikolaos Kapouleas and Peter McGrath

In Part I of this article we generalize the Linearized Doubling (LD)
approach, introduced in earlier work by NK, by proving a general
theorem stating that if Σ is a closed minimal surface embedded
in a Riemannian three-manifold (N, g) and its Jacobi operator has
trivial kernel, then given a suitable family of LD solutions on Σ,
a minimal surface M̆ resembling two copies of Σ joined by many
small catenoidal bridges can be constructed by PDE gluing meth-
ods. (An LD solution ϕ on Σ is a singular solution of the Jacobi
equation with logarithmic singularities which in the construction
are replaced by catenoidal bridges.) We also determine the first
nontrivial term in the expansion for the area |M̆ | of M̆ in terms of
the sizes of its catenoidal bridges and confirm that it is negative;
|M̆ | < 2|Σ| follows.

We demonstrate the applicability of the theorem by first con-
structing new doublings of the Clifford torus. We then construct in
Part II families of LD solutions for general (O(2)×Z2)-symmetric
backgrounds (Σ, N, g). Combining with the theorem in Part I this
implies the construction of new minimal doublings for such back-
grounds. (Constructions for general backgrounds remain open.)
This generalizes our earlier work for Σ = S

2 ⊂ N = S
3 provid-

ing new constructions even in that case.
In Part III, applying the results of Parts I and II—appropriately

modified for the catenoid and the critical catenoid—we construct
new self-shrinkers of the mean curvature flow via doubling the
spherical self-shrinker or the Angenent torus, new complete em-
bedded minimal surfaces of finite total curvature in the Euclidean
three-space via doubling the catenoid, and new free boundary min-
imal surfaces in the unit ball via doubling the critical catenoid.
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1. Introduction

The general framework

Existence results for minimal surfaces have played a fundamental role in the
development of the theory of minimal surfaces and more generally of Differ-
ential Geometry. Particularly important are the cases of embedded minimal
(hyper)surfaces in Euclidean spaces or their quotients, embedded closed min-
imal (hyper)surfaces in the round spheres, properly embedded compact free
boundary minimal (hyper)surfaces in Euclidean balls, closed embedded self-
shrinkers for the mean curvature flow, and general closed embedded minimal
(hyper)surfaces in closed Riemannian manifolds. Geometers have worked in-
tensely on these directions and it is worth mentioning indicatively a sample
of non-gluing results: by Scherk [48], by Lawson [42], by Hsiang [18], by Kar-
cher-Pinkall-Sterling [39], by Hoffman-Meeks [16], by Fraser-Schoen [13], by
Hoffman-Traizet-White [17], by Marques-Neves [43], by Song [50], and by
Chodosh-Mantoulidis [9].

Gluing constructions by Partial Differential Equations (PDE gluing)
methods have been very successful as well and hold further great promise.
They are of two kinds: desingularization constructions [19, 26, 30, 31, 37, 46]
where the new surfaces resemble the union of given minimal surfaces inter-
secting along curves except in the vicinity of the intersection curves where
they resemble singly periodic Scherk surfaces, and doubling constructions
[12, 29, 33, 34, 38, 54] where the new surfaces resemble two (or more) copies
of a given minimal surface joined by small catenoidal bridges; see also the
survey articles [27, 28].

We enumerate now some of the advantages of these gluing constructions.
First, they provide new minimal surfaces which are almost explicit with
well understood topology and geometry. In particular they are well suited
for establishing the existence of infinitely many topological types of minimal
surfaces in various situations. Second, the minimal surfaces constructed have
low area, close to the total area of the ingredients, and so are important in
classifications by increasing area. Third, the constructions are flexible, so
they can be adjusted to apply to various different settings. Finally, doubling
constructions hold great promise in high dimensions (for example [20]) where
very few existence results are currently known: even in Euclidean spaces the
only complete embedded minimal hypersurfaces of finite geometry are the
classical ones (hyperplane and high-dimensional catenoid). Note that new
minimal hypersurfaces obtained via doubling are smooth in all dimensions
by construction, similarly to the CMC hypersurfaces constructed in [7].
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Historically, PDE gluing methods have been applied extensively and
with great success in Gauge Theories by Donaldson [11], Taubes [51–53],
and others. The particular kind of methods discussed here originate from
Schoen’s [49] and NK’s [21], especially as they evolved and were systematized
in [23–25]. In the first doubling constructions [38] the catenoidal bridges
were attached to parallel copies of the given minimal surface to construct
the initial surfaces, one of which was perturbed then to minimality. This
approach turned out to be sufficient in some highly symmetric cases [34,
38,54] where the symmetry does not allow horizontal forces and the surface
modulo the symmetry is simple enough—although the constructions were
still highly nontrivial.

In most cases however this approach is not sufficient and for this reason
NK introduced a powerful new approach called Linearized Doubling (LD)
[29]. The LD approach was originally applied to construct doublings of a
great two-sphere S2 in the round three-sphere S3 but was described for any
given minimal surface Σ [29, Remark 3.21] embedded in a Riemannian three-
manifold N with an isometry of N fixing Σ pointwise and exchanging its
sides.

Given now such a Σ let LΣ be its Jacobi operator (see 1.2(vi)). The
first step in the LD approach is to construct on Σ a suitable family of
Linearized Doubling (LD) solutions: an LD solution ϕ is a singular solution
of LΣϕ = 0 with logarithmic singularities; equivalently ϕ can be considered
as a Green’s function for LΣ with multiple singularities of various strengths.
In the second step the LD solutions are converted to approximately minimal
“initial surfaces” with the aid of chosen finite dimensional obstruction spaces
K̂[L] ⊂ C∞(Σ). The initial surface M corresponding to an LD solution ϕ
consists of catenoidal bridges smoothly joined to the graphs of ϕ + v and
−ϕ − v for some v ∈ K̂[L] chosen to optimize the matching of the bridges
with the graphs. Each bridge is located in the vicinity of a singular point of
ϕ and its size is given by the strength of the logarithmic singularity of ϕ at
the point. In the final step one of the initial surfaces is perturbed to exact
minimality providing the desired new minimal surface.

The LD approach effectively reduces doubling constructions to construc-
tions of suitable families of LD solutions. This is similar in spirit to the
reduction of constructions of CMC (hyper)surfaces [6, 7, 21, 22, 49] to con-
structions of suitable families of approximately balanced graphs, the LD
solutions playing the role of the graphs. The LD solutions used are also ap-
proximately balanced in the sense that they approximately satisfy a finite
number of “matching conditions”, some nonlinear [29, Definitions 3.3 and
3.4]. Not surprisingly, because of the PDE’s involved, the construction of
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approximately balanced LD solutions is much harder than the construction
of balanced graphs.

In the original article [29] the construction was carried out only in two
cases: when the singularities lie on two parallel circles of S2, and when they
lie on the equatorial circle and the poles. Subsequently in [33] this was ex-
tended to an arbitrary number of circles, optionally including the poles.
In both cases the constructions of the LD solutions make heavy use of the
O(2)× Z2 symmetry of the background. Actually in [29,33] the construction
of LD solutions is reduced to the construction of what we called rotationally
invariant linearized doubling (RLD) solutions [33, Definition 3.5], which be-
ing O(2)-invariant, satisfy an ODE instead of a PDE and can be understood
by using appropriate flux quantities.

Brief discussion of the results

In Part I of this article we generalize the LD approach to apply to general
situations by proving Theorem 5.7, which we proceed to describe informally
after stating a helpful general definition.

Definition 1.1 (Surface doublings). Given a Riemannian three-manifold
(N, g) and a two-sided surface Σ in N , we define a (surface) doubling M̆
over Σ in N (equivalently we say M̆ doubles Σ in N) to be a smooth surface
M̆ in N satisfying the following.

(i) The nearest point projection ΠΣ to Σ in N is well defined on M̆ .
(ii) Σ̆ := ΠΣ(M̆) ⊂ Σ is closed with smooth boundary ∂Σ̆.
(iii) M̆ is the union of the graphs of ŭ+ and −ŭ− ∈ C0(Σ̆) ∩ C∞(Σ̆ \ ∂Σ̆).
(iv) ŭ+ + ŭ− = 0 on ∂Σ̆, where the two graphs join smoothly with vertical

tangent planes, and ŭ+ + ŭ− > 0 close to ∂Σ̆ in Σ̆.
(v) By the above ΠΣ|M̆ covers Σ̆ \ ∂Σ̆ twice, ∂Σ̆ once, and misses Σ \ Σ̆.

We call (Σ, N, g) the background of the doubling M̆ , Σ its base surface, and
each connected component of Σ \ Σ̆ a doubling hole of M̆ over Σ. Finally
if Σ and M̆ are minimal we call the doubling M̆ minimal. In this article,
unless stated otherwise, Σ and M̆ are assumed embedded and connected, and
so ŭ+ + ŭ− > 0 on Σ̆ (ŭ+ = ŭ− > 0 in the special case of symmetric sides).

Theorem A (Theorem 5.7). We assume given a background (Σ, N, g) with
the base surface Σ a closed minimal two-sided surface embedded in the Rie-
mannian three-manifold (N, g) with Jacobi operator LΣ (see 1.2(vi)) of triv-
ial kernel on Σ (see 1.1, 2.1 and 4.1). We assume given also a family of
LD solutions on Σ with appropriately uniform features, sufficiently small
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singularity strengths, and prescribable—when small—“unbalancing content”
(see 5.2 for precise statements). There is then a smooth closed embedded
minimal surface M̆ doubling Σ in N as in 1.1 satisfying the following.

(i) There is an LD solution ϕ in the given family with finite singular set
L ⊂ Σ, such that ∀p ∈ L and τp > 0 the strength of the logarithmic

singularity of ϕ at p, there is a catenoidal bridge K̆p ⊂ M̆ in the

vicinity of p in N , with K̆p a small perturbation of the image by the

Fermi exponential map expΣ,N,g
p (see A.1) of a truncated catenoid in

TpN of size (waist radius) τp.

(ii) Σ̆ = Σ\
⊔

p∈L D̆p, where each doubling hole D̆p ⊂ Σ is a small smooth
perturbation of a geodesic disc in Σ of center p and radius τp.

(iii) The complement of the catenoidal bridges in M̆ is described graphically
by small perturbations of ±ϕ, or more precisely of ±(ϕ + v±), with

v± ∈ K̂[L] chosen in 3.17 to optimize the matching of the catenoidal

bridges with the ϕ-graphical part and K̂[L] ⊂ C∞(Σ) a chosen (as in
3.11) finite dimensional obstruction space.

(iv) The genus of M̆ is 2gΣ − 1 + |L| where gΣ is the genus of Σ.

(v) |M̆ | = 2|Σ| − π
∑

p∈L τ2p

(
1 +O( τ

1/2
p | log τp| )

)
, which implies also

|M̆ | < 2|Σ|, where |M̆ | and |Σ| denote the areas of M̆ and Σ.

M̆ is constructed in the proof of Theorem A as a small perturbation of
one of the initial surfaces M [ϕ,κ] defined in 3.17 and parametrized by the
given LD solutions ϕ and parameters κ satisfying (3.18). The construction
of the initial surfaces is similar but more involved than in [29, 33] where no
κ parameters are needed. The main new features are that each catenoidal
bridge can be elevated and tilted relative to Σ as prescribed by κ, and
that v+ �= v− when κ �= 0. In [29, 33] κ �= 0 would violate the symmetry
exchanging the two sides of the base surface; here however it introduces
dislocations which (consistently with the geometric principle [27, 28]) allow
us to deal with the antisymmetric (with respect to approximate exchange of
the sides of Σ) component of the obstructions involved.

Surprisingly the asymmetry of the sides of Σ does not affect the nature
or study of the families of LD solutions required, or the definition of the
mismatch operator in 3.10. The construction and study of the initial sur-
faces however presents new challenges related to the introduction of new
parameters κ, and the estimation of mean curvature induced by a general
Riemannian metric.

Theorem A (or 5.7) not only generalizes the LD approach to the general
case, but also makes the reduction to LD solutions explicit and systematic,
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unlike in [29,33], where the reduction was described case by case. It is there-
fore a very powerful tool reducing doubling constructions to constructions
of appropriate families of LD solutions, a much easier—but still very hard
and open in general—problem.

Note that although in Theorem A (or 5.7) Σ is assumed to be a closed
surface, the theorem can be modified to apply to other situations, as for
example those in sections 11 or 12. Moreover in Theorem A(v) we determine
in full generality the first nontrivial term in the expansion of the area |M̆ |
of M̆ in terms of the sizes of its catenoidal bridges, a new result even for
the earlier doubling constructions. Finally we expect that Theorem A (or
5.7) will be an important step in proving a “general” doubling theorem
asserting without any symmetry assumptions that any base surface Σ with
|A|2 +Ric(ν, ν) > 0 has infinitely many minimal doublings.

As an example we next apply Theorem A to construct doublings of
the Clifford torus T2 in Section 6. Recovering the doublings already known
[38,54] is fairly straightforward (see Remarks 6.6 and 5.23). The catenoidal
bridges in these doublings are located at the points of a k × m rectangu-
lar lattice L with k,m large (m/k a priori bounded). We construct new
doublings by allowing any k ≥ 3 (see Theorem 6.17 and for k = 1, 2 see
Remark 6.18), or by arranging for three bridges per fundamental domain
when k,m large (see Theorem 6.25). Further results not discussed in this
article are possible [32], with more bridges per fundamental domain and any
k ≥ 3, and also different symmetry groups, including constructions gener-
alizing [47, Example 13] (related to torus knots). Note that the case of the
Clifford torus is unusual because the background has O(2)×O(2) symmetry;
the O(2) × Z2-symmetric backgrounds on which we concentrate in Part II
are less symmetric but more common.

In Part II we construct families of LD solutions for O(2)×Z2-symmetric
backgrounds (Σ, N, g), which are then used to construct minimal doublings
via Theorem A. This generalizes our earlier work in [29, 33] where families
of LD solutions are constructed in the case Σ = S2 ⊂ N = S3 and used
to construct minimal doublings of S2. The assumptions on the background
we choose in 7.2 are general enough to allow many interesting applications.
They imply that the base surface Σ is diffeomorphic to a sphere or torus
and the nontrivial orbits of the action of O(2) on Σ are circles (see Lemma
7.4); we call these circles parallel. Calling S the generator of the Z2 factor, it
follows that S fixes exactly one parallel circle when Σ is a sphere and exactly
two when Σ is a torus; we call these circles equatorial.

All constructions in [29, 33] and in Parts II and III of this article are
symmetric under a subgroup Gm < O(2) × Z2 of order 4m; more precisely
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Gm = D2m×Z2 withD2m < O(2) a dihedral subgroup of order 2m (see 7.10).
The singularities of the LD solutions in these constructions concentrate on
a prescribed number k◦ of parallel circles and we assume m large in terms
of k◦; we expect that other constructions are possible (beyond the scope of
this article) where k◦ is large and m is small or comparable to k◦.

Unlike in [29, 33] we do allow different numbers of singularities in the
k◦ parallel circles but in a limited way: we allow m or 2m singularities on

the various circles (see 9.18). Note that we use m = (mi)
�k◦/2�
i=1 to prescribe

the numbers |mi| of singularities for the various circles, with the sign of mi

choosing one of the two possible alignments with respect to Gm (see 7.11 and
7.12). Although not presented in this article, this can be further generalized
to allowing the numbers mi to be multiples of m by any small factors.

Theorem B (Theorem 9.39). Given a background (Σ, N, g) satisfying As-
sumption 7.2 there is a minimum kmin

◦ ∈ N (see 7.23) such that for each
k◦ ∈ N with k◦ ≥ kmin

◦ and any m ∈ {m,−m,−2m}�k◦/2�, with m large
enough in terms of k◦, there is a family of LD solutions satisfying the re-
quired assumptions (see 5.2) in Theorem A, with the singularities concentrat-
ing along k◦ parallel circles and the alignment and number of singularities
at each circle prescribed by the entries of m.

Combining this with Theorem A (or 5.7) we obtain

Theorem C (Theorem 9.40). Given (Σ, N, g), k◦ ∈ N, and any m as in
Theorem B, there is a minimal doubling containing one catenoidal bridge
close to each singularity of one of the LD solutions in Theorem B and sat-
isfying (i)-(v) in Theorem A. Moreover as m → ∞ with fixed k◦ the corre-
sponding minimal doublings converge in the appropriate sense to Σ covered
twice.

In Part III of this article we apply Theorem C (that is 9.40) to construct
new closed embedded self-shrinkers of the mean curvature flow via doubling
the spherical self-shrinker in Theorem 10.5 or via doubling the Angenent
torus [2] in Theorem 10.7.

By adjusting the results and proofs in Parts II and III, we also construct
in Theorem 11.28 one-parameter families of new complete embedded mini-
mal surface doublings of the catenoid in the Euclidean three-space, each of
finite genus and total curvature, with four ends which are asymptotically
catenoidal (and for one value of the parameter of equal size), and with the
catenoidal bridges and doubling holes concentrating along any prescribed
number k◦ ≥ 2 of parallel circles. The latitudes of the parallel circles vary
with the parameter and are determined by the RLD solutions.
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We finally construct in Theorem 12.32 new compact embedded free
boundary minimal surfaces doubling the critical catenoid in the unit ball
B3, each with four boundary components and of finite genus, and with its
catenoidal bridges and doubling holes concentrating along either two or three
parallel circles in the interior of the critical catenoid.

Outline of strategy and main ideas

In this article we define in 2.14 catenoidal bridges qK[p, τp, κp] ⊂ M [ϕ,κ]
as catenoids in cylindrical Fermi coordinates at a singular point p ∈ Σ of
the corresponding LD solution ϕ, truncated at scale ∼ ταp with fixed small
α as in 2.10. The strength τp > 0 of the logarithmic singularity of ϕ at p
determines the size of the catenoid and κp = κ⊥p + κp its elevation in the
normal direction and the tilt of its axis relative to the normal (see 3.17). The
construction of the bridges is simpler than in [29], at the expense that now
the bridges are only approximately minimal and their mean curvature has
to be estimated and corrected. The catenoidal bridges are then smoothly
attached to the graphs of ±(ϕ+ v±) at scale ∼ ταp to form M [ϕ,κ].

The estimation of the mean curvature on the bridges is done in two
steps. First, we decompose the metric of N in the vicinity of p as g = g̊+h,
where g̊ is a Euclidean metric induced by Fermi coordinates and h|p = 0

(see 2.2). qK[p, τp, κp] is exactly minimal with respect to g̊ and the mean
curvature induced by g can be expressed in terms of tensor fields induced
by h. Second, using properties of cylindrical Fermi coordinates, we estimate
these tensors on qK[p, τp, κp] in terms of the background geometry near p.

An important feature is that the dominant term in the mean curvature of
qK[p, τp, κp] is driven by the second fundamental form AΣ

∣∣
p
, and without the

observation that the projection of the mean curvature to the first harmonics
satisfies better estimates (see 2.32 and 2.34), this term would be too large
for our purposes when AΣ

∣∣
p
�= 0. (Note that in [38, 54] there are no first

harmonics because of the symmetries.) In the definition of the global Hölder
norms (see 4.2) we use a stronger weight on the graphical regions and for
the first harmonics on the catenoidal regions. On the graphical regions this
parallels [29, 4.12] and leads to stronger final estimates (see 4.6) than those
in [38].

The proof of the area expansion in Theorem A(v) requires a detailed
understanding of the interplay between the geometries of the catenoidal
bridges and graphical regions. In particular each summand −πτ2p in the

dominant term in the expansion for |M̆ |−2|Σ| is smaller in magnitude than
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a term of order τ2p | log τp| appearing in the expansion of the area of the
corresponding bridge (see the catenoid estimate in [40]), and it is necessary
to observe a subtle cancellation (see 5.12 and 5.14) between these terms
and opposing terms arising from the exterior graphical region in order to
complete the expansion.

We now discuss the proof of Theorem B in Part II of this article. We
assume given an O(2) × Z2-symmetric background (Σ, N, g), k◦, and m
as in Theorem B, and we proceed to construct a family of LD solutions
with parameters (see 9.4) ζ� = (ζ1,σ), and (when not all |mi|’s are equal)
more parameters ζ⊥. The LD solutions with vanishing ζ⊥ are maximally
symmetric (see 9.5) with their logarithmic singularities equidistributed on
k◦ parallel circles we call singular. The parameters ζ⊥ are used to dislocate
the maximally symmetric LD solutions in accordance with the geometric
principle; in the cases we examine in this article there is exactly one ζ⊥

parameter for each mi = −2m (see 9.16).
Our maximally symmetric LD solutions ϕ = ϕ�ζ�; k◦,m� := τ1Φ�σ :

k◦,m� are constructed in 9.5 and 8.15 so that their overall scale τ1 is con-
trolled by ζ1 and each Φ�σ : k◦,m� is constructed from φ�σ : k◦,m�, a
rotationally invariant (averaged) linearized doubling (RLD) solution which
can be recovered from Φ�σ : k◦,m� by averaging on parallel circles.

RLD solutions (defined in 7.21) are easier to understand than LD so-
lutions because the Jacobi equation reduces to an ODE. They have deriva-
tive jumps instead of logarithmic singularities at the singular circles. We
construct them first and use the information they provide, for example the
position of the singular circles, to construct the maximally symmetric LD so-
lutions. Our constructions are facilitated by the observation that the classes
of LD and RLD solutions are invariant under conformal changes of the in-
trinsic metric, allowing us to work on the flat cylinder instead of Σ.

The main tools in studying existence and uniqueness for the RLD solu-
tions is a scale invariant flux F φ

± (see 7.15), which amounts to the logarithmic
derivative of the RLD solution φ on the cylinder, with its monotonicity prop-
erties stated in 7.31. Balancing for an RLD solution φ amounts to horizontal
balancing, requiring equality of the two one-sided fluxes at a singular circle,
and vertical balancing, requiring that the ratio of the fluxes at adjacent
singular circles equals the ratio |mj/mj+1| of the corresponding prescribed
numbers of singularities (see 7.29).

The parameters σ = (σ, ξ) prescribe the RLD unbalancing with σ for
vertical and ξ for horizontal (see 7.24, 7.36, and 7.37). The effect of the pa-
rameters ζ� = (ζ1,σ, ξ) on the mismatch of the LD solutions is confirmed
in 9.10 by using the equations in 9.7 and the estimates in 8.29 for the LD
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solutions constructed. Note that σ prescribes (approximately) only differ-

ences of vertical mismatch, with (one) vertical mismatch prescribed (with

less precision) by ζ1. Finally the estimates for the LD solutions in 8.29 are

based on carefully decomposing each Φ = Φ�σ : k◦,m� as Φ = Ĝ+ Φ̂ + Φ′

(see 8.19), where Ĝ captures the singular part, Φ̂ is rotationally invariant,

and Φ′ is the part we estimate (Ĝ and Φ̂ being explicit).

In Part III the applications of the earlier results are fairly straightfor-

ward. For the catenoid and the critical catenoid we need some modifications

to account for the noncompactness of the catenoid and the boundary of the

critical catenoid.

Because the catenoid has noncompact ends, each doubling constructed

in 11.28 is part of a one-parameter family of doublings for which the size of

the asymptotically catenoidal ends vary. At the level of the RLD solutions,

the additional parameter a (see 11.14) governs how far the RLD solution is

from being smooth at the ends. Finally we remark that since the catenoid

is conformally isomorphic to S2eq, the families of RLD and LD solutions we

use for the catenoid doubling when all the entries of m are equal, were

constructed and estimated already in [33].

For the critical catenoid, following [34] (see also [31]), we use an auxiliary

metric (see 12.18) to describe graphs; this is a device to ensure that graphs

behave well at the boundary. The free boundary condition for the doublings

at the boundary translates to a Robin condition for the LD and RLD solu-

tions. The Robin condition for the RLD solutions amounts to determining

the flux F φ
+ at the boundary (see 12.12). This does not allow RLD solutions

with small fluxes and restricts the number of singular circles to be either 2

or 3.

General notation and conventions

Notation 1.2. For (N, g) a Riemannian manifold, S ⊂ N a two-sided hyper-

surface equipped with a (smooth) unit normal ν, and Ω ⊂ S, we introduce

the following notation where any of N , g, S or Ω may be omitted when clear

from context.

(i) We denote by Isom(N, g) the group of isometries of (N, g).

(ii) For A ⊂ N we write dN,g
A for the distance function from A with respect

to g and we define the tubular neighborhood of A of radius δ > 0 by

DN,g
A (δ) :=

{
p ∈ N : dN,g

A (p) < δ
}
. If A is finite we may just enumer-

ate its points in both cases, for example if A = {q} we write dq(p).
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(iii) We denote by expN,g the exponential map, by dom(expN,g) ⊂ TN
its maximal domain, and by injN,g the injectivity radius of (N, g).

Similarly by expN,g
p , dom(expN,g

p ) and injN,g
p the same at p ∈ N .

(iv) If h and k are symmetric covariant two-tensors on N , we define a two-
tensor h∗g,N k by requesting that in any local coordinates (h∗g,N k)ij =
hikg

klklj .
(v) We denote the curvature endomorphism by RN,g, the curvature tensor

by RmN,g, and the Ricci tensor by RicN,g, and we follow the convention
RN,g(X,Y )Z := [∇X ,∇Y ]Z−∇[X,Y ]Z for X,Y, Z ∈ C∞(TS). We also

define an endomorphism field RN,g
Y := R(Y, ·)Y and a tensor RmN,g

Y :=
〈R(Y, ·)Y, ·〉; note that then Ric(Y, Y ) = − trg,N RmY .

(vi) We let AS and BS denote respectively the scalar-valued second funda-
mental form and Weingarten map of S, and LS the second variation of
area or Jacobi operator (well known also to provide the linearization of
the mean curvature change as in 5.1), defined by (∀X,Y ∈ C∞(TS))

(1.3)
AS(X,Y ) := 〈∇XY, ν〉 = 〈BS(X), Y 〉, BS(X) := −∇Xν,

LS := ΔS + |AS |2 +Ric(ν, ν).

(vii) Given also a map X : Σ → N and a vector field V defined along X
satisfying VX(p) ∈ dom(expN,g) for each p ∈ Σ, we define

PV X = PN,g
V X : Σ → N by PV X = PN,g

V X := expN,g ◦V ◦X.

(viii) Given also a function f : S → R satisfying |f |(p) < injN,g
p ∀p ∈ Ω, we

use the notation

XN,g
Ω,f := PN,g

fν INΩ , GraphN,g
Ω (f) := XN,g

Ω,f (Ω),

where INΩ denotes the inclusion map of Ω in N . �

Notation 1.4. We denote by gEuc the standard Euclidean metric on Rn and
by gS the induced standard metric on Sn := {v ∈ Rn : |v| = 1}. By standard
notation O(n) := Isom(Sn−1, gS) (recall 1.2(i) ).

Our arguments require extensive use of cut-off functions and the follow-
ing will be helpful.

Definition 1.5. We fix a smooth function Ψ : R → [0, 1] with the following
properties:

(i) Ψ is nondecreasing.
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(ii) Ψ ≡ 1 on [1,∞) and Ψ ≡ 0 on (−∞,−1].
(iii) Ψ− 1

2 is an odd function.

Given a, b ∈ R with a �= b, we define smooth functions ψcut[a, b] : R →
[0, 1] by

(1.6) ψcut[a, b] := Ψ ◦ La,b,

where La,b : R → R is the linear function defined by the requirements
La,b(a) = −3 and La,b(b) = 3.

Clearly then ψcut[a, b] has the following properties:

(i) ψcut[a, b] is weakly monotone.
(ii) ψcut[a, b] = 1 on a neighborhood of b and ψcut[a, b] = 0 on a neighbor-

hood of a.
(iii) ψcut[a, b] + ψcut[b, a] = 1 on R.

Suppose now we have two sections f0, f1 of some vector bundle over some
domain Ω. (A special case is when the vector bundle is trivial and f0, f1 real-
valued functions). Suppose we also have some real-valued function d defined
on Ω. We define a new section

(1.7) Ψ [a, b; d ] (f0, f1) := ψcut[a, b ] ◦ d f1 + ψcut[b, a] ◦ d f0.

Note that Ψ[a, b; d ](f0, f1) is then a section which depends linearly on the
pair (f0, f1) and transits from f0 on Ωa to f1 on Ωb, where Ωa and Ωb are
subsets of Ω which contain d−1(a) and d−1(b) respectively, and are defined
by

Ωa = d−1

(
(−∞, a+

1

3
(b− a))

)
, Ωb = d−1

(
(b− 1

3
(b− a),∞)

)
,

when a < b, and

Ωa = d−1

(
(a− 1

3
(a− b),∞)

)
, Ωb = d−1

(
(−∞, b+

1

3
(a− b))

)
,

when b < a. Clearly if f0, f1, and d are smooth then Ψ[a, b; d ](f0, f1) is also
smooth.

In comparing equivalent norms or other quantities we will find the fol-
lowing notation useful.

Definition 1.8. We write a∼
c
b to mean that a, b ∈ R \ {0}, c ∈ (1,∞),

and 1
c ≤ a

b ≤ c.
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We use the standard notation
∥∥u : Ck,β( Ω, g )

∥∥ to denote the standard
Ck,β-norm of a function or more generally tensor field u on a domain Ω
equipped with a Riemannian metric g. Actually the definition is completely
standard only when β = 0 because then we just use the covariant derivatives
and take a supremum norm when they are measured by g. When β �= 0 we
have to use parallel transport along geodesic segments connecting any two
points of small enough distance and this may be a complication if small
enough geodesic balls are not convex. In this article we take care to avoid
situations where such a complication may arise and so we will not discuss
this issue further.

We adopt the following notation from [29] for weighted Hölder norms.

Definition 1.9. Assuming that Ω is a domain inside a manifold, g is a
Riemannian metric on the manifold, k ∈ N0, β ∈ [0, 1), u ∈ Ck,β

loc (Ω) or

more generally u is a Ck,β
loc tensor field (section of a vector bundle) on Ω,

ρ, f : Ω → (0,∞) are given functions, and that the injectivity radius in the
manifold around each point x in the metric ρ−2(x) g is at least 1/10, we
define ∥∥∥u : Ck,β(Ω, ρ, g, f)

∥∥∥ := sup
x∈Ω

∥∥u : Ck,β(Ω ∩Bx, ρ
−2(x) g)

∥∥
f(x)

,

where Bx is a geodesic ball centered at x and of radius 1/100 in the metric
ρ−2(x) g. For simplicity we may omit any of β, ρ, or f , when β = 0, ρ ≡ 1,
or f ≡ 1, respectively.

f can be thought of as a “weight” function because f(x) controls the size
of u in the vicinity of the point x. ρ can be thought of as a function which
determines the “natural scale” ρ(x) at the vicinity of each point x. Note
that if u scales nontrivially we can modify appropriately f by multiplying
by the appropriate power of ρ. Observe from the definition the following
multiplicative property:

(1.10)
∥∥∥u1u2 : Ck,β(Ω, ρ, g, f1f2 )

∥∥∥ ≤

C(k)
∥∥∥u1 : Ck,β(Ω, ρ, g, f1 )

∥∥∥ ∥∥∥u2 : Ck,β(Ω, ρ, g, f2 )
∥∥∥ .

Definition 1.11 (Tilting rotations Rκ). Let κ : E2 → (E2)⊥ be a linear
map, where E2 is a two-dimensional subspace of a three-dimensional Eu-
clidean vector space E3 and (E2)⊥ denotes the orthogonal complement of
E2 in E3. By choosing a unit normal vector to E2, we can identify κ with
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an element of (E2)∗. We define Rκ to be the rotation of E3 characterized by

Rκ(P ) = GraphP κ for P ⊂ E2 a half-plane with ∂P = kerκ when κ �= 0,

or the identity IdE3 when κ = 0.

Given also a function u : Ω → R on Ω ⊂ E2 such that Rκ(GraphE
3

Ω u) is

graphical over E2, we define Tiltκ(u) : Ω
′ → R, with Ω′ ⊂ E2 a “shift” of

Ω, by requesting Rκ(GraphE
3

Ω u) = GraphE
3

Ω′ Tiltκ(u).

Part I: Generalizing the Linearized Doubling approach

2. Tilted catenoids

Untilted catenoids in TpN

Convention 2.1. In Parts I and II of this article we assume given a surface

Σ smoothly immersed in a Riemannian three-manifold (N, g). To facilitate

the discussion we will assume, unless stated otherwise, that Σ is connected

embedded minimal and two-sided with a chosen smooth unit normal νΣ.

Note however that most results can be modified to apply to situations where

some or all of these assumptions do not apply. As in 1.1 we will call Σ the

base surface and the data (Σ, N, g) the background, and we will not mention

the dependence of constants on it.

Definition 2.2 (Fermi coordinates about Σ). Given p ∈ Σ we choose for

(TpN, g|p) Cartesian coordinates (x̃, ỹ, z̃) : TpN → R3 satisfying (x̃, ỹ, z̃) ◦
νΣ(p) = (0, 0, 1); clearly then g|p = dx̃2 + dỹ2 + dz̃2 on TpN and moreover

(x̃, ỹ) restricted to TpΣ are Cartesian coordinates on TpΣ ⊂ TpN .

Following A.1, we define U := DΣ,N,g
p ( injΣ,N,g

p /2 ) ⊂ N and UΣ :=

DΣ,g
p ( injΣ,N,g

p /2 ) = Σ ∩ U to simplify the notation, and then we extend

z to a coordinate system (x, y, z) on U by requesting (x, y, z) = (x̃, ỹ, z̃) ◦
(expΣ,N,g

p )−1 on U . We define also a Riemannian metric g̊ on U and sym-

metric two-tensor fields h on U and hΣ on UΣ by

g̊ := (expΣ,N,g
p )∗ g|p = dx2 + dy2 + dz2, h := g − g̊, hΣ := h|UΣ .

Finally we define Fermi cylindrical coordinates (r, θ, z) on Ŭ := U \{x =

y = 0} by requesting x = r cos θ and y = r sin θ; we have then g̊ = dr2 +

r2dθ2 + dz2 on Ŭ and that �er := ∂r, �eθ := ∂θ/ |∂θ |̊g, and �ez := ∂z define an

orthonormal frame {�er, �eθ, �ez} on (Ŭ , g̊).
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Notation 2.3. Let Cyl := S1 × R ⊂ R2 × R be the standard cylinder and χ
the standard product metric on Cyl; we have then Isom(Cyl, χ) = O(2) ×
Isom(R, gEuc) (recall 1.4). Let (ϑ, s) be the standard coordinates on Cyl
defined by considering the covering YCyl : R

2 → Cyl given by YCyl(ϑ, s) :=
(cosϑ, sinϑ, s) so that χ = dϑ2 + ds2. Finally, for s ∈ R, we define a parallel
circle Cyls := {YCyl(ϑ, s) : ϑ ∈ R} ⊂ Cyl and for I ⊂ R, we define CylI :=
∪s∈ICyls. �

Given p ∈ N and τ ∈ R+, we define a catenoid K[p, τ ] ⊂ TpN � R3

of size τ and its parametrization XK = XK[p, τ ] : Cyl → K[p, τ ] by taking
(recall 2.2)

(2.4)
ρ(s) := τ cosh s, z(s) := τ s, and

(x̃, ỹ, z̃) ◦XK ◦ YCyl(ϑ, s) = (ρ(s) cosϑ, ρ(s) sinϑ, z(s)).

From now on we will use XK to identify K[p, τ ] with Cyl; ϑ and s can then
be considered as coordinates on K[p, τ ] and by (2.4) and 2.3 we clearly have

gK := X∗
K(g|p) = ρ2(s)

(
dϑ2 + ds2

)
= ρ2 χ.(2.5)

Alternatively (x̃, ỹ, z̃)−1{(r cosϑ, r sinϑ, ϕcat(r) ) : (r, ϑ) ∈ [τ,∞) × R } ⊂
TpN is the part above the waist of K[p, τ ], where the function ϕcat = ϕcat[τ ] :
[τ,∞) → R is defined by

(2.6)

ϕcat[τ ](r) := τ arccosh
r

τ
= τ

(
log r− log τ + log

(
1 +

√
1− τ2r−2

))
= τ

(
log

2r

τ
+ log

(
1

2
+

1

2

√
1− τ2

r2

))
.

By direct calculation or balancing considerations we have for future ref-
erence that

(2.7)
∂ϕcat

∂r
(r) =

τ√
r2 − τ2

.

Lemma 2.8 (Area on untilted catenoidal bridges). For any τ > 0 and any

r ≥ τ , the area |K(r)| of K(r) := K[p, τ ] ∩Π−1
TpΣ

D
TpΣ
0 (r) satisfies

|K(r)| =
√

1− τ2

r2

(
2|DTpΣ

0 (r)|+
∫
∂D

TpΣ

0 (r)
ϕcat

∂ϕcat

∂η
dl

)
.

Proof. Direct calculation using (2.7).
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Tilted catenoids in TpN

Definition 2.9 (Spaces of affine functions). Given p ∈ Σ let V[p] ⊂ C∞(TpΣ)
be the space of affine functions on TpΣ. Given a function v which is defined
on a neighborhood of p in Σ and is differentiable at p we define Epv :=

v(p) + dpv ∈ V[p]. ∀κ ∈ V[p] let κ = κ⊥ + κ be the unique decomposition
with κ⊥ ∈ R and κ ∈ T ∗

pΣ and let |κ| := |κ⊥|+ |κ|. We define for later use
V[L] :=

⊕
p∈L V[p] for any finite L ⊂ Σ.

Convention 2.10. We fix now some α > 0 which we will assume as small in
absolute terms as needed. In the rest of this section we assume that τ ∈ R+ is
as small as needed in terms of α only and that κ ∈ V[p] satisfies |κ| < τ1+α/6.

Definition 2.11 (Tilted catenoidal bridges). Given κ ∈ V[p] we define

ϕ±
cat[τ, κ] : TpΣ \DTpΣ

0 (9τ) → R by ϕ±
cat[τ, κ] := Tilt±κ(ϕcat[τ ] ◦ dTpΣ

0 )± κ⊥

in the notation of Definitions 1.11 and 2.9, where in 1.11 we take E2 = TpΣ,
E3 = TpN , and the normal vector to E2 to be ν.

Lemma 2.12 (Tilted catenoid asymptotics). For k ∈ N, τ ∈ R+ and κ ∈
V[p] as in 2.10 we have∥∥∥ϕ+

cat[τ, κ]− τ log(2r/τ)− κ : Ck
(
D

TpΣ
0 (8τα) \DTpΣ

0 (9τ), r, g, r−2
)∥∥∥

≤ C(k)(|κ|+ τ)3.

Proof. If κ vanishes it is enough to prove the following, which is true ∀τ ∈ R+

by (2.6) and (2.7) [29, Lemma 2.25].

(2.13) ‖ϕcat[τ ]− τ log(2r/τ) : Ck( (9τ,∞) , r, dr2, r−2 ) ‖ ≤ C(k) τ3.

Clearly ‖ τ log(2r/τ) : Ck( (9τ, 8τα) , r, dr2 ) ‖ ≤ C(k) τ | log τ |. Combin-
ing with (2.13), using 1.9, scaling, applying B.14, and taking in this proof

Ω := D
TpΣ
0 (8τα) \DTpΣ

0 (9τ), we conclude

‖ϕ+
cat[τ, κ]− ϕcat[τ ]− κ : Ck (Ω, r, g) ‖ ≤ C(k)(τ | log τ |+ |κ|)3.

Using that r2 ≤ 82τ2α on Ω, combining with (2.13), and observing that κ⊥

cancels out, we conclude∥∥∥ϕ+
cat[τ, κ]− τ log(2r/τ)− κ : Ck

(
Ω, r, g, r−2

)∥∥∥ ≤

C(k)
(
τ3 + τ2α(τ | log τ |+ |κ|)3

)
,
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which implies the result by assuming τ small enough as in 2.10.

Definition 2.14 (Tilted catenoids in TpN and catenoidal bridges in N).
Given p ∈ Σ, x ∈ [0, 4] (where x may be omitted when x = 0), τ > 0, and
κ = κ⊥ + κ ∈ V[p], we define an elevated and tilted by κ model catenoid in
TpN of size τ , a corresponding catenoidal bridge in N (slightly reduced if
x > 0), and its core (slightly expanded if x > 0), as follows (recall 2.3 and
1.11), where b is a large constant to be chosen later independently of the τ
and κ parameters.

K[p, τ, κ] := XK[p, τ, κ] (Cyl) ⊂ TpN,

qKx[p, τ, κ] := X
qK
[p, τ, κ] (Cyl [τ, 2τα/(1 + x)]) ⊂ N,

and Kx[p, τ, κ] := X
qK
[p, τ, κ] (Cyl [τ, b(1 + x)τ ]) ⊂ qKx[p, τ, κ] ⊂ N,

where XK[p, τ, κ] := Rκ ◦XK[p, τ ] + κ⊥νΣ(p) : Cyl → TpN,

X
qK
[p, τ, κ] := expΣ,N,g

p ◦XK[p, τ, κ] : Cyl → N,

and Cyl[τ, r] := YCyl

(
{(ϑ, s) ∈ R

2 : τ cosh s < r}
)

∀r ∈ R+.

Finally using the above maps we take the coordinates (ϑ, s) on the cylinder
as in 2.3 to be coordinates on K[p, τ, κ] and qK[p, τ, κ] also, where we also
define ρ(s) := τ cosh s as in 2.4.

Remark 2.15. Note that Definitions 2.11 and 2.14 are compatible in the
sense that (recall also 1.2(viii))

GraphNΩ
(
ϕ+
cat[τ, κ; Ω]

)
∪GraphNΩ

(
−ϕ−

cat[τ, κ; Ω]
)
∪ qK[p, τ, κ] ⊂ N,

is a connected smooth surface with boundary; where (only) here we use
Ω := DΣ

p (8τ
α)\DΣ

p (9τ) and ϕ±
cat[τ, κ; Ω] := ϕ±

cat[τ, κ]◦(expΣp )−1 : Ω → R.

Lemma 2.16 (Area on tilted catenoids in TpN). Fix τ > 0 and r = τ3/4.

Then the area |K(r)| of K(r) := K[p, τ, κ] ∩Π−1
TpΣ

D
TpΣ
0 (r), satisfies

|K(r)| = 2|DTpΣ
0 (r)| − πτ2 +

1

2

∫
∂D

TpΣ

0 (r)

(
ϕ+
cat

∂ϕ+
cat

∂η
+ ϕ−

cat

∂ϕ−
cat

∂η

)
dl

+O(τ5/2| log τ |),

where ϕ±
cat = ϕ±

cat[τ, κ] is as in 2.11.

Proof. In this proof, denote byK[p, τ ](r) forK(r) as in 2.8 and byK[p, τ, κ](r)
for K(r) as in 2.16. We first compare the areas |K[p, τ ](r)| and |K[p, τ, κ](r)|.
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Using 2.14, we estimate the distance between any point on ∂D
TpΣ
0 (r) and its

nearest point on ΠTpΣ(R−κ(∂K[p, τ, κ](r))) is bounded by C(r|κ|2+|κ|τ | log τ |).
It is not difficult to see from this and the bound |κ| < τ1+α/6 from 2.10 that

|K[p, τ ](r)| = |K[p, τ, κ](r)|+O(τ11/4| log τ |).(2.17)

Next, using 2.12 and 2.13 to expand ϕ±
cat and 2.10 to estimate |κ|, it follows

that

(2.18)

∫
∂D

TpΣ

0 (r)
ϕcat

∂ϕcat

∂η
dl =

1

2

∫
∂D

TpΣ

0 (r)

(
ϕ+
cat

∂ϕ+
cat

∂η
+ ϕ−

cat

∂ϕ−
cat

∂η

)
dl

+O(τ2+3/4).

Finally, we have that |DTpΣ
0 | = 2πr2 and

√
1− τ2/r2 = 1 − 1

2
τ2

r2 + O( τ
4

r4 ).
The conclusion follows from combining this with 2.8, (2.17) and (2.18).

Mean curvature on tilted catenoidal bridges in N

The final goal of this section is to estimate the mean curvature of a tilted
bridge qK[p, τ, κ] ⊂ N . We first introduce some convenient notation.

Notation 2.19. We denote by H̊ and H the mean curvature of qK[p, τ, κ] ⊂ N
with respect to g̊ and g respectively.

Appendix C allows us to express H in terms of H̊ and certain tensors
defined on qK; because the metric g̊ is Euclidean, H̊ = 0 and the task is
reduced to estimating the tensors defined on qK. To motivate the discussion,
we first consider the simplest situation in two model cases.

