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Existence of flips for generalized lc pairs

Christopher D. Hacon and Jihao Liu

We prove the existence of flips for Q-factorial NQC generalized lc
pairs, and the cone and contraction theorems for NQC generalized
lc pairs. This answers a conjecture of Han-Li-Birkar. As an im-
mediate application, we show that we can run the minimal model
program for Q-factorial NQC generalized lc pairs. In particular, we
complete the minimal model program for Q-factorial NQC gener-
alized lc pairs in dimension ≤ 3 and pseudo-effective Q-factorial
NQC generalized lc pairs in dimension 4.
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1. Introduction

We work over the field of complex numbers C, however many of the results
also hold over any algebraically closed field k of characteristic zero.

The theory of generalized pairs (g-pairs for short) was introduced by C.
Birkar and D.-Q. Zhang in [10] to tackle the effective Iitaka fibration con-
jecture. The structure of g-pairs naturally appears in the canonical bundle
formula and sub-adjunction formulas [31, 18]. This theory has been used
in an essential way in the proof of the Borisov-Alexeev-Borisov conjecture
[6, 8]. We refer the reader to [7] for a more detailed introduction to the
theory of g-pairs.

It has recently become apparent that the MMP for g-pairs is closely
related to the MMP for usual pairs and varieties. In particular, the MMP
for g-pairs has been used to prove the termination of pseudo-effective fourfold
flips [22, 12, 20]. For this, and other reasons, it is important to study the
minimal model program for generalized pairs. Although the MMP for gklt
(generalized klt) g-pairs behaves very similar to the MMP for usual klt pairs
([10, Lemma 4.4], [22, Lemma 3.4]), there are several non-trivial issues when
we study the MMP for glc (generalized lc) g-pairs: in order to complete the
minimal model program, we need
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1. the cone and the contraction theorems,

2. the existence of flips, and

3. the termination of flips.

For the usual lc pairs, we know (1) (cf. [29, 34, 33, 3, 17]) and (2) (cf.

[9, 5, 21]) completely. The difficult part for the MMP for usual pairs is (3)

as we only know the termination of flips in dimension ≤ 3 [30, 39] and some

special cases in dimension 4 [14, 15, 2, 4, 19, 20, 22, 12].

For glc g-pairs that are not gklt (more precisely, not even gdlt), the

situation is completely different. First of all, we usually need to add the NQC

(nef Q-Cartier combination) condition for technical reasons (cf. [22, Example

3.19]), however this is a natural assumption and is contained in the original

definition of g-pairs in [10]. Under the NQC assumption, the known results

on the termination of flips are similar to the usual pair case (in particular,

in full generality in dimension ≤ 3 [12] and in the pseudo-effective case in

dimension 4 [12, 20]). However, the cone theorem, contraction theorem, and

the existence of flips for glc g-pairs (cf. [7, 6.1] and [22, Conjectures 3.11,

3.12]), seem to be far more challenging.

In this paper, we prove the cone and the contraction theorems and the

existence of flips for Q-factorial NQC glc g-pairs in full generality, hence

answering [7, 6.1] and [22, Conjectures 3.11, 3.12]:

Theorem 1.1 (Cone and contraction theorems for generalized lc pairs).

Let (X,B,M)/U be an NQC glc g-pair and π : X → U the associated

morphism. Let {Rj}j∈Λ be the set of (KX+B+MX)-negative extremal rays

in NE(X/U) that are rational. Then:

1.

NE(X/U) = NE(X/U)KX+B+MX≥0 +
∑

j∈Λ
Rj .

In particular, any (KX+B+MX)-negative extremal ray in NE(X/U)

is rational.

2. Each Rj is spanned by a rational curve Cj such that π(Cj) = {pt} and

0 < −(KX +B +MX) · Cj ≤ 2 dimX.

3. For any ample/U R-divisor A on X,

ΛA := {j ∈ Λ | Rj ⊂ NE(X/U)KX+B+MX+A<0}
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is a finite set. In particular, {Rj}j∈Λ is countable, and is a discrete
subset in NE(X/U)KX+B+MX+A<0. Moreover, we may write

NE(X/U) = NE(X/U)KX+B+MX+A≥0 +
∑

j∈ΛA

Rj .

