
Cambridge Journal of Mathematics

Volume 11, Number 3, 563–698, 2023

Classification of noncollapsed translators in R
4

Kyeongsu Choi, Robert Haslhofer, and Or Hershkovits

In this paper, we classify all noncollapsed singularity models for
the mean curvature flow of 3-dimensional hypersurfaces in R

4 or
more generally in 4-manifolds. Specifically, we prove that every
noncollapsed translating hypersurface in R

4 is either R×2d-bowl,
or a 3d round bowl, or belongs to the one-parameter family of 3d
oval bowls constructed by Hoffman-Ilmanen-Martin-White.

1. Introduction

A hypersurfaceMn ⊂ R
n+1 is called a translator if its mean curvature vector

satisfies

(1) H = v⊥

for some 0 �= v ∈ R
n+1. Solutions of (1) correspond to selfsimilarly translat-

ing solutions {Mt = M + tv}t∈R of the mean curvature flow,

(2) (∂tx)
⊥ = H(x).

Translators model the formation of type II singularities under mean cur-
vature flow, see e.g. [Ham95, HS99, Whi03]. We recall that Huisken and
Hamilton grouped singularities of the mean curvature flow at some time
T into type I and II, depending on whether (T − t)|A|2 stays bounded or
not [Hui90, Ham95]. Type I singularities are modelled on shrinkers, and are
easier to analyze than type II singularities. For example it is known in any
dimension that the round cylinders R

k × Sn−k are the only mean-convex
shrinkers [Hui93, Whi03], and also the only stable shrinkers [CM12]. In an
attempt to get a grasp on type II singularities, translators have received a
lot of attention over the last 25 years, but despite these efforts no general
classification result has been obtained for n ≥ 3, not even for convex graphs.

For n = 2, there is by now a very precise understanding of translators.
Altschuler-Wu [AW94] constructed a translator that is the graph of an en-
tire rotationally invariant function, called the bowl. In [Wan11], Wang proved
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that the bowl is the unique (up to rigid motions and scaling) convex transla-

tor in R
3 that is an entire graph. More recently, a complete classification of

graphical translators in R
3 has been obtained by Hoffman-Ilmanen-Martin-

White [HIMW19], building on important prior work of Spruck-Xiao [SX20].

Namely, they proved that any such translator is either a bowl, or a grim

reaper surface, or belongs to the one-parameter family of Δ-wings discov-

ered by Ilmanen. See [Ngu09], [HMW22a] and [HMW22b] for other examples

of translators, and [HIMW21] for a survey article about translators in R
3.

See also [CCK21] for a recent classification of translators of the α-Gauss

curvature flow in R
3.

For n ≥ 3, in his pioneering work [Wan11], Wang constructed graphical

convex translators that are not rotationally symmetric, addressing a conjec-

ture of White [Whi03]. The only instances for n ≥ 3 where some classification

has been obtained are the uniformly 2-convex case [Has15, BL17, SS21] and

the case of solutions contained in strip regions [BLT20], which both very

much behave like the 2-dimensional case.

1.1. Main results

In the present paper, we address the classification problem for translators in

R
4. We focus on the situation most relevant for singularity analysis, namely

the noncollapsed case. We recall that a hypersurfaceM is called noncollapsed

if it has positive mean curvature and there is some α > 0 such that at every

point p ∈ M the inscribed radius and exterior radius is at least α/H(p), see

[SW09, And12, HK17]. It is known since the work of White [Whi00, Whi03]

that all blowup limits of any mean-convex mean curvature flow are non-

collapsed. In fact, one can take α = 1, see [Bre15, HK15]. More generally,

by Ilmanen’s mean-convex neighborhood conjecture [Ilm03], which has been

proved recently in the case of neck-singularities in [CHH22, CHHW22], it

is expected even without mean-convexity assumption that all blowup limits

near any cylindrical singularity are ancient noncollapsed flows.

Let us first review the known examples of noncollapsed translators in

R
4: Two examples that have been known for quite a while are R× Bowl2 -

the product of the line with the 2-dimensional bowl from from Altschuler-

Wu [AW94], and Bowl3 - the 3d round bowl constructed by Clutterbuck-

Schnürer-Schulze [CSS07]. More recently, Hoffman-Ilmanen-Martin-White
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Figure 1: The oval bowls Mk are 3-dimensional translating hypersurfaces in
R
4, whose level sets look like 2-dimensional ovals in R

3. It is a one-parameter
family of translators, whose principal curvatures at the tip are (k, 1−k

2 , 1−k
2 ).

For k = 1/3 it is the round bowl (with round spherical level sets), while for
k → 0 one has convergence to R×2d-bowl.

[HIMW19] constructed examples that are not rotationally symmetric. Specif-
ically, for every triple (k1, k2, k3) of nonnegative numbers with k1+k2+k3 = 1
they proved that there exists at least one unit-speed graphical translator
with tip principal curvatures (k1, k2, k3). Moreover, they showed that when
one takes k1 ≤ k2 = k3 then one always gets a translator that is an en-
tire graph and has circular symmetry in the last two variables. It is not
hard to show that these entire graphical translators are in fact noncol-
lapsed (see Theorem 4.2). Hence, for every k ∈ (0, 13) there exists at least
one noncollapsed translators Mk ⊂ R

4 that is noncollapsed and circular
symmetric and whose principal curvatures at the tip are (k, 1−k

2 , 1−k
2 ). The

HIMW-translators {Mk}k∈(0,1/3) interpolate between M0 = R × Bowl2 and
M1/3 = Bowl3. Furthermore, as we will see later, the HIMW-translators
have oval level sets, as illustrated in Figure 1, and we thus refer to them as
the oval bowls.

Our main classification theorem shows that any noncollapsed translators
in R

4 in fact must be equal, up to rigid motion and scaling, to one of the
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examples from the literature that we reviewed above:

Theorem 1.1 (classification of noncollapsed translators). Every noncol-
lapsed translator in R

4 is, up to rigid motion and scaling,

• either R× Bowl2,
• or the 3d round bowl Bowl3,
• or belongs to the one-parameter family of 3d oval bowls {Mk}k∈(0,1/3)
constructed by Hoffman-Ilmanen-Martin-White.

In particular, our main theorem provides a complete classification of
singularity models for the mean curvature flow of embedded mean-convex
hypersurfaces in R

4 or more generally also in 4-manifolds (observe that even
for general ambient 4-manifolds the blowup limits always live in Euclidean
space). To discuss this, recall that for mean-convex flows all blowup limits
are noncollapsed and convex [Whi00, Whi03, HS99, HK17]. In particular,
for type I singularities one can always pass to a type I blowup limit that
is a shrinker by Huisken’s monotonicity formula [Hui90], while for type II
singularities one can always pass to a type II blowup limit that is a translator
by Hamilton’s Harnack inequality [Ham95].

Corollary 1.2 (classification of singularity models). For the mean curvature
flow of closed embedded mean-convex hypersurfaces in R

4 (or more generally
in a 4-manifold), every type I blowup limit (ala Huisken) is

• either a round shrinking S3,
• or a round shrinking R× S2,
• or a round shrinking R

2 × S1,

and every type II blowup limit (ala Hamilton) is

• either R× Bowl2,
• or the 3d round bowl Bowl3,
• or belongs to the one-parameter family of 3d oval bowls {Mk}k∈(0,1/3)
constructed by Hoffman-Ilmanen-Martin-White.

In particular, our corollary seems to be the first general classification
result of singularity models in higher dimensions. Recall that while singu-
larities for mean curvature flow in R

3 and for three-dimensional Ricci flow
are by now well understood, the classification of singularities in higher di-
mensions, without special assumptions such as two-convexity or positive
isotropic curvature, is widely open.
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Our main classification result is related to a recent breakthrough by
Angenent-Daskalopoulos-Sesum [ADS19, ADS20], who proved that every
compact ancient noncollapsed flow in R

3 (or more generally in R
n+1 assum-

ing uniform 2-convexity) is either a round shrinking sphere or an ancient
oval. The ancient ovals, whose existence has been proved in [Whi03, HH16],
are compact ancient solutions that for t → 0 converge to a round point, but
for t → −∞ look very oval, namely like a cylinder with two bowl-like caps.

Let us now discuss some major challenges that arise in establishing our
main classification result:

First, the round bowl has a neck-tangent flow at −∞, i.e.

(3) lim
λ→0

λMλ−2t = R× S2(
√
−4t),

but oval bowls have a bubble-sheet tangent flow at −∞, i.e.

(4) lim
λ→0

λMλ−2t = R
2 × S1(

√
−2t).

While the case of neck-singularities has been analyzed extensively over the
last 20 years culminating in the recent classification from [ADS19, ADS20,
BC19, BC21, CHH22, CHHW22] (see also [Bre20, ABDS22, BDS21, LZ18,
BN20, BDNS23] for corresponding classification results for the Ricci flow),
the classification of bubble-sheet singularities up to now seemed to be a
problem out of reach.

Second, the classification of ancient ovals from the recent breakthrough
by Angenent-Daskalopoulos-Sesum [ADS19, ADS20] crucially relies on the
property that eventually all such ovals agree up to rigid motion and scaling.
In contrast, the examples from [HIMW19] for different values of k are gen-
uinely distinct, and furthermore it is not known a-priori whether or not the
HIMW-family is unique and depends continuously on k. Even though this
may sound like a more technical point, this actually causes the following
fundamental issue: In the spectral analysis one cannot kill the neutral and
unstable modes in any straightforward way.

Third, the classification of round bowl and ancient ovals crucially re-
lies on the fact that they are rotationally symmetric. In contrast, the oval
bowls from [HIMW19] are only SO(2)-symmetric but not SO(3)-symmetric.
In particular, this increases the number of independent variables, and thus
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precludes the direct use of ODE techniques or techniques from 1+1 dimen-
sional parabolic equations.

1.2. Key results and outline of the proofs

Let us now outline the main steps of our argument. Roughly speaking, our
main classification result will follow by combining the following five key
results:

• Theorem 1.3 (blowdown and circular symmetry),
• Theorem 1.5 (uniform sharp asymptotics),
• Theorem 1.6 (spectral uniqueness),
• Theorem 1.7 (existence with prescribed eccentricity),
• Theorem 1.8 (monotonicity and analyticity).

We will now discuss these five key results in turn. For the rest of this out-
line, we denote by M = ∂K any noncollapsed translator in R

4, where we
normalize without loss of generality such that it translates with unit speed
in positive x1-direction. Assuming that M is neither R×2d-bowl nor a 3d
round bowl, the ultimate goal is to show that it is an oval bowl Mk, and is
uniquely determined by the tip curvature k.

In Section 2, we discuss coarse asymptotics and circular symmetry. The
key to get started is:

Theorem 1.3 (blowdown and circular symmetry, c.f. [CHH21, Zhu22]).
The blowdown of M = ∂K is always a halfline, more precisely

(5) lim
λ→0

λK = {λe1 |λ ≥ 0}.

In particular, M has a unique tip point and is SO(2)-symmetric.

The result about the blowdown has already been established in our previ-
ous paper [CHH21]. To prove this we had to rule out the potential scenario of
noncollapsed wing-like translators, which we did via fine-bubble sheet anal-
ysis. In particular, the blowdown directly yields the existence of a unique
tip point where x1 is minimized. It then follows from a recent result by Zhu
[Zhu22] thatM is SO(2)-symmetric. Zhu’s proof was based on a bubble-sheet
version of the Brendle-Choi neck improvement theorem [BC19, BC21]. Ex-
ploiting the fact that the blowdown is a halfline, we found a shorter proof
of Zhu’s result, which is based instead on methods from [Bre13, Has15] and
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which we include for convenience of the reader.

Theorem 1.3 also yields further important information about the coarse

asymptotics of the level sets

(6) Σh := M ∩ {x1 = h}.

Exploiting the more quantitate information from the proof we show that for

every δ > 0 we have

(7) lim
h→∞

diam(Σh)

h1/2+δ
= 0.

Moreover, using the vanishing asymptotic slope property, which follows again

from Theorem 1.3, we show that the level sets move almost like a mean

curvature flow of surfaces in R
3. Namely, we show that

(8) |H −Hh| ≤ CH3,

where H is the mean curvature of M , and Hh is the mean curvature of

Σh ⊂ {x1 = h}.

In Section 3, we establish uniform sharp asymptotics. Loosely speaking,

our result shows that the level sets M ∩ {x1 = −t} have the same sharp

asymptotics as the ones from Angenent-Daskalopoulos-Sesum [ADS19] for

the 2-dimensional ancient ovals in R
3, and moreover these sharp asymp-

totics hold uniformly for certain families of translators. In more detail, we

establish uniform sharp asymptotics for the profile function of the level sets.

Specifically, assuming without loss of generality that the SO(2)-symmetry

from above is in the x3x4-plane centered at the origin, we can express the

level sets as

(9)

Σ−t =
{
(−t, x, x3, x4) ∈ R

4 : −d−(t) ≤ x ≤ d+(t), (x23 + x24)
1/2 = V (x, t)

}
.

The profile function V (x, t) is defined for all t � 0 and all x on a maximal

interval [−d−(t), d+(t)]. We also consider the renormalized profile function

v defined by

(10) v(y, τ) = eτ/2V (e−τ/2y,−e−τ ).
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Moreover, in the tip regions we define Y (·, τ) as the inverse function of
v(·, τ), and let

(11) Z(ρ, τ) = |τ |1/2
(
Y (|τ |−1/2ρ, τ)− Y (0, τ)

)
.

As we will see, in the central region there is an inwards quadratic bending
of the form

(12) v(y, τ) =
√
2− y2 − 2√

8|τ |
+ o(|τ |−1).

It will be crucial that our uniform sharp asymptotics in all regions hold for all
times where the function v behaves approximately like (12) in an Gaussian
L2-sense. To describe this, let us discuss some background and notation.
The evolution of v is governed by the one-dimensional Ornstein-Uhlenbeck
operator

(13) L = ∂2
y − y

2∂y + 1.

Recall that L is a self-adjoint operator on H := L2(R, e−y2/4dy), and that

(14) H = H+ ⊕ H0 ⊕ H−,

where H+ is spanned by the unstable eigenfunctions ψ1 = 1 and ψ2 = y, and
H0 is spanned by the neutral eigenfunction ψ0 = y2 − 2. We write p± and
p0 for the orthogonal projections on H± and H0. Moreover, we fix a small
constant θ > 0, and consider the cylindrical profile function

(15) vC = ϕC(v)v,

where ϕC is a suitable cutoff function that localizes in the cylindrical region
C = {v ≥ 5

8θ}. Finally, given any τ0 � 0 after a suitable shift in the x1x2-
plane we can assume that

(16) p+(vC(τ0)−
√
2) = 0.

Definition 1.4 (κ-quadratic). We say that M (normalized as above and
centered as in (16)) is κ-quadratic at time τ0 if its cylindrical profile function
vC satisfies

(17)

∥∥∥∥vC(y, τ0)−√
2 +

y2 − 2√
8|τ0|

∥∥∥∥
H

≤ κ

|τ0|
,
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and for every τ ∈ [2τ0, τ0] the renormalized hypersurface M̄τ = e−τ/2M−e−τ

can be expressed locally as a graph of a function u(y1, y2, τ) over the cylinder
R
2 × S1(

√
2) with the estimate

(18) sup
τ∈[2τ0,τ0]

‖u(·, τ)‖C4(B(0,2|τ0|1/100)) ≤ |τ0|−1/50.

Here, the small parameter κ > 0 measures the deviation from (12) in
the Gaussian L2-norm. The condition involving the bubble-sheet function u
is more technical and can be ignored at first reading.

Using these notions, we can now precisely state our uniform sharp asymp-
totics:

Theorem 1.5 (uniform sharp asymptotics). For every ε > 0 there exists
κ > 0 and τ∗ > −∞, such that if M is κ-quadratic at time τ0 for some
τ0 ≤ τ∗, then for every τ ≤ τ0 the following holds:

1. Parabolic region: The renormalized profile function satisfies

(19)

∣∣∣∣v(y, τ)−√
2

(
1− y2 − 2

4|τ |

)∣∣∣∣ ≤ ε

|τ | (|y| ≤ ε−1).

2. Intermediate region: The function v̄(z, τ) := v(|τ |1/2z, τ) satisfies

(20) |v̄(z, τ)−
√

2− z2| ≤ ε,

on [−
√
2 + ε,

√
2− ε].

3. Tip regions: We have the estimate

(21) ‖Z(·, τ)− Z0(·)‖C100(B(0,ε−1)) ≤ ε,

where Z0(ρ) is the profile function of the 2d-bowl with speed 1/
√
2.

Moreover, for every τ ≤ τ0 the renormalized hypersurface M̄τ = e−τ/2M−e−τ

can be expressed locally as a graph of a function u(y1, y2, τ) over the cylinder
R
2 × S1(

√
2) with the estimate

(22) ‖u‖C4(B(0,2|τ |1/10) ≤ |τ |−1/5.

Finally, given any κ > 0, after suitable recentering every M is κ-quadratic
at time τ0, provided τ0 = τ0(M,κ) > −∞ is sufficiently negative.
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In particular, the uniform sharp asymptotics imply that the level sets
Σh satisfy the estimate

(23)

∣∣∣∣ d±(h)√
2h log h

− 1

∣∣∣∣ ≤ ε.

Also, while we initially only assumed that we have the graphical radius
|τ |1/100 for 2τ0 ≤ τ ≤ τ0, the theorem shows that we actually get the im-
proved graphical radius |τ |1/10 for all τ ≤ τ0.

To prove the uniform sharp asymptotics, we carry out a fine bubble-sheet
analysis, which generalizes the fine neck analysis from [ADS19]. Roughly
speaking, this can be done by carefully analyzing the evolution of u(y1, y2, τ),
which is governed by the two-dimensional Ornstein-Uhlenbeck operator

(24) L = ∂2
y1

+ ∂2
y2

− y1

2 ∂y1
− y2

2 ∂y2
+ 1.

The most challenging part is to establish that the estimates are in fact uni-
form for all M that are κ-quadratic at time τ0. To this end, remembering
Definition 1.4 (κ-quadratic) we have to (i) upgrade information at the single
time τ0 to information for all τ ≤ τ0, and (ii) upgrade information about pro-
file function v(y, τ) in the Hilbert space H to information about the bubble-
sheet graph function u(y1, y2, τ) in the larger Hilbert space H ∼= H⊗ H. To
accomplish (i) we use Merle-Zaag type arguments. To accomplish (ii) we ex-
ploit the fact that |∂y1

u| is exponentially small on our bubble-sheet thanks
to the translator equation.

Our next key result says that noncollapsed translators in R
4 are uniquely

characterized by the spectral projection of their cylindrical profile function
to the unstable and neutral space:

Theorem 1.6 (spectral uniqueness). There exist κ > 0 and τ∗ > −∞ with
the following significance: If M1 and M2 are noncollapsed translators in R

4

(normalized and centered as before) that are κ-quadratic at time τ0, where
τ0 ≤ τ∗, and if their cylindrical profile functions v1C and v2C satisfy

(25) p+(v
1
C(τ0)− v2C(τ0)) = 0 (equal spectral center),

and

(26) p0(v
1
C(τ0)− v2C(τ0)) = 0 (equal spectral eccentricity),
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then

(27) M1 = M2.

The statement of Theorem 1.6 (spectral uniqueness) is similar to the
main technical result of [ADS20]. Some important technical differences are
that Theorem 1.6 is uniform across all κ-quadratic solutions and that instead
of simply truncating the difference of profile functions, we use the intrinsic
localization (15). This is crucial to ensure that having equal spectrum is
manifestly an equivalence relation.

The biggest difference, however, is how these theorems can be applied.
For the ancient ovals it was shown in [ADS20, Section 4] that by a suitable
rigid motion and scaling one can always arrange that the truncated differ-
ence of the profile functions satisfies the conditions p+(wC(τ0)) = 0 and
p0(wC(τ0)) = 0. This of course was only possible since the ancient ovals are
– at the end of the day – unique up to rigid motion and scaling. In con-
trast, the HIMW translators are a genuinely distinct one-parameter family
of solutions. While an easy shift in the x1x2-plane still allows us to impose
our usual centering condition (16), which in particular implies (25), dealing
with the spectral eccentricity is far more subtle. In particular, since it is not
known a priori whether or not the HIMW family is unique and continuous,
while all tip curvatures k are realized, it is highly nonobvious whether or
not all spectral eccentricities are realized.

In Section 4, we overcome the above difficulties and complete the proof
of the main classification theorem, modulo the proof of the spectral unique-
ness theorem, which will be proven in the last section. A key point is to
show that the Hoffman-Ilmanen-Martin-White construction in fact real-
izes all eccentricities. To describe this, recall from [HIMW19] that for ev-
ery ellipsoidal parameter a ∈ [0, 13 ] and every height h < ∞, there exists
an SO(2)-symmetric translator-with-boundary Ma,h, with tip at the origin
and whose boundary lies at height x1 = h and is an ellipse of the form
a2x22 + (1−a

2 )2x23 + (1−a
2 )2x24 = R2, where R = R(a, h). We then define the

HIMW class A as the collection of all possible limits, namely1

(28) A :=
{
lim
i→∞

Mai,hi | ai ∈ [0, 1/3] and hi → ∞
}
.

1A priori this slightly generalizes the construction from Hoffman-Ilmanen-
Martin-White, but a posteriori it will be equivalent.
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We first establish some basic properties of this class and show that every

member of A is noncollpased. Hence, the above results apply to the class A.

Also, given any τ0, it is easy to see that there is a unique shift in x1-direction

such that our centering condition (16) holds. We denote this shifted class by

A′.
We then consider the eccentricity map

(29) E : A′ → R, M �→ 〈vMC (τ0), 2− y2〉H.

Observe that the expected value of E for translators satisfying the sharp

asymptotics at time τ0 is

(30) e0 =
4
√
2π

|τ0|
.

Our next theorem shows that in fact all values in a neighborhood of definite

size are realized:

Theorem 1.7 (existence with prescribed eccentricity). There exist a con-

stants κ > 0 and τ∗ > −∞ with the following significance. For every τ0 ≤ τ∗
and every x ∈ R with |x−e0| ≤ κ

10|τ0| there exists a shifted HIMW translator

M ∈ A′ that is κ-quadratic at time τ0 and satisfies

(31) E(M) = x.

The theorem, applied in combination with the other key results from

above, has the following two fundamental consequences:

1. Every noncollapsed translator in R
4 is, up to rigid motion and scaling,

a member of the HIMW class A.

2. The space A is homeomorphic to an interval.

Let us sketch how these two fundamental facts follow: Given any noncol-

lapsed translator M ⊂ R
4 that is neither a 3d bowl nor splits off a line, by

Theorem 1.5 (uniform sharp asymptotics), choosing τ0 � 0, normalizing and

shifting, we can arrange that the centering condition (16) holds and that M

is κ
100 -quadratic at time τ0. Then, by Theorem 1.7 (existence with prescribed

eccentricity) we can find a κ-quadratic shifted HIMW translator M ′ ∈ A′

with E(M ′) = E(M). Finally, Theorem 1.6 (spectral uniqueness) implies that

M = M ′, which yields 1. Moreover, a similar argument, now also using the

fact that our sharp asymptotics are uniform, in fact shows that every point
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in A has a neighborhood that is homeomorphic to an interval, which yields 2.

Let us now explain our strategy to prove Theorem 1.7. We fix τ0 � 0
and denote by Bκ the set of all translators M ∈ A′ that are κ-quadratic
at time τ0. By Theorem 1.6 (spectral uniqueness) the restricted eccentricity
map E|Bκ

: Bκ → R is injective. Our goal is to show that the image of E|Bκ

contains the interval

(32) I :=

[
e0 −

κ

10|τ0|
, e0 +

κ

10|τ0|

]
.

We choose a reference translatorM0 that is
κ
100 -quadratic at time τ0. Observe

that E(M0) is contained in the interior of I. Also recall that we can express
M0 as a limit of a sequence Mi of shifted HIMW translators-with-boundary
with ellipsoidal parameters ci and height hi.
We then run a continuity argument as follows: For each i, we choose the
maximal interval [ai, bi] containing ci such that for every a ∈ [ai, bi] the
shifted HIMW translators-with-boundary Ma

i with ellipsoidal parameters a
and height hi satisfies, roughly speaking, the following two properties:

1. Ma
i is κ-quadratic at time τ0, and

2. E(Ma
i ) ∈ I.

Since the HIMW construction at any finite height hi depends continuously
on the ellipsoidal parameter, it is not hard to see that 0 < ai < ci < bi <

1
3 .

We then argue that for all large i the endpoint elements are mapped to the
endpoints of the interval, i.e.

(33) E(Mai

i ) ∈ ∂I and E(M bi
i ) ∈ ∂I .

To show this, we have to exclude the possibility that 1 gets saturated at the
endpoint elements, which we do using Theorem 1.5 (uniform sharp asymp-
totics) together with the fact that E(Ma

i ) ∈ I. For this step, it is crucial that
our notion of κ-quadraticity only depends on the behaviour of the cylindri-
cal profile function at the single time τ0, and that our sharp asymptotics are
uniform among such κ-quadratic solutions. Furthermore, invoking in addi-
tion a Rado-type argument that will be discussed further below, we show
that

(34) E(Mai

i ) �= E(M bi
i ).

Hence, by the intermediate value theorem for each x ∈ I there exists some
di ∈ [ai, bi] with E(Mdi

i ) = x. Finally, passing to a subsequential limit, we
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get the desired translator M ∈ Bκ satisfying E(M) = x.

Having established the above fundamental facts, our final key step is:

Theorem 1.8 (monotonicity and analyticity). The tip curvature map k :
A → [0, 1/3] is monotone and analytic.

Since every monotone analytic function is strictly monotone, this is in-
deed sufficient to conclude our main classification theorem (Theorem 1.1)
and its corollary (Corollary 1.2).

To establish monotonicity we use a Rado-type argument. This method,
going back to [Rad51], is traditionally used in the study of 2-dimensional sur-
faces see e.g. [Gul73, Che76, MY82, Ros95, Bre16, HIMW19]. Here, we ob-
serve that the method can be adapted to our setting of 3-dimensional hyper-
surfaces with circular symmetry. Finally, analyticity follows from Lyapunov-
Schmidt reduction and a linearized version of the estimates from Section 5.
This proof of analyticity is rather standard but also rather lengthy, and will
thus be given in a separate technical paper.2

Finally, in Section 5, we prove Theorem 1.6 (spectral uniqueness), by
adapting the argument from [ADS20] – with some important differences
and additional steps – to our setting. To explain the underlying mechanism,
recall that by equation (8) the level sets almost evolve by mean curvature
flow. More precisely, the profile function V of the level sets of our translator
satisfies the equation

(35) Vt =
(1 + V 2

t )Vxx + (1 + V 2
x )Vtt − 2VxVtVxt

1 + V 2
x + V 2

t

− 1

V
.

For comparison, the profile function U of the ancient ovals in R
3 would

satisfy

(36) Ut =
Uxx

1 + U2
x

− 1

U
.

Heuristically, thanks to the vanishing asymptotic slope one hopes that the
functions U and V behave quite similarly. However, while (36) is an uni-
formly parabolic PDE, equation (35) is an elliptic PDE with degenerating

2Analyticity is only needed to relate the spectral eccentricity and the tip cur-
vature. Readers who are happy with a classification of noncollapsed translators
in terms of their spectral eccentricity can of course simply skip the paper about
analyticity.
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coefficients, so some careful arguments are needed to make these heuristics

precise.

In terms of the renormalized profile function our evolution equation takes

the form

vτ =
vyy

1 + v2y
− y

2
vy +

v

2
− 1

v
+ eτN [v],(37)

where N is a certain nonlinear error term, involving second derivatives with

respect to both y and τ . Our inverse profile function satisfies

(38) Yτ =
Yvv

1 + Y 2
v

+
1

v
Yv +

1

2
(Y − vYv) + eτM[Y ],

for another nonlinear term M, which we also view as error term.

We first prove that our profile function is almost quadratically concave,

namely

(39) (v2)yy ≤ eτ

v2
.

This is based on the maximum principle, and thus some care is needed to

handle the error term as opposed to the analysis of the ovals in [ADS20],

where the profile function was exactly quadratically concave. The almost

quadratic concavity estimate has the important corollary that Y ∼ Ce−v2/4

near the tips.

We then consider the difference of the profile functions w := v1 − v2, as

well as its truncated version

(40) wC := v1ϕC(v1)− v2ϕC(v2),

where, as before, ϕC localizes in the cylindrical regions Ci = {vi ≥ 5
8θ}. The

difference function w satisfies an evolution equation of the schematic form

(41) wτ = Lw + E [w] + eτF [w],

where L is the one-dimensional Ornstein-Uhlenbeck operator. The function

wC satisfies a related equation with additional terms coming from the cutoff
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function. We also work with the difference of inverse profile functions W :=
Y1 − Y2, as well as its truncated version

(42) WT := ϕT · (Y1 − Y2),

where ϕT is a suitable cutoff function that localizes in the tip region T =
{v ≤ 2θ}. The function WT also satisfies a related degenerate elliptic PDE,
which we again view as parabolic PDE with error terms.

Our energy estimates require certain weighted integral norms, similarly
as in [ADS20]. In addition to the Gaussian L2-norm ‖ ‖H, one also needs
the Gaussian H1-norm

(43) ‖f‖D :=

(∫
(f2 + f2

y )e
−y2/4dy

)1/2

,

and its dual norm ‖ ‖D∗ . Moreover, for time-dependent functions this induces
the parabolic norms

(44) ‖f‖X ,∞ := sup
τ≤τ0

(∫ τ

τ−1
‖f(·, σ)‖2X dσ

)1/2

,

where X = H,D or D∗. Furthermore, in the tip region one works with the
norm

(45) ‖F‖2,∞ := sup
τ≤τ0

1

|τ |1/4

(∫ τ

τ−1

∫ 2θ

0
F (v, σ)2eμ(v,σ) dv dσ

)1/2

,

where μ is a carefully chosen weight satisfying μ(v, τ) = −1
4Y1(v, τ)

2 for
v ≥ θ/2.

In contrast to [ADS20], we also need exponentially weighted C2-norms
to control the higher derivative terms coming from the nonlinearities eτN
and eτM. Specifically, in the cylindrical region C = C1 ∪ C2 we work with3

‖f‖C2
exp(C) := sup

τ≤τ0

(
|τ |eτ sup

y:(y,τ)∈C

(
|f |+ |fy|+ |fτ |+ |fyy|+ |fyτ |+ |fττ |

))
,

(46)

3For technical reasons, in the cylindrical region we use the weight |τ |eτ . Alter-
natively, one could use e

99
100 τ .
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and in the tip region we work with

‖F‖C2
exp(T ) := sup

τ≤τ0

(
eτ sup

v≤2θ

(
|F |+ |Fv|+ |Fτ |+ |Fvv|+ |Fvτ |+ |Fττ |

))
.

(47)

In the cylindrical region we prove the energy estimate

(48) ‖wC − p0wC‖D,∞ ≤ ε
(
‖wC‖D,∞ + ‖w 1{θ/2≤v1≤θ}‖H,∞

)
+C‖w‖C2

exp(C).

In the tip region we prove the energy estimate

(49) ‖WT ‖2,∞ ≤ C

|τ0|
(
‖W1[θ,2θ]‖2,∞ + ‖W‖C2

exp(T )

)
.

The proofs of these energy estimates are along the lines of [ADS20], but with

various additional steps and technical tweaks necessitated by our intrinsic

localization and the nonlinear terms.

We then combine our two energy estimates, taking also into account the

equivalence of norms in the transition region similarly as in [ADS20], to

derive the decay estimate

(50) ‖wC‖D,∞ + ‖WT ‖2,∞ ≤ C
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

For comparison, in the corresponding estimate in [ADS20, Section 8] the

right hand side would simply vanish and one could conclude directly that w

and W vanish identically. In our case, however, the estimate (50) is only half

of the story, since the right hand side contains the exponentially weighted

error terms coming from our nonlinearities. While (50) gives control back-

wards in τ , we also need an estimate that gives control forwards in τ . To

this end, we consider the Hausdorff distance of the level sets, namely

(51) D(h) := dHausdorff

(
M1 ∩ {x1 = h},M2 ∩ {x1 = h}

)
.

Note that D(h) is essentially equivalent to the sum of the L∞ norms of w

and W at time τ = − log h. We then consider the level h′ = e−τ ′+1, where

τ ′ ∈ (−∞, τ0] is such that

(52) ‖w‖C2
exp(C) + ‖W‖C2

exp(T ) ≤ 2eτ
′ (|τ ′|‖w‖C2|Cτ′ + ‖W‖C2|Tτ′

)
.



580 Kyeongsu Choi et al.

Using the comparison principle for translators we show that we have the
weighted L∞-estimate

(53) sup
h∈[h′/e2,h′]

D(h) ≤ 10(log h′)1/2D(h′) .