Example 2.20 (H on catenoidal bridges over S2eq ⊂ S3). Let S2eq be the equa-
torial two-sphere in the round three-sphere S3 ⊂ R4. Given p = (0, 0, 1, 0),

let qK := qK[p, τ, 0]. From A.4 and by calculation we find that the metric g
qK

and unit normal ν
qK
induced by g on qK are given by

g
qK = r2(1− tanh2 s sin2 z)ds2 + cos2 z sin2 r dθ2,

ν
qK
= (tanh s ∂z − sec2 z sech s ∂r)/

√
1 + tan2 z sech2 s,

where z = τs on qK.
We use the formula A

qK =
(
Xk

,αβ + Γk
lmX l

,αX
m
,β

)
gknν

ndxαdxβ , where

X = X
qK
[p, τ, 0] is as in 2.14, we have renamed the cylinder coordinates

(x1, x2) := (s, θ), and Greek indices take the values 1 and 2 while Latin
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indices take the values 1, 2, 3, corresponding to the coordinates r, θ, z; and
the Christoffel symbols in A.4; to find

√
1 + tan2 z sech2 s A

qK =

[
τ2 tanh s

(
tan z +

1

2
sinh2 s sin 2z

)
− τ

]
ds2

+
1

2
(sin 2r sech s + sin2 r sin 2z tanh s) dθ2.

Using that
√

1 + tan2 z sech2 s = 1 + O(z2) and 1
2 sin 2r sech s = τ + O(r3)

we conclude

A
qK = (1 +O(z2))

(
τ(−ds2 + dθ2) +O(r2z)ds2 +O(r3 + r2z)dθ2

)
.

Finally, using that r2gss = 1+O(z2) and r2gθθ = 1+O(z2 +r2) we estimate

r2H = O
(
τz2 + r2|z|+ τr2

)
.

Example 2.21 (H on catenoidal bridges over T ⊂ S3). Let T be the Clifford
torus in S3 ⊂ R4 � C2. Given p = (1/

√
2, 1/

√
2) ∈ T, let qK := qK[p, τ, 0].

From A.3, the metric induced by g on qK is

g
qK = r2(ds2 + dθ2)

+ r2 sin 2z
(
tanh2 s cos 2θds2 − 2 tanh s sin 2θdsdθ − cos 2θdθ2

)
,

where z = τs and r = τ cosh s on qK. As in [38, Lemma 3.18] or [54, Propo-
sition 4.28], it follows that∥∥∥r2H : Ck

(
qK,χ, τ |z|+ r2|z|+ τ2

)∥∥∥ ≤ C.

The preceding examples show that the mean curvature on a catenoidal
bridge over S2eq ⊂ S3 satisfies better estimates than the mean curvature on a
bridge over T. This is due to the fact that S2eq is totally geodesic while T is
not. We will see more generally (see 2.28(iii) and (v) and 2.32(i) below) that
dominant terms in the mean curvature of a bridge qK[p, τ, κ] are driven by the
second fundamental form of Σ when AΣ

∣∣
p
does not vanish. Unfortunately,

the resulting estimates on H will not be by themselves sufficient for our
applications, and it will be essential to observe later in 2.32(ii) and 2.34(ii)
that the projection onto the first harmonics H1H of the mean curvature H
of such a bridge (to be defined in 2.31) satisfies a better estimate.

For the rest of the section, fix p ∈ Σ and let (r, θ, z) be cylindrical Fermi
coordinates about Σ centered at p as in 2.2.
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Lemma 2.22. (i) h = Π∗
Σh

Σ−2zΠ∗
ΣA

Σ+z2Π∗
Σ(A

Σ∗AΣ+RmΣ
ν )+z3 herr,

where herr is a smooth symmetric two-tensor field on U .
(ii) trN,̊g h = trΣ,̊g h

Σ + z2Π∗
Σ

(
|AΣ|2 − Ric(νΣ, νΣ)

)
+ z3 trN,̊g h

err.
(iii) ‖∇h : Ck(U, g̊)‖ ≤ C(k).
(iv) ‖hΣ : Ck(UΣ, r, g̊, r2)‖ ≤ C(k).

Proof. (i) follows from Lemma A.5. (ii) follows from taking the trace of (i),
and (iii) follows from (i), using that g̊ is Euclidean. For (iv), recall that
gΣ = dr2 + u(r, θ)2dθ2 where u(r, θ) solves the Gauss-Jacobi initial value
problem

urr +KΣu = 0, lim
r↘0

u(r, θ) = 0, lim
r↘0

ur(r, θ) = 1.

It follows that u(r, θ) = r− KΣ|p
3! r3 +O(r5) and consequently

hΣ = f(r, θ)dθ2, where f(r, θ) := −(KΣ|p /3)r4 +O(r6).(2.23)

This completes the proof of (iv).

For the remainder of this section we use notation from Appendices B
and C and we abbreviate by writing qK for qK[p, τ, κ].

Lemma 2.24. For XK = XK[p, τ, κ] and K = K[p, τ, κ] ⊂ TpN , the follow-
ing hold with

(2.25) �w := cosϑ�v + sinϑ cos θκ�v
⊥, �w′ := − sinϑ�v + cosϑ cos θκ�v

⊥.

(i) XK = ρ cosϑ�v + (ρ sinϑ− τs sin θκ)�v
⊥ + (τs cos θκ + ρ sin θκ)∂z.

(ii) ∂sXK = τ sinh s (�w + sinϑ sin θκ∂z)− τ sin θκ�v + τ cos θκ∂z.
(iii) ∂ϑXK = ρ (�w′ + cosϑ sin θκ∂z).
(iv) XK

∗
g = ρ2χ.

(v) νK = ν‖ + ν⊥, where ν⊥ := (tanh s cos θκ − τ
ρ sinϑ sin θκ)∂z

and ν‖ := − τ
ρ �w − tanh s sin θκ �v

⊥.

Proof. Straightforward computation using (2.4), 2.25, and B.10(iii) implies
Rκ(�v) = �v, Rκ(�v

⊥) = cos θκ�v
⊥ + sin θκ∂z, and Rκ(∂z) = cos θκ∂z −

sin θκ�v
⊥.

Lemma 2.26 (cf. [38, Lemma 3.18]). The following hold.

(i) ‖ρ±1 : Ck( qK,χ, ρ±1)‖ ≤ C(k).
(ii) ‖z : Ck( qK,χ, |z|+ τ)‖ ≤ C(k).
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(iii) (a) ‖∇N,̊g
∂s

h : Ck( qK,χ, ρ(|z|+ ρ) + τ)‖ ≤ C(k).

(b) ‖∇N,̊g
∂ϑ

h : Ck( qK,χ, ρ|z|+ ρ2)‖ ≤ C(k).

(c) ‖∇N,̊g
ν h : Ck( qK,χ)‖ ≤ C(k).

(iv) ‖h ¬ �w : Ck( qK,χ, |z|+ τ + ρ2)‖ ≤ C(k).

Proof. The estimate in (i) with ρ is obvious, and the estimate in (i) with
ρ−1 = τ−1 sech s follows after observing that for each k ≥ 1, ∂k

s (sech s) is a
polynomial expression in sech s and tanh s, each term of which contains a
factor of sech s. From Lemma 2.24 we have z = τ(cos θκ s+sinh s sin θκ sinϑ),
which implies (ii). Using Lemma 2.22,

∇∂z
h = −2Π∗

ΣA
Σ + 2zΠ∗

Σ(A
Σ ∗AΣ +RmΣ

ν ) + 3z2herr + z3∇∂z
herr,

∇�uh = ∇�uh
Σ − 2z∇�uΠ

∗
ΣA

Σ + z2∇�uΠ
∗
Σ(A

Σ ∗AΣ +RmΣ
ν ) + z3∇�uh

err,

where �u is either �v or �v⊥. Using this in conjunction with (ii) and Lemma
2.22(iv), we conclude

(2.27)
‖∇N,̊g

∂z
h : Ck( qK,χ)‖ ≤ C(k),

‖∇N,̊g
�u h : Ck( qK,χ, |z|+ ρ)‖ ≤ C(k).

Recalling from 2.24 that

∂s = (τ sinh s sinϑ sin θκ + τ cos θκ)∂z

+ τ sinh s(cosϑ�v + sinϑ cos θκ�v
⊥)− τ sin θκ�v

⊥,

∂ϑ = ρ
(
− sinϑ�v + cosϑ cos θκ �v

⊥ + cosϑ sin θκ ∂z

)
,

ν = −τρ−1(cosϑ�v + sinϑ cos θκ�v
⊥)− tanh s sin θκ �v

⊥

+ (tanh s cos θκ − τρ−1 sinϑ sin θκ)∂z,

we see that (iii) follows from the preceding. Finally, for (iv), we compute
that

h(�w,�v) = cosϑh(�v,�v) + sinϑ cos θκh(�v,�v
⊥),

h(�w,�v⊥) = cosϑh(�v,�v⊥) + sinϑ cos θκh(�v
⊥, �v⊥).

The estimate follows from this by combining the results of (ii) and (iii) above
with Lemma 2.22(i).

Lemma 2.28. The following hold.
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(i) ‖α : Ck( qK,χ, ρ2(ρ2 + |z|+ τ))‖ ≤ C(k).
(ii) ‖α̃ : Ck( qK,χ, ρ2)‖ ≤ C(k).
(iii) ‖ tr

qK,χ
α̃− 2τ2 tanh s (Π∗

ΣA
Σ)(�er, �er) : C

k( qK,χ, ρ2(|z|+ τ))‖ ≤ C(k).

(iv) ‖β : Ck( qK,χ, τ(|z|+ ρ2 + τ))‖ ≤ C(k).
(v) ‖div

qK,χ
β + 2τ(2z− z sech2 s− τ tanh s)(Π∗

ΣA
Σ)(�er, �er) :

Ck( qK,χ, ρ2(τ + |z|))‖ ≤ C(k).
(vi) ‖σ : Ck( qK,χ, |z|+ τ)‖ ≤ C(k).

Proof. Using Lemma 2.24 and Remark 2.25 we compute

αss = (ρ2 − τ2)h(�w, �w) + τ2 sin2 θκh(�v
⊥, �v⊥)− 2τ sin θκ

√
ρ2 − τ2h(�w,�v⊥),

αϑϑ = ρ2h(�w′, �w′),

αsϑ = −τρ sin θκh(�w
′, �v⊥) + ρ

√
ρ2 − τ2h(�w′, �w).

(i) follows then from Lemma 2.26. The proof of (ii) is straightforward so we
proceed to (iii). Using 2.24 we compute

α̃ss = (ρ2 − τ2)(∇νh)(�w, �w)− 2τ
√

ρ2 − τ2 sin θκ(∇νh)(�w,�v
⊥)

+ τ2 sin2 θκ(∇νh)(�v
⊥, �v⊥),

α̃ϑϑ = ρ2(∇νh)(�w
′, �w′).

Because tr
qK,χ

α̃ = α̃ss + α̃ϑϑ, we have via 2.25

(2.29) tr
qK,χ

α̃ = ρ2(∇νh)(�v,�v) + ρ2(∇νh)(�v
⊥, �v⊥)− τ2(∇νh)(�w, �w)

+ (τ2 − ρ2) sin2 θκ(∇νh)(�v
⊥, �v⊥)− 2τ

√
ρ2 − τ2 sin θκ(∇νh)(�w,�v

⊥).

Noting that (∇νh)(�v,�v) + (∇νh)(�v
⊥, �v⊥) = trN,̊g(∇νh) = ∇ν(trN,̊g h) =

ν(trN,̊g h), we have by 2.22 and 2.24 that

ν⊥( trN,̊g h) = 2(tanh s cos θκ − sech s sinϑ sin θκ)
(
|AΣ|2 − Ric(νΣ, νΣ)

)
z

+O(z2),

ν‖( trN,̊g h) = −τρ−1 �w
(
trΣ,̊g h

Σ +
(
|AΣ|2 − Ric(νΣ, νΣ)

)
z2
)

−
(
tanh s sin θκ�v

⊥
) (

trΣ,̊g h
Σ +

(
|AΣ|2 − Ric(νΣ, νΣ)

)
z2
)
+O(z3).

This and 2.26 imply that ‖ρ2ν(trN,̊g h) : C
k( qK,χ, ρ2(|z|+ τ))‖ ≤ C(k).

We now estimate the remaining terms. Using 2.22(i) and 2.24(v) we have

‖∇νh+ 2 tanh sΠ∗
ΣA

Σ : Ck( qK,χ, |z|+ τ + ρ2)‖ ≤ C(k).
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Estimating terms with sin θκ in (2.29) by Lemma 2.26 we obtain

‖ tr
qK,χ

α̃− ρ2ν(trN,̊g h)− 2τ2 tanh s (Π∗
ΣA

Σ)(�er, �er) : C
k( qK,χ, ρ2τ)‖ ≤ C(k),

and (iii) with the estimate on tr
qK,χ

α̃ follows. To prove (iv) we use

(2.30) β(X) = h(X, ν
qK
) = h(X, ν‖)

= −τρ−1h(X, �w)− tanh s sin θκ h(X,�v⊥),

to compute using Lemma 2.24

−τ−1βs = tanh s
[
h(�w, �w)− sin2 θκh(�v

⊥, �v⊥)
]

+ sin θκh(�w,�v
⊥)(sinh s tanh s− τρ−1),

−βϑ = τh(�w′, �w) + ρ tanh s sin θκh(�w
′, �v⊥).

The estimate on β in (iv) follows from Lemma 2.26. We next compute
div

qK,χ
β = βs,s + βϑ,ϑ. We have

− τ−1βs,s = sech2 s
[
h(�w, �w)− sin2 θκh(�v

⊥, �v⊥)
]

+ sin θκh(�w,�v
⊥) (sinh s + 2 sech s tanh s)

+ tanh s
[
(∇∂s

h)(�w, �w)− sin2 θκ(∇∂s
h)(�v⊥, �v⊥)

]
+ sin θκ(∇∂s

h)(�w,�v⊥)(sinh s tanh s− τρ−1).

Using this with 2.22(i), 2.24(ii), 2.26, and 2.25, we estimate∥∥βs,s − 2τz sech2 s (Π∗
ΣA

Σ)(�er, �er)− 2τ2 tanh s (Π∗
ΣA

Σ)(�er, �er)

: Ck( qK,χ, ρ2(|z|+ τ))
∥∥ ≤ C(k).

Next we compute

− βϑ,ϑ = −τh(�w, �w) + τh(�w′, �w′)

+ ρ tanh s sin θκ
∂

∂ϑ

(
h(�w′, �v⊥)

)
+ τ(∇∂ϑ

h)(�w′, �w).

Using the minimality of Σ and 2.22(i), we have

‖(Π∗
ΣA

Σ)(�er, �er) + (Π∗
ΣA

Σ)(�eθ, �eθ) : C
k( qK,χ, ρ2 + |z|)‖ ≤ C(k).
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Combining this with 2.22(i), 2.24(iii), 2.26, 2.25 and the above we obtain

‖βϑ,ϑ + 4τz(Π∗
ΣA

Σ)(�er, �er) : C
k( qK,χ, ρ2(τ + |z|))‖ ≤ C(k).

Combining the preceding completes the estimate in (v) on div
qK,χ

β. Next

σ = h(ν, ν) = h(ν‖, ν‖)

=
τ2

ρ2
h(�w, �w)− 2

τ

ρ
tanh s sin θκh(�w,�v) + tanh2 s sin2 θκh(�v,�v)

and the estimate on σ follows from 2.26.

Definition 2.31. Given a function u defined on qK, we define the projection
H1(u) of u onto first harmonics by

H1(u) =
1

π

(∫ 2π

0
u(s, ϑ) cosϑdϑ

)
cosϑ+

1

π

(∫ 2π

0
u(s, ϑ) sinϑdϑ

)
sinϑ.

Lemma 2.32. The following hold.

(i) ‖ρ2H : Ck( qK,χ, (τ + ρ2)(|z|+ τ))‖ ≤ C(k).
(ii) ‖H1(ρ

2H) : Ck
(

qK,χ, ρ2(|z|+ τ)
)
‖ ≤ C(k).

Proof. (i) follows by combining the estimates in 2.28 with C.9, where we
note in particular that H̊ = 0 because g̊ is Euclidean and that div

qK,χ
β =

ρ2div
qK,̊g

β and tr
qK,χ

α̃ = ρ2 tr
qK,̊g

α̃.

To prove the estimate in (ii) we will need a more refined expansion for
ρ2H: from C.8, and the estimates in 2.28, note first that

‖H1(ρ
2H − div

qK,χ
β + 1

2 tr qK,χ
α̃+ ρ2 12〈α̃, α̂〉̊g)

: Ck
(

qK,χ, ρ2(|z|+ τ)
)
‖ ≤ C(k),

so it suffices to show that the estimate in (ii) holds when ρ2H is replaced by
div

qK,χ
β, tr

qK,χ
α̃, or ρ2〈α̃, α̂〉̊g. The estimate for ρ2〈α̃, α̂〉̊g follows by combin-

ing the estimates on α and α̃ in 2.28(i) and (ii). The estimates on tr
qK,χ

α̃ and

div
qK,χ

β follow from 2.28(iii) and (v) using that Π∗
ΣA

Σ(�er, �er) is orthogonal

to first harmonics up to higher order terms involving |κ| and ρ.

The following lemma relates estimates on H, which will be crucial for
our main applications, to estimates on ρ2H, which are easy to compute due
to the geometry of qK.
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Lemma 2.33. Given f ∈ Ck( qK) and n ∈ Z, we have
‖ρnf : Ck( qK,χ)‖ ∼

C(k,n)
‖f : Ck( qK,χ, ρ−n)‖.

Proof. Using (1.10) with u1 = ρn, u2 = f, f1 = ρn, and f2 = ρ−n, we
estimate

‖ρnf : Ck( qK,χ)‖ ≤ C(k)‖ρn : Ck( qK,χ, ρn)‖‖f : Ck( qK,χ, ρ−n)‖
≤ C(k, n)‖ρ

n

|n| : Ck( qK,χ, ρ
n

|n| )‖|n|‖f : Ck( qK,χ, ρ−n)‖
≤ C(k, n)‖f : Ck( qK,χ, ρ−n)‖,

where in the second inequality we have used (1.10) iteratively and in the
third we have used 2.26(i).

Using (1.10) with u1 = ρ−n, u2 = ρnf, f1 = ρ−n, and f2 = 1, we estimate
in an analogous way

‖f : Ck( qK,χ, ρ−n)‖ ≤ C(k)‖ρ−n : Ck( qK,χ, ρ−n)‖‖ρnf : Ck(K, χ)‖
≤ C(k, n)‖ρnf : Ck( qK,χ)‖.

Combining these estimates completes the proof.

Corollary 2.34. (i) ‖H : Ck( qK,χ, τρ−2 + 1)‖ ≤ C(k)τ | log τ |.
(ii) ‖H1H : Ck( qK,χ)‖ ≤ C(k)τ | log τ |.

Proof. This follows from combining 2.32 with 2.33 and using that |z| ≤
Cτ | log τ | on qK.

Area of catenoidal bridges in N

Lemma 2.35 (Area of truncated qK[p, τ, κ] ⊂ N). Let qK = qK[p, τ, κ] be as
in 2.14. Fix r = τ3/4. The area | qK(r)| of qK(r) := qK ∩Π−1

Σ (DΣ
p (r)) satisfies

the following, where ϕ±
cat = ϕ±

cat[τ, κ] is as in 2.11.

| qK(r)| = 2|DΣ
p (r)| − πτ2

+
1

2

∫
∂DΣ

p (r)

(
ϕ+
cat

∂ϕ+
cat

∂η
+ ϕ−

cat

∂ϕ−
cat

∂η

)
dl +O(τ5/2| log τ |).

Proof. Since qK is 2-dimensional, the determinant of the induced metric g =
g̊ + α satisfies

det g = det g̊(1 + tr̊g α+ detα�).
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Using that det g̊ = r(s)4 in the coordinates of (2.4), that r = τ3/4, and 2.28
to estimate detα� and tr̊g α, it follows that

√
det g =

√
det g̊(1+O(τ | log τ |))

on qK(r) and consequently that

| qK(r)|g = | qK(r)|̊g +O(τ5/2| log τ |),

where we have used (recall 2.16) that | qK(r)|̊g = O(r2) to estimate the error
term.

As a consequence of 2.22(iv), we have that |DΣ
p (r)| = |DTpΣ

0 (r)|+O(r4),

and that the length elements dlg and dl̊g on ∂DΣ
p (r) with respect to g and g̊

satisfy dlg = (1 +O(r3))dl̊g. The conclusion follows by combining 2.16 with
the preceding estimates.

3. LD solutions and initial surfaces

Green’s functions and LD solutions

Definition 3.1 (Green’s functions). Given a Riemannian surface (Σ, g),
V ∈ C∞(Σ), and p ∈ Σ, we call Gp a Green’s function for Δg + V on Ω
with singularity at p if it satisfies the following.

(i) Gp ∈ C∞ (Ω \ {p}) and (Δg + V )Gp = 0 on Ω \ {p}.
(ii) Gp − logdg

p is bounded on some deleted neighborhood of p in Ω.

Clearly if Gp is as in 3.1 and Ω′′ ⊂ Ω is also a neighborhood of p, then
Gp

∣∣
Ω′′ is also a Green’s function for Δg + V on Ω′′ with singularity at p.

Lemma 3.2. If Gp ∈ C∞ (Ω \ {p}) and G̃p ∈ C∞ (Ω \ {p}) are both Green’s
functions for Δg + V on Ω with singularity at p as in Definition 3.1, then

Gp − G̃p has a unique extension in C∞(Ω).

Proof. Clearly Gp − G̃p is a smooth and bounded solution of the Partial
Differential Equation on Ω \ {p} by the definitions. By standard regularity
theory then the lemma follows [5].

Lemma 3.3. Given (Σ, g), V , and p ∈ Σ as in 3.1 there exists δ > 0 such
that Δg + V on DΣ

p (δ
′) satisfies the following ∀δ′ ∈ (0, δ] where r := dΣ

p .

(i) There is a Green’s function Gp for Δg + V on DΣ
p (δ

′) with singularity
at p satisfying∥∥Gp − log r : Ck

(
DΣ

p (δ
′) \ {p}, r, g, r2| log r|

)∥∥ ≤ C(k).(3.4)
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(ii) For any given u∂ ∈ C2,β(∂DΣ
p (δ

′) ) there is a unique solution u ∈
C2,β(DΣ

p (δ
′) ) to the Dirichlet problem

(Δg + V )u = 0 on DΣ
p (δ

′), u = u∂ on ∂DΣ
p (δ

′).

Proof. (i) is standard, see for example [5]. (ii) follows easily by scaling to unit
size and treating Δg + V as a small perturbation of the flat Laplacian.

Corollary 3.5. If Gp and G̃p are both Green’s functions as in 3.3(i) sat-
isfying 3.4 for some δ > 0, then the unique extension G ∈ C∞(DΣ

p (δ) ) of

Gp − G̃p (recall 3.2) satisfies G(p) = 0 and dpG = 0.

Proof. By subtracting the two versions of (3.4) we conclude that |Gp−G̃p| ≤
Cr2| log r|, which implies the result by 3.2.

Definition 3.6 (LD solutions). We call ϕ a linearized doubling (LD) solu-
tion on Σ when there exists a finite set L ⊂ Σ, called the singular set of ϕ,
and a function τ : L → R \ {0}, called the configuration of ϕ, satisfying the
following, where τp denotes the value of τ at p ∈ L.

(i) ϕ ∈ C∞( Σ \ L ) and LΣϕ = 0 on Σ \ L (recall 1.2(vi)).
(ii) ∀p ∈ L the function ϕ− τp logd

g
p is bounded on some deleted neighbor-

hood of p in Σ.

In other words LD solutions are Green’s functions for LΣ (recall 3.1) with
multiple singularities of various strengths; we call them solutions because
they satisfy the linearized equation as in 3.6(i).

Remark 3.7. In some constructions we will need to modify the definition of
LD solutions in 3.6 either by imposing boundary or decay conditions or by
relaxing the requirement LΣϕ = 0 on Σ \ L. Note that although we usually
require ∀p ∈ L τp > 0, in the definition we allow any τp ∈ R \ {0} to ensure
(by 3.2) that the LD solutions form a vector space, and those with singular
set a subset of a given finite set L′ ⊂ Σ, a subspace.

Mismatch and obstruction spaces

Convention 3.8 (The constants δp). Given L as in 3.6 we assume that for
each p ∈ L a constant δp > 0 has been chosen so that the following are
satisfied.

(i) ∀p, p′ ∈ L with p �= p′ we have DΣ
p (9δp) ∩DΣ

p′(9δp′) = ∅.
(ii) ∀p ∈ L and ∀δ′ ∈ (0, 3δp], LΣ on DΣ

p (δ
′) satisfies 3.3(i)-(ii).

(iii) ∀p ∈ L, δp < injΣ,N,g
p (recall A.1).



326 Nikolaos Kapouleas and Peter McGrath

Lemma 3.9. Given ϕ, L, and τ as in 3.6 and assuming 3.8, ∀p ∈ L there

exist ϕ̂p ∈ C∞(
DΣ

p (2δp)
)
and a Green’s function Gp for LΣ on DΣ

p (2δp) with

singularity at p satisfying 3.4 with 2δp instead of δ′, such that the following

hold (recall 2.9).

(i) ϕ = ϕ̂p + τpGp on DΣ
p (2δp) \ {p}.

(ii) Epϕ̂p : TpΣ → R is independent of the choices of δp and Gp and

depends only on ϕ.

(iii) ϕ ◦ expΣp (v) = τp log |v|+ Epϕ̂p(v) +O(|v|2 log |v|) for small v ∈ TpΣ.

Proof. The existence of Gp follows from 3.8(ii) and (i) serves then as the

definition of ϕ̂p. (ii) follows then from 3.5 and (iii) from a Taylor expansion

of ϕ̂p combined with (3.4).

Definition 3.10 (Mismatch of LD solutions [29, Definition 3.3]). Given

ϕ, L, and τ as in 3.6 with τp > 0 ∀p ∈ L, we define the mismatch of ϕ,

MLϕ ∈ V[L] (recall 2.9), by MLϕ :=
⊕

p∈LMpϕ, where Mpϕ ∈ V[p] is

defined (recall 3.9 and 2.9) by requesting that for small v ∈ TpΣ

ϕ ◦ expΣp (v) = τp log(2|v|/τp) + (Mpϕ) (v) +O(|v|2 log |v|),
or equivalently by 3.9(iii) Mpϕ := Epϕ̂p + τp log(τp/2).

Assumption 3.11 (Obstruction spaces). Given L as in 3.6 we assume we

have chosen a subspace K̂[L] =
⊕

p∈L K̂[p] ⊂ C∞(Σ) satisfying the follow-

ing, where the map EL : K̂[L] → V[L] (recall 2.9) is defined by EL(v) :=⊕
p∈L Epv.

(i) The functions in K̂[p] are supported on DΣ
p (4δp).

(ii) The functions inK[p], whereK[p] := LΣK̂[p], are supported onDΣ
p (4δp)\

DΣ
p (δp/4).

(iii) EL : K̂[L] → V[L] is a linear isomorphism.

(iv)
∥∥E−1

L

∥∥ ≤ Cδ−2−β
min , where δmin := minp∈L δp and

∥∥E−1
L

∥∥ is the operator

norm of E−1
L : V[L] → K̂[L] with respect to the C2,β (Σ, g) norm on the

target and the maximum norm on the domain subject to the metric g

on Σ.

(v) ∀κ = (κp)p∈L ∈ V[L] we have for each p ∈ L

‖κp ◦ (expΣp )−1 − E−1
L κp : C

k(DΣ
p (δp),d

Σ
p , g, (d

Σ
p )

2)‖ ≤ C(k) |κp|.
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Remark 3.12. Given L as in 3.6 and constants δp as in 3.8, a possible defi-

nition of spaces K̂[p] satisfying 3.11 is by

K̂[p] := span
({

Ψ[δp, 2δp;d
Σ
p ](ui, 0)

}3

i=1

)
,

where ui, i = 1, 2, 3 are solutions of the Dirichlet problem LΣui = 0 on
DΣ

p (3δp), with corresponding boundary data u1 = sin θ, u2 = cos θ, u3 = 1 on

∂DΣ
p (3δp), where θ is a local angular coordinate in geodesic polar coordinates

for DΣ
p (δp). In the constructions in this paper, we will use choices (see 9.19)

of K̂[L] and K[L] adapted to symmetries of the problems.

Mismatch and conformal change of metric

We prove two lemmas now which will be useful in Part II.

Lemma 3.13 (Distance expansion under conformal change of metric). Con-
sider a metric ĝ = e−2ωg on Σ, where ω ∈ C∞(Σ). For each p ∈ Σ and q in
some open neighborhood of p in Σ,∣∣∣∣logdĝ

p(q)− logdg
p(q) + ω(p) +

1

2
dpω( (exp

g
p)

−1(q) )

∣∣∣∣ ≤ C (dg
p(q))

2.

Proof. In this proof, denote r = dg
p(q) and r̂ = dĝ

p(q), where q ∈ Σ is close
to p. Let γ and γ̂ be respectively the g- and ĝ-geodesics joining p to q. We
have

r̂ ≤
∫ r

0
e−ω(γ(t))dt = e−ω(p)r

(
1− 1

2
dpω(γ

′(0))r +O(r2)

)
,

r ≤
∫ r̂

0
eω(γ̂(t))dt = eω(p)r̂

(
1 +

1

2
dpω(γ̂

′(0))r̂ +O(r̂2)

)
.

This implies that r̂/r = e−ω(p) + O(r) and consequently that |rγ′(0) −
r̂ γ̂′(0)| < Cr2. We complete the proof by taking logarithms of both in-
equalities above and expanding.

Lemma 3.14 (Mismatch expansion in a conformal metric). For given ω ∈
C∞(Σ) and ϕ as in 3.10 we have for ĝ := e−2ωg and ∀p ∈ L and small
w ∈ TpΣ

ϕ ◦ expΣ,ĝ
p (w) = τp log(2|w|ĝ/τp) + (Mpϕ)(w)

+ τpω(p) + τpdpω(w)/2 +O(|w|2ĝ log |w|ĝ).
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Proof. By 3.10 we have for small w ∈ TpΣ that

ϕ ◦ expΣ,ĝ
p (w) = τp log(2|w|ĝ/τp) + τp log(|v|g/|w|ĝ)

+ (Mpϕ)(v) +O(|v|2g log |v|g),

where v ∈ TpΣ denotes the unique small vector satisfying expΣ,g
p (v) =

expΣ,ĝ
p (w), or equivalently v = (expΣ,g

p )−1 ◦ expΣ,ĝ
p (w). The proof is com-

pleted then by using 3.13 and that v = w +O(|w|2ĝ).

The initial surfaces and their regions

Each initial surface we construct depends not only on an LD solution ϕ as
in [29], but also on additional parameters κ ∈ V[L] controlling the elevation
and tilt of the catenoidal bridges in the vicinity of ϕ’s singular set L. We
list now the conditions imposed on these data.

Convention 3.15 (Uniformity of LD solutions). We assume given ϕ, L, and
τ as in 3.6 with τp > 0 ∀p ∈ L, and δp’s as in 3.8, satisfying the following
with α as in 2.10 and

(3.16)
τmin := min

p∈L
τp,

δ′p := ταp (∀p ∈ L),

τmax := max
p∈L

τp,

δ′min := min
p∈L

δ′p = ταmin.

(i) 3.8 holds and—in accordance with 2.10—τmax is as small as needed in
terms of α only.

(ii) ∀p ∈ L we have 9δ′p = 9ταp < τ
α/100
p < δp .

(iii) τmax ≤ τ
1−α/100
min .

(iv) ∀p ∈ L we have (δp)
−2‖ϕ : C2,β( ∂DΣ

p (δp), g ) ‖ ≤ τ
1−α/9
p .

(v) ‖ϕ : C3,β( Σ \
⊔

q∈LDΣ
q (δ

′
q) , g ) ‖ ≤ τ

8/9
min .

(vi) On Σ \
⊔

q∈LDΣ
q (δ

′
q) we have τ

1+α/5
max ≤ ϕ.

Definition 3.17 (Initial surfaces). Given ϕ, L, τ and δp’s as in 3.15, and
κ = (κp)p∈L ∈ V[L] satisfying (in accordance with 2.10)

(3.18) ∀p ∈ L |κp| < τ1+α/6
p ,

we define the smooth initial surface (recall 1.2(viii))

M = M [ϕ,κ] := GraphNΩ
(
ϕgl
+

)⋃
GraphNΩ

(
− ϕgl

−
)⋃ ⊔

p∈L

qK[p, τp, κp],
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where Ω := Σ \
⊔

p∈LDΣ
p (9τp) and the functions ϕgl

± = ϕgl
±[ϕ,κ] : Ω → R are

defined as follows.

(i) ∀p ∈ L we have ϕgl
± := Ψ[2δ′p, 3δ

′
p;d

Σ
p ]

(
ϕ±
cat[τp, κp] ◦ ( expΣp

)−1
, ϕ+v±)

on DΣ
p (3δ

′
p) \DΣ

p (9τp), where v± := −E−1
L MLϕ± E−1

L κ ∈ K̂[L].

(ii) On Σ \
⊔

p∈LDΣ
p (3δ

′
p) we have ϕgl

± := ϕ+ v±.

Lemma 3.19 (The gluing region). For M = M [ϕ,κ] as in 3.17 and ∀p ∈ L

the following hold.

(i)
∥∥∥ϕgl

± − τp logd
Σ
p : C3,β

(
DΣ

p (4δ
′
p) \DΣ

p (δ
′
p), (δ

′
p)

−2g
)∥∥∥ ≤ τ

1+ 15

8
α

p .

(ii)
∥∥∥ϕgl

± : C3,β
(
DΣ

p (4δ
′
p) \DΣ

p (δ
′
p), (δ

′
p)

−2g
)∥∥∥ ≤ Cτp| log τp|.

(iii)
∥∥(δ′p)2H ′

± : C0,β
(
DΣ

p (3δ
′
p) \DΣ

p (2δ
′
p), (δ

′
p)

−2g
)∥∥ ≤ τ

1+ 15

8
α

p , where H ′
±

denotes the pushforward of the mean curvature of the graph of ±ϕgl
± to

Σ by ΠΣ.

Proof. We have for each p ∈ L on Ωp := DΣ
p (4δ

′
p) \DΣ

p (δ
′
p), (recall 3.17)

(3.20)

ϕgl
± = τpGp − τp log

τp
2
E−1
L δLp ± E−1

L κ+Ψ[2δ′p, 3δ
′
p;d

Σ
p ](ϕ±, ϕ±),

where ϕ± := ϕ±
cat[τp, κp] ◦

(
expΣp

)−1 − τpGp + τp log
τp
2
E−1
L δLp ∓ E−1

L κ,

ϕ± := ϕ− τpGp + τp log
τp
2
E−1
L δLp − E−1

L MLϕ,

where δLp ∈ V[L] is defined by δLp := (δpq)q∈L with δpq the Kronecker delta.

By scaling the ambient metric to g̃′ := (δ′p)
−2g and expanding in linear and

higher order terms we have

(δ′p)
2H ′

± = (δ′p)
2LΣϕ

gl
± + δ′pQ̃(δ′p)

−1ϕgl
±
.

Note that on Ωp we have

ϕgl
± − ϕ±

cat[τp, κp] = Ψ
[
2δ′p, 3δ

′
p;d

Σ
p

] (
0, ϕ± − ϕ±

)
,

LΣϕ
gl
± = LΣΨ

[
2δ′p, 3δ

′
p;d

Σ
p

] (
ϕ±, ϕ±

)
.
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Using these, we have

‖ϕgl
±‖ ≤ C

(
τp| log τp|+ ‖ϕ±‖+ ‖ϕ±‖

)
,

‖ϕgl
± − τp logd

Σ
p ‖ ≤ C

(
‖ϕ±‖+ ‖ϕ±‖

)
,∥∥∥(δ′p)2LΣϕ

gl
± : C0,β

(
Ωp, (δ

′
p)

−2g
)∥∥∥ ≤ C

(
‖ϕ±‖+ ‖ϕ±‖

)
,∥∥∥δ′pQ̃(δ′p)

−1ϕgl
±
: C0,β

(
Ωp, (δ

′
p)

−2g
)∥∥∥ ≤ (δ′p)

−1‖ϕgl
±‖2,

where in this proof we mean the C3,β
(
Ωp, (δ

′
p)

−2g
)
norm unless specified

otherwise. We conclude that if ‖ϕgl
±‖ ≤ δ′p (to control the quadratic terms),

then we have∥∥∥(δ′p)2H ′
± : C0,β( Ωp, (δ

′
p)

−2g )
∥∥∥ ≤ C ( (δ′p)

−1τ2p | log τp|2 + ‖ϕ± ‖+ ‖ϕ± ‖).

Adding and subtracting (κp + τp log
2r
τp
) ◦ (expΣp )−1 in (3.20) we have ϕ± =

(I) + (II) + (III) + (IV ), where

(I) ◦ expΣp = ϕ±
cat[τp, κp]− τp log

2r

τp
∓ κp, (II) = τp(logd

Σ
p −Gp),

(III) = −τp log
τp
2
(1− E−1

L δLp ), (IV ) = ±((κp) ◦ (expΣp )−1 − E−1
L κ).

Using the triangle inequality and estimating (I)-(IV) using 2.12, 3.3(i), and
3.11, we have

‖ϕ±‖ ≤ C(|κp|+ τp)
3τ−2α

p + Cτ1+2α
p | log τp|.

Because LΣϕ± = 0 on Ωp and ϕ± has vanishing value and differential
at p (recall 3.10, 3.11 and 3.20), it follows from standard linear theory that∥∥ϕ±

∥∥ ≤ C(δ′p/δp)
2
∥∥∥ϕ± : C2,β

(
∂DΣ

p (δp), (δp)
−2g

)∥∥∥ .
Using 3.16, 3.15(ii) and 3.15(iv), 2.10, and 3.11 to estimate the right hand
side, we conclude that∥∥ϕ±

∥∥ ≤ C
(
δ′p
)2

τ
1− 1

9
α

p + Cτ1+2α
p | log τp| ≤ Cτ

1+ 17

9
α

p .

Combining with the above we complete the proof.
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Remark 3.21 (Smallness of mean curvature). Note that the exponent in the

right-hand side of 3.19(iii) is close to 1 + 2α and hence > 1 + α as needed

to ensure that the correction of the initial surface will be small compared to

the size of the LD solution.

Lemma 3.22. M defined in 3.17 (assuming 3.15) is embedded and moreover

the following hold.

(i) On Σ \
⊔

p∈LDΣ
p (δ

′
p) we have 8

9τ
1+α/5
max ≤ ϕgl

±.

(ii)
∥∥∥ϕgl

± : C3,β
(
Σ \

⊔
p∈LDΣ

p (δ
′
p), g

)∥∥∥ ≤ 9
8τ

8/9
min.

Proof. We first prove the estimates (i-ii): (i) on Σ \
⊔

p∈LDΣ
p (3δ

′
p) follows

from 3.15(vi) and 3.17, and on DΣ
p (4δ

′
p) \ DΣ

p (δ
′
p) for p ∈ L from 3.19(i)

and 3.15(iii). (ii) on Σ \
⊔

p∈LDΣ
p (3δ

′
p) follows from 3.15(v) and 3.17(i),

and on DΣ
p (4δ

′
p) \DΣ

p (δ
′
p) for p ∈ L from 3.19(ii) and 3.15(iii). Finally, the

embeddedness of M follows from (i) and by comparing the rest of M with

standard catenoids.

Definition 3.23 (Regions on the initial surfaces). We define the following

for L and M as in 3.17 and x ∈ [0, 4], where x may be omitted when x = 0

(recall 2.14).

S̃′
x := Σ \

⊔
p∈LDΣ

p (bτp(1 + x)) ⊂ Σ,(3.24a)

qKx[M ] :=
⊔

p∈L
qKx[p, τp, κp] ⊂ M,(3.24b)

Kx[M ] :=
⊔

p∈LKx[p, τp, κp] ⊂ qK[M ] ⊂ M.(3.24c)

We also define τL : qK[M ] → R and ΠK : qK[M ] → KM :=
⊔

p∈LK[p, τp, κp]

by taking τL := τp and ΠK = (expΣ,N,g
p )−1 on each qK[p, τp, κp].

Note that M determines L and so the above notation is legitimate.

Moreover ∀p ∈ L with κp = 0 we have qKx[p] = M ∩Π−1
Σ (DΣ

p (2δ
′
p/(1 + x) ) );

when κp �= 0 the two sides differ very little by the smallness of the tilt.

Notation 3.25. If f+ and f− are functions supported on S̃′ (recall (3.24a)),
we define JM (f+, f−) to be the function on M supported on (ΠΣ|M )−1 S̃′

defined by f+ ◦ ΠΣ on the graph of ϕgl
+ and by f− ◦ ΠΣ on the graph of

−ϕgl
−.
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4. The linearized equation on the initial surfaces

Global norms and the mean curvature on the initial surfaces

In this section we state and prove Proposition 4.18 where we solve with esti-
mates the linearized equation on an initial surface M defined as in 3.17. We
also provide in 4.6 an estimate for the mean curvature in appropriate norm.
In this subsection we discuss the global norms we use but first we introduce
Assumption 4.1 which simplifies the analysis and implies also Lemma 5.22.

Assumption 4.1. In the rest of Part I of this article we assume 2.1 holds and
furthermore the base surface Σ (recall 2.1) is closed and the kernel of LΣ is
trivial.

Definition 4.2. For k ∈ N, β̂ ∈ (0, 1), γ̂ ∈ R, and Ω a domain in Σ, M ,
or KM , we define

‖u‖
k,β̂,γ̂;Ω

:= ‖u : Ck,β̂(Ω, r, g, rγ̂)‖,

where r := dΣ
L and g is the standard metric on Σ when Ω ⊂ Σ, r := dΣ

L ◦ΠΣ

and g is the metric induced on M by the standard metric on N when Ω ⊂ M ,
and r = ρ(s) := τL cosh s (recall 2.4 and 3.23) and g is the metric induced by
each Euclidean metric g|p on TpN ∀p ∈ L when Ω ⊂ KM . Given also γ̂′ ∈ R

with γ̂−γ̂′ ∈ [1, 2) we define fγ̂,γ̂′ ∈ C0(M) by fγ̂,γ̂′ := max(rγ̂ , τ
(1−α)/2
L rγ̂

′
) =

rγ̂
′
max(rγ̂−γ̂′

, τ
(1−α)/2
L ) (note that fγ̂,γ̂′ = rγ̂ when rγ̂−γ̂′ ≥ τ

(1−α)/2
L ), and for

Ω ⊂ M (recall 2.31)

‖u‖
k,β̂,γ̂,γ̂′;Ω

:= ‖u : Ck,β̂(Ω, r, g, fγ̂,γ̂′) ‖+ ‖H1u‖k,β̂,γ̂;Ω∩ qK[M ]
.

Lemma 4.3. (i) If τmax is small enough in terms of given ε > 0, Ω̃ is a
domain in ΠK( qK[M ]), Ω := Π−1

K
(Ω̃) ⊂ qK[M ] ⊂ M , k = 0, 2, γ̂ ∈ R,

and f ∈ Ck,β(Ω̃), then we have (recall 1.8):

‖ f ◦ΠK ‖k,β,γ̂;Ω ∼
1+ε

‖f‖k,β,γ̂;Ω̃ .

(ii) If b is large enough in terms of given ε > 0, τmax is small enough in
terms of ε and b, Ω′ is a domain in S̃′ = Σ \

⊔
p∈LDΣ

p (bτp) (recall

(3.24a)), Ω := Π−1
Σ (Ω′) ∩M , k = 0, 2, γ̂ ∈ R, and f ∈ Ck,β(Ω′), then

‖ f ◦ΠΣ ‖k,β,γ̂;Ω ∼
1+ε

‖f‖k,β,γ̂;Ω′ .
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Proof. To prove (i) it suffices to prove for each p ∈ L and each qK =
qK[p, τp, κp] that

‖f ◦ΠK : Ck,β(Ω ∩ qK, ρ, g̊)‖ ∼
1+ε

‖f ◦ΠK : Ck,β(Ω ∩ qK, ρ, g)‖,

The induced metric from g on qK is g = g̊ + α, and so (i) follows from C.12

and the estimate on α in 2.28(i) by taking τmax small enough. To prove (ii)

let q ∈ S̃′ and consider the metric g̃q := (dΣ
L(q) )

−2 g on N , where g is the

standard metric on N . In this metric M is locally the union of the graphs of

±ϕ±
:q where ϕ±

:q := (dΣ
L(q) )

−1 ϕgl
±. First suppose that dΣ

p (q) ≤ 4δ′p for some

p ∈ L. Note that∥∥∥∥∥ log(2dΣ
p (q)/τp)

dΣ
p (q)/τp

−
κp

dΣ
p (q)

: C3,β(B′
q, g̃q)

∥∥∥∥∥ ≤ Cb−1 log b,

where B′
q = D

Σ,g̃q
q (1/10). It follows by combining this with 2.12 and 3.19,

and assuming b large enough, that

(4.4) ‖ϕ±
:q : C3,β(B′

q, g̃q) ‖ ≤ Cτ3p (d
Σ
p (q))

−3 + Cb−1 log b

≤ Cb−3 + Cb−1 log b ≤ Cb−1 log b.

On the other hand, if dΣ
L(q) > 4δ′min, then by 3.15(v) we have

‖ϕ±
:q : C3,β(B′

q, g̃q) ‖ ≤ Cτ
8/9
min.

By comparing the metrics and appealing to the definitions we complete the

proof.