4. Let F be a (KX+B+MX)-negative extremal face in NE(X/U). Then
F is a rational extremal face.

5. Assume that MX is R-Cartier. Let F be a (KX + B +MX)-negative
extremal face in NE(X/U). Then there exists a projective morphism
contF : X → Y over U satisfying the following:

(a) Let C be an integral curve such that π(C) is a point. Then
contR(C) is a point if and only if [C] ∈ F .

(b) OY
∼= (contF )∗OX . In other words, contF is a contraction.

(c) Let L be a line bundle on X such that L · C = 0 for any C such
that [C] ∈ F . Then there exists a line bundle LY on Y such that
L ∼= f∗LY .

Theorem 1.2 (Existence of flips for generalized lc pairs). Let (X,B,M)/U
be a Q-factorial NQC glc g-pair and f : X → Z a (KX +B +MX)-flipping
contraction over U . Then the flip f+ : X+ → Z of f exists. Moreover, X+

is Q-factorial and ρ(X) = ρ(X+).

We add the assumption “Q-factorial” as it is a natural assumption which
always appears in the minimal model program, and it is well-known that the
non-Q-factorial minimal model program may behave very differently from
the Q-factorial case (cf. [16, 4.4]).

Theorems 1.1 and 1.2 imply that we can run MMP for any Q-factorial
NQC glc g-pair:

Theorem 1.3. We can run the MMP for Q-factorial NQC glc g-pairs.

Therefore, as long as we know the termination of flips, we can completely
establish the minimal model program for Q-factorial NQC glc g-pairs. In
particular, we have:

Theorem 1.4. The MMP for Q-factorial NQC glc g-pairs in dimension
≤ 3 holds, and the MMP for pseudo-effective Q-factorial NQC glc g-pairs in
dimension 4 holds.

Postscript remark. We refer the reader to [37, 41, 40] for further recent
progress on the MMP for generalized lc pairs.
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2. Preliminaries

We will freely use the notation and definitions from [35, 9]. For generalized
pairs, we will follow the definitions in [22] and the notation as in [27, 13].

Definition 2.1. Let a be a real number, X a normal variety, and D =∑
i diDi an R-divisor on X, where Di are the irreducible components of D.

We define D≤a :=
∑

i|di≤a diDi, D
=a :=

∑
i|di=a diDi, D

≥a :=
∑

i|di≥a diDi,

�D� :=
∑

i�di�Di, and {D} :=
∑

i{di}Di.

Definition 2.2. Let φ : X ��� Y be a birational map between normal
varieties. We let Exc(φ) be the union of the exceptional divisors of φ, and
usually identify Exc(φ) with the reduced exceptional divisor of φ. φ is called
a contraction if φ is a projective morphism and φ∗OX = OY .

Lemma 2.3 (cf. [9, Lemma 3.2.1]). Let K = Q or R. Let π : X → U be a
projective morphism between normal quasi-projective varieties. Let D be a
K-Cartier K-divisor on X and let D′ be its restriction to the generic fiber
of π.

If D′ ∼K B′ ≥ 0 for some K-divisor B′ on the generic fiber of π, then
D ∼K,U B ≥ 0 for some K-divisor B, such that B′ is the restriction of B to
the generic fiber of π.

Definition 2.4 (b-divisors). Let X be a normal quasi-projective variety.
We call Y a birational model over X if there exists a projective birational
morphism Y → X.

Let X ��� X ′ be a birational map. For any valuation ν over X, we
define νX′ to be the center of ν on X ′. A b-divisor D over X is a formal
sum D =

∑
ν rνν where ν are valuations over X and rν ∈ R, such that νX

is not a divisor except for finitely many ν. If in addition, rν ∈ Q for every
ν, then D is called a Q-b-divisor. The trace of D on X ′ is the R-divisor

DX′ :=
∑

νi,X′ is a divisor

riνi,X′ .