Using this weighted L∞-estimate control, we can then estimate the weighted
C2-norms in terms of the weighted L2-norms via interior estimates. Specif-
ically, taking also into account that thanks to our sharp asymptotics the
ellipticity of (35) only degenerates polynomially in log h, we derive the esti-
mate

(54) ‖w‖C2
exp(C) + ‖W‖C2

exp(T ) ≤ ε
(
‖wC‖D,∞ + ‖WT ‖2,∞

)
.

Finally, combining (50) and (54) we infer that w and W vanish identically,
i.e. that M1 = M2. This concludes the outline of the proof.

2. Coarse asymptotics and circular symmetry

Let M ⊂ R
4 be a noncollapsed translator. Without loss of generality we can

assume that it translates with unit speed in positive x1-direction, namely

(55) H = e⊥1 .

By the convexity estimate [HK17, Theorem 1.10], our translator is convex.
If M splits off a line, then it must be R×2d-bowl by [Has15]. We can thus
assume from now on that M is strictly convex.

2.1. Coarse asymptotics

Let K be the closed domain bounded by M . Consider the blowdown

(56) Ǩ := lim
λ→0

λK.

By the main theorem of our prior paper [CHH21] the blowdown is a halfline,
namely

(57) Ǩ = {λe1 |λ ≥ 0}.

In the following, we write ν for the outwards unit normal.
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Proposition 2.1 (asymptotic slope and tip point). We have 〈e1, ν〉 → 0

as x1 → ∞. Moreover, there exists a unique tip point p0 ∈ M such that

x1(p0) = infp∈M x1(p).

Proof. By (57) and convexity, the fact that 〈e1, ν〉 → 0 as x1 → ∞ is clear.

To find a tip point, assume without loss of generality that 0 ∈ M , and

consider the infimum

(58) m := inf
p∈M

x1(p).

Let pi ∈ M be a minimizing sequence. Suppose towards a contradiction

that |pi| → ∞. Then, up to a subsequence pi/||pi|| → w ∈ S3, and the ray

�w := {λw |λ ≥ 0} is contained in K, and thus in Ǩ. By (57) this implies

w = e1, which contradicts the assumption that pi is a minimizing sequence.

Thus, there exists a point p0 with

(59) x1(p0) = inf
p∈M

x1(p).

By strict convexity this tip point is unique. This completes the proof of the

proposition.

Next, by [HK17, Theorem 1.14] and [CM15] the tangent flow to Mt =

M + te1 at time −∞ is either a neck or a bubble-sheet, namely either

(60) lim
λ→0

λMλ−2t = R× S2(
√
−4t),

or

(61) lim
λ→0

λMλ−2t = R
2 × S1(

√
−2t).

If (60) holds, then M is the round bowl by [Has15]. We can thus assume

from now on that (61) holds.

Let us now consider the level sets

(62) Σh := M ∩ {x1 = h}.

By strict convexity, the level sets Σh are compact and diffeomorphic to the

two-sphere.
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Proposition 2.2 (diameter growth). The level sets satisfy

(63) lim
h→∞

diam(Σh)

h1/2
= ∞ and lim

h→∞

diam(Σh)

h1/2+δ
= 0

for every δ > 0.

Proof. The first estimate follows from the assumption that we are in case
(61). To prove the second estimate, note that since M is strictly convex,
[CHH21, Theorem 1.10] implies that in the fine bubble-sheet expansion of the
renormalized flow M̄τ = eτ/2M−e−τ the neutral mode is dominant. Hence,
we can apply [CHH21, Corollary 1.8], which says that given any δ > 0 for
τ � 0 we have the estimate

(64) M̄τ ∩ {x1 = 0} ⊆ B(0, eδ|τ |).

On the other hand, using the translator equation and remembering the
renormalization we see that

(65) Σh = e−τ/2
(
M̄τ ∩ {x1 = 0}

)
,

where τ = − log h. Combining these facts yields the assertion.

As a corollary of the proof we also obtain:

Corollary 2.3 (inscribed radius). The maximal inscribed radius of the level
sets satisfies

(66) lim
h→∞

rin(Σ
h)

(2h)1/2
= 1.

Proof. By (61) the renormalized flow M̄τ for τ → −∞ converges to Γ =
R
2 × S1(

√
2). Hence, using the inwards quadratic bending from [CHH21,

Theorem 1.7] we see that the maximal inscribed radius of M̄τ for τ → −∞
converges to

√
2. Together with (65), where τ = − log h, this implies the

assertion.

The following estimate shows that the mean curvature of the level set is,
up to a cubic error term, the same as the mean curvatureH of the translator,
when x1 is high:

Proposition 2.4 (mean curvature of level sets). There exists a uniform
constant C < ∞ such that

(67) |H −Hh| ≤ CH3,
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where Hh is the mean curvature of Σh = M ∩ {x1 = h} in P h = {x1 = h}.

Proof. On a translator we have −∇H = A(e	1 ,−) and −〈∇H, e1〉 = ΔH +

|A|2H. Thus,

(68) |A(e	1 , e
	
1 )| ≤ |ΔH|+ |A|2H.

From the local curvature estimate [HK17, Theorem 1.8], we know that

|ΔH| ≤ CH3, and so

(69) |A(e	1 , e
	
1 )| ≤ CH3.

Now, given p ∈ Σh, let {U, V } be and orthonormal basis to TpΣ
h and let

W := e	1 /||e	1 ||. Then {U, V,W} is an orthonormal basis to TpM and

(70) H = A(U,U) +A(V, V ) +A(W,W ) = A(U,U) +A(V, V ) +O(H3).

Now, let γU and γV be unit speed curves in Σh such that γU (0) = p and

γ′U (0) = U respectively γV (0) = p and γ′V (0) = V . Then

(71) H = 〈γ′′U + γ′′V , ν〉+O(H3).

On the other hand, the normal to Σh in P h is

(72) νh =
ν +He1√
1−H2

.

As 〈U, e1〉 = 0 and 〈V, e1〉 = 0, we conclude that

(73)

Hh = 〈γ′′U + γ′′V , ν
h〉 = 〈γ′′U + γ′′V , ν〉(1+O(H2)) = (H +O(H3))(1+O(H2)).

This proves the proposition.

2.2. Circular symmetry

Let M ⊂ R
4 be a strictly convex noncollapsed translator, normalized such

that it translates with unit speed in positive x1-direction, and that the tip is

at the origin. Further, suppose that M is not the round bowl. By Colding-

Minicozzi [CM15] the asymptotic cylinder R2×S1 is unique. We can assume

without loss of generality that the R
2-factor is in the x1x2-plane. Let R
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be the rotation vector field corresponding to the circular symmetry of the
asymptotic cylinder, namely

(74) R := x3∂x4
− x4∂x3

.

The goal of this subsection is to give a short proof of Zhu’s theorem:

Theorem 2.5 (circular symmetry). M is SO(2)-symmetric. More precisely,
there exists some a ∈ {0}×R

2, such that the recentered translator M − a is
invariant under rotations generated by the vector field R.

Note that rotations with center a ∈ {0}×R
2 are generated by the vector

field

(75) Ra := (x3 − a3)∂x4
− (x4 − a4)∂x3

.

Consider the rotation function fa := 〈Ra, ν〉, where ν is the outwards
unit normal of M . Our goal is to find some a ∈ {0} × R

2 such that fa
vanishes identically on M .

Proposition 2.6 (weighted estimate, c.f. [Has15, Proposition 3.1]). For all
h > 0 we have

(76) sup
{x1≤h}

∣∣∣∣faH
∣∣∣∣ ≤ sup

{x1=h}

∣∣∣∣faH
∣∣∣∣ .

Proof. On our translator, the rotation functions and the mean curvature
satisfy (

Δ+ e	1 · ∇+ |A|2
)
fa = 0,(77) (

Δ+ e	1 · ∇+ |A|2
)
H = 0.(78)

Hence, the assertion follows from the maximum principle.

Proof of Theorem 2.5. Consider the function

(79) B(h) := min
a∈{0}×R2

max
{x1=h}

|fa|

Case 1: Suppose there is a sequence hi → ∞ with B(hi) = 0. For each i,
choose ai such that

(80) max
{x1=hi}

|fai
| = 0.
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Proposition 2.6 (weighted estimate) implies that fai
= 0 in the region {x1 ≤

hi}. Observe that

(81) fai
= f0 − 〈Ti, ν〉,

where Ti = (0, 0,−ai4, a
i
3). Thus, 〈Ti, ν〉 = f0 in the region {x1 ≤ hi}. Hence,

ai is constant and fai
= 0 everywhere, and we have proven rotational sym-

metry.

Case 2: Suppose now that B(h) > 0 for h large. Fix τ ∈ (0, 1/4) such that

τ−
1
2+δ > 2D, where D < ∞ is the constant from [Has15, Proposition 4.1].

By Proposition 2.2 (diameter asymptotics) we have

(82) B(h) ≤ O(h1/2+δ).

Hence, we can then find hi → ∞ such that

(83) inf
h∈[τhi,hi]

B(h) ≥ 1

2
τ1/2+δB(hi).

Choose ai such that

(84) max
{x1=hi}

|fai
| = B(hi).

Let pi ∈ M ∩ {x1 = hi} be a point where the maximum in (84) is attained,
and consider the renormalized function

(85) f̃i := B(hi)
−1fai

.

Recall that the family {Mt = M + te1}t∈R moves by mean curvature flow.
If we view f̃i as a one parameter family of functions on Mt, then equation
(77) takes the form

(86) ∂tf̃i = (Δ + |A|2)f̃i.

Set λi := H(pi), and consider the parabolic rescalings

(87) M̂ i
t := λi(Mλ−2

i t − pi),

and

(88) f̂i(x, t) := f̃i(λ
−1
i x+ pi, λ

−2
i t),
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where x ∈ M̂ i
t . Note that M̂ i

t moves by mean curvature flow and that f̂i
satisfies the parabolic equation

(89) ∂tf̂i = (Δ + |A|2)f̂i.

Observe that λi → 0 by Proposition 2.1 (asymptotic slope) and the transla-

tor equation. On the other hand, using Corollary 2.3 (inscribed radius) and

the sharp noncollapsing estimate from [HK15] we get

(90) lim inf
i→∞

(2hi)
1/2λi ≥ 1.

Thus, by the global convergence theorem [HK17, Thm. 1.12], for i → ∞
the mean curvature flows M̂ i

t converge (subsequentially) to an ancient non-

collapsed mean curvature flow M̂∞
t that splits off a line in x1-direction.

Write M̂∞
t = Nt × R. Observe that Nt is noncompact by (61). Hence, by

the classification from Brendle-Choi [BC19] the 2d-flow Nt must be either

(a) a round shrinking cylinder {Ct}t<1/2, or (b) a translating bowl soliton B.

Using equation (83), Proposition 2.6 (weighted estimate), and the knowl-

edge of the mean curvature of the limiting flow, we see that f̂m converges

(subsequentially) to a limit f = {f(t)}, which after splitting of the R-factor

in x1-direction can be viewed as a function on Nt, solving

(91) ∂tf = (ΔNt
+ |ANt

|2)f,

that in case (a) satisfies |f(z, θ, t)| ≤ 4 for t ∈ (0, 14), and in case (b) satisfies

|f(z, θ, t)| ≤ C(1 + z)−1/2, where z and θ denote the height and angle on

Nt. Moreover, since divR4R = 0 and 〈R, ∂x1
〉 = 〈R, ∂x2

〉 = 0, the divergence

theorem yields, after splitting off an R-factor in x1-direction, that for every

z we have

(92)

∫
f(z, θ, t) dθ = 0.

Let us first consider case (a). Note that f is independent of z. Hence,

[Has15, Proposition 4.1] gives

(93) inf
T∈R2

sup
Ct

|f(t)− fT | ≤ D
(
1
2 − t

)
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for all t ∈ [1/4, 1/2), where fT = 〈T, ν〉 for translations T ∈ R
2. On the

other hand, we have

inf
T

sup
{x1=0}

|f̂i(12 − τ)− fT | = inf
T

sup
{x1=hi}

|f̃i(λ−2
i (12 − τ))− fT |

= inf
T

sup
{x1=hi−λ−2

i ( 1

2
−τ)}

|f̃i(0)− fT |

=
1

B(hi)
inf
T

sup
{x1=hi−λ−2

i ( 1

2
−τ)}

|fRai
− fT |(94)

=
B(hi − λ−2

i (12 − τ))

B(hi)

≥ 1

2
τ1/2+δ

for i large enough, where we used (83) and (90) in the last step. Taking the
limit as i → ∞ gives

(95) inf
T

sup
C 1

2
−τ

|f(12 − τ)− fT | ≥ 1
2τ

1/2+δ.

Since τ−
1

2
+δ > 2D, this contradicts (93). This completes the analysis in case

(a).

Finally, in case (b) Proposition 2.7 (Liouville property) from below gives
a contradiction. This finishes the proof of the theorem.

In the above proof we have used the following proposition:

Proposition 2.7 (Liouville property). Suppose f is a solution on the 2d-
bowl B of

(96) (Δ + e	z · ∇+ |A|2)f = 0,

such that for every z we have

(97)

∫
f(z, θ) dθ = 0.

If

(98) |f | ≤ C(1 + z)−1/2

for some C < ∞, then f = 0.
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Proof. The argument from [Has15], which has been written for f = fR but
also applies for other solutions f of (96) satisfying (98), shows that f = 〈T, ν〉
for some T ∈ R

2. By (97) we must have T = 0.

3. Uniform sharp asymptotics

Throughout this section, M ⊂ R
4 denotes any noncollapsed translator that

is neither the 3d round bowl nor R×2d-bowl. As before, we normalize such
that the translation is in x1-direction with unit speed.

To establish the sharp asymptotics we need suitable inner barriers for
the renormalized mean curvature flow near the cylinder Γ = R

2 × S1(
√
2).

To begin with, recall from Angenent-Daskalopoulos-Sesum [ADS19, Figure
1 and Section 8] that there is some L0 > 1 such that for every a ≥ L0 there
are shrinkers

Σa = {surface of revolution with profile r = ua(y1), 0 ≤ y1 ≤ a} ⊂ R
3.

(99)

The parameter a captures where the concave functions ua meet the y1-
axis. In our previous paper [CHH21, Section 3] we constructed a bubble-
sheet foliation Γa ⊂ R

4 by shifting and rotating the ADS-shrinker foliation
Σa ⊂ R

3. For the present paper, we need the somewhat more general inner
barriers

(100) Γη
a :=

{
(r cos θ, r sin θ, y3, y4) : θ ∈ [0, 2π), (r−η, y3, y4) ∈ Σa

}
⊂ R

4,

where we now shift by η > 0 instead of by 1.

Proposition 3.1 (barriers). The hypersurfaces Γη
a act as an inner barriers

for the renormalized mean curvature flow in the region |(y1, y2)| ≥ 3η−1.

Proof. Being an inner barrier for the renormalized mean curvature flow is
equivalent to the condition

(101) HΓη
a
≤ 1

2〈�y, ν〉.

To show this, note that by symmetry of the hypersurfaces Γη
a, it suffices to

compute HΓη
a
in the region {y2 = 0, y1 > 0}, where we can identify points

and unit normals in Γη
a with the corresponding ones in Σa, by disregarding

the y2-component. The relation between the mean curvature of a surface
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Σ ⊂ R
3 and its (unshifted) rotation Γ ⊂ R

4 on points with y2 = 0 and
y1 > 0 is given by

(102) HΓ = HΣ +
1

y1
〈e1, ν〉.

In our case, the convexity of Σa gives 〈e1, ν〉 ≥ 0, so using (102) and the
shrinker equation we infer that

(103) HΓη
a
=

1

2
〈�y − ηe1, ν〉+

1

y1
〈e1, ν〉 ≤

1

2
〈�y, ν〉,

where in the last inequality, we have used that y1 ≥ 2η−1. This proves the
proposition.

3.1. Sharp asymptotics in bubble-sheet region

We consider the renormalized mean curvature flow

(104) M̄τ = e
τ

2 M−e−τ ,

where τ = − log(−t). Then, M̄τ converges to

(105) Γ = R
2 × S1(

√
2)

as τ → −∞. Recall that we have circular symmetry (see Theorem 2.5).
In particular, this symmetry must preserve Γ. This symmetry must also
preserve the positive e1-axis. Hence, after shifting M in the x3x4-plane, the
hypersurfaces M̄τ are left invariant by the rotation vector field

(106) V = x3e4 − x4e3.

Denote by Ωτ the set of points y = (y1, y2) ∈ R
2 such that (y, r cos θ, r sin θ) ∈

M̄τ for some r > 0. There exists a unique function u : Ωτ × R → (−
√
2,∞)

such that

(107)
(
y, (

√
2 + u(y, τ)) cos θ, (

√
2 + u(y, τ)) sin θ

)
∈ M̄τ ,

and

(108) lim
y→∂Ωτ

u(y, τ) = −
√
2.
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Moreover, there exists an admissible graphical radius function ρ0(τ) for

τ ≤ τ∗, namely a positive smooth function ρ0 : (−∞, τ∗] → R+ with

limτ→−∞ ρ0(τ) = ∞ such that

−ρ0(τ) ≤ ρ′0(τ) ≤ 0(109)

and

(110) ‖u‖C4(B(0,2ρ0(τ))) ≤ ρ0(τ)
−2

hold for τ ≤ τ∗.

Since M̄τ moves by renormalized mean curvature flow, the graph func-

tion u satisfies the equation

uτ =

2∑
i,j=1

(
δij −

uyi
uyj

1 + |∇u|2
)
uyiyj

− 1√
2 + u

+
1

2

(√
2 + u− y · ∇u

)
.

(111)

This yields

uτ = Lu+ E,(112)

where

(113) L =
∂2

∂y21
+

∂2

∂y22
− y1

2

∂

∂y1
− y2

2

∂

∂y2
+ 1,

and where the error term thanks to (110) satisfies the pointwise estimate

(114) |E| ≤ Cρ−2
0 (|u|+ |∇u|).

The two-dimensional Ornstein-Uhlenbeck operator L has 3 unstable eigen-

functions, namely

(115) 1, y1, y2,

and 3 neutral eigenfunctions, namely

(116) y21 − 2, y22 − 2, y1y2.
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Next, we fix a smooth cut-off function χ : R+ → [0, 1] such that χ(s) = 1
for s ≤ 1 and χ(s) = 0 for s ≥ 2. Then, we define

(117) α(τ) =

(∫
|y|≤2ρ0(τ)

u2(y, τ)χ
(

|y|
ρ0(τ)

)
1

2
√
2π
e−

|y|2+2

4 dy

)1/2

,

and

(118) β(τ) = sup
σ≤τ

α(σ).

Arguing similarly as in [CHH22, Proof of Lemma 4.17] we see that the inverse
Poincare inequality from [CHH21, Proposition 4.4] yields that limτ→−∞ β(τ) =
0.

Proposition 3.2 (barrier estimate). There are constants c > 0 and C < ∞
such that

(119) |u(y, τ)| ≤ Cβ(τ)
1

2

holds for |y| ≤ cβ(τ)−
1

4 and τ � 0.

Proof. By parabolic estimates (see [CHH21, Appendix A]), there is a con-
stant K < ∞ such that

(120) |u(y, τ)| ≤ Kβ(τ)

holds for |y| ≤ 2L0 and τ � 0, where L0 is the constant from the ADS-
foliation (99). Given τ̂ � 0, consider the barrier hypersurface Γa = Γ1

a from
(100) with parameters η = 1 and

(121) a =
c0√
Kβ(τ̂)

.

If we choose c0 small enough, then by [ADS19, Lemma 4.4] the profile func-
tion ua of the ADS-shrinker Σa satisfies

(122) ua(L0 − 1) ≤
√
2−Kβ(τ̂).

Combining this with (120), the inner barrier principle from Proposition 3.1
implies that Γa is enclosed by M̄τ for |y| ≥ L0 and τ ≤ τ̂ . Since ua(

√
a)2 ≥

2− 2/a (see e.g. [CHH22, Equation (195)]), this yields

(123)
(√

2 + u(y, τ̂)
)2

≥ 2− 2/a
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for |y| ∈ [L0,
√
a− 1]. Hence, remembering (121) we conclude that

(124) u(y, τ) ≥ −Cβ(τ)
1

2

holds for |y| ≤ cβ(τ)−
1

4 and τ � 0. Finally, by convexity, using also (120),

this lower bound implies a corresponding upper bound. This concludes the

proof of the proposition.

We now define

(125) ρ(τ) := β(τ)−
1

5

Then, Proposition 3.2 (barrier estimate) and standard interior Schauder

estimates give

(126) ‖u(·, τ)‖C4(B2ρ(τ)(0)) ≤ ρ(τ)−2

for τ � 0. Moreover, thanks to [CHH21, Theorem 1.10] the neutral eigen-

functions dominate4 and we thus have

(127)

∣∣∣∣ d

dτ
α2

∣∣∣∣ = o(α2).

This implies

(128) − ρ(τ) ≤ ρ′(τ) ≤ 0

for τ � 0, i.e. ρ is an admissible graphical radius function.

We now work with the truncated graph function

(129) û(y, τ) = u(y, τ)χ
(

|y|
ρ(τ)

)
,

where ρ denotes the improved graphical radius from equation (125).

Proposition 3.3 (evolution equation). The function û satisfies

(130) ∂τ û = Lû− 1
2
√
2
û2 + E,

4Thanks to the SO(2)-symmetry the fine tuning rotation S(τ) from [CHH21,
Proposition 4.1] is simply the identity matrix.
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where the error term can be estimated by

|E| ≤Cχ|u|3 + Cχ|∇u|2|∇2u|+ C|χ′|ρ−1
(
|∇u|+ |y||u|

)
+ C|χ′′|ρ−2|u|+ Cχ(1− χ)

(
|u|2 + |∇2u|2

)
.(131)

Proof. We compute

|∂τ û− χ∂τu| = |y||ρ′ρ−2|χ′u| ≤ C|χ′|ρ−1|y||u|,(132)

and

|Lû− χLu| =
∣∣uΔχ+ 2∇u · ∇χ− 1

2uy · ∇χ
∣∣

≤ C|χ′|ρ−1
(
|∇u|+ |y||u|

)
+ C|χ′′|ρ−2|u|.(133)

Moreover, we have∣∣∣∣− û2

2
√
2
+

χu2

2
√
2

∣∣∣∣ ≤ χ(1− χ)u2,

∣∣∣∣ χu3

4 + 2
√
2u

∣∣∣∣ ≤ χ|u|3.(134)

Together with (112) and (114) (with ρ0 replaced by ρ) this yields the desired
result.

We now consider the neutral eigenfunction

ψ0 = 2−
3

2 ( e
2π )

1

4 (y22 − 2),(135)

which is normalized with respect to the Gaussian inner product 〈·, ·〉H. Here,
for θ-independent functions the Gaussian inner product is given by

(136) 〈f, g〉H =

∫
f(y)g(y)(8π)−

1

2 e
−|y|2+2

4 dy.

We now define

(137) α0 = 〈û, ψ0〉H.

Then, by [CHH21, Theorem 1.7] we have

(138) û = α0ψ0 + o(|α0|)

in H-norm.
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Lemma 3.4 (error estimate). The error term E from Proposition 3.3 (evo-
lution equation) satisfies the estimate

(139) |〈E,ψ0〉H| ≤ Cβ(τ)2+
1

5

for τ � 0.

Proof. Using the inverse Poincare inequality from [CHH21, Proposition 4.4],
the argument from [CHH22, Proof of Proposition 4.21] applies.

Proposition 3.5 (evolution of expansion coefficient). The coefficient α0

from the expansion (138) satisfies

d
dτ α0 = −( e

2π )
1

4α2
0 + o(β2).(140)

Proof. Using Proposition 3.3 (evolution equation) and Lψ0 = 0 we see that

d
dτ α0 = 〈∂τ û, ψ0〉H = 〈Lû− 1

2
√
2
û2 + E,ψ0〉H = 〈− 1

2
√
2
û2 + E,ψ0〉H.

(141)

Together with (138) and Lemma 3.4 (error estimate) this implies

(142) d
dτ α0 = − 1

2
√
2
cα2

0 + o(β2),

where

(143) c =

∫
ψ3
0(8π)

− 1

2 e−
|y|2+2

4 dy.

Computing c yields the desired result.

Theorem 3.6 (inwards quadratic bending). The function û satisfies

(144) lim
τ→−∞

|τ |û(y, τ) = −y22 − 2

2
√
2

in H-norm. In particular, for τ � 0 we have

(145) ‖û(·, τ)‖H = (2π/e)
1

4 |τ |−1 + o(|τ |−1).

Proof. Let

(146) β0(τ) := sup
σ≤τ

|α0(σ)|,
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where α0 is defined in (137). By Proposition 3.5 (evolution of the expansion
coefficient) there is some τ∗ > −∞ so that for τ ≤ τ∗ we have

(147)
∣∣∣ d
dτ α0 + ( e

2π )
1

4α2
0

∣∣∣ ≤ 1
10β

2
0 .

Suppose that at some τ0 ≤ τ∗ we have β0(τ0) = |α0(τ0)|. Then,

(148) − d
dτ α0(τ0) ≥ ( e

2π )
1

4α2
0(τ0)− 1

10β
2
0(τ0) ≥ 1

2α
2
0(τ0) > 0,

implies that there exists some small δ > 0 such that α0(τ) > α0(τ0) holds
for τ ∈ (τ0 − δ, τ0). Since β0(τ0) = |α0(τ0)| ≥ |α0(τ)| for τ ≤ τ0, we thus
have α0(τ0) < 0.

Next, we choose any time τ1 ≤ τ∗ satisfying β0(τ1) = |α0(τ1)|, and
an interval I = [τ1, τ

′] ⊂ [τ1, τ∗] such that d
dτ α0(τ) ≤ 0 for τ ∈ I. Since

α0(τ1) < 0, we have −α0(τ) = β0(τ) for all τ ∈ I. Moreover,

(149) − d
dτ α0 ≥ 1

2α
2
0(τ) ≥ 1

2α
2
0(τ1) > 0

holds for all τ ∈ I. Therefore, if τ ′ < τ∗ we can keep extending τ ′ until
τ ′ = τ∗. Namely, −α0(τ) = β0(τ) holds for all τ ∈ [τ1, τ∗]. Since τ1 was
arbitrarily, we infer that −α0(τ) = β0(τ) for all τ ≤ τ∗. Namely, we have
α0 < 0 and

d
dτ α0 = −( e

2π )
1

4α2
0 + o(α2

0),(150)

for all τ ≤ τ∗. Integrating this ODE yields

α0(τ) =
−(2π/e)

1

4 + o(1)

|τ |(151)

for τ � τ∗. Together with (138) this implies the assertion.

Recall that in contrast to [ADS19, ADS20], where only a single solution
was considered, we need estimates for families that are uniform depending
only on the quadratic bending in the central region. As opposed to the
introduction, we will first work with the following stronger notion of κ-
quadraticity:

Definition 3.7 (strongly κ-quadratic). We say that a noncollapsed trans-
lator M in R

4, normalized as above, that is neither a 3d round bowl nor
R× 2d-bowl, is strongly κ-quadratic from time τ0 if
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1. ρ(τ) = |τ |1/10 is an admissible graphical radius function for τ ≤ τ0,
and

2. the truncated graph function û(y, τ) = u(y, τ)χ
(

|y|
ρ(τ)

)
, satisfies the

estimate

(152)

∥∥∥∥û(y, τ) + y22 − 2

2
√
2|τ |

∥∥∥∥
H
≤ κ

|τ | for τ ≤ τ0.

Corollary 3.8 (strong κ-quadraticity). For every κ > 0 and every noncol-
lapsed translator M in R

4, normalized as above, that is neither a 3d round
bowl nor 2d-bowl ×R, there exists τ∗ = τ∗(κ,M) > −∞ such that M is
strongly κ-quadratic from any time τ0 ≤ τ∗.

Proof. By Theorem 3.6 (inwards quadratic bending) and the inverse Poincare
inequality from [CHH21, Proposition 4.4] we have β(τ) ∼ |τ |−1. Together
with the above, this implies the assertion.

Finally, in the parabolic region the L2-estimate from Theorem 3.6 can
be upgraded to an L∞-estimate. Moreover, this estimate kicks in at time τ0
and is uniform depending only on κ:

Proposition 3.9 (uniform asymptotics in parabolic region). For every ε >
0 there exist constants κ > 0 and τ∗ > −∞, such that if M is strongly
κ-quadratic from time τ0 ≤ τ∗, then we have the estimate∣∣∣∣u(y, τ) + y22 − 2

2
√
2 |τ |

∣∣∣∣ ≤ ε

|τ |(153)

for τ ≤ τ0 and |y| ≤ ε−1.

Proof. Consider the difference

(154) D(y, τ) := û(y, τ)− y2
2−2

2
√
2τ
.

If M is κ-quadratic from time τ0, then by definition we have

(155) ‖D‖H ≤ κ

|τ |

for every τ ≤ τ0. On the other hand, by Theorem 3.6 (inwards quadratic
bending) and the parabolic estimates from [CHH21, Theorem A.1] there
exist a constant C = C(ε) < ∞, such that

(156) sup
|y|≤2ε−1

|u(y, τ)| ≤ C|τ |−1,
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for τ ≤ τ0, provided τ0 ≤ τ∗(ε). Therefore, standard interior estimates give

(157) ‖D(·, τ)‖W 3,2(B(0,ε−1)) ≤ C|τ |−1

for such τ . Applying Agmon’s inequality with (155) and (157) we conclude
that

(158) ‖D(·, τ)‖L∞(B(0,ε−1)) ≤
ε

|τ | ,

provided κ is sufficiently small. This proves the proposition.

3.2. Sharp asymptotics in intermediate region

To capture the intermediate region we consider the function

(159) v̄(z, τ) =
√
2 + u(0, |τ |1/2z, τ).

We will show that v̄(z, τ) converges to
√
2− z2 uniformly on each compact

interval in (−
√
2,
√
2). More precisely, we make this convergence explicit in

the parameter κ of strong κ-quadraticity:

Proposition 3.10 (intermediate region). For every ε > 0 there exist κ > 0
and τ∗ > −∞, such that if M is strongly κ-quadratic from time τ0 ≤ τ∗,
then on I = [−

√
2 + ε,

√
2− ε] we have

(160) sup
z∈I, τ≤τ0

∣∣∣v̄(z, τ)− √
2− z2

∣∣∣ ≤ ε.

Proof. We will adapt the proof from [ADS19, Section 6] to our setting.

Lower bound: By [ADS19, Lemma 4.4], there exist some a0 ≥ 1 and an
increasing function M : (a0,∞) → (100,∞) with lim

a→∞
M(a) = ∞ such that

the profile function ua of Σa satisfies

(161) ua(y) ≤
√
2− y2 − 3√

2 a2

for 0 ≤ y ≤ M(a). Let δ > 0 be such that
√

2
1+δ ≥

√
2− ε, and define

(162) â(τ) =

√
2|τ |
1 + δ

.
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Choose τ∗ such that

(163) δ−1 ≤ min{M(|τ∗|
1

2 ), |τ∗|
1

2
− 1

100 },

and such that

(164)

∣∣∣∣∣
√

2
(
1− y2

a(τ)2

)
− ua(τ)(y)

∣∣∣∣∣ ≤ ε

hold for every τ ≤ τ∗ and |y| ≤ a(τ), which is possible in light of [ADS19,
Lemma 4.3].