Convention 4.5. From now on we assume that b (recall 3.23) is as large as

needed in absolute terms. We also fix some β ∈ (0, 1), γ = 3
2 , and γ′ =

γ − 1 = 1
2 . Note that 1− γ

2 > 2α and (1−α) (γ − 1) > 2α. We will suppress

the dependence of various constants on β.

We estimate now the mean curvature in terms of the global norm defined

in 4.2 and discussed in the introduction, by using the earlier estimates in

3.19 and 2.34.

Lemma 4.6. ‖H − JM (w+, w−)‖0,β,γ−2,γ′−2;M ≤ τ
1+α/3
max ,

where w± := LΣE−1
L (−MLϕ± κ ).
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Proof. Note that JM (w+, w−) = 0 on qK[M ] and by 4.2 we have

‖H − JM (w+, w−)‖0,β,γ−2,γ′−2;M = ‖H1H‖
0,β,γ−2; qK[M ]

+ ‖H − JM (w+, w−) : C0,β(M, r, g, fγ−2,γ′−2)‖.

By 4.3(i) and 2.34 we have

‖H1H‖
0,β,γ−2; qK[M ]

≤ Cmax
p∈L

‖H1H : C0,β( qKp, χ, r
γ−2)‖

≤ Cmax
p∈L

τ (2−γ)α
p τp| log τp| ≤ τ1+α/3

max ,

where here qKp = qK[p, τp, κp] and we have used 3.15(iii). To estimate the
weighted norm ofH, we use 2.34(i) in conjunction with the piecewise formula
for fγ−2,γ′−2 to see

‖H : C0,β( qK[M ], r, g, fγ−2,γ′−2)‖ ≤ Cmax
p∈L

τ1+α/2
p | log τp| ≤ τ1+α/3

max .

Finally, we consider the estimate on the exterior of the gluing region.
Let q′ ∈ M ∩Π−1

Σ (
⊔

p∈LDΣ
p (3δ

′
p)), define q := ΠΣq

′ ∈ Σ \
⊔

p∈LDΣ(3δ′p) and

consider the metric g̃q := (dΣ
L(q))

−2g. In this metric M is locally the union

of the graphs of ±ϕ±
:q , where ϕ

±
:q = (dΣ

L(q))
−1ϕgl

±. By expanding H ′
+ and H ′

−
in linear and higher order terms, we find (recall 3.17)

(dΣ
L(q))

2H ′
± = (dΣ

L(q))
2w± + (dΣ

L(q))Q̃ϕ±
:q
.

We estimate then

‖(dΣ
L(q))

2(H ′
± − w±) : C0,β(B′

q, g̃q, (d
Σ
L(q))

γ)‖
≤ ‖(dΣ

L(q))Q̃ϕ±
:q
: C2,β(B′

q, g̃q, (d
Σ
L(q))

γ)‖

≤ C
1

(dΣ
L(q))

γ+1
‖ϕgl

± : C3,β(B′
q, g̃q)‖2 ≤ τ3/2max,

where B′
q := D

g̃q
q (1/10), and we have used 3.15(v) and 2.10. Combining this

estimate with 3.19(iii), 2.32, 4.2, and 4.3(ii) we complete the proof.

Lemma 4.7. (i) If γ̂ ∈ R, τmax is small enough, and u ∈ C2,β(ΠK( qK[M ]) ),
then we have

‖LM (u ◦ΠK ) − (LKu ) ◦ΠK ‖
0,β,γ̂−2; qK[M ]

≤ C τ2αmax ‖u ‖2,β,γ̂; ΠK( qK[M ])
,

‖LM (u ◦ΠK ) − (LKu ) ◦ΠK ‖
0,β,γ̂−2; qK[M ]

≤ C ‖u ‖
2,β,γ̂−1;ΠK( qK[M ])

.
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(ii) If γ̂ ∈ R, τmax is small enough, and u ∈ C2,β(S̃′ ), then for ε1 ∈ [0, 1/2]
we have

‖LM {u ◦ΠΣ } − {LΣ u } ◦ΠΣ ‖0,β,γ̂−2;Π−1
Σ (S̃′ )

≤ C bε1−1 log b τ ε1max ‖u ‖2,β,γ̂+ε1; S̃′ .

Proof. We first prove the first estimate of (i). By 4.2, 4.3(i), and the defini-
tions it suffices to prove that

‖ρ2(LM −Δg̊ − |Å|2g̊)u ◦ΠK‖0,β,γ̂; qK[M ]
≤ Cτ2αmax‖u‖2,β,γ̂;Ω̃,

where ρ is as in (2.4) on each qK = qK[p, τp, κp], Ω̃ = ΠK( qK[M ]), LM :=

Δg + |A|2g +Ric(ν
qK
, ν

qK
), A and Ric are the second fundamental form on qK

and the Ricci tensor induced by g, and Å is the second fundamental form on
qK induced by g̊. Recall from (2.5) that ρ−2g̊ is isometric to the flat metric
χ on Cyl from 2.3, and also that ρ2Δg̊ is the Laplacian with respect to the
χ metric.

Estimating the difference in the Laplacians using C.10, we find

‖ρ2(Δg −Δg̊)u ◦ΠK : C0,β( qK ∩ qK[M ], χ, ργ̂)‖
≤ C‖ρ−2α : C1,β( qK,χ)‖‖u ◦ΠK : C2,β( qK ∩ qK[M ], χ, ργ̂)‖

≤ Cτ2αmax‖u‖2,β,γ̂;Ω̃,

where we have used 2.28 to estimate α. Next observe that

‖ρ2(|A|2g − |Å|2g̊)u ◦ΠK : C0,β( qK ∩ qK[M ], χ, ργ̂)‖
≤ ‖ρ2(|A|2g − |Å|2g̊) : C0,β( qK,χ)‖‖u‖0,β,γ̂;Ω̃

≤ Cτ2αmax‖u‖0,β,γ̂;Ω̃,

where we have estimated ρ2(|A|2g − |Å|2g̊) using C.11, estimated the tensors

using 2.28, and used that Å = τp(−ds2 + dθ2) and that ρ2|Å|2g̊ = 2 sech2 s.

Finally, we have the trivial estimate ‖ρ2Ric(ν
qK
, ν

qK
)u ◦ ΠK‖0,β,γ̂; qK[M ]

≤
Cτ2αmax‖u‖2,β,γ̂;Ω̃; combined with the preceding and the definitions, this con-

cludes the proof of the first estimate in (i). The proof of the second estimate
is similar, so we omit it.

We now prove (ii). In this case we apply the notation and observations
in the proof of 4.3(ii) including (4.4). We have then using scaling for the left
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hand side that for q ∈ S̃′

(dΣ
L(q) )

2 ‖LM {u ◦ΠΣ } − {LΣ u } ◦ΠΣ : C0,β(Π−1
Σ (B′

q), g̃q ) ‖
≤ C fweight(q) ‖u : C2,β(B′

q, g̃q ) ‖ ,

where here fweight(q) =
log(dΣ

p (q)/τp)

dΣ
p (q)/τp

if q ∈ DΣ
p (3δ

′
p) for some p ∈ L and

fweight(q) = τ
8/9
min otherwise. By the definitions it is enough then to check

that ∀q ∈ S̃′ we have

fweight(q) (d
Σ
L(q) )

ε1 ≤ C bε1−1 log b τ ε1max.

This follows from the definition of fweight and the observation that xε1−1 log x
is decreasing in x for x ≥ b. This completes the proof.

The definition of Rappr
M

We consider now the linearized equation modulo K[L] (recall 1.2(vi), 3.11,
and 3.25),

(4.8) LMu = E + JM (w+
E , w

−
E),

with E ∈ C0,β(M) given and u ∈ C2,β(M) and w±
E ∈ K[L] the unknowns.

We will construct a linear map

(4.9) Rappr
M : C0,β(M) → C2,β(M)⊕K[L]⊕K[L]⊕ C0,β(M),

where using the notation

(4.10) E1 := LMu1 − E − JM (w+
E,1, w

−
E,1),

and Rappr
M E = (u1, w

+
E,1, w

−
E,1, E1), ∀E ∈ C0,β(M),

we will have that (u1, w
+
E,1, w

−
E,1) is an approximate solution of (4.8) with

approximation error E1 in the sense that the norm of E1 is small compared to
the norm of E. The approximate solution will be constructed by combining
semi-local approximate solutions. Before we proceed with the construction
we define some cut-off functions we will need.

Definition 4.11. We define ψ′ ∈ C∞(Σ) and qψ ∈ C∞(M) by requesting
the following.
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(i) qψ is supported on qK[M ] ⊂ M and ψ′ on S̃′ ⊂ Σ (recall 3.23).
(ii) ψ′ = 1 on S̃′

1 and for each p ∈ L we have

ψ′ =Ψ
[
bτp, 2bτp;d

Σ
p

]
(0, 1) on DΣ

p ( 2b τp ),

qψ =Ψ
[
2δ′p, δ

′
p; d

Σ
p ◦ΠΣ

]
(0, 1) on qK[p].

Given E ∈ C0,β(M), we define E′
± ∈ C0,β(Σ) by requiring that they are

supported on S̃′ and that

(4.12) JM (E′
+, E

′
−) = (ψ′ ◦ΠΣ)E.

Because of 4.1 and 3.11, there are unique u′± ∈ C2,β(Σ) and w±
E,1 ∈ K[L]

such that

LΣu
′
± = E′

± + w±
E,1 on Σ and ∀p ∈ L Epu

′
± = 0.(4.13)

Note that LΣ

(
(1− ψ′)u′±

)
= [ψ′,LΣ]u

′
±+(1−ψ′)E′

± is supported onK1[M ]\
K[M ] ⊂ qK[M ] ⊂ M . We define now Ẽ ∈ C0,β(KM ), by requesting that it
is supported on ΠK(K1[M ]) and that on K1[M ] we have

(4.14) Ẽ ◦ΠK = (1−ψ′ ◦ΠΣ)E+JM
(
LΣ

(
(1− ψ′)u′+

)
,LΣ

(
(1− ψ′)u′−

))
.

For k ∈ {0, 2}, we introduce a decomposition Ck,β(KM ) = Ck,β
low(KM )⊕

Ck,β
high(KM ) into subspaces of functions which satisfy the condition that their

restrictions to a parallel circle of a K[p, τp, κp] belong or are orthogonal
respectively to the span of the constants and the first harmonics on the
circle. We then have

(4.15) Ẽ = Ẽlow + Ẽhigh,

with Ẽlow ∈ C0,β
low(KM ) and Ẽhigh ∈ C0,β

high(KM ) supported on ΠK(K1[M ]) ⊂
KM .

Let LK denote the linearized operator on KM (defined in 1.2(vi)), and

let ũlow ∈ C2,β
low(KM ) and ũhigh ∈ C2,β

high(KM ) be solutions of (recall 3.23)

(4.16) LK ũlow = Ẽlow, LK ũhigh = Ẽhigh,

determined uniquely as follows. By separating variables the first equation
amounts to uncoupled ODE equations which are solved uniquely by assum-
ing vanishing initial data on the waist of the catenoids. For the second equa-
tion we can as usual change the metric conformally to h = 1

2 |A|2g = ν∗gS2 ,
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and then we can solve uniquely because the inhomogeneous term is clearly
orthogonal to the kernel. We conclude now the definition of Rappr

M :

Definition 4.17. We define Rappr
M as in 4.9 and 4.10 by taking Rappr

M E =
(u1, w

+
E,1, w

−
E,1, E1), where w±

E,1 were defined in (4.13), E1 was defined in
(4.10), and

u1 := qψ ũ ◦ΠK + JM (ψ′u′+, ψ
′u′−), where ũ := ũlow + ũhigh ∈ C2,β(KM ).

The main proposition

Proposition 4.18 (cf. [29, Proposition 4.17]). Recall that M is as in 3.17
and we assume that 3.11, 3.15, 4.1, and 4.5 hold. A linear map

RM : C0,β(M) → C2,β(M)×K[L]×K[L]

can be defined then by

RME := (u,w+
E , w

−
E) :=

∞∑
n=1

(un, w
+
E,n, w

−
E,n) ∈ C2,β(M)×K[L]×K[L]

for E ∈ C0,β(M), where the sequence {(un, w+
E,n, w

−
E,n, En)}n∈N is defined

inductively for n ∈ N by

(un, w
+
E,n, w

−
E,n, En) := −Rappr

M En−1, E0 := −E.

Moreover the following hold.

(i) LMu = E + JM (w+
E , w

−
E).

(ii) ‖u‖2,β,γ;M ≤ C(b)δ−4−2β
min ‖E‖0,β,γ−2;M .

(iii) ‖w±
E : C0,β(Σ, g)‖ ≤ Cδγ−4−2β

min ‖E‖0,β,γ−2;M .

Proof. The proof is similar to the proof of [29, Proposition 4.17] but we
include it to keep the article self-contained. We subdivide the proof into five
steps:
Step 1: Estimates on u′± and w±

E,1: We start by decomposing E′
+ and u′+

(defined as in (4.12) and (4.13)) into various parts which will be estimated
separately; E′

− and u′− are decomposed in analogous fashion. We clearly
have by the definitions and the equivalence of the norms as in 4.3 that

‖E′
+‖0,β,γ−2;Σ ≤ C ‖E‖0,β,γ−2;M .



Generalizing the Linearized Doubling approach, I 339

For each p ∈ L, we use D.1 to define u′p,+ ∈ C2,β(DΣ
p (2δp)) satisfying

Epu
′
p,+ = 0 and

‖u′p,+‖2,β,γ;DΣ
p (2δp)

≤ C ‖E′
+‖0,β,γ−2;Σ.

We define now u′′+ ∈ C2,β(Σ) supported on
⊔

p∈LDΣ
p (2δp) by requesting

for each p ∈ L that

u′′+ = Ψ
[
2δp, δp;d

Σ
p

]
(0, u′p,+) on DΣ

p (2δp).

We clearly have

‖u′′+‖2,β,γ;Σ ≤ C‖E‖0,β,γ−2;M .

Now E′
+ −LΣu

′′
+ vanishes on

⊔
p∈LDΣ

p (δp) and therefore it is supported

on S′
1 := Σ \

⊔
p∈LDΣ

p (δp). Moreover it satisfies

‖E′
+ − LΣu

′′
+‖0,β,γ−2;Σ ≤ C ‖E‖0,β,γ−2;M .

Using the definition of the norms and the restricted support S′
1 we conclude

that

‖E′
+ − LΣu

′′
+ : C0,β(Σ, g)‖ ≤ C δγ−2−β

min ‖E′
+ − LΣu

′′
+‖0,β,γ−2;Σ.

The last two estimates and standard linear theory (recall 4.1) imply that
the unique solution u′′′+ ∈ C2,β(Σ) to LΣu

′′′
+ = E′

+ − LΣu
′′
+ satisfies

‖u′′′+ : C2,β(Σ, g)‖ ≤ C δγ−2−β
min ‖E‖0,β,γ−2;M .

By 3.11 there is a unique v+ ∈ K̂[L] (recall 3.11) such that Ep(u
′′′
+ + v+) = 0

for each p ∈ L. Moreover by the last estimate and 3.11, v+ satisfies the
estimate

‖v+ : C2,β(Σ, g)‖+ ‖LΣv+ : C0,β(Σ, g)‖ ≤ C δγ−4−2β
min ‖E‖0,β,γ−2;M .

Combining now the definitions of u′′′+ and v+ we conclude that LΣ(u
′′
+ +

u′′′+ + v+) = E′
+ + LΣv+. By the definitions of u′′+ and v+ we clearly have

that Ep(u
′′
+ + u′′′+ + v+) = 0 ∀p ∈ L and hence

u′+ = u′′+ + u′′′+ + v+ and w+
E,1 = LΣv+.
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Note now that LΣu
′′′
+ = E′ − LΣu

′′
+ vanishes on

⊔
p∈LDΣ

p (δp/4) and
by 3.11 so does LΣv+ ∈ K[L]. We conclude that for each p ∈ L we have
LΣ(u

′′′
++v+) = 0 onDΣ

p (δp/4), and since we know already that Ep(u
′′′
++v+) =

0, it follows that

‖u′′′+ + v+‖2,β,γ̃;Σ ≤ Cδ−γ̃
min‖u′′′+ + v+ : C2,β(Σ, g)‖,

where γ̃ := γ+2
2 ∈ (γ, 2). Combining with the earlier estimates for u′′′+ and

v+ we conclude that

‖u′′′+ + v+‖2,β,γ̃;Σ ≤ C δγ−γ̃−4−2β
min ‖E ‖0,β,γ−2;M ,

We need the stronger decay for estimating E1 later. A similar estimate holds
with γ instead of γ̃. Combining with the earlier estimate for u′′+ and arguing
similarly for u′− we finally conclude that

‖u′±‖2,β,γ;Σ ≤ C δ−4−2β
min ‖E ‖0,β,γ−2;M .

Step 2: Estimates on ũ: By the definitions and 4.3 (with ε = 1) we have
that

‖ Ẽ ‖0,β,γ−2;KM
≤ C ( ‖E ‖0,β,γ−2;M + ‖u′+ ‖2,β,γ;Σ + ‖u′− ‖2,β,γ;Σ )

≤ C δ−4−2β
min ‖E ‖0,β,γ−2;M ,

where the second inequality follows from the previous estimate. By scaling
4.16, the definitions, and standard theory, we conclude that ∀p ∈ L

‖ ũlow : C2,β(K1[p], τ
−2
p g|p) ‖ ≤ C(b) ‖ τ2p Ẽ : C0,β(K1[p], τ

−2
p g|p) ‖

≤ C(b) τγp ‖ Ẽ ‖0,β,γ−2;KM
,

where K1[p] := ΠK(K1[p]) ⊂ K[p, τp, κp]. Using the fact that the ODE solu-
tions of the Jacobi equation corresponding to constants grow at most log-
arithmically in ρ, and the ones corresponding to first harmonics at most
linearly in ρ, and that Ẽ is supported on

⊔
p∈LK1[p], we conclude by com-

paring weights and using that ρ ≥ τL on KM and γ > 1, that

‖ ũlow ‖2,β,γ;KM
≤ ‖ τ1−γ

L ũlow ‖2,β,1;KM
≤ C(b) ‖ Ẽ ‖0,β,γ−2;KM

.

(Actually ũlow can be expressed explicitly in terms of Ẽlow by using variation
of parameters and the ODE solutions corresponding to constants φeven :=
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1−s tanh s and φodd := tanh s, and the ODE solutions corresponding to first
harmonics ũe := sech s and ũo := sinh s + s sech s.)

By scaling 4.16, standard linear theory, that Ẽ is supported on
⊔

p∈LK1[p],

and that on eachK1[p] the conformal metrics τ−2
L g|p and h = 1

2 |A|2g = ν∗gS2

are uniformly equivalent, we conclude that ∀p ∈ L

‖ ũhigh : C0(K[p, τp, κp]) ‖ ≤ C(b) ‖ τ2p Ẽhigh : C0(K1[p]) ‖
≤ C(b) τγp ‖ Ẽ ‖0,β,γ−2;KM

.

Similarly we obtain the second inequality below; the first inequality follows
by comparing weights as done earlier.

‖ ũhigh ‖2,β,γ;KM
≤ ‖ τ−γ

L ũhigh ‖2,β,0;KM
≤ C(b) ‖ Ẽ ‖0,β,γ−2;KM

.

Combining the above we obtain

‖ ũ ‖2,β,γ;KM
≤ C(b) δ−4−2β

min ‖E ‖0,β,γ−2;M .

Step 3: A decomposition of E1: Using (4.10) and 4.17, (4.12), (4.14),
(4.15), and (4.16), we obtain

(4.19) E1 = E1,I + E1,II + E1,III ,

where E1,I , E1,II , E1,III ∈ C0,β(M) are defined by (recall 4.11),

(4.20)

E1,I := [LM , qψ] ( ũ ◦ΠK ) ,

E1,II := qψ (LM ( ũ ◦ΠK ) − (LKũ ) ◦ΠK)

= ψ̂LM ( ũ ◦ΠK ) − Ẽ ◦ΠK,

E1,III :=LM { JM (ψ′u′+, ψ
′u′−)} − JM

(
LΣ(ψ

′u′+),LΣ(ψ
′u′−)

)
,

on qK[M ] \ qK1[M ], qK[M ], and S̃′ respectively, and to vanish elsewhere, and
we have used that LΣu

′
± = E′

± + w±
1,E which follows from (4.13).

Step 4: Estimates on u1 and E1: Using the definitions, 4.3 with ε = 1,
and the estimates for u′± and ũ above we conclude that

‖u1 ‖2,β,γ;M ≤ C(b) δ−4−2β
min ‖E ‖0,β,γ−2;M .

By 4.3 we have ‖ ũ ◦ ΠK ‖
2,β,2; qK[M ]\ qK1[M ]

∼
2
‖ ũ ‖

2,β,2;ΠK ( qK[M ]\ qK1[M ] )
.

Using definitions 4.2 and 3.23 we conclude that

‖ ũ ◦ΠK ‖
2,β,γ; qK[M ]\ qK1[M ]

≤ C τα(1−γ)
max ‖ ũ ‖2,β,1;KM

,
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and therefore we have by the definition of E1,I and the preceding estimates

‖E1,I ‖0,β,γ−2;M ≤ C τα(1−γ)
max ‖ ũlow ‖2,β,1;KM

+‖ ũhigh ‖2,β,γ;ΠK( qK[M ]\ qK1[M ])

≤ C(b)τ (1−α)(γ−1)
max ‖ Ẽ ‖0,β,γ−2;KM

.

Applying now 4.7(i) with f = ũ and γ̂ = γ and using the definition of qψ we
conclude that

‖E1,II ‖0,β,γ−2;M ≤ C τ2αmax ‖ ũ ‖2,β,γ;KM
.

We decompose now E1,III = E′′
1,III +E′′′

1,III where E′′
1,III and E′′′

1,III are
defined the same way as E1,III but with u′± replaced by u′′± and u′′′± + v±
respectively. Applying 4.7(ii) with ε1 = 0, f = u′′±, and γ̂ = γ, we conclude
that

‖E′′
1,III ‖0,β,γ−2;M ≤ C b−1 log b

(
‖u′′+‖2,β,γ;Σ + ‖u′′−‖2,β,γ;Σ

)
.

Applying 4.7(ii) with ε1 = γ̃ − γ, f = u′′′± + v±, and γ̂ = γ we obtain

‖E′′′
1,III ‖0,β,γ−2;M

≤ C bγ̃−γ−1 log b τ γ̃−γ
max

(
‖u′′′+ + v+‖2,β,γ̃;Σ + ‖u′′′− + v−‖2,β,γ̃;Σ

)
.

Combining the above with the earlier estimates and using 3.15(ii) and 4.5
we conclude that

‖E1 ‖0,β,γ−2;M

≤ (C(b) τα/2max + C b−1 log b + C b−1/2 log b τ γ̃−γ−α
max ) ‖E ‖0,β,γ−2;M .

Step 5: The final iteration: By assuming b large enough and τmax small
enough in terms of b we conclude using γ̃ − γ − α > 0 and induction that

‖En ‖0,β,γ−2;M ≤ 2−n ‖E ‖0,β,γ−2;M .

The proof is then completed by using the earlier estimates.

Corollary 4.21. Recall that we assume that 3.11, 3.15, 4.1, and 4.5 hold.
A linear map R′

M : C0,β(M) → C2,β(M)×K[L]×K[L] can be defined such
that given E ∈ C0,β(M), the following hold.

(i) LMu = E + JM (w+
E , w

−
E) where R′

M (E) = (u,w+
E , w

−
E).
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(ii) ‖u‖2,β,γ,γ′;M + ‖w±
E : C0,β(Σ, g)‖ ≤ C(b)δ−4−2β

min ‖E‖0,β,γ−2,γ′−2;M .

Proof. We first define Ê ∈ C0,β(M), supported on qK[M ], by

Ê := qψE −H1( qψE).(4.22)

We then solve LKû = Ẽ := Ê◦Π−1
K

on KM and then estimate û by modifying
Step 2 in the proof of Proposition 4.18. The modifications are necessary
because the support of the inhomogeneous term is much larger and the
decay is different. We decompose as in 4.15 and 4.16. To estimate ûlow we
argue as before, utilizing the fact that there are no first Fourier modes, and
so the growth is only logarithmic; this is slower than the γ′ growth rate
allowed. To estimate ûhigh we first solve with Dirichlet boundary conditions

the equation LKûann = Ẽhigh on the annuli (conformal to punctured discs)
of KM \ ΠK(K[M ]) (cf. 3.23). By arguments which are standard by now
we estimate then ûann, and by cutting it off and subtracting from ûhigh,

we reduce without loss of generality to estimating ûhigh in the case Ẽhigh is
supported on

⊔
p∈LK1[p] as in Step 2 of 4.18; this can be handled then as

in 4.18. We conclude that

‖û ◦ΠK‖2,β,γ,γ′; qKL
≤ C‖Ê‖0,β,γ−2,γ′−2;M .(4.23)

We then define Ê′ ∈ C0,β(M) by

Ê′ := E − qψÊ − [LM , qψ](û ◦ΠK)− qψ (LM (û ◦ΠK)− (LKû) ◦ΠK) ,(4.24)

(û′, w+
E , w

−
E) := RM Ê′ ∈ C2,β(M)×K[L]×K[L], and R′

ME := ( qψ û ◦ΠK +
û′, w+

E , w
−
E). It is straightforward to check that (i) holds by using 4.22, 4.24

and 4.18(i).
Using (4.24) for the first inequality, 4.7(i) and the definitions for the

second, and (4.23) and Definition 4.2 for the third, we have

‖Ê′‖0,β,γ−2;M ≤ C
(
‖E − qψÊ‖0,β,γ−2;M +

‖[LM , qψ](û◦ΠK)‖0,β,γ−2; qK[M ]\ qK1[M ]
+‖LM (û◦ΠK)− (LKû)◦ΠK‖0,β,γ−2; qKL

)
≤ C

(
‖E‖0,β,γ−2,γ′−2;M + ‖û ◦ΠK‖2,β,γ; qK[M ]\ qK1[M ]

+ ‖û ◦ΠK‖2,β,γ−1; qKL

)
≤ C‖E‖0,β,γ−2,γ′−2;M .

Combining with 4.18, (4.23), and the definition of R′
ME, we complete the

proof.
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5. Constructing minimal doublings from families of LD
solutions

The nonlinear terms

In this section we state and prove Theorem 5.7 which “automates” the con-

struction of a minimal doubling given a suitable family of LD solutions.

Continuing the discussion of the initial surfaces from the previous sections,

we first state and prove Lemma 5.1, where we discuss their perturbations

and the nonlinear terms in the resulting mean curvature.

Lemma 5.1. If M is an initial surface as in 4.18 and φ ∈ C2,β(M) sat-

isfies ‖φ‖2,β,γ,γ′;M ≤ τ
1+α/4
max (recall 4.2), then (recalling 1.2(viii)) Mφ :=

GraphN,g
M (φ) is a well-defined embedded surface. Moreover if Hφ denotes the

mean curvature of Mφ pulled back to M by XN,g
M,φ : M → Mφ and H the

mean curvature of M , then we have

‖Hφ − H − LMφ ‖0,β,γ−2,γ′−2;M ≤ C τ
−α/2
min ‖φ ‖22,β,γ,γ′;M .

Proof. Following the notation in the proof of 4.3 and by 4.4 we have that

for q ∈ S̃′, the graph B′′
q of ϕ+

:q (or −ϕ−
:q) over B

′
q in (Σ, g̃q) can be described

by an immersion X:q : B
′
q → B′′

q = X:q(B
′
q), such that there are coordinates

on B′
q and a neighborhood in N of B′′

q , which has uniformly bounded C3,β

norms, the standard Euclidean metric on the domain is bounded by CX∗
:q g̃q,

and the coefficients of g̃q in the target coordinates have uniformly bounded

C3,β norms. By the definition of the norm and since ‖φ‖2,β,γ,γ′;M ≤ τ
1+α/4
max ,

we have that the restriction of φ on B′′
q satisfies

‖(dL(q))
−1φ : C2,β(B′′

q , g̃q)‖
≤ C(dL(q))

−1max
(
(d(q))γ , τ (1−α)/2

max (dL(q))
γ′) ‖φ‖2,β,γ,γ′;M .

Since the right hand side is small in absolute terms we can conclude that

GraphM,g
B′

q
φ is well defined and embedded. Using scaling for the left hand

side we further conclude that

‖dL(q)(Hφ −H − LMφ) : C0,β(B′′
q , g̃q)‖ ≤

C(dL(q))
−2max

(
(dL(q))

γ , τ (1−α)/2
max (dL(q))

γ′)2 ‖φ‖22,β,γ,γ′;M .
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Rearranging this, we conclude that (recalling from 4.5 that γ′ = γ − 1)

‖Hφ −H − LM : C0,β(B′′
q , g̃q)‖

≤ C(dL(q))
γ−1max

(
(dL(q))

γ−2, τ1−α
max (dL(q))

γ′−3
)
‖φ‖22,β,γ,γ′;M

≤ Cτ
−α/2
min max

(
(dL(q))

γ−2, τ (1−α)/2
max (τ/dL(q))

1/2(dL(q))
γ′−2

)
‖φ‖22,β,γ,γ′;M .

where we have used that γ′ = 1/2. Finally, note that the components of
K[M ] appropriately scaled are small perturbations of a fixed compact region
of the standard catenoid, which allows us to repeat the arguments above in
this case. By combining with the earlier estimates and using the definitions,
we conclude the estimate in the statement of the lemma.

The fixed point theorem

Assumption 5.2 (Families of LD solutions). We assume 4.1 holds and that we
are given continuous families of the following parametrized by ζ ∈ BP ⊂ P ,
where P is a finite dimensional vector space and BP ⊂ P a convex compact
subset containing the origin 0.

(i) Diffeomorphisms FΣ
ζ : Σ → Σ with FΣ

0 the identity on Σ.

(ii) Finite sets L = L�ζ� = FΣ
ζ L�0� ⊂ Σ of cardinality |L| = |L�ζ�| =

|L�0�|.
(iii) Configurations τ = τ �ζ� : L�ζ� → R+.
(iv) LD solutions ϕ = ϕ�ζ� as in 3.6 of singular set L = L�ζ� and configu-

ration τ = τ �ζ�.
(v) For each L = L�ζ� constants δp = δp�ζ� as in 3.8.

(vi) For each L = L�ζ� a space K̂�ζ� = K̂[L�ζ� ] as in 3.11.
(vii) Linear isomorphisms Zζ : V�ζ� → P where V�ζ� := V[L�ζ� ] (recall

2.9).

Moreover we assume the following are satisfied ∀ζ ∈ BP .

(a) ‖FΣ
ζ : C4‖ ≤ C where the norm is defined with respect to some atlas

of Σ and the constant C depends only on the background (Σ, N, g).
(b) ∀p ∈ L�0� we have FΣ

ζ (D
Σ
p (3δp)) = DΣ

q (3δq) with q := FΣ
ζ (p).

(c) ϕ = ϕ�ζ�, L = L�ζ�, and τ = τ �ζ� satisfy 3.15, including the smallness
of τmax in 3.15(i) which is now in terms of the constant C in (a) as
well.

(d) ∀p ∈ L�0� we have the uniformity condition τ2q ≤ τp ≤ τ
1/2
q , where

here τp denotes the value of τ �0� at p and τq the value of τ �ζ� at
q = FΣ

ζ (p) ∈ L�ζ�.
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(e) ζ − Zζ(ML�ζ�ϕ�ζ�) ∈ 1
2BP (prescribed unbalancing).

Definition 5.3. Assuming 5.2 we define a scaled push-forward map FV
ζ :

V�0� → V�ζ� by

FV
ζ (κ̃

⊥
p + κ̃p)p∈L�0� =

(
τ1+α/5
q

(
κ̃⊥(FΣ

ζ )−1(q) + (FΣ
ζ )∗κ̃(FΣ

ζ )−1(q)

))
q∈L�ζ�

,

where (FΣ
ζ )∗κ̃(FΣ

ζ )−1(q) = κ̃(FΣ
ζ )−1(q) ◦ ( d(FΣ

ζ )−1(q)FΣ
ζ )−1 ∈ T ∗

q Σ and τq de-

notes the value of τ �ζ� at q ∈ L�ζ�.

Definition 5.4 (Families of initial surfaces). Assuming 5.2 and following
3.17 we write

M�ζ� := M [ϕ�ζ� , FV
ζ κ ] for ζ = (ζ,κ) ∈ BP ×BV�0� where

BV�0� :=
{
(κ̃⊥p + κ̃p)p∈L : ∀p ∈ L , κ̃⊥p ∈ [−1, 1] , |κ̃p|g ≤ 1

}
⊂ V�0�.

Lemma 5.5 (Diffeomorphisms Fζ). Assuming 5.2, there exists a family of
diffeomorphisms Fζ : M�0� → M�ζ� satisfying the following, where here 0
denotes the zero element of P × V�0� and ζ ∈ BP ×BV�0� is as in 5.4.

(i) Fζ depends continuously on ζ.

(ii) For any u ∈ C2,β(M�ζ�) and E ∈ C0,β(M�ζ�) we have the following
equivalence of norms:

‖u ◦ Fζ ‖2,β,γ,γ′;M�0� ∼
4

‖u ‖2,β,γ,γ′;M�ζ�,

‖E ◦ Fζ ‖0,β,γ−2,γ′−2;M�0� ∼
4

‖E ‖0,β,γ−2,γ′−2;M�ζ�.

Proof. ∀p ∈ L�0�, we first define F̂p
ζ : Cyl[−s0,p,s0,p] → Cyl[−sζ,q,sζ,q] by F̂p

ζ ◦
YCyl(θ, s) = YCyl(θ,

sζ,q

s0,p
s), where q := FΣ

ζ (p) and s0,p and sζ,q are defined by

the equations τp cosh s0,p = ταp /2 and τq cosh sζ,q = ταq /2.

We then define Fζ to map each Λp
0 onto Λq

ζ , where

Λp
0 :=X

qK
[p, τp, κp](Cyl[−s0,p,s0,p]) ⊂ M�0�,

Λq
ζ :=X

qK
[q, τq, κq](Cyl[−sζ,q,sζ,q]) ⊂ M�ζ�,

by requesting that

Fζ ◦X qK
[p, τp, κp] = X

qK
[q, τq, κq] ◦ F̂

p
ζ .(5.6)
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We next define the restriction of Fζ on M�0� \ qK[M�0�] to be a map

onto M�ζ� \ qK[M�ζ�] which preserves signs of the z coordinate (recall 2.2)
and satisfies

ΠΣ ◦ Fζ = FΣ
ζ ◦ΠΣ.

On the region qK[M�0�] \ ∪p∈L�0�Λ
p
0 we apply the same definition as in

the above paragraph but with FΣ
ζ appropriately modified by using cut-off

functions so that the final definition provides an interpolation between the
two definitions above and satisfies (i).

Using 5.2(d) and 2.4, it is not difficult to check that for each p ∈ L�0�,

s0,p ∼
1+C/| log τp|

sζ,q.

Using this and arguing as in the proof of 4.3, we conclude (ii).

Theorem 5.7 (Theorem A). Assuming that 5.2 holds, there exist ζ̆ =

(ζ̆, κ̆) ∈ BP ×BV�0� and φ̆ ∈ C∞(M�ζ̆�) (recall 5.4) satisfying (recall 4.2)

‖φ̆‖2,β,γ,γ′;M�ζ̆� ≤ τ1+α/4
max ,

such that the normal graph M̆ := (M�ζ̆�)
φ̆

is an embedded smooth closed
minimal surface doubling Σ in N as in 1.1, satisfying

(5.8)

M̆ = GraphN,g

Σ̆
(ŭ+) ∪GraphN,g

Σ̆
(−ŭ−),

where Σ̆ = ΠΣ(M̆) = Σ \
⊔

p∈L D̆p, L = L�ζ̆�,

and DΣ
p (τp(1− τ8/9p )) ⊂ D̆p ⊂ DΣ

p (τp(1 + τ8/9p )) ∀p ∈ L.

Moreover M̆ has genus 2gΣ − 1 + |L| (where gΣ is the genus of Σ) and its
area |M̆ | satisfies

|M̆ | = 2|Σ| − π
∑
p∈L

τ2p

(
1 +O( τ1/2p | log τp| )

)
.(5.9)

Proof. We first define B ⊂ C2,β(M�0�)× P × V�0� by

B :=
{
v ∈ C2,β(M�0�) : ‖v‖2,β,γ,γ′;M�0� ≤ τmax�0�1+α

}
×BP ×BV�0�.

(5.10)
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We next define a map J : B → C2,β(M�0�) × P × V�0� as follows; note
that the proof is based on finding a fixed point for J . Suppose (v, ζ) ∈
B. Use 4.21 to define (u,w+

H , w−
H) := −R′

M�ζ� (H − JM (w+, w−)), where

w± := LΣE−1
L (−MLϕ ± κ ) as in 4.6. Define also φ ∈ C2,β

(
M�ζ�

)
by

φ := v ◦ F−1
ζ + u. We then have:

1. LMu+H = JM (w+ + w+
H , w− + w−

H).
2. By 4.6, 4.21, and the size of v in (5.10),∥∥∥w±

H : C0,β(Σ, g)
∥∥∥+ ‖φ‖2,β,γ,γ′;M�ζ� ≤ τ1+α/4

max .

3. Using 4.21 again we define (uQ, w
+
Q, w

−
Q) := −R′

M�ζ�(Hφ −H −LMφ)

and we have LMuQ +Hφ = H + LMφ+ JM (w+
Q, w

−
Q).

4. Moreover by 5.1,
∥∥∥w±

Q : C0,β(Σ, g)
∥∥∥+ ‖uQ‖2,β,γ,γ′;M�ζ� ≤ τ

2−α/4
max .

5. Combining the above we conclude

LM (uQ − v ◦ F−1
ζ ) +Hφ = JM (LΣE−1

L μ+,LΣE−1
L μ−),

where μ± := −MLϕ± κ+ μ±
H,Q and μ±

H,Q are defined by requesting

that LΣE−1
L μ±

H,Q = w±
H + w±

Q.

We then define μsym, μasym, μ
sym
H,Q, μ

asym
H,Q , and J by

(5.11)
2μsym := μ+ + μ−, 2μasym := μ+ − μ−,

2μsym
H,Q := μ+

H,Q + μ−
H,Q, 2μasym

H,Q := μ+
H,Q − μ−

H,Q,

J (v, ζ) :=
(
uQ ◦ Fζ , ζ + Zζ(μsym) , (FV

ζ )
−1(κ− μasym)

)
=

(
uQ ◦ Fζ , ζ − Zζ(MLϕ) , 0

)
+

(
0 , Zζ(μ

sym
H,Q) , −(FV

ζ )
−1(μasym

H,Q )
)
.

We are now ready for the fixed-point argument. Clearly B is convex.
Let β′ ∈ (0, β). The inclusion B ↪→ C2,β′

(M�0�) × BP × BV�0� is compact
by the Ascoli-Arzela theorem. By inspecting the proofs of 4.18 and 4.21, it
is easy to see that R′

M�ζ� depends continuously on ζ, and from this, 5.2(e)

and 5.5(i), that J is continuous in the induced topology.
We next check that J (B) ⊂ B by analyzing the action of J on each

factor of B. By (4) above and 5.5 it follows that J maps the first factor
of B to itself. We see that J maps the second and third factors of B into
themselves using Schauder estimates, 5.2(e), (5.11), (2) and (4) above, and
by 3.15.
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The Schauder fixed point theorem [14, Theorem 11.1] now implies there
is a fixed point (v̆, ζ̆) of J . Using (5.11) and the fixed point property in

conjunction with 5.2(e), 3.11, and 4.1, we see that uQ = v̆◦F−1

ζ̆
and μ̆± = 0,

where we use “˘” to denote the various quantities for (v, ζ) = (v̆, ζ̆). By (5),

we conclude the minimality of M̆ . The smoothness follows from standard
regularity theory, and the embeddedness follows from 5.1, (2), and (4).

We now prove the existence of ŭ± and Σ̆ = Σ\
⊔

p∈L D̆p as in (5.8) which

satisfy the claimed properties. Consider the smooth function f : M̆ → R de-
fined by f = 〈νM̆ , ∂z〉, where ∂z is the gradient of the signed distance to

Σ as in A.1. The set of points p where M̆ fails to be graphical over Σ in
a neighborhood of p is the level set f−1(0). From the smallness of φ̆ and
the geometry of M�ζ̆�, it is clear that f−1(0) ⊂

⊔
p∈LDN

L (2τp). Moreover,

because the second fundamental form AM̆ is nondegenerate in this neighbor-
hood, it follows from the implicit function theorem that f−1(0) is a union
of smooth curves whose projections under ΠΣ bound smooth discs D̆p ⊂ Σ,
p ∈ L which are perturbations of DΣ

p (τp). This discussion implies the exis-

tence of ŭ± : Σ̆ → R satisfying (5.8). The claimed smoothness of ŭ± follows
from standard regularity theory, since M̆ is a minimal surface, and it fol-
lows from the embeddedness of M̆ that ŭ+ + ŭ− > 0 on Σ̆ \ ∂Σ̆. Finally, the
containment DΣ

p (τp(1 − τ
8/9
p )) ⊂ D̆p ⊂ DΣ

p (τp(1 + τ
8/9
p )) follows from the

estimate ‖φ̆‖2,β,γ,γ′;M�ζ̆� ≤ τ
1+α/4
max along with 4.2.

It only remains to prove the area bound (5.9); its proof will be broken
up into several steps estimating the areas of different portions of M̆ . We
first estimate the area of a truncated catenoidal region.

Lemma 5.12. For any p ∈ L and r := τ
3/4
p , we have

|M̆ ∩Π−1
Σ (DΣ

p (r))| = 2|DΣ
p (r)| − πτ2p

+
1

2

∫
∂DΣ

p (r)

(
ϕ+
cat

∂ϕ+
cat

∂η
+ ϕ−

cat

∂ϕ−
cat

∂η

)
dl +O(τ5/2p | log τp|).

Proof. There is a domain qKr ⊂ qK = qK[p, τp, κp] ⊂ M�ζ̆� defined by re-

questing that M̆ ∩Π−1
Σ (DΣ

p (r)) = GraphN,g
qKr

(φ̆). Using A.8, it follows that

|M̆ ∩Π−1
Σ (DΣ

p (r))| = | qKr|

+
1

2

∫
qKr

(
|∇φ̆|2 − 2φ̆H − φ̆2(|A|2 +Ric(ν, ν)−H2)

)
dσ +O(τ

3(1+α

4
)

max ),
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where A and H are the second fundamental form and mean curvature of qK
and we have used that ‖φ̆‖2,β,γ,γ′;M�ζ̆� ≤ τ

1+α/4
max to estimate the error term.

From this last estimate, the estimate for H in 4.6, and the definition of the
global weighted norms in 4.2, it follows that∫

qKr

1

2
|∇φ̆|2dσ = O(rτ

3−α

2
max ),

∫
qKr

φ̆Hdσ = O(rτ
3− 5

12
α

max ),∫
qKr

φ̆2(|A qK |2 +Ric(ν, ν)−H2)dσ = O(r3τ
3−α

2
max ).

The conclusion now follows from combining these estimates with the esti-
mate on the area of qK(r) = qK ∩Π−1

Σ (DΣ
p (r)) from 2.35, using the closeness

of qK(r) to qKr, and using 3.15(iii).

Lemma 5.13. The functions ŭ± satisfy the following.

(i)
∥∥ŭ± : C2,β(Σ \

⊔
p∈LDΣ

p (δ
′
p))

∥∥
≤ Cτmax| log τmax|+ C‖ϕ : C3,β(Σ \

⊔
p∈LDΣ

p (δ
′
p))‖ ≤ Cτ

8/9
max.

(ii) For each p ∈ L, ‖ŭ± − ϕ±
cat[τp, κp]‖2,β,γ,γ′;DΣ

p (δ
′
p)\DΣ

p (τ
7/8
p ) ≤ τ

1+α/4
max .

Proof. Recall that M̆ = GraphN,g

M�ζ̆�
(φ̆), that ‖φ̆‖2,β,γ,γ′;M�ζ̆� ≤ τ

1+α/4
max , and

with Ω = Σ \
⊔

p∈LDΣ
p (τ

1/3
p ) we have from 3.17 that

M�ζ̆� ∩Π−1
Σ (Ω) = GraphN,g

Ω (ϕgl
+) ∪GraphN,g

Ω (−ϕgl
−).

Recall also from Lemma 3.22(ii) and its proof that the estimate

‖ϕgl
± : C3,β(Σ \

⊔
p∈L

DΣ
p (δ

′
p), g)‖

≤ Cτmax| log τmax|+ C‖ϕ : C3,β(Σ \
⊔
p∈L

DΣ
p (δ

′
p))‖ ≤ Cτ8/9max

holds. Using these estimates and the smallness assumptions on τmax, we
can apply B.9 to conclude (i). Items (ii) also follows from B.9, combined

with the definition of the norms in 4.2, the fact that ϕgl
± = ϕ±

cat[τp, κp] on

DΣ
p (δ

′
p) \DΣ

p (τ
7/8
p ), and 2.12.

Lemma 5.14. The following estimate holds.
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|M̆ ∩Π−1
Σ (Σ \

⊔
p∈L

DΣ
p (τ

3/4
p ))| = 2|Σ| − 2

∑
p∈L

|DΣ
p (τ

3/4
p )|

− 1

2

∑
p∈L

∫
∂DΣ

p (τ
3/4
p )

(
ϕ+
cat

∂ϕ+
cat

∂η
+ ϕ−

cat

∂ϕ−
cat

∂η

)
ds+

∑
p∈L

O(τ5/2p | log τp|).

Proof. By applying A.10 with u = ŭ+ on Ω1 := Σ \
⊔

p∈LDΣ
p (δ

′
p), we have

|GraphN,g
Ω1

(ŭ+)| = |Ω1| −
1

2

∫
Ω1

ŭ+LΣu
+dσ +

∫
∂Ω1

ŭ+
∂u+

∂η
ds+O(τ8/3max),

(5.15)

where we have used the minimality of Σ and 5.13(i) to estimate the error

terms. By applying A.10 with u = ŭ+ on Ω2 :=
⊔

p∈L(D
Σ
p (δ

′
p) \DΣ

p (τ
3/4
p )),

we have

(5.16) |GraphN,g
Ω2

(ŭ+)| = |Ω2| −
1

2

∫
Ω2

ŭ+LΣŭ
+dσ

+
1

2

∑
p∈L

∫
∂DΣ

p (τ
3/4
p )

ŭ+
∂ŭ+

∂η
ds+−

∫
∂Ω1

ŭ+
∂u+

∂η
ds+O(|L|τ3max| log τmax|2),

where we have used 5.13(ii) to estimate the error term.
We now estimate the integrals of ŭ+LΣŭ

+. From the minimality of Σ

and M̆ , it follows that on Σ \
⊔

p∈LDΣ
p (τ

3/4
p )

|LΣŭ
±| ≤ C|ŭ±|2 + C|∇ŭ±|2 + C|∇2ŭ±|

(
|ŭ±|+ |∇ŭ±|2

)
(5.17)

(notice there are no |∇2ŭ±|2 or |∇2ŭ±||∇ŭ±| terms; see e.g. [21, Lemma C.2]
or [9, Appendix A]). Working this into (5.15) and estimating using 5.13(i)
reveals that

|GraphN,g
Ω1

(ŭ+)| = |Ω1|+
∫
∂Ω1

ŭ+
∂ŭ+

∂η
ds+O(τ8/3max).(5.18)

A similar estimate of
∫
Ω2

ŭ+LΣŭ
+dσ, using 5.13(ii) to estimate, reveals that

(5.19) |GraphN,g
Ω2

(ŭ+)| = |Ω2|+
1

2

∑
p∈L

∫
∂DΣ

p (τ
3/4
p )

ŭ+
∂ŭ+

∂η
ds

−
∫
∂Ω1

ŭ+
∂ŭ+

∂η
ds+

∑
p∈L

O(τ5/2p | log τp|).
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Since Ω := Σ\
⊔

p∈LDΣ
p (τ

3/4
p ) is the disjoint union of Ω1 and Ω2, adding the

estimates (5.18) and (5.19) implies that

(5.20)
∣∣GraphN,g

Ω (ŭ+)
∣∣ = |Σ| −

∑
p∈L

∣∣DΣ
p (τ

3/4
p )

∣∣
− 1

2

∑
p∈L

∫
∂DΣ

p (τ
3/4
p )

ŭ+
∂ŭ+

∂η
ds+

∑
p∈L

O
(
τ5/2p | log τp|

)
.

Next, using 5.13(ii) and 2.12, it follows for any p ∈ L that

∫
∂DΣ

p (τ
3/4
p )

ŭ+
∂ŭ+

∂η
ds−

∫
∂DΣ

p (τ
3/4
p )

ϕ+
cat

∂ϕ+
cat

∂η
ds = O(τ2+7/8−α/4

max | log τmax|).

(5.21)

The conclusion follows by combining (5.21) with (5.20) and the completely

analogous estimates for |GraphN,g
Ω (−ŭ−)|, and using 3.15(iii) to estimate

the error terms involving τmax in terms of τp.

The proof of (5.9) follows now by adding the estimates provided by 5.12

for each p ∈ L on |M̆ ∩Π−1
Σ (DΣ

p (τ
3/4
p ))|, to the estimate in 5.14, and noting

in particular that the boundary terms cancel. This completes the proof of
Theorem 5.7.

The following observation which follows from 4.1 will be useful in con-
structing and studying LD solutions.

Lemma 5.22 (Existence and uniqueness for LD solutions [29, Lemma
3.10]). Given finite L ⊂ Σ and a function τ : L → R, there exists a unique
LD solution ϕ = ϕ[τ ] of singular set L′ := {p ∈ L : τp �= 0} and configura-
tion τ |L′ . Moreover, ϕ depends linearly on τ .

Proof. We define ϕ1 ∈ C∞(Σ \ L′) by requesting that it is supported on⊔
p∈L′(DΣ

p (2δp)) and ϕ1 = Ψ[δp, 2δp;d
Σ
p ](τpGp, 0) on DΣ

p (2δp) for each p ∈
L′. Note that LΣϕ1 ∈ C∞(Σ) (by assigning 0 values on L′) and it is sup-
ported on

⊔
p∈L′(DΣ

p (2δp)\DΣ
p (δp)). Using 4.1, there is a unique ϕ2 ∈ C∞(Σ)

such that LΣϕ2 = −LΣϕ1. We then define ϕ = ϕ1 + ϕ2 and the conclusion
follows.

Remark 5.23 (Index, nullity, and characterizations of minimal doublings).
It is interesting that currently no characterizations of doublings are known,
even under strong assumptions, for example given bridge positions and any
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further information. This means that even a small modification in the con-
struction process would lead in principle to different minimal surfaces, even
though the new ones would strongly resemble the previous ones. The only
known such characterizations for minimal surfaces in the round three-sphere
are for Lawson surfaces [36].

Since it seems very likely that surfaces strongly resembling each other by
their constructions are actually congruent, it is customary in the literature
to discuss them as if they were known to be. In this article we also adhere
to this and we consider the doublings in Remark 6.6 the same with the ones
in [54] and also (for square lattices) with the ones constructed in [38] or
[40]; similarly surfaces constructed as in Remark 9.41 in the case all mi = m
with surfaces constructed in [33]. Proving however that such surfaces are
congruent remains at the moment an interesting open problem. We hope that
eventually index, nullity and characterization results will be provided for the
surfaces constructed in Theorem 5.7, similarly to the results in [35,36], and
with the same generality as in the area estimate (5.9). �

6. New minimal surfaces via doubling the Clifford torus

Symmetries and LD solutions

Let T :=
{
(z1, z2) ∈ C2 : |z1| = |z2| = 1/

√
2
}

⊂ S3 ⊂ C2 be the Clifford
torus in the unit three-sphere (S3, g). We recall that doublings of the Clifford
torus with catenoidal bridges centered at the points of a square m×m (large
m ∈ N) lattice L ⊂ T were first constructed in [38]; this was extended in
[54] to rectangular lattices k × m (large k,m ∈ N and a priori bounded
m/k). These results can easily be reproduced by constructing the required
LD solutions and applying Theorem 5.7 (see Remark 6.6). Our main focus
in this section however is to construct new doublings in the following cases:
first, when the necks are centered at the points of a lattice with m/k not
constrained (see 6.3) and second, less symmetric doublings where there are
three different bridges up to symmetries. These new constructions are only
indicative of the possibilities and many more are carried out in [32] with
other symmetry groups or more necks per fundamental domain.

We briefly recall now some notation from [38, 54]. Given an oriented
circle C in S3, write Rθ

C for the rotation by θ about C. Define the circles
C := {z2 = 0} and C⊥ := {z1 = 0}. We have

Rθ
C⊥(z1, z2) = (eiθz1, z2), and Rθ

C(z1, z2) = (z1, e
iθz2).
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Define the following symmetries of C2 and the domain of the coordinates
(x, y, z) defined in A.3:
(6.1)

X(z1, z2) = (z1, z2), Y(z1, z2) = (z1, z2), Z(z1, z2) = (z2, z1),

X̂
h
(x, y, z) = (x + h, y, z), Ŷ

h
(x, y, z) = (x, y + h, z) ∀h ∈ R,

X̂(x, y, z) = (−x, y, z), Ŷ(x, y, z) = (x,−y, z), Ẑ(x, y, z) = (y, x,−z).

With Ẽ the parametrization map in A.3, these satisfy the relations

(6.2)
Ẽ ◦ X̂ = X ◦ Ẽ, Ẽ ◦ Ŷ = Y ◦ Ẽ, Ẽ ◦ Ẑ = Z ◦ Ẽ,

Ẽ ◦ X̂h
= R

√
2h

C⊥ ◦ Ẽ and Ẽ ◦ Ŷh
= R

√
2h

C ◦ Ẽ ∀h ∈ R.

Assumption 6.3. We fix k,m ∈ N with k ≥ 3, m ≥ k, and assume m is as
large as needed in absolute terms.

We define the symmetry group G, a point p0 ∈ T, a lattice L, and set of
parallel circles Lpar by

(6.4)
G = G[k,m] := 〈R

2π

k

C⊥ ,R
2π

m

C ,X,Y〉, p0 :=
1√
2
(1, 1) = Ẽ(0, 0, 0),

L = L[k,m] := Gp0, and Lpar := {Ri 2π
k

C⊥R
θ
Cp0 : θ ∈ R, i ∈ Z}.

If X is a function space consisting of functions defined on a domain Ω ⊂ T

and Ω is invariant under the action of G, we use a subscript “sym” to denote
the subspace Xsym ⊂ X consisting of those functions f ∈ X which are
invariant under the action of G.

The linearized operator is LT = ΔT + 4, and it is easy to see that
(kerLT)sym is trivial. By Lemma 5.22 there is therefore a unique G-symmetric
LD solution Φ = Φ[k,m] with singular set L and satisfying τp = 1 ∀p ∈ L.
For convenience, we define the scaled metric, scaled linear operator, and
scaled coordinates (x̃, ỹ) on T by

g̃ := m2g, L̃T :=
1

m2
LT = Δg̃ +

4

m2
, (x̃, ỹ) := m(x, y).(6.5)

We define δ = 1/(100m) and for p ∈ L define δp = δ.

Remark 6.6 (Applying the LD approach in the cases of [38, 54]). We first
sketch the construction of the required LD solutions Φ. Integrating LTΦ =
0 over T and integrating by parts, we find km

4π = 1
|T|

∫
T
Φ. Define Ĝ ∈
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C∞
sym(T \ L) by requesting that Ĝ is supported on DT

L(3δ) and satisfies

there Ĝ = Ψ[2δ, 3δ;dT
p ](Gp − log δ, 0) (where Gp is a Green’s function for

LT as in 3.1) and define Φ′ ∈ C∞
sym(T) by requesting Φ = Ĝ + km

4π + Φ′.
From this decomposition, estimates on the average and oscillatory parts

of Ĝ, and the uniform boundedness of m/k, we conclude that L̃T has no

small eigenvalues when restricted to functions that have average zero, hence

‖Φ′ : Cj
sym(T, g̃)‖ ≤ C(j).

For some c fixed independently of m, define now BP := [−c , c ] ⊂ P :=

R, LD solutions ϕ = ϕ�ζ� := τΦ := 1
meζe−

km

4π Φ for ζ ∈ BP , and Vsym[L]

the subspace of V[L] consisting of the G-invariant elements. Clearly Vsym[L]

is one dimensional and may be identified with R. Using the definition of τ

and the estimate on Φ′, it follows that the map Zζ : Vsym[L] → P defined

by Zζ(μ) =
1
τ μ satisfies |ζ − Zζ(MLϕ)| ≤ C for a constant C independent

of c . After restricting to spaces adapted to the symmetries and choosing c

to be large enough in terms of C, we can then apply Theorem 5.7 because

the remaining assumptions are easy to check.

Definition 6.7. Given a function ϕ on some domain Ω ⊂ T, we define a

rotationally invariant function ϕavg on the union Ω′ of the orbit circles of

{Rθ
C : θ ∈ R} on which ϕ is integrable (whether contained in Ω or not), by

requesting that on each such circle C ′,

ϕavg|C′ := avg
C′

ϕ.

We also define ϕosc on Ω ∩ Ω′ by ϕosc := ϕ− ϕavg.

Lemma 6.8. Φavg = m
2
√
2 sin(

√
2π

k
)
cos

(√
2π
k − 2dT

Lpar

)
and Φavg|Lpar

= m
2F ,

where F :=
√
2 tan

(√
2π
k

)
.

Proof. Since LTΦavg = 0 on T \ Lpar and the distance between neighboring

circles of Lpar is
√
2π/k, the symmetries imply that Φavg = C cos

(√
2π
k −

2dT

Lpar

)
for some C �= 0. By integrating LTΦ = 0 on Ωε1,ε2 := DT

Lpar
(ε2) \

DT

L(ε1), where 0 < ε1 << ε2 and integrating by parts, we obtain∫
∂Ωε1,ε2

∂

∂η
Φ+

∫
Ωε1,ε2

4Φ = 0,

where η is the unit outward conormal field along ∂Ωε1,ε2 . By taking the

limit as ε1 ↘ 0 first and then as ε2 ↘ 0, we obtain by using the logarithmic
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behavior near L and the preceding that

2πm = 4
√
2πC sin

(√
2
π

k

)
,

which implies the conclusion.

We introduce now the following decomposition. Note that we could as-
sume (but is not necessary) that Gp is rotationally invariant, in which case
it is uniquely determined and can be expressed in terms of Bessel functions.

Definition 6.9. Define Ĝ ∈ C∞
sym(T \ L) and Φ̂,Φ′, E′ ∈ C∞

sym(T) by re-
questing that

Ĝ = Ψ[2δ, 3δ;dT

p ](Gp − log δ cos(2dT

Lpar
), 0) on DT

L(3δ),

Φ̂ = Φavg −Ψ

[
2

m
,
3

m
;dT

Lpar

](
m

2
√
2
sin(2dT

Lpar
), 0

)
on DT

Lpar
(3/m),

that Ĝ = 0 on T \DT

L(3δ), Φ̂ = Φavg on T \DT

Lpar
(3/m), and

Φ = Ĝ+ Φ̂ + Φ′, E′ = −L̃T(Ĝ+ Φ̂).(6.10)

Remark 6.11. Note that from Lemma 6.8 and the fact that

cos
(√

2
π

k
− 2dT

Lpar

)
= cos

(√
2
π

k

)
cos

(
2dT

Lpar

)
+ sin

(√
2
π

k

)
sin

(
2dT

Lpar

)
that Φ̂ as defined in 6.9 is indeed smooth across Lpar.

We estimate the average and oscillatory parts of Φ separately.

Lemma 6.12. E′ vanishes on DT

L(2δ) and E′
osc is supported on DT

Lpar
(3δ).

Moreover:

(i) ‖Ĝ : Cj
sym(T \DT

L(δ), g̃)‖ ≤ C(j).

(ii) ‖E′ : Cj
sym(T, g̃)‖ ≤ C(j).

(iii) ‖Φ′ : Cj
sym(T, g̃)‖ ≤ C(j).

In (ii), the same estimate holds if E′ is replaced with either E′
avg or E′

osc.

Proof. Because Ĝ is supported on DT

L(3δ)\L, (i) follows using (3.4) and Def-
inition 6.9. The statements on the support of E′ and E′

osc follow from Defini-

tion 6.9, from which we also see that E′ = L̃TΨ[2, 3;dT,g̃
Lpar

]( m
2
√
2
sin(2dT

Lpar
), 0)

on DT

Lpar
(3/m) \ DT

Lpar
(2/m). Thus, when restricted to this set, the bound



Generalizing the Linearized Doubling approach, I 357

in (ii) follows from the uniform bounds on the cutoff in the g̃ metric. It fol-

lows from 6.9 that E′ vanishes on DT

Lpar
(2/m) \DT

L(3δ). On DT

Lpar
(3δ), note

that L̃TΦ̂ = 0. Since L̃TĜ = 0 on DT

L(2δ), when restricted to DT

Lpar
(3δ) the

required bound in (ii) follows from (i). Finally, we can replace E′ by E′
avg

or E′
osc in (ii) by taking averages and subtracting.

To prove (iii) it suffices to prove that the estimate holds when Φ′ =

Φ′
avg + Φ′

osc is replaced by either Φ′
avg or Φ′

osc. We first prove the estimate

for Φ′
avg. Note by 6.9 that on DT

Lpar
(2/m),

Φ′
avg =

m

2
√
2
sin(2dT

Lpar
)− Ĝavg.

Note that the left hand side is smooth and the discontinuities on the right

hand side cancel. Using that L̃TΦ
′
avg = E′

avg, on DT

Lpar
(3/m) we have

∂2
x̃Φ

′
avg +

4

m2
Φ′
avg = E′

avg,(6.13)

where x̃ := mx. On a neighborhood of ∂DT

Lpar
(2/m), we have that Ĝavg =

0 from Definition 6.9. It follows that
∣∣Φ′

avg

∣∣ < C and
∣∣∂ x̃Φ

′
avg

∣∣ < C on

∂DT

Lpar
(2/m). Using this as initial data for the ODE and bounds of the

inhomogeneous term from (ii) yields the C2 bounds on Φ′
avg in (iii). Higher

derivative estimates follow inductively from differentiating (6.13) and again

using (ii).

This establishes the bound on DT

Lpar
(2/m), and the proof of the estimate

on DT

Lpar
(3/m) \DT

Lpar
(2/m) is even easier since Ĝavg = 0 there, so we omit

the details.

We now estimate Φ′
osc. For n ∈ N and l ∈ {0, 1, . . . }, we define φ�,n ∈

C∞
sym(T) by

φ�,n(x, y) := cos

(
�√
2

k

m
x̃

)
cos

(
n√
2
ỹ

)
.

Clearly {ϕ�,n : n ∈ N, � ≥ 0} is a complete orthogonal set for the subspace

of (L2(T))sym consisting of functions with zero average; moreover,

L̃Tφ�,n = λ�,nφ�,n, where λ�,n := −1

2

(
k2

m2
�2 + n2

)
+

4

m2
.
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For appropriate coefficients E′,�,n
osc , we have then

E′
osc =

∑
�≥0,n∈N

E′,�,n
osc φ�,n, and Φ′

osc =
∑
�,n

λ−1
�,nE

′,�,n
osc φ�,n

since L̃TΦ
′
osc = E′

osc. Since n ≥ 1, λ−1
�,n is bounded by a constant independent

of �, n,m, and k, provided m is large enough. The required bound on Φ′
osc

now follows from the bound in (ii).

Configurations with a single singularity modulo symmetries

Definition 6.14 (Obstruction spaces). Let K̂sym[L],Vsym[L] be the sub-

spaces of K̂[L],V[L] consisting of the G-invariant elements, where K̂[L] =⊕
p∈L K̂[p], and ∀p ∈ L, K̂[p] is defined as in 3.12.

Since G is generated by reflections, Vsym[L] is one-dimensional and may
be identified with R.

For some c > 0 fixed independently ofm, define BP := [−c , c ] ⊂ P := R

and LD solutions

ϕ := ϕ�ζ� = τΦ :=
1

m
eζe−

m

2F Φ, ζ ∈ BP .(6.15)

Proposition 6.16. There is an absolute constant C (independent of c )
such that for m large enough (depending on c ), the map Zζ : Vsym�ζ� → P
defined by Zζ(μ) =

1
τ μ satisfies |ζ − Zζ(MLϕ)| ≤ C.

Proof. For any p ∈ L, expanding 1
τMpϕ (recall 3.10) using 3.9 and 6.10, we

find

1

τ
Mpϕ =

m

2F
+ log

( τ

2δ

)
+Φ′(p) = ζ +Φ′(p) + log(50),

where the second equality uses (6.15). The conclusion follows from using
6.12(iii) to estimate Φ′(p).

Theorem 6.17. There exists an absolute constant c > 0 such that for all
(k,m) ∈ N2 satisfying 6.3 and m large enough in terms of c , there exists a
genus mk + 1, G[k,m]-invariant doubling of T by applying Theorem 5.7.

Proof. After the obvious trivial modifications to Theorem 5.7 and its proof
to restrict to G-symmetric data, we need only to check that 5.2 holds.

It was noted above that 4.1 holds in the space of G-symmetric functions.
Define diffeomorphisms FT

ζ : T → T as in 5.2(i) by FT

ζ = IdT. L�ζ�, τ �ζ�, and
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ϕ�ζ� as in 5.2(ii)-(iv) were defined in 6.4 and (6.15). Next, δp�ζ� = 1/(100m)

as in 5.2(v) was defined earlier, and the spacesKsym[L], K̂sym[L], and Vsym[L]
defined in 6.14 satisfy 3.11, verifying 5.2(vi). Finally, isomorphisms Zζ as in
5.2(vii) were defined in 6.16.

We now check 5.2(a)-(e): (a)-(b) hold trivially. For 5.2(c) we must verify
that 3.15 holds: Convention 3.8 clearly holds for all large enough m. Because
k ≥ 3, F =

√
2 tan

(√
2π
k

)
> 0, and consequently τ in (6.15) can be made

as small as needed by taking m large. Then 3.15(ii)-(iii) follow immediately
using that ∀p ∈ L, τp = τ and δp = 1/(100m), where τ . Because k ≥ 3,

we have
√
2π
k < π

2 and consequently from Lemma 6.8 that Φavg > 0. In
particular, it follows from 6.8 that Φavg > cmk for some c > 0. The estimates
in 3.15(iv)-(vi) now follow easily using that ϕ = τΦ, the decomposition of Φ
in 6.9, and the estimates on Ĝ and Φ′ in 6.12. This completes the verification
of 5.2(c).

Next, 5.2(d) holds trivially since τp = τ ∀p ∈ L, where τ is as in (6.15).
5.2(e) holds by 6.16 by taking c large enough. This completes the proof.

Remark 6.18 (The cases where k = 1 and k = 2). In the proof of 6.17 we
used that k ≥ 3 (recall 6.3)—which implies that Φavg > 0 to verify that
3.15(vi) holds. While 3.15(vi) is necessary in Theorem 5.7 to ensure the
embeddedness of the resulting surfaces, a modified version of 5.7 holds—
without requiring 3.15(vi)—which produces immersed doublings. This mod-
ified theorem produces immersed doublings when k = 1: to see this, note that
although when k = 1 we no longer have Φavg > 0 and consequently 3.15(vi)
does not hold, the rest of 5.2 holds. In particular, τ can still be made arbi-
trarily small by taking m large since F =

√
2 tan(

√
2π) > 0. On the other

hand, the construction fails when k = 2 because F =
√
2 tan(

√
2/2π) < 0

and τ cannot be made as small as needed.

Configurations with three singularities modulo symmetries

In this subsection we construct and estimate G-symmetric LD solutions on
T (recall (6.4)) which have three singularities on each fundamental domain,
and apply Theorem 5.7 to construct corresponding minimal surfaces. To
simplify the estimates, we assume in this subsection that m/k < C1 for a
fixed constant C1 > 0. To begin, for p0 as defined in (6.4), define

p1 := R
π

k

C⊥p0, p2 := R
π

m

C p0, L = L[k,m] :=

2⋃
i=0

Li :=

2⋃
i=0

Gpi
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and define for i = 0, 1, 2 the G-invariant LD solution Φi = Φi[k,m] satisfying
τp = 1 ∀p ∈ Li.

p0

p2

p1

√
2π
k

√
2π
m

Figure 1: A fundamental domain (for the group generated by rotations) with
three singularities p0, p1, and p2. Dotted lines indicate reflectional symme-
tries.

For c > 0 to be determined later, we define BP := [−c , c ]×
[ c
km , c

km

]2
,

and for ∀ζ = (ζ, σ1, σ2) ∈ BP an LD solution

(6.19) ϕ = ϕ�ζ� :=

2∑
i=0

eσiτΦi, where τ = τ�ζ� :=
1

m
eζe−3 km

4π ,

and by convention we define σ0 := −σ1 − σ2.
Since each of p0, p1, p2 and their G-orbits are fixed by a pair of orthog-

onal reflections in G, Vsym�ζ� := Vsym[L] is three-dimensional and may be
identified with R3.

Proposition 6.20. There is an absolute constant C (independent of c ) such
that for k,m as in 6.3, mk large enough (depending on c ), and m/k < C1

the map Zζ : Vsym�ζ� → P defined by

Zζ(μ̃) =
1

3

(
2∑

i=0

μ̃i,
4π

3km
(μ̃0 + μ̃2 − 2μ̃1),

4π

3km
(μ̃0 + μ̃1 − 2μ̃2)

)
,(6.21)

where here μ̃ = τ(μ̃0, μ̃1, μ̃2) satisfies ζ−Zζ(MLϕ) ∈ [−C,C]×
[−C
km , C

km

]2
.

Proof. Using 6.9 and (6.19), for each i ∈ {0, 1, 2}, μi :=
1
τMpi

ϕ satisfies

(6.22)

μi =
km

4π

2∑
j=0

eσj +

( 2∑
j=0

eσjΦ′
j

)∣∣∣∣
pi

+ eσi log

(
eσiτ

2δ

)

= 3
km

4π
+O

(
c 2

km

)
+O(C) + (1 + σi) log

τ

2δ
,
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where we have expanded the exponentials and used that
∑2

i=0 σi = 0. The-
refore,

(6.23)
1

3

2∑
i=0

μi = 3
km

4π
+ log

τ

2δ
+O

(
C +

c 2

km

)
= ζ +O

(
C +

c 2

km

)
.

Using (6.22), that
∑2

i=0 σi = 0, and (6.19), we calculate

(6.24)

1

3
(2μ2 − μ1 − μ0) = −3

km

4π
σ2 +O

(
C +

c 2

km

)
,

1

3
(2μ1 − μ2 − μ0) = −3

km

4π
σ1 +O

(
C +

c 2

km

)
.

The proof is concluded by combining (6.23) and (6.24).

Theorem 6.25. Given C1 > 0, there exists an absolute constant c > 0 such
that for all (k,m) ∈ N2 satisfying 6.3, m large enough in terms of c , and
m/k < C1, there exists a genus 3mk+1, G[k,m]-invariant doubling of T by
applying Theorem 5.7.

Proof. The proof consists of checking the hypotheses of Theorem 5.7 and is
very similar to the proof of 6.17, so we only give a sketch pointing out some
of the differences. Although now τ takes three distinct values, Assumption
5.2(d) still holds because of 6.19. The map Zζ defined in 6.20 is clearly
a linear isomorphism for each ζ ∈ BP , and so by 6.20 Assumption 5.2(e)
holds.

Part II: Construction of LD solutions on O(2) × Z2

symmetric backgrounds

7. RLD solutions

Symmetries

Definition 7.1 (Symmetries on Cyl). We define the group O(2)×Z2, where
O(2) was defined in 1.4 and Z2 := {Id, S}. By convention, we identify each
element of O(2) or Z2 with its image under the inclusion O(2) ↪→ O(2)×Z2

or Z2 ↪→ O(2)× Z2.

Fix an orientation on S1 and define for c ∈ R the rotation Θc ∈ O(2)
of S1 by angle c in accordance with the given orientation and the reflection
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Θc ∈ O(2) determined by requesting that Θc reverses orientation and has
fixed-point set {±(cos c, sin c)} ⊂ S1.

Let O(2) act on S1 by the usual isometric action, Z2 act on R by re-
questing that S s = −s ∀s ∈ R, and O(2) × Z2 act on Cyl := S1 × R (recall
2.3) by the product action with respect to the actions of O(2) on S1 and Z2

on R just defined.
Finally, for c ∈ R we define the reflection Sc ∈ Isom(Cyl, χ) by Sc(p, s) :=

(p, 2c− s).

Assumption 7.2 (Assumptions on the background). In Part II we assume
the following:

(i) Convention 2.1 holds and Σ is orientable and closed.
(ii) The embedding of Σ in N is equivariant with respect to effective,

isometric actions of O(2) × Z2 on Σ and on N . Moreover, the action
of S on Σ is orientation reversing.

(iii) |A|2 +Ric(ν, ν) > 0 on Σ.
(iv) kerLΣ is trivial modulo the O(2)× Z2 action on Σ.

Definition 7.3 (Parallel circles and equatorial circles). We call the non-
trivial orbits of the action of O(2) on Σ parallel circles and those fixed by S
equatorial.

Lemma 7.4. 7.2 implies that the following hold.

(i) Σ is diffeomorphic to a sphere or to a torus.
(ii) There is an O(2) × Z2-equivariant (with respect to the actions in 7.2

and in 7.1) map XΣ : CylI → Σ, for some I = (−l, l), 0 < l ≤ ∞
(recall 2.3), which is a conformal diffeomorphism onto its image and
satisfies the following.

(a) If Σ is a torus then Σ contains exactly two equatorial circles and
l < ∞. Moreover XΣ extends to a covering map X̃Σ : Cyl → Σ
satisfying X̃Σ ◦ Sl = X̃Σ and the equatorial circles are X̃Σ(Cyl0)
and X̃Σ(Cyll). Furthermore the image of XΣ is Σ \ X̃Σ(Cyll).

(b) If Σ is a sphere then I = R and the image of XΣ is Σ minus two
points with the ends of Cyl mapped to deleted neighborhoods of
the points removed. Moreover XΣ(Cyl0) is the unique equatorial
circle of Σ.

Proof. Since Σ admits an effective circle action, a result of Kobayashi [41,
Corollary 4] implies that Σ has nonnegative Euler characteristic. Item (i)
follows from this since Σ is orientable.



Generalizing the Linearized Doubling approach, I 363

Next, we claim that Σ has no exceptional orbits under the action of

SO(2). To see this, consider a SO(2)-orbit circle S ⊂ Σ and choose (since

Σ is orientable) a unit normal field ν on S in Σ. Since expΣ commutes with

SO(2), Sz := {expΣp (zν(p)) : p ∈ S} is a SO(2)-orbit for all z ∈ R, and

smoothness implies the Sz are of the same orbit type for all z ∈ (−ε, ε) and

ε > 0 small enough. Since the principal orbits are dense, S is a principal

orbit and (since SO(2) acts effectively) is in particular covered exactly once

by SO(2).

The quotient of the principal orbits of Σ by SO(2) is diffeomorphic to

R or S1, corresponding to the cases where Σ is respectively a sphere or

torus. Observe that the Z2 action descends to the quotient and (by 7.2(ii))

S reverses orientation. The corresponding fixed point set is then either a

single point (when Σ is a sphere) or a pair of points (when Σ is a torus).

The existence of a conformal map XΣ as in (ii) and (a) and (b) now follows

easily.

Remark 7.5. Occasionally, we will use the diffeomorphism XΣ : CylI →
XΣ(CylI) in 7.4(ii) to use the standard coordinates (s, ϑ) on Cyl as a co-

ordinate system on XΣ(Cyl) ⊂ Σ. To simplify notation, later we will also

occasionally identify CylI with XΣ(CylI) ⊂ Σ; for example, in Section 8

we will identify configurations L[s;m] defined in 7.11 with their images

XΣ(L[s;m]) ⊂ Σ in order to define an appropriate class of LD solutions

(see 8.13 and 8.15) on Σ.

Notation 7.6. We denote ω ∈ C∞(CylI) the function satisfying X∗
Σg = e2ωχ

(recall 7.4(ii)).

Remark 7.7. In Sections 2 and 12 7.2(i) does not apply since the catenoid is

not compact and the critical catenoid is a compact annulus with boundary.

The theory in this section then has to be modified accordingly (see for

example Lemma 12.14).

We call a function defined on an O(2)-invariant domain of Σ or of Cyl

which is constant on each O(2) orbit a rotationally invariant function. The

following notation will simplify the presentation.

Notation 7.8. Consider a function space X consisting of functions defined

on a domain Ω, where Ω ⊂ Cyl or Ω ⊂ Σ. If Ω is a union of O(2) orbits,

we use a subscript “s” to denote the subspace of functions Xs consisting of

rotationally invariant functions, which are therefore constant on each O(2)

orbit. If moreover Ω is invariant under O(2) × Z2, we use a subscript “|s|”
to denote the subspace of O(2)× Z2-invariant functions.
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Notation 7.9. If Ω ⊂ Cyl or Ω ⊂ XΣ(CylI) is a domain and u ∈ C0
s (Ω)

has one-sided partial derivatives at s = s, then we denote these partial
derivatives by using the notation

∂+ u(s) :=
∂u

∂s

∣∣∣∣
s=s+

, ∂− u(s) := − ∂u

∂s

∣∣∣∣
s=s−

.

If u is C1, we use the abbreviation ∂u := ∂u
∂s . In that case, ∂u = ∂+u =

−∂−u.

Definition 7.10 (Symmetry groups). We define Hm :=
〈
Θ2π/m, S

〉
and

Gm :=
〈
Θ0,Θπ/m

〉
×

〈
S
〉
for m ∈ N (recall 7.1). Clearly Hm is an index 2

subgroup of Gm < O(2)× Z2 and
〈
Θ0,Θπ/m

〉
< O(2) is a dihedral group of

order 2m.

Definition 7.11 ((s,m)-symmetric sets and configurations). Given s ∈
[0,∞) or s := (s1, . . . , sk) ∈ Rk such that 0 ≤ s1 < · · · < sk < l, we define

Lpar[s] := Cyl{±s}, Lpar[s] :=

k⋃
i=1

Lpar[si],

and we denote the number of connected components (circles) of Lpar[s] by
k◦[s]. For m ∈ N we define

L[s;±m] := Lmer[±m] ∩ Lpar[s], where

Lmer[m] := GmLmer[1], Lmer[1] := {(1, 0)} × R,

Lmer[−m] := Θπ/mLmer[m].

Given then m := (m1, . . . ,mk) ∈ (Z \ {0})k we call a set L ⊂ Σ or a
configuration τ : L → R+ (s,m)-rotational if L :=

⋃k
i=1 Li with each Li ⊂

Lpar[si] containing |mi| points in each component of Lpar[si] (i = 1, ..., k);
we denote then the average value of the restriction τ |Li

by τi. We call such
an L or τ (s,m)-symmetric if we moreover have Li = L[si;mi] and that the
restriction τ |Li

is G|mi|-invariant—hence τ (Li) = {τi}—for each i = 1, ..., k.
An (s,m)-symmetric set L is then uniquely determined and will be denoted
by L[s;m]. Finally we denote by m ∈ N the greatest common divisor of
|m1|, . . . , |mk|, so that the stabilizer in O(2)×Z2 of an (s,m)-symmetric L
or τ is Gm.

Remark 7.12. It is worth noting the following:
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(i) k◦[s] = 2k if s1 > 0 and k◦[s] = 2k − 1 if s1 = 0.
(ii) In the case where Σ is a torus, we could allow sk = l in the construc-

tions later in Part II. In order to simplify the presentation, however,
we do not discuss this case.

(iii) L[s;±m] are the only subsets of Lpar[s] which are invariant under Gm

and contain exactly m points equidistributed on each circle of Lpar[s]
(2m in total if s �= 0). The sign of ±m encodes the choice between
these two subsets in L[s;m].

(iv) An (s,m)-rotational set L as in 7.11 has cardinality |L| = |m1| +
2
∑k

i=2 |mi| if s1 = 0 and |L| = 2
∑k

i=1 |mi| points if s1 > 0.
(v) Note that an (s,m)-symmetric configuration τ is uniquely determined

by {τi}ki=1.

Basic facts and definitions

We will estimate our LD solutions by comparing them with corresponding
rotationally invariant solutions. We therefore need to define the appropriate
class of rotationally invariant solutions of the linearized equation. We begin
with some notation from [33].

Definition 7.13. Let RN := {(ai)i∈N : ai ∈ R}. For any k ∈ N, we identify
Rk with a subspace of RN by the map (a1, . . . , ak) �→ (a1, . . . , ak, 0, 0, . . . ).
We consider the normed space

(
�1(RN), | · |�1

)
, where

�1(RN) :=

{
a = (ai)i∈N ∈ R

N :

∞∑
i=1

|ai| < ∞
}
, |a|�1 :=

∞∑
i=1

|ai|.

Remark 7.14. If σ = (σi)i∈N ∈ �1
(
RN

)
, ξ = (ξi)i∈N ∈ �∞

(
RN

)
and some

positive numbers Fi±, i ∈ N, satisfy

eσi =
Fi+1+ + Fi+1−
Fi+ + Fi−

, ξi =
Fi+ − Fi−
Fi+ + Fi−

i ∈ N,

then note that |ξ|�∞ < 1 and for any 1 ≤ j ≤ i < ∞ that

Fi+ =
1 + ξi
1 + ξj

(
e
∑i−1

l=j σl
)
Fj+ =

1 + ξi
1− ξj

(
e
∑i−1

l=j σl
)
Fj−,

Fi− =
1− ξi
1 + ξj

(
e
∑i−1

l=j σl
)
Fj+ =

1− ξi
1− ξj

(
e
∑i−1

l=j σl
)
Fj−,

and therefore sup{Fi±}i∈N∼
E

inf{Fi±}i∈N with E := 1+|ξ|�∞
1−|ξ|�∞

(
e|σ|�1

)
.
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Definition 7.15 (Scale invariant flux). If φ ∈ C0
s (Ω), where either Ω =

Cyl(a,b) or Ω = XΣ(Cyl(a,b)) (recall 2.3 and 7.8), (a, b) ⊂ I, and φ is piece-

wise smooth and nonzero on Ω, we define F φ
± : (a, b) → R by

F φ
±(s) =

∂±φ(s)

φ(s)
= ∂± log |φ|(s).

Remark 7.16. Note that F φ
± = F cφ

± ∀c ∈ R \ {0}.

Definition 7.17 (Subdivisions of cylindrical domains). Given s as in 7.11

and a domain Ω, where Ω ⊂ Cyl (or Ω ⊂ Σ), we will denote by Ωs the

subdivision of Ω by Lpar[s] (or of XΣ(Lpar[s])): Ω
s is the abstract surface

which is the disjoint union of the Ω ∩ A’s, where A is the closure of any

connected component (a disk or an annulus) of Cyl \ Lpar[s] (or of Σ \
XΣ(Lpar[s])). Clearly functions on Ω can be thought of as functions on Ωs

as well.

Note for example that a function defined on Ω which is in C∞(Ωs) is

also in C0(Ω) but not necessarily in C1(Ω); it is “piecewise smooth” on Ω.

Definition 7.18. We define an operator Lχ on CylI by

Lχ := Δχ + V = e2ωLΣ, where Δχ :=
∂2

∂s2
+

∂2

∂θ2
,(7.19)

V ∈ C∞
|s| (CylI) is defined by V = e2ωX∗

Σ(|A|2 +Ric(ν, ν)), and ω as in 7.6.

When φ is rotationally invariant, note also that the equation Lχφ = 0

amounts to the ODE

d2φ

ds2
+ V (s)φ = 0.(7.20)

Definition 7.21 (RLD solutions, cf. [33, 3.5]). Given Ω = Σ or Ω =

XΣ(CylI) ⊂ Σ, we say φ ∈ C0
|s|
(
Ω
)
is a rotationally invariant (averaged)

linearized doubling (RLD) solution on Ω if

(i) φ > 0.

(ii) There is k ∈ N and sφ ∈ [0, l)k as in 7.11, such that φ ∈ C∞
|s|
(
Ωsφ

)
and

LΣφ = 0 on Ωsφ.

(iii) For i = 1, . . . , k, F φ
−(s

φ
i ) > 0 and F φ

+(s
φ
i ) > 0.
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We call sφ the singular or (derivative) jump latitudes, and the circles con-

tained in Lpar[s
φ] singular circles, of φ. If φ(0) = 1, we say φ is a unit RLD

solution. We say that an RLD solution on XΣ(CylI) is smooth at the ends

if it can be extended smoothly to Σ.

Remark 7.22. Note that to allow the construction of immersed doublings we

can simply relax 7.21(i) to requiring φ(sφi ) �= 0 for i = 1, . . . , k. If φ > 0 fails

then, the constructed doublings will not be embedded, as for k = 1 in 6.18.

On the other hand 7.21(iii) is always necessary to ensure positive size for the

catenoidal bridges, so its violation makes the construction impossible, as for

k = 2 in 6.18 or k◦ = 1 in 12.11. Finally note that by Lemma 7.4, XΣ(CylI)

is either Σ with two points (when Σ is a sphere) or a circle (when Σ is

a torus) removed. We will first study RLD solutions on XΣ(CylI), instead

of on Σ, in order to facilitate the parametrization of the families of RLD

solutions.

Definition 7.23. Define kmin
◦ = min k◦[sφ], where the minimum is over all

RLD solutions φ.

Definition 7.24 (Quantities associated to RLD solutions, cf. [33, 3.6]).

Given φ as in 7.21, define

F φ =
(
F φ
i−, F

φ
i+

)k
i=1

∈ R
2k
+ , F φ =(F φ

i )
k
i=1 ∈ R

k
+,

σφ =(σφ
j )

k−1
j=1 ∈ R

k−1, ξφ =
(
ξφi

)k
i=1

∈ R
k,

where for i = 1, . . . , k and j = 1, . . . , k − 1,

(7.25)

F φ
i± :=F φ

±(s
φ
i ), 2F φ

i :=F φ
i+ + F φ

i−,

eσ
φ
j :=

F φ
j+1

F φ
j

, ξφi :=
F φ
i+ − F φ

i−

F φ
i+ + F φ

i−
.

We define σφ := (σφ, ξφ) ∈ Rk−1 × Rk and call the entries of σφ the flux

ratios of φ.

Remark 7.26. By the S symmetry ξφ1 = 0 when sφ1 = 0.

Remark 7.27. Using (7.25) (see also Remark 7.14), we recover F φ from F φ
1

and σφ by

F φ
1± = (1± ξφ1 )F

φ
1 , F φ

i± = (1± ξφi )
(
e
∑i−1

l=1 σφ
l

)
F φ
1 , i > 1.(7.28)
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In Proposition 7.36 we construct RLD solutions φ by prescribing F φ
1− and

σφ.

In our applications later in Part II, we will primarily be interested (see
8.15(iii) and 9.7) in RLD solutions which are close to being “balanced” in
the sense of the following definition.

Definition 7.29 (Balanced RLD solutions). Given m := (m1, . . . ,mk) ∈
(Z \ {0})k we define σ/ = σ/ [m] = (σ/j)

k−1
j=1 ∈ Rk−1 and σ/ = σ/[m] := (σ/ ,0) ∈

Rk−1×Rk by eσ/j := |mj+1/mj | for j = 1, . . . , k−1. We call an RLD solution
φ balanced with respect to m if it satisfies σφ = σ/[m] (recall 7.24).

The corresponding definition of balanced RLD solutions in [33, Defini-
tion 3.5] asserted instead that σφ = 0, which occurs in the context of 7.29
when all the mi’s have the same absolute value. This difference is explained
by the fact that in the constructions of [33], the intersection of an LD solu-
tion’s singular set with Lpar[si] consisted of some number m ∈ N points for
each i ∈ {1, . . . , k}, whereas the singular sets of the LD solutions we study
later in Part II more generally have |mi| ∈ N points on each component of
Lpar[si] (see 7.11 and 8.15) for i ∈ {1, . . . , k}, and the |mi|’s need not all be
equal.

Existence and uniqueness of RLD solutions

Lemma 7.30 (Existence and properties of φend). The following hold.

(i) V as defined in 7.18 satisfies V > 0. There exists C > 0 and for
each j ∈ N, C(j) > 0 such that for all s ∈ CylI , V (s)∼

C
e−2|s| and

∂jV
∂sj (s) ≤ C(j)e−2|s|.

(ii) There exists a unique φend ∈ C∞
s (CylI) satisfying

Lχφend = 0, lim
s↗l

φend(s) = 1, and lim
s↗l

F φend

+ (s) = 0.

(iii) For all large enough s, F φend

+ (s) < Ce−2s for some C > 0.
(iv) An RLD solution φ as in 7.21 is smooth at the ends if and only if

F φ
k+ = F φend

+ (sφk).

Proof. Items (i)-(iii) follow easily from 7.2, 7.4, and 7.18 and are trivial in
the case Σ is a torus. In the case Σ is a sphere, items (i)-(iii) follow easily
from the fact that the conformal map XΣ maps the ends of Cyl to punctured
disks on Σ. Finally, (iv) follows from 7.21 , item (ii) above, and uniqueness
for ODE solutions.
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Lemma 7.31 (Flux monotonicity). Suppose φ ∈ C∞
s

(
Cyl[a,b]

)
, φ > 0, and

Lχφ = 0.

(i) For s ∈ (a, b),
dFφ

−
ds (s) = V (s) +

(
F φ
−(s)

)2
> 0.

(ii) F φ
−(b) + F φ

+(a) =
∫ b
a V (s) +

(
F φ
−(s)

)2
ds.

Proof. The equalities are calculations using (7.20) and 7.15. The inequality
in (i) follows from 7.30.

Definition 7.32. Given F ∈ R and s ∈ I, we define H = H[F ; s] ∈
C∞
s (CylI) by requesting that it satisfies the equation LχH = 0 with initial

data H(s) = 1 and FH
+ (s) = F . We also define φeven := H[0; 0].