By Proposition 3.1 (barriers) for each fixed τ̂ ≤ τ0 ≤ τ∗ the static
hypersurface Γ3δ

â(τ̂) ⊂ R
4 plays the role of an inner barrier in the region

|y| ≥ δ−1. Since Γ3δ
â(τ̂) ⊂ R

4 is compact and enclosed by the cylinder R
2 ×

S1(
√
2) = lim

τ→−∞
M̄τ , this yields

(165)
√
2 + u(y, τ) ≥ uâ(τ̂)(|y| − 3δ)

for y ∈ Ωτ \Bδ−1(0) and τ ≤ τ̂ , provided the boundary condition

(166)
√
2 + u(y, τ) ≥ uâ(τ̂)(δ

−1 − 3δ)

holds for |y| = δ−1 and τ ≤ τ̂ . To check this boundary condition, note that
(161) by our choice of constants implies

uâ(τ̂)(δ
−1 − 3δ)−

√
2 ≤ − [δ−1 − 3δ]2 − 3√

2 â2(τ̂)
≤ − δ−2

2
√
2 |τ̂ |

.(167)

Moreover, using also Corollary 3.9 (uniform asymptotics in parabolic region)
we see that if our solution is κ-quadratic from time τ0 ≤ τ∗, for κ sufficiently
small, then (after reducing τ∗ to be the minimum of its current value and
the value from Proposition 3.9) we have

(168) u (y, τ) ≥ −y22 − 2 + δ

2
√
2|τ |

≥ − |y|2

2
√
2|τ |

≥ − δ−2

2
√
2|τ̂ |

for |y| = δ−1 and τ ≤ τ̂ . Thus, the boundary condition (166) indeed holds
for |y| = δ−1 and τ ≤ τ̂ . Consequently,

(169) v̄(z, τ̂) =
√
2 + u(0, |τ̂ | 12 z, τ) ≥ uâ(τ̂)(|τ̂ |

1

2 |z|)
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holds for τ̂ ≤ τ0 and z satisfying |τ̂ |− 1

2 δ−1 ≤ |z| ≤ |τ̂ |− 1

2 â(τ̂). As |τ̂ |− 1

2 â(τ̂) =√
2

1+δ ≥
√
2− ε, while by the choice ot τ∗ one has |τ̂ |− 1

2 δ−1 ≥ |τ̂ |−1/100, we

obtain

(170) v̄(z, τ) ≥ uâ(τ)(|τ |
1

2 |z|)

for |z| ∈ [|τ |− 1

100 , 2 − ε] and τ ≤ τ0. Thus, by (164), for every τ ≤ τ̄0 and

|z| ∈ [|τ |− 1

100 ,
√
2− ε] we get

(171) v̄(z, τ) + ε ≥
√

2− 2|τ |z2
â2(τ)

=
√

2− (1 + δ)z2 .

Finally, since v̄ is concave in z, for |z| ≤ |τ |− 1

100 we have

(172) v̄(z, τ) ≥ min{v̄(|τ |− 1

100 , τ), v̄(−|τ | 1

100 , τ)}.

Putting things together, we conclude that

(173) inf
|z|≤

√
2−ε, τ≤τ0

(
v̄(z, τ)−

√
2− z2

)
≥ −2ε.

Upper bound: Since u is concave, we have

uτ ≤ − 1√
2 + u

+
1

2

(√
2 + u− y · ∇u

)
.(174)

Thus, v(y, τ) := (
√
2 + u(0, y, τ))2 − 2 satisfies

vτ ≤ v − 1

2
yvy.(175)

Hence, for each α ∈ R we have

d

dτ

(
e−τv(αe

τ

2 , τ)
)
≤ 0,(176)

provided τ is negative enough so that (0, αe
τ

2 ) ∈ Ωτ . Thus, for τ̄ ≤ τ we get

(177) v(αe
τ

2 , τ) ≤ eτ−τ̄v
(
αe

τ

2 e−
τ−τ̄

2 , τ − (τ − τ̄)
)
.
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Therefore, for σ ∈ (0, 1] we obtain

(178) v(y, τ) ≤ σ−2v(σy, τ + 2 log σ).

On the other hand, by Proposition 3.9 (uniform asymptotics in parabolic
region), given any A < ∞, there exists κ > 0 such that if M is κ-quadratic
from time τ0 ≤ τ∗, then

(179) v(y, τ) ≤ |τ |−1(2− y2) +A−1|τ |−1

for |y| ≤ A. Thus, for |y| ≥ A we obtain

v(y, τ) ≤ (y/A)2v(±A, τ − 2 log(|y|/A))

= − (1− 2A−2)y2

|τ |+ 2 log(|y|/A)
+A−1(|τ − 2 log(|y|/A)|−1).(180)

This implies

v̄(z, τ) =

√
2 + v(|τ |1/2z, τ) ≤

√
2− z2(1− 2A−2) + |τ |−1/2(181)

uniformly for |z| ≥ A|τ |− 1

2 . In addition, the concavity of v̄ and (173) yield

v̄(z, τ) ≤ 2v̄(A|τ |− 1

2 , τ)− v̄(2A|τ |− 1

2 − z, τ)

≤ 2

√
2− z2(1− 2A−2) + |τ |−1/2 −

√
2− z2 + 2ε

≤
√

2− z2 + 4ε.(182)

for |z| ≤ A|τ |− 1

2 , provided |τ | is sufficiently large and A is large enough
(which happens for κ small enough). Hence,

(183) sup
|z|≤

√
2−ε, τ≤τ0

(
v̄(z, τ)−

√
2− z2

)
≤ 4ε

This finishes the proof of the proposition.

3.3. Sharp asymptotics in terms of level sets

Let us now reformulate the results from the previous subsections in terms of
the level sets. Recall that, after re-centering our translator M in the x3x4-
plane, the level sets Σh = M ∩ {x1 = h} are left invariant by the field
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x3e4 − x4e3. Hence, we can represent the level sets as
(184)

Σh =
{
(h, x2, x3, x4) : −d1(h) ≤ x2 ≤ d2(h), (x

2
3 + x24)

1/2 = V (x2,−h)
}
.

The function V (x, t), where t = −h, is called the profile function, and is
defined for x ≡ x2 ∈ [−d−(h), d+(h)]. It vanishes at the endpoints of this
interval. We also consider the rescaled profile function v defined by

(185) V (x, t) =
√
−tv(y, τ)

where

(186) y =
x√
−t

, τ = − log(−t).

In the tip regions, since ∂yv �= 0, we can define Y (v, τ) as the inverse function
of v(y, τ). In addition, to capture the tips at scale |τ |−1/2, we consider the
function

(187) Z(ρ, τ) = |τ |1/2
(
Y (|τ |−1/2ρ, τ)− Y (0, τ)

)
.

The following theorem shows that the profile function of the level sets
of our translator satisfies exactly the same sharp asymptotics as the pro-
file function of the ancient ovals in [ADS19]. An important difference with
[ADS19], where only a single solution is considered, is that our estimates
are uniform:

Theorem 3.11 (uniform sharp asymptotics assuming strong κ-quadraticity).
For every ε > 0 there exists κ > 0 and τ∗ > −∞, such that if M is strongly
κ-quadratic from time τ0 ≤ τ∗, then for every τ ≤ τ0 the following holds:

1. Parabolic region: The renormalized profile function satisfies

(188)

∣∣∣∣v(y, τ)−√
2

(
1− y2 − 2

4|τ |

)∣∣∣∣ ≤ ε

|τ | (|y| ≤ ε−1).

2. Intermediate region: The function v̄(z, τ) := v(|τ |1/2z, τ) satisfies

(189) |v̄(z, τ)−
√

2− z2| ≤ ε,

on [−
√
2 + ε,

√
2− ε].
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3. Tip regions: We have the estimate

(190) ‖Z(·, τ)− Z0(·)‖C100(B(0,ε−1)) ≤ ε,

where Z0(ρ) is the profile function of the 2d-bowl with speed 1/
√
2.

In particular, Σh satisfies the estimate

(191)

∣∣∣∣ d±(h)√
2h log h

− 1

∣∣∣∣ ≤ ε.

Proof. By definition of the level sets, we have

(192) Σh = (M − he1) ∩ {x1 = 0}.

Hence, describing Σh amounts to describing the x1 = 0 section of the time
t = −h slice of the flow Mt = M + te1, which has already been done in the
previous subsections. Specifically, observing that v(y, τ) =

√
2 + u(0, y, τ)

and applying Proposition 3.9 (uniform asymptotics in parabolic region) we
obtain

(193)

∣∣∣∣v(y, τ)−√
2

(
1− y2 − 2

4|τ |

)∣∣∣∣ ≤ ε

|τ | (|y| ≤ ε−1),

which proves the first assertion. Next, by Proposition 3.10 (intermediate
region) we have

(194) sup
τ≤τ0

sup
|z|≤

√
2−ε

|v̄(z, τ)−
√

2− z2| ≤ ε,

which proves the second assertion. In particular, scaling back to the original
surface Σh this implies

(195)

∣∣∣∣ d±(h)√
2h log h

− 1

∣∣∣∣ ≤ ε.

Recall that by Proposition 2.1 (asymptotic slope and tip point) we have
H = −〈e1, ν〉 → 0 as h → ∞. Denote by H±

tip(h) the mean curvature of

M at the point p±h at level h with maximal respectively minimal x2-value.
Using the above and Hamilton’s Harnack inequality [Ham95], similarly as
in [ADS19, Section 7.2], we get

(196)

∣∣∣∣∣
√

h

log h
H±

tip(h)−
1√
2

∣∣∣∣∣ ≤ 2ε.
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Now, suppose towards a contradiction there is a sequence M i that is κi-

quadratic from time τ0,i with κi → 0 and τ0,i → −∞, but such that at some

time τi ≤ τ0,i the function Zi(ρ, τ) is not ε-close in C100(B(0, ε−1)) to Z0(ρ),

the profile function of the 2d-bowl with speed 1/
√
2. Let hi = e−τi → ∞ be

the height of the tips. Using the theory of noncollapsed flows from [HK17]

we see that for i → ∞ the sequence of flows that is obtained from M i
t

by shifting (p±hi
, 0) to the origin and parabolically rescaling by

√
log(hi)/hi

converges to an ancient noncollapsed flow M∞
t that splits isometrically as

M∞
t = R ×N∞

t . By construction, N∞
t ⊂ R

3 is a noncompact ancient non-

collapsed flow, whose time zero slice is contained in a halfspace and with

mean curvature 1/
√
2 at the base point. Hence, the classification by Brendle-

Choi [BC19] implies that N∞
t is the rotationally symmetric translating bowl

soliton with speed 1/
√
2. This yields that Zi(ρ, τ) → Z0(τ) smoothly and

locally uniformly. For i large enough this contradicts the assumption that

Zi is not ε-close to Z0, and thus finishes the proof of the theorem.

3.4. Uniform sharp asymptotics from one time

In this subsection, we show that one can conclude the sharp asymptotics

from information about the cylindrical profile function of the flow at the

time τ0 itself. This will be used in the next section in the continuity method

along the HIMW class.

Recall that the renormalized profile function u = u(y1, y2, τ) from the

bubble-sheet analysis and the renormalized profile function v = v(y, τ) of

the level sets M ∩ {x1 = e−τ} are related by

(197) v(y, τ) =
√
2 + u(0, y, τ) .

In the analysis of the function v we work with the Hilbert space H :=

L2(R, e−y2/4dy), while on the other hand in the analysis of the function u

we worked with the Hilbert space H ∼= H⊗ H.

Definition 3.12 (κ-quadratic). We say that a noncollapsed translator M �=
Bowl3,R×Bowl2 in R

4, normalized as above and centered such that p+(vC(τ0)−√
2) = 0, is κ-quadratic at time τ0 if

1. the cylindrical profile function vC = vϕC(v) at time τ0 satisfies

(198)

∥∥∥∥vC(y, τ0)−√
2 +

y2 − 2

2
√
2|τ0|

∥∥∥∥
H

≤ κ

|τ0|
,
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2. and the bubble-sheet graph function u satisfies

(199) sup
τ∈[2τ0,τ0]

‖u(·, ·, τ)‖C4(B(0,2|τ0|1/100) ≤ |τ0|−1/50.

In contrast to Definition 3.7 (strongly κ-quadratic) here we work with
the smaller Hilbert space H, and more importantly we only prescribe the
behavior of the function vC at the time τ0 itself as opposed to prescribing
the behavior at all times τ ≤ τ0. The main goal of this subsection is to prove:

Theorem 3.13 (κ-quadraticity implies strong κ-quadraticity). For every
κ > 0 sufficiently small there exists τ∗ > −∞ with the following significance.
If M is κ

5 -quadratic at time τ0 for some τ0 ≤ τ∗, then M is strongly-κ
quadratic from time τ0.

In particular, by definition of strong κ-quadraticity, we get that ρ(τ) =
|τ |1/10 is an admissible graphical radius for τ ≤ τ0, so the solution is graph-
ical on a much larger scale than we initially assumed.

To prove Theorem 3.13, we will start with a lemma that upgrades the
information of v in H to information about u in H, essentially by exploiting
the fact that ∂y1

u is very small on our bubble-sheet. Before stating the
lemma, we recall that we can decompose

(200) H = H+ ⊕H0 ⊕H−,

according to the positive, neutral and negative eigenspaces of L, and that
we denote the corresponding projections by P+,P0 and P−. Moreover, in
the following we work with the truncated function

(201) û(y1, y2, τ) := u(y1, y2, τ)χ
(
|(y1,y2)|
ρ(τ)

)
,

where ρ(τ) is a suitable graphical radius function that will be fixed below.

Lemma 3.14 (upgrade to bubble-sheet). For every κ > 0 sufficiently small
there exists τ∗ > −∞ with the following significance. If M is κ

5 -quadratic at
time τ0 for some τ0 ≤ τ∗, then

(202)

∥∥∥∥û(τ0) + y22 − 2

2
√
2|τ0|

∥∥∥∥
H
≤ κ

4|τ0|
,

and

(203) ‖P+û(τ0)‖H ≤ 1

|τ0|100
.



Classification of noncollapsed translators in R
4 605

Proof. First observe that the unit normal at

(204) p = (y1, y2, (
√
2 + u(y1, y2, τ0)) cos θ, (

√
2 + u(y1, y2, τ0)) sin θ) ∈ M̄τ0

is given by

(205) ν =
1√

1 + (∂y1
u)2 + (∂y2

u)2
(−∂y1

u,−∂y2
u, cos θ, sin θ) .

Now, if |(y1, y2)| ≤ 2ρ(τ0), then (∂y1
u)2 + (∂y2

u)2 � 1, hence in particular
|∂y1

u| ≤ 2|〈ν, e1〉|. On the other hand, since p lies on a bubble-sheet, at the
point P on the unrescaled translator corresponding to p, we have H(P ) ≤
eτ0/2. Together with the translator equationH = 〈e1, ν〉 and (199) this yields

(206) sup
|(y1,y2)|≤2|τ0|1/100

|∂y1
u| ≤ 2eτ0/2.

Now, remembering (197) and integrating this gradient estimate we infer that

(207) sup
|(y1,y2)|≤|τ0|1/100

∣∣∣√2 + û(y1, y2, τ0)− vC(y2, τ0)
∣∣∣ ≤ eτ0/3,

provided τ0 ≤ τ∗, where we also used that u = û and v = vC in the region
under consideration. On the other hand, we have the Gaussian tail estimates

(208)

∫
|y|≥1

2 |τ0|
1/100

(
vC(y, τ0)−

√
2 +

y2 − 2

2
√
2|τ0|

)2

e−
y2

4 dy ≤ κ

|τ0|100
,

and
(209)∫

max{|y1|,|y2|}≥1
2 |τ0|

1/100

(
û(y1, y2, τ0) +

y22 − 2

2
√
2|τ0|

)2

e−
y2
1+y2

2

4 dy1dy2 ≤
κ

|τ0|100
.

Combining the above inequalities and choosing τ∗ = τ∗(κ) sufficiently nega-
tive, we infer that

(210)

∥∥∥∥û(τ0) + y22 − 2

2
√
2|τ0|

∥∥∥∥
H
≤ 1

(2e)1/4

∥∥∥∥vC(τ0)−√
2 +

y2 − 2

2
√
2|τ0|

∥∥∥∥
H

+
κ

20|τ0|
,

where the factor 1
(2e)1/4 comes from the different normalizations of the two

Hilbert spaces. Taking also into account the assumption thatM is κ
5 -quadratic
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at time τ0, this proves (202).

To derive (203), we first recall that H+ is spanned by the eigenfunctions

φ0 = 1, φ1 = y1, φ2 = y2. Now, thanks to the normalization p+(vC(τ0) −√
2)) = 0, for every y1 and i = 0, 1, 2 we have

(211)

∫ ∞

−∞

(
vC(y2, τ0)−

√
2
)
φi e

− y2
2
4 dy2 = 0.

Moreover, using the pointwise estimate (207) we see that

(212)

∣∣∣∣∣
∫
max{|y1|,|y2|}≤1

2 |τ0|
1/100

û(y1, y2, τ0)φi e
−y2

1+y2
2

4 dy1dy2

−
∫
max{|y1|,|y2|}≤1

2 |τ0|
1/100

(vC(y2, τ0)−
√
2)φi e

−y2
1+y2

2

4 dy1dy2

∣∣∣∣∣ ≤ κ

|τ0|100
.

Furthermore, similarly as before we have the Gaussian tail estimates

(213) |τ0|1/100 sup
|y1|≤1

2 |τ0|
1/100

∫
|y2|≥1

2 |τ0|
1/100

∣∣∣(vC(y2, τ0)−√
2
)
φi

∣∣∣ e−y2
2

4 dy2

≤ κ

|τ0|100
,

and

(214)

∫
max{|y1|,|y2|}≥1

2 |τ0|
1/100

|û(y1, y2, τ0)φi| e−
y2
1+y2

2

4 dy1dy2 ≤
κ

|τ0|100
.

Combining the above equations we infer that∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
û(y1, y2, τ0)φi e

− y2
1+y2

2
4 dy1dy2

∣∣∣∣ ≤ 3κ

|τ0|100
.(215)

In particular, this shows that

(216) ‖P+û(τ0)‖H ≤ 1

|τ0|100
,

and thus finishes the proof of the lemma.
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As another preparation, we need some suitable graphical radius to get
the argument started:

Lemma 3.15 (initial graphical radius). There exists some universal number
q > 0 with the following significance. For every κ > 0 sufficiently small, there
exists a constant τ∗ > −∞, such that if M is κ-quadratic at time τ0 ≤ τ∗,
then ρ(τ) = |τ |q is an admissible graphical radius function for τ ≤ τ0.

Proof. We will use the Lojasiewicz-Simon inequality from Colding-Minicozzi
[CM15] in combination with (199) and the discussion after Proposition 3.2.
Recall that the Gaussian area of a hypersurfaces in R

4, given by

(217) F (M) = (4π)−3/2

∫
M

e−
|x|2
4 ,

is decreasing along the renormalized mean curvature flow. Letting Γ be the
bubble-sheet cylinder, we have

(218) lim
τ→−∞

F (M̄τ ) = F (Γ).

Using (199) and Taylor expansion, at time τ0 we can estimate

(219)

∣∣∣∣∣
∫
|y|≤|τ0|1/100

(
(
√
2 + u)

√
1 + |∇u|2e−

|y|2+(
√
2+u)2

4 −
√
2e−

|y|2+2
4

)∣∣∣∣∣
≤ 40|τ0|−1/50.

Together with Gaussian tale estimates and monotonicity this implies

(220) 0 ≤ F (Γ)− F (M̄τ ) ≤ 50|τ0|−1/50

for all τ ≤ τ0. Hence, by quantitative differentiation [CHN13], for any ε > 0
and R < ∞, there exists τ∗ such that if τ0 ≤ τ∗ then for every τ ≤ τ0 one
has that M̄τ is a C2,α graph of with norm at most ε over the cylinder in
B(0, R). Thus, by [CM15, Theorem 6.1], there exist K < ∞ and η ∈ (1/3, 1)
such that for every τ ≤ τ0 − 1 we have

(221)
(
F (Γ)− F (M̄τ )

)1+η ≤ K
(
F (M̄τ−1)− F (M̄τ+1)

)
.

Using the discrete Lojasiewicz lemma [CM15, Lemma 6.9] this yields

(222)
(
F (Γ)− F (M̄τ )

)
≤ C(K, η)|τ |−1/η,
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for every τ ≤ 2τ0, and

(223)

∞∑
j=J

(
F (M̄−j−1)− F (M̄−j)

)1/2 ≤ C(K, η)J−p.

for J ≥ 2|τ0|, where p := 1
4η − 1

4 . Since the renormalized mean curvature
flow is the negative gradient flow of the F -functional this implies

(224)

∫ τ

−∞

∫
M̄τ′

∣∣∣∣H(q) +
q⊥

2

∣∣∣∣ e− |q|2
4 dμτ ′(q)dτ ′ ≤ C|τ |−p

for τ ≤ 2τ0. Hence, applying [CM15, Lemma A.48], we obtain

(225)

∫
{|(y1,y2)|≤ρ0(τ)/2}

|u(y1, y2, θ, τ)|e−
y2
1+y2

2
4 ≤ C|τ |−p

for τ ≤ 2τ0, where ρ0(τ) is our initial choice of graphical radius. Thus,
by Proposition 3.2 (barrier estimate) the quantity β from (118) satisfies
β(τ) ≤ C|τ |−p/2, so by (125) the function |τ |−p/20 is an admissible graphical
radius for τ ≤ 2τ0. Hence, setting q = min{ p

20 ,
1

200}, together with (199) we
conclude that ρ(τ) := |τ |q is an admissible graphical radius for τ ≤ τ0. This
finishes the proof of the lemma.

After these preparations, we can now prove the main result of this sub-
section:

Proof of Theorem 3.13. Using the graphical radius ρ(τ) = |τ |q from Lemma
3.15 (initial graphical radius), we define the truncated function û as in (201).
Remembering (200) we consider

U+(τ) := ‖P+û(τ)‖2H ,

U0(τ) := ‖P0û(τ)‖2H ,(226)

U−(τ) := ‖P−û(τ)‖2H .

Recall from [CHH21, Section 4] that for τ ≤ τ0 we have the differential
inequalities

d

dτ
U+ ≥ U+ − C0ρ

−1 (U+ + U0 + U−),∣∣∣ d

dτ
U0

∣∣∣ ≤ C0ρ
−1 (U+ + U0 + U−),(227)
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d

dτ
U− ≤ −U− + C0ρ

−1 (U+ + U0 + U−),

where C0 < ∞ is a constant. We will first show that U0 dominates in the
following quantitative sense:

Claim 3.16 (dominant mode). For every τ ≤ τ0 we have the inequality

(228) U+(τ) + U−(τ) ≤
4C0

ρ(τ0)
U0(τ).

Proof. We argue as in the proof of the Merle-Zaag ODE lemma [MZ98]. Set
ε = C0ρ(τ0)

−1. Possibly after decreasing τ∗, we can assume that ε < 1/100.
Now, if at some time τ ≤ τ0 we had the inequality 2ε(U+ + U0) ≤ U−, then
by (227) at this time τ we would get

d

dτ
(U− − 2ε(U+ + U0)) ≤ −U− + ε(1 + 4ε)(U+ + U0 + U−)− 2εU+

≤ −U− + ε(1 + 4ε)(1 +
1

2ε
)U− < 0.(229)

Hence, if the inequality 2ε(U+ + U0) ≤ U− held at some time τ1 ≤ τ0, then
it would hold on (−∞, τ1], contradicting Theorem 3.6 (inwards quadratic
bending). Thus, we must have

(230) U− < 2ε(U0 + U+)

for every τ ≤ τ0. To finish the proof, we will show that

(231) U+ < 8εU0.

for all τ ≤ τ0. Note that by Lemma 3.14 (upgrade to bubble-sheet) this
inequality indeed holds at time τ = τ0. Now, if the inequality (231) failed
for some at some time less than τ0, then at the largest time τ < τ0 where it
failed we would have U+ = 8εU0. Together with (227) and (230) this would
imply

d

dτ
(8εU0 − U+) ≤ ε(8ε+ 1)(U+ + U0 + U−)− U+

≤ ε(8ε+ 1)(8ε+ 1 + 2ε(1 + 8ε))U0 − 8εU0 ≤ −εU0 < 0.

This contradicts the definition of τ , and thus establishes (231). This con-
cludes the proof of the claim.
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Now that we know that U0 dominates, it is important to determine which
eigenfunction in

(232) H0 = span{y21 − 2, y22 − 2, y1y2}

is the dominated one. The following claim shows that y22 − 2 dominates in a
quantitative sense:

Claim 3.17 (dominant eigenfunction). For τ ≤ τ0 with ‖û(τ)‖H ≥ e−ρ(τ)

we have the estimate

(233)
∣∣〈û(τ), y21 − 2〉H

∣∣ + |〈û(τ), y1y2〉H| ≤
C

ρ(τ)
‖û(τ)‖H .

Proof. Let ψ1 := y21 −2, ψ2 := y1y2 and set αi := 〈û, ψi〉H. Then, for i = 1, 2
we have

(234) |αi| ≤
∣∣∣∣∣
∫
max{|y1|,|y2|}≤1

2ρ(τ)
uψi e

−y2
1+y2

2

4 dy1dy2

∣∣∣∣∣
+

∫
max{|y1|,|y2|}≥1

2ρ(τ)
|ûψi|e−

y2
1+y2

2

4 dy1dy2.

Using the Cauchy-Schwarz inequality and the inverse Poincare inequality
from [CHH21, Proposition 4.4] we can estimate the second integral by

(235)

∫
max{|y1|,|y2|}≥1

2ρ(τ)
|ûψi| e−

y2
1+y2

2

4 dy1dy2 ≤
C

ρ(τ)
‖û‖H.

To bound the first integral, note that as in the proof of Lemma 3.14 (upgrade
to bubble-sheet) we have

(236) sup
max{|y1|,|y2|}≤1

2ρ(τ)

∣∣∣√2 + u(y1, y2, τ)− v(y2, τ)
∣∣∣ ≤ eτ/3.

Hence,

(237)

∣∣∣∣∣
∫
max{|y1|,|y2|}≤1

2ρ(τ)
u(y1, y2, τ)ψi e

−y2
1+y2

2

4 dy1dy2

−
∫
max{|y1|,|y2|}≤1

2ρ(τ)

(
v(y2, τ)−

√
2
)
ψi e

−y2
1+y2

2

4 dy1dy2

∣∣∣∣∣ ≤ eτ/4.
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Now, since ψ2 is an odd function of y1 we clearly have

(238)

∫
max{|y1|,|y2|}≤1

2ρ(τ)

(
v(y2, τ)−

√
2
)
ψ2 e

−y2
1+y2

2

4 dy1dy2 = 0.

To estimate the integral involving ψ1 observe that using the identity

(239)

∫ ∞

−∞
ψ1e

− y2
1
4 dy1 = 0

for every y2 we have

(240)

∫
|y1|≤1

2ρ(τ)

(
v(y2, τ)−

√
2
)
ψ1 e

−y2
1+y2

2

4 dy1

= −
∫
|y1|≥1

2ρ(τ)

(
v(y2, τ)−

√
2
)
ψ1 e

−y2
1+y2

2

4 dy1.

This yields

(241)

∣∣∣∣∣
∫
max{|y1|,|y2|}≤1

2ρ(τ)

(
v(y2, τ)−

√
2
)
ψ1 e

−y2
1+y2

2

4 dy1dy2

∣∣∣∣∣ ≤ e−2ρ(τ).

Combining the above equations establishes the claim.

Continuing the proof of the theorem, we consider the evolution of the
coefficient

(242) α0(τ) := 〈û(τ), ψ0〉H,

where we now work with the normalized eigenfunction

(243) ψ0 = 2−3/2( e
2π )

1/4(y22 − 2).

Note that by the above two claims, α0 is dominant in a quantitative sense.
Specifically, if we write

(244) û(τ) = α0(τ)ψ0 + w(τ),

then for all τ ≤ τ0 with |α0(τ)| ≥ e−ρ(τ) we have the estimate

(245) ‖w(τ)‖H ≤ C

ρ(τ0)
|α0(τ)|.
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Now, using Proposition 3.3 (evolution equation) and equation (244) we see
that

d

dτ
α0 = − 1

2
√
2
〈û2, ψ0〉H + 〈E,ψ0〉H

= −( e
2π )

1

4α2
0 − 1√

2
α0〈w,ψ2

0〉H − 1
2
√
2
〈w2, ψ0〉H + 〈E,ψ0〉H,(246)

where E satisfies the pointwise estimate (131).

Claim 3.18 (error estimate). For all τ ≤ τ0 with |α0(τ)| ≥ e−ρ(τ)1/2 we
have the estimate

(247)
∣∣α0〈w,ψ2

0〉H
∣∣ + ∣∣〈w2, ψ0〉H

∣∣ + |〈E,ψ0〉H| ≤
C

ρ(τ0)
α2
0(τ).

Proof. Using equation (245) the first term is easily controlled as

(248) |α0〈w,ψ2
0〉H| ≤ C|α0|‖w‖H ≤ C

ρ(τ0)
α2
0(τ).

To bound the last term, first observe that E from (131) is supported in the
ball {|y| ≤ 2ρ(τ)}, so in particular by the definition of admissible graphical
radius we have the estimate

(249) |u|+ |∇u|+ |∇2u| ≤ 1

ρ(τ)2
.

Now, for |y| ≤ ρ(τ)1/2 we can estimate

(250) |E||ψ0| ≤
(
C|u|3 + C|∇u|2|∇2u|

)
ρ(τ) ≤ C

ρ(τ)

(
|u|2 + |∇u|2

)
.

Together with the inverse Poincare inequality from [CHH21, Proposition 4.4]
this yields

(251)

∫
|y|≤ρ(τ)

1
2

|Eψ0| e−
|y|2
4 ≤ C

ρ(τ)
‖û‖2H ≤ C

ρ(τ)
α2
0(τ),

where in the last step we used the above two claims. In the remaining domain
we have the coarse estimate |Eψ0| ≤ Cρ(τ)2 so we can bound∫

ρ(τ)1/2≤|y|≤2ρ(τ)
|Eψ0| e−

|y|2
4 ≤ e−ρ(τ)2/3 .(252)
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Hence, for all τ ≤ τ0 with |α0(τ)| ≥ e−ρ(τ)1/2 we get

(253) |〈E,ψ0〉H| ≤
C

ρ(τ0)
α2
0(τ).

Finally, the second term is controlled similarly as in [ADS19, Proof of Lemma
5.14], but since we need to check that everything works from time τ0 we
include the details. By Ecker’s weighted Sobolev inequality [Eck00] we have

(254) |〈ψ0, w
2〉H| ≤ C

∫
(1 + |y|2)w2e−|y|2/4 ≤ C(‖w‖2H + ‖∇w‖2H).

Since the Gaussian L2-norm is already controlled by (245), it thus suffices to
control ‖∇w‖2H. To this end, note that projecting the evolution equation for
û from Proposition 3.3 (evolution equation) to the orthonormal complement
of span{ψ0} gives

(255) ∂τw = Lw + g,

where g at all τ ≤ τ0 with |α0(τ)| ≥ e−ρ(τ)1/2 satisfies the estimate

(256) ‖g‖H ≤ 1

2
√
2
‖û2‖H + ‖E‖H ≤ C

ρ(τ)
‖û‖H ≤ C

ρ(τ0)
|α0(τ)| .

Now, given τ̂ ≤ τ0, using (255) and integration by parts we compute

d

dτ

∫
eτ̂−τw2e−|y|2/4 =

∫
eτ̂−τ (2wg − 2|∇w|2 − w2) e−|y|2/4

≤
∫

eτ̂−τ (g2 − 2|∇w|2) e−|y|2/4,(257)

and

d

dτ

∫
(τ − τ̂)|∇w|2e−|y|2/4 =

∫ (
|∇w|2 − 2(τ − τ̂)(Lw)(Lw + g)

)
e−|y|2/4

≤
∫ (

|∇w|2 + 1
2(τ − τ̂)g2)

)
e−|y|2/4 .(258)

For τ ∈ [τ̂ − 1, τ̂ ] this yields

d

dτ

∫ (
(τ − τ̂)|∇w|2 + eτ̂−τ

2 w2
)
e−|y|2/4 ≤

∫
g2 e−|y|2/4 .(259)
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Hence, together with (245) and (256) we infer that

(260) ‖∇w(τ)‖2H ≤ C

ρ(τ0)2
sup

τ ′∈[τ,τ+1]
α2
0(τ

′).

Finally, using the second Merle-Zaag ODE from (227) and remembering
(245) we see that

(261) sup
τ ′∈[τ,τ+1]

α2
0(τ

′) ≤ 2α2
0(τ).

In light of (254), the last estimate is established and the claim follows.

Now, setting γ := ( e
2π )

1

4 and ε := Cρ(τ0)
−1 by the evolution equation

(246) and Claim 3.18 (error estimate) we have

(262)

∣∣∣∣ d

dτ
α0 + γα2

0

∣∣∣∣ ≤ εα2
0(τ)

for all τ ≤ τ0 with |α0(τ)| ≥ e−ρ(τ)1/2 . Integrating this differential inequality
backwards in time gives

(263) (γ − ε)(τ − τ0) ≤
1

α0(τ)
− 1

α0(τ0)
≤ (γ + ε)(τ − τ0),

as long as |α0| ≥ e−ρ1/2

on [τ, τ0]. Regarding the initial condition, observe
that by (202) we have

(264)

∣∣∣∣ 1

α0(τ0)
− γτ0

∣∣∣∣ ≤ γ2κ

2
|τ0|,

provided κ is sufficiently small. Hence, if τ0 ≤ τ∗(κ) is so that ε ≤ γ2κ
2 , then

we obtain

(265)

∣∣∣∣ 1

α0(τ)
− γτ

∣∣∣∣ ≤ γ2κ

2
|τ |,

as long as |α0| ≥ e−ρ1/2

on [τ, τ0]. Finally, since
1
|τ | � e−|τ |

q
2 if follows from

continuity that (265) holds unconditionally. In other words, we have shown
that for all τ ≤ τ0 we have

(266)

∣∣∣∣α0(τ) +
1

γτ

∣∣∣∣ ≤ 3κ

4|τ | .
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Together with the estimate (245) this shows that ‖û(τ)‖H ∼ |τ |−1 for every
τ ≤ τ0. Hence, similarly as in (125) we can now upgrade to the new graphical
radius ρ(τ) = |τ |1/10 for τ ≤ τ0. Furthermore, combining (245) and (266)
also shows that û, now defined with respect to the new graphical radius,
satisfies

(267)

∥∥∥∥û(τ) + y22 − 2

2
√
2|τ |

∥∥∥∥
H
≤ κ

|τ | for τ ≤ τ0.

Thus, we conclude that M is strongly κ-quadratic from time τ0. This finishes
the proof of the theorem.

As a corollary of the proof, we also obtain the following projection esti-
mate:

Corollary 3.19 (projection estimate). If M is κ-quadratic at time τ0 ≤ τ∗,
then

(268) ‖p−(vC(τ0))‖H ≤ κ

100|τ0|
.

Proof. Setting w(y1, y2, τ) := vC(y2, τ) we compute

(2e)−
1

4 ‖p−(vC(τ0))‖H = ‖P−(w(τ0))‖H
≤ ‖P−(w(τ0)− û(τ0))‖H + ‖P−(û(τ0))‖H
≤ ‖w(τ0)−

√
2− û(τ0)‖H + U−(τ)

1/2.(269)

Using again a combination of the pointwise estimate (207) and Gaussian tail
estimates we get

(270) ‖w(τ0)−
√
2− û(τ0)‖H ≤ κ

|τ0|100
.

Moreover, by Claim 3.16 (dominant mode) and the inequality U0(τ)
1/2 ≤

C|τ |−1 we have

(271) U−(τ)
1/2 ≤ 2

(
C0

ρ(τ0)

)1/2 C

|τ |

Taking τ∗ sufficiently negative, this implies the assertion.

As a consequence, we now obtain uniform sharp asymptotics depending
only on κ-quadraticity:
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Theorem 3.20 (uniform sharp asymptotics). For every ε > 0 there exists

κ > 0 and τ∗ > −∞, such that if M is κ-quadratic at time τ0 for some

τ0 ≤ τ∗, then for every τ ≤ τ0 the following holds:

1. Parabolic region: The renormalized profile function satisfies

(272)

∣∣∣∣v(y, τ)−√
2

(
1− y2 − 2

4|τ |

)∣∣∣∣ ≤ ε

|τ | (|y| ≤ ε−1).

2. Intermediate region: The function v̄(z, τ) := v(|τ |1/2z, τ) satisfies

(273) |v̄(z, τ)−
√

2− z2| ≤ ε,

on [−
√
2 + ε,

√
2− ε].

3. Tip regions: We have the estimate

(274) ‖Z(·, τ)− Z0(·)‖C100(B(0,ε−1)) ≤ ε,

where Z0(ρ) is the profile function of the 2d-bowl with speed 1/
√
2.

Moreover, we have the estimate

(275) ‖p−(vC(τ0))‖H ≤ κ

100|τ0|
.

Furthermore, for all τ ≤ τ0 the renormalized hypersurface M̄τ = e−τ/2M−e−τ

can be expressed locally as a graph of a function u(y1, y2, τ) over the cylinder

R
2 × S1(

√
2) with the estimate

(276) ‖u‖C4(B(0,2|τ |1/10) ≤ |τ |−1/5.

Proof. This follows combining Theorem 3.11 (uniform sharp asymptotics as-

suming strong κ-quadraticity), Theorem 3.13 (κ-quadraticity implies strong

κ-quadraticity) and Corollary 3.19 (projection estimate).

4. From spectral uniqueness to classification

In this section, we explain how to derive the main classification theorem

from spectral uniqueness.
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4.1. The Hoffman-Ilmanen-Martin-White class

In this subsection, we introduce the HIMW class by slightly generalizing

the construction from [HIMW19, Cor. 8.2], and establish some of its basic

properties. We also fix notations that will be used throughout the remaining

subsections.

For every a ∈ [0, 13 ] and every R < ∞, consider the ellipsoidal domain

given by

(277) Ωa,R :=

{
(x2, x3, x4)

∣∣∣ a2x22 + (
1− a

2

)2

x23 +

(
1− a

2

)2

x24 < R2

}
.

Let ua,R be the solution to the upward moving translator equation5

div

(
∇u√

1 + |∇u|2

)
− 1√

1 + |∇u|2
= 0 on Ωa,R,(278)

u = 0 on ∂Ωa,R.

As shown in [HIMW19, Section 9], it follows from the moving plane method

that ua,R(x2, x3, x4) attains its minimum ξ = ξ(a,R) ∈ (−∞, 0) at x2 =

x3 = x4 = 0, and that ua,R is SO(2)-symmetric in the x3x4-plane, and reflec-

tion symmetric in the x2-coordinate. Using interior and exterior bowl barri-

ers one easily sees that ξ(a,R) → −∞ as R → ∞ and ξ(a,R) → 0 as R → 0.

Observing also that for any fixed a, the function R �→ ξ(a,R) is strictly

decreasing, it follows that for every (ξ, a) there is a unique R = R(ξ, a), de-

pending continuously on (ξ, a), such that ua,R(0) = ξ. By abuse of notation,

write ua,ξ = ua,R(ξ,a).

We also recall that the gradient estimate from [ES91, Theorem 7.4], to-

gether with standard higher derivative estimates, gives uniform estimates

(depending only on a bound for R) for all derivatives of solutions of the

problem (278). In particular, this yields smooth compactness for sequences

of translators-with-boundary with bounded R, and also yields locally smooth

compactness for sequences along which R → ∞.

5In contrast to [HIMW19], we use the convention that translators move upwards.
In particular, we have ua,R ≤ 0.
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We now shift the tip to the origin, namely we consider the translator
(with boundary) defined by

(279) Ma,ξ := graph(ua,ξ − ξ).

We can now introduce the HIMW class as the collection of all translators
that are obtained as limits of the above translators Mai,ξi , for any sequences
ai ∈ [0, 13 ] and ξi → −∞:

Definition 4.1 (HIMW class). The HIMW class is

(280) A :=
{
lim
i→∞

Mai,ξi | ai ∈ [0, 1/3] and ξi → −∞
}
.

Note that, inheriting the properties from Mai,ξi , all elements in A are
SO(2)-symmetric in the x3x4-plane, and reflection symmetric in the x2-
coordinate. Moreover, the proof of [HIMW19, Theorem 8.1, Corollary 8.2]
carries through to our setting, showing that every M ∈ A is an entire graph.
Furthermore, the circular symmetry together with [HIMW19, Theorem 9.2]
implies that

(281) the principal curvatures at the tip 0 ∈ M are

equal to (k, 1−k
2 , 1−k

2 ) for some k ∈ [0, 13 ].

Let us next explain the relationship with the construction from [HIMW19,
Cor. 8.2]. To this end, note first that when a = 0 then Ma,ξ splits off the
x2-direction by [HIMW19, Theorem 3.2] hence is a piece of R×2d-bowl, and
when a = 1

3 then Ma,ξ is O(3)-symmetric hence a piece of the 3d round
bowl. For each fixed ξ, we consider the tip curvature map

(282) F ξ : [0, 13 ] → [0, 13 ], a �→ k.

Observe that F ξ is continuous as a consequence of the uniqueness and the
uniform derivative estimates that we recalled above. It thus follows from the
intermediate value theorem that F ξ is surjective.

In the construction from [HIMW19, Cor. 8.2] one fixes the tip curva-
ture k ∈ [0, 1/3] and then for ξi → −∞ chooses ai with F ξi(ai) = k and
passes to a limit of Mai,ξi . Here, we slightly generalized the construction
by also allowing that ki → k depends on i, which a priori leads a larger
class of translators (a posteriori it will be the same) and is important for
the argument in Section 4.3.
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Theorem 4.2 (noncollapsing and convexity). Every M ∈ A is noncollapsed

and convex.

Proof. Consider the associated mean curvature flow Mt = M+ te1. Since M

is an entire graph, Mt foliates the entire space and thus by mean-convexity

has polynomial volume growth (indeed this follows from a standard cali-

bration argument as explained e.g. in [HK17, Remark 2.6]). Therefore, the

entropy Ent[M ] is finite. Hence, we can let Nt be a tangent flow to Mt at

−∞. We claim that Nt cannot be a hyperplane (of any multiplicity). To this

end, note that [HIMW19, Theorem 9.3] implies that for every M ∈ A and

height h > 0, the level sets Σh := M ∩ {x1 = h} satisfy

(283) max
x∈Σh

x2 ≥ max
x∈Σh

x3.

Now, if Nt = Q for some hyperplane Q, then clearly e1 ∈ Q. Moreover,

by counting dimensions we see that Q ∩ span{e3, e4} �= {0}. Together with
the SO(2)-symmetry this implies Q = span{e1, e3, e4}, contradicting (283).

Hence, Nt is not a hyperplane.

Claim 4.3. Nt is a smooth multiplicity-one self-shrinker.

Proof. Since we have already excluded hyperplanes, in particular the ones

of multiplicity-two, this follows from the methods of White [Whi00]. Indeed,

first observe that every tangent flow to Nt has to be a static or quasi-static

hyperplane (with multiplicity one or two), being a one-sided minimizing

stationary cone. Note also that since Nt is self-shrinking, quasi-static hyper-

planes (of any multiplicities) are excluded by the clearing out lemma. Now,

letting Kt be the domain enclosed by Nt, the above implies that a point

x ∈ Nt is regular with multiplicity-one if and only if x ∈ Cl(IntKt). This is a

closed condition, so the regular set is closed. Also, the regular set is always

open by the local regularity theorem. We will next show that 0 ∈ Int(Kt) for

t < 0. To this end, note that in addition to (283) the moving plane method

also yields that maxx∈Σh x3 is attained at a point with x2 = x4 = 0, and

that Σh ∩ {x4 = 0} ∩ {x2 > 0} ∩ {x3 > 0} is graphical both over the x2-axis

and the x3-axis. Hence, if 0 was not an interior point of Kt, then we would

have x3 = 0 on Kt. Together with the circular symmetry this would imply

that Kt ⊆ span{e1, e2}, which is a contradiction. Thus, Int(Kt) �= ∅. Since
Nt is connected (being a limit of graphs), we conclude that all points are

regular with multiplicity-one. This proves the claim.
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Thanks to the claim, we can apply Huisken’s classification of smooth
mean-convex shrinkers [Hui93], which gives that Nt must be a generalized
cylinder. In particular, we infer that

(284) Ent[M ] ≤ Ent[S1] < 2.

It is well known to experts that this implies that M is α-noncollapsed. For
convenience of the reader we provide a short proof using methods from
the work of White [Whi03] (alternatively, one could apply the recent local
noncollapsing estimate from Brendle-Naff [BN21]). Suppose towards a con-
tradiction that there is a sequence of points xj ∈ M whose maximal interior
tangent ball is of radius rj ≤ j−1H(xj)

−1. Consider the sequence of flows

N j
t that is obtained from Mt by centering at (xj , 0) and parabolically rescal-

ing by r−1
j . Passing to a subsequential limit [Ilm94, Whi09], we obtain an

ancient, cyclic, unit-regular, integral Brakke flow M̂t, with 0 ∈ spt(M̂0). As
the tangent flow to M̂t at (0, 0) is contained in a half-space, it must be a
hyperplane, with multiplicity-one, by the entropy bound. Hence, (0, 0) is a
regular point [Whi05], and H(0, 0) = 0. By the strong maximum principle
(see Lemma 4.4 below), this implies that {M̂t}t≤0 is a static hyperplane. For
j large, this contradicts the fact that rj was maximal. This establishes inte-
rior noncollapsing. A similar argument yields exterior noncollapsing. Finally,
by [HK17, Theorem 1.10] the noncollapsing implies convexity.

In the above proof we have used the following lemma:

Lemma 4.4 (White’s strong maximum principle, c.f. [Whi03, Theorem 6]).
Suppose {Mt}t≤0 is an ancient, cyclic, unit-regular, integral Brakke flow in
R
4 with entropy strictly less than two and such that H ≥ 0 at regular points.

If (0, 0) is a regular point and H(0, 0) = 0, then {Mt}t≤0 is a flat hyperplane.

Proof. By the smooth strong maximum principle, there is an ε > 0 such
that Mt ∩ B(0, ε) is a smooth minimal hypersurface Σ for t ∈ (−ε2, 0].
Furthermore, the assumptions of the lemma and [Whi97, Theorem 9] imply
that the singular set of {Mt}t≤0 has parabolic Hausdorff dimension at most
2. We claim that

(285) Σ ⊆ spt(Mt), for all t ∈ (−∞, 0].

Indeed, taking any x0 ∈ Σ and t0 < 0, the smallness of the singular set
implies that (x0, t0) can be connected to (0, 0) by a time-like space-time
curve γ that stays in the regular part of the flow. Hence, by the smooth
strong maximum principle we obtain H = 0 along γ. This proves (285). It
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follows that the tangent flow to {Mt}t≤0 at −∞ must be a flat hyperplane.
Hence, {Mt}t≤0 itself is a flat hyperplane.

4.2. Monotonicity of the tip curvature map

Recall that by definition

(286) F ξ : [0, 1/3] → [0, 1/3], a �→ k,

maps a to the smallest principal curvature k of the tip 0 ∈ Ma,ξ = graph(ua,ξ−
ξ). Recall also that since F ξ is continuous and fixes the endpoints, it must
be surjective. The goal of this subsection is to prove:

Theorem 4.5 (monotonicity). F ξ is strictly monotone.

Proof. If not, there exist a1 �= a2 such that Ma1,ξ and Ma2,ξ agree at the
origin to more than second order. Consider the difference function

(287) w := ua1,ξ − ua2,ξ,

defined over the intersection of ellipsoidal domains

(288) Ω := Ωa1,R(a1,ξ) ∩ Ωa2,R(a2,ξ).

We will analyze the nodal set

(289) Z := {w = 0}.

To this end, for any p ∈ Z denoting by d = d(p) be the leading order of w
around p, we write

(290) w = wp + Ep,

where wp is the degree d Taylor polynomial and the error satisfies

(291) Ep = O(|x− p|d+1), ∇Ep = O(|x− p|d), ∇2Ep = O(|x− p|d−1).

Here, d is finite by Almgren’s frequency function argument (see for instance
[CM11, Theorem 6.1]). Now, observe that

(292)

(
δij −

∇iua1,ξ(p)∇jua1,ξ(p)

1 + |∇ua1,ξ(p)|2
)
∇i∇jwp = 0.
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Indeed, using the translator equation (278) and the product rule for differ-
ences we see that

Δw =
∇iua1,ξ∇jua1,ξ∇i∇jua1,ξ

1 + |∇ua1,ξ|2
− ∇iua2,ξ∇jua2,ξ∇i∇jua2,ξ

1 + |∇ua2,ξ|2
(293)

=
∇iua1,ξ∇jua1,ξ∇i∇jw

1 + |∇ua1,ξ|2
+

∇iua1,ξ∇jw∇i∇jua2,ξ

1 + |∇ua1,ξ|2

+
∇iw∇jua2,ξ∇i∇jua2,ξ

1 + |∇ua1,ξ|2

− ∇k(ua1,ξ + ua2,ξ)∇kw

(1 + |∇ua1,ξ|2)(1 + |∇ua2,ξ|2)
∇iua2,ξ∇jua2,ξ∇i∇jua2,ξ.

Since ∇w = O(|x− p|d−1) this yields

(294)

(
δij −

∇iua1,ξ∇jua1,ξ

1 + |∇ua1,ξ|2
)
∇i∇jw = O(|x− p|d−1).

Moreover, thanks to (291) replacing w by wp only introduces an error of size
O(|x− p|d−1), and likewise freezing the coefficients only introduces an error
of size O(|x− p|d−1) as well. We thus obtain

(295)

(
δij −

∇iua1,ξ(p)∇jua1,ξ(p)

1 + |∇ua1,ξ(p)|2
)
∇i∇jwp = O(|x− p|d−1),

which, since ∇i∇jwp has degree at most d− 2, implies (292).

Now, by the circular symmetry it suffices to analyze the set

(296) Ẑ := Z ∩ {x4 = 0}.

Claim 4.6. There exists a neighborhood of 0 where Ẑ consists of d = d(0)
smooth curves intersecting transversally at 0. Moreover, crossing any of the
2d rays, w changes sign.

Proof of the claim. Since 0 lies on the axis of circular symmetry, w0 is a
spherical harmonic that is invariant under rotations in the x3x4-plane. Thus,
in suitable spherical coordinates we have

(297) w0 = c0r
dPd(cosϑ),

where Pd is the d-th Legendre polynomial, and c0 �= 0 is a constant. As
Pd has d distinct roots in (−1, 1), we infer that near p = 0 the set {w0 =
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0} ∩ {x4 = 0} consists of d curves intersecting transversally, and that w0

changes sign whenever one crosses any of the 2d rays. The corresponding
behavior of {w = 0} ∩ {x4 = 0} now follows from Lemma 4.8 below.

Next, setting Ω̂ := Ω ∩ {x4 = 0} we have:

Claim 4.7. There exists a connected component D̂ of Cl(Ω̂) \ Cl(Ẑ) that
does not meet ∂Ω̂.

Proof. Writing Ω̂i := Ωai,R(ai,ξ), observe that the ellipses ∂Ω̂1 and ∂Ω̂2

intersect at 4 points. Hence, ∂Ω̂ consists of 4 arcs meeting these 4 in-
tersection points p1, . . . , p4. Note that w = 0 on those four intersection
points, but w �= 0 anywhere else on ∂Ω̂ by the maximum principle. Hence,
Cl(Ẑ) ∩ ∂Ω̂ = {p1, . . . , p4}, and consequently there are at most 4 connected
components of Cl(Ω̂) \ Cl(Ẑ) that meet ∂Ω̂.

On the other hand, by Claim 4.6 around 0 the set Ω̂ \ Ẑ looks like 2d
sectors. Let q+1 , . . . q

+
d , q

−
1 , . . . q

−
d be points in those distinct sectors, where

the sign is according to the sign of w. Note that d = d(0) ≥ 3, since Ma1,ξ

and Ma2,ξ agree at the origin to more than second order.

Suppose towards a contradiction that all connected components of Cl(Ω̂)\
Cl(Ẑ) meet ∂Ω̂. Then, since 2d > 4, by the pigeonhole principle two points
of the set {q±i } must be in the same connected component A, and these
points moreover must be of the same sign, as otherwise A = (A ∩ {w >
0}) � (A ∩ {w < 0}). Since open connected sets in R

2 are path connected,
we can assume without loss of generality that there is a continuous path γ
from q−1 to q−2 in Cl(Ω̂) \ Cl(Ẑ). We can further assume that γ is injective.

Finally, let us complete γ to a simple closed curve γ̃ in Cl(Ω̂) \ Cl(Ẑ) ∪ {0}
by connecting q−1 and q−2 to 0 in the small neighborhood of 0. Now, by the
Jordan curve theorem, γ̃ encloses a bounded domain B. Letting q+1 and q+2
be the points in the two sectors neighboring q−1 , one of them, without loss of

generality q+1 , is necessarily in B. But then the connected component D̂ of

q+1 in Cl(Ω̂) \Cl(Ẑ) does not intersect the boundary: If it did, a curve from
q+1 to the boundary would have had to intersect γ̃, which is impossible by
intermediate value theorem. This proves the claim.

Finally, considering the orbit of the enclosed region D̂ under the SO(2)-
symmetry, this implies that there is a domain D ⊆ Ω such that w = 0 on
∂D and w > 0 or w < 0 in D. This contradicts the maximum principle, and
thus concludes the proof of the theorem.

In the above proof we used the following lemma:
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Lemma 4.8. Let γk0 (r) = (r cos θk0 , r sin θ
k
0) be a zero ray of w0 around 0.

Then there exists a corresponding zero curve γk(r) = (r cos θk(r), r sin θk(r))
of w, such that limr→0 θ

k(r) = θk0 . Moreover, there exists some r0 > 0 such
that all the zeros of w in B(0, r0) lie on such a curve.

Proof. Note that there exist c > 0 and C < ∞ such that |w(γk0 (r))| ≤ Crd+1,
and |〈∇w(γk0 (r)), T 〉| ≥ crd−1, and |∇2w| ≤ Crd−2, where T denotes the unit
tangent vector to S(0, r). Thus, there exists ε > 0 such that |〈∇w, T 〉| ≥
c
2r

d−1 on S(0, r) ∩ B(γk0 (r), εr). It follows that the equation w = 0 has a
unique solution in S(0, r) ∩ B(γk0 (r), εr), and this solution x must in fact
lie in S(0, r) ∩ B(γk0 (r), Dr2), where D < ∞. The quantitative version of
the implicit function theorem gives that the function r → x(r) is smooth,
proving the existence of such asserted zero curve γk(r). Moreover, as |γk(r)−
γk0 (r)| ≤ Dr2, the curve starts at the same angle, as asserted. Finally, note
that there exists δ > 0 such that when |x| = r and

(298) x /∈
2d⋃
k=1

(
S(0, r) ∩B(γk0 (r), εr)

)
,

then |w0(x)| ≥ δrd. Choosing r0 small enough, this completes the proof of
the lemma.

4.3. The spectral eccentricity of the HIMW class

In this subsection, we prove that the HIMW construction realizes all spectral
eccentricities. Together with spectral uniqueness this will immediately yield
that the HIMW class is homeomorphic to an interval. Furthermore, we will
also show that the tip curvature function on the HIMW class is weakly
monotone.

Recall that we work with the Hilbert space H = L2(R, e−y2/4dy), and
that p+ denotes the orthogonal projection to H+, which is spanned by the
unstable eigenfunctions ψ1 = 1 and ψ2 = y. Moreover, recall from Definition
4.1 (HIMW class) that we work with the class of all HIMW translators,

(299) A =
{
lim
i→∞

Mai,ξi | ai ∈ [0, 1/3] and ξi → −∞
}
.

We equip A with the smooth topology corresponding to smooth convergence
on compact subsets.
Let us first suitably shift these translators so that their spectral center agrees
with the one of the cylinder:
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Proposition 4.9 (shift map). Given any τ0 < 0, for every M ∈ A there
exists a unique α = α(M, τ0) ∈ R such that the cylindrical profile function
vC = ϕC(v)v of the shifted translator M + αe1 satisfies

(300) p+(vC(τ0)−
√
2) = 0,

and setting A′ := {M +α(M, τ0)e1|M ∈ A} endowed with the smooth topol-
ogy, the shift map

(301) S : A → A′, M �→ M + α(M, τ0)e1

is a homeomorphism. Moreover, for every κ > 0 there exist κ′ > 0 and
τ∗ > −∞ such that if τ0 ≤ τ∗ and M ∈ A is strongly κ′-quadratic from time
τ0 + 1, then S(M) is κ-quadratic at time τ0.

Proof. Note that for every M ∈ A, every α and τ0, the renormalized profile
function vM,α(τ0) of (M + αe1) ∩ {x1 = e−τ0} can be viewed as an entire
function in y ∈ R, with the convention that it is equal to zero above the
diameter. By reflection-symmetry of the HIMW translators, we always have

(302) 〈vM,α
C (τ0), y〉H = 0.

Thus, we only have to analyze the inner product with the constant function
1. To this end, note that by convexity of M and the definitions of vα and vαC ,

for every y ∈ R the function α �→ vM,α
C (y, τ0) is monotonically decreasing.

Thus, the function

(303) pM (α) := 〈vM,α
C (τ0), 1〉H

is monotonically decreasing. Note that the monotonicity is strict as long as
pM does not vanish. Moreover, observe that pM (α) = 0 for α > e−τ0 and
pM (α) → ∞ for α → −∞. Hence, by strict monotonicity and continuity
there exists a unique α = α(M, τ0) such that pM (α) = 〈1,

√
2〉H. In other

words, remembering (302), this is the unique α with

(304) p+(v
M,α
C (τ0)−

√
2) = 0.

This defines the shift map S. Since each member of A, except Bowl2 × R,
has its unique tip point at the origin, no two elements of A are vertical shifts
of one another. Hence, S is injective. To establish the continuity of S, note
first that (M,α, y) �→ vM,α(y, τ0) is continuous, and that

(305) lim
α→−∞

vM,α(y, τ0) = ∞
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uniformly on compact sets ofA×R. Therefore, ifMi → M , then the sequence
{α(Mi, τ0)}∞i=1 is bounded, so it converges up to a subsequence to some
α ∈ R. But then, by continuity again, we infer that p+(v

M,α(τ0)) = p+(
√
2),

hence α = α(M, τ0) by uniqueness. As this is true for every converging
subsequence, it follows that α(Mi, τ0) → α(M, τ0), proving the continuity of
M �→ α(M, τ0), and thus of S. Finally, for every M ′ ∈ A′ denoting h(M ′)
the height of the tip of M ′, we have the equation

(306) S−1(M ′) = M ′ − h(M ′)e1.

Since the height of the tip is continuous, S−1 is continuous as well.
Moreover, if M ∈ A is strongly κ′-quadratic from time τ0 + 1, then in light
of the proof of Lemma 3.14, remembering in particular (207), for τ ≤ τ0 we
get

(307)

∥∥∥∥v(τ)−√
2
(
1− y2 − 2

4|τ |
)∥∥∥∥

H

≤ C
κ′

|τ | .

Since the profile functions of M + αe1 and M are related by

(308) vα(y, τ) = (1 + a)v

(
y

1 + a
, τ − 2 log(1 + a)

)
,

where a =
√
1 + αeτ − 1, we can expand

vα(y, τ)−
√
2 =

√
2a− (1 + a)

(
y

1+a

)2
− 2

√
8|τ − 2 log(1 + a)|

+O(κ′/|τ |)(309)

in H-norm. It follows that for the unique solution of the orthogonality con-
dition (304) we have

(310) |a| ≤ Cκ′/|τ | .

Thus, choosing κ′ sufficiently small and τ0 ≤ τ∗ sufficiently negative, we
conclude that S(M) is κ-quadratic at time τ0. This finishes the proof of the
proposition.

We also need the following version for translators-with-boundary:

Proposition 4.10 (shift map with boundary). Given any τ0 < 0, there
exists a constant H ∈ (e−τ0 ,∞) with the following significance. For every
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a ∈ [0, 13 ] and for every ξ ≤ −H there exists a unique α(a, ξ) ∈ [−H/2, H/2]
such that the cylindrical profile function vC of Ma,ξ + αe1 satisfies

(311) p+(vC(τ0)−
√
2) = 0.

Moreover, for each fixed ξ, the function a �→ α(a, ξ) is continuous.

Proof. The reasoning is similar as above, but we need to be a tad more
careful as we do not know that the Ma,ξ are convex. To begin with, let
us observe that the same argument as above with

√
2 replaced by 1 and

2, respectively, yields the existence of two continuous maps α1 : A → R

and α2 : A → R such that the cylindrical profile functions of the shifted
translators M + α1(M)e1 and M + α2(M)e1 satisfy

(312) p+(v
1
C(τ0)− 1) = 0 and p+(v

2
C(τ0)− 2) = 0.

SinceA is compact, we get that |α1|, |α2| ≤ H0/2 for some constantH0 < ∞.
Now, suppose there was a sequence (ai, ξi) with ξi → −∞ such that the as-
serted α(ai, ξi) does not exist. After passing to a subsequence the translators-
with-boundaryMai,ξi converge to someM ∈ A, and hence for i large enough
the cylindrical profile functions of Mai,ξi + α1(M) and Mai,ξi + α2(M, τ0)
satisfy

(313) p+(v
1,i
C (τ0)−

√
2) < 0 and p+(v

2,i
C (τ0)−

√
2) > 0.

However, then by the intermediate value theorem, we can find some α(ai, ξi)
between α2(M) and α1(M) such that the cylindrical profile function of
Mai,ξi + α(ai, ξi)e1 satisfies

(314) p+(v
i
C(τ0)−

√
2) = 0.

Next, to address uniqueness, observe that for every M ∈ A the function
pM from the proof of Proposition 4.9 is strictly monotone with nonvanish-
ing derivative whenever pM �= 0. Therefore, it follows again from smooth
convergence and compactness that for ξ large enough, the value α(a, ξ) is
unique. Finally, continuity of the map a �→ α(a, ξ) follows from uniqueness
and boundedness as before.

Now, consider the eccentricity map

(315) E : A′ → R, M �→ 〈vMC (τ0), 2− y2〉H.
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Observe that the expected value of E for translators satisfying the sharp
asymptotics at time τ0 is

(316) e0 :=
4
√
2π

|τ0|
.

Theorem 4.11 (existence with prescribed eccentricity). There exist con-
stants κ > 0 and τ∗ > −∞ with the following significance. For every τ0 ≤ τ∗
and every x ∈ R with |x−e0| ≤ κ

10|τ0| there exists a shifted HIMW translator

M ∈ A′ that is κ-quadratic at time τ0 and satisfies

(317) E(M) = x.

Proof. Let κ > 0 and τ∗ > −∞ be constants such that Theorem 1.6 (spectral
uniqueness) applies. Let us fix τ0 ≤ τ∗ and denote by Bκ = Bκ(τ0) the
set of all translators M ∈ A′ that are κ-quadratic at time τ0. Note that
Theorem 1.6 (spectral uniqueness) implies that the restricted eccentricity
map E|Bκ

: Bκ → R is injective. Our goal is to show that the image of E|Bκ

contains the interval

(318) I :=

[
e0 −

κ

10|τ0|
, e0 +

κ

10|τ0|

]
.

Possibly after decreasing τ∗, by Corollary 3.8 (strong κ-quadraticity) and
Proposition 4.9 (shift map) for any τ0 ≤ τ∗ we can find a reference trans-
lator M0 ∈ A′ that is κ

100 -quadratic at time τ0. In particular, observe that
E(M0) ∈ Int(I). Let Mi := M ci,ξi + α(ci, ξi)e1 be a sequence of shifted
HIMW translators-with-boundary converging to M0, where the shift pa-
rameters α(ci, ξi) are chosen according to Proposition 4.10 (shift map with
boundary) to ensure that p+(v

i
C(τ0)−

√
2) = 0.

Now, for each i, choose the maximal interval [ai, bi] containing ci such that
for every a ∈ [ai, bi], the translator-with-boundary Ma

i := Ma,ξi +α(a, ξi)e1
satisfies:

1. Ma
i is κ-quadratic at time τ0, and

2. we have that

(319) E(Ma
i ) ∈ I.

Here, we interpret Definition 3.12 (κ-quadraticity) in the setting of translators-
with-boundary by demanding that its inequalities must hold literally. This
is possible since ξi → −∞, while τ0 and the constant H from Proposition



Classification of noncollapsed translators in R
4 629

4.10 (shift map with boundary) are fixed. Recall that the HIMW construc-
tion at any fixed level ξi depends continuously on the ellipsoidal parameter
and interpolates between a piece of the 3d round bowl and a line times a
piece of the 2d bowl. Taking also into account that for any fixed ξi the shift
function a �→ α(a, ξi) from Proposition 4.10 (shift map with boundary) is
continuous, it follows that

(320) 0 < ai < ci < bi <
1
3 .

Claim 4.12 (endpoints). The endpoints elements are mapped to the bound-
ary of the interval I, namely for all large i we have

(321) E(Mai

i ), E(M bi
i ) ∈ ∂I .

Proof of the claim. Since the interval [ai, bi] is maximal, either condition
(i) or condition (ii) must be saturated at its endpoints. Suppose towards
a contradiction that E(M bi

i ) /∈ ∂I for increasingly high values of i. Then,

for M bi
i the condition (i) must be saturated, i.e. at least one of the weak

inequalities

(322)

∥∥∥∥vMbi
i

C (y, τ0)−
√
2 +

y2 − 2√
8|τ0|

∥∥∥∥
H

≤ κ

|τ0|
,

and

(323) sup
τ∈[2τ0,τ0]

‖uM
bi
i (·, ·, τ)‖C4(B(0,2|τ0|1/100) ≤ |τ0|−1/50,

must be an equality. After passing to a subsequence the M bi
i converge to a

limit M ∈ A′, which by (322) and (323) is κ-quadratic at time τ0. Thus, by
Theorem 3.13 (κ-quadraticity implies strong κ-quadraticity), the translator
M is strongly 5κ-quadratic from time τ0. In particular, ρM (τ) = |τ |1/10 is
an admissible graphical radius function for τ ≤ τ0, so inequality (323) is a
strict inequality for i large enough. Thus, it must be the case that

(324)

∥∥∥∥vMC (τ0)−
√
2 +

y2 − 2

2
√
2|τ0|

∥∥∥∥
H

=
κ

|τ0|

On the other hand, by the centering condition we have

(325) p+(v
M
C (τ0)−

√
2) = 0,
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and Corollary 3.19 (projection estimate) tells us that

(326) ‖p−(vMC (τ0))‖H ≤ κ

100|τ0|
,

and the fact that E(M) ∈ I yields

(327)

∥∥∥∥p0(vMC (τ0))−
y2 − 2

2
√
2|τ0|

∥∥∥∥
H

≤ κ

10|τ0|
‖ψ0‖H ≤ 6κ

10|τ0|
.