Lemma 7.33. (i)
∂F

H[F ;s]
+

∂s
(s) =

V (s) + F 2

(H[F ; s](s))2
> 0.

(ii)
∂F

H[F ;s]
+

∂F
(s) =

1

(H[F ; s](s))2
> 0.

Proof. By direct calculation, switching the order of differentiation, and using
7.31, we find

∂

∂s

(
∂FH

+

∂u
H2

)
= 0,

where H = H[F ; s] and u is either s or F . It follows that

∂FH
+

∂u
(s) =

∂FH
+

∂u
(s)

(
H(s)

H(s)

)2

.

Differentiating both sides of the equation F
H[F ;s]
+ (s) = F with respect to s

yields the first equality in

∂FH
+

∂s
(s) = −∂FH

+

∂s
(s) = V (s) + F 2,

where the second equality follows from 7.31. Observing also that
∂FH

+

∂F (s) = 1
and combining the above completes the proof.

Definition 7.34. Define F φeven
max := lims↗l F

φeven

− (s) if φeven > 0 on CylI and

F φeven
max := ∞ otherwise.

Lemma 7.35. If Σ is a sphere, F φeven
max = ∞.
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Proof. If Σ is a sphere, then I = R, and then it follows from (7.19), that

V > 0, and that ∂φeven(0) = 0 that φeven has a root sφeven

root ∈ (0,∞).

We are now ready to parametrize families of RLD solutions by their
flux ratios and F φ

1−. The notation differs slightly depending on whether the
total number of circles k◦ (recall 7.11) is even (Proposition 7.36) or odd
(Proposition 7.37).

Proposition 7.36 (Existence and uniqueness of RLD solutions, k◦ even).

Given F ∈ (0, F φeven
max ) and

σ = (σ, ξ) =
(
(σi)

∞
i=1, (ξj)

∞
j=1

)
∈ �1

(
R

N
)
⊕ �∞

(
R

N
)

satisfying |ξ|�∞ < 1, there is a unique k = k[F ;σ] ∈ N and a unique unit

RLD solution φ̂ = φ̂[F ;σ] on XΣ(CylI) satisfying the following.

(a) F φ̂
1− = F and sφ̂1 > 0.

(b) σφ̂ = σ|k where k = k[F ;σ] ∈ N is the number of jump latitudes of φ̂

(recall 7.21) and σ|k :=
(
(σi)

k−1
i=1 , (ξj)

k
j=1

)
∈ Rk−1 × Rk.

Moreover the following hold.

(i) sφ̂1 , . . . , s
φ̂
k are increasing smooth functions of F for fixed σ.

(ii) k[F ;σ] is a nonincreasing function of F . Further, there exists kevmin ∈ N

and a decreasing sequence {akev
min−1,σ, akev

min,σ, . . . } such that k[F ;σ] =
k if and only if F ∈ [ak,σ, ak−1,σ).

(iii) The restriction of φ̂[F ;σ] on any compact subset of CylI depends con-
tinuously on F and σ.

Proof. Suppose φ̂ is a unit RLD solution satisfying (a) and (b). Because

sφ̂1 > 0, the symmetries imply that φ̂ = φeven on a neighborhood of Cyl0.
But then 7.21(i)-(ii), the flux monotonicity (Lemma 7.31), and Remark 7.14

inductively determine sφ̂ and φ̂ uniquely on CylI . This concludes the unique-
ness part.

We next construct a family of RLD solutions φ̂[F ;σ] satisfying (a) and
(b). By the hypotheses, 7.34, and 7.31, there is a unique s1 ∈ (0, l) such

that φeven is positive on Cyl(−s1,s1) and F = F φeven

− (s1). By Remark 7.14,

there is a unique extension φ̂[F ;σ] of φeven|Cyl(−s1,s1)
to a maximal domain

Cyl(−a,a) and a unique (a priori possibly infinite) sequence s = (s1, s2, . . . )

such that φ̂ > 0, Lχφ̂ = 0 on Cyls(−a,a), and F φ̂
±(si) = Fi±, where Fi− := F
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and all other Fi± are defined by requesting the identities in 7.14 hold. To

show that φ̂ is an RLD solution, we need only show that a = l and s is a

finite sequence. By Remark 7.14 and Lemma 7.31,

2F ∼
E

(Fi+1− + Fi+) =

∫ si+1

si

V (s) +
(
F φ̂
−(s)

)2
ds,

where E is as in 7.14. This implies a uniform in i lower bound on si+1 − si.

Therefore a = l. In the case l = ∞ we show there are finitely many jump lat-

itudes by estimating an upper bound for sk in terms of F and σ: specifically,

we claim that if φ̂ has a jump at sj+1 and sj is large enough that φend > 0 on

(sj , l) (recall 7.30), then F φ̂
+(sj) ≤ F φend

+ (sj), which using the comparability

of all the fluxes to F with the fact from 7.30 that lims→∞ F φend

+ (s) = 0,

implies that sj cannot be arbitrarily large.

The claim follows by observing that F φ̂
+ − F φend

+ cannot change sign on

(sj , sj+1) as F
φ̂
+ and F φend

+ satisfy the same first order equation 7.31(i), while

F φ̂
+ changes sign and F φend

+ remains positive on (sj , sj+1). This concludes the

proof of the existence and uniqueness of φ̂[F ;σ] satisfying (a)-(b).

Since as above F = F φeven

− (sφ̂1 ), 7.31 implies sφ̂1 is increasing as a function

of F . By 7.14, F φ̂
2− = 1−ξ2

1−ξ1
eσ1F . By combining this with both parts of Lemma

7.33, it follows that sφ̂2 is increasing as a function of F . Using this and arguing

inductively shows that sφ̂j is a strictly increasing function of F for 2 < j ≤ k.

That k[F ;σ] is nonincreasing in F and the existence the sequence follows

easily from the monotonicity of sφ̂k in (ii). To complete the proof of (ii), we

must show that kevmin is well defined, that is independent of σ. If F φeven
max < ∞,

by the flux monotonicity 7.31 it is easy to see that this is true and moreover

that kevmin = 1. Suppose then that F φeven
max = ∞, and consider RLD solutions

φ̂ = φ̂[F,σ], φ̂′ = φ̂[F ′,σ′] for σ,σ′ ∈ �1
(
RN

)
⊕ �∞

(
RN

)
fixed and variable

F, F ′ ∈ (0, F φeven
max ). By choosing F ′ large enough in terms of F and σ, we may

ensure that F φ̂′

±i > F φ̂
±i for all i such that both of the preceding are defined.

By 7.31 and 7.33, this implies that k[F ;σ] ≥ k[F ′;σ′]. On the other hand,

by choosing F ′ small enough in terms of F and σ, it follows analogously

that k[F ;σ] ≤ k[F ′;σ′], and together these inequalities prove that kevmin is

well defined.

Finally, (iii) follows from (7.28) and smooth dependence of ODE solu-

tions on initial conditions.
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Proposition 7.37 (Existence and uniqueness of RLD solutions, k◦ odd).
Given F ∈ (0,∞) and

σ = (σ, ξ) =
(
(σi)

∞
i=1, (ξj)

∞
j=1

)
∈ �1

(
R

N
)
⊕ �∞

(
R

N
)

satisfying |ξ|�∞ < 1 and ξ1 = 0, there is a unique k = k[F ;σ] ∈ N and a

unique unit RLD solution qφ = qφ[F ;σ] on XΣ(CylI) satisfying the following.

(a) F
qφ
1 = F

qφ
1± = F and s

qφ
1 = 0.

(b) σ
qφ = σ|k where k = k[F ;σ] ∈ N is the number of jump latitudes of qφ

(recall 7.21) and σ|k :=
(
(σi)

k−1
i=1 , (ξj)

k
j=1

)
∈ Rk−1 × Rk.

Moreover the following hold.

(i) s
qφ
2 , . . . , s

qφ
k are increasing smooth functions of F for fixed σ.

(ii) k[F ;σ] is a nonincreasing function of F . Further, there exists koddmin ∈ N

and a decreasing sequence {bkodd
min−1,σ, bkodd

min,σ
, . . . } such that k[F ;σ] = k

if and only if F ∈ [bk,σ, bk−1,σ).

(iii) The restriction of qφ[F ;σ] on any compact subset of CylI depends con-
tinuously on F and σ.

Proof. We omit the details of the proof, which are very similar to the proof
of 7.36. Note however that the assumption ξ1 = 0 is necessary (recall 7.26)

due to the symmetry about s
qφ
1 = 0.

Remark 7.38. It is clear that any RLD solution is a constant multiple of a
φ̂[F ;σ] as in 7.36 or a qφ[F ;σ] as in 7.37.

Remark 7.39. RLD solutions with k◦ odd were constructed on S2 in [33,

Lemma 7.22], where they were called φ̂eq[F ;σ].

Estimates on RLD solutions

We proceed to estimate the families of RLD solutions just constructed. To
avoid unnecessary notational difficulties, we state and prove the next re-
sults for the families of RLD solutions φ̂ with k◦ even and leave the trivial
modifications for the families of solutions qφ with k◦ odd to the reader.

Definition 7.40. We define for k ∈ N, k ≥ kevmin the domain Sk ⊂ R ×
Rk−1 × Rk by

Sk :=
{(

F , (σi)
k−1
i=1 , (ξj)

k
j=1

)
: F ∈ (0, ak−1,σ) and |ξ|�∞ < 1

}
,
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where ak−1,σ is as in 7.36. By 7.13 and 7.36, Sk+1 ⊂ Sk ⊂ R× RN × RN.

Lemma 7.41 (Recursive formulas for the derivatives of sk). An RLD solu-

tion φ̂ = φ̂[F ;σ] as in 7.36 has k ≥ kevmin jumps if and only if F ∈ (0, ak−1,σ)

or equivalently by 7.40, (F, σ|k) ∈ Sk. The kth jump latitude sk depends only

on F and σ|k and can be considered as a smooth function defined on Sk.

Alternatively, we can consider each F as a smooth function of F1 = F φ̂
1 and

σ|k, and then we have for k = 1

(7.42)
(
V (s1) +

(
F φ̂
1−

)2) ∂s1
∂F1

= 1− ξ1,
(
V (s1) +

(
F φ̂
1−

)2)∂s1
∂ξ1

= −F1,

and for k > 1 the recursive formulas (note Sk ⊂ Sk−1)

(7.43)
(
V (sk) +

(
F φ̂
k−

)2) ∂sk
∂F1

=
(
V (sk−1) +

(
F φ̂
k−1+

)2)∂sk−1

∂F1

(
φ̂(sk−1)

φ̂(sk)

)2

+

+ (1 + ξk−1)
(
e
∑k−2

l=1 σl
)( φ̂(sk−1)

φ̂(sk)

)2

+ (1− ξk)
(
e
∑k−1

l=1 σl
)
,

(7.44)
(
V (sk) +

(
F φ̂
k−

)2) ∂sk
∂σj

=
(
V (sk−1) +

(
F φ̂
k−1+

)2)∂sk−1

∂σj

(
φ̂(sk−1)

φ̂(sk)

)2

+

+ F1(1 + ξk−1)
∂

∂σj

(
e
∑k−2

l=1 σl
)( φ̂(sk−1)

φ̂(sk)

)2

− F1(1− ξk)
∂

∂σj

(
e
∑k−1

l=1 σl
)
,

(7.45)
(
V (sk) +

(
F φ̂
k−

)2)∂sk
∂ξj

=
(
V (sk−1) +

(
F φ̂
k−1+

)2)∂sk−1

∂ξj

(
φ̂(sk−1)

φ̂(sk)

)2

+

+ δj(k−1)

(
e
∑k−2

l=1 σl
)
F1

(
φ̂(sk−1)

φ̂(sk)

)2

− δjk
(
e
∑k−1

l=1 σl
)
F1.

Proof. Below, we compute partial derivatives of sk with respect to F1, sk−1,

and the entries of σ|k, from which the smoothness claimed follows immedi-

ately. To this end, we recall from (7.28) and 7.32 that on Cyl[sk−1,sk]

φ̂ = φ̂(sk−1)H
[
(1 + ξk−1)

(
e
∑k−2

l=1 σl
)
F1; sk−1

]
.(7.46)
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For H as in (7.46) and using (7.28), we find

FH
− (sk) = (1− ξk)

(
e
∑k−1

l=1 σl
)
F1.(7.47)

Items (7.43)-(7.45) then follow by using the chain rule to differentiate (7.47)

and Lemma 7.31 and both parts of 7.33 to calculate the partial derivatives

of FH
− .

Lemma 7.48 (Estimates for large k). For all (F,σ) ∈ Sk+1 \ Sk+2 with

|σ|�1 bounded and |ξ|�∞ < 1/10, the RLD solution φ̂ = φ̂[F ;σ] satisfies the

following, where C denotes constants depending only on an upper bound of

|σ|�1 .

(i) F1∼
C

1

k
and sk < 1

2 logCk.

(ii) For 2 ≤ i ≤ k we have 1
Ck < si − si−1 < C and

∣∣∣log φ̂(si)

φ̂(si−1)

∣∣∣ < C
k .

(iii)
∥∥1− φ̂(s) : C0

(
Cyl[−sk,sk]

)∥∥ < C
k log k.

Proof. By Lemma 7.31 we conclude that the maximum of |F φ̂
−| is achieved

at the jump latitudes. Using also 7.14 we conclude (where E in 7.14 depends

only on an upper bound of |σ|�1 by the hypotheses) that

max
s∈[0,l)

|F φ̂
−(s)| =

k+1
max
i=1

F φ̂
i±∼

E

k+1
min
i=1

F φ̂
i±.(7.49)

Since φ̂ has k+1 jumps, we may argue as in the proof of 7.36, and by using

also (7.49) and 7.30

1

E
F1 < F φ̂

k+ < F φend

+ (sk) < Ce−2sk .(7.50)

By using Lemma 7.31 on Cyl[0,s1], . . . ,Cyl[sk−1,sk] and summing, we find

F φ̂
1− + F φ̂

1+ + · · ·+ F φ̂
k− =

∫ sk

0
V (s) +

(
F φ̂
−(s)

)2
ds.(7.51)

Next using 7.24, (7.49), and (7.50) to estimate (7.51), we find

1

E

∫ sk

0
V (s)ds < (2k − 1)F1 < E

(
‖V ‖L1(CylI)

+ E sk(F
φend

+ (sk))
2
)

(7.52)
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from which we conclude using 7.30 the first part of (i) and then by (7.50)
and 7.30 the rest of (i). For (ii), 7.31(ii) and the mean value theorem imply
that for some s′ ∈ (si−1, si),

si − si−1 =
F φ̂
i−1+ + F φ̂

i−

V (s′) + (F φ̂(s′))2
.(7.53)

Estimating a trivial upper bound for V , using (i) and (7.49) gives the first
inequality in the first part of (ii), and using that 1

V (s′) ≤ C
V (sk)

and using

(7.50) and 7.30, we conclude si − si−1 ≤ C. Using then Definition 7.15 and
part (i), we have∣∣∣∣∣log φ̂(si)

φ̂(si−1)

∣∣∣∣∣ ≤
∫ si

si−1

∣∣F φ̂
+(s)

∣∣ds ≤ C

k

∫ si

si−1

ds ≤ C

k
,

which completes the proof of (ii), and (iii) follows similarly.

Corollary 7.54 (Estimates for the derivatives of sk). If φ̂ = φ̂[F ;σ] is an

RLD solution as in 7.36, s = sφ̂[F ;σ], (F, σ|k+1) ∈ Sk+1 (recall 7.40), and

|ξ|�∞ < min( 1
10 ,

1
k ), the following estimates hold, where C depends only on

an upper bound of |σ|�1 .

(i)
(
V (sk) +

(
F φ̂
k−

)2) ∂sk
∂F1

∼
C
k.

(ii)
∣∣∣(V (sk) +

(
F φ̂
k−

)2) ∂sk
∂σi

∣∣∣ < C, i = 1, . . . , k − 1.

(iii)
∣∣∣(V (sk) +

(
F φ̂
k−

)2)∂sk
∂ξj

∣∣∣ < C
k , j = 1, . . . , k.

Proof. We first prove (i). To simplify notation in this proof, we denote

Pk :=
(
V (sk) +

(
F φ̂
k−

)2) ∂sk
∂F1

, Qk−1 :=

(
φ̂(sk−1)

φ̂(sk)

)2

,

Rk :=
V (sk) +

(
F φ̂
k+

)2
V (sk) +

(
F φ̂
k−

)2 ,
Tk−1 := Qk−1(1 + ξk−1)

(
e
∑k−2

l=1 σl
)
+ (1− ξk)

(
e
∑k−1

l=1 σl
)
.

In this notation, (7.43) from Lemma 7.41 is equivalent to the equation

Pk = Rk−1Qk−1Pk−1 + Tk−1(7.55)
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from which we conclude by applying (7.43) recursively

Pk = P1

k−1∏
i=1

QiRi +

k−1∑
i=1

(
Ti

k−1∏
j=i+1

QjRj

)
.(7.56)

From (7.42) it follows that P1 = 1− ξ1. By 7.14, 7.48, and the assumptions,
the following estimates hold:

Qi ∼
1+C/k

1, Ri ∼
1+C/k

1, Ti∼
C
1, i = 1, . . . , k − 1.(7.57)

Combining (7.57) with (7.56) completes the proof of (i). Proofs of (ii) and
(iii) are similar and use respectively (7.45) and (7.44) in place of (7.43), so
we omit the details.

Smooth at the ends RLD solutions

We concentrate now on smooth at the ends RLD solutions and we introduce
a unified notation in terms of their flux ratios and total number k◦ of parallel
circles:

Lemma 7.58 (RLD solutions φ̂[σ : k◦]). Given k◦ ∈ N with k◦ ≥ kmin
◦

(recall 7.23) and σ = (σ, ξ) ∈ Rk−1 × Rk, k := �k◦/2�, satisfying |ξ|�∞ < 1
and ξ1 = 0 if k◦ is odd, there is a unique, smooth at the ends, unit RLD

solution (recall 7.21) φ̂ = φ̂[σ : k◦] satisfying k◦[sφ̂] = k◦ and σφ̂ = σ.

Proof. Recall from Proposition 7.36 that φ̂[F ;σ] has k ≥ kevmin jump latitudes

precisely when F ∈ [ak,σ, ak−1,σ) and from 7.37 that qφ[F ;σ] has k ≥ koddmin

jump latitudes when F ∈ [bk,σ, bk−1,σ). By 7.30 and the flux monotonicity
in 7.36(i) and 7.37(i), there exist unique ãk,σ ∈ [ak,σ, ak−1,σ) for all k ≥ kevmin

such that φ̂[ãk,σ;σ] is smooth at the ends, and unique b̃k,σ ∈ [bk,σ, bk−1,σ)

for all k ≥ koddmin such that φ̂[̃bk,σ;σ] is smooth at the ends. To complete
the proof, we need only show that {2kevmin, 2k

odd
min − 1} is a set of consecutive

natural numbers.
For this, first consider σ = (0,0) and the smooth-at-the ends RLD

solution qφ = qφ[̃bkodd
min,σ

;σ]. For ξ close to 1, define σ′ = (0, (ξ, 0, . . . )) and

the RLD solution φ̂ = φ̂[(1− ξ)̃bkodd
min,σ

;σ′], which satisfies F φ̂
1 = b̃kodd

min,σ
= F

qφ
1

and F φ̂
i± = F

qφ
i± for all i > 1 such that both of the preceding are defined.

On the other hand, by choosing ξ close enough to 1, we can ensure that

F φ̂
1− = (1 − ξ)̃bkodd

min,σ
is as small as desired. By 7.31 and 7.33, it follows
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that for ξ close enough to 1, k◦[sφ̂] = 2koddmin. An analogous argument shows

that we can find an RLD solution qφ with k◦[s
qφ] = 2kevmin + 1, and these two

assertions complete the proof.

Remark 7.59. In the case that I = R, it may be the case that ãk,σ = ak,σ, as
was the case for example in [33, Prop. 3.14]. If I is a finite interval however,
compactness guarantees that ãk,σ > ak,σ.

−1 0 1 2
0.9

1

1.1

s

φ̂[σ : 8]

φ̂[σ : 7]

−2 −1 0 1 2
0.9

1

1.1

s

φ̂[σ : 8]

φ̂[σ : 7]

Figure 2: Profiles of RLD solutions φ̂[σ : 7] and φ̂[σ : 8] with respectively 7
and 8 singular circles. In each case σ = 0 and V = 2 sech2 s, corresponding
to the case where Σ is an equatorial S2 in S3. The right image depicts the
same profiles over a wider domain, to emphasize the smooth at the ends
behavior.

Convention 7.60. Hereafter, we assume k◦ ∈ N with k◦ ≥ kmin
◦ is given, and

define k ∈ N by k = �k◦/2�, i.e. k◦ = 2k if k◦ is even and k◦ = 2k − 1 if k◦
is odd.

Lemma 7.61 (Characterization of low kmin
◦ ).

(i) kmin
◦ = 1 if and only if φend > 0 on Cyl[0,l).

(ii) kmin
◦ = 2 if and only if for some sφend

root ≥ 0, φend > 0 on (sφend

root , l),

φend(s
φend

root) = 0 and φeven > 0 on (0, sφend

root ].

(iii) kmin
◦ ≥ 3 if and only if for some 0 < sφeven

root < sφend

root , φend > 0 on

(sφend

root , l), φend(s
φend

root) = 0, φeven > 0 on (0, sφeven

root ), and φeven(s
φeven

root ) = 0.

Proof. We first prove (i). If φend > 0 on Cyl[0,l), then clearly the function

on C∞
|s| (Cyl

(0)) defined by s �→ φend(|s|) is an RLD solution with k◦ = 1, so

kmin
◦ = 1. Conversely, if kmin

◦ = 1, then in the notation of 7.37(ii), qφ[F ;σ]
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has only one jump latitude for F ∈ [b1,σ, b0,σ). By the flux monotonicity

7.31 there is a unique F in this interval such that qφ[F ;σ](s) = φend(|s|).
By 7.21(i), it follows that φend > 0 on Cyl[0,l). The proofs of (ii)-(iii) are

straightforward from 7.31, so we omit the details.

Remark 7.62. If Σ is a torus, recall from 7.4 that S fixes the two equatorial

circles X̃Σ(Cyl0) and X̃Σ(Cyll). Up to redefining X̃Σ, we could interchange

the role of which equatorial circle Cyl0 maps to, which would interchange the

roles of φeven and φend. This would lead to slightly different classes of RLD

solutions; in particular if either φeven > 0 or φend > 0 on Cyl[0,l), we would

have kmin
◦ = 1 with respect to at least one of these choices (recall 7.61(i)).

It would also be possible (recall Remark 7.12(ii)) to consider an expanded

class of RLD solutions which have jumps on both equators, although we

have not considered this case for the sake of simplicity.

Proposition 7.63. Suppose φ̂ = φ̂[σ : k◦] and φ̂′ = φ̂[σ′ : k◦] are as in 7.58,

where σ = (σ, ξ) ∈ Rk−1 × Rk,σ′ = (σ′, ξ′) ∈ Rk−1 × Rk satisfy |ξ|�∞ <

min( 1
10 ,

1
k ), |ξ

′|�∞ < min( 1
10 ,

1
k ). There is a constant C > 0 depending only

on an upper bound of |σ|�1 and |σ′|�1 such that∣∣∣F φ̂′ − F φ̂
∣∣∣
�∞

≤ C

k

(
|σ′ − σ|�1 + |ξ′ − ξ|�∞

)
.

Proof. Observe that the conclusion follows from the estimate∣∣∣F φ̂′

1 − F φ̂
1

∣∣∣ ≤ C

k

(
|σ′ − σ|�1 + |ξ′ − ξ|�∞

)
,(7.64)

since for any i ∈ {1, . . . , k} we have (taking + or − in every instance of ±
below)

∣∣∣F φ̂′

i± − F φ̂
i±

∣∣∣ = ∣∣∣(1± ξ′i)
(
e
∑i−1

l=1 σ′
l

)
F φ̂′

1 − (1± ξi)
(
e
∑i−1

l=1 σl
)
F φ̂
1

∣∣∣ ≤∣∣∣(1± ξ′i)
(
e
∑i−1

l=1 σ′
l

)
− (1± ξi)

(
e
∑i−1

l=1 σl
)∣∣∣ F φ̂′

1 +(1±ξi)
(
e
∑i−1

l=1 σl
) ∣∣∣F φ̂′

1 − F φ̂
1

∣∣∣ .
We now prove (7.64). Fix k ∈ N and consider the map defined by

(7.65)
F(F1,σ) :=F

φ̂[F ;σ]
+

(
s
φ̂[F ;σ]
k

)
− F φend

+

(
s
φ̂[F ;σ]
k

)
=(1 + ξk)

(
e
∑k−1

l=1 σl
)
F1 − F φend

+

(
s
φ̂[F ;σ]
k

)
,
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where φ̂[F ;σ] is as in 7.36 and the second equality uses (7.28). Clearly,

F(F1,σ) = 0 if and only if φ̂[F ;σ] is smooth at the ends. Now let (F1,σ) ∈
F−1 ({0}) be arbitrary.

It follows from Lemma 7.31 and 7.33 that F is C1; below we estimate
the partial derivatives of F at (F1,σ). Differentiating (7.65) with respect to
F1 and using 7.31, we compute

∂F
∂F1

∣∣∣∣
(F1,σ)

= (1 + ξk)
(
e
∑k−1

l=1 σl
)
+

(
V (sk) +

(
F φ̂
k+

)2) ∂sk
∂F1

∣∣∣∣
(F1,σ)

,(7.66)

and similarly the derivatives with respect to σi and ξj . By combining with
Corollary 7.54, we estimate that for j ∈ {1, . . . , k} and i ∈ {1, . . . , k − 1},

∂F
∂F1

∣∣∣∣
(F1,σ)

∼
C
k,

∣∣∣∣∣ ∂F∂σi
∣∣∣∣
(F1,σ)

∣∣∣∣∣ ≤ C,

∣∣∣∣∣ ∂F∂ξj
∣∣∣∣
(F1,σ)

∣∣∣∣∣ ≤ C

k
,(7.67)

where C > 0 is a constant independent of k.
By the implicit function theorem, F−1 ({0}) is a graph of a function of

σ in the vicinity of any given (F1,σ) ∈ F−1 ({0}), and moreover (abusing
notation slightly), for i ∈ {1, . . . , k − 1} and j ∈ {1, . . . , k},

(7.68)

∂F1

∂σi

∣∣∣∣
σ

=−
(

∂F
∂F1

∣∣∣∣
(F1,σ)

)−1 ∂F
∂σi

∣∣∣∣
(F1,σ)

,

∂F1

∂ξj

∣∣∣∣
σ

=−
(

∂F
∂F1

∣∣∣∣
(F1,σ)

)−1 ∂F
∂ξj

∣∣∣∣
(F1,σ)

.

The conclusion follows by combining this with the estimates (7.67).

8. LD solutions from RLD solutions

Basic facts

Given m ∈ Z \ {0}, we define a scaled metric χ̃ = χ̃[m] on Cyl and scaled

coordinates ( s̃[m], θ̃[m] ) defined by

χ̃ := m2χ, s̃ = |m|s, θ̃ = |m|θ.(8.1)

We also define corresponding a scaled linear operator

(8.2) Lχ̃[m] := Δχ̃ +m−2V = m−2Lχ.
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Definition 8.3. Given s ∈ R+ and m ∈ Z \ {0}, we define a shifted coordi-
nate ŝ = ŝ [s,m] by

ŝ := s̃− |m| s = |m| (s− s).

Definition 8.4. Given m ∈ Z \ {0}, we define

δ[m] := 1/(9|m|).(8.5)

Given s, s, and m as in 7.11, for i = 1, . . . , k we define δi := δ[mi] and
define nested open sets Dχ

L[s;m](3δ[m]) ⊂ Ω′[s;m] ⊂ Ω[s;m], where

Ω[s;m] := D
χ[m]
Lpar[s]

(3/|m|) = D
χ̃[m]
Lpar[s]

(3) ,

Ω′[s;m] := D
χ[m]
Lpar[s]

(2/|m|) = D
χ̃[m]
Lpar[s]

(2) .

We also define Ω[s;m] :=
⋃k

i=1Ω[si;mi] and Ω′[s;m] :=
⋃k

i=1Ω
′[si;mi].

Lpar[s]

Dχ
Lpar[s]

(3δ)

Ω[s;m]

Ω′[s;m]

Figure 3: A schematic of connected components of the neighborhoods of
Lpar[s] (defined in 8.4) near latitude s.

Definition 8.6 (Antisymmetry operators). Given a domain Ω ⊂ Cyl sat-
isfying Ss(Ω) = Ω for some s ∈ R (recall 7.1), we define operators Rs and
As, each acting on real-valued functions defined on Ω, by Rsu = u ◦ Ss and
Asu = u−Rsu.

Lemma 8.7. Let s ∈ ( 3
m ,∞) and m ∈ Z \ {0}. The following hold:

(i) For all u, v ∈ C0(Ω[s;m]), As (uv) = uAsv +AsuRsv.
(ii) For all u ∈ C2(Ω[s;m]), [As,Lχ̃]u = m−2AsV Rsu.
(iii)

∥∥V : Cj (Ω, χ)
∥∥ ≤ C(j)

∥∥V : C0 (Ω, χ)
∥∥ holds for any domain Ω ⊂

CylI .
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(iv)
∥∥AsV : Cj (Ω[s;m], χ )

∥∥ ≤ C(j)
|m| V (s).

Proof. (i) follows from a straightforward computation, and (ii) follows from
(i) and a similar computation, using the fact that Δ commutes with As. (iii)
follows from 7.30. (iv) is a discrete version of (iii) which follows from the
mean value theorem and (iii).

Lemma 8.8 (Green’s functions [33, Lemma 2.28]). There exists ε > 0 de-
pending only on V such that for any p ∈ Cyl, there exists a Green’s function
Gχ

p for Lχ on Dχ
p (ε) satisfying:∥∥Gχ

p − log r : Cj(Dχ
p (ε) \ {p}, r, χ, r2| log r|)

∣∣ ≤ C(j), where r = dχ
p .

Proof. This follows from 3.3 and 7.30.

Definition 8.9 ([33, Definition 2.21]). Given a, b, c ∈ R and s ∈ R+, we
define (recall 7.11)

φ = φ[a, b; s] ∈ C∞
|s|
(
Cyl(0)

)
, j = j

[
c ; s

]
∈ C∞

|s|
(
Cyl(0,s)

)
by requesting they satisfy the initial data

φ(s) = a, ∂φ(s) = b, j(s) = 0, ∂+j(s) = ∂−j(s) = c,

and the ODEs Lχφ = 0 on Cyl(0), and Lχj = 0 on Cyl(0,s).

Remark 8.10. Note that φ depends linearly on the pair (a, b) ∈ R2 and j
depends linearly on c ∈ R.

Lemma 8.11 ([33, Lemma 2.23]). For all m ∈ N large enough and s ∈
( 3
m ,∞), the following estimates hold (recall 7.8).

(i)
∥∥∥φ[1, 0; s]− 1 : Cj

|s|( Ω[s;m] , χ̃[m] )
∥∥∥ ≤ C(j)/m2.

(ii)
∥∥∥ j[m; s]− | ŝ | : Cj

|s|( Ω[s;m] \ Lpar[s] , χ̃[m] )
∥∥∥ ≤ C(j)/m2 .

(iii)
∥∥∥As φ[1, 0; s] : C

j
|s|( Ω[s;m] , χ̃[m] )

∥∥∥ ≤ C(j)/m3.

(iv)
∥∥∥As j[m; s] : Cj

|s|( Ω[s;m] \ Lpar[s] , χ̃[m] )
∥∥∥ ≤ C(j)/m3.

Proof. The proof is an ODE comparison argument which is only superficially
different than the proof of [33, Lemma 2.23]—here we use properties of V
established in 8.7 instead of properties of 2 sech2 s as in [33]—so we omit the
details.
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Maximally symmetric LD solutions from RLD solutions

For convenience and uniformity, we now identify CylI with XΣ(CylI) ⊂ Σ
(recall Remark 7.5), which allows us to study LD solutions on the cylinder
instead of on Σ.

Definition 8.12. Given a function ϕ on some domain Ω ⊂ Cyl or Ω ⊂ Σ,
we define a rotationally invariant function ϕavg on the union Ω′ of the O(2)
orbits on which ϕ is integrable (whether contained in Ω or not), by requesting
that on each such orbit C,

ϕavg|C := avg
C

ϕ.

We also define ϕosc on Ω ∩ Ω′ by ϕosc := ϕ− ϕavg.

Lemma 8.13 (Gm-Symmetric LD solutions, cf. [29, Lemma 3.10]). For m ∈
N large enough (depending only on Σ) the following hold.

(i) kerLΣ is trivial modulo the Gm action on Σ.
(ii) Given a Gm-invariant invariant configuration τ : L → R there exists

a unique Gm-invariant LD solution ϕ = ϕ[τ ] of configuration τ .

Proof. Item (i) follows from the triviality of kerLΣ modulo O(2)×Z2 in 7.2,
by taking m large enough. Item (ii) follows from (i) and applying Lemma
5.22.

Lemma 8.14 (Vertical balancing, [33, Lemma 4.5]). Suppose ϕ is an LD
solution whose configuration τ and singular set L are (s,m)-rotational as
in 7.11. Then the following hold.

(i) ϕavg ∈ C∞(CylsI), where Lpar = Lpar[s].
(ii) On CylsI , ϕavg satisfies the ODE Lχϕavg = 0.
(iii) |mi|τi = ∂+ϕavg(si) + ∂−ϕavg(si), i = 1, . . . , k.

Proof. To prove (i) and (ii), we need to check that ϕ is integrable on each
circle contained in Lpar and that ϕavg is continuous there also. But these
follow easily from the logarithmic behavior of ϕ (recall 3.6). We now prove
item (iii). Fix i ∈ {1, . . . , k}. For 0 < ε1 << ε2 we consider the domain
Ωε1,ε2 := Dχ

Lpar[si]
(ε2) \ Dχ

L(ε1). By integrating Lχϕ = 0 on Ωε1,ε2 and inte-

grating by parts we obtain∫
∂Ωε1,ε2

∂

∂η
ϕ+

∫
Ωε1,ε2

V ϕ = 0,
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where η is the unit outward conormal field along ∂Ωε1,ε2 . By taking the limit
as ε1 ↘ 0 first and then as ε2 ↘ 0, we obtain (iii) by using the logarithmic
behavior near L.

Lemma 8.15 (Normalized maximally symmetric LD solutions). Given k◦ ≥
kmin
◦ and k as in 7.60, m ∈ (Z \ {0})k with m (as in 7.11) large enough as

in 8.13, and σ = (σ, ξ) ∈ Rk−1 × Rk with |ξ|�∞ < 1, there is a unique
Gm-invariant LD solution Φ = Φ�σ : k◦,m� characterized by the following
requirements where σ/ = σ/[m] is as in 7.29.

(a) φ = φ�σ : k◦,m� := Φavg is a multiple of φ̂[σ/+ σ : k◦] (recall 7.58).
(b) The singular set of Φ is L = L�σ : k◦,m� := L[s[σ/ + σ : k◦];m]

(recall 7.11).
(c) The configuration τ ′ := τ ′�σ : k◦,m� of Φ is a

(
s[σ/ + σ : k◦],m

)
-

symmetric configuration as in 7.11 satisfying τ ′1 = 1 (normalizing con-
dition).

Moreover, the following hold.

(i) For i ∈ {1, . . . , k} we have τ ′i =
φ(si)

|mi|
2F φ

i . Moreover τ ′i is independent

of m and satisfies τ ′i = τ ′i�σ : k◦,m� :=
φ̂[σ/+ σ : k◦](si)

φ̂[σ/+ σ : k◦](s1)

(
e
∑i−1

l=1 σl
)
.

(ii) φ�σ : k◦,m� =
|m1|

φ̂[σ/+ σ : k◦](s1) 2F
φ̂[σ/+σ:k◦]
1

φ̂[σ/+ σ : k◦].

(iii) On Ω[si;mi], φ = φ
i
+ j

i
, where φ

i
:= τ ′iφ

[ |m1|
2Fφ

1

(e−
∑i−1

l=1 σl), |mi|
2 ξi; si

]
and j

i
:= j

[
|mi|
2 τ ′i ; si

]
.

Proof. Let m be as in 8.13 and suppose Φ is a Gm-invariant LD solution
satisfying (a)-(c). Let c be such that φ = cφ̂ and i ∈ {1, . . . , k}. Using

Lemma 8.14 to solve for τ ′i , we immediately conclude τ ′i = φ(si)2F
φ
i /|mi|;

furthermore using Lemma 8.14, (a)-(c) above, (7.25), and the definition of
σ/ in 7.29, we compute

τ ′i =
τ ′i
τ ′1

=
|m1|
|mi|

φ(si)

φ(s1)

F φ
i

F φ
1

=
|m1|
|mi|

φ̂(si)

φ̂(s1)

(
e
∑i−1

l=1 σ/l+σl

)
=

φ̂(si)

φ̂(s1)

(
e
∑i−1

l=1 σl

)
,

1 = τ ′1 =
φ(s1)

|m1|
2F φ

1 =
cφ̂(s1)

|m1|
2F φ̂

1 .

We conclude from these equations that (a)-(c) imply (i) and (ii). In partic-
ular, the second equation in (i) determines τ ′ and hence uniqueness follows
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from Lemma 8.13.
To prove existence we define L by (b) and τ ′ by the second equation

in (i). Using 8.13 we then define Φ := ϕ[τ ′] and we verify that Φavg = cφ̂,

where c is defined by cφ̂(s1)2F
φ̂
1 = |m1|: Let i ∈ {1, . . . , k}. By Lemma 8.14,

it follows that |mi|τ ′i = 2Φavg(si)F
Φavg

i . By the definitions of τ ′i and c, we

have |mi|τ ′i = cφ̂(si)2F
φ̂
i . Since F φ̂

i = F cφ̂
i , by equating the right hand sides

of the preceding equations, we conclude that the function f := cφ̂ − Φavg

satisfies

∂+f(si) + ∂−f(si) = 0, i = 1, . . . , k.(8.16)

This amounts to the vanishing of the derivative jumps of f at each si. Clearly
f is smooth at the ends and satisfies Lχf = 0 in between the si. Hence we
conclude f ∈ C∞

|s| (Σ) and satisfies LΣf = 0 everywhere. By 7.2(iv), we
conclude f = 0.

It remains to check (iii). By 8.14(iii), miτ
′
i = ∂+φ(si)+ ∂−φ(si), so from

the definition of j in 8.9,

∂+ji(si) = ∂−ji(si) =
∂+φ+ ∂−φ

2
(si).

Therefore, φ− j
i
satisfies

∂+(φ− j
i
)(si) =

∂+φ− ∂−φ

2
(si) = −∂−(φ− j

i
)(si).

Hence, φ − j
i
∈ C1

s (Ω[si;mi]) and Lχ(φ − j
i
) = 0. By uniqueness of ODE

solutions, φ− j
i
= φ

i
. Finally, the expressions for φ

i
and j

i
follow from this,

(i) above, (7.25), 8.10, and 7.29.

Decomposition and estimates of LD solutions Φ = Φ�σ : k◦,m�

We now decompose and estimate a Φ = Φ�σ : k◦,m� as in 8.15. In order
to get good estimates, we assume the following.

Assumption 8.17. We assume that m may be taken as large as needed in
terms of k.

Notation 8.18. Consider a function space X consisting of functions defined
on a domain Ω ⊂ Cyl. If Ω is invariant under the action of G|m| for some
m ∈ Z\{0} (recall 7.10), we use a subscript “sym[m]” to denote the subspace
Xsym[m] ⊂ X consisting of those functions f ∈ X which are invariant under
the action of G|m|.
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Definition 8.19 (Decompositions of Φ = Φ�σ : k◦,m�). We first define a
decomposition Φ =

∑k
i=1Φi by applying 8.13 and requesting that Φi is an

LD solution with singular set Li = L[si;mi] (recall 7.11). We define then
the following ∀i ∈ {1, . . . , k}.

Ĝi ∈ C∞
sym[mi]

(CylI \ Li) by requesting that is it is supported on Dχ
Li
(3δi)

and Ĝi := τ ′iΨ[2δi, 3δi;d
χ
p ]
(
Gχ

p − φ[log δi, 0; si], 0
)
on Dχ

p (3δi) (∀p ∈ Li).

Φ̂i ∈ C∞
|s| (CylI) by Φ̂i := Φi,avg−Ψ

[
2

|mi| ,
3

|mi| ;d
χ
Lpar[si]

](
j
i
, 0
)
on Ω[si;mi]

and Φ̂i := Φi,avg on CylI \ Ω[si;mi] (recall 8.12 and 8.15(iii)).

Φ′
i, E

′
i ∈ C∞

sym[mi]
(CylI) by requesting that Φi = Ĝi+Φ̂i+Φ′

i on CylI \Li

and E′
i := Lχ̃[mi]Φ

′
i on CylI (clearly supported on Ω[si;mi]).

We then define Ĝ∈C∞(CylI\L), Φ̂∈C∞
|s| (CylI), and Φ′, E′∈C∞

sym[m](CylI)

by Ĝ =
∑k

i=1 Ĝi, Φ̂ =
∑k

i=1 Φ̂i, Φ
′ =

∑k
i=1Φ

′
i and E′ :=

∑k
i=1E

′
i. Clearly

then Φ = Ĝ + Φ̂ + Φ′ on CylI \ L, Φ̂ := φ on CylI \ Ω[s;m], and Φ̂ =

Ψ
[

2
|mi| ,

3
|mi| ;d

χ
Lpar[si]

] (
φ
i
, φ

)
= φ−Ψ

[
2

|mi| ,
3

|mi| ;d
χ
Lpar[si]

] (
j
i
, 0
)
on Ω[si;mi]

(∀i ∈ {1, . . . , k}), with φ, φ
i
, j

i
as in 8.15.

We estimate the average and oscillatory parts of Φ separately. The de-
composition Φ = Ĝ + Φ̂ + Φ′ is designed so that Φ′ is small in comparison
to Φ̂ (cf. Proposition 8.29 below). We have the following characterization of
Φ′
avg.

Lemma 8.20. Φ′
avg =

∑k
i=1Φ

′
i,avg where Φ′

i,avg := (Φ′
i)avg is supported on

Ω[si;mi] and satisfies Lχ̃[mi]Φ
′
i,avg = E′

i,avg := (E′
i)avg and

Φ′
i,avg =

{
Ψ

[
2

|mi| ,
3

|mi| ;d
χ
Lpar[si]

] (
j
i
, 0
)

on Ω[si;mi] \ Ω′[si;mi],

j
i
− (Ĝi)avg, on Ω′[si;mi].

(8.21)

Proof. Taking averages of Φ = Ĝ+Φ̂+Φ′ and rearranging establishes Φ′
avg =

φ− Φ̂− Ĝavg. Applying Lχ̃[mi] to both sides of this decomposition and using
the definition of E′

i in 8.19 establishes Lχ̃[mi]Φ
′
i,avg = E′

i,avg. Finally, (8.21)

follows from the decomposition Φ′
avg = φ − Φ̂ − Ĝavg by substituting the

expression for Φ̂ from 8.19 and using that Ĝi = 0 on Ω[si;mi]\Ω′[si;mi].

In order to estimate Φ′
osc we will need the following lemma.

Lemma 8.22 (cf. [29, Lemma 5.23]). Given E ∈ C0,β
sym[mi]

(CylI) with Eavg ≡
0 and E supported on Dχ

Lpar[si]
(3δi) for some i ∈ {1, . . . , k}, there is a unique

u ∈ C2,β
sym[mi]

(Cyl) solving Lχ̃[mi]u = E and satisfying the following.
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(i) uavg = 0.

(ii)
∥∥∥u : C2,β

sym[mi]

(
Cyl, χ̃[mi], e

− |mi|
2

||s|−si|)∥∥∥
≤ C

∥∥E : C0,β
sym[mi]

(
Dχ

Lpar[si]
(3δi), χ̃[mi]

)∥∥.
(iii)

∥∥Asiu : C2,β
sym[mi]

(Dχ
Lpar[si]

(3δi) , χ̃[mi] )
∥∥

≤ C
∥∥E : C0,β

sym[mi]
(Dχ

Lpar[si]
(3δi), χ̃[mi] )

∥∥/m2
i

+ C
∥∥AsiE : C0,β

sym[mi]
(Dχ

Lpar[si]
(3δ) , χ̃[mi] )

∥∥.
Proof. The existence and uniqueness of u is clear, and (i) follows since
Lχ̃[mi]u = Eavg = 0. For (ii), let u1 be the solution on Cyl of Δχ̃[mi]u1 = E,
subject to the condition that u1 → 0 as s → ±∞. By standard theory and
separation of variables, we have

∥∥u1 : C2,β
sym[mi]

(Cyl, χ̃[mi], e
− |mi|

2
||s|−si|)∥∥
≤ C

∥∥E : C0,β
sym[mi]

(
Dχ

Lpar[si]
(3δi), χ̃[mi]

)∥∥.
Note that (u1)avg clearly vanishes. Define now inductively a sequence (uj)j∈N,

uj ∈ C2,β
sym[mi]

(Cyl) by requesting that for each j ≥ 2, Δχ̃[mi]uj = −m−2
i V uj−1

and uj → 0 as s → ±∞. Estimating uj in the same fashion used to estimate
u1, we have for i ≥ 2

∥∥uj : C2,β
sym[mi]

(Cyl, χ̃[mi], e
− |mi|

2
||s|−si|)∥∥

≤ Cm−2
i

∥∥uj−1 : C
0,β
sym[mi]

(
Dχ

Lpar[si]
(3δi), χ̃[mi]

)∥∥.
Note now that u =

∑∞
j=1 uj , and the estimates above imply (i).

ApplyingAsi to both sides of the equation Lχ̃[mi]u = E and using Lemma
8.7(ii), we obtain

Lχ̃[mi]Asiu = AsiE −m−2
i AsiV Rsiu.

Although AsiE − m−2
i AsiV Rsiu is not supported on Dχ

Lpar[si]
(3δi), it has

average zero, so a straightforward modification of the argument proving
(ii) by replacing the assumption that the inhomogeneous term is compactly
supported with the assumption (from (ii) above) that the right hand side
has exponential decay away from Dχ

Lpar[si]
(3δ), we conclude that

∥∥Asiu : C2,β
sym[mi]

(
Dχ

Lpar[si]
(3δi), χ̃[mi]

)∥∥
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≤ C
∥∥AsiE : C0,β

sym[mi]

(
Dχ

Lpar[si]
(3δi), χ̃[mi]

)∥∥+
+ C

∥∥m−2
i AsiVRsiu : C0,β

sym[mi]

(
Dχ

Lpar[si]
(3δi), χ̃[mi]

)∥∥.
(iii) follows after using (1.10), Lemma 8.7(iv), and part (i) above to estimate

the last term.

We are now ready to begin estimating Φ′. We will estimate Φ′
avg and

Φ′
osc separately, by estimating each Φ′

i,avg and Φ′
i,osc in the decompositions

Φ′
avg =

∑k
i=1Φ

′
i,avg, Φ

′
avg =

∑k
i=1Φ

′
i,osc (recall 8.19 and 8.20). To estimate

Φ′
i,avg and Φ′

i,osc we will use that they satisfy the equations Lχ̃[mi]Φ
′
i,avg =

E′
i,avg and Lχ̃[mi]Φ

′
i,osc = E′

i,osc. We first establish relevant estimates for

E′
i, E

′
i,avg and E′

i,osc and then estimate Φ′
i,avg and Φ′

i,osc.

Lemma 8.23. For each i = 1, . . . , k, E′
i vanishes on Dχ

Li
(2δi) and E′

i,osc is

supported on Dχ
Lpar[si]

(3δi). The following hold.

(i)
∥∥Ĝi : C

j
sym[mi]

(Dχ
Li
(3δi) \Dχ

Li
(δi) , χ̃[mi] )

∥∥ ≤ C(j)

(ii)
∥∥AsiĜi : C

j
sym[mi]

(Dχ
Li
(3δi) \Dχ

Li
(2δi) , χ̃[mi] )

∥∥ ≤ C(j)/|mi|.
(iii)

∥∥∥E′
i : C

j
sym[mi]

(Ω[si;mi], χ̃[mi] )
∥∥∥ ≤ C(j)

(iv)
∥∥AsiE

′
i : C

j
sym[mi]

(Dχ
Lpar[si]

(3δi), χ̃[mi] )
∥∥ ≤ C(j)/|mi| , for i ∈ {1, . . . , k}.

In either (iii) or (iv), the same estimate holds if E′
i is replaced with either

E′
i,avg or E′

i,osc.

Proof. (i) follows from Lemma 8.8, Definition 8.19, and uniform bounds on

the τ ′i ’s which follow from 8.15(i) and 7.48(ii). For (ii), it suffices to prove

for any i = 1, . . . , k and any p ∈ L[si;mi] the estimate∥∥AsiĜi : C
j(Dχ

p (3δi) \Dχ
p (2δi), χ̃[mi] )

∥∥ ≤ C(j)/|mi|.

By Definition 8.19, we have AsiĜi = (I)− (II) on Dχ
p (3δi) \Dχ

p (2δi), where

(8.24)
(I) :=Ψ[2δi, 3δi;d

χ
p ](τ

′
iAsiG

χ
p , 0),

(II) :=Ψ[2δi, 3δi;d
χ
p ](τ

′
iAsiφ[log δi, 0; si], 0).

From Lemma 8.8 and the uniform bounds on the cutoff Ψ, we conclude that

‖(I) : Cj(Dχ
p (3δi) \Dχ

p (2δi) , χ̃[mi] )‖ ≤ C(j)/|mi|, and by Lemma 8.11(iii),

that ‖(II) : Cj(Dχ
p (3δi) \ Dχ

p (2δi) , χ̃[mi] )‖ ≤ C(j)|mi|−3 log |mi|. These

estimates complete the proof of (ii).
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The statements on the support of E′
i and E′

i,osc follow from Defini-

tion 8.19, from which we also see that E′
i = Lχ̃[mi]Ψ

[
2, 3;d

χ̃[mi]
Lpar[si]

](
j
i
, 0
)

on Ω[si;mi] \ Ω′[si;mi]. Thus, when restricted to Ω[si;mi] \ Ω′[si;mi], the
bound in (iii) follows from 8.9, 8.15(iii), and the uniform bounds of the cut-
off. It remains to estimate E′

i on Ω′[si;mi]. By 8.19, E′
i vanishes on Ω′[si;mi]\

Dχ
Lpar[si]

(3δi). Note that Lχ̃[mi]Φ̂ = 0 on Dχ
Lpar[si]

(3δi). Since LχĜi = 0 on

Dχ
L(2δi), when restricted to Dχ

Lpar[si]
(3δi), the required bound in (iii) follows

from (i). With the preceding, this completes the proof of (iii).

For (iv), we have using 8.19 that AsiE
′
i = −AsiLχ̃[mi] Ĝi on Dχ

Lpar[si]
(3δi).

Since E′
i vanishes on Dχ

Lpar[si]
(2δi), it is only necessary to prove the estimate

on the set difference. Using 8.7(ii) to switch the order of Lχ̃[mi] and Asi, we
find that

AsiE
′
i = −Lχ̃[mi]AsiĜi −m−2

i AsiV RsiE
′
i on Dχ

Lpar[si]
(3δi) \Dχ

Lpar[si]
(2δi).

Using (ii) to estimate the first term on the right and Lemma 8.7(iv) and (iii)
to estimate the second term, we obtain (ii). Finally, we can replace E′

i by
E′

i,avg or E′
i,osc in either (iii) or (iv) by taking averages and subtracting.

Lemma 8.25 (Estimates for Φ′
i,avg). ∀i ∈ {1, . . . , k} the following hold.

(i) ‖Φ′
i,avg : Cj

|s| (Ω[si;mi], χ̃[mi] ) ‖ ≤ C(j).

(ii) For i ∈ {1, . . . , k},
∥∥AsiΦ

′
i,avg : Cj

|s|
(
Dχ

Lpar[si]
(3δi), χ̃[mi]

)∥∥ ≤ C(j)/|mi|.

Proof. Fix i ∈ {1, . . . , k}. We first establish the estimate on Ω′[si;mi]. By
(8.21),

Φ′
i,avg = j

[
|mi|
2 τ ′i ; si

]
− (Ĝi)avg on Ω′[si;mi].

Note that the left hand side is smooth and the discontinuities on the right
hand side cancel. Using that Lχ̃[mi]Φ

′
i,avg = E′

i,avg from (8.19), on Ω[si;m]
we have (where ŝ = ŝ [si,mi] is as in 8.3)

∂2
ŝΦ

′
i,avg +

1

|mi|2
V

(
ŝ

|mi|
+ si

)
Φ′
i,avg = E′

i,avg.(8.26)

On a neighborhood of ∂Ω′[si;mi], we have that Ĝavg = 0 from Definition
8.19. This combined with estimates on j from Lemma 8.11 implies that∣∣∣Φ′

i,avg

∣∣∣ < C and
∣∣∣∂ ŝΦ

′
i,avg

∣∣∣ < C on ∂Ω′[si;mi]. Using this as initial data for
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the ODE and bounds of the inhomogeneous term from Lemma 8.23 yields
the C2 bounds in (i). Higher derivative estimates follow inductively from
differentiating (8.26) and again using Lemma 8.23. This establishes (i) on
Ω′[si;mi]. The proof of the estimate (i) on Ω[si;mi] \ Ω′[si;mi] follows in a
similar way using (8.21) but is even easier since there (Ĝi)avg = 0, so we
omit the details.

By (8.26) and Lemma 8.7(ii), AsiΦ
′
i,avg satisfies (recall 8.3 for the relation

of s and ŝ)

Lχ̃[mi]AsiΦ
′
i,avg +

1

m2
i

AsiV RsiΦ
′
i,avg = AsiE

′
i,avg.(8.27)

The C2 bounds in (ii) follow in a similar way by using Lemma 8.11(iii)-(iv)
to estimate the initial data on ∂Dχ

Lpar[si]
(3δi), estimates on AsiE

′
i,avg from

Lemma 8.23(iv), and estimates on AsiV and Φ′
i,avg from Lemma 8.7(iv) and

(i) above. Higher derivative bounds follow inductively from differentiating
(8.27) and using Lemma 8.7(iv) and Lemma 8.23(iv).

Lemma 8.28 (Estimates for Φ′
i,osc). ∀i ∈ {1, . . . , k} the following hold.

(i) (a)
∥∥Φ′

i,osc : C
j
sym[mi]

(
Cyl, χ̃, e−m||s|−si|

)∥∥ ≤ C(j).

(b)
∥∥AsiΦ

′
i,osc : C

j
sym[mi]

(
Dχ

Lpar[si]
(3δi), χ̃

)∥∥ ≤ C(j)/|mi|.
(ii)

∥∥∥Φ′
osc : C

j
sym[m]

(
CylI , χ̃

)∥∥∥ ≤ C(j).

(iii)
∥∥AsiΦ

′
osc : C

j
sym[m]

(
Dχ

Lpar[si]
(3δi), χ̃[mi]

)∥∥ ≤ C(j)/|mi|.

Proof. We first complete the proof in the case where CylI = Cyl and leave
the modifications for the case where l < ∞ (when Σ is a torus) to the end.
(i) follows directly from applying Lemma 8.22 to E′

i,osc, using Lemma 8.23
and Schauder regularity for the higher derivative estimates. For small k,
(ii) follows from (i). On the other hand, Lemma 7.48(ii) implies that for all

i, j ∈ {1, . . . , k}, |sj − si| > |j−i|
Ck . Using this with part (i) above, we estimate

∥∥Φ′
osc : C

j
sym (Cyl, χ̃ )

∥∥ ≤ C(j) sup
s∈R

k∑
i=1

e−m||s|−si|

≤ C(j)

k−1∑
l=0

e−
m

Ck
l ≤ C(j),

where we have used Assumption 8.17. This completes the proof of (ii). Now

fix some i ∈ {1, . . . , k}. As before, for i, j ∈ {1, . . . , k}, |sj−si| > |j−i|
Ck . Using
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the definitions and (i) above,

∥∥AsiΦ
′
osc : C

r
sym

(
Dχ

Lpar[si]
(3δ), χ̃

)∥∥ ≤
∥∥AsiΦ

′
i,osc : C

r
sym

(
Dχ

Lpar[si]
(3δ), χ̃

)∥∥
+

∑
j �=i

∥∥AsiΦ
′
j,osc : C

r
sym

(
Dχ

Lpar[si]
(3δ), χ̃

)∥∥
≤ C(r)

m
+ C(r)

∑
j �=i

∥∥Φ′
j,osc : C

r
sym

(
Dχ

Lpar[si]
(3δ), χ̃

)∥∥
≤ C(r)

m
+ C(r)

∑
j �=i

e−m|sj−si|

≤ C(r)

m
+ C(r)

k∑
l=1

e−
m

Ck
l ≤ C(r)

m
,

where we have used Assumption 8.17.

We now address the case when Σ is a torus, that is when CylI is a proper

subset of Cyl. In this case we must lift all of our functions to functions on

Cyl which are invariant under the translation S2l : Cyl → Cyl defined by

s �→ s + 2l. More precisely, we define for each i ∈ {1, . . . , k} and j ∈ Z

Ẽ′
i,osc, Ẽ

′
i,j,osc ∈ C∞

sym[mi]
(Cyl) by Ẽ′

i,j,osc = E′
i,osc ◦ S

j
2l, Ẽi,osc =

∑
j∈Z Ẽ

′
i,j,osc,

Φ̃′
i,j,osc ∈ C∞

sym[mi]
(Cyl) by using 8.22 and requesting that Lχ̃[mi]Φ̃

′
i,j,osc =

Ẽ′
i,j,osc, and Φ̃′

i,osc =
∑

j∈Z Φ̃
′
i,j,osc.

Finally, we use 8.22 to establish exponential decay for each Φ̃′
osc,i,j away

from Lpar[si+2lj] and complete the proof; we omit the details because they

are similar to those from the proof when CylI = Cyl.

Proposition 8.29 (cf. [33, Proposition 4.18]). The following hold.

(i) ‖Φ′ : Cj
sym[m] (CylI , χ̃ ) ‖ ≤ C(j).

(ii)
∥∥AsiΦ

′ : Cj
sym[m]

(
Dχ

Lpar[si]
(3δ), χ̃

)∥∥ ≤ C(j)/maxi |mi|, (i ∈ {1, . . . , k}).

Proof. Because of the estimates on Φ′
osc established in Proposition 8.28(ii),

it is enough to prove the estimate (i) for Φ′
avg, and this follows from 8.20

and 8.25.
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9. Families of LD solutions on O(2) × Z2 symmetric
backgrounds

The family of LD solutions

For the applications at hand, it will be convenient to use definitions of K[L]

and K̂[L] (recall 3.11) which exploit the symmetries of the problem. When
mmax > m, we will also need to consider LD solutions with more general

singular sets than the ones studied in Section 8.

Definition 9.1 (The space Vsym[L̃]). Given L̃ = ∪k
i=1L̃i which is a small

Gm-symmetric perturbation of an L = L[s;m] as in 7.11, define the sub-

space Vsym[L̃] of V[L̃] (recall 2.9) consisting of elements equivariant under

the obvious action of Gm on V[L̃], an inner product 〈·, ·〉
V[L̃] by 〈·, ·〉

V[L̃] :=∑
p∈L̃〈·, ·〉V[p], where 〈a0+a1ds+a2dθ, a

′
0+a′1ds+a′2dθ〉V[p] := a0a

′
0+a1a

′
1+

a2a
′
2 and a decomposition

Vsym[L̃] =

k⊕
i=1

Vsym[L̃i] =

k⊕
i=1

V�[L̃i]⊕ V⊥[L̃i], where

V�[L̃i] := {(a+ b ds)p∈L̃i
∈ Vsym[L̃i] : a, b ∈ R}

and V⊥[L̃i] is the orthogonal complement of V�[L̃i] in Vsym[L̃i].

We will need to convert estimates on the cylinder—particularly those

established for Φ in Section 8—into estimates on Σ with the g metric. Be-
fore doing this we need the following lemma, which compares the geometry
induced by the metrics χ and g.

Lemma 9.2. Suppose u ∈ Cj(Ω) for a domain Ω ⊂ Cyl. Then

‖u : Cj(Ω, e2ωχ)‖ ≤ C(j)‖u : Cj(Ω, χ)‖(1 + sup
x∈Ω

e−ω)j(1 + ‖ω : Ck(Ω, χ)‖)j .

Proof. In this proof we denote objects computed with respect to g = e2ωχ
by a hat, so for example the Levi-Civita connection of g is denoted by ∇̂.

Taking covariant derivatives of ∇̂ju with respect to g, we find

(∇̂ju)i1···ij ;̂m = (∇̂ju)i1···ij ,m −
j∑

s=1

(∇̂ju)i1···p···ij Γ̂
p
mis

.
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Recall the formula for the Christoffel symbols computed with respect to the
conformal metric g = e2ωχ:

Γ̂p
mis

= Γp
mis

+ δpmω,is + δpisω,m − gmisg
plω,l.

Combining the preceding, we find

(∇̂ju)i1···ij ;̂m = (∇̂ju)i1···ij ;m −
k∑

i=1

(∇̂ju)i1···m···ijω,is

− (∇̂ju)i1···ijω,m +

j∑
s=1

(∇̂ju)i1···p···ijgmis(∇ω)p.

The conclusion now follows by a straightforward inductive argument.

Definition 9.3 (The constants δp, cf. 3.8). For each p ∈ L we define a
constant δp > 0 by requesting that the set of δp’s is invariant under the
action of Gm on L and that for i = 1, . . . , k we have δp = e−2ω(s(p))δ =

1
9|mi|e

−2ω(s(p)).

Definition 9.4 (The space of parameters). We define P := P�⊕P⊥, where

P� := R
2k, P⊥ :=

k⊕
i=1

P⊥
i :=

k⊕
i=1

R
dimV⊥[Li].

The continuous parameters of the LD solutions are

ζ = (ζ�, ζ⊥) ∈ BP := cB1
P := c (B1

P� ×B1
P⊥),

where ζ� := (ζ1,σ) = (ζ1,σ, ξ) ∈ cB1
P� , ζ1 ∈ R, σ ∈ R

k−1, ξ ∈ R
k,

B1
P� := [−1, 1]×

[
− 1

m
,
1

m

]2k−1

, B1
P⊥ :=

k×
i=1

B1
P⊥

i
,

B1
P⊥

i
:=

[
− e−m/c′ , e−m/c′

]dimV⊥[Li],

and c′ > 0 is a constant which can be taken as large as needed in terms of k
but is independent of m.

We now define a family ϕ�ζ�� of LD solutions parametrized by ζ� ∈
BP� and choose the overall scale so that we have approximate matching.
The singular sets of the ϕ�ζ�� are (s,m)-symmetric singular sets (recall
7.11) and (ϕ�ζ��)avg is close to being balanced in the sense of 7.29.



Generalizing the Linearized Doubling approach, I 393

Definition 9.5 (Maximally symmetric LD solutions ϕ�ζ��). Given ζ� ∈
BP� as in 9.4, we define using 8.15 the LD solution

(9.6)

ϕ = ϕ�ζ�� = ϕ�ζ�; k◦,m� := τ1Φ�σ : k◦,m�,

where τ1 = τ1�ζ
�� = τ1�ζ

�; k◦,m� := 2δ1e
ζ1e−φ(s1)

=2eζ1e−|m1|/2Fφ
1 /9|m1|,

and we denote the singular set and configuration of ϕ by

L = L�ζ�� = L�ζ�; k◦,m� =L[s[σ/+ σ : k◦];m] ⊂ Lpar[s[σ/+ σ : k◦]],

τ = τ �ζ�� = τ �ζ�; k◦,m� =τ1τ
′�σ : k◦,m�.

Note that ϕ, L and τ are Gm-invariant by 8.15. We call the jump circles of
φ�σ : k◦,m� (whose union is Lpar[s[σ/+ σ : k◦]]) the singular circles of ϕ.

Lemma 9.7 (Matching equations for ϕ�ζ��). Given ζ� ∈ BP� we have for
ϕ = ϕ�ζ�� as in 9.5 that MLϕ = λ+λ′ with λ = (τp(μp + |mi|μ′

pds))p∈L ∈
V�[L] and λ′ = (τp(μ̂p + |mi|μ̂′

pds + mμ̂◦
pdθ))p∈L ∈ Vsym[L] where ∀i ∈

{1, . . . , k} and ∀p ∈ Li we define (with Φ′
avg and Φ′

j,osc = (Φ′
j)osc defined in

8.12 and 8.19) μp := μi, μ
′
p := μ′

i, Φ
′
�=i,osc :=

∑
j �=iΦ

′
j,osc,

μi :=
|m1|
2F φ

1

(
e−

∑i−1
l=1 σl − 1

)
+

Φ′
avg(p)

τ ′i
+

Φ′
i,osc(p)

τ ′i
+ ζ1 + log τ ′i − ω(p),

μ′
i :=

1

2
ξi +

1

|mi|τ ′i
∂Φ′

avg

∂s
(p) +

1

|mi|τ ′i
∂Φ′

i,osc

∂s
(p)− 1

2|mi|
∂ω

∂s
(p),

μ̂p :=
1

τ ′i
Φ′
�=i,osc(p), μ̂′

p :=
1

|mi|τ ′i

∂Φ′
�=i,osc

∂s
(p), μ̂◦

p :=
1

mτ ′i

∂Φ′
�=i,osc

∂θ
(p).

Proof. The decomposition λ+ λ′ is chosen so that λ is the part which has
to be G|mi|-invariant and λ′ is the part which may not be G|mi|-invariant.

Expanding now 1
τi
Mpϕ (recall 3.10) using 3.14, 3.9 and 8.19 and equating

coefficients with λ+ λ′ we reduce the proof to confirming

μp + μ̂p =
1

τ ′i
φ
i
(si) + log

(
τ ′iτ1
2δi

)
+

Φ′(p)

τ ′i
− ω(p)

|mi|(μ′
p + μ̂′

p) =
1

τ ′i

∂φ
i

∂s
(si) +

1

τ ′i

∂Φ′

∂s
(p)− 1

2

∂ω

∂s
(p).

mμ̂◦
p =

1

τ ′i

∂φ
i

∂θ
(p) +

1

τ ′i

∂Φ′

∂θ
(p)− 1

2

∂ω

∂θ
(p).
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Using 8.15(iii) to substitute the data for φ
i
, substituting τ1 from (9.6), and

using the rotational invariance of φ
i
and ω, we further reduce to

(9.8)

μp + μ̂p =
|m1|
2F φ

1

(
e−

∑i−1
l=1 σl − 1

)
+

Φ′(p)

τ ′i
+ ζ1 + log τ ′i − ω(p)

|mi|(μ′
p + μ̂′

p) =
|mi|
2

ξi +
1

τ ′i

∂Φ′

∂s
(p)− 1

2

∂ω

∂s
(p),

mμ̂◦
p =

1

τ ′i

∂Φ′

∂θ
(p).

This follows by considering average and oscillatory parts and using that
Φ′
i,osc is G|mi|-symmetric.

Notation 9.9. Given a = (ai)
k
i=1 ∈ Rk, k ≥ 2, we define ∂/a ∈ Rk−1 by

requesting that (∂/a)j = aj+1 − aj , j = 1, . . . , k − 1. It is useful to think of
∂/a as a discrete derivative of a.

Corollary 9.10 (Matching Estimates for ϕ�ζ��). Let ζ� ∈ BP� and ϕ =
ϕ�ζ�� as in 9.5. There is an absolute constant C (independent of c ) such
that for m large enough (depending on c ), the following hold, where μ :=
(μi)

k
i=1,μ

′ := (μ′
i)
k
i=1 and μi, μ

′
i are as defined as in 9.7:

(i) |ζ1 − μ1| ≤ C.

(ii)
∣∣∣σ + 2Fφ

1

|m1|∂/μ
∣∣∣
�∞

≤ C/m.

(iii) |ξ − 2μ′|�∞ ≤ C/m.
(iv) For any p ∈ Li, and μ̂p, μ̂

′
p, μ̂

◦
p as in 9.7, |μ̂p|+ |μ̂′

p|+ |μ̂◦
p| ≤ Ce−

m

Ck .

Proof. Taking i = 1 in the first equation of 9.7 we obtain for any p ∈ L1

μ1 − ζ1 = Φ′
avg(p) + Φ′

1,osc(p)− ω(s1).(9.11)

Given i ≥ 2, fix pi ∈ Li and pi−1 ∈ Li−1, compute μi − μi−1 using 9.7,

multiply through by 2Fφ
1

|m1| and rearrange to see

(9.12)
2F φ

1

|m1|
(μi − μi−1) + σi

=
2F φ

1

|m1|

(
Φ′
avg(pi)

τ ′i
−

Φ′
avg(pi−1)

τ ′i−1

+ log
τ ′i
τ ′i−1

+ ω(si)− ω(si−1)

)
+

2F φ
1

|m1|

(
Φ′
i,osc(pi)

τ ′i
−

Φ′
i−1,osc(pi−1)

τ ′i−1

)
+O

(
c 2

m3

)
.
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Next, from 9.7 we have for i = 1, . . . , k and any pi ∈ Li

2μ′
i − ξi =

1

|mi|

(
2

τ ′i

∂Φ′
avg

∂s
(pi) +

2

τ ′i

∂Φ′
i,osc

∂s
(pi)−

∂ω

∂s
(si)

)
.(9.13)

Using 8.29 to estimate the terms involving Φ′, using 9.14 to bound the τ ′

terms, and using the boundedness of the si from Lemma 7.48 and uniform
bounds on ω on compact sets, we deduce the inequalities |ζ1 − μ1| ≤ C,∣∣∣σ + 2Fφ

1

|m1|∂/μ
∣∣∣
�∞

≤ C/m, and |ξ − 2μ′|�∞ ≤ C/m, which together complete

the proof of (i)-(iii). For (iv), we use the definition of μ̂p, μ̂
′
p, μ̂

◦
p in 9.7 and

estimate the oscillatory terms using 8.22 and arguing as in the proof of
8.28.

Lemma 9.14. For Φ as in Definition 8.15 and 1 ≤ j < i ≤ k, we have

τ ′i
τ ′j

=
φ(si)

φ(sj)

(
e
∑i−1

l=j σl
) ∼
1+C log k

k

1.

Proof. The first equality follows from 8.15(i). We have then

(9.15) log
τ ′i
τ ′j

= log
φ(si)

φ(sj)
+

i−1∑
l=j

σl = O

(
log k

k

)
+O

(
kc

m

)
,

where the estimates follow from Lemma 7.48, Definition 9.5 and 9.4.

ζ⊥ dislocations

When not all |mi|’s are equal we need to expand our families of LD solu-
tions. We first determine the spaces V⊥[Li] in some simple cases and define
configurations for the corresponding families.

Lemma 9.16. Given Li = L[si;mi] as in 7.11 and mi ∈ {±m,±2m,±3m},
λ⊥
i = (λ⊥

p )p∈Li
∈ V⊥[Li] as defined in 9.1 has the form determined by the

following, except that b = 0 when si = 0.

(a) For mi = ±m: λ⊥
p = 0 ∀p ∈ Li.

(b) For mi = −2m: λ⊥
pi

= a dθ|pi
for some a ∈ R, where pi := (ei

π

2m , si).

(c) For mi = 2m: λ⊥
pi±

= ±(a+ b ds|pi±
) for some a, b ∈ R, where pi± :=

(ei(
π

2m
± π

2m
), si).

(d) For mi = 3m: λ⊥
pi+

= 2(a+b ds|pi+
) and λ⊥

pi−
= −a−b ds|pi−

+c dθ|pi−

for some a, b, c ∈ R, where pi+ := ((1, 0), si), pi− := (ei
2π

3m , si)
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(e) For mi = −3m: λ⊥
pi+

= 2(a+b ds|pi+
) and λ⊥

pi−
= −a−b ds|pi−

+c dθ|pi−

for some a, b, c ∈ R, where pi+ := (ei
π

m , si), pi− := (ei
π

3m , si).

Proof. This follows immediately using the definitions of Li in 7.11, V⊥[Li]
in 9.1, and the symmetries.

Definition 9.17 (Configurations with ζ⊥). Given ζ = ζ� + ζ⊥ ∈ BP ,
we define a Gm-invariant τ = τ �ζ� = τ �ζ; k◦,m� : L̃ → R, which is a
perturbation of τ �ζ�� defined in 9.5, by L̃ = L�ζ� =

⋃k
i=1 L̃i, where L̃i =

Li�ζ� := Gmpi if mi = ±m,−2m and L̃i = Li�ζ� := L̃+
i

⊔
L̃−
i with L̃±

i :=
Gmpi± otherwise, and where pi, τpi

, pi±, and τpi± are defined as follows (with

τ1 and τ ′i as in 9.5); except we have ξ̃i = 0 when si = 0.

(a) For mi = ±m: pi := (ei(
π

2m
± π

2m
), si) and τpi

= τ1τ
′
i .

(b) For mi = −2m: pi := (e
i

2m
(π+ξ̃◦i ), si) and τpi

= τ1τ
′
i , where ξ̃◦i ∈ P⊥

i �
R.

(c) For mi = 2m: pi± := (ei(
π

2m
± π

2m
), si ± ξ̃i), τpi± = e±σ̃iτ1τ

′
i , where

(σ̃i, ξ̃i) ∈ P⊥
i � R2.

(d) For mi = 3m: pi+ := ((1, 0), si + 2ξ̃i), pi− := (ei(
2π

3m
+ξ̃◦i ), si − ξ̃i), and

τpi± = e±σ̃iτ1τ
′
i , where (σ̃i, ξ̃i, ξ̃

◦
i ) ∈ P⊥

i � R3.

(e) For mi = −3m: pi+ := (ei
π

m , si + 2ξ̃i), pi− := (ei(
π

3m
+ξ̃◦i ), si − ξ̃i), and

τpi± = e±σ̃iτ1τ
′
i , where (σ̃i, ξ̃i, ξ̃

◦
i ) ∈ P⊥

i � R3.

Note that τ �ζ� in 9.17 is equal to τ �ζ�� as defined in 9.5 when ζ⊥ = 0.
In order to keep the presentation simple we assume now the following.

Assumption 9.18. We assume in the rest of the article that k,m,m are
as in 7.11 satisfying 8.17, and furthermore that mi ∈ {m,−m,−2m} ∀i ∈
{1, . . . , k}.

Definition 9.19 (The spaces K̂sym[L̃] and Ksym[L̃]). Given L̃ as in 9.17 we
define

K̂sym[L̃] =

k⊕
i=1

K̂sym[L̃i] =

k⊕
i=1

K̂�
sym[L̃i]⊕ K̂⊥

sym[L̃i],

where K̂�
sym[L̃i] := span{Vi, V

′
i }ki=1 with Vi, V

′
i ∈ C∞

sym[m](CylI) defined by

requesting that they are supported on Dχ

L̃i

(2δi) and ∀p ∈ L̃i they satisfy

(9.20)
Vi :=Ψ[δi, 2δi;d

χ
p ](φ[1, 0; s(p)], 0),

V ′
i :=Ψ[δi, 2δi;d

χ
p ](φ[0, 1; s(p)], 0),

on Dχ
p (2δi);
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and K⊥
sym[L̃i] := span{V ◦

i : i ∈ {1, . . . , k} with mi = −2m}, with V ◦
i ∈

C∞
sym[m](CylI) defined by requesting that it is supported on Dχ

L̃i

(2δi) and

V ◦
i = Ψ[δi, 2δi;d

χ
pi
](u◦i − φ[u◦i (pi), ∂su

◦
i (pi); si], 0) on Dχ

pi
(2δi),

where u◦i is the solution of the Dirichlet problem Lχu
◦
i = 0 on Dχ

pi(3δi)
with boundary data on ∂Dχ

pi(3δi) given by u◦i (e
iθ, s) = sin(θ − θ(pi)), where

θ(pi) :=
1
2m(3π + ξ̃◦i ) (recall 9.17).

Lemma 9.21. The spaces K̂sym�ζ� (as in 9.19) satisfy parts (i)-(v) of As-
sumption 3.11.

Proof. Items (i) and (ii) of 3.11 follow from Definition 9.19, the definition
of δi in 9.3, and Lemma 3.13, where we note we can bound ∂ω

∂s on Ω[si;mi]
by a constant depending on k using that sk < C log k from 7.48.

Next, observe that EL : Ksym[L̃] → Vsym[L̃] splits as a direct sum of

maps, EL =
⊕k

i=1(E�
L̃i

⊕ E⊥
L̃i

), where E�
L̃i

: K�
sym[L̃i] → V�[L̃i] and E⊥

L̃i

:

K⊥
sym[L̃i] → V⊥[L̃i].
Next, by the definitions and using that g = e2ωχ (recall 7.2) we see that

E�
L̃i

is invertible for each i = 1, . . . , k and moreover that

(E�
L̃i
)−1

(
(a+ bds)p∈L̃i

)
= aVi + bV ′

i .(9.22)

Now fix i ∈ {1, . . . , k} with mi = −2m. Since Epi
V ◦
i = u◦i (pi) + dpi

u◦i =
∂u◦

i

∂θ (pi)dθ (recall the definitions of V ◦
i and u◦i in 9.19), it follows from the

definition of u◦i that E⊥
L̃i

is an isomorphism as well.

Next, it is easy to see from (9.20) that the estimates

‖Vi : C
j
sym[m](Cyl, χ̃ )‖ ≤ C(j), ‖V ′

i : Cj
sym[m](Cyl, χ̃ )‖ ≤ C(j)

hold for i ∈ {1, . . . , k}. Now using 9.2 to convert these estimates to estimates
where the norm χ̃ is replaced first with χ and then with g = e2ωχ, we con-
clude that ‖(E�

L̃i

)−1‖ ≤ C(k)m2+β, and analogously, ‖(E⊥
L̃i

)−1‖ ≤ C(k)m2+β,

where we have extended the notation for norms in 3.11(iv) in the obvious
way. Then using from 9.3 that δpi

= 1
9me−2ω(pi) and combining the preced-

ing, we conclude 3.11(iv) holds. Finally, 3.11(v) holds from the preceding
and Taylor’s theorem.

We now define the full family of LD solutions we use. Note that when
ζ⊥ �= 0 the singular sets of the LD solutions are (s,m)-rotational (recall
7.11), but not (s,m)-symmetric, perturbations of the ones with ζ⊥ = 0.
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Definition 9.23 (LD solutions ϕ�ζ�). Given ζ = ζ� + ζ⊥ ∈ BP , we define
using 8.13 the LD solution ϕ = ϕ�ζ� = ϕ[τ �ζ�], where τ �ζ� is as in 9.17.

Definition 9.24. Given p ∈ Cyl, we define Zp : V[p] → R3 by Zp(μ+μ′ds+
μ◦dθ) = (μ, μ′, μ◦).

Green’s functions on Cyl

In order to study the effect of the ζ⊥ parameters on the mismatch of an LD
solution ϕ�ζ� defined in 9.23, we will first study a Gm-invariant LD solution
Φm whose singular set is a single L[s;m]. In particular in 9.28, we estimate
EpΦm for certain points p ∈ Lpar[s]\L[s;m]. Later in 9.29 and 9.31, this will

be used to compare the mismatch of ϕ�ζ� to that of ϕ�ζ��.
Given m ≥ 2, s ∈ R, consider the Gm-invariant LD solution Φm[τ ] (recall

8.13), where ∀p ∈ L[s;m], τ takes the value 1. Because of the symmetries,
there is a function Gm : R2 \Lm → R uniquely determined by the condition

Φm ◦ YCyl(θ, s) = Gm(mθ,m(s− s)) = Gm(θ̃, ŝ ),(9.25)

where Lm := {(2πk,m(s±s)) : k ∈ Z} ⊂ R2, θ̃ := mθ and ŝ := m(s−s). Note
that Gm ∈ C∞(R2 \ Lm) and satisfies Lχ̃Gm = 0, where Lχ̃ = Δχ̃ +m−2V

and χ̃ = d ŝ2 + dθ̃2.

Lemma 9.26. There exist φm ∈ C∞(R2), depending only on ŝ and satisfying
Lχ̃φm = 0, such that on compact subsets of R2\L∞, where L∞ := {(2πk, 0) :
k ∈ Z}, the functions Gm + φm converge smoothly to the singly periodic
harmonic function G∞ : R2 \ L∞ → R defined [1] by

G∞(θ̃, ŝ) =
1

2
log

(
sin2

θ̃

2
+ sinh2

ŝ

2

)
.

Proof. We first consider the average parts Gm,avg and G∞,avg. It follows from
the vertical balancing lemma 8.14 that Gm,avg and G∞,avg have the same
derivative jump at ŝ = 0, that is (recall 7.9)

(∂+Gm,avg + ∂−Gm,avg)(0) = (∂+G∞,avg + ∂−G∞,avg)(0).

For each m ∈ N, there is a unique φm ∈ C∞(R2) such that φm depends only
on ŝ, Lχ̃φm = 0, and

Gm,avg(0) + φm(0) = G∞,avg(0),
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(∂+Gm,avg − ∂−Gm,avg)(0) + ∂φm(0) = (∂+G∞,avg − ∂−G∞,avg)(0).

It follows that Gm,avg+φm converges smoothly to G∞,avg on compact subsets
of R2 \ {̂s = 0}.

In the rest of this proof, denote r := dχ̃
Lm

, Dm := Dχ̃
Lm

(1/5), and D∞ :=

Dχ̃
L∞

(1/5). We define G̃m :=
∑∞

k=0 G̃
(k)
m , for G̃

(k)
m defined as follows: G̃

(0)
m ∈

C∞(Dm \ Lm) is defined by requesting that Lχ̃G̃
(0)
m = 0, G̃

(0)
m depends only

on r, G̃
(0)
m vanishes on ∂Dm, and G̃

(0)
m = log(5r) + O(( r

m)2 log r
m); G̃

(1)
m ∈

C2,β(Dm), on D∞ is the solution of the Dirichlet problem

Δχ̃G̃
(1)
m = −m−2(V − V (0))G̃(0)

m on D∞

G̃(1)
m = 0 on ∂D∞

and on Dm \D∞ solves the analogous Dirichlet problem with V (0) replaced

with V (−2sm); and for k ∈ N, G̃
(k+1)
m ∈ C2,β(Dm) is the solution of the

Dirichlet problem

Δχ̃G̃
(k+1)
m = −m−2V G̃(k)

m on Dm

G̃(k+1)
m = 0 on ∂Dm.

By the preceding and standard regularity theory, it follows that G̃m ∈
C∞(Dm \ Lm), that Lχ̃G̃m = 0 on D, and that on each compact subset

of D∞ \ L∞, G̃m converges smoothly to log(5r) as m → ∞.

We next define decompositions Gm := Ĝm +G′
m and G∞ := Ĝ∞ +G′

∞,
where Ĝm, Ĝ∞ are defined by requesting that they are supported on Dm

and D∞ respectively and satisfy

Ĝm = Ψ[ 110 ,
1
5 ; r](G̃m, 0), Ĝ∞ = Ψ[ 1

10 ,
1
5 ; r](log(5r), 0).

Clearly Ĝm converges smoothly to Ĝ∞ on compact subsets of R2\L∞. Since

Lχ̃G
′
m,osc = −Lχ̃Ĝm,osc and Δχ̃G

′
∞,osc = −Δχ̃Ĝ∞,osc,

by using the smooth convergence of Ĝm to Ĝ∞, separation of variables (ar-
guing as in 8.22, including using the exponential decay away from Lm of the
oscillatory modes), it follows that Ĝ′

m,osc smoothly converges to Ĝ′
∞,osc on

compact subsets of R2. Combined with the preceding analysis of the average
parts, this completes the proof.
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Remark 9.27. Although we do not need it here, one can computeG∞,avg(̂s) =
|̂s|
2 − log 2.

Lemma 9.28. For ξ̃◦ ∈ R with |ξ̃◦| small, the following hold as m → ∞.

(i) Φm(e
i

m
(π+ξ̃◦), s) = Φm(e

iπ

m , s) +O(|ξ̃◦|2).
(ii) ∂Φm

∂s̃ (e
i

m
(π+ξ̃◦), s) = ∂Φm

∂s̃ (e
iπ

m , s) +O(|ξ̃◦|).
(iii) ∂Φm

∂θ̃
(e

i

m
(π+ξ̃◦), s) = ξ̃◦(−1

4 + o(1)) +O(|ξ̃◦|2).

Proof. For item (i), we have via Taylor’s theorem

Φm(e
i

m
(π+ξ̃◦), s) = Gm(π + ξ̃◦, 0)

= Gm(π, 0) + ξ̃◦
∂Gm

∂θ̃
(π, 0) +O(|ξ̃◦|2) = Φm(e

iπ

m , s) +O(|ξ̃◦|2),

where we have used that ∂Gm

∂θ̃
(π, 0) = 0 by symmetry. This proves (i). Next,

we have

∂Φm

∂s̃
(e

i

m
(π+ξ̃◦), s) =

∂Φm

∂s̃
(e

iπ

m , s) + ξ̃◦
∂2Gm

∂s̃∂θ̃
(π, 0) +O(|ξ̃◦|2),

and item (ii) follows from this and 9.26. Finally, in similar fashion we have

∂Φm

∂θ̃
(e

i

m
(π+ξ̃◦), s) =

∂Gm

∂θ̃
(π + ξ̃◦, 0) = ξ̃◦

∂2Gm

∂θ̃2
(π, 0) +O(|ξ̃◦|2),

where we have used that ∂Gm

∂θ̃
(π, 0) = 0 by symmetry. Item (iii) then follows

by using Lemma 9.26 and the direct calculation ∂2G∞

∂θ̃2
(π, 0) = −1/4.

Matching estimates

In the last part of this section, given ζ = ζ�+ζ⊥ ∈ BP , we will need to com-
pare the LD solutions ϕ�ζ�� and ϕ�ζ� defined in 9.5 and 9.23 respectively.
To avoid confusion, we will denote hereafter ϕ̃ = ϕ�ζ� and ϕ = ϕ�ζ��. It
will be useful to consider the decompositions

ϕ̃ =

k∑
i=1

ϕ̃i, ϕ =

k∑
i=1

ϕi,

where ϕ̃i, ϕi are Gm-invariant and have singular sets L̃i and Li.
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Corollary 9.29. Suppose i ∈ {1, . . . , k} and mi = −2m. Then (recall 9.24)

Zp̃i
Mp̃i

ϕ̃i −Zpi
Mpi

ϕi = τi

(
O(|ξ̃◦i |2),mO(|ξ̃◦i |),−

m

4
ξ̃◦i (1 + o(1) +O(|ξ̃◦i |))

)
.

Proof. We have ϕ̃i = ϕ̃i++ϕ̃i− and ϕi = ϕi++ϕi−, where ϕ̃i+, ϕ̃i−, ϕi+, ϕi−
are Hm-invariant and the singular sets of ϕ̃i+ and ϕi+ are respectively Hmp̃i
and Hmpi. By symmetry, we have

Zp̃i
Mp̃i

ϕ̃i+ = Zpi
Mpi

ϕi+.

Next, from Lemma 9.28, we have (recall 2.9)

Zp̃i
E p̃i

ϕ̃i− −Zpi
Epi

ϕi− = τi
(
O(|ξ̃◦i |2),mO(|ξ̃◦i |),−

m

4
ξ̃◦i (1 + o(1) +O(|ξ̃◦i |))

)
.

The conclusion now follows by combining these equations.

Lemma 9.30. Given i, j ∈ {1, . . . , k} with i �= j, the following hold.

(i) Zp̃i
E p̃i

(ϕ̃j − ϕj) = τj(O(e−
m

Ck ),mO(e−
m

Ck ),mO(e−
m

Ck )).

(ii) Zp̃i
E p̃i

ϕj −Zpi
Epi

ϕj = τj(O(e−
m

Ck ),mO(e−
m

Ck ),mO(e−
m

Ck )).

Proof. Note first that ϕ̃j = ϕj if |mj | = m, so (i) holds trivially in that case.
Now suppose that mj = −2m. Since ϕ̃j,avg = ϕj,avg, we need only establish
(i) when ϕ̃j − ϕj is replaced with ϕ̃j,osc − ϕj,osc. The required estimate in
(i) now follows from Lemma 8.22 and arguing as in the proof of 8.28, using

7.48(ii) to see that |sj − si| > |j−i|
Ck . Item (ii) follows in similar fashion from

8.22.

Lemma 9.31 (Matching Estimates for ϕ�ζ�). Let ζ = ζ� + ζ⊥ ∈ BP ,
ϕ̃ = ϕ�ζ�, ϕ = ϕ�ζ�� be as in 9.23 and 9.5. For each i ∈ {1, . . . , k} such
that mi = −2m, the following holds.

1

τi
Zp̃i

Mp̃i
ϕ̃ =

1

τi
Zpi

Mpi
ϕ +

(
O(|ξ̃◦i |2 + e−

m

Ck ) , mO(|ξ̃◦i |+ e−
m

Ck ) ,

− m

4
ξ̃◦i (1 + o(1)) +O(|ξ̃◦i |2 +me−

m

Ck )
)
.

Proof. We have Zp̃i
Mp̃i

ϕ̃ = Zpi
Mpi

ϕ+ (I) + (II) + (III), where

(I) := Zp̃i
Mp̃i

ϕ̃i −Zpi
Mpi

ϕi, (II) :=
∑
j �=i

Zp̃i
E p̃i

(ϕ̃j − ϕj),

(III) :=
∑
j �=i

Zp̃i
E p̃i

ϕj −Zpi
Epi

ϕj .
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The conclusion now follows from dividing through by τi, combining 9.29 and
9.30 to estimate (I), (II), and (III), and using from 9.14 that τj/τi = τ ′j/τ

′
i =

O(1).