Adding these estimates implies that

(328)

∥∥∥∥vMC (τ0)−
√
2 +

y2 − 2

2
√
2|τ0|

∥∥∥∥
H

<
κ

|τ0|
.

This contradicts (324), and thus proves the claim.

Now, if along our sequence we have E(Mai

i ) �= E(M bi
i ) for infinitely many

i, then we are done. Indeed, in this case by the claim and the intermedi-
ate value theorem for each x ∈ I we can find some di ∈ [ai, bi] such that
E(Mdi

i ) = x. Passing to a subsequential limit, we get a translator M ∈ Bκ

with E(M) = x.

On the other hand, if E(Mai

i ) = E(M bi
i ) for all large i, then we argue as

follows. After passing to a subsequence Mai

i and M bi
i converge to some limits

M1,M2 ∈ Bκ with E(M1) = E(M2) ∈ ∂I. By Theorem 1.6 (spectral unique-
ness) we see that M1 = M2. Then, applying Theorem 4.5 (monotonicity)
we infer that the tip curvature is constant along the construction, namely
k(M) = k(M0) for all M that are obtained as limit of a sequence Mdi

i with
di ∈ [ai, bi]. Since ∂I has only two elements it follows that the preimage
E|−1

Bκ
(I) realizes at most two different tip curvatures. However, choosing κ

100 -
quadratic reference translators M0,M

′
0,M

′′
0 such that their tip curvatures

k(M0), k(M
′
0), k(M

′′
0 ) are all distinct, this yields the desired contradiction,

and thus concludes the proof of the theorem.

As a corollary we obtain that the HIMW class A is homeomorphic to
a closed interval, and that under any such identification the tip curvature
map k : A → [0, 1/3] becomes weakly monotone:

Corollary 4.13 (HIMW class). There exists a homeomorphism ψ : [0, 1] →
A, and for any such ψ the composed map k ◦ ψ : [0, 1] → [0, 1/3] is weakly
monotone.
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Proof. Theorem 4.11 (existence with prescribed eccentricity) together with
Theorem 1.6 (spectral uniqueness) and Proposition 4.9 (shift map) shows
that every M ∈ Ao := A− {R×Bowl2,Bowl3} has a neighborhood homeo-
morphic to an interval. Moreover, since every M ∈ Ao is κ

100 -quadratic from
some time, it also follows that Ao is connected. Observing also that Ao is
Hausdorff and second countable, we thus infer that Ao is an open interval.
Let us fix a homeomorphism ψo : (0, 1) → Ao. To show monotonicity of
k ◦ ψo it suffices to show, using the notions introduced in the above proof,
that for every τ0 ≤ τ∗ the map Fκ := k ◦ (E|Bκ

)−1 : I → (0, 1/3) is weakly
monotone. To this end, recall that by Claim 4.12 (endpoints) and the final
paragraph of the proof of the theorem for i large enough the eccentricity
map sends the endpoint elements to the two different boundary points of
the interval I. Assume without loss of generality that E(Mai

i ) = min I and

E(M bi
i ) = max I. Now, given any s ∈ Int(I) for i large enough choose ci with

E(M ci
i ) = s. Then, for any t ∈ (s,max I), the intermediate value theorem

gives di ∈ (ci, bi) with E(Mdi

i ) = t. By Theorem 4.5 (monotonicity) the tip
curvature of the translators-with-boundary satisfies

(329) k(M ci
i ) < k(Mdi

i ).

Since the left hand side converges to Fκ(s) while the right hand side con-
verges to Fκ(t), this shows that k◦ψo : (0, 1) → (0, 1/3) is weakly monotone.
Possibly after adjusting the definition of ψ0, we can assume without loss of
generality that k ◦ ψo : (0, 1) → (0, 1/3) is weakly monotone increasing.
Finally, by the above monotonicity, for every sequence ti → 0 or ti → 1 a
subsequence of ψo(ti) converges to a translator in A\Ao whose tip curvature
k is 0 or 1/3, respectively. Since A \ Ao consists of two elements whose tip
curvatures are 0 and 1/3, respectively, the subsequential convergence in fact
entails full convergence. We conclude that ψo can be extended to a homeo-
morphism ψ : [0, 1] → A such that the composed map k ◦ψ : [0, 1] → [0, 1/3]
is weakly monotone.

4.4. Conclusion of the proof

In this subsection, we conclude the proof of the classification theorem, mod-
ulo the proof of the spectral uniqueness theorem. To this end, we first show
that every noncollapsed translator in R

4 is realized by the HIMW construc-
tion:

Theorem 4.14 (representation theorem for noncollapsed translators). Ev-
ery noncollapsed translator in R

4 is, up to rigid motion and scaling, a mem-
ber of the HIMW class A.
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In essence, this will follow by combining several results from other sec-
tions. The only ingredient that has not been discussed yet, is that we can
shift our translator so that it has the same spectral center as the cylinder.
To state this recentering result precisely, recall that for any noncollapsed
translator M ⊂ R

4 (normalized as before) the cylindrical profile function is
defined by

(330) vC = ϕC(v)v,

where v = v(y, τ) is the renormalized profile function ofM∩{x1 = e−τ}, and
ϕC is a suitable cutoff function. Recall also that we work with the Hilbert
space H = L2(R, e−y2/4dy), and that p+ denotes the orthogonal projection
to H+, which is spanned by the unstable eigenfunctions ψ1 = 1 and ψ2 = y.

Proposition 4.15 (recentering). Given any noncollapsed translator M ⊂
R
4 (normalized as before), with M �= Bowl3,Bowl2 × R, and κ > 0, there

exists τ∗ = τ∗(M,κ) > −∞ so that for any τ0 ≤ τ∗ we can find α, β so

that the cylindrical profile function vαβC of the shifted translator Mαβ =
M + αe1 + βe2 satisfies

(331) p+(v
αβ
C (τ0)−

√
2) = 0,

and so that Mαβ is κ-quadratic at time τ0.

Proof. We will use a mapping degree argument, similarly as in [ADS20,
Section 4]. For convenience, we set

(332) a =
√
1 + αeτ − 1, b = βeτ/2.

Then, the renormalized profile function vαβ for the level sets ofM+αe1+βe2
relates to the renormalized profile function v for the level sets of M by

(333) vαβ(y, τ) = (1 + a)v

(
y − b

1 + a
, τ − 2 log(1 + a)

)
.

Our goal is to find a suitable zero of the map

(334) Ψ(a, b) =
(〈

ψ1, v
ab
C −

√
2
〉
H
,
〈
ψ2, v

ab
C −

√
2
〉
H

)
,

where a = a(α, β) and b = b(α, β) are defined via (332), while maintaining
κ-quadraticity. To this end, we start with the following estimate:
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Claim 4.16. For every κ > 0 there exists τκ = τκ(M) > −∞ such that for
every τ ≤ τκ and all (a, b) ∈ [−1/|τ |, 1/|τ |]× [−1, 1] we have

(335)

∣∣∣∣〈 ψ1

‖ψ1‖2H
, vabC −

√
2
〉
H
−
√
2
(
a− b2

4|τ |
)∣∣∣∣

+

∣∣∣∣〈 ψ2

‖ψ2‖2H
, vabC −

√
2
〉
H
− b√

2|τ |

∣∣∣∣ ≤ κ

100|τ | .

Proof. By Corollary 3.8 (strong κ-quadraticity), given any κ′ > 0 the trans-
lator M is strongly κ′-quadratic from some time τ∗. In light of the proof of
Lemma 3.14, remembering in particular (207), for τ ≤ τ∗ − 1 we get

(336)

∥∥∥∥v(τ)−√
2
(
1− y2 − 2

4|τ |
)∥∥∥∥

H

≤ C
κ′

|τ | .

Since |a| ≤ 1/|τ | and |b| ≤ 1, together with (333) this implies

vαβ(y, τ)−
√
2 =

√
2a− (1 + a)

(
y−b
1+a

)2
− 2

√
8|τ − 2 log(1 + a)|

+O(κ′/|τ |)

=
√
2a− b2√

8|τ |
+

b√
2|τ |

y +O(κ′/|τ |)(337)

in H-norm. Choosing κ′ � κ, together with standard Gaussian tail estimates,
the claim follows.

Now, consider the map

(338) Ψ0(a, b) =
√
2
(
a− b2

4|τ | ,
b

2|τ |
)
.

By Claim 4.16, for κ small enough, for τ ≤ τκ the maps Ψ and Ψ0 are
homotopic when restricted to the boundary of

(339) D :=
{
(a, b) | |τ |2a2 + b2 ≤ 100κ2

}
,

where the homotopy can be chosen through maps avoiding the origin. Be-
cause the winding number of Ψ0|∂D around the origin is 1, there exists
(a, b) ∈ D with Ψ(a, b) = 0. Finally, by the above estimates, the shifted
translator Mαβ is κ-quadratic at time τ0.

We can now prove the representation theorem:
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Proof of Theorem 4.14. Recall first that by Theorem 2.5 (circular symme-
try) every noncollapsed translator in R

4 is SO(2)-symmetric. Now, let M ⊂
R
4 be a noncollapsed translator that is neither a 3d round bowl nor the

product of a line and a 2d bowl. After a rigid motion and rescaling, we can
assume that M translates with unit speed in positive x1-direction, and that
the circular symmetry is in the x3x4-plane centered at the origin. Further-
more, by Proposition 4.15 (recentering) given κ > 0 and τ0 � 0 after a
suitable shift in the x1x2-plane we can assume that the cylindrical profile
function of M satisfies

(340) p+(vC(τ0)−
√
2) = 0,

and that M is κ
100 -quadratic from time τ0. Let us fix a reference translator

M0 ∈ A′ as in the previous subsection. Possibly after decreasing τ0 we can
assume that M0 is also κ

100 -quadratic at time τ0. Since both M and M0 are
κ
100 -quadratic at time τ0, it follows that

(341) |E(M)− E(M0)| ≤
κ

10|τ0|
.

Hence, by Theorem 4.11 (existence with prescribed eccentricity) there exists
a HIMW translator M ′ ∈ A′ that is κ-quadratic at time τ0 and satisfies

(342) E(M ′) = E(M).

Therefore, remembering also that p+(v
M ′

C (τ0)) = p+(
√
2) = p+(v

M
C (τ0)) by

construction, we can apply Theorem 1.6 (spectral uniqueness) to conclude
that the translators M and M ′ coincide.

Modulo the spectral uniqueness theorem, which will be established in
the next section, we can now conclude the proof of our main classification
result and its corollary, which we restate here:

Theorem 4.17 (classification of noncollapsed translators in R
4). Every

noncollapsed translator in R
4 is, up to rigid motion and scaling, either (i)

R × Bowl2, or (ii) the 3d round bowl Bowl3, or (iii) belongs to the one-
parameter family of 3d oval bowls {Mk}k∈(0,1/3) constructed by Hoffman-
Ilmanen-Martin-White.

Proof. By Theorem 4.14 (representation theorem for noncollapsed transla-
tors) every noncollapsed translator in R

4 that is neither a 3d round bowl
nor a line times a 2d bowl, is up to rigid motion and scaling a member of
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Ao := A− {Bowl3,R×Bowl2}. Hence it suffices to classify members of Ao.

On the one hand, we have seen in Corollary 4.13 (HIMW class) that Ao is

homeomorphic to an open interval over which k is weakly monotone. On the

other hand, our forthcoming work shows that Ao is analytically equivalent

to an interval over which k is analytic. As any weakly monotone analytic

function is strictly monotone, we conclude that k : A → [0, 1/3] is bijective.

This finishes the proof of the classification theorem.

5. Proof of the spectral uniqueness theorem

The goal of this section is to prove the spectral uniqueness theorem, which

we restate here for convenience of the reader:

Theorem 5.1 (spectral uniqueness). There exist κ > 0 and τ∗ > −∞ with

the following significance: Suppose M1 and M2 are noncollapsed translators

in R
4 (neither 3d round bowl, nor R× 2d-bowl, and normalized and centered

as before) that are κ-quadratic at time τ0 ≤ τ∗. If their cylindrical profile

functions v1C and v2C satisfy

(343) p+(v
1
C(τ0)) = p+(v

2
C(τ0)) (equal spectral center),

and

(344) p0(v
1
C(τ0)) = p0(v

2
C(τ0)) (equal spectral eccentricity),

then

(345) M1 = M2.

We recall that given M ⊂ R
4 (normalized as before, namely such that it

translates with unit speed in positive x1-direction and such that the circular

symmetry is in the x3x4-plane centered at the origin), we denote by V (x, t)

the profile function of the level sets M ∩ {x1 = −t}, and write

V (x, t) =
√
−t v(y, τ), where y =

x√
−t

, τ = − log(−t).(346)

The cylindrical profile function is defined by

(347) vC(y, τ) = ϕC(v(y, τ))v(y, τ).
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Here, we fix a sufficiently small constant θ > 0 and a smooth cutoff function
ϕC : R+ → [0, 1], such that

ϕC(v) = 0 if v ≤ 5
8θ, ϕC(v) = 1 if v ≥ 7

8θ,(348)

and

0 ≤ ϕ′
C ≤ 5/θ, |ϕ′′

C | ≤ 25/θ2, |ϕ′′′
C | ≤ 125/θ3.(349)

We also recall that the evolution of vC is governed by the Ornstein-Uhlenbeck
operator

(350) L = ∂2
y −

y

2
∂y + 1,

which is a self-adjoint operator on the Hilbert space H := L2(R, e−y2/4dy),
and

(351) H = H+ ⊕ H0 ⊕ H−,

where H+ is spanned by the unstable eigenfunctions ψ1 = 1 and ψ2 = y,
and H0 is spanned by the neutral eigenfunction ψ0 = y2 − 2, and that we
write p± and p0 for the orthogonal projections on H± and H0. Finally, we
recall that (343) is in fact automatically satisfied as a consequence of our
centering condition

(352) p+(vC(τ0)−
√
2) = 0.

Now, similarly as in [ADS20, Figure 1] we consider the following regions:

Definition 5.2 (regions). Fixing θ > 0 sufficiently small and L < ∞ suffi-
ciently large, we call

• C = {v ≥ 5
8θ} the cylindrical region,

• T = {v ≤ 2θ} the tip region, which can be decomposed as the union
of the soliton region S = {v ≤ L/

√
|τ |} and the collar region K =

{L/
√

|τ | ≤ v ≤ 2θ}.

Observe that the cutoff function ϕC from above localizes in the cylindri-
cal region, namely

(353) spt(vC) ⊂ C.
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To localize in the tip region, we fix a smooth cutoff function ϕT (v) ∈ [0, 1],
such that

ϕT (v) = 1 if v ≤ θ, ϕT (v) = 0 if v ≥ 2θ .(354)

In the tip region, say the one with y > 0, we consider the inverse profile
function Y (v, τ) defined by

(355) Y (v(y, τ), τ) = y,

and its zoomed in version Z defined by

(356) Z(ρ, τ) = |τ |1/2
(
Y (|τ |−1/2ρ, τ)− Y (0, τ)

)
.

By convention during the whole section θ is a fixed small constant and L
is a fixed large constant. During the proof one is allowed to decrease θ and
increase L at finitely many instances, as needed or convenient.

5.1. Evolution equations

In this subsection we compute the evolution equations of the profile func-
tions, both in the cylindrical region and the tip regions.

As before, we denote by V (x, t) the profile function of the level set M ∩
{x1 = −t} of our translator, and write

v(y, τ) = eτ/2V (e−τ/2y,−e−τ ) .(357)

Proposition 5.3 (evolution equation for profile function). The profile func-
tion V (x, t) and its renormalized version v(y, τ) satisfy6

(358) Vt =
(1 + V 2

t )Vxx + (1 + V 2
x )Vtt − 2VxVtVxt

1 + V 2
x + V 2

t

− 1

V
.

and

vτ =
vyy

1 + v2y
− y

2
vy +

v

2
− 1

v
+ eτN [v],(359)

6For comparison, the profile function U and renormalized profile function u of a
mean curvature flow of surfaces would satisfy the simpler equations Ut =

Uxx

1+U2
x
− 1

U

and uτ =
uyy

1+u2
y
− y

2uy +
u
2 − 1

u , respectively.
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where

(360) N [v] =

(
vy(vτ − v

2 )−
y
2

)2
(1 + v2y)

(
1 + v2y + eτ (vτ +

y
2vy −

v
2 )

2
)vyy

+
(1 + v2y)vττ − 2

(
vy(vτ − v

2 )−
y
2

)
vτy +

1
4(1 + v2y)(yvy − v)

1 + v2y + eτ (vτ +
y
2vy −

v
2 )

2
.

Proof. We parametrize our translator M ⊂ R
4 by

(361) X(x, t, θ) = (−t, x, V (x, t) cos θ, V (x, t) sin θ).

Setting er = cos θe3+sin θe4 and es = − sin θe3+cos θe4 we can express the
tangent vectors as

Xx = e2 + Vxer, Xt = −e1 + Vter, Xθ = V es.(362)

Thus, the non-vanishing components of the induced metric are given by

gxx = 1 + V 2
x , gtt = 1 + V 2

t , gxt = VtVx, gθθ = V 2.(363)

Hence, the non-vanishing components of the inverse metric are

gxx =
1 + V 2

t

1 + V 2
x + V 2

t

, gtt =
1 + V 2

x

1 + V 2
x + V 2

t

,(364)

gxt = − VtVx

1 + V 2
x + V 2

t

, gθθ = V −2.

Next, the upwards unit normal equals

N =
Vte1 − Vxe2 + er√

1 + V 2
x + V 2

t

.(365)

Furthermore, we have

Xxx = Vxxer, Xtt = Vtter, Xxt = Vxter, Xθθ = −V er.(366)

Using the above formulas, we can now compute

H = 〈ΔX,N〉

=

(
(1 + V 2

t )Vxx + (1 + V 2
x )Vtt − 2VxVtVxt

1 + V 2
x + V 2

t

− 1

V

)
〈er, N〉.(367)
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Together with the translator equation H = 〈e1, N〉 and equation (365), this

yields

(368) Vt =
(1 + V 2

t )Vxx + (1 + V 2
x )Vtt − 2VxVtVxt

1 + V 2
x + V 2

t

− 1

V
,

which proves the first evolution equation.

Next, observing that

(369) Vx = vy,

and

(370) Vt = −1

2
(−t)−

1

2 v +
x

2
(−t)−1vy + (−t)−

1

2 vτ = e
τ

2

(
vτ +

y

2
vy −

v

2

)
,

as well as

(371) Vxx = e
τ

2 vyy,

and

(372) Vtt = e
3τ

2

(
vττ + yvτy +

y2

4
vyy +

y

4
vy −

v

4

)
,

and

(373) Vxt = eτ
(
vyτ +

y

2
vyy

)
,

we infer that

e
τ

2

(
vτ +

y

2
vy −

1

2
v

)
=

1 + eτ
(
vτ +

y
2vy −

v
2

)2
1 + v2y + eτ

(
vτ +

y
2vy −

v
2

)2 e τ

2 vyy

+
(1 + v2y)e

3τ

2

(
vττ + yvτy +

y2

4 vyy +
y
4vy −

v
4

)
1 + v2y + eτ

(
vτ +

y
2vy −

v
2

)2
−

2vye
3τ

2

(
vτ +

y
2vy −

v
2

) (
vyτ +

y
2vyy

)
1 + v2y + eτ

(
vτ +

y
2vy −

v
2

)2 − e
τ

2

v
.(374)
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Together with the formula

(375)
1 + b

1 + a+ b
=

1

1 + a
+

ab

(1 + a)(1 + a+ b)

this implies

vτ =
vyy

1 + v2y
− y

2
vy +

v

2
− 1

v
+ eτN [v],(376)

where

(377) N [v] =
v2y(vτ +

y
2vy −

v
2 )

2

(1 + v2y)
(
1 + v2y + eτ (vτ +

y
2vy −

v
2 )

2
)vyy

+
(1 + v2y)(vττ + yvτy +

y2

4 vyy +
y
4vy −

v
4 )− 2vy(vτ +

y
2vy −

v
2 )(vτy +

y
2vyy)

1 + v2y + eτ (vτ +
y
2vy −

v
2 )

2
.

Grouping together terms proportional to vyy, vττ and vτy, respectively, this
proves the proposition.

As before, in the tip regions, we consider the inverse profile function
Y (v, τ) defined as the inverse function of v(y, τ), and its zoomed in version
Z defined by

(378) Z(ρ, τ) = |τ |1/2
(
Y (|τ |−1/2ρ, τ)− Y (0, τ)

)
.

Proposition 5.4 (evolution equation for inverse profile function). We have

(379) Yτ =
Yvv

1 + Y 2
v

+
1

v
Yv +

1

2
(Y − vYv) + eτM[Y ],

where

(380) M[Y ] =

(
(12Y − Yτ )Yv +

v
2

)2
(1 + Y 2

v )
(
1 + Y 2

v + eτ (Y2 − Yτ − v
2Yv)

2
)Yvv

+
(1 + Y 2

v )Yττ + (v + Y Yv − 2YvYτ )Yvτ +
1
4(1 + Y 2

v )(vYv − Y )

1 + Y 2
v + eτ (Y2 − Yτ − v

2Yv)
2

.

Proof. Differentiating y = Y (v(y, τ), τ) yields

0 = Yτ + Yvvτ , 1 = Yvvy.(381)
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Differentiating again gives

0 = Yττ + 2Yτvvτ + Yvvv
2
τ + Yvvττ , 0 = Yvvv

2
y + Yvvyy,(382)

0 = Yτvvy + Yvvvyvτ + Yvvτy.

Solving these equations we obtain

vτ = −Y −1
v Yτ , vy = Y −1

v ,(383)

and

vττ = −Y −1
v Yττ + 2Y −2

v YτYτv − Y −3
v Y 2

τ Yvv, vyy = −Y −3
v Yvv,(384)

vτy = −Y −2
v Yτv + Y −3

v YτYvv.

Together with the evolution equation for v this yields

Yτ = −Yv

(
vyy

1 + v2y
− y

2
vy +

v

2
− 1

v
+ eτN [v]

)
=

Yvv
1 + Y 2

v

+
1

v
Yv +

1

2
(Y − vYv)− eτYvN [v].(385)

Finally, to express N [v] in terms of Y , we compute

YvN [v]
(
1 + Y 2

v + eτ (Yτ − 1
2Y + v

2Yv)
2
)

= Y 3
v N [v]

(
1 + v2y + eτ (vτ +

y
2vy −

v
2 )

2
)

= −AvvYvv −AvτYvτ −AττYττ − 1
4(1 + Y 2

v )(vYv − Y ),(386)

where

(387) Aττ = 1 + Y 2
v ,

and

Avτ = −2YvYτ (1 + v2y)− 2Yv
(
vy(vτ − v

2 )−
y
2

)
= −2YvYτ + YvY + v,(388)

and

Avv =
(vy(vτ − v

2 )−
y
2 )

2

(1 + v2y)
+ (1 + v2y)Y

2
τ + 2

(
vy(vτ − v

2 )−
y
2

)
Yτ
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=

(
(12Y − Yτ )Yv +

v
2

)2
(1 + Y 2

v )
.(389)

This proves the proposition.

5.2. Maximum principle estimates

The goal of this subsection is to prove the following a priori estimate:

Proposition 5.5 (almost quadratic concavity). There exist constants κ > 0

an τ∗ > −∞ with the following significance. If M is κ-quadratic at time

τ0 ≤ τ∗, then its profile function v satisfies

(390) (v2)yy ≤ eτ

v2
.

for every τ ≤ τ0.

To show this, we will adapt the argument from [ADS20, Section 5] to our

setting. To begin with, we have the following cylindrical derivative estimates

away from the tip:

Lemma 5.6 (derivative estimates). For every ε > 0, there exist κ(ε) > 0,

L0(ε) < ∞ and T∗(ε) > −∞ so that the profile function V (x, t) of any

κ-quadratic solution satisfies

(391) |Vx|+ V |Vxx|+ V 2|Vxxx|+ V 3|Vxxxx|+ |V Vt + 1|+ V 2|Vtx|
+ V 3|Vtxx|+ V 4|Vtxxx|+ |V 3Vtt − 1|+ V 4|Vttx|+ V 5|Vttxx| ≤ ε

at all points where V (x, t) ≥ L0

(
−t

log(−t)

)1/2
and t ≤ T∗.

Proof. By the sharp asymptotics in the tip region from Corollary 3.20 (uni-

form sharp asymptotics) and convexity, for every ε1 > 0 there exist L1 < ∞
and T1 > −∞ such that

(392) |Vx| ≤ ε1

at all points where V (x, t) ≥ L0

(
−t

log(−t)

)1/2
and t ≤ T1.

Observe that the left hand side of (391) is scale invariant and vanishes on
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R
2 × S1. Now suppose towards a contraction there are times ti → −∞ and

points xi such that

(393)
(
log(−ti)

−ti

)1/2
V (xi, ti) → ∞,

but such that the left hand side of (391) is bigger than ε. Note also that by
Corollary 2.3 (inscribed radius), letting pi ∈ Mti be a point corresponding
to xi, for all large i we have

(394) H(pi, ti) ≥
1

2V (xi, ti)
.

Let M i
t be the sequence of flows that is obtained from Mt by shifting (pi, ti)

to the origin, and parabolically rescaling by H(pi, ti)
−1. By the global con-

vergence theorem [HK17, Theorem 1.12], we can pass to a subsequential
limit M∞

t . It follows from (392), (393), (394) and Proposition 2.1 (asymp-
totic slope) that M∞

t splits off two lines. Hence, applying [HK17, Lemma
3.14] we infer that M∞

t must be a round shrinking R
2 × S1. This yields the

desired contradiction, and thus proves the proposition.

After this preparation, we can now establish the main maximum princi-
ple estimate:

Lemma 5.7 (maximum principle). Given a sufficiently large L < ∞, if
max

(
(v2)yy − eτv−2

)
> 0 in {v ≥ L/

√
|τ |}, then we have ∂τ

(
(v2)yy −

eτv−2
)
< 0 at any interior maximum.

Proof of Lemma 5.7. For this proof it is convenient to work in the (x, t)
variables instead of the (y, τ) variables. Set Q = V 2. We will apply the
maximum principle to the function

(395) Φ := Qxx −Q−1 = (v2)yy − eτv−2.

By Proposition 5.3 (evolution equation for profile function), remembering
also (375), the function V satisfies

(396) Vt =
Vxx

1 + V 2
x

− 1

V
+

(1 + V 2
x )

−1V 2
x V

2
t Vxx + (1 + V 2

x )Vtt − 2VxVtVxt

1 + V 2
t + V 2

x

.

This implies

(397) Qt =
4QQxx − 2Q2

x

4Q+Q2
x

− 2 + E ,
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where

(398) E = 2V
(1 + V 2

x )
−1V 2

x V
2
t Vxx + (1 + V 2

x )Vtt − 2VxVtVxt

1 + V 2
t + V 2

x

.

Differentiating (397) with respect to x yields

(399) Qxt =
4QQxxx

4Q+Q2
x

+
4Qx(2 +Qxx)(Q

2
x − 2QQxx)

(4Q+Q2
x)

2
+ Ex.

Differentiating again gives

Qxxt =
4QQxxxx + 4QxQxxx

4Q+Q2
x

− 16QQxQxxx(2 +Qxx)

(4Q+Q2
x)

2

+
[4Qxx(2 +Qxx) + 4QxQxxx] (Q

2
x − 2QQxx)

(4Q+Q2
x)

2

− 16Q2
x(2 +Qxx)

2(Q2
x − 2QQxx)

(4Q+Q2
x)

3
+ Exx.(400)

In addition, we have

(Q−1)t = −4QQxx − 2Q2
x

Q2(4Q+Q2
x)

+
2

Q2
− E

Q2

=
4Q(Q−1)xx
4Q+Q2

x

− 6Q2
x

Q2(4Q+Q2
x)

+
2

Q2
− E

Q2
.(401)

Taking the difference of the above equations, we obtain

Φt =
4Q

4Q+Q2
x

Φxx +
4QxQxxx

4Q+Q2
x

+
6Q2

x

Q2(4Q+Q2
x)

− 2

Q2

(402)

+
[4Qxx(2 +Qxx) + 4QxQxxx] (Q

2
x − 2QQxx)− 16QQxQxxx(2 +Qxx)

(4Q+Q2
x)

2

− 16Q2
x(2 +Qxx)

2(Q2
x − 2QQxx)

(4Q+Q2
x)

3
+

E
Q2

+ Exx.

Now, at an interior maximum of Φ we have

Φxx ≤ 0, and 0 = Φx = Qxxx +Q−2Qx,(403)

hence
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(404) Φt ≤
2Q2

x

Q2(4Q+Q2
x)

− 2

Q2
− 16Q2

x(2 +Qxx)
2(Q2

x − 2QQxx)

(4Q+Q2
x)

3

+

[
4Q2Qxx(2 +Qxx)− 4Q2

x

]
(Q2

x − 2QQxx) + 16QQ2
x(2 +Qxx)

Q2(4Q+Q2
x)

2
+

E
Q2

+Exx.

Note that Lemma 5.6 (derivative estimates) implies

2Q2
x

Q2(4Q+Q2
x)

+
16QQ2

x(2 +Qxx)

Q2(4Q+Q2
x)

2
≤ Cε2

Q2
(405)

for some constant C < ∞, provided L is large enough and t ≤ T∗. In a
similar vain we have:

Claim 5.8 (error estimate). We have

(406) |E| ≤ C

Q
and |Exx| ≤

Cε

Q2

for some constant C < ∞, provided L is large enough and t ≤ T∗.

Proof of the claim. We will repeatedly apply Lemma 5.6 (derivative esti-
mates). To begin with, note that

(407) V 2
x V

2
t |Vxx| ≤ ε2

(1 + ε)2

V 2

ε

V
≤ Cε

V 3
,

hence

(408)

∣∣∣∣V (1 + V 2
x )

−1V 2
x V

2
t Vxx

1 + V 2
t + V 2

x

∣∣∣∣ ≤ Cε

Q
.

Moreover, we have

(409) (1 + V 2
x )|Vtt| ≤

C

V 3
and |VxVtVxt| ≤

Cε

V 3
.

This yields the estimate

(410) |E| ≤ C

Q
.

Concerning the first and second derivatives observe that

(411)
∣∣(V 2

x V
2
t Vxx)x

∣∣ ≤ Cε

V 4
and

∣∣(V 2
x V

2
t Vxx)xx

∣∣ ≤ Cε

V 5
,
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as well as

(412)

∣∣∣∣( (1 + V 2
x )

−1

1 + V 2
t + V 2

x

)
x

∣∣∣∣ ≤ Cε

V
and

∣∣∣∣( (1 + V 2
x )

−1

1 + V 2
t + V 2

x

)
xx

∣∣∣∣ ≤ Cε

V 2
.

Together with the product rule this implies

(413)

∣∣∣∣(V
(1 + V 2

x )
−1V 2

x V
2
t Vxx

1 + V 2
t + V 2

x

)
xx

∣∣∣∣ ≤ Cε

Q2
.

Arguing similarly we see that

(414)

∣∣∣∣(V
(1 + V 2

x )Vtt

1 + V 2
t + V 2

x

)
xx

∣∣∣∣ ≤ Cε

Q2
and

∣∣∣∣(V
VxVtVxt

1 + V 2
t + V 2

x

)
xx

∣∣∣∣ ≤ Cε

Q2
.

We conclude that

(415) |Exx| ≤
Cε

Q2
.

This finishes the proof of the claim.

Now, thanks to (405) and Claim 5.8 (error estimate), taking also into
account the fact that Q � 1 in the region under consideration, we thus
obtain

(416) Φt ≤ − 1

Q2
− 16Q2

x(2 +Qxx)
2(Q2

x − 2QQxx)

(4Q+Q2
x)

3

+

[
4Q2Qxx(2 +Qxx)− 4Q2

x

]
(Q2

x − 2QQxx)

Q2(4Q+Q2
x)

2
.

Moreover, since Q = V 2 and since V is concave, we have

(417) 2QQxx < Q2
x.

Thus, considering signs yields

(418) Φt ≤ − 1

Q2
− 16Q2

x(2 +Qxx)
2(Q2

x − 2QQxx)

(4Q+Q2
x)

3

+
4Qxx(2 +Qxx)(Q

2
x − 2QQxx)

(4Q+Q2
x)

2
.
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Furthermore, (417) implies Qxx(4Q + Q2
x) ≤ Q2

x(2 + Qxx), and Lemma 5.6
(derivative estimates) gives us 2 +Qxx > 0. We thus conclude that

Φt ≤ − 1

Q2
− 12Q2

x(2 +Qxx)
2(Q2

x − 2QQxx)

(4Q+Q2
x)

3
.(419)

Hence, Φt < 0 holds at interior maximum points of Φ in {V ≥ L
√

−t/ log(−t)}.
This proves the assertion.

We can now prove the main result of this subsection:

Proof of Proposition 5.5 (almost quadratic convexity). Fix κ > 0 small and
τ∗ > −∞ negative enough so that the above results apply. We recall that

(420) Φ = Qxx −Q−1 = (v2)yy − eτv−2.

By Corollary 3.20 (uniform sharp asymptotics) in the tip regions we have
that Z(ρ, τ) is ε-close to Z0(ρ), where Z0 is the profile function of the bowl
soliton. Hence, applying [ADS20, Lemma 4.4] we get that in the soliton
region S we have (v2)yy < 0 for τ ≤ τ0. In particular, Φ < 0 in the soliton
region.
Now, suppose towards a contradiction there is a point (y0, τ0), where τ0 ≤
τ∗, with Φ(y0, τ0) > 0. It the follows from the paragraph above, and from
5.7 (maximum principle) that maxΦ(·, τ) ≥ Φ(y0, τ0) for every τ ≤ τ0. In
particular, we have (v2)yy(yτ , τ) ≥ c for some c > 0, whenever v(yτ , τ) =
maxΦ(·, τ). Together with (v2)yy = 2vvyy + 2v2y < 2v2y , which holds by

concavity, we infer that v2y(yτ , τ) ≥ c/2. This contradicts v(yτ , τ)
√

|τ | → ∞
and the fact that the soliton region converges to a bowl soliton, and thus
proves the proposition.

In particular, we see that Y ∼ Ce−v2/4 in the collar region:

Corollary 5.9 (almost Gaussian collar). Given ε > 0, there exist θ(ε) > 0,
L0(ε) < ∞, τ∗(ε) > −∞ and κ(ε) > 0 such that if M is κ-quadratic at time
τ0 ≤ τ∗, then for τ ≤ τ0 in the collar region {L0/

√
|τ | ≤ v ≤ 2θ} we have

(421)

∣∣∣∣1 + Y v

2Yv

∣∣∣∣ ≤ ε .

Proof. Suppose that −τ is large enough so that Φ ≤ 0 holds. It is enough
to show that

(422) 1− ε ≤ −y(v2)y
4

≤ 1 + ε.
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First of all, using the description of the intermediate region from Corollary
3.20 (uniform sharp asymptotics) we see that in the region {v ≤ 2θ} we have

(423)
√

2|τ |(1− 4θ2 − δ) ≤ y ≤
√

2|τ |(1 + δ), τ ≤ τ0

for any M that is κ(δ, θ)-quadratic from time τ0 ≤ τ∗(δ, θ). By Proposition
5.5 (almost quadratic concavity), after decreasing κ and τ∗ we can assume
that −(v2)yy + eτv−2 ≥ 0, from which we infer that

(424) − (v2)y|v=2θ − eτ
∫ √

2|τ |(1+δ)

√
2|τ |(1−4θ2)

v−2dy

≤ −(v2)y ≤ −(v2)y|v=L0/
√

|τ | + eτ
∫ √

2|τ |(1+δ)

√
2|τ |(1−4θ2)

v−2dy .

In the considered region, we have v−2 ≤ L−2
0 |τ | and thus

(425) − (v2)y|v=2θ − 10θ2L−2
0 eτ |τ | 32 ≤ −(v2)y

≤ −(v2)y|v=L0/
√

|τ | + 10θ2L−2
0 eτ |τ | 32 .

Finally, using again Corollary 3.20 (uniform sharp asymptotics) and arguing
similarly as in the proof of [ADS20, Lemma 5.7] we obtain

(426) − (v2)y|v=2θ ≥
2
√
2√
|τ |

√
1− 2θ2 − δ,

and

(427) − (v2)y|v=L0/
√

|τ | ≤
2
√
2√
|τ |

(1 + CL−1
0 ),

for L0 large enough, possibly after decreasing κ and τ∗. Combining the above
inequalities yields the desired result.

5.3. Difference between solutions

Given our translators M1 and M2, we consider the difference function of
their renormalized profile functions

(428) w := v1 − v2,
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and its truncated version

(429) wC := v1ϕC(v1)− v2ϕC(v2),

as well as the difference of the inverse profile functions

(430) W := Y1 − Y2,

and its truncated version

(431) WT := WϕT (v) .

Proposition 5.10 (evolution of difference). The difference function w sat-
isfies the evolution equation

(432) wτ = Lw + E [w] + eτF [w],

with

(433) Lw = wyy −
y

2
wy + w,

and

(434) E [w] = −
v21,y

1 + v21,y
wyy −

(v1,y + v2,y)v2,yy
(1 + v21,y)(1 + v22,y)

wy +
2− v1v2
2v1v2

w,

and

F [w] =
P [v1, v1, w]

Q[v1, v1]
+R[v1, v2]

(
wτ − w

2

)
+ S[v1, v2]wy,(435)

where P ,Q,R,S are certain second order differential expressions specified
in the proof below.

Proof. We will denote derivatives by

∂l
y∂

m
τ vi = vi ,y · · · y︸ ︷︷ ︸

l

τ · · · τ︸ ︷︷ ︸
m

.(436)

Using the evolution equations for v1 and v2 from Proposition 5.3 (evolution
equation for profile function), a straightforward computation shows that
w = v1 − v2 satisfies the claimed evolution equation with

R[v1, v2] =
v1,y(1 + v21,y)

−1
[
v1,y(v1,τ + v2,τ − v1

2 − v2

2 )− y
]
v2,yy − 2v1,yv2,τy

Q[v1, v1]
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−
eτ (yv1,y + v1,τ + v2,τ − v1

2 − v2

2 )P [v1, v2, v2]

Q[v1, v1]Q[v1, v2]
,(437)

and

S[v1, v2] =
(v2,τ − v2

2 )
[
(v1,y + v2,y)(v2,τ − v2

2 )− y
]
v2,yy

(1 + v21,y)Q[v1, v2]

−
v1,y+v2,y

1+v2
2,y

[
v2,y(v2,τ − v2

2 )−
y
2

]2
v2,yy

(1 + v21,y)Q[v1, v2]

−
2(v2,τ − v2

2 )v2,yτ

Q[v1, v2]
+

(v1,y + v2,y)
[
v2,ττ − 1

4(yv2,y − v2)−N (v2)
]

Q[v1, v2]
,(438)

where the functions P and Q are defined by

(439) P [p, q, r](y, τ) = (1 + p2y)
−1

(
py(qτ − q

2)−
y
2

)2
ryy + (1 + p2y)rττ

− 2
(
py(qτ − q

2)−
y
2

)
rτy +

1
4(1 + p2y)(yry − r),

and

Q[p, q](y, τ) = 1 + p2y + eτ (y2py + qτ − q
2)

2.(440)

This proves the proposition.

To capture some extra terms from the cutoff, similarly as in [ADS20,
Equation (6.11)] we set

(441) E [w,ϕC(v1)] := (∂τ − L)(wϕC(v1))− ϕC(v1)(∂τ − L)w

+ ϕC(v1)E [w]− E [wϕC(v1)] .

Moreover, given any scalar function ϕ, we write

(442) D[ϕ](y, τ) := ϕ(v1(y, τ))− ϕ(v2(y, τ)).

Corollary 5.11 (evolution of the truncated difference). The function wC
satisfies

(∂τ − L)wC =E [wC ] + E [w,ϕC(v1)] + eτϕC(v1)F [w]

− E [v2D[ϕC ]] +D[ϕC ](v2,τ − v2,yy +
y
2v2,y)

− 2v2,y∂yD[ϕC ] + v2(∂τ − L)D[ϕC ].(443)
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Proof. First observe that

(444) (∂τ − L)(wϕC(v1)) = E [wϕC(v1)] + E [w,ϕC(v1)] + eτϕC(v1)F [w] .

In addition, we have

(445) (∂τ − L)(v2D[ϕC ]) = D[ϕC ](v2,τ − v2,yy +
y
2v2,y)

− 2v2,y∂yD[ϕC ] + v2(∂τ − L)D[ϕC ] .

Using wC = wϕC(v1) + v2D[ϕC ] and linearity this implies the assertion.

Proposition 5.12 (evolution of inverse difference). The difference function
W satisfies the evolution equation
(446)

Wτ =
Wvv

1 + Y 2
1,v

+

(
1

v
− v

2
− Y2,vv(Y1,v + Y2,v)

(1 + Y 2
1,v)(1 + Y 2

2,v)

)
Wv +

1

2
W + eτF [W ] ,

with

(447) F [W ] =
P [Y1, Y1,W ]

Q[Y1, Y1]
+R[Y1, Y2]

(
W

2
−Wτ

)
+ S[Y1, Y2]Wv,

where P ,Q,R,S are certain second order differential expressions specified
in the proof below.

Proof. Using the evolution equations for Y1 and Y2 from Proposition 5.4
(evolution equation for inverse profile function), we see that W satisfies the
claimed evolution with

(448) F = M[Y1]−M[Y2].

Then, a straightforward computation shows that F can be expressed as
claimed with

R[Y1, Y2] = −
eτ

(
1
2Y1 − Y1,τ +

1
2Y2 − Y2,τ + vY1,v

)
P [Y1, Y1, Y2]

Q[Y1, Y1]Q[Y1, Y2]

+
(1 + Y 2

1,v)
−1Y1,v

(
(12Y1 − Y1,τ +

1
2Y2 − Y2,τ )Y1,v + v

)
Y2,vv + 2Y1,vY2,vτ

Q[Y1, Y1]
,

and

S[Y1, Y2] =
(Y2

2 − Y2,τ )
[
(Y1,v + Y2,v)(

Y2

2 − Y2,τ ) + v
]
v2,yy

(1 + Y 2
1,v)Q[Y1, Y2]
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−
Y1,v+Y2,v

1+Y 2
2,v

[
(12Y2 − Y2,τ )Y2,v +

v
2

]2
Y2,vv

(1 + Y 2
1,v)Q[Y1, Y2]

+
2(Y2

2 − Y2,τ )Y2,vτ

Q[Y1, Y2]
+

(Y1,v + Y2,v)
[
Y2,ττ +

1
4(vY2,v − Y2)−M(Y2)

]
Q[Y1, Y2]

,

where

(449) P [p, q, r](v, τ) = (1 + p2v)
−1

(
( q2 − qτ )pv +

v
2

)2
rvv

+ (1 + p2v)rττ + 2
(
( q2 − qτ )pv +

v
2

)
rvτ +

1
4(1 + p2v)(vrv − r).

and

(450) Q[p, q](v, τ) = 1 + p2v + eτ
( q
2 − qτ − v

2pv
)2

.

This proves the proposition.

To conclude this subsection, we observe that since the cutoff function

ϕT (v) does not depend on τ , the time derivative of WT = ϕT W is simply

(451) (WT )τ = ϕT Wτ .

5.4. Energy estimates in the cylindrical region

The goal of this subsection is to prove the following energy estimate in the

cylindrical region:

Proposition 5.13 (energy estimate in the cylindrical region). For every

ε > 0 there exist κ > 0 and τ∗ > −∞ with the following significance. If M1

and M2 are κ-quadratic at time τ0 ≤ τ∗, then

(452) ‖wC − p0wC‖D,∞ ≤ ε
(
‖wC‖D,∞ + ‖w 1{θ/2≤v1≤θ}‖H,∞

)
+

C

|τ0|
‖w‖C2

exp(C).

Recall that our definition of κ-quadratic imposes the centering condition

p+(v
i
C(τ0)−

√
2) = 0, and observe that this in particular implies that

(453) p+(wC(τ0)) = 0.
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The norms appearing in the energy estimate have been briefly described in
the introduction, but let us discuss them in more detail now. Similarly as in
[ADS20], in addition to the Gaussian L2-norm

(454) ‖f‖H :=

(∫
f2e−y2/4dy

)1/2

,

one also needs the Gaussian H1-norm

(455) ‖f‖D :=

(∫
(f2 + f2

y )e
−y2/4dy

)1/2

,

and its dual norm

(456) ‖f‖D∗ := sup
‖g‖D≤1

〈f, g〉 .

For time-dependent functions this induces the parabolic norms

(457) ‖f‖X ,∞(τ) := sup
τ ′≤τ

(∫ τ ′

τ ′−1
‖f(·, σ)‖2X dσ

)1/2

,

where X = H,D or D∗, and we often simply write

(458) ‖f‖X ,∞ := ‖f‖X ,∞(τ0).

In contrast to [ADS20], we also need exponentially weighted C2-norms to
control the higher derivative terms coming from the nonlinearity eτF [w].
Specifically, setting

(459) Cτ :=
{
y : v1(y, τ) ≥ 5

8 or v2(y, τ) ≥ 5
8θ

}
,

we define

(460) ‖f‖C2
exp(C)(τ) :=

sup
τ ′≤τ

(
|τ ′|eτ ′

sup
y∈Cτ′

(
|f |+ |fy|+ |fτ |+ |fyy|+ |fyτ |+ |fττ |

)
(y, τ ′)

)
,

and we often simply write

(461) ‖f‖C2
exp(C) := ‖f‖C2

exp(C)(τ0) .
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To prove Proposition 5.13, we note that thanks to (453) and [ADS20,
Lemma 6.7] we have the general energy inequality

(462) ‖wC − p0wC‖D,∞ ≤ C‖(∂τ − L)wC‖D∗,∞.

Hence, our task is to estimate (∂τ − L)wC in the parabolic D∗-norm. In
contrast to [ADS20, Section 6], this will require estimating several new terms
coming from the intrinsic cutoff and the nonlinearities. Specifically, rewriting
the conclusion of Corollary 5.11 (evolution of truncated difference) in the
form

(∂τ − L)wC = I + J +K + eτϕC(v1)F [w],(463)

where

I = E [wC ] + E [w,ϕC(v1)],(464)

J =(v2,τ − v2,yy +
y
2v2,y − E [v2])D[ϕC ]− 2v2,y∂yD[ϕC ],(465)

K =E [v2]D[ϕC ]− E [v2D[ϕC ]] + v2(∂τ − L)D[ϕC ].(466)

we will now estimate the D∗-norm of I, J , K and ϕC(v1)F [w] in turn. A
term similar to I already appeared in [ADS20, Section 6], but the other three
terms are new. Let us recall a few basic facts that will be used frequently
for estimating the D∗-norm. By the weighted Sobolev inequality (see e.g.
[ADS19, Lemma 4.12]) multiplication with 1 + |y| is a bounded operator
from D to H, hence by duality

(467) ‖(1 + |y|)f‖D∗ ≤ C‖f‖H .

Consequently, ∂y and ∂∗
y = −∂y+

y
2 are bounded operators from D to H and

from H to D∗, in particular

(468) ‖fy‖D∗ ≤ C‖f‖H .

Also, if g ∈ D and h ∈ W 1,∞ then by the product rule ‖hg‖D ≤ 2‖h‖W 1,∞‖g‖D,
hence by duality

(469) ‖hf‖D∗ ≤ 2‖h‖W 1,∞‖f‖D∗ .

In the following, we write

(470) Dτ :=
{
y : 5

8θ ≤ v1(y, τ) ≤ 7
8θ or 5

8θ ≤ v2(y, τ) ≤ 7
8θ

}
for the transition region.
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Lemma 5.14 (estimate for I). Given ε > 0, there exist κ > 0 and τ∗ > −∞
such that for τ ≤ τ∗ we have

‖I(τ)‖D∗ ≤ ε
(
‖wC(τ)‖D + ‖w(τ)1Dτ

‖H
)
.(471)

Proof. Recall that

(472) I = E [wC ] + E [w,ϕC(v1)] .

By Lemma 5.6 (derivative estimates), given ε > 0 there exists τ∗ > −∞
such that

(473) |vi,y|+ |vi,τ |+ |vi,yy|+ |vi,τy|+ |vi,ττ |
+ |vi,yyy|+ |vi,τyy|+ |vi,ττy|+ |vi,τττ | ≤ ε

holds on Cτ for τ ≤ τ∗ and i = 1, 2. Using these derivative estimates,
similarly as in [ADS20, Lemma 6.8 and Lemma 6.9] for τ ≤ τ∗ we get

(474) ‖E [wC ]‖D∗ ≤ Cε‖wC‖D ,

and

(475)
∥∥E [w,ϕC(v1)]

∥∥
D∗ ≤ Cε

∥∥∥∥w1{
5
8 θ≤v1≤7

8 θ
}
∥∥∥∥
H

≤ Cε ‖w1Dτ
‖
H
,

where C = C(θ) only depends on θ. Thus, replacing Cε by ε completes the
proof.

We next bound the error terms J andK coming from the intrinsic cutoff.

Lemma 5.15 (estimate for J). Given ε > 0, there exist κ > 0 and τ∗ > −∞
such that for τ ≤ τ∗ we have

‖J(τ)‖D∗ ≤ ε‖w(τ) 1Dτ
‖H .(476)

Proof. Recall that

(477) J = (v2,τ − v2,yy +
y
2v2,y − E [v2])D[ϕC ]− 2v2,y∂yD[ϕC ] .

By Proposition 5.3 (evolution equation of profile function) and the pointwise
derivative bounds from (473) we have

(478)
∥∥(v2,τ + y

2v2,y − v2,yy − E [v2])
∥∥
W 1,∞ ≤ C .
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By definition of the dual norm, as explained in (469), this yields

(479)
∥∥(v2,τ + y

2v2,y − v2,yy − E [v2])D[ϕC ]
∥∥
D∗ ≤ C ‖D[ϕC ]‖D∗ .

By the weighted Sobolev inequality, as explained in (467), we can estimate

(480) ‖D[ϕC ]‖D∗ ≤ C

∥∥∥∥ 1

1 + |y|D[ϕC ]

∥∥∥∥
H

.

Next, note that D[ϕC ](τ) = 0 outside the support of 1Dτ
, while on the

support we have

(481) D[ϕC ](y, τ) =

∫ v2(y,τ)

v1(y,τ)
ϕ′
C(s) ds ,

hence

(482) |D[ϕC ]| ≤ C|w|1Dτ
.

This yields

(483) ‖D[ϕC ]‖D∗ ≤ C

∥∥∥∥ 1

1 + |y|w1Dτ

∥∥∥∥
H

.

Since |y| ≥ |τ |1/2 on the support of 1Dτ
for sufficiently large −τ by Corollary

3.20 (uniform sharp asymptotics), this shows that

(484) ‖D[ϕC ]‖D∗ ≤ C

|τ |1/2
‖w1Dτ

‖
H
.

To bound the other term in (477), we observe that the derivative bound
|v2,y|+ |v2,yy| ≤ ε implies that

(485) ‖v2,y∂yD[ϕC ]‖D∗ ≤ Cε ‖∂yD[ϕC ]‖D∗ ,

and compute

(486) ∂yD[ϕC ] = ϕ′
C(v1)wy + v2,yD[ϕ′

C ] .

Noting also that

(487) |D[ϕ′
C ]| =

∣∣∣∣∫ v2

v1

ϕ′′
C(s) ds

∣∣∣∣ 1Dτ
≤ C|w|1Dτ

,
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and

(488) ϕ′
C(v1)wy = ϕ′

C(v1)(w1Dτ
)y ,

arguing similarly as above we can thus estimate

(489) ‖∂yD[ϕC ]‖D∗ ≤ C ‖(w1Dτ
)y‖D∗ + C

∥∥D[ϕ′
C ]

∥∥
D∗ ≤ C ‖w1Dτ

‖
H
,

where we also used (468). Putting things together the assertion follows.

Lemma 5.16 (estimate forK). Given ε > 0, there exist κ > 0 and τ∗ > −∞
such that for τ ≤ τ∗ we have

‖K(τ)‖D∗ ≤ ε‖w(τ) 1Dτ
‖H + ‖v2ϕ′

C(v1)e
τF [w]‖D∗ .(490)

Proof. Recall that

(491) K = E [v2]D[ϕC ]− E [v2D[ϕC ]] + v2(∂τ − L)D[ϕC ] .

First, using the expression for E from (434) we compute

E [v2]D[ϕC ]− E [v2D[ϕC ]] =
v21,y

1 + v21,y
(v2∂

2
yD[ϕC ] + 2v2,y∂yD[ϕC ])

+
(v1,y + v2,y)v2,yy

(1 + v21,y)(1 + v22,y)
v2∂yD[ϕC ].(492)

Differentiating (486), we obtain

(493) ∂2
yD[ϕC ] = ϕ′

C(v1)wyy+ϕ′′
C(v1)(v1,y+v2,y)wy+v2,yyD[ϕ′

C ]+v22,yD[ϕ′′
C ] .

Combining the above equations, and remembering also (434) and (486), we
infer that

(494) E [v2]D[ϕC ]− E [v2D[ϕC ]] = −ϕ′
C(v1)v2E [w] + awy + bw

+ cD[ϕ′
C ] + dD[ϕ′′

C ] ,

where

a =
v21,y

1 + v21,y

(
ϕ′′
C(v1)v2(v1,y + v2,y) + 2ϕ′

C(v1)v2,y
)
,(495)

b =
2− v1v2
2v1v2

ϕ′
C(v1)v2 ,(496)



658 Kyeongsu Choi et al.

c =
v21,y

1 + v21,y
(v2v2,yy + 2v22,y) +

(v1,y + v2,y)v2,yy
(1 + v21,y)(1 + v22,y)

v2v2,y ,(497)

d =
v21,y

1 + v21,y
v2v

2
2,y .(498)

Now, using the pointwise derivative bounds from (473) and arguing similarly
as in the proof of the previous lemma we see that∥∥awy + cD[ϕ′

C ] + dD[ϕ′′
C ]

∥∥
D∗ ≤ Cε

(
‖(w1Dτ

)y‖D∗ +
∥∥D[ϕ′

C ]
∥∥
D∗ +

∥∥D[ϕ′′
C ]

∥∥
D∗

)
≤ Cε ‖w1Dτ

‖
H
.(499)

Using also the weighted Sobolev inequality we can estimate

(500) ‖bw‖D∗ ≤ C

∥∥∥∥ 1

1 + |y|w1Dτ

∥∥∥∥
H

≤ C

|τ |1/2
‖w1Dτ

‖
H
.

We remark that we do not have to estimate the term ϕ′
C(v1)v2E [w] as it will

cancel out later. Next, to estimate the other term in (491), using Proposition
5.10 (evolution of difference) we compute

(∂τ − L)D[ϕC ] =ϕ′
C(v1) (w + E [w] + eτF [w])− ϕ′′

C(v1)(v1,y + v2,y)wy

−D[ϕC ] +
(
v2,τ − v2,yy +

y
2v2,y

)
D[ϕ′

C ]− v22,yD[ϕ′′
C ] .(501)

Arguing as above, we see that

(502)
∥∥v2ϕ′

C(v1)w
∥∥
D∗ +

∥∥v2ϕ′′
C(v1)(v1,y + v2,y)wy

∥∥
D∗ + ‖v2D[ϕC ]‖D∗

+
∥∥v2 (

v2,τ − v2,yy +
y
2v2,y

)
D[ϕ′

C ]
∥∥
D∗ +

∥∥v2v22,yD[ϕ′′
C ]

∥∥
D∗ ≤ Cε ‖w1Dτ

‖
H
.

Finally, we observe that when we multiply equation (501) by v2, and add
the result to equation (494) then the term ϕ′

C(v1)v2E [w] cancels out. Putting
things together the assertion follows.

Finally, we estimate the nonlinear error term:

Lemma 5.17 (estimate for nonlinear error). There exist κ > 0 and τ∗ >
−∞ such that for τ ≤ τ∗ we have

‖v2ϕ′
C(v1)e

τF [w]‖D∗,∞(τ) + ‖ϕC(v1)e
τF [w]‖D∗,∞(τ) ≤ C

|τ |‖w‖C2
exp(C)(τ).

(503)
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Proof. Observe that

(504) ‖v2ϕ′
C(v1)e

τF [w]‖D∗ + ‖ϕC(v1)e
τF [w]‖D∗ ≤ Ceτ‖F [w]‖H .

Inspecting the expression for F from Proposition 5.10 (evolution of differ-

ence) and using the pointwise derivative bounds from (473) we can estimate

(505) ‖F [w]‖H ≤ C sup
y∈Cτ

(|w|+ |wy|+ |wτ |+ |wyy|+ |wyτ |+ |wττ |) (y, τ) .

and the assertion follows.

Combining the above results we can now conclude the proof of the energy

estimate:

Proof of Proposition 5.13. Recall that the general energy inequality (462)

tells us that

(506) ‖wC − p0wC‖D,∞ ≤ C‖(∂τ − L)wC‖D∗,∞.

Combining the above lemmas, we can estimate

(507) ‖(∂τ − L)wC‖D∗,∞ ≤ Cε (‖wC‖D,∞ + ‖w 1D‖H,∞) +
C

|τ0|
‖w‖C2

exp(C) ,

where D =
⋃

τ≤τ0
Dτ × {τ}. Replacing C2ε by ε this gives

(508) ‖wC − p0wC‖D,∞ ≤ ε (‖wC‖D,∞ + ‖w 1D‖H,∞) +
C

|τ0|
‖w‖C2

exp(C).

Finally, by Corollary 3.20 (uniform sharp asymptotics) we have

(509) 1D ≤ 1{θ/2≤v1≤θ}.

This concludes the proof of the proposition.

5.5. Energy estimates in the tip region

In this subsection, we generalize the arguments from [ADS20, Section 7] to

our setting to establish the following energy estimate in the tip region:
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Proposition 5.18 (energy estimate in tip region). There exist κ > 0 and
τ∗ > −∞ with the following significance. If M1 and M2 are κ-quadratic at
time τ0 ≤ τ∗, then for τ ≤ τ0 we have

(510) ‖WT ‖2,∞(τ) ≤ C

|τ |
(
‖W1[θ,2θ]‖2,∞(τ) + ‖W‖C2

exp(T )(τ)
)
.

For ease of notation, we will always assume that our tip satisfies y > 0
(considering the map y �→ −y this implies the estimate for the second tip),
and will simply write Y = Y1. In this notation, we have

(511) W = Y − Y2 .

We recall that WT = ϕT W , where ϕT is the cutoff function from (354)
that localizes in the tip region T = {v ≤ 2θ}. The norms appearing in
the energy estimate have been briefly mentioned in the introduction. Let us
define them in detail now. To this end, fix a smooth function ζ(v) satisfying
0 ≤ ζ ′ ≤ 5θ−1 and

ζ(v) = 0 for v ≤ θ/4, ζ(v) = 1 for v ≥ θ/2.(512)

Then, similarly as in [ADS20] we consider the weight function

(513) μ(v, τ) := −1

4
Y 2(θ, τ) +

∫ θ

v

[
ζ(ṽ)

(
Y 2

4

)
ṽ

− (1− ζ(ṽ))
1 + Y 2

ṽ

ṽ

]
dṽ .

Notice that μ(v, τ) = −1
4Y

2(v, τ) for v ≥ θ/2. Set

(514) ‖F (·, τ)‖2 =
[∫ 2θ

0
F 2(v, τ) eμ(v,τ)dv

]1/2
,

and

(515) ‖F‖2,∞(τ) = sup
τ ′≤τ

1

|τ ′|1/4

[∫ τ ′

τ ′−1

∫ 2θ

0
F 2(v, σ)eμ(v,σ) dvdσ

]1/2

.

As before, we simply write

(516) ‖F‖2,∞ = ‖F‖2,∞(τ0).

Finally, to capture the higher derivative error terms we consider the expo-
nentially weighted C2-norm
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(517) ‖F‖C2
exp(T )(τ) :=

sup
τ ′≤τ

(
eτ

′
sup
v≤2θ

(
|F |+ |Fv|+ |Fτ |+ |Fvv|+ |Fvτ |+ |Fττ |

)
(v, τ ′)

)
,

and we often simply write

(518) ‖F‖C2
exp(T ) := ‖f‖C2

exp(T )(τ0) .

To prove Proposition 5.18 (energy estimate in the tip region), we first
establish certain a priori estimates for Y and the weight μ. The statements
of these a priori estimates are similar to the ones in [ADS20, Section 7.1],
but the proofs are a bit more involved. Once these a priori estimates are
established, similarly as in [ADS20, Section 7.2], we will obtain a weighted
Poincare inequality. Finally, using the weighted Poincare inequality we will
implement the energy method by generalizing [ADS20, Section 7.3].

To control some new error terms we need the following rough estimate:

Lemma 5.19 (rough tip estimate). There exist κ > 0, τ∗ > −∞ and C < ∞
such that

|Y |+ |Yv|+ |Yτ |+ |Yvv|+ |Yvτ |+ |Yττ | ≤ C|τ | 52(519)

holds for τ ≤ τ∗ and v ≤ 2θ.

Proof. By the tip region asymptotics from Corollary 3.20 (uniform sharp
asymptotics) the estimate clearly holds in the soliton region S = {v ≤
L/

√
|τ |}. Thus, our task is to establish the estimate in the collar region

K = {L/
√

|τ | ≤ v ≤ 2θ}. To this end, note first that by convexity of our
translator we have

(520) sup
v≤2θ

|Yv(v, τ)| ≤ |Yv(2θ, τ)|.

Hence, together with Corollary 3.20 (uniform sharp asymptotics) we infer
that

(521) |Y |+ |Yv| ≤ C|τ |1/2 .

Next, recall from the proof of Proposition 5.3 (evolution equation for inverse
profile function) that

Yτ = −vτYv, Yvv = −vyyY
3
v(522)
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and

Yτv = −vyvτYvYvv − vτyY
2
v , Yττ = −2vτYτv − v2τYvv − vττYv .(523)

Together with Lemma 5.6 (derivative estimates) this implies the desired
result.

We also need the following standard cylindrical estimate:

Lemma 5.20 (cylindrical estimate). Given any η > 0, for L large enough
and τ∗ negative enough in the collar region we have

(524)
|Yvv|
1 + Y 2

v

< η

∣∣∣∣Yvv
∣∣∣∣ .

Proof. Observe that

|vYvv|
|Yv|(1 + Y 2

v )
=

|vvyy|
1 + v2y

=
λ1

λ2
,(525)

where λ1 and λ2 are the principal curvatures of the level set. Since λ1/λ2 = 0
on R× S1, arguing as in the proof of Lemma 5.6 (derivative estimates) the
assertion follows.

After these preparations we can now establish the tip estimates:

Proposition 5.21 (tip estimates, c.f. [ADS20, Lemma 7.4]). Given η > 0,
there exist θ > 0, κ > 0 and τ∗ > −∞ such that if M is κ-quadratic at time
τ0 ≤ τ∗, then for v ≤ 2θ and τ ≤ τ0 we have

1

4

√
|τ | ≤

∣∣∣∣Yvv
∣∣∣∣ ≤ √

|τ | , |Yτ | ≤ η

∣∣∣∣Yvv
∣∣∣∣ .(526)

Proof. We will argue similarly as in [ADS20], but we will encounter some
new error terms coming from the fact that our profile function v is only
almost quadratically concave and from the nonlinearity.
Since by the tip region asymptotics from Corollary 3.20 (uniform sharp
asymptotics) the zoomed in profile function Z is arbitrarily close to the
profile function Z0 of the 2d-bowl with speed 1/

√
2 in the soliton region S

we get

1− ε

2
√
2

√
|τ | ≤

∣∣∣∣Yvv
∣∣∣∣ ≤ √

|τ | , |Yτ | ≤ η

∣∣∣∣Yvv
∣∣∣∣ .(527)
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Next, note that by the intermediate region asymptotics from Corollary 3.20
(uniform sharp asymptotics) we have

(528)

∣∣∣∣Yvv
∣∣∣∣ (2θ, τ) ≤ 9

10

√
|τ | .

Together with the fact that the function v �→ |Yv|/v is almost monotone in
the collar region K by Proposition 5.5 (almost quadratic concavity), we infer
that

(529)
1

4

√
|τ | ≤

∣∣∣∣Yvv
∣∣∣∣ ≤ √

|τ |

holds in the whole tip region T . Indeed, using the results that we just cited,
in the collar region we get

(530)

(
|Yv|
v

)
v

=
−vYvv + Yv

v2
= − (v2)yy

2v2|vy|3
≥ eτ

v4|v3y |
≥ −C|τ |5eτ ,

which, possibly after decreasing τ∗, yields (529).
Finally, to check that |Yτ | ≤ η|Yv/v| holds in the collar region K as well,

we rewrite the evolution equation from Proposition 5.4 (evolution equation
for inverse profile function) in the form

(531) Yτ =
Yvv

1 + Y 2
v

+
Yv
v

(
1 +

vY

2Yv
− v2

2

)
+ eτM[Y ].