Definition 9.32. Let ζ ∈ BP . Define a linear map Zζ : Vsym[L̃] → P by

requesting that Zζ has the direct sum decomposition Zζ = Z�
ζ ⊕ (

⊕k
i=1 Z

⊥i
ζ ),

where Z�
ζ : V�[L̃] → P� and Z⊥i

ζ : V⊥[L̃i] → P⊥
i are defined as follows:

given λ� = (τp(μp + |mi|μ′
pds))p∈L̃, define

Z�
ζ (λ�) =

(
μ1,−

2F φ
1

|m1|
∂/μ, 2μ′

)
,

where μ = (μi)
k
i=1, μ

′ = (μ′
i)
k
i=1 are such that ∀p ∈ L̃i, μp = μi, μ

′
p = μ′

i.

Given i ∈ {1, . . . , k}, we define Z⊥i
ζ to be the trivial map if |mi| = m, and

if mi = −2m we define

Z⊥i
ζ (λ⊥

i ) := −4μ̃◦
p̃i
, where λ⊥

i = (τimμ̃◦
p̃ dθ)p̃∈L̃i

.

Proposition 9.33. Let ζ = ζ� + ζ⊥ ∈ BP and ϕ̃ = ϕ�ζ� be as in 9.23.
There is an absolute constant C (independent of c ) such that for m large
enough (depending on c ), the map Zζ defined in 9.32 satisfies (recall 9.4)

ζ − Zζ(ML�ζ�ϕ̃) ∈ CB1
P .(9.34)

Proof. Define μ̃ = (μ̃i)
k
i=1, μ̃

′ = (μ̃′
i)
k
i=1, and μ̃◦ = (μ̃◦

i )
k
i=1 by requesting

that for i = 1, . . . , k,

1

τi
Zp̃i

Mp̃i
ϕ̃ = (μ̃i, |mi|μ̃′

i,mμ̃◦
i ).

Note that μ̃◦
i = 0 when |mi| = 1 by symmetry. By the definitions, (9.34) is

equivalent to the following inequalities, where the final one holds only for
those i where mi = −2m:

(9.35) |ζ1 − μ̃1| < C,

∣∣∣∣∣σ +
2F φ

1

|m1|
∂/μ̃

∣∣∣∣∣
�∞

≤ C/m,

|ξ − 2μ̃′| ≤ C/m, |ξ̃◦i + 4μ̃◦
i |/ ≤ Ce−m/c′ .

The conclusion now follows from combining the estimates in 9.10 and 9.31
and taking c′ large enough in terms of k and the constant C in 9.31.
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Main results of Part II

Lemma 9.36 (Estimates on the LD solutions). Let ϕ�ζ� be as in Definition

9.23. Then

(i) mk ∼
C(c )

| log τi|, and C(c ) > 1 depends only on c .

(ii) τ1�ζ; k◦,m� ∼
C(c )

τ1�0; k◦,m�, and C(c ) > 1 depends only on c .

(iii) On Cyl \
⊔

p∈LDΣ,χ
p (τ2αp ) we have ϕ > τ1cmk for some c > 0.

(iv) For i ∈ {1, . . . , k}, ‖ 1
τi
ϕ : C2,β(Dχ

pi(2δi) \Dχ
pi(δi), χ̃)‖ ≤ Cmk.

(v) ‖ϕ : C3,β(Σ \
⊔

p∈LDΣ,χ
p (τ2αp ), χ̃)‖ ≤ Cτ1(mk + (τ2αmin)

−3−β| log τ2αmin|).

Proof. (i) follows from the definitions of τi in (9.6) and 9.17, using 7.48 and

9.14. For (ii), we denote for convenience in this proof φ = φ[σ/ + σ : k◦,m]

and φ′ = φ[σ/ : k◦,m]. We have∣∣∣∣log τ1[ζ; k◦,m]

τ1[0; k◦,m]

∣∣∣∣ =
∣∣∣∣∣ζ1 + |m1|

2

F φ′

1 − F φ
1

F φ′

1 F φ
1

∣∣∣∣∣ ≤ Ckc ,

where the equality uses (9.6) and the estimate uses 7.63, 7.48(i), and 9.4.

This establishes (ii).

For items (iii)-(v), note that it suffices to prove each estimate when

ϕ�ζ� is replaced with ϕ�ζ�� as defined in 9.5, since the former is a small

perturbation of the latter (recall 9.17 and 9.23).

Estimating Φ′ using Lemma 8.28 and using 8.8, 9.14, and (9.6) to bound

Ĝ, we have

|Ĝ| < αCmk and |Φ′| < C on Cyl \
⊔
p∈L

DΣ,χ
p (τ2αp ).

On the other hand, it is easy to see from Definition 8.19, 7.48(iii), and

8.15(ii) that there is an absolute constant c > 0 such that Φ̂ > cmk, so (iii)

follows from the decomposition (recall 8.19) ϕ�ζ�� = τ1Φ = τ1(Φ̂ + Φ′ + Ĝ)

by taking m large enough and α small enough.

We next prove (iv). By 8.15(iii), 8.19, and 9.5, on the domain under

consideration we have

1

τi
ϕ = φ

[
|m1|
2F φ

1

(e−
∑i−1

l=1 σl),
|mi|
2

ξi; si

]
+

1

τ ′i
Φ′ + Ĝi.
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The estimate in (iv) now follows from this decomposition using 7.48 and
8.11 to estimate the φ term, 8.29(i) and 9.14 to estimate 1

τ ′
i
Φ′, and 8.23(i)

to estimate Ĝi.
For (v), by Lemmas 8.8 and 8.23, we have∥∥∥Ĝ : C3,β

sym

(
Cyl \Dχ

L(τ
2α
min), χ

)∥∥∥ ≤ C(τ2αmin)
−3−β| log τ2αmin|.(9.37)

Combined with the preceding estimates, this completes the proof of (v).

Lemma 9.38. There exists a family of diffeomorphisms FΣ
ζ : Σ → Σ, ζ ∈

BP satisfying 5.2(a)-(b).

Proof. The proof is essentially the same as the first part of the proof [33,
Lemma 6.7], but we give the details for completeness. Let ζ ∈ BP . For ease
of notation, denote the positive s-coordinates of the circles Lpar�0� by s and
likewise the coordinates of the circles in Lpar�ζ� by s′. We define FΣ

ζ : Σ → Σ

to be an O(2) × Z2 covariant diffeomorphism satisfying FΣ
ζ (XΣ(p, s)) =

XΣ(p, fζ(s)), where fζ ∈ C∞(R) is a diffeomorphism satisfying fζ(s) =
s′i − si +s on (si − 5δ, si +5δ) for each i = 1, . . . , k. By choosing fζ carefully,
we can ensure 5.2(a) and (b) hold.

Theorem 9.39 (Theorem B). Given a background as in 2.1 satisfying 7.2,
k◦ ≥ kmin

◦ (recall 7.23), and m ∈ {m,−m,−2m}k where k = �k◦/2�, there
are positive constants c , m̂ depending only on k◦ such that if m > m̂ (im-
plying 9.18), then 5.2 holds with ζ ∈ BP := cB1

P as in 9.4, FΣ
ζ as in 9.38,

L�ζ� ⊂ Lpar[s[σ/+ σ : k◦]] and τ �ζ� as in 9.17, ϕ�ζ� as in 9.23, δp�ζ� as in

9.3, K̂sym�ζ� as in 9.19, and Zζ as in 9.32.

Proof. Clearly P as defined in 9.4 is finite dimensional and BP ⊂ P is
compact and convex.

We now check the properties 5.2(a)-(e): (a)-(b) follow from 9.38. Next,
we verify that the LD solutions ϕ�ζ� satisfy 3.15: the smallness of τmax in
3.15(i) follows from 9.36(i), and 3.8 holds from (8.5) and taking m large
enough. Convention 3.15(ii) follows from 9.36(i) by taking m large enough,
and 3.15(iii) follows from 9.14 and 9.36(i) also by taking m large enough.

We will prove 3.15(iv)-(v) by suitably modifying the estimates in 9.36(iv)-

(v). For (iii), first note that by 3.13 and 9.3, ∂DΣ,g
pi (δpi

) ⊂ DΣ,χ
pi (2δ). Then,

using 9.2, we can switch the metric with which the norm on the left hand
side of 9.36(iv) is computed with respect to from χ̃ to χ and then from χ
to g = e2ωχ at the cost of multiplying the right hand side by powers of m
and constants depending on the norms of ω. 3.15(iv) then follows because
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we can ensure that any polynomial in m of bounded degree is bounded by

τ
−α/9
pi by taking m large enough and using 9.36(i).

3.15(v) follows in an analogous way: first, using the smallness of τpi
and

the boundedness of ω and its derivatives in the χ metric in the vicinity of L,
we have that DΣ,χ

pi (τ2αpi
) ⊂ DΣ,g

pi (ταpi
). Next, note that the estimate in 3.15(v)

holds when Σ in the domain is replaced with Ω := Cyl[−sk−3/m,sk+3/m] by
using Lemma 9.2 to convert the estimate in 9.36(v) to one where the metric
χ̃ is replaced with g at the cost of powers of m and constants depending on
the norms of ω on Ω. Finally, on Σ \ Ω, note that ϕ = τ1(Φ̂ + Φ′), so using
the exponential decay of Φ′ away from Lpar from Lemma 8.28 and that Φ′

satisfies LχΦ̂ = 0 on Σ \Ω we conclude the estimate 3.15(v) on Σ \Ω. Next,
3.15(vi) follows from 9.36(iii) and that ϕ = τ1Φ using the smallness of τmax.
This finishes the verification of 3.15 and thus the verification of 5.2(c).

Next, the uniformity condition 5.2(d) follows from 9.36(ii) and 9.14.
Finally, the prescribed unbalancing condition 5.2(e) follows from Proposition
9.33 by taking c large enough in terms of the constant C in 9.33.

We now construct embedded minimal doublings of Σ by combining The-
orems 9.39 and 5.7:

Theorem 9.40 (Theorem C). With the same assumptions and notation as
in Theorem 9.39, there are ζ̆ = (ζ̆, κ̆) ∈ BP × BV�0� (recall 9.4) and φ̆ ∈
C∞(M�ζ̆�) (recall 5.4) satisfying ‖φ̆‖2,β,γ,γ′;M�ζ̆� ≤ τ

1+α/4
max (recall 4.2), such

that the normal graph M̆ := (M�ζ̆�)
φ̆

is a Gm-invariant closed embedded
minimal doubling over Σ in N (recall 1.1), which contains one catenoidal
bridge and has one doubling hole close to each point of L�ζ̆� (recall 9.17), is
of genus 2gΣ − 1 + |L| where gΣ is the genus of Σ and |L| = |L�ζ̆�| is as in
7.12(iv), and satisfies the remaining conclusions of Theorem 5.7. Moreover
for each fixed k◦, the surfaces M̆ converge to 2Σ in the sense of varifolds as
m → ∞.

Proof. Since Σ is closed and embedded (recall 4.1) and Assumption 5.2 holds
by 9.39, we may apply Theorem 5.7 to conclude the existence of M̆ as above,
for all large enough m. M̆ has the claimed genus because the construction
connects two copies of Σ by |L| bridges.

Remark 9.41. Theorem 9.40 applies also in the case studied in [33] for
the background (Σ, N, g) with Σ = S2 ⊂ N = S3, providing new mini-
mal doublings even for that background, because of the ability to prescribe
mi ∈ {m,−m,−2m} ∀i ∈ {1, . . . , k}, whereas the doublings in [33] had all
mi = m.
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Part III: New minimal surfaces and self-shrinkers via
doubling

10. Doubling the spherical shrinker and the Angenent torus

Definition 10.1. We call the minimal hypersurfaces in
(
Rn+1, e−

|x|2
2n δij

)
self-shrinkers.

The following well-known lemma catalogs several equivalent characteri-
zations of self-shrinkers:

Lemma 10.2 (cf. [10, Section 1]). Let Σn ⊂ Rn+1 be a smooth oriented
hypersurface. The following are equivalent.

(i) H = 〈x,ν〉
2 .

(ii) The one-parameter family of hypersurfaces Σt : Σ × (−∞, 0] → Rn+1

defined by Σt(p, t) =
√
−tp flows by mean curvature.

(iii) Σ ⊂
(
Rn+1, e−

|x|2
2n δij

)
is minimal.

(iv) Σ ⊂ Rn+1 is a critical point for the area (or volume) induced by the

Gaussian metric e−
|x|2
2n δij.

In this section we consider the ambient Riemannian three-manifold in
the background is taken to be (N, g) = (R3, e−|x|2/4δ).

The spherical shrinker

By 10.2(i) S2shr := S2(2) is a self-shrinker, and is clearly O(2)×Z2-invariant
in the sense of 7.2. The Jacobi operator is [30, Lemma C.2]

LS2
shr

:= e
(
ΔS2(2) + 1

)
=

e

4

(
ΔS2(1) + 4

)
.

Note that kerLS2
shr

is trivial since 4 is not an eigenvalue of ΔS2(1). Next, note
that XS2

shr
: Cyl → Σ and ω defined by

XS2
shr
(p, s) = 2(sech s p, tanh s), e2ω(s) = 4e−1 sech2 s(10.3)

are as in the conclusion of Lemma 7.4, and that V = 4 sech2 s (recall 7.18).

Lemma 10.4. φeven and φend satisfy the following (recall 7.32 and 7.30):

(i) φeven is strictly decreasing on [0,∞), and has a unique root sφeven

root ∈
(0,∞).
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(ii) φend(0) < 0, φend is strictly increasing on [0,∞), and has a unique

root sφend

root ∈ (0, sφeven

root ).

Proof. A straightforward consequence of the fact that 4 is between the first
two nonzero eigenvalues (2 and 6 respectively) of the Laplacian on S2(1).

Theorem 10.5 (Doublings of the spherical shrinker S2shr). Given any integer
k◦ ≥ 2, any m ∈ N large enough depending only on k◦, and any m ∈
{m,−m,−2m}�k◦/2�, there is a Gm-invariant closed embedded doubling M̆ of
S2shr as a self-shrinker for the mean curvature flow, containing one catenoidal
bridge and with one doubling hole close to each point of L ⊂ Lpar, with Lpar

the union of k◦ parallel circles in S2shr and L a finite set whose number of
points and their alignment at each circle is prescribed by m as in 9.17 and
9.5. The genus of M̆ is |L| − 1 with |L| as in 7.12(iv). Finally as m → ∞
with fixed k◦ the doublings M̆ converge in the varifold sense to S2shr covered
twice.

Proof. It follows that kmin
◦ = 2 by combining Lemma 7.61(ii) and 10.4(ii).

The discussion above shows that 7.2 holds, so the existence of the doublings
follows immediately from Theorem 9.40.

The Angenent torus

In [2], Angenent constructed an embedded and O(2)× Z2-invariant (in the
sense of 7.2(ii)) self-shrinking torus, which we denote in this subsection by
Tshr.

Lemma 10.6. Ric(ν, ν) > 0 on Tshr.

Proof. We have (see e.g. the proof of [30, Proposition C.2])

Ric(ν, ν) = e−
|x|2
4

(
1 +

(x · ν0)2
16

− |x|2
16

)
,

where above x and ν0 are the position vector field and the Euclidean unit
normal to Tshr and the norms and dot product are computed with respect
to the Euclidean metric. From [45, Proposition 2.1] (see also [3]), we have
that maxx∈Tshr

|x| < 3.4 and the conclusion follows.

Theorem 10.7 (Doublings of the Angenent torus Tshr). There exists k
min
◦ ∈

N such that if k◦ ≥ kmin
◦ , m ∈ N is large enough depending only on k◦, and

m ∈ {m,−m,−2m}�k◦/2�, there is a Gm-invariant doubling M̆ of Tshr as a
self-shrinker for the mean curvature flow, containing one catenoidal bridge
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and with one doubling hole close to each point of L ⊂ Lpar, with Lpar the
union of k◦ parallel circles in S2shr and L a finite set whose number of points
and their alignment at each circle is prescribed by m as in 9.17 and 9.5.
The genus of M̆ is |L| + 1 with |L| as in 7.12(iv). Finally as m → ∞ with
fixed k◦ the doublings M̆ converge in the varifold sense to S2shr covered twice.

Proof. In order to apply Theorem 9.40, we need only check that 7.2 holds.
7.2(i)-(ii) hold by the discussion above. It follows from 10.6 that |A|2 +
Ric(ν, ν) > 0 on Tshr and therefore that 7.2(iii) holds. Finally, it was checked
in [45, Theorem 2.7] that the intersection of kerLTshr

with the set of O(2)×
Z2-invariant functions on Tshr is trivial.

Remark 10.8. Although we have not done so here, it would be interesting
to determine the minimum number kmin

◦ of circles (recall 7.23) associated to
the doublings of Tshr in Theorem 10.7.

11. Doubling the catenoid

In this section, let (N, g) be Euclidean three-space and Σ be the Euclidean
catenoid K parametrized by XK : Cyl → R3, where XK(p, s) = (cosh s p, s).
Clearly (Σ, N, g) is O(2)×Z2-invariant in the sense of 7.2(ii), andXK satisfies
7.4(ii) with I = R. Moreover, V and ω as in 7.6 and 7.18 satisfy

V (s) = 2 sech2 s, eω(s) = cosh s.(11.1)

Remark 11.2. The linearized operator LS2 = ΔS2 +2 of an equatorial sphere
S2 ⊂ S3 is conformally related to LΣ by

LΣ = ΔΣ + |A|2 = |A|2
2

(
Δν∗gS2 + 2

)
,

where ν : Σ → S2 is the Gauss map, so RLD and LD studied in [33] can be
pulled back by ν to LD solutions on Σ. Because of this, we may use results
from sections 7 and 8 in this section.

Definition 11.3 ([33, 2.18]). Define φeven ∈ C∞
|s| (Cyl) and φodd ∈ C∞

s (Cyl)
by

φeven(s) = 1− s tanh s, φodd(s) = tanh s.(11.4)

Lemma 11.5 ([33, 2.19]). φeven and φodd are even and odd in s respectively
and satisfy Lχφeven = 0 and Lχφodd = 0. φeven is strictly decreasing on
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[0,∞) and has a unique root sroot ∈ (0,∞). φodd is strictly increasing in R.
The Wronskian W [φeven, φodd] satisfies

W [φeven, φodd](s) := φeven(s)∂φodd(s)− ∂φeven(s)φodd(s) = 1.

Proof. Straightforward calculation using Definition 11.3 and (7.20).

Remark 11.6. By straightforward computations (recall Lemma 11.5),

H(s) =
(
F φodd

+ (s)− F
)
φodd(s)φeven(s) +

(
− F φeven

+ (s) + F
)
φeven(s)φodd(s).

Note also that when s ≥ 0, H[F ; s](s) = φ[1, F ; s](s) (recall 8.9).

Notation 11.7. Given φ̂[F1;σ] as in 7.36, we define for i ∈ {1, . . . , k − 1}
numbers Ai, Bi by φ̂[F1;σ] = Aiφeven +Biφodd on Cyl[si,si+1].

In contrast to the situation for the smooth at the ends K-RLD solution
φ̂[σ : k◦], φ̂[F ;σ] as defined in 7.36 above becomes severely distorted on
Cyl(sk,sk+1) as F ↗ ak,σ. The following lemma makes this precise.

Lemma 11.8. Let φ̂ = φ̂[F1;σ] be as in 7.36, where F ∈ [ak+1,σ, ak,σ). The
following hold.

(i) limF↗ak,σ
si = si[ak,σ;σ] for i = 1, . . . , k and limF↗ak,σ

sk+1 = ∞.

(ii) limF↗ak,σ
φ̂(sk+1) = 0 and limF↗ak,σ

φ̂(sk+1)

φ̂(sk)
= 0.

Proof. (i) follows immediately from Proposition 7.36(iii). Since by 7.15 F φ̂
+(s) =

∂(log φ̂) on any domain on which φ̂ is smooth, we have by integrating on
(sk, sk+1) that

log

(
φ̂(sk+1)

φ̂(sk)

)
= −

∫ sk+1

sk

F φ̂
−(s) ds.(11.9)

Reparametrizing the integral in (11.9) by
(
F φ̂
−|[si,si+1]

)−1
(recall 7.31(i)), we

have

(11.10) log

(
φ̂(si+1)

φ̂(si)

)
= (I) + (II), where

(I) := −
∫ 0

−F
̂φ
k+

f

V (s(f)) + f2
dF, (II) := −

∫ F
̂φ
k+1−

0

f

V (s(f)) + f2
df.



410 Nikolaos Kapouleas and Peter McGrath

Note that (I) and (II) have opposite signs. To estimate (I), recall from the

proof of 7.36 that F φ̂
+(s) < F φend

+ (s) on (sk, s
′), where s′ ∈ (sk, sk+1) is defined

by requesting that F φ̂
+(s

′) = 0. Using 7.30, we conclude that F φ̂
+(s) < CV (s)

on (sk, s
′), and from this we estimate |(I)| < CF φ̂

k+. For (II), we estimate

(11.11) |(II)| >
∫ F

̂φ
k+1−

0

f

V (s′) + f2
df =

1

2
log

(
1 +

F φ̂
k+1−
V (s′)

)
.

Since limF↗ak,σ
s′ = ∞, it follows that limF↗ak,σ

V (s′) = 0 and we conclude
the proof of (ii).

Lemma 11.12. Let σ = (σ, ξ) ∈ �1
(
RN

)
⊕ �∞

(
RN

)
satisfy |ξ|�∞ < 1

10 .
There exist constants ε1 > 0, C1 > 0, depending only on |σ|�1 , such that for
k ∈ N, we have (recall 7.36) ak,σ+ε2/k

2 < ak−1,σ and on [ak,σ, ak,σ+ε2/k
2]

we have ∂Ak[F ;σ]
∂F ∼

C1

−k (Recall also Ak[ak,σ;σ] = 0).

Remark 11.13. Lemma 11.12 is similar to [33, Lemma 7.4], except that in
the present case, we are interested in the behavior of Ak[F ;σ] to the right
of ak,σ instead of to the left, as was the case in [33].

Proof. We omit the proof because it is almost identical to the proof of [33,
Lemma 7.4].

Definition 11.14. Let ε2 := ε1/C1 > 0 with ε1 and C1 > 0 as in the
statement of Lemma 11.12. Given k◦ ∈ 2N and k := k◦/2, σ as in 11.12,

and a ∈ (−ε2/k, 0], we define φ̂[σ, a : k◦] := φ̂[F ;σ], where F ∈ [ak,σ, ak,σ +

ε2/k
2] and Ak[F ;σ] = a. If a = 0, we may suppress τ and write φ̂[σ, 0 :

k◦] = φ̂[σ : k◦].

By modifying the proof of 11.12 and statement of 11.14, we can analo-
gously define for a ∈ (ε2/k, 0] RLD solutions φ̂[σ, a : k◦] and k◦ odd, k◦ > 1.
Moreover, by a straightforward modification of the statement and proof of
8.15, we construct for k◦ ∈ N satisfying k◦ > 1 LD solutions Φ�σ, a : k◦,m�

whose average is a multiple of φ̂[σ/ + σ, a : k◦]. For each a ∈ (−ε2/k, 0], we
define LD solutions ϕ�ζ�� and ϕ�ζ� as in 9.5 and 9.23 but with the modified
definition of Φ�σ, a : k◦,m�.

Because Σ = K is noncompact, we must modify the definition of the
initial surfaces (recall 3.17), and we will need the following.

Definition 11.15. We define Σcore ⊂ Σ = K to be the convex hull in the χ
or g metric (recall 2.3) of Lpar[sk + 1], and also Σend := Σ \ Σcore.
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Definition 11.16. Given ϕ = ϕ�ζ� as above and κ as in 3.18 we define the
smooth initial surface

M = M [ϕ,κ] := GraphR
3

Ω

(
ϕgl
+

)⋃
GraphR

3

Ω

(
− ϕgl

−
)⋃ ⊔

p∈L

qK[p, τp, κp],

where Ω := Σ \
⊔

p∈LDΣ
p (9τp) and the functions ϕgl

± = ϕgl
±[ϕ,κ] : Ω → R are

defined as follows:

(i) On Σcore, ϕ
gl
± is defined as in (i)-(ii) of 3.17.

(ii) On Σend, ϕ
gl
± := Ψ[1, 2;dΣ,χ

Lpar[sk]
](ϕ,ϕ±

end), where ϕ±
end ∈ C∞(Σend) are

the unique functions whose graphs GraphR
3

Σend
(±ϕ±

end) over Σend are
catenoidal ends with vertical axes and initial values

ϕ±
end(pk) = ϕavg(pk),

∂ϕ±
end

∂s
(pk) = lim

s↘sk

∂ϕavg

∂s
.

We define also Mend := GraphR
3

Σend
(ϕgl

+) ∪GraphR
3

Σend
(ϕgl

−)

and Mcore := GraphR
3

Σcore
(ϕgl

+) ∪GraphR
3

Σcore
(ϕgl

−).

We need now to update the definition of the global norms to deal with
the ends.

Definition 11.17. For k ∈ N, β̂ ∈ (0, 1), γ̂ ∈ R, we define

‖u‖
k,β̂,γ̂,γ̂′;M

:= ‖u‖
k,β̂,γ̂,γ̂′;Mcore

+ ‖u : Ck,β̂(Mend,
1

2
|A|2g)‖,

where the first term on the right hand side is as in 4.2 and |A| above is the
length of the second fundamental form on Mend.

Lemma 11.18. ‖H − JM (w+, w−)‖0,β,γ−2,γ′−2;M ≤ τ
1+α/3
max .

Proof. Arguing as in the proof of 4.6 and using that the graphs of ±ϕ±
end

have zero mean curvature, we need only estimate the mean curvature on the
transition region in 11.16(ii). We have via 11.16(ii) that

ϕgl
± = ϕ+Ψ[1, 2;dΣ,χ

Lpar[sk]
](0, ϕ±

end − ϕ) on Σend ∩DΣ,χ
Lpar[sk]

(2).

Using 3.15(v) and the initial values in 11.16(ii), note that ‖ϕ±
end − ϕ :

Ck(Σend ∩DΣ,χ
Lpar[sk]

(2))‖ ≤ τ
3/2
max. It now follows expanding H ′

± in linear and

higher order terms as in the proof of 3.19 that

‖H ′
± : C0,β(Σend ∩DΣ,χ

Lpar[sk]
(2), g)‖ ≤ τ3/2max,
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where H ′
± denotes the pushforward of the mean curvature of the graph of

ϕgl
± to K by ΠK. This concludes the proof.

Definition 11.19. We define smooth surfaces Σ± := Σcore∪GraphΣend
(ϕ′

±),
where ϕ′

± ∈ C∞(Σend) are defined by requesting that ϕ′
± := ±ϕend on Σend \

DΣ
Lpar[sk]

(2) and ϕ′
± := Ψ

[
1, 2;dΣ,χ

Lpar[sk]

](
0,±ϕend

)
on Σend.

Remark 11.20. Note that in the metric h := 1
2 |A|2g the ends of Σ± are

isometric to spherical caps with the poles removed.

We next modify the definition of Rappr
M to deal with the ends. For this,

let E ∈ C0,β
sym[m](M), and let E′

± be as in 4.12. Using 4.1, 3.11, and that h

is very close to the round metric on S2, there are unique u′± ∈ C2,β
sym[m](Σ±)

and w±
E,1 ∈ Ksym[m][L] such that

(Δh + 2)u′± =
1

2
|A|2

(
E′

± + w±
E,1

)
on Σ±.(11.21)

Notation 11.22. If f± are functions supported on Σ± \
⊔

p∈LDΣ
p (bτp), we

define JM (f+, f−) to be the function on M supported on M \
⊔

p∈LDR
3

p (9τp)

defined by f+ ◦ ΠΣ+
on the graph of ϕgl

+ and by f− ◦ ΠΣ− on the graph of

−ϕgl
−.

Note in particular 11.21 implies

(11.23)
LΣu

′
± = E′

± + w±
E,1 on Σcore and

LMJM (u′+, u
′
−) = E′

± on Mend \DR
3

Lpar[sk]
(3).

We define Rappr
M exactly as in 4.17, except using the modified definitions of

u′± and JM just discussed. Further, we define RM as in the statement of
4.18 and R′

M as in the proof of 4.21.
Define (u,w+

H , w−
H) = −R′

M (H−JM (w+, w−)). Using 11.18, the proof of
4.18, 11.17, and (11.21), it is not difficult to see (using separation of variables
to estimate u on the ends) that

‖w±
H : C0,β(Σ, g)‖+ ‖u‖2,β,γ,γ′;M ≤ τ1+α/4

max .(11.24)

We next modify the estimates of the quadratic terms. Given φ ∈ C2,β(M)

with ‖φ‖2,β,γ,γ′;M ≤ τ
1+α/4
max , we have by arguing as in the proof of 5.1 and

using 11.17 that

‖Hφ −H − LMφ‖0,β,γ−2,γ′−2;M ≤ τ3/2max.(11.25)
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Finally, define (uQ, w
+
Q, w

−
Q) = −R′

M (Hφ − H − LMφ). Arguing as above,
we have

‖w±
Q : C0,β(Σ, g)‖+ ‖uQ‖2,β,γ,γ′;M ≤ τ4/3max.(11.26)

Lemma 11.27. There exists a family of diffeomorphisms FK

ζ : K → K,
ζ ∈ BP satisfying 5.2(a)-(b).

Proof. We omit the proof, which is very similar to the proof of 9.38.

Theorem 11.28 (Main Theorem for doublings of the catenoid). Given any
integer k◦ ≥ 2, any m ∈ N large enough depending only on k◦, any m ∈
{m,−m,−2m}�k◦/2�, and any a ∈ (−ε2/k, 0] (recall 11.14), there is a Gm-
invariant complete embedded minimal doubling M̆ of K in R3, containing one
catenoidal bridge and with one doubling hole close to each point of L ⊂ Lpar,
with Lpar the union of k◦ parallel circles in K with latitudes varying with
a, and with the number of points of L and their alignment at each circle
prescribed by m as in 9.17 and 9.5. Moreover, M̆ has finite total curvature,
its genus is |L| − 1 with |L| as in 7.12(iv), and has exactly four ends. Its
ends are asymptotically catenoidal, and when a = 0 of equal asymptotic
size. Finally as m → ∞ with fixed k◦ the minimal doublings converge in the
appropriate sense to K covered twice.

Proof. We apply the steps of the proofs of Theorems 5.7 and 9.39—with
small modifications because K is noncompact. We first check that Assump-
tion 7.2 holds, except for the condition in 7.2(i) that Σ is closed. Clearly
7.2(ii)-(iii) hold. Using the Gauss map, we can conformally identify K with
a twice punctured sphere (recall 11.2), and therefore 7.2(iv) holds when
considering solutions which extend to the poles of the sphere.

By a straightforward modification of the arguments in the proof of 9.39,
Assumption 5.2 holds, where FK

ζ are as in 11.27 and the isomorphisms Zζ

are as in 9.32. We may then apply the steps in the proof of Theorem 5.7
except that we use the estimates (11.24) and (11.25) to replace items (2)
and (4) in the proof of 5.7. This concludes the proof.

Remark 11.29. Note that Theorem 11.28 produces a one-parameter family
of doublings, with the parameter a ∈ (−ε2/k, 0] (as in 11.14) governing the
latitudes of the outermost circles where catenoidal bridges are placed.

Remark 11.30. It is possible to construct doublings of K with k◦ = 1. How-
ever, these would necessarily be immersed but not embedded because the
corresponding LD solutions would be negative on the ends of K (recall 7.37,
11.3, and 11.7), so we do not study these examples in detail.
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12. Doubling the critical catenoid

Definition 12.1. Let (Mn, g) be a Riemannian manifold and Ω ⊂ M be a
domain with smooth boundary. A smooth, properly immersed (in the sense
that intersections with compact subsets of Ω are compact) submanifold Σk ⊂
Ω is a free boundary minimal submanifold if its mean curvature vanishes,
∂Σ ⊂ ∂Ω, and Σ is orthogonal to ∂Ω along ∂Σ.

Let B3 := {x ∈ R3 : |x| ≤ 1 } equipped with the standard Euclidean
metric. By standard calculations the linearized equation for free boundary
minimal surfaces in B3 at a free boundary minimal surface Σ in Ω := B3

defined as in 12.1, with unit normal (smooth) field ν and unit outward
conormal field η along ∂Σ, is given (see for example [31, 2.25, (2.31) and
(2.41)]) by the boundary value problem

(12.2)

⎧⎨⎩
Δu+ |A|2u = 0 on Σ,

−∂u

∂η
+ u = 0 on ∂Σ.

Definition 12.3. Define I := (−sroot, sroot) (recall 11.5) and an immersion
XK∂

: CylI → R3 by

(12.4) XK∂
=

sech sroot
sroot

X
qK

∣∣
CylI

.

We call the image of XK∂
the critical catenoid and denote it by K∂.

It is easy to check that K∂ is a free boundary minimal surface in B3.
Moreover, using (2.5)

eω(s) =
sech sroot
sroot

cosh s, V (s) = 2 sech2 s,(12.5)

and it is straightforward to see that assumptions 7.2(ii),(iii) hold.
When Σ = K∂ , we have by (12.4) that (12.2) is equivalent to{

Lχu = 0 on CylI
sroot

∂u
∂η = u on Lpar[sroot].

(12.6)

Lemma 12.7. There are no nontrivial O(2) × Z2-invariant solutions of
(12.2) on K∂.

Proof. This was checked in Lemma 3.18 and Remark 3.20 of [31].
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Definition 12.8. Define a rotationally invariant function φcrit ∈ C∞
s (Cyl)

by

φcrit(s) = (sech2 sroot − tanh2 sroot)φeven(s)− ∂φeven(sroot)φodd(s).(12.9)

Lemma 12.10. φcrit is strictly increasing on [0, sroot], has a unique root

sφcrit

root ∈ (0, sroot), and satisfies srootF
φcrit

+ (sroot) = 1.

Proof. Straightforward computation from 12.8.

Remark 12.11. φcrit appeared also in [31, equation 3.19], although there it
was called φRobin. Note also that 12.10 shows that the construction fails for
k◦ = 1 because 7.21(iii) is violated (see 7.22).

Lemma 12.12. For a function φ ∈ C1
|s|(CylI), the Robin boundary condition

in (12.6) is equivalent to the flux condition srootF
φ
+(sroot) = 1.

Proof. This is immediate from the symmetries and the definition of Fφ
+ in

7.15.

Definition 12.13. We say φ ∈ C0
|s|(CylI) is a K∂-RLD solution if φ is

an RLD solution in the sense of Definition 7.21 which satisfies also the
condition srootF

φ
+(sroot) = 1.

By Definition 12.13 and Lemma 12.12, it follows that any K∂-RLD so-
lution φ coincides with a constant multiple of φcrit on Cyl[sφk ,sroot]

.
In contrast to the situation for the RLD solutions established in Propo-

sition 7.36, the number of possible parallel circles of a K∂-RLD solution with
σφ = 0 is limited:

Lemma 12.14. Suppose φ is a K∂-RLD solution satisfying σφ = 0. Then
k◦[sφ] ≤ 3.

Proof. Suppose first that s1 > 0. Let φ̂ = φ̂[F ;0] be as in 7.36, where

in this proof F := F φcrit

+ (sroot). A numerical calculation establishes that

sφ̂2 [F ;0] ≈ 2.414 > sroot. The result then follows from the flux monotonicity
and 7.36(i).

Next suppose that s1 = 0. Let φ = qφ[F ;0] (recall 7.37). It follows from

Lemma 7.33(i) that s
qφ
2 [F ;0] > sφ̂2 [F ;0] ≈ 2.414 > sroot, where sφ̂2 [F ;0] is as

in the above paragraph. Using again the flux monotonicity this completes
the proof.

Proposition 12.15 (K∂-RLD existence and uniqueness). The following
hold.
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(i) (Two parallel circles) Given σ = ξ ∈ R satisfying |ξ| < 1, there is a

unique unit K∂-RLD solution φ̂ = φ̂[σ : 2] satisfying k◦[sφ̂] = 2 and

σφ̂ = ξ. Moreover sφ̂1 ∈ (sφcrit

root , sroot).
(ii) (Three parallel circles) There exists ε1 > 0 such that for all σ =

(σ, ξ) ∈ (−ε1,∞) × (−ε1, ε1) there is a unique unit K∂-RLD solution

φ̂ = φ̂[σ : 3] satisfying k◦[sφ̂] = 3 and σφ̂ = (σ, ξ).

Proof. We first prove (i). By 7.31, 11.5, and 12.10, the function u : (sφcrit

root , sroot) →
(0,∞) defined by u = F φcrit

+ /F φeven

− is a strictly decreasing diffeomorphism.

Therefore, there is a unique s1 ∈ (sφcrit

root , sroot) such that u(s1) =
1+ξ
1−ξ ; equiv-

alently

ξ =
F φcrit

+ (s1)− F φeven

− (s1)

F φcrit

+ (s1) + F φeven

− (s1)
.(12.16)

By 7.14, (12.16), and 7.36, φ̂[2 : σ] := φ̂[F φeven

− (s1);σ
′]|CylI , where σ′ =

(0, (ξ, 0, 0, . . . ) ) (recall 7.13), is an K∂-RLD solution satisfying the condi-
tions in (i). The uniqueness is clear.

Proof of (ii): We first consider the case where (σ, ξ) = (0, 0). Note first

that sroot ≈ 1.1997. Given F > 0, denote in this proof φ = qφ[F ;0] (recall
the notation of 7.39), where we recall that φ satisfies φ = φeven + Fφodd on

Cyl[0,sφ1 ] (so that in particular F φ
+(0) = F ) and F φ

−(s
φ
1 ) = F . By numerical

computations, we have the following:

s
qφ[.9;0]
1 ≈ 1.109, F φcrit

+ (s
qφ[.9;0]
1 ) ≈ 1.152,

s
qφ[1;0]
1 ≈ 1.157, F φcrit

+ (s
qφ[1;0]
1 ) ≈ .902.

Differentiating the equation F φ
−(s

φ
1 ) = F implicitly with respect to F and

using 7.31, we conclude that ∂sφ1
∂F > 0. In combination with the flux mono-

tonicity 7.31 applied to φcrit, this and the preceding numerical calculations
show that there is a unique F > 0 such that F φ

+(s
φ
1 ) = F φcrit

+ (sφ1 ). This
concludes the proof of (ii) in the case where (σ, ξ) = (0, 0).

The general case follows from the smooth dependence of s
qφ[F ;σ]
1 on σ =

(σ, ξ), the fact that ∂s
qφ[F ;σ]
1

∂F > 0 and the flux monotonicity by taking ε1 > 0
small enough, in similar fashion to the case discussed above.

By 12.14 and 7.29, the only RLD solutions φ with all |mi|’s equal have
k◦[sφ̂] ≤ 3. Proposition 12.15 constructs RLD solutions with k◦[sφ̂] = 3, but
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Figure 4: Profiles of the K∂-RLD solutions φ̂[0 : 2] and φ̂[0 : 3].

in a limited way: by 12.15(ii), the parameter σ must be bounded below by
−ε1. On the other hand, a balanced RLD solution with m = (±2m,±m)
would have σ = − log 2 by 7.29, and it can be checked as in the proof of

12.14 and 12.15 that no such balanced RLD solutions with k◦[sφ̂] = 3 exist.

LD solutions

Assumption 12.17. We assume k◦ ∈ {2, 3}, m ∈ N is as large as needed
in terms of k◦, m = (±m) when k◦ = 2, and m = (±m,±m) or m =
(±m,−2m) when k◦ = 3.

Now that we are equipped with K∂-RLD solutions, we can apply the
analysis of Section 8—with only small, mostly notational modifications, to
construct and estimate LD solutions corresponding to the RLD solutions
just constructed in Proposition 12.15. For brevity, we remark only that the
obvious modification of Lemma 8.15—which constructs LD solutions from
RLD solutions—holds because by Lemma 12.7, the boundary value problem
(12.2) has trivial kernel on K∂ . The remaining estimates and decompositions
of the corresponding LD solutions hold essentially exactly as in Section 8.

Initial surfaces

To construct the initial surfaces and later also to perturb the initial surfaces,
it will be useful to deform a surface which meets ∂B3 orthogonally without
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leaving the ball. To do this, we adopt an approach from [34] and introduce

an auxiliary metric gA which makes the boundary S2 = ∂B3 totally geodesic.

For numbers r, r satisfying 0 < r < r < 1 which we will fix later, we define

gA = Ω2g, where Ω := Ψ [r, r;dg
0] (1, 0) +

1

dg
0

Ψ [r, r;dg
0] (0, 1).(12.18)

For the purposes of the following discussion, let S be a properly embed-

ded surface in B3; later we will take either S = K∂ or S to be an initial

surface defined below.

Note that the unit normal to ∂S with respect to gA which points in the

same direction as ν is (Ω ◦ X)−1ν. Now denote X : S → R3 the inclusion

map. Given ũ ∈ C2(S), we define the perturbation Xũ : K∂ → R3 by ũ of

K∂ by

Xũ(p) = expB
3,gA

X(p)

(
ũ(p)ν(p)

(Ω ◦X)(p)

)
.

For ũ sufficiently small, Xũ is an immersion, and then we denote the corre-

sponding Euclidean normal by νũ.

On a neighborhood of ∂S in S we define the function σ := dg
∂S ; near

∂K∂ , we can take σ to be a coordinate on S whose associated coordinate

vector field ∂σ is then the inward pointing unit conormal to S along ∂S. We

define also the boundary angle function Θ[ũ] : ∂S → R by

Θ[ũ] := g(Xũ, νũ).(12.19)

It is shown in [34] that the condition Θ[ũ] = 0 is equivalent to the

condition that ũ satisfies the Neumann condition ũ,σ = 0.

Next, let L̃ denote the linearized operator associated to the Euclidean

mean curvature of Xũ computed at ũ = 0. The following lemma from [34]

relates L̃ to the usual Jacobi operator LS on S and relates the equation

∂σũ|∂S = 0 to a Robin boundary condition (recall 12.2) for an associated

function u.

Lemma 12.20 ([34, Lemma 5.19]). Given ũ ∈ C2(S), if we define u ∈
C2(S) by u := (Ω ◦X)−1ũ, then

(i) L̃ũ = LSu.

(ii) ∂σũ|∂S = (∂σ + 1) u|∂S .
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Definition 12.21 (The initial surfaces). Given ϕ, κ, and ϕgl
± as in 3.17

we define ϕ̃gl
± = (Ω ◦X)ϕgl

± (recall 12.20). We then define the smooth initial

surface M = M [ϕ,κ] in the same way as in 3.17, except that we replace the

graphs by

GraphR
3,gA

Ω

(
ϕ̃gl
+

)
and GraphR

3,gA
Ω

(
− ϕ̃gl

−
)
.

Convention 12.22. We now fix r and r so that r is large enough that⋃
p∈LDΣ,g

p (4δ′p) is contained in the set where gA coincides with the Euclidean

metric. Note this is possible from 12.15.

Lemma 12.23. ‖H − JM (w+, w−)‖0,β,γ−2,γ′−2;M ≤ τ
1+α/3
max .

Proof. Because gA only differs from being Euclidean outside the ballDR
3,g

0 (r),

by convention 12.22, and repeating the estimates in the proof of 3.17, we

need only estimate the Euclidean mean curvature portions of the graphs

GraphR
3,gA

Ω

(
ϕ̃gl
+

)
and GraphR

3,gA
Ω

(
− ϕ̃gl

−
)

outside this ball.

By using Lemma 12.20 and arguing as in the proof of [34, Lemma 7.8]

we can bound these terms and the proof is complete.

We conclude this subsection with a discussion of perturbations of the

initial surfaces. If φ ∈ C1(M) is appropriately small, we denote Mφ =

GraphR
3,gA

M (φ̃), where φ̃ = (Ω ◦ X)φ, and here X : M → R3 is the in-

clusion map. We have the following estimate (recall 5.1 on the nonlinear

terms of the mean curvature of Mφ:

Lemma 12.24. If M is as in 12.21 and φ ∈ C2,β(M) satisfies ‖φ‖2,β,γ,γ′;M ≤
τ
1+α/4
max , then Mφ is well defined as above, is embedded, and if Hφ is the Eu-

clidean mean curvature of Mφ pulled back to M and H is the mean curvature

of M , then we have

‖Hφ − H − LMφ ‖0,β,γ−2,γ′−2;M ≤ C τ
−α/2
min ‖φ ‖22,β,γ,γ′;M .

Proof. Although Mφ is defined as the normal graph of φ̃ with respect to the

auxiliary metric gA, Lemma 12.20 shows that the linear terms are given by

L̃ φ̃ = LMφ. The proof then essentially the same as that of 12.24 (see also

[34, Lemma 7.8]), so we omit the details.
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The linearized equation on the initial surfaces

Because the linearized equation on the initial surfaces is a boundary value
problem, we need to modify the definition of Rappr

M in Definition 4.17: we will
defineRappr

M (E,E∂) = (u1, w
+
E,1, w

−
E,1, E1, E

∂
1 ) for given (E,E∂) ∈ C0,β(M)×

C0,β(∂M), where u1 will be an approximate solution to the linearized equa-
tion modulo K[L], that is the boundary value problem (recall 1.2(vi)){

LMu = E + JM (w+
E , w

−
E)

(∂σ + 1)|∂Mu = E∂
, where w±

E ∈ K[L],

w±
E,1 are the K[L] terms, and E1, E

∂
1 are the approximation errors defined

by

(12.25)
E1 := LMu1 − E − JM (w+

E,1, w
−
E,1),

E∂
1 := (∂σ + 1)|∂Mu1 − E∂ .