By Lemma 5.20 (cylindrical estimate) choosing L large enough we can ensure
that

(532)

∣∣∣∣ Yvv
1 + Y 2

v

∣∣∣∣ ≤ η

4

∣∣∣∣Yvv
∣∣∣∣ .

By Corollary 5.9 (almost Gaussian collar), for θ small enough we get

(533)

∣∣∣∣1 + vY

2Yv

∣∣∣∣ ≤ η

4
.

Since v ≤ 2θ in the tip region, possibly after decreasing θ we have

(534)
v2

2
≤ η

4
.
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And using Lemma 5.19 (rough tip estimates) for τ ≤ τ∗ we get

(535)

∣∣∣∣ vYv
∣∣∣∣ |eτM[Y ]| ≤ η

4
.

Combining the above inequalities yields

(536) |Yτ | ≤ η

∣∣∣∣Yvv
∣∣∣∣ ,

which concludes the proof.

Using the above, we can now establish the following estimates for the
weight function:

Proposition 5.22 (weight estimates, c.f. [ADS20, Lemma 7.5]). Given η >
0, there exist θ > 0, κ > 0 and τ∗ > −∞ such that if M is κ-quadratic at
time τ0 ≤ τ∗, then for v ≤ 2θ and τ ≤ τ0 we have

1− η ≤ vμv

1 + Y 2
v

≤ 1 + η , μτ ≤ η|τ | .(537)

Proof. We will argue similarly as in [ADS20], but we will encounter some
new error terms coming from the fact that our profile function v is only
almost quadratically concave and from the nonlinearity.
By definition of the weight function μ we have

(538) vμv = ζ(v)

(
−vY Yv

2

)
+ (1− ζ(v)) (1 + Y 2

v ).

Hence, to prove the first estimate it suffices to show that for θ/4 ≤ v ≤ 2θ
we have

(539)

∣∣∣∣ vY Yv
2(1 + Y 2

v )
+ 1

∣∣∣∣ ≤ η.

But this easily follows from Corollary 5.9 (almost Gaussian collar) since in
the region under consideration we have |Yv| � 1.
To prove the second estimate, using the results that we already established
and arguing similarly as in [ADS20, proof of Lemma 7.5], we can obtain the
estimates (7.12), (7.14) and (7.15) therein, hence

(540) μτ ≤ cη|τ |+ 2

∫ θ

v
(1− ζ)

(
Yv′

v′

)
v′
Yτ dv

′ .
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Using Proposition 5.21 (tip estimates) we can estimate

(541)

∫ θ

v
(1− ζ)

(
Yv′

v′

)
v′
Yτ dv

′ ≤ η
√

|τ |
∫ θ

v

∣∣∣∣(Yv′

v′

)
v′

∣∣∣∣ dv′ .
Thus, our task is to bound the latter integral by a multiple of

√
|τ |. Using

the almost positivity from (530) and Proposition 5.21 (tip estimates) we can

estimate the collar region contribution to this integral via∫ θ

L√
τ

∣∣∣∣(Yṽ
v′

)
v′

∣∣∣∣ dv′ ≤ ∫ θ

L√
τ

(
Yv′

v′

)
v′

dv′ + C|τ |5eτ

≤
∣∣∣∣Yvv

∣∣∣∣ (θ, τ) + C|τ |5eτ

≤ C
√

|τ | .(542)

To deal with the soliton region, recall first from (356) that

(543) Y (v, τ) = Y (0, τ) + |τ |−1/2Z(|τ |1/2v, τ) .

Using this, we compute

(544)
Yvv(v, τ)

v
− Yv(v, τ)

v2
= |τ |

(
Zρρ(ρ, τ)

ρ
− Zρ(ρ, τ)

ρ2

)
, ρ = |τ |1/2v .

By Corollary 3.20 (uniform sharp asymptotics) the function Z(ρ, τ) is ε-close

in C100(B(0, ε−1)) to Z0(ρ), the profile function of the 2d-bowl with speed

1/
√
2. Thus, given any ρ0 > 0, for τ ≤ τ∗ we get

(545) sup
ρ0≤ρ≤L

∣∣∣∣Zρρ(ρ, τ)

ρ
− Zρ(ρ, τ)

ρ2

∣∣∣∣ ≤ C(ρ0) .

On the other hand, since the profile function of any surface of rotation

satisfies

(546) Zρ(0, τ) = 0,

for ρ ≤ ρ0(τ) we can expand

(547) Z(ρ, τ) = a0(τ) + a2(τ)ρ
2 +R(ρ, τ),
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with the estimate

(548) sup
ρ≤ρ0(τ)

(
|R(ρ, τ)|

ρ3
+

|Rρ(ρ, τ)|
ρ2

+
|Rρρ(ρ, τ)|

ρ

)
≤ C(τ) ,

where ρ0(τ) > 0 and C(τ) < ∞ are constants that might initially depend
on τ . This yields
(549)

sup
ρ≤ρ0(τ)

∣∣∣∣Zρρ(ρ, τ)

ρ
− Zρ(ρ, τ)

ρ2

∣∣∣∣ = sup
ρ≤ρ0(τ)

∣∣∣∣Rρρ(ρ, τ)

ρ
− Rρ(ρ, τ)

ρ2

∣∣∣∣ ≤ C(τ) .

Now using again Corollary 3.20 (uniform sharp asymptotics) we see that for
τ ≤ τ∗ this estimate in fact holds with uniform constants ρ0(τ) = ρ0 > 0
and C(τ) = C < ∞. Hence,

(550) sup
ρ≤L

∣∣∣∣Zρρ(ρ, τ)

ρ
− Zρ(ρ, τ)

ρ2

∣∣∣∣ ≤ C .

We have thus shown that

(551)

∣∣∣∣(Yv′

v′

)
v′

∣∣∣∣ ≤ C|τ |

for v′ ≤ L/
√
τ and τ ≤ τ∗. Integrating gives

(552)

∫ L√
τ

0

∣∣∣∣(Yv′

v′

)
v′

∣∣∣∣ dv′ ≤ C
√

|τ | .

Putting things together, and adjusting η, this concludes the proof of the
proposition.

Corollary 5.23 (weighted Poincare inequality, c.f. [ADS20, Proposition
7.6]). There are constants C0 < ∞, κ > 0 and τ∗ � 0 with the following
significance. If M is κ-quadratic at time τ0 ≤ τ∗, then for any θ � 1 and
all τ ≤ τ0, we have

(553)

∫ 2θ

0
F 2(v)eμ(v,τ)dv ≤ C0

|τ |

∫ 2θ

0

F 2
v

1 + Y 2
v

eμ(v,τ)dv

for all smooth functions F satisfying F ′(0) = 0 and spt(F ) ⊆ [0, 2θ].

Proof. Having established Proposition 5.21 (tip estimates) and Proposition
5.22 (weight estimates), the argument from [ADS20, proof of Proposition
7.6] goes through.
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Having established the weighted Poincare inequality, we can now imple-

ment the energy method. Recall from Proposition 5.12 (evolution of inverse

difference) that the function W = Y − Y2 satisfies

(554) Wτ =
Wvv

1 + Y 2
v

+

(
1

v
− v

2
+D

)
Wv +

1

2
W + eτF [W ] ,

where

(555) D = − Y2,vv(Yv + Y2,v)

(1 + Y 2
v )(1 + Y 2

2,v)
.

Lemma 5.24 (energy inequality). There exist θ > 0, κ > 0 and τ∗ > −∞
with the following significance. If M1 and M2 are κ-quadratic at time τ0 ≤
τ∗, then for τ ≤ τ0 we have

d

dτ

∫
W 2

T e
μdv ≤ −1

2

∫ |∂vWT |2
1 + Y 2

v

eμdv +

∫
ḠW 2

T e
μdv +

C(θ)

|τ |

∫ 2θ

θ
W 2eμdv

+ eτ sup
v≤2θ

(
|W |+ |Wv|+ |Wτ |+ |Wvv|+ |Wvτ |+ |Wττ |

) (∫
W 2

T e
μdv

)1/2

,

where

(556) Ḡ = (1+Y 2
v )G

2+1+2μτ , G =
1

v
− v

2
− μv

1 + Y 2
v

+
2YvYvv

(1 + Y 2
v )

2
+D .

Proof. Using (554) and integration by parts we compute

1

2

d

dτ

∫
W 2

T e
μdv =−

∫
ϕ2W 2

v

1 + Y 2
v

eμdv +

∫
Gϕ2WWve

μdv

− 2

∫
ϕϕvWWv

1 + Y 2
v

eμdv

+

∫ (
1
2 + μτ

)
W 2

T e
μdv + eτ

∫
FϕWT e

μdv,(557)

where for simplicity we write ϕ = ϕT . Using ab ≤ 1
2a

2+ 1
2b

2 we can estimate

the second term by

(558)

∫
Gϕ2WWve

μdv ≤ 1

2

∫
ϕ2W 2

v

1 + Y 2
v

eμdv +
1

2

∫
G2(1 + Y 2

v )W
2
T e

μdv .
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Via absorption, and observing also that ∂vWT = ϕWv + ϕvW implies the
pointwise identity

(559) ϕ2W 2
v = (∂vWT )

2 − ϕ2
vW

2 − 2ϕϕvWWv ,

this yields

1

2

d

dτ

∫
W 2

T e
μdv ≤− 1

2

∫ |∂vWT |2
1 + Y 2

v

eμdv +
1

2

∫
ϕ2
vW

2

1 + Y 2
v

eμdv

−
∫

ϕϕvWWv

1 + Y 2
v

eμdv + eτ
∫

FϕWT e
μdv

+

∫ (
1
2G

2(1 + Y 2
v ) +

1
2 + μτ

)
W 2

T e
μdv .(560)

We can then use

(561) − ϕϕvWWv = −ϕvW (∂vWT ) + ϕ2
vW

2 ≤ 1

4
(∂vWT )

2 + 2ϕ2
vW

2,

to absorb the third term into the first two terms. This yields

(562)
d

dτ

∫
W 2

T e
μdv ≤ −1

2

∫ |∂vWT |2
1 + Y 2

v

eμdv +

∫
ḠW 2

T e
μdv

+ 5

∫
W 2

1 + Y 2
v

ϕ2
ve

μdv + 2eτ
∫

FϕWT e
μdv .

Now, since spt(ϕv) ⊂ [θ, 2θ] and since by Proposition 5.21 (tip estimates),
for θ and κ sufficiently small and τ∗ sufficiently negative, we have

(563) sup
θ≤v≤2θ

1

1 + Y 2
v (v, τ)

≤ 16

θ2|τ | ,

we can estimate the third time by

5

∫
W 2

1 + Y 2
v

ϕ2
ve

μdv ≤ C(θ)

|τ |

∫ 2θ

θ
W 2eμdv .(564)

Finally, using the Cauchy-Schwarz inequality we can estimate the last term
by

(565) 2eτ
∫

FϕWT e
μdv ≤ 2eτ

(∫
F2ϕ2eμ

)1/2 (∫
W 2

T e
μdv

)1/2

.
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Note that by Corollary 3.20 (uniform sharp asymptotics) for v ≤ 2θ we have
the rough estimate

(566) eμ(v,τ) ≤ e−
1

4
τ .

Hence, remembering the structure of F and applying Lemma 5.19 (rough
tip estimate) we get

(567) 2

(∫
F2ϕ2eμ

)1/2

≤ sup
v≤2θ

(
|W |+|Wv|+|Wτ |+|Wvv|+|Wvτ |+|Wττ |

)
.

Putting everything together, this proves the lemma.

We can now prove the main result of this subsection:

Proof of Proposition 5.18. Recall that by Lemma 5.24 (energy inequality)
we have

(568)
d

dτ
‖WT ‖22 ≤ −1

2

∫ |∂vWT |2
1 + Y 2

v

eμdv +

∫
ḠW 2

T e
μdv

+
C

|τ |‖W1[θ,2θ]‖22 + eτ‖W‖C2|Tτ
‖WT ‖2 ,

where

(569) ‖W‖C2|Tτ
:= sup

v≤2θ

(
|W |+ |Wv|+ |Wτ |+ |Wvv|+ |Wvτ |+ |Wττ |

)
.

Now for κ and θ sufficiently small, L sufficiently large, and τ∗ sufficiently
negative, similarly as in [ADS20, Claim 7.7] we can estimate

(570) Ḡ ≤ η|τ | .

Moreover, possibly after adjusting the constants, by Proposition 5.23 (weighted
Poincare inequality) we have

(571) ‖WT ‖22 ≤
C0

|τ |

∫ |∂vWT |2
1 + Y 2

v

eμdv .

Combining the above facts and taking η = 1
4C0

we infer that

(572)
d

dτ
‖WT ‖22 ≤ −η|τ |‖WT ‖22 +

C

|τ |‖W1[θ,2θ]‖22 + eτ‖W‖C2|Tτ
‖WT ‖2 .
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Using the Peter-Paul inequality the last term can be estimated by

(573) eτ‖W‖C2|Tτ
‖WT ‖2 ≤

η

2
|τ |‖WT ‖22 +

1

2η|τ |e
2τ‖W‖2C2|Tτ

.

Hence, setting c = η/2 we obtain

(574)
d

dτ
‖WT ‖22 ≤ −c|τ |‖WT ‖22 + C|τ |−1‖W1[θ,2θ]‖22 + C|τ |−1‖W‖2C2

exp(T )(τ)

for all τ ≤ τ0.

To analyze this differential inequality, similarly as in [ADS20], we define

f(τ) = ‖WT ‖22 , g(τ) = ‖W1[θ,2θ]‖22 ,(575)

and

F (τ) =

∫ τ

τ−1
f(τ ′)dτ ′, G(τ) =

∫ τ

τ−1
g(τ ′)dτ ′.(576)

Then, we obtain

(577)
d

dτ
F (τ) =

∫ τ

τ−1

d

dτ ′
f(τ ′) dτ ′

≤ −c|τ |F (τ) + C|τ |−1G(τ) + C|τ |−1‖W‖2C2
exp(T )(τ).

We rewrite this as

(578)
d

dτ

[
e−

cτ2

2 F (τ)
]
≤ e−

cτ2

2

(
C|τ |−1G(τ) + C|τ |−1‖W‖2C2

exp(T )(τ)
)
.

Observing also that thanks to (566) the functions F (τ) and G(τ) converge

(exponentially fast) to zero as τ → −∞, we thus infer that

e−
cτ2

2 F (τ) ≤ C

∫ τ

−∞
e−

cτ′2
2

(
|τ ′|−1G(τ ′) + |τ ′|−1‖W‖2C2

exp(T )(τ
′)
)
dτ ′

≤ C

(∫ τ

−∞
|τ ′|e− cτ′2

2 dτ ′
)(

sup
τ ′≤τ

|τ ′|−2G(τ ′) + |τ ′|−2‖W‖2C2
exp(T )(τ)

)
(579)

≤ Ce−
cτ2

2

(
|τ |− 3

2 sup
τ ′≤τ

|τ ′|− 1

2G(τ ′) + |τ |−2‖W‖2C2
exp(T )(τ)

)
.
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Hence, we conclude that

(580) |τ |− 1

2F (τ) ≤ C|τ |−2 sup
τ ′≤τ

|τ ′|− 1

2G(τ ′) + C|τ |−5/2‖W‖2C2
exp(T )(τ) ,

from which

(581) ‖WT ‖2,∞(τ) ≤ C

|τ |
(
‖W1[θ,2θ]‖2,∞(τ) + ‖W‖C2

exp(T )(τ)
)

readily follows. This finishes the proof of the proposition.

5.6. Decay estimate

The goal of this subsection is to prove the following estimate:

Proposition 5.25 (decay estimate). There exist κ > 0 and τ∗ > −∞ with
the following significance. If M1 and M2 are κ-quadratic from time τ0 ≤ τ∗,
and if wC = v1ϕC(v1)− v2ϕC(v2) satisfies

(582) p+wC(τ0) = 0 and p0wC(τ0) = 0,

then

(583) ‖wC‖D,∞ + ‖WT ‖2,∞ ≤ C
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

To show this we will adapt the argument from [ADS20, Section 8] to our
setting. To begin with, combining the energy estimates from the previous
subsections, and observing also that the norms in the transition region are
equivalent similarly as in [ADS20, Lemma 8.1], we obtain:

Lemma 5.26 (coercivity estimate). For every ε > 0 there exist κ > 0 and
τ∗ > −∞ such that if M1 and M2 are κ-quadratic form time τ0 ≤ τ∗, and
if the spectral condition (582) holds, then
(584)

‖wC−p0wC‖D,∞+‖WT ‖2,∞ ≤ ε‖p0wC‖D,∞+C
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

Proof. First, using Corollary 3.20 (uniform sharp asymptotics) and arguing
similarly as in [ADS20, proof of Lemma 8.1] we see that for κ > 0 small
enough and τ negative enough we get
(585)

C(θ)−1‖W (τ)1[θ,2θ]‖2 ≤ ‖w(τ) 1{θ≤v1(τ)≤2θ}‖H ≤ C(θ)‖W (τ)1[θ,2θ]‖2 .
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Now, recall that by Proposition 5.18 (energy estimate in tip region) we have

(586) ‖WT ‖2,∞(τ) ≤ C

|τ |
(
‖W1[θ,2θ]‖2,∞(τ) + ‖W‖C2

exp(T )(τ)
)
.

Together with (585) and the observation that ϕC(v1(·, τ)) ≡ ϕC(v2(·, τ)) ≡ 1
when θ ≤ v1 ≤ 2θ by Corollary 3.20 (uniform sharp asymptotics) provided
κ is small enough and τ is negative enough, this yields

(587) ‖WT ‖2,∞ ≤ ε
(
‖wC‖D,∞ + ‖W‖C2

exp(T )

)
.

Next, recall that by Proposition 5.13 (energy estimate in the cylindrical
region) we have

(588) ‖wC−p0wC‖D,∞ ≤ ε
(
‖wC‖D,∞ + ‖w 1{θ/2≤v1≤θ}‖H,∞

)
+C‖w‖C2

exp(C) .

Using again (585), this time with θ replaced by θ/2, and the fact that
ϕT (v) ≡ 1 for v ≤ θ, this yields

(589) ‖wC − p0wC‖D,∞ ≤ ε (‖wC‖D,∞ + C‖WT ‖2,∞) + C‖w‖C2
exp(C) .

Finally, by the triangle inequality we clearly have

(590) ‖wC‖D,∞ ≤ ‖wC − p0wC‖D,∞ + ‖p0wC‖D,∞ .

Combining the above inequalities, choosing τ∗ negative enough, and replac-
ing Cε by ε, the assertion follows.

We can now establish the decay estimate:

Proof of Proposition 5.25. In light of Lemma 5.26 (coercivity estimate) our
task boils down to controlling the expansion coefficient

(591) a(τ) := 〈wC(τ), ψ0〉H ,

where ψ0 = c(y2 − 2) with c = ‖y2 − 2‖−1
H

. To this end, recall from equation
(463) that wC evolves by

(∂τ − L)wC = E [wC ] + E [w,ϕC(v1)] + J +K + eτϕC(v1)F [w] .(592)

Using also that Lψ0 = 0, this implies

(593)
d

dτ
a(τ) =

〈
E [wC ] + E [w,ϕC ] + J +K + eτϕCF [w], ψ0

〉
H
.
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Since 〈ψ0, ψ
2
0〉 = 8, we can rewrite this as

(594)
d

dτ
a(τ) =

2a(τ)

|τ | + F (τ),

where

(595) F (τ) :=

〈
E [wC ]−

a(τ)

4|τ | ψ
2
0, ψ0

〉
H

+
〈
E [w,ϕC ], ψ0

〉
H

+ 〈J +K + eτϕC(v1)F [w], ψ0〉H .

Solving the ODE (594), and using that a(τ0) = 0 thanks to the spectral
condition (582), we obtain

(596) a(τ) = − 1

τ2

∫ τ0

τ
F (σ)σ2 dσ.

In the following, we use the notation

(597) A(τ) := sup
τ ′≤τ

(∫ τ ′

τ ′−1
a(σ)2dσ

)1/2

.

Claim 5.27. For every ε > 0, there exist κ > 0 and τ∗ > −∞, such that
assuming κ-quadraticity at some τ0 ≤ τ∗, the estimate

(598)

∫ τ

τ−1
|F (σ)| dσ ≤ ε

|τ |A(τ0) +
C

|τ |
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
holds for τ ≤ τ0.

Proof of the claim. We will adapt the argument from [ADS20, proof of Claim
8.3] to our setting. During the proof we will frequently use the bound
(599)

‖wC − p0wC‖D,∞ + ‖WT ‖2,∞ ≤ εA(τ0) + C
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
,

which follows from Proposition 5.26 (coercivity estimate).

Let us first estimate the terms that are not present in [ADS20]. To this
end, let us fix a smooth cutoff function χ : R+ → [0, 1] such that

χ(v) = 1 if v ∈ [ 9
16θ,

15
16θ], χ(v) = 1 if v �= [ θ2 , θ],(600)
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and such that |χ′| + |χ′′| ≤ C(θ). Observe that since spt(ϕ′
C) ⊂ [58θ,

7
8θ] we

have

(601) J = χ(v1)J, K = χ(v1)K .

Hence, using Lemma 5.15 (estimate for J) and Lemma 5.16 (estimate for K)

we can estimate∣∣〈J(τ) +K(τ), ψ0〉H
∣∣ ≤ (‖J(τ)‖D∗ + ‖K(τ)‖D∗) ‖χ(v1(τ))ψ0‖D

≤
(
ε‖w(τ)1{θ/2≤v1≤θ}‖H + ‖v2ϕ′

C(v1)e
τF [w]‖D∗

)
‖χ(v1(τ))ψ0‖D .(602)

Now, considering the support of y �→ χ(v1(y, τ)) and using Corollary 3.20
(uniform sharp asymptotics) we see that for τ negative enough we get the
Gaussian tail estimate

(603) ‖χ(v1(τ))ψ0‖D ≤ eτ/4 .

Also, similarly as in (585) by the equivalence of norms in the transition

region we have

(604) ‖w(τ) 1{θ/2≤v1≤θ}‖H ≤ C‖WT ‖2 .

Moreover, using Lemma 5.17 (estimate for nonlinear error) we can estimate

‖v2ϕ′
C(v1)e

τF [w]‖D∗,∞(τ) + ‖ϕC(v1)e
τF [w]‖D∗,∞(τ) ≤ C

|τ |‖w‖C2
exp(C)(τ).

(605)

Combining the above inequalities, and remembering also (599), we infer that

(606)

∫ τ

τ−1

∣∣〈(J +K + eτϕC(v1)F [w])(σ), ψ0〉H
∣∣ dσ

≤ ε

|τ |A(τ0) +
C

|τ |
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

Next, arguing similarly as above, and using also (475), we see that∣∣∣〈E [w,ϕC ](τ), ψ0

〉
H

∣∣∣ ≤ ‖E [w,ϕC ](τ)‖D∗‖χ(v1(τ))ψ0‖D

≤ C‖WT ‖2eτ/4 ,(607)
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and consequently, remembering again (599), that

(608)

∫ τ

τ−1

∣∣∣〈E [w,ϕC ](σ), ψ0

〉
H

∣∣∣ dσ
≤ ε

|τ |A(τ0) +
C

|τ |
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

Finally, let us estimate the first term on the right hand side of (595).
Broadly speaking, we argue similarly as in [ADS20, proof of Claim 8.3].
However, since there are quite many technical tweaks (and also to fix a
minor glitch in the quoted proof) let us provide full details. Recall from
(434) that

(609) E [wC ]−
a(τ)

4|τ | ψ
2
0 =

(
2− v1v2
2v1v2

wC − a(τ)

4|τ | ψ
2
0

)
− (v1,y + v2,y)v2,yy

(1 + v21,y)(1 + v22,y)
(wC)y −

v21,y
1 + v21,y

(wC)yy,

The inner product of the first term on the right hand side with ψ0 can be
estimated by∣∣∣∣〈2− v1v2

2v1v2
wC − a(τ)

4|τ | ψ
2
0, ψ0

〉
H

∣∣∣∣ ≤ ∣∣∣∣〈2− v1v2
2v1v2

ϕC(v1)(wC − a(τ)ψ0), ψ0

〉
H

∣∣∣∣
+ |a(τ)|

∣∣∣∣〈2− v1v2
2v1v2

ϕC(v1)−
1

4|τ |ψ0, ψ
2
0

〉
H

∣∣∣∣
+

∣∣∣∣〈2− v1v2
2v1v2

(1− ϕC(v1))wC , ψ0

〉
H

∣∣∣∣ .
(610)

To estimate the first term on the right hand side of (610) we write∣∣∣∣〈2− v1v2
2v1v2

ϕC(wC − a(τ)ψ0), ψ0

〉
H

∣∣∣∣ ≤ ∣∣∣∣〈v1 −
√
2

2v2
ϕC(wC − a(τ)ψ0), ψ0

〉
H

∣∣∣∣
+

∣∣∣∣〈(
√
2− v1)(

√
2 + v1)

2v1v2
ϕC(wC − a(τ)ψ0), ψ0

〉
H

∣∣∣∣
+

∣∣∣∣〈√
2− v2
2v2

ϕC(wC − a(τ)ψ0), ψ0

〉
H

∣∣∣∣ .
(611)
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Using this decomposition, and observing that vi ≥ θ/2 on the support of
ϕC(v1)(wC −a(τ)ψ0) by Corollary 3.20 (uniform sharp asymptotics), we can
estimate∣∣∣∣〈2− v1v2

2v1v2
ϕC(v1)(wC − a(τ)ψ0), ψ0

〉
H

∣∣∣∣
≤ C

2∑
i=1

∥∥∥(√2− vi)ϕC(v1)
√

|ψ0|
∥∥∥
H

∥∥∥(wC − a(τ)ψ0)
√

|ψ0|
∥∥∥
H

≤ C

2∑
i=1

∥∥∥(√2− vi)ϕC(v1)
∥∥∥
D
‖(wC − a(τ)ψ0)‖D ,

(612)

where in the last step we used the weighted Sobolev inequality. Now, since
the vi are κ-quadratic at time τ0, we have

(613)
∥∥∥√2− vi

∥∥∥
H
≤ C

|τ |

Furthermore, arguing similarly as in the proof of Claim 3.18 (error estimate)
we see that

(614) ‖vi,y1Cτ
‖
H
≤ C

|τ | .

This yields

(615)
∥∥∥(√2− vi)ϕC(v1)

∥∥∥
D
≤ C

|τ | .

Together with Lemma 5.26 (coercivity estimate), remembering also that
aψ0 = p0wC , this implies

(616)

∫ τ

τ−1

∣∣∣∣〈2− v1v2
2v1v2

ϕC(v1)(wC − a(σ)ψ0), ψ0

〉
H

∣∣∣∣ dσ
≤ ε

|τ |A(τ0) +
C

|τ |
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

Next, similarly as in [ADS20, Equation (8.20) and (8.21)] we can estimate
the contribution from the second term of the right hand side of (610) by∫ τ

τ−1
|a(σ)|

∣∣∣∣〈2− v1v2
2v1v2

ϕC(v1)−
ψ0

4|τ | , ψ
2
0

〉
H

∣∣∣∣ dσ <
ε

|τ |A(τ0),(617)
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provided κ is small enough and τ ≤ τ0 ≤ τ∗, with τ∗ negative enough.
Furthermore, considering the support of (1−ϕC(v1))wC we can estimate the
third term of the right hand side of (610) by∣∣∣∣〈2− v1v2

2v1v2
(1− ϕC(v1))wC , ψ0

〉
H

∣∣∣∣ ≤ Ceτ/4
∥∥w(τ)1{θ/2≤v1≤θ}

∥∥
H
.(618)

Together with the equivalence of norms in the transition region, and (599),
this yields

(619)

∫ τ

τ−1

∣∣∣∣〈2− v1v2
2v1v2

(1− ϕC(v1))wC , ψ0

〉
H

∣∣∣∣ dσ
≤ ε

|τ |A(τ0) +
C

|τ |
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

To finish, similarly as in [ADS20, Equation (8.23) and (8.25)] we get

(620)

∫ τ

τ−1

∣∣∣∣∣
〈

(v1,y + v2,y)v2,yy
(1 + v21,y)(1 + v22,y)

(wC)y, ψ0

〉
H

∣∣∣∣∣ ≤ ε

|τ |‖wC‖D,∞ ,

and

(621)

∫ τ

τ−1

∣∣∣∣∣
〈

v21,y
1 + v21,y

(wC)yy, ψ0

〉
H

∣∣∣∣∣ ≤ ε

|τ |‖wC‖D,∞ ,

provided κ is small enough and τ ≤ τ0 ≤ τ∗, with τ∗ negative enough.
Together with (599) this shows that

(622)

∫ τ

τ−1

∣∣∣∣∣
〈

(v1,y + v2,y)v2,yy
(1 + v21,y)(1 + v22,y)

(wC)y, ψ0

〉
H

∣∣∣∣∣ +
∣∣∣∣∣
〈

v21,y
1 + v21,y

(wC)yy, ψ0

〉
H

∣∣∣∣∣
≤ ε

|τ |A(τ0) +
C

|τ |
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

Combining the above inequalities establishes the claim.

Now, using the claim we can estimate

∣∣∣∣∫ τ0

τ
F (σ)σ2dσ

∣∣∣∣ ≤ 
τ0�∑
j=�τ�

∫ j

j−1
|F (σ)|σ2dσ
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≤

τ0�∑
j=�τ�

(|j|+ 1)2

|j|
(
εA(τ0) + C(‖w‖C2

exp(C) + ‖W‖C2
exp(T ))

)
(623)

≤ |τ |2
(
εA(τ0) + C(‖w‖C2

exp(C) + ‖W‖C2
exp(T ))

)
.

Remembering (596), this shows that

(624) |a(τ)| ≤ εA(τ0) + C(‖w‖C2
exp(C) + ‖W‖C2

exp(T ))

for τ ≤ τ0. Choosing ε = 1/2 this implies

(625) A(τ0) ≤ C
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

Combining this with Lemma 5.26 (coercivity estimate) we conclude that

(626) ‖wC‖D,∞ + ‖WT ‖2,∞ ≤ C
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

This finishes the proof of the proposition.

5.7. Interior estimates in the cylindrical region

In this subsection, we establish interior C2-estimates in the cylindrical region
starting from bounds for the Gaussian L2-norm. Specifically, we will first
prove the following weighted L∞-estimate.

Proposition 5.28 (L∞-estimate in cylindrical region). There exist κ > 0,
τ∗ > −∞ and C < ∞, such that whenever M1 and M2 are κ-quadratic at
time τ0 ≤ τ∗, then for all τ ≤ τ0 − 1 we have

(627) sup
τ ′≤τ

e
τ′
4 sup

{
|w(y, τ ′)| : v1(y, τ ′) ≥ 8

9θ
}
≤ C‖wC‖H,∞(τ + 1) .

And then we prove the following C2-estimate.7

Proposition 5.29 (C2-estimate in cylindrical region). There exist κ > 0
and τ∗ > 0, such that whenever M1 and M2 are κ-quadratic at time τ0 ≤ τ∗,
then for all τ ≤ τ0 − 1 we have
(628)
‖w‖C2|Cτ

≤ e−
τ

100 sup
{
|w(y, τ ′)| : τ − 1 ≤ τ ′ ≤ τ + 1

100 , v1(y, τ
′) ≥ 1

2θ
}
.

7The supremum in the C2-estimate is taken over a somewhat larger spatial region
than in the L∞-estimate, but this does not cause problems for applications since
we will establish corresponding estimates in the tip region in the next subsection.
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We recall that we use the notation

(629) ‖w‖C2|Cτ
:= sup

y∈Cτ

(
|w|+ |wy|+ |wτ |+ |wyy|+ |wyτ |+ |wττ |

)
,

where the time τ -slice of the cylindrical region is defined by

(630) Cτ =
{
y : v1(y, τ) ≥ 5

8θ or v2(y, τ) ≥ 5
8θ

}
.

Loosely speaking, both estimates follow from standard parabolic esti-
mates for the mean curvature flow near a bubble-sheet. However, since some
care is needed to scale and convert estimates for the bubble-sheet function

to estimates for the profile function of the level sets, we provide the details.

To bring the translator equation back into parabolic form, we define

(631) Ṽ (x, s, t) = V (x, s+ t),

and consider the difference

(632) V D(x, s, t) = Ṽ1(x, s, t)− Ṽ2(x, s, t).