Before proceeding with the definition, we need to modify the definition
of JM from 3.25 and define an analogous operator J∂M for the boundary.

Notation 12.26. If f+ and f− are functions supported on S̃′ (recall (3.24a)),
we define JM (f+, f−) to be the function on M supported on (ΠgA

K∂

∣∣
M
)−1S̃′

defined by f+◦ΠgA
K∂

on GraphR
3,gA

Ω

(
ϕ̃gl
+

)
and by f−◦ΠgA

K∂
on the GraphR

3,gA
Ω

(
−

ϕ̃gl
−
)
.

If f∂
+ and f∂

− are functions defined on ∂K∂ , we define J∂M (f∂
+, f

∂
−) to be

the function defined on ∂M defined by f∂
+ ◦ΠgA

K∂
on GraphR

3,gA
∂K∂

(ϕ̃gl
+) and by

f∂
− ◦ΠgA

K∂
on GraphR

3,gA
∂K∂

(−ϕ̃gl
−).

We follow the discussion before Definition 4.17 with the following small
modifications: just after the definition of E′

± in (4.12), we define E∂
± ∈

C0,β(∂K∂) by requesting that

J∂M (E∂
+, E

∂
−) = E∂ .(12.27)

We then replace the equation (4.13) defining u′± ∈ C2,β(Σ) and w±
E,1

with the equation{
LΣu

′
± = E′

± + w±
E,1

(∂σ + 1)|∂K∂
u′± = E∂

±
and ∀p ∈ L Epu

′
± = 0.(12.28)
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We now defineRappr
M = (u1, w

+
E,1, w

−
E,1, E1, E

∂
1 ), where u1, w

+
E,1, and w−

E,1

are defined as in 4.17, and E1, E
∂
1 are defined as in (12.25).

We are now ready to state and prove an appropriately modified version
of 4.21 in the present setting. Note that in the statement below we only
need to solve with homogeneous boundary value data because of the way we
perturb using the auxiliary metric.

Proposition 12.29. Recall that we assume that 2.10, 4.1, 3.11, 3.15, and
4.5 hold. A linear map RM : C0,β(M) → C2,β(M) × K[L] × K[L] can be
defined then by

RME := (u,w+
E , w

−
E) :=

∞∑
n=1

(un, w
+
E,n, w

−
E,n) ∈ C2,β(M)×K[L]×K[L]

for E ∈ C0,β(M), where {(un, w+
E,n, w

−
E,n, En, E

∂
n)}n∈N is defined inductively

for n ∈ N by

(un, w
+
E,n, w

−
E,n, En, E

∂
n) := −Rappr

M (En−1, E
∂
n−1) E0 := −E, E∂

0 = 0.

Moreover the following hold.

(i) LMu = E + JM (w+
E , w

−
E) and (∂σ + 1)|∂Mu = 0.

(ii) ‖u‖2,β,γ,γ′;M ≤ C(b)δ−4−2β
min | log τmin|‖E‖0,β,γ−2,γ′−2;M .

(iii) ‖w±
E : C0,β(Σ, g)‖ ≤ Cδγ−4−2β

min ‖E‖0,β,γ−2,γ′−2;M .

Proof. We need only check that (∂σ+1)|∂Mu = 0. Using (12.25) and (12.27)
and pulling back to ∂K∂ we have

E∂
1± = ((ΠgA

∂K∂
)∗∂σ + 1)u′1± = ((ΠgA

∂K∂
)∗∂σ − ∂σ)|∂K∂

u′1±,(12.30)

where the second equality follows by combining with (12.28) and using that
E∂

0 = 0.
It follows by a straightforward inductive argument that

((ΠgA
∂K∂

)∗∂σ + 1)u′i± = E∂
i± − E∂

i−1± and E∂
i± = ((ΠgA

∂K∂
)∗∂σ − ∂σ)u

′
i±.

(12.31)

We have then for any n ∈ N

((ΠgA
∂K∂

)∗∂σ + 1)

n∑
i=1

u′i± = E∂
n±.



422 Nikolaos Kapouleas and Peter McGrath

Estimating the smallness of E∂
1± using (12.30) and inductively estimating

E∂
n± using (12.31), we conclude that for any n ∈ N,∥∥∥∥(∂σ + 1)|∂M

n∑
i=1

ui : C
1,β(∂M, g)

∥∥∥∥ < 2−n,

and from this we conclude that (∂σ + 1)|∂Mu = 0.

The main theorem

Theorem 12.32 (Main Theorem for doublings of the critical catenoid).
Let k◦ ∈ {2, 3}. For all m ∈ N sufficiently large and m = (±m) in the case
k◦ = 2, and m = (±m,−2m) or m = (±m,±m) in the case k◦ = 3, there
is a Gm-invariant compact embedded doubling M̆ of K∂ as a free boundary
minimal surface in B3, with four boundary components and genus |L| − 1
where |L| = 2m, or 5m, or 3m respectively. M̆ contains one catenoidal
bridge and one doubling hole close to each point of L, where L ⊂ Lpar with
Lpar the union of k◦ parallel circles, with the number of points and their
alignment at each circle prescribed by m as in 9.17 and 9.5. Moreover, as
m → ∞ with fixed k◦, the minimal doublings converge in the appropriate
sense to K∂ covered twice.

Proof. The structure of the proof is the same as that of 10.5, except that
Theorem 5.7 cannot be applied directly because of the boundary and the
free boundary condition. However, we can still carry out steps (1)-(6) in the
proof of 5.7, where we use 12.29 instead of 4.21 and 12.24 to estimate the
quadratic terms instead of 5.1. We then conclude a fixed point of the map J
in (5.11). It follows as in 5.7 that (M�ζ̆�)

φ̆
is smooth and minimal; moreover

(M�ζ̆�)
φ̆
intersects ∂B3 orthogonally because φ̆ satisfies the Robin boundary

condition (∂σ+1)|M φ̆ = 0 (recall 12.29(i), the discussion just below (12.19),
and 12.20).

Appendices

A. Fermi coordinates

In this appendix we define a modification of the standard exponential map
we call Fermi exponential map, and we collect some facts about the corre-
sponding Fermi coordinates in Lemma A.5, most of which can be found for
example in [15].
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Definition A.1 (Fermi exponential map). We assume given a hypersurface
Σn in a Riemannian manifold (Nn+1, g) and a unit normal νp ∈ TpN at
some p ∈ Σ. For δ > 0 we define

D̂Σ,N,g
p (δ) := {v + zνp : v ∈ D

TpΣ, g|
p

0 (δ) ⊂ TpΣ, z ∈ (−δ, δ) } ⊂ TpN.

For small enough δ, the map expΣ,N,g
p : D̂Σ,N,g

p (δ) → N , defined by

expΣ,N,g
p (v + zνp) := expN,g

q (zνv) ∀ v + zνp ∈ D̂Σ,N,g
p (δ) with v ∈ TpΣ,

where q := expΣ,g
p (v) and νv ∈ TqN is the unit normal to Σ at q pointing to

the same side of DΣ,δ
p (δ) (which is two-sided) as νp, is a diffeomorphism onto

its image which we will denote by DΣ,N,g
p (δ) ⊂ N . We define the injectivity

radius injΣ,N,g
p of (Σ, N, g) at p to be the supremum of such δ’s. Finally when

δ < injΣ,N,g
p we define on DΣ,N,g

p (δ) the following.

(a) ΠΣ : DΣ,N,g
p (δ) → Σ ∩ DΣ,N,g

p (δ) is the nearest point projection in

(DΣ,N,g
p (δ) , g). Alternatively ΠΣ corresponds through expΣ,N,g

p to or-
thogonal projection to TpΣ in (TpN, g|p).

(b) z : DΣ,N,g
p (δ) → (−δ, δ) is the signed distance from Σ ∩ DΣ,N,g

p (δ) in

(DΣ,N,g
p (δ) , g). Alternatively z ◦ expΣ,N,g

p (v) νp is the orthogonal pro-

jection of v to 〈νp〉 in (TpN, g|p) ∀v ∈ D̂Σ,N,g
p (δ).

(c) A foliation by the level sets Σz := z−1(z) ⊂ DΣ,N,g
p (δ) for z ∈ (−δ, δ).

(d) Tensor fields gΣ,z, AΣ,z and BΣ,z by requesting that on each level set
Σz they are equal to the first and second fundamental forms and Wein-
garten map of Σz respectively.

Remark A.2. Note if Σ andN are both complete with respect to g in A.1 and
Σ is two-sided, then expΣ,N,g

p is well defined on TpN by the same definition,
even in the case injΣ,N,g

p < ∞.

Example A.3 (Clifford torus, cf. [38, p. 263-264]). We identify R4 with C2

and let N := S3 ⊂ C2, T := {(z1, z2) ∈ C2 : |z1| = |z2| = 1/
√
2} ⊂ S3

be the Clifford torus, and p = (1/
√
2, 1/

√
2) ∈ T. There is then a linear

isomorphism Ĕ : R3 → TpS
3 such that the map Ẽ := expT,S

3,g
p ◦Ĕ : R3 → S3

(called Φ in [38]) satisfies

Ẽ(x, y, z) =
(
sin(z + π

4 )e
√
2xi , cos(z + π

4 )e
√
2yi

)
∈ S

3 ⊂ C
2

and Ẽ∗g = (1 + sin 2z)dx2 + (1− sin 2z)dy2 + dz2.
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Example A.4 (Cylindrical Fermi coordinates about S2eq in S3). Let N :=

S3 ⊂ R4, S2eq be the equatorial two-sphere in the round three-sphere S3, and

p = (0, 0, 1, 0) ∈ S2eq. There is then a “spherical coordinates parametrization”

Ĕ : R3 → TpS
3 such that the map Ẽ := exp

S
2
eq,S

3,g
p ◦Ĕ : R3 → S3 (which is

equivalent to the map Θ in [29, (2.2)]) satisfies

Ẽ(r, θ, z) =(sin r cos θ cos z, sin r sin θ cos z, cos r cos z, sin z),

Ẽ∗g =cos2 z
(
dr2 + sin2 rdθ2

)
+ dz2,

and the only nonvanishing Christoffel symbols in the (r, θ, z) coordinates are

Γr
rz = Γr

zr = Γθ
θz = Γθ

zθ = − tan z, Γr
θθ = − sin r cos r,

Γθ
rθ = Γθ

θr = cot r, Γz
rr = cos z sin z, Γz

θθ = sin2 r sin z cos z.

Lemma A.5 (Properties of Fermi coordinates). Assuming δ < injΣ,N,g
p as

in A.1, and with the same notation, the following hold on DΣ,N,g
p (δ) ⊂ N .

(i) gzz = 1 and ∇∂z
∂z = 0.

(ii) g = gΣ,z + dz2.

(iii) L∂z
gΣ,z = −2AΣ,z.

(iv) L∂z
BΣ,z = BΣ,z ◦BΣ,z − R∂z

and L∂z
AΣ,z = −

(
AΣ,z ∗AΣ,z +Rm∂z

)
.

(v) gΣ,z = Π∗
Σg

Σ − 2zΠ∗
ΣA

Σ +z2Π∗
Σ

(
AΣ ∗AΣ +RmΣ

ν

)
+z3herr, where herr

is a smooth symmetric two-tensor on DΣ,N,g
p (δ) ⊂ N .

Proof. (i) follows immediately from Definition A.1. Next we compute

(L∂z
g)ij = gij,z = 〈∇∂i

∂z, ∂j〉+ 〈∂i,∇∂j
∂z〉,(A.6)

where the indices i, j refer to the Σ exponential coordinates. With (i), this

implies giz,z = 1
2gzz,i = 0 and (ii) follows, since giz = δiz on Σ. (iii) follows

from (A.6) and (ii). Next note that any X satisfying [X, ∂z] = 0 satisfies

∇∂z
X = ∇X∂z = −BX; then

(∇∂z
B)X = −∇∂z

∇X∂z −B (∇∂z
X) = −R(∂z, X)∂z +B2X.

The first equation of (iv) follows after noting that L∂z
BΣ,z = ∇∂z

B−(∇∂z)◦
BΣ,z+BΣ,z ◦∇∂z and the second equation follows from the first by lowering

an index and using (iii). (v) follows via the preceding parts and Taylor’s

theorem.
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Remark A.7. Straightforward calculations using A.5 recover the usual for-
mulas for the first variations of volume dV Σ,z and mean curvature HΣ,z

along the parallel surfaces Σz:

L∂z
dV Σ,z = (divΣz

∂z) dV
Σ,z = HΣ,zdV Σ,z,

L∂z
HΣ,z = L∂z

trBΣ,z = tr
(
L∂z

BΣ,z
)
= |BΣ,z|2 +Ric(∂z, ∂z). �

Lemma A.8. Let Σ be a two-sided hypersurface in a Riemannian manifold
(N, g) and Ω ⊂ Σ a precompact domain. For u ∈ C1(Ω) with ‖u : C1(Ω, g)‖
small, the pullback of the area form dσu on GraphN,g

Ω (u) by XN,g
Ω,u : Ω →

GraphN,g
Ω (u) (recall 1.2(viii)) satisfies

(
(XN,g

Ω,u )
∗dσu

)
=

(
1− uH +

1

2
|∇u|2 − u2

2

(
|AΣ|2 +Ric(ν, ν)−H2

)
+O

(
|u|3 + |u||du|2g

) )
dσ,

where dσ is the Riemannian area form on Σ.

Proof. From the definitions and A.5(v), we have

(XN,g
Ω,u )

∗g = gΣ − 2uAΣ + du⊗ du+ u2(AΣ ∗AΣ +Rmν) +O(|u|3).(A.9)

For any square matrix M , recall that

det(I +M) = 1 + trM +
1

2
((trM)2 − trM2) +O(|M |3),

where I is the identity matrix. From this and (A.9), it follows that

det
(
(XN,g

Ω,u )
∗g
)
= det gΣ

(
1− 2uH + |∇u|2

− u2(|AΣ|2 +Ric(ν, ν)− 2H2) +O(|u|3 + |u||du|2g)
)
.

By taking square roots and using that
√
1 + x = 1 + 1

2x − 1
8x

2 + O(x3) for
x near zero, the conclusion now follows.

Lemma A.10. Let Σ, N, g,Ω, and u be as in A.8. If moreover u ∈ C2(Ω)
and ∂Ω is smooth, then

|GraphN,g
Ω (u)| = |Ω| −

∫
Ω
uHdσ − 1

2

∫
Ω
uLΣu dσ
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+
1

2

∫
∂Ω

u
∂u

∂η
ds+

1

2

∫
Ω
u2H2dσ +

∫
Ω
O(|u|3 + |u||du|2g)dσ.

Proof. This follows from integrating (XN,g
Ω,u )

∗dσu over Ω via A.8 and inte-

grating
∫
Ω

1
2 |∇u|2dσ by parts.

B. Perturbations of graphs

Definition B.1 (Vector fields and sliding). We assume given a Riemannian

manifold (Σ, g), an open set Ω ⊂ Σ, and a vector field V defined on a domain

containing Ω satisfying Vp ∈ dom(expΣ,g) for each p ∈ Ω. We define then

DV = DΣ,g
V,Ω : Ω → Σ by DV := expΣ,g ◦V |Ω = PΣ,g

V IΣΩ , where IΣΩ : Ω → Σ is

the inclusion (recall 1.2(vii)). We also define Ω̃V := Ω ∩ DV (Ω).

Lemma B.2. If Ω, V , and DV are as in B.1 and f ∈ C∞(Ω̃V ), then

‖f ◦ DV − f : Ck(Ω̃V )‖ ≤ C(k)‖f : Ck+1(Ω, g)‖‖V : Ck(Ω, g)‖.

If DV is moreover a diffeomorphism and ‖V : Ck(Ω, g)‖ is small enough,

then additionally

‖f ◦ D−1
V − f : Ck(Ω̃V )‖ ≤ C(k)‖f : Ck+1(Ω, g)‖‖V : Ck(Ω, g)‖.

Proof. This is a consequence of the mean value theorem and a straightfor-

ward induction argument.

Assumption B.3. We now assume given the following:

(i) A two-sided hypersurface Σ with a choice of a unit normal ν in a

Riemannian manifold (N, g).

(ii) A domain Ω := DΣ,g
p (δ) ⊂ Σ for some p ∈ Σ and δ > 0 satisfying

2δ < injΣ,N,g
p (recall A.1).

(iii) A function u ∈ C∞(Ω) with ‖u : Ck(Ω, g)‖ as small as needed in terms

of δ.

(iv) A vector field Ṽ along GraphN,g
Ω (u) with ‖(XN,g

Ω,u )
∗Ṽ : Ck(Ω, g)‖ as

small as needed in terms of δ.

Definition B.4. We define a decomposition Ṽ = Ṽ � + Ṽ ⊥ by requesting

that Ṽ ⊥ = 〈Ṽ , ∂z〉∂z, where z is the signed distance from Σ ∩DΣ,N,g
p (2δ) in

DΣ,N,g
p (2δ) as in A.1.
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Lemma B.5. Given u and Ṽ as in B.3, there is a vector field V on Ω
uniquely determined by DV = ΠΣ ◦ PṼ X

N,g
Ω,u and a function w : DV (Ω) → R

uniquely determined by PN,g

Ṽ
XN,g

Ω,u = XN,g
DV (Ω),w ◦ DV . In other words, the

diagram

(B.6)

N N

Ω DV (Ω)

expN,g ◦Ṽ

ΠΣ

DV

XN,g
Ω,u XN,g

DV (Ω),w

commutes. Moreover, the following hold.

(i) ‖V : Ck(Ω, g)‖ ≤ C(k)‖(XN,g
Ω,u )

∗Ṽ � : Ck(Ω, g)‖.
(ii) ‖w − (XN,g

Ω,u )
∗〈Ṽ , ∂z〉 − u : Ck(Ω̃V )‖ ≤ C(k)

∥∥(XN,g
Ω,u )

∗Ṽ � : Ck(Ω, g)
∥∥

·
(
‖u : Ck+1(Ω, g)‖+ ‖(XN,g

Ω,u )
∗Ṽ : Ck+1(Ω, g)‖

)
.

Proof. By the smallness assumptions in B.3, we may assume that PṼ X
N,g
Ω,u (Ω) ⊂

DΣ,N,g
p (2δ). Since ΠΣ : DΣ,N,g

p (2δ) → DΣ,g
p (2δ) is smooth and expΣ,g is in-

vertible on DΣ,g
p (2δ), the stated condition on V is equivalent to

V = (expΣ,g)−1 ◦ΠΣ ◦ PN,g

Ṽ
XN,g

Ω,u .(B.7)

The estimate (i) follows from (B.7) and the fact that the differential of the
exponential map at 0 is the identity. Now combining (i) with the smallness
assumption on Ṽ in B.3(iv) and the implicit function theorem, it follows
that DV is a diffeomorphism, so in particular w is uniquely determined by
the equation XN,g

DV (Ω),w = PṼ X
N,g
Ω,u ◦ D−1

V .

Next, note from (B.6) that w ◦DV = z ◦ expN,g ◦Ṽ ◦XN,g
Ω,u , where z is the

signed distance function from Σ as in A.1(b). From this and the fact that
the differential of the exponential map at zero is the identity, it follows that

(B.8) ‖w ◦ DV − (XN,g
Ω,u )

∗〈Ṽ , ∂z〉 − u : Ck(Ω̃)‖
≤ C(k)‖(XN,g

Ω,u )
∗Ṽ � : Ck(Ω, g)‖‖(XN,g

Ω,u )
∗Ṽ : Ck(Ω, g)‖.

The conclusion follows from this by using Lemma B.2 in conjunction with
item (i).

Corollary B.9 (Graphs over graphs). Let Σ, N, g, δ, and u be as in B.3.

Fix a function v ∈ C∞(Ω), and define a vector field Ṽ along GraphN,g
Ω (u)
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by Ṽ = (v ◦XN,g
Ω,u )νu, where νu is the unit normal to GraphN,g

Ω (u) which has

positive inner product with ∂z. Then B.3(iv) holds provided ‖v : Ck(Ω, g)‖
is small enough in terms of δ. Moreover, the function w in B.5 satisfies

‖w − v − u : Ck(Ω̃V )‖ ≤ C(k) ‖u : Ck+1(Ω, g)‖2 ‖v : Ck(Ω, g)‖.

Proof. First observe that in Fermi coordinates

νu =
∂z −∇gΣ,u

u√
1 + |du|2gΣ,u

,

where gΣ,u is as in A.1(d). It follows from this and the definitions that

‖(XN,g
Ω,u )

∗Ṽ : Ck(Ω, g)‖ ≤ C(k)‖v : Ck(Ω, g)‖‖u : Ck+1(Ω)‖,
‖(XN,g

Ω,u )
∗〈Ṽ , ∂z〉 − v : Ck(Ω, g)‖ ≤ C(k)‖v : Ck(Ω, u)‖‖u : Ck+1(Ω, g)‖2.

The conclusion follows from combining these estimates with B.5(ii).

Tilted graphs

In this part, we study tilting rotations Rκ defined in 1.11. Given vector spaces

E2, E3 as in 1.11, choose orientations for E2 and E3 and further identify E3

with R3 by choosing an orthonormal frame.

Lemma B.10. Rκ depends smoothly on κ. Moreover, the following hold.

(i) For κ �= 0, Rκ is the right-handed rotation of angle θκ about �v, where

θκ := arctan |κ|, |κ| := sup|v|=1 κ(v), and {�v,�v⊥} is the positively

oriented orthonormal frame for R2 defined by requesting that κ =

|κ|〈�v⊥, ·〉.
(ii) For any �w ∈ R3, Rκ(�w) = (cos θκ)�w+(sin θκ)�v× �w+(1−cos θκ)〈�w,�v〉�v.

Proof. By 1.11 we have Rκ = exp( θκ|κ|Kκ), where exp : so(3) → SO(3) is

the exponential map and Kκ ∈ so(3) is defined by requesting that Kκv =

(κ(e2),−κ(e1), 0)×v for v ∈ R3, where here × is the cross product. Since Kκ

and θκ
|κ| depend smoothly on κ, the smoothness of Rκ follows. By properties

of the exponential map, Rκ is a right-handed rotation of angle θκ about

vector 1
|κ|(κ(e2),−κ(e1), 0), which is �v since clearly �v⊥ = 1

|κ|(κ(e1), κ(e2), 0).

(ii) is easy to check and is known as Rodrigues’ formula.
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We now specialize the results of B.5 to the case where (N, g) = (R3, δij),

Σ = R2, δ > 0 is fixed (recall B.3) and Ṽ is induced by a tilting rotation Rκ

in the following sense.

Lemma B.11. Given κ as in 1.11, there is a vector field Ṽ along GraphN,g
Ω (u)

uniquely defined by

(B.12) PṼ X
N,g
Ω,u = Rκ ◦XN,g

Ω,u .

Moreover, item (i) below holds, and if |κ| < 1/10, then items (ii)-(iv) below

hold, where RΩ is the smallest radius such that Ω ⊂ D0(RΩ).

(i) Ṽ ◦XN,g
Ω,u = (cos θκ−1)XN,g

Ω,u +(sin θκ)�v×XN,g
Ω,u +(1−cos θκ)〈XN,g

Ω,u , �v〉�v.
(ii) ‖(XN,g

Ω,u )
∗Ṽ : Ck(Ω, g)‖ ≤ C(k)RΩ|κ|.

(iii) ‖(XN,g
Ω,u )

∗Ṽ � : Ck(Ω, g)‖ ≤ C(k)(RΩ + 1)|κ|(|κ|+ ‖u : Ck(Ω, g)‖).
(iv) ‖(XN,g

Ω,u )
∗〈Ṽ , ∂z〉 − κ : Ck(Ω, g)‖ ≤ C(k)|κ|2‖u : Ck(Ω, g)‖.

Proof. Because expN,g
p �w = p+ �w for any p ∈ N = R3 and any �w ∈ TpN =

TpR
3, the condition (B.12) is equivalent to item (i) by B.10(ii). Items (ii)

and (iii) then follow from the definitions by estimating (i).

Next, using (i) we compute

(XN,g
Ω,u )

∗〈Ṽ , ∂z〉 = (cos θκ − 1)u+ (sin θκ)〈�v ×XN,g
Ω,g , ∂z〉.(B.13)

Note that 〈�v×XN,g
Ω,g , ∂z〉 = 〈XN,g

Ω,u , �v
⊥〉. Item (iv) follows by estimating (B.13)

using this and the fact that κ = |κ|〈�v⊥, ·〉.

Corollary B.14. If |κ| is small enough in terms of RΩ and δ, then B.3(iv)

holds. Moreover, the function κu := w in B.5 satisfies

‖uκ − u− κ : Ck(Ω̃V )‖ ≤ C(k)(1 +RΩ)
(
‖u : Ck+1(Ω)‖+ |κ|

)3
.

Proof. The smallness assumption B.3(iv) on Ṽ follows from B.11(ii) by tak-

ing |κ| small enough. Therefore, the assumptions of B.5 apply, so in partic-

ular DV is a diffeomorphism. Using that the exponential map in Euclidean

space amounts to addition, we conclude from (B.6) that (recall 1.2(viii))
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DV + (uκ ◦ DV )∂z = Ṽ ◦ (IR3

Ω + uκ∂z) + u∂z, which implies

uκ − u− κ = (I) + (II) + (III), where

(I) := u ◦ D−1
V − u,

(II) := (XN,g
Ω,u )

∗〈Ṽ , ∂z〉 ◦ D−1
V − κ ◦ D−1

V ,

(III) := κ ◦ D−1
V − κ.

The estimate now follows by combining the preceding with B.2 and the

estimates in B.11.

C. Mean curvature with respect to a perturbed metric

Let (Nn, g) be a Riemannian manifold with Levi-Civita connection ∇.

Definition C.1. We define a Christoffel-inspired operator

C : C∞(Sym2(TN)) → C∞(Sym2(TN)⊗ T ∗N)

by 2(CT )(X,Y, Z) = (∇XT )(Y, Z) + (∇Y T )(X,Z)− (∇ZT )(X,Y ).

Remark C.2. The operator C above was defined in [4, Section 6.b], although

there it was denoted by �.

Fix another Riemannian metric ĝ on N and define h := ĝ−g. We denote

various quantities when defined with respect to ĝ with a hat. By a calculation

[8, Lemma A.2] using the Koszul formula,

(C.3) ĝ(∇̂XY −∇XY, Z) = (Ch)(X,Y, Z) for all X,Y, Z ∈ TpN.

Lemma C.4 (Mean curvature under a change of metric). Let S ⊂ N be a

two-sided hypersurface with unit normal field ν.

(i) ν̂ = (ν − β �̂)/|ν − β �̂|ĝ and |ν − β �̂|2ĝ = 1 + σ − |β|2g − α̂(β�, β�),

(ii) |ν − β �̂|ĝÂS = AS + Sym
(
AS ∗g α+∇Sβ

)
− 1

2
α̃− (Cα) ¬ β �̂,

(iii) |ν − β �̂|ĝĤS = HS + divS,gβ − 1
2 trS,g α̃+

〈
Sym

(
∇Sβ

)
− 1

2 α̃, α̂
〉
g

− trS,g((CSα) ¬ β �̂)− 〈(CSα) ¬ β �̂, α̂〉g,

where the symmetric two-tensor fields α, α̃, and α̂, differential one-form β,

vector fields β� and β �̂, and function σ, are defined by requesting that for
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p ∈ S, X,Y ∈ TpS,

α(X,Y ) = h(X,Y ), β(X) = h(X, νp), σ(p) = h(νp, νp),

α̃(X,Y ) = (∇νp
h)(X,Y ), g(β�, X) = β(X), ĝ(β �̂, X) = β(X)

and α̂(X,Y ) = ĝ(X�, Y �)− g(X,Y ),

where here X� and Y � are computed with respect to g. Moreover we have,

β �̂ = β� + (α̂ ¬ β�)�, and (in any local coordinates) α̂ij = ĝklgikgjl − gij =∑∞
p=1(−1)pαik1

gk1l1αl1k2
gk2l2 · · ·αlk−2kp−1

gkp−1lp−1αlp−1j.

Proof. Given X ∈ TpS, note that ĝ(ν − β �̂, X) = 0. Therefore Π̂ν = β �̂,

where Π̂ is the ĝ-orthogonal projection onto TpS, and (i) follows, where the

formula for |ν−β �̂|2ĝ is a direct calculation. Next we compute (where in this

proof we write A in place of AS since no confusion will arise)

|ν − β �̂|ĝÂ(X,X) = ĝ(∇XX + ∇̂XX −∇XX, ν − β �̂)

= ĝ(ν, ν − β �̂)A(X,X) + (Ch)(X,X, ν)− (Ch)(X,X, β �̂)

= |ν − β �̂|2ĝA(X,X) + (Ch)(X,X, ν)− (Ch)(X,X, β �̂),

where the second and third equalities use (C.3) and that ĝ(β �̂, ν − β �̂) = 0.
Using C.1, we calculate

(Ch)(X,X, ν) = (∇Xh)(X, ν)− 1

2
(∇νh)(X,X)

= X(h(X, ν))− h(∇XX, ν)− h(X,∇Xν)− 1

2
α̃(X,X)

= X(β(X))− β
(
∇S

XX
)
− σA(X,X) + α(X,B(X))− 1

2
α̃(X,X)

= (∇S
Xβ)(X)− σA(X,X) + (A ∗g α) (X,X)− 1

2
α̃(X,X).

Using (C.3) and that ∇̂ − ∇ = ∇̂S −∇S + Âν̂ −Aν, we find

(Ch)(X,X, β �̂) = (CSα)(X,X, β �̂)− ĝ(ν, β �̂)A(X,X)

= (CSα)(X,X, β �̂)− β(β �̂)A(X,X).

Substituting these items above and simplifying using (i) establishes (ii).
Taking the trace of (ii) with respect to ĝS and simplifying (note in particular
that trS,ĝ(A ∗g ĝ) = trS,g A = H) establishes (iii).
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Finally, let [g] and [α] denote matrix representations of gS and α and
note that

([g] + [α])−1 = (Id + [g]−1[α])−1[g]−1 =

∞∑
k=0

(−1)k
(
[g]−1[α]

)k
[g]−1,

which implies the coordinate expression for α̂ and the identity β �̂ = β� +
(α̂ ¬ β�)�.

Remark C.5. The proof of Lemma C.4 above is self-contained and done
independently from [44], but we note that (i) and (ii) are consistent with
results therein.

Remark C.6. When ĝ = e2wg for some w ∈ C∞(N), it follows that

β = β �̂ = 0, |ν − β �̂|ĝ = ew, AS ∗g ĝ = e2wAS , α̃ = 2e2wν(w)g,

and C.4(i) reduces to the usual transformation rule Â = ew (A− (∂νw)g)
for the second fundamental form under a conformal change of metric.

Remark C.7. When ĝ is the ambient metric in a local system of Fermi
coordinates about a hypersurface Σ as in A.1, we define g = g|Σ + dz2 and
S = Σz, a parallel hypersurface. We have by A.5

ĝ = ĝ|Σz
+ dz2, ν̂ = ν = ∂z, σ = 0, β = 0,

α = −2zAΣ + z2
(
AΣ ∗AΣ +Rmν

)
+O(z3),

α̃ = −2AΣ + 2z(AΣ ∗AΣ +Rmν) +O(z2),

so that C.4(iii) implies the usual formula for the mean curvature of ĤΣz

(note that HΣz = HΣ):

ĤΣz = HΣ − 1

2
trΣ α̃+

1

2
〈α, α̃〉+O

(
z2
)

= HΣ +
(
|AΣ|2 +Ric(Z,Z)

)
z +O

(
z2
)
.

Corollary C.8. ĤS −HS − σ̃ = (HS + σ̃) ((1 + σ̂)−1/2 − 1)

+(1+ σ̂)−1/2
(
〈Sym

(
∇Sβ

)
, α̂〉g − trS,g((CSα) ¬ β �̂)− 〈(CSα) ¬ β �̂, α̂〉g

)
,

where here σ̃ := divS,gβ − 1
2 trS,g α̃− 1

2〈α̂, α̃〉g and σ̂ := σ − β(β �̂).

Proof. This follows immediately from dividing through C.4(iii) by |ν−β �̂|ĝ =
(1 + σ̂)1/2 (recall C.4(i)) and subtracting HS + σ̃ from both sides.
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Corollary C.9. Suppose α, β, and σ all have small enough Ck(S, g) norm

in terms of k. Then

‖ĤS : Ck(S, g)‖ ≤ C(k)
(
‖HS : Ck(S, g)‖+ ‖β : Ck+1(S, g)‖

+‖ trS,g α̃ : Ck(S, g)‖+
(
1 + ‖α̃ : Ck(S, g)‖

)
‖α : Ck+1(S, g)‖

)
.

Proof. From the definition of β �̂ and the coordinate expression for α̂, it

follows that ‖β �̂ : Ck(S, g)‖ ≤ C(k)‖β : Ck(S, g)‖(1+ ‖α : Ck(S, g)‖). Using

the notation in the proof of C.8, we have then

‖w : Ck(S, g)‖ ≤ C(k)
(
‖σ : Ck(S, g)‖+ ‖β : Ck(S, g)‖2

)
,

‖〈Sym
(
∇Sβ

)
, α̂〉g : Ck(S, g)‖ ≤ C(k)‖α : Ck(S, g)‖‖β : Ck+1(S, g)‖,

‖〈α̃, α̂〉g : Ck(S, g)‖ ≤ C(k)‖α : Ck(S, g)‖‖α̃ : Ck(S, g)‖.

Using the preceding, we also estimate

‖ trS,g((CSα) ¬ β �̂) : Ck(S, g)‖+ ‖〈(CSα) ¬ β �̂, α̂〉g : Ck(S, g)‖
≤ C(k)‖α : Ck+1(S, g)‖‖β : Ck(S, g)‖.

Combining the estimates with the expansion in C.8 completes the proof.

Lemma C.10. Let u ∈ C2(S) and X be a vector field on S.

(i) ∇̂u = ∇u+ (α̂ ¬∇u)�.

(ii) d̂ivX = divX + trS,g((CSα) ¬X) + 〈α̂, (CSα) ¬X〉g.
(iii) Δ̂u = Δu+(divS,gα̂)(∇u)+(trS,g α̂)Δu+trS,g((CSα)¬(∇u+(α̂¬∇u)�))

+〈α̂, (CSα) ¬ (∇u+ (α̂ ¬∇u)�)〉g.
(iv) As long as α has small enough Ck+1(S, g) norm in terms of k, then

‖Δ̂u−Δu : Ck(S, g)‖ ≤ C(k)‖α : Ck+1(S, g)‖‖u : Ck+2(S, g)‖.

Proof. (i) and (ii) follow from the following calculations in coordinates:

(∇̂u)i = ĝijuj = gijuj + gikgjlα̂kluj ,

d̂ivX = ĝij ĝ(∇∂i
X + ∇̂∂i

X −∇∂i
X, ∂j)

= ĝij(ĝ(∇∂i
X, ∂j) + (CSα)(X, ∂i, ∂j))

= divX + (gij + α̂ij)(CSα)(X, ∂i, ∂j).
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(iii) follows by combining (i) and (ii) and observing that

div(α̂ ¬∇u) = (divα̂)(∇u) + (trS,g α̂)Δu.

Finally, (iv) follows immediately from estimating (iii).

Lemma C.11. Suppose α, β, and σ all have small enough Ck+1(S, g) norm
in terms of k. Then

∥∥ |ÂS |2ĝ − |AS |2g
∥∥
Ck ≤ C(k)

( (
‖σ‖Ck + ‖β‖Ck+1 + ‖α‖Ck

)
‖AS‖2Ck

+
(
‖β‖Ck+1 + ‖α̃‖Ck

)
‖AS‖Ck +

(
‖β‖Ck+1 + ‖α̃‖Ck

)2 )
,

where here ‖ · ‖Ck is short hand for the Ck(S, g) norm.

Proof. We first compute using C.4(ii) that

|ÂS |2g − |AS |2g = −(σ − |β|2g − α̂(β�, β�))|ÂS |2g + 2〈A, T 〉g + |T |2g,

where here T := Sym
(
AS ∗g α+∇Sβ

)
− 1

2 α̃ − (CSα) ¬ β �̂. Using this and
the assumptions, we estimate

∥∥ |ÂS |2g − |AS |2g
∥∥
Ck ≤ C(k)

( (
‖σ‖Ck + ‖β‖Ck+1 + ‖α‖Ck

)
‖AS‖2Ck

+
(
‖β‖Ck+1 + ‖α̃‖Ck

)
‖AS‖Ck +

(
‖β‖Ck+1 + ‖α̃‖Ck

)2 )
.

Next, we compute

|ÂS |2ĝ − |ÂS |2g = 2〈ÂS ∗g α̂, ÂS〉g + |ÂS ∗g α̂|2g,

and using this and C.4 to estimate ‖ÂS‖Ck we conclude

‖ |ÂS |2ĝ − |ÂS |2g‖Ck ≤ C(k)‖α‖Ck‖ÂS‖2Ck

≤ C(k)‖α‖Ck(‖AS‖Ck + ‖α̃‖Ck + ‖β‖Ck+1)2.

By the triangle inequality, combining these estimates finishes the proof.

Lemma C.12. Let u be a Ck tensor field on N and let ε > 0. If ‖h :
Ck(N, g)‖ is small enough in terms of k and ε, then

‖u : Ck(N, ĝ)‖ ∼
1+ε

‖u : Ck(N, g)‖.(C.13)
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Proof. We first consider the case where k = 0. Since ĝ(u, u) − g(u, u) is a
sum of g-inner products of contractions of u and h, we have that∣∣‖u : C0(N, ĝ)‖2 − ‖u : C0(N, g)‖2

∣∣ ≤ C‖h : C0(N, g)‖‖u : C0(N, g)‖2,

which implies (C.13) when k = 0, where we have used that ‖h : C0(N, g)‖
is small.

Using that the Christoffel symbols of ∇̂ and∇ satisfy Γ̂k
ij−Γk

ij = Γl
ijhlk+

(Ch)ijk, substituting into the formula for the components of ∇̂u, estimating,
and using (C.13) when k = 0, we find

‖∇̂u : C0(N, ĝ)‖ ≤ (1 + C‖h : C1(N, g)‖)‖u : C1(N, g)‖.(C.14)

Interchanging the roles of ĝ and g in (C.14) and using (C.14) also to estimate
‖h : C1(N, ĝ)‖, we have

‖∇u : C0(N, g)‖ ≤ (1 + C‖h : C1(N, ĝ)‖)‖u : C1(N, ĝ)‖
≤ (1 + C‖h : C1(N, g)‖)‖u : C1(N, ĝ)‖.

With the preceding, this proves (C.13) when k = 1, and the result for general
k follows inductively.

D. Weighted decay estimates

We prove a weighted estimate on surfaces for solutions of inhomogeneous lin-
ear equations which is analogous to estimates in other gluing constructions,
e.g. in [7, 24, 29]. The proof relies on analogous estimates in the Euclidean
setting established in [7, Proposition C.1(i)].

Lemma D.1. Given a closed Riemannian Surface (Σ2, g), V ∈ C∞(Σ),
β ∈ (0, 1), and γ ∈ (1, 2), there exists ε > 0 such that for any ε ∈ (0, ε] and

any p ∈ Σ, there is a linear map RΣ
p : C0,β(DΣ

p (ε)) → C2,β(DΣ
p (ε)) so that

if E ∈ C0,β(DΣ
p (ε)) and u = RΣ

p (E), then

(i) (Δg + V )u = E.
(ii) u(p) = dpu = 0.

(iii) ‖u : C2,β(DΣ
p (ε),d

Σ
p , g, (d

Σ
p )

γ‖ ≤ C‖E : C0,β(DΣ
p (ε),d

Σ
p , g, (d

Σ
p )

γ−2)‖.

Proof. In [7, Proposition C.1(i)], it was shown that the conclusion of Lemma

D.1 holds when (Σ2, g) = (R2, δij) and V = 0. By identifying DΣ,g
p (ε) with

D
TpΣ,gp
0 (ε) using the exponential map, considering the Euclidean Laplacian



436 Nikolaos Kapouleas and Peter McGrath

Δgp and its corresponding right inverse R : C0,β(DΣ
p (ε)) → C2,β(DΣ

p (ε))

from [7, Proposition C.1(i)], taking ε small enough, and rescaling DΣ
p (ε) to

be of unit size, we may assume that Id−LR = (Δgp−L)R has operator norm
less than 1. We then defineRΣ

p = R
∑∞

n=0(Id−LR)n = R
∑∞

n=0((Δ−L)R)n.
Item (i) follows by inspection, and (ii) and (iii) follow from the corresponding
items established in [7, Proposition C.1(i)].

Corollary D.2. Let Σ, V, β, ε, and p be as in D.1. There exists C > 0 such
that for any ε ∈ (0, ε] and any v ∈ C2,β(DΣ

p (ε)) satisfying (Δg + V )v = 0 on

DΣ
p (ε) and Epv = 0, the following estimate holds.

‖v : C2,β(DΣ
p (ε),d

Σ
p , g, (d

Σ
p )

γ)‖ ≤ C‖v : C2,β(∂DΣ
p (ε),d

Σ
p , g, (d

Σ
p )

γ)‖.

Proof. Suppose ε and v are as above. Define v̂ ∈ C2,β(DΣ
p (ε) \DΣ

p (ε/2)) to

be the radial extension of v|∂DΣ
p (ε)

and define ϕ ∈ C2,β(DΣ
p (2ε)) by ϕ =

Ψ[ε, ε/2;dΣ
p ](v̂, 0). By the definitions, the following estimate holds.

‖ϕ : C2,β(DΣ
p (ε),d

Σ
p , g)‖ ≤ C‖v : C2,β(∂DΣ

p (ε),d
Σ
p , g)‖.(D.3)

By applying Lemma D.1 with E = (Δg +V )ϕ, there exists u ∈ C2,β(DΣ
p (ε))

satisfying (Δg + V )(u− ϕ) = 0, Epu = 0, and

‖u : C2,β(DΣ
p (ε),d

Σ
p , g, (d

Σ
p )

γ‖ ≤ C‖ϕ : C2,β(DΣ
p (ε),d

Σ
p , g, (d

Σ
p )

γ)‖
≤ C‖v : C2,β(∂DΣ

p (ε),d
Σ
p , g, (d

Σ
p )

γ)‖,

where the last inequality follows from (D.3) and the definitions.
On the other hand, by the definition of ϕ and the proof of Lemma D.1

we have that the restriction of v − ϕ+ u to ∂DΣ
p (ε) is a linear combination

of constants and first harmonics. Since Ep(v − ϕ + u) = 0, it follows from
the smallness of ε that v = ϕ − u. The claimed estimate now follows from
this and the preceding.
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1992.



Generalizing the Linearized Doubling approach, I 437

[3] Y. Berchenko-Kogan. The entropy of the Angenent torus is approximately
1.85122. Exp. Math., 30(4):587–594, 2021.

[4] M. Berger and D. Ebin. Some decompositions of the space of symmetric tensors
on a Riemannian manifold. J. Differential Geometry, 3:379–392, 1969.

[5] L. Bers. Local behavior of solutions of general linear elliptic equations. Comm.
Pure Appl. Math., 8:473–496, 1955.

[6] C. Breiner and N. Kapouleas. Embedded constant mean curvature surfaces in
Euclidean three-space. Math. Ann., 360(3-4):1041–1108, 2014.

[7] C. Breiner and N. Kapouleas. Complete constant mean curvature hyper-
surfaces in Euclidean space of dimension four or higher. Amer. J. Math.,
143(4):1161–1259, 2021.

[8] S. Brendle. Ricci flow and the sphere theorem, volume 111 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2010.

[9] O. Chodosh and C. Mantoulidis. Minimal surfaces and the Allen–Cahn equa-
tion on 3-manifolds: index, multiplicity, and curvature estimates. Ann. of Math.
(2), 191(1):213–328, 2020.

[10] T. H. Colding and W. P. Minicozzi, II. Smooth compactness of self-shrinkers.
Comment. Math. Helv., 87(2):463–475, 2012.

[11] S. K. Donaldson. Connections, cohomology and the intersection forms of 4-
manifolds. J. Differential Geom., 24(3):275–341, 1986.

[12] A. Folha, F. Pacard, and T. Zolotareva. Free boundary minimal surfaces in
the unit 3-ball. Manuscripta Math., 154(3-4):359–409, 2017.

[13] A. Fraser and R. Schoen. Sharp eigenvalue bounds and minimal surfaces in
the ball. Invent. Math., 203(3):823–890, 2016.

[14] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second
order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the
1998 edition.

[15] A. Gray. Tubes, volume 221 of Progress in Mathematics. Birkhäuser Verlag,
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