Then, using Proposition 5.3 (evolution equation for profile function) we see

that

V D
t =

1+Ṽ 2
1,x

1+Ṽ 2
1,x+Ṽ 2

1,s

V D
ss +

1+Ṽ 2
1,s

1+Ṽ 2
1,x+Ṽ 2

1,s

V D
xx −

2Ṽ1,xṼ1,s

1+Ṽ 2
1,x+Ṽ 2

1,s

V D
xs +

1
Ṽ1Ṽ2

V D

+ (Ṽ1,x+Ṽ2,x)(Ṽ2,ss−Ṽ2,t+1/Ṽ2)−2Ṽ1,sṼ2,xs

1+Ṽ 2
1,x+Ṽ 2

1,s

V D
x

+ (Ṽ1,s+Ṽ2,s)(Ṽ2,xx−Ṽ2,t+1/Ṽ2)−2Ṽ2,xṼ2,xs

1+Ṽ 2
1,x+Ṽ 2

1,s

V D
s .(633)

Let us introduce some notation for weighted parabolic Hölder norms. Given
α ∈ (0, 1), a nonnegative integer k, and a region U , we set

(634) [f ]Wk;U = sup
(x,s,t)∈U

sup
i+j+2m=k

|t| k−1

2

∣∣∂i
x∂

j
s∂

m
t f(x, s, t)

∣∣ ,
and
(635)

[f ]Wk,α;U = sup
X,X′∈U

sup
i+j+2m=k

∣∣1
2(t+ t′)

∣∣ k+α−1

2
|∂i

x∂
j
s∂m

t f(X)− ∂i
x∂

j
s∂m

t f(X ′)|
|d(X,X ′)|α ,
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where for X = (x, s, t) and X ′ = (x′, s′, t′) we work with the parabolic
distance

(636) d(X,X ′) =
√

|x− x′|2 + |s− s′|2 + |t− t′|.

Then, we can define weighted Ck,α
W norms by

‖f‖Ck,α
W (U) = ‖f‖Ck

W (U) + [f ]Wk,α;U , ‖f‖Ck
W (U) =

k∑
m=0

[f ]Wm;U .(637)

Moreover, we consider the parabolic cube Qr given by

(638) Qr(x
′, s′, t′) = {(x, s, t) : |x− x′| ≤ r, |s− s′| ≤ r, t′ − r2 ≤ t ≤ t′}.

Lemma 5.30 (interior estimates in cylindrical region). There exist κ > 0
and τ∗ > −∞, as well as a constant C < ∞, such that whenever M1 and
M2 are κ-quadratic at time τ0 ≤ τ∗, then

(639) sup
Qλ/2(x′,0,t′)

|V D| ≤ C

λ2

(∫
Qλ(x′,0,t′)

(V D)2 dx ds dt

) 1

2

,

and

(640) ‖V D‖C4,α
W (Qλ/2(x′,0,t′)) ≤ C‖V D‖C0

W (Qλ(x′,0,t′)) ,

hold if λ−1x′ ∈ C− log(−t′) and t′ ≤ −e−τ0 , where λ = (−t′)
1

2 .

We note that to control the second time derivative wττ in (629) we need the
parabolic C4-norm.

Proof. We consider the rescaling

(641) V̂ D(x̂1, x̂2, t̂) =
1

λ
V D(x, s, t), (x̂1, x̂2, t̂) =

(
x− x′

λ
,
s

λ
,
t− t′

λ2

)
.

The evolution equation (633) and Lemma 5.6 (derivative estimates) imply

(642) ∂
∂t̂
V̂ D(x̂, t̂) = aij(x̂, t̂)

∂2

∂x̂i∂x̂j
V̂ D(x̂, t̂) + bi(x̂, t̂)

∂
∂x̂i

V̂ D(x̂, t̂)

+ c(x̂, t̂)V̂ D(x̂, t̂),
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where for sufficiently large −τ∗ the smooth functions aij , bi, c satisfy

(643)
∑
i,j

‖aij‖C2,α(Q1(0)) +
∑
i

‖bi‖C2,α(Q1(0)) + ‖c‖C2,α(Q1(0)) ≤ C,

aijξ
iξj ≥ C−1|ξ|2 .

Therefore, standard interior L∞-estimates yield

(644) sup
Q1/2(0)

|V̂ D| ≤ C

(∫
Q1(0)

(V̂ D)2 dx̂ dŝ dt̂

) 1

2

,

and standard interior Schauder estimates yield

(645) ‖V̂ D‖C4,α(Q1/2(0)) ≤ C‖V̂ D‖C0(Q1(0)) ,

These imply the desired results.

We can now establish the two estimates stated at the beginning of this
subsection:

Proof of Proposition 5.28. For any (x′, 0, t′) with (−t′)−1/2x′ ∈ C− log(−t′)

denote the corresponding point in the renormalized flow by (y′, τ ′). The
L2-norm of V D is related to norms of w by∫

Q√
−t′

(x′,0,t′)
(V D)2 dx ds dt =

∫ √
|t′|

−
√

|t′|

∫ t′

2t′

∫ x′+
√

|t′|

x′−
√

|t′|
(V D)2(x, s, t) dx dt ds

≤ C|t′|1/2
∫ t′+

√
|t′|

2t′−
√

|t′|

∫ x′+
√

|t′|

x′−
√

|t′|
(V1(x, r)− V2(x, r))

2dxdr

≤ C|t′|1/2
∫ τ ′+1

τ ′−2

∫ y′+2

y′−2
e
−5τ
2 w2(y, τ) dy dτ(646)

≤ C|t′|7/2
∫ τ ′+1

τ ′−2

∫ y′+2

y′−2
w2(y, τ)e

τ
2 dy dτ,

whenever t′ ≤ −10. Now, for κ sufficiently small and τ∗ sufficiently negative,
assuming κ-quadraticity at time τ0 ≤ τ∗, by Corollary 3.20 (uniform sharp
asymptotics) if v1(y

′, τ ′) ≥ 8
9θ and τ ′ = − log(−t′) ≤ τ0 − 1, then in the

region under consideration we have

(647) ϕC(vi) = 1 and y2 ≤ −2τ .
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Therefore, we obtain∫
Q√

−t′
(x′,0,t′)

(V D)2 dx ds dt ≤ C|t′|7/2
∫ τ ′+1

τ ′−2

∫
w2
C(y, τ)e

−y2

4 dy dτ

≤ C|t′|7/2‖wC‖2H,∞(τ ′ + 1).

Thus, Lemma 5.30 (interior estimates in cylindrical region) yields

(648)
√

|t′|w(y′, τ ′) ≤ C|t′|3/4‖wC‖H,∞(τ ′ + 1),

from which the result follows.

Proof of Proposition 5.29. Using the definition of V D we see that

(649) |t|− 1

2V D(x, 0, t) = w(|t|− 1

2x,− log(−t)).

As in the proof of Proposition 5.3 (evolution equation for profile function),

this yields

V D
x = wy, |t| 12V D

xx = wyy, |t|V D
xt = wyτ +

y

2
wyy,(650)

and

|t| 12V D
t = wτ +

y

2
wy −

w

2
, |t| 32V D

tt = wττ + ywτy +
y2

4
wyy +

y

4
wy −

w

4
.

(651)

Therefore, Lemma 5.30 (interior estimates in cylindrical region), taking also

into account that

(652) |y|2 ≤ 2(1 + o(1))|τ |

by Corollary 3.20 (uniform sharp asymptotics), as well as the elementary

inequality

(653) − log(−t+ |t|1/2) ≤ − log(−t) + 1
100

for t � 0, implies the desired result.
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5.8. Interior estimates in the tip region

In this subsection, we establish interior C2-estimates in the tip region start-
ing from bounds for the Gaussian L2-norm. Specifically, we will first prove
the following weighted L∞-estimate:

Proposition 5.31 (L∞-estimate in tip region). There exist κ > 0 and
τ∗ > −∞ such that if M1 and M2 are κ-quadratic at time τ0 ≤ τ∗, then for
any τ ≤ τ0 − 1 we have

(654) sup
τ ′≤τ

e
26

100
τ ′
sup

{
|W (v, τ ′)| : v ≤ 9

10θ
}
≤ ‖WT ‖2,∞(τ + 1) .

And then we prove the following C2-estimate:

Proposition 5.32 (C2-estimate in tip region). There exist κ > 0 and τ∗ >
−∞ such that if M1 and M2 are κ-quadratic at time τ0 ≤ τ∗, then for any
τ ≤ τ0 − 1 we have

‖W‖C2|Tτ
≤ e−

τ

100 sup
{
|W (v, τ ′)| : τ − 1 ≤ τ ′ ≤ τ + 1

100 , v ≤ 3θ
}
.(655)

We recall that we use the notation

(656) ‖W‖C2|Tτ
:= sup

v≤2θ

(
|W |+ |Wv|+ |Wτ |+ |Wvv|+ |Wvτ |+ |Wττ |

)
.

To put the translator equation into convenient form for establishing these
interior estimates, for h � 1 we define positive functions Xk by

(657) (h,Xk(−h, x3, x4), x3, x4) ∈ Mk ,

and then define X̃k by

(658) X̃k(x1, x2, x3, t) = Xk(x1 + t, x2, x3).

The functions X̃k satisfy the parabolic equation

(659) X̃k
t =

(
δij −

X̃k
i X̃

k
j

1+|∇X̃k|2

)
X̃k

ij ,

and the difference XD = X̃1 − X̃2 evolves by
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(660) XD
t =

(
δij −

X̃1
i X̃

1
j

1 + |DX̃1|2

)
XD

ij +
X̃1

i X̃
2
ijX

D
j + X̃2

i X̃
2
ijX

D
j

1 + |DX̃1|2

−
X̃2

i X̃
2
j X̃

2
ij(X̃

1
k + X̃2

k)X
D
k

(1 + |DX̃1|2)(1 + |DX̃2|2)
.

Similarly as before, writing X = (x1, x2, x3, t) = (x, t), we set

(661) [f ]Wk;U = sup
X∈U

sup
i+j+�+2m=k

|t| k−1

2

∣∣∣∂i
x1
∂j
x2
∂�
x3
∂m
t f(X)

∣∣∣ ,
and

(662) [f ]Wk,α;U = sup
X,X′∈U

∣∣1
2(t+ t′)

∣∣ k+α−1

2

sup
i+j+�+2m=k

|∂i
x1
∂j
x2∂

�
x3
∂m
t f(X)− ∂i

x1
∂j
x2∂

�
x3
∂m
t f(X ′)|

|d(X,X ′)|α ,

where

(663) d(X,X ′) =
√

|x− x′|2 + |t− t′| .

Then, we work with the weighted Ck,α
W norm given by

‖f‖Ck,α
W (U) = ‖f‖Ck

W (U) + [f ]Wk,α;U , ‖f‖Ck
W (U) =

k∑
m=0

[f ]Wm;U .(664)

Finally, we denote the parabolic cube Qr by
(665)
Qr(x

′, t′) =
{
(x, t) : t′ − r2 ≤ t ≤ t′, |〈x− x′, ei〉| ≤ r for each i = 1, 2, 3

}
.

Lemma 5.33 (interior estimates in soliton region). There exist constants
κ > 0, τ∗ > −∞, and C < ∞ with the following significance. If M1 and M2

are κ-quadratic at time τ0 ≤ τ∗, then

(666) sup
Qλ/2(x′,t′)

|XD| ≤ C

λ
5

2

(∫
Qλ(x′,t′)

(XD)2 dx dt

) 1

2

,

and

(667) ‖XD‖C4,α
W (Qλ/2(x′,t′)) ≤ | log(−t′)|10‖XD‖C0

W (Qλ(x′,t′))



Classification of noncollapsed translators in R
4 685

hold whenever 〈x′, e1〉 = 0, |x′| ≤ λL and − log(−t′) ≤ τ0 − 1, where λ =
| log(−t′)|−1/2(−t′)1/2.

Proof. We consider the rescaled function

(668) X̂D(x̂, t̂) =
1

λ
XD(x′ + λx̂, t′ + λ2t̂).

Then, the evolution equation (659) and Corollary 3.20 (uniform sharp asymp-
totics) imply that there exist constants C < ∞ and τ∗ > −∞ such that the
smooth functions aij and bi defined by

(669) X̂D
t = aijX̂

D
ij + biX̂

D
i

satisfy

(670)
∑
i,j

‖aij‖C2,α(Q1(0)) +
∑
i

‖bi‖C2,α(Q1(0)) ≤ C, aijξiξj ≥ C−1|ξ|2

at the points and times under consideration. Thus, standard interior L∞-
estimates yield

(671) sup
Q1/2(0)

|X̂D| ≤ C‖X̂D‖L2(Q1(0)) ,

and standard interior Schauder estimates yield

(672) ‖X̂D‖C4,α(Q1/2(0)) ≤ C‖X̂D‖C0(Q1(0)) .

These estimates imply the assertion.

Lemma 5.34 (interior estimates in collar region). There exist κ > 0 and
τ∗ > −∞, as well as positive integers p, q and a constant C < ∞ with the
following significance. If M1 and M2 are κ-quadratic at time τ0 ≤ τ∗, then

(673) sup
Qλ/2(x′,t′)

|XD| ≤ C

λ
5

2

(∫
Qλ(x′,t′)

(XD)2 dx dt

) 1

2

,

and

(674) ‖XD‖C4
W (Qλ/2(x′,t′)) ≤ | log(−t′)|p‖XD‖C0

W (Qλ(x′,t′)) ,

whenever 〈x′, e1〉 = 0, L| log(−t′)|− 1

2 ≤ (−t)−1/2|x′| ≤ 4θ, and − log(−t′) ≤
τ0 − 1, where λ = | log(−t′)|−q(−t)1/2.
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Proof. To take care of the degenerating ellipticity, we set

(675) ρ = |DX1(x
′, t′)| ,

and consider the anisotropic rescaling

(676) X̂D(x̂, t̂) =
1

λ
XD(x′1 + (1 + ρ)λx̂1, x

′
2 + λx̂2, x

′
3 + λx̂3, t

′ + λ2t̂) .

Using the evolution equation (659) we see that

(677) X̂D
t = aijX̂

D
ij + biX̂

D
i ,

for some coefficients aij , bi. Now, by definition of Xk we have

(678) Xk(t, Vk(x, t) cos θ, Vk(x, t) sin θ) = x ,

and Corollary 3.20 (uniform sharp asymptotics) shows that

(679) (Vk)
−1 ≤ C(L)

√
|t|−1 log |t|

for some constant C(L) < ∞ depending only on L. Therefore, applying
Lemma 5.6 (derivative estimates), we infer that there are a positive integer
p′ and a constant C < ∞ such that

(680) ‖X̃k‖C4,α
W (Qλ(x′,t′)) ≤ C| log(−t′)|p′

for sufficiently large log(−t′) and sufficiently large q. For the coefficients of
the rescaled difference, possibly after increasing q, this yields
(681)∑
i,j

‖aij−δij‖C2,α(Q1(0))+
∑
i

‖bi‖C2,α(Q1(0)) ≤ C,
∑
i,j

aijξiξj ≥ C−1|ξ|2 .

Thus, similarly as in the proof of the previous lemma, interior L∞-estimates
and interior Schauder estimates yield the desired result.

As a final preparation, we need the following bound for the weight func-
tion:

Lemma 5.35 (density bound). There exist κ > 0 and τ∗ > −∞ with the
following significance. Assuming κ-quadraticity at time τ0 ≤ τ∗, for τ ≤ τ0
and v ≤ 5θ we have

(682) eμ(v,τ) ≥ ve
51

100
τ .
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Proof. By definition of the weight function we have

μv = −1

4
ζ(v)(Y 2)v + (1− ζ(v))

1 + Y 2
v

v

=
1− ζ(v)

v
+

(
(1− ζ(v))Yv

2vY
− ζ(v)

4

)
(Y 2)v .(683)

Since Y (0, τ) = (
√
2 + o(1))|τ | 12 by Corollary 3.20 (uniform sharp asymp-

totics) and |Yv/v| ≤
√
τ by Proposition 5.21 (tip estimates), possibly after

decreasing θ and τ∗, for τ ≤ τ0 and v ≤ 5θ this yields

(684) μv ≤ 1

v
− 3

8
(Y 2)v .

Therefore, we get

μ(v, τ) = −1

4
Y 2(θ, τ)−

∫ θ

v
μv′(v′, τ) dv′ ≥ log

(v

θ

)
+

1

8
Y 2(θ, τ)− 3

8
Y 2(v, τ) .

Using again Corollary 3.20 (uniform sharp asymptotics), this implies the
assertion.

We can now prove the propositions stated at the beginning of this sub-
section.

Proof of Proposition 5.31. By definition of XD we have

(685) XD(x1, x2, x3, t) = e−
τ

2 W (v, τ) ,

where

(686) τ = − log(−x1 − t) and v = e
τ

2

(
x22 + x23

) 1

2 .

Notice also that

(687)

∫ ∫
dx2 dx3 = 2πe−τ

∫
v dv .

Suppose that x′ = (0, x′2, x
′
3) and t′ = −e−τ ′

satisfy |x′|e τ′
2 ≤ 9

10θ and

τ ′ ≤ τ0 − 1. For any R ≤ |τ ′|− 1

2 e−
τ′
2 we can compute

1

R

∫
QR(x′,t′)

(XD)2 dx dt =
1

R

∫ R

−R

∫ t′

t′−R2

∫ x′
2+R

x′
2−R

∫ x′
3+R

x′
3−R

(XD)2 dx2 dx3 dt dx1
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≤Ce−3τ ′
sup

|x1|≤R

∫ − log(−t′−x1)

− log(−t′−x1)−1

∫ θ

0
W 2(v, τ)v dv dτ.(688)

Using also Lemma 5.35 (density bound) and the fact that φT = 1 when
v ≤ θ, this yields

(689)
1

R

∫
QR(x′,t′)

(XD)2 dx dt ≤ C|τ ′| 12 e− 351

100
τ ′‖WT ‖22,∞(τ ′ + 1) .

Combining the above inequality with Lemma 5.33 (interior estimates in
soliton region) and Lemma 5.34 (interior estimates in collar region) implies
that there exists some positive integer m such that

(690) |W (v′, τ ′)|2 = eτ
′ |XD(x′, t′)|2 ≤ |τ ′|me−

51

100
τ ′‖WT ‖22,∞(τ ′ + 1) .

Namely,

(691) e
26

100
τ ′ |W (v′, τ ′)| ≤ ‖WT ‖2,∞(τ ′ + 1)

holds for τ ′ ≤ τ0 − 1 and v′ ≤ 9
10θ. This proves the proposition.

Proof of Proposition 5.32. By definition of XD we have

(692) W (v, τ) = e
τ

2 XD(0, e−
τ

2 v cos θ, e−
τ

2 v sin θ,−e−τ ) .

This implies

Wv = XD
r , Wvv = e−

τ

2 XD
rr , Wvτ = −v

2e
− τ

2 XD
rr + e−τXD

rt ,(693)

where
(694)
XD

r = cos θXD
2 +sin θXD

3 , XD
rr = cos2 θXD

22+2 cos θ sin θ XD
23+sin2 θ XD

33 .

Similarly, we can compute

(695) Wτ = 1
2e

τ

2 XD − v
2X

D
r + e−

τ

2 XD
t ,

and

(696) Wττ = 1
4e

τ

2XD − v
4X

D
r + v2

4 e
− τ

2 XD
rr − ve−τXD

rt + e−
3τ

2 XD
tt .

Hence, applying Lemma 5.33 (interior estimates in soliton region) and Lemma
5.34 (interior estimates in collar region), we obtain the desired result.
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5.9. Conclusion of the proof

In this subsection we conclude the proof of Theorem 5.1 (spectral uniqueness

theorem).

Denoting the level sets by Σi
h = M i ∩ {x1 = h}, we consider their

Hausdorff distance

(697) D(h) := dHausdorff

(
Σ1
h , Σ

2
h

)
.

Proposition 5.36 (Hausdorff-estimate). There exist κ > 0 and τ∗ > −∞
such that if M1 and M2 are κ-quadratic at time τ0 ≤ τ∗, then for every

τ ≤ τ0 − 1 we have

(698) sup
h≥e−τ

h−
76

100D(h) ≤ ‖wC‖H,∞(τ + 1) + ‖WT ‖2,∞(τ + 1) .

Proof. Setting τh = − log h, by definition of the Hausdorff distance we al-

ways have

(699) h−
1

2D(h) ≤

max
(
sup

{
|w(y, τh)| : v1(y, τh) ≥ 8

9θ
}
, sup

{
|W (v, τh)| : v ≤ 9

10θ
})

.

Now, by Proposition 5.28 (L∞-estimate in cylindrical region) and Proposi-

tion 5.31 (L∞-estimate in tip region) if the solution are κ-quadratic from

time τ0 ≤ τ∗, and τh ≤ τ0 − 1, then we can estimate

(700) e
1

4
τh sup

{
|w(y, τh)| : v1(y, τh) ≥ 8

9θ
}
≤ C‖wC‖H,∞(τh + 1) ,

and

(701) e
26

100
τh sup

{
|w(y, τh)| : v1(y, τh) ≥ 8

9θ
}
≤ ‖WT ‖2,∞(τh + 1) .

This implies the assertion.

Proposition 5.37 (C2-estimate). There exist κ > 0 and τ∗ > −∞ such that

if M1 and M2 are κ-quadratic at time τ0 ≤ τ∗, then for every τ ≤ τ0− 1 we

have

(702)

‖w‖C2|Cτ
+ ‖W‖C2|Tτ

≤ e
48

100
τ sup

{
D(h) : τ − 1 ≤ − log h ≤ τ + 1

100

}
.
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Proof. Set τh = − log h. Observe first that by Corollary 3.20 (uniform sharp
asymptotics), for κ sufficiently small and τ∗ sufficiently negative, and τh ≤
τ0 − 1, we have

(703) sup {|w(y, τh)| : v1(y, τh) ≥ θ/2} ≤ 2h−
1

2D(h) .

Our next goal is to show that

(704) sup {|W (v, τh)| : v ≤ 3θ} ≤ 2(log h)
1

2h−
1

2D(h) .

To this end, considering Ai ∈ Σi
h ∩ {x3 = h1/2v, x4 = 0} we have

(705) d(A1, A2) = |〈A1 −A2, e2〉| = h1/2 |W (v, τh)| .

Let B ∈ Σ2
h be a point such that d(B,A1) = d(Σ2

h , A1), and observe that
x3(B) ≥ 0 and x4(B) = 0. We may assume A1 �= A2. Then, A1 �= B. So,
applying the sine law to triangle spanned by A1, A2, B yields

(706) d(A1, A2) =
sin∠A1BA2

sin∠A1A2B
d(A1, B) ≤ 1

sin∠A1A2B
D(h).

On the other hand, denoting by �T the tangent vector to graph(Y2) at v, by
convexity we have

(707) sin∠A1A2B ≥ sin∠(�T ,−e2) =
1√

1 + Y2,v(v, τh)2
.

Moreover, applying Proposition 5.21 (tip estimates), with θ replaced by 3
2θ,

we can estimate

(708) Y2,v(v, τh)
2 ≤ | log h|v2 .

Combining the above formulas proves the estimate (704).

Having established the sup-bounds (703) and (704) we can now apply
Proposition 5.29 (C2-estimate in cylindrical region) and Proposition 5.32
(C2-estimate in tip region) to conclude that

(709) ‖w‖C2|Cτ
+ ‖W‖C2|Tτ

≤ e−
1

100 τ sup
τ−1≤τh≤τ+ 1

100

2(log h)1/2h−1/2D(h) .

This implies the assertion.
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To proceed, we denote by Ki ⊂ R
4 the convex hull of M i, and set

(710) Ki
h := Ki ∩ {x1 = h} .

Then, by the comparison principle for translators we have the implication

(711) K1
h′ ⊆ K2

h′ ⇒ K1
h ⊆ K2

h for all h ≤ h′ ,

and similarly with K1 and K2 interchanged.

Lemma 5.38 (almost congruent levels). There exist κ > 0 and τ∗ > −∞
such that if M1,M2 are κ-quadratic from time τ0 ≤ τ∗, and if h′ ≥ e−τ0

satisfies D(h′) ≤ 1
30h

′1/2, then we have

(712) D(h) ≤ 10 (log h′)
1

2D(h′)

for all h ∈ [h′/e2, h′].

Proof. Note first that by Corollary 3.20 (uniform sharp asymptotics), pro-
vided κ and τ∗ are chosen appropriately, the mean curvature H = 〈ν, e1〉 of
M i satisfies

(713)
0.99√
2h

≤ 〈ν, e1〉 ≤
1.01√

2

√
log h

h
,

for h ≥ e−τ0−3 (here we observed that the conclusion can be propagated a
bit forward in time). Now, if h′ ≥ e−τ0 satisfies D(h′) ≤ 1

30h
′1/2, then

(714) h′ − 2
√
h′D(h′) ≥ e−1h′ ≥ e−τ0−1 .

Hence, the lower bound in (713) implies

(K1 + 2
√
h′D(h′)e1)h′ ⊆ K2

h′ .(715)

Thus, by the comparison principle for all h ≤ h′ we get the inclusion

(K1 + 2
√
h′D(h′)e1)h ⊆ K2

h ,(716)

and, interchanging the role of K1 and K2, also the inclusion

(K2 + 2
√
h′D(h′)e1)h ⊆ K1

h .(717)
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On the other hand, if h ≥ h′/e2 then h− 2
√
h′D(h′) ≥ e−τ0−3, so it follows

from the upper bound in (713) that

(718) distHausdorff

(
Σi
h−2

√
h′D(h′)

, Σi
h

)
≤ 4 (log h′)

1

2D(h′).

Hence, we conclude that

(719) D(h) ≤ 10 (log h)
1

2D(h′)

for all h ∈ [h′/e2, h′]. This proves the lemma.

We can now conclude the proof of the spectral uniqueness theorem:

Proof of Theorem 5.1. Let κ be small enough and τ∗ negative enough such
that all the preceding estimates hold for M1 and M2 that are κ-quadratic
from time τ0 ≤ τ∗. Applying Proposition 5.25 (decay estimate) and Propo-
sition 5.36 (Hausdorff-estimate) we see that

(720) sup
h≥e−τ0+1

h−
76

100D(h) ≤ C
(
‖w‖C2

exp(C) + ‖W‖C2
exp(T )

)
.

On the other hand, by definition of our exponentially weighted norms there
exists some τ ′ ∈ (−∞, τ0] such that

(721) ‖w‖C2
exp(C) + ‖W‖C2

exp(T ) ≤ 2eτ
′ (|τ ′|‖w‖C2|Cτ′ + ‖W‖C2|Tτ′

)
,

and by Lemma 5.6 (derivative estimates) and Lemma 5.19 (rough tip esti-
mates), for all τ ≤ τ0 we have

(722) ‖w‖C2|Cτ
+ ‖W‖C2|Tτ

≤ |τ |100 .

In particular, for h′ := e−τ ′+1 this yields

(723) D(h′) ≤ h′−
23

100 .

Hence, we can safely apply Lemma 5.38 (almost congruent levels) to obtain

(724) D(h) ≤ 10(log h′)1/2D(h′)

for τ ′ − 1 ≤ − log h ≤ τ ′ +1. Together with Proposition 5.37 (C2-estimates)
it follows that

(725) ‖w‖C2|Cτ′ + ‖W‖C2|Tτ′ ≤ h′−
47

100D(h′) .
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In combination with (720) and (721) this yields

(726) h′−
76

100D(h′) ≤ h′−
146

100D(h′) .

Since h′ � 1, this implies D(h′) = 0, and consequently

(727) ‖w‖C2
exp(C) + ‖W‖C2

exp(T ) = 0 .

Namely,

(728) Σ1
h = Σ2

h

holds for h ≥ e−τ0 . Finally, applying the comparison principle again we

conclude that M1 = M2. This finishes the proof of the spectral uniqueness

theorem.

Acknowledgements

KC has been supported by KIAS Individual Grant MG078901 and a POSCO

Science Fellowship. RH has been supported by an NSERC Discovery Grant

and a Sloan Research Fellowship. OH has been supported by the Koret

Foundation early career award and ISF grant 437/20. We thank Beomjun

Choi, Wenkui Du and the anonymous referees for very helpful comments.

References

[ABDS22] S. Angenent, S. Brendle, P. Daskalopoulos, and N. Sesum.

Unique asymptotics of compact ancient solutions to three-

dimensional Ricci flow. Comm. Pure Appl. Math., 75(5):1032–

1073, 2022.

[ADS19] S. Angenent, P. Daskalopoulos, and N. Sesum. Unique asymp-

totics of ancient convex mean curvature flow solutions. J. Dif-

ferential Geom., 111(3):381–455, 2019.

[ADS20] S. Angenent, P. Daskalopoulos, and N. Sesum. Uniqueness of

two-convex closed ancient solutions to the mean curvature flow.

Ann. of Math. (2), 192(2):353–436, 2020.

[And12] B. Andrews. Noncollapsing in mean-convex mean curvature

flow. Geom. Topol., 16(3):1413–1418, 2012.



694 Kyeongsu Choi et al.

[AW94] S. Altschuler and L. Wu. Translating surfaces of the non-
parametric mean curvature flow with prescribed contact angle.
Calc. Var. Partial Differential Equations, 2(1):101–111, 1994.

[BC19] S. Brendle and K. Choi. Uniqueness of convex ancient solutions
to mean curvature flow in R

3. Invent. Math., 217(1):35–76, 2019.

[BC21] S. Brendle and K. Choi. Uniqueness of convex ancient solutions
to mean curvature flow in higher dimensions. Geom. Topol.,
25(5):2195–2234, 2021.

[BDNS23] S. Brendle, P. Daskalopoulos, K. Naff, and N. Sesum. Unique-
ness of compact ancient solutions to the higher-dimensional
Ricci flow. J. Reine Angew. Math., 795:85–138, 2023.

[BDS21] S. Brendle, P. Daskalopoulos, and N. Sesum. Uniqueness of com-
pact ancient solutions to three-dimensional Ricci flow. Invent.
Math., 226(2):579–651, 2021.

[BL17] T. Bourni and M. Langford. Type-II singularities of two-convex
immersed mean curvature flow. Geom. Flows, 2(1):1–17, 2017.

[BLT20] T. Bourni, M. Langford, and G. Tinaglia. On the existence
of translating solutions of mean curvature flow in slab regions.
Anal. PDE, 13(4):1051–1072, 2020.

[BN20] S. Brendle and K. Naff. Rotational symmetry of ancient solu-
tions to the Ricci flow in higher dimensions. arXiv:2005.05830,
2020.

[BN21] S. Brendle and K. Naff. A local noncollapsing estimate for mean
curvature flow. arXiv:2103.15641, 2021.

[Bre13] S. Brendle. Rotational symmetry of self-similar solutions to the
Ricci flow. Invent. Math., 194(3):731–764, 2013.

[Bre15] S. Brendle. A sharp bound for the inscribed radius under mean
curvature flow. Invent. Math., 202(1):217–237, 2015.

[Bre16] S. Brendle. Embedded self-similar shrinkers of genus 0. Ann. of
Math. (2), 183(2):715–728, 2016.

[Bre20] S. Brendle. Ancient solutions to the Ricci flow in dimension 3.
Acta Math., 225(1):1–102, 2020.

[CCK21] B. Choi, K. Choi, and S. Kim. Translating surfaces un-
der flows by sub-affine-critical powers of Gauss curvature.
arXiv:2104.13186, 2021.



Classification of noncollapsed translators in R
4 695

[Che76] S.-Y. Cheng. Eigenfunctions and nodal sets. Comment. Math.
Helv., 51(1):43–55, 1976.

[CHH21] K. Choi, R. Haslhofer, and O. Hershkovits. A nonexistence re-
sult for wing-like mean curvature flows in R

4. arXiv:2105.13100,
2021.

[CHH22] K. Choi, R. Haslhofer, and O. Hershkovits. Ancient low-entropy
flows, mean-convex neighborhoods, and uniqueness. Acta Math.,
228(2):217–301, 2022.

[CHHW22] K. Choi, R. Haslhofer, O. Hershkovits, and B. White. Ancient
asymptotically cylindrical flows and applications. Invent. Math.,
229(1):139–241, 2022.

[CHN13] J. Cheeger, R. Haslhofer, and A. Naber. Quantitative stratifi-
cation and the regularity of mean curvature flow. Geom. Funct.
Anal., 23(3):828–847, 2013.

[CM11] T. Colding and W. Minicozzi. A course in minimal surfaces, vol-
ume 121 of Graduate Studies in Mathematics. American Math-
ematical Society, Providence, RI, 2011.

[CM12] T. Colding and W. Minicozzi. Generic mean curvature flow I;
generic singularities. Ann. of Math. (2), 175(2):755–833, 2012.

[CM15] T. Colding and W. Minicozzi. Uniqueness of blowups and Lo-
jasiewicz inequalities. Ann. of Math. (2), 182(1):221–285, 2015.
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