If DX′ is R-Cartier and DY is the pullback of DX′ on Y for any birational
model Y of X ′, we say that D descends to X ′, and also say that D is the
closure of DX′ , and write D = DX′ .

Let X → U be a projective morphism and assume that D is a b-divisor
over X such that D descends to some birational model Y over X. If DY

is nef/U , then we say that D is nef /U . If DY is a Cartier divisor, then we
say that D is b-Cartier. If DY is a Q-Cartier Q-divisor, then we say that D
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is Q-b-Cartier. If D can be written as an R≥0-linear combination of nef/U

b-Cartier b-divisors, then we say that D is NQC/U .

We let 0 be the b-divisor 0̄.

Definition 2.5. Let X → U be a projective morphism such that X is a

normal quasi-projective variety, U0 a non-empty open subset of U , and D

a b-divisor over X. We define a b-divisor D0 := D ×U U0 in the following

way. For any birational projective morphism Y 0 → X0 = X ×U U0, we

may assume that Y 0 = Y ×U U0 where Y → X is a birational projective

morphism. We let D0
Y 0 = DY |Y0

. It is easy to see that this definition is

independent of the choice of Y and defines a b-divisor.

It is easy to see that if W → X is a birational morphism such that D

descends to W , then D0 is the closure of DW ×U U0. Since base change is

compatible with pullbacks, D0 is well-defined and independent of the choice

of W . We also note that if D is nef/U , then D0 is nef/U0, and if D is

NQC/U , then D0 is NQC/U0.

Definition 2.6 (Generalized pairs). A generalized sub-pair (g-sub-pair for

short) (X,B,M)/U consists of a normal quasi-projective variety X associ-

ated with a projective morphism X → U , an R-divisor B on X, and a nef/U

b-divisor M over X, such that KX +B+MX is R-Cartier. If M is NQC/U ,

then we say that (X,B,M)/U is an NQC g-sub-pair. If B is a Q-divisor and

M is a Q-b-divisor, then we say that (X,B,M)/U is a Q-g-sub-pair.

If M = 0, a g-sub-pair (X,B,M)/U is called a sub-pair and is denoted

by (X,B) or (X,B)/U .

If U = {pt}, we usually drop U and say that (X,B,M) is projective. If

U is not important, we may also drop U .

A g-sub-pair (resp. NQC g-sub-pair, Q-g-sub-pair) (X,B,M)/U is called

a g-pair (resp. NQC g-pair, Q-g-pair) if B ≥ 0. A sub-pair (X,B) is called

a pair if B ≥ 0.

Definition 2.7 (Singularities of generalized pairs). Let (X,B,M)/U be

a g-(sub-)pair. For any prime divisor E and R-divisor D on X, we define

multE D to be the multiplicity of E along D. Let h : W → X be any log

resolution of (X, SuppB) such that M descends to W , and let

KW +BW +MW := h∗(KX +B +MX).

The log discrepancy of a prime divisor D on W with respect to (X,B,M)

is 1−multD BW and it is denoted by a(D,X,B,M).
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We say that (X,B,M) is (sub-)glc (resp. (sub-)gklt) if a(D,X,B,M) ≥ 0

(resp. > 0) for every log resolution h : W → X as above and every prime

divisor D on W .

We say that (X,B,M) is gdlt if (X,B,M) is glc, and there exists a

closed subset V ⊂ X, such that

1. X\V is smooth and BX\V is simple normal crossing, and

2. for any prime divisor E over X such that a(E,X,B,M) = 0,

centerX E 
⊂ V and centerX E\V is an lc center of (X\V,B|X\V ).

If M = 0 and (X,B,M) is (sub-)glc (resp, gklt, gdlt), we say that (X,B)

is (sub-)lc (resp. (klt, dlt).

Suppose that (X,B,M) is sub-glc. A glc place of (X,B,M) is a prime di-

visor E over X such that a(E,X,B,M) = 0. A glc center of (X,B,M) is the

center of a glc place of (X,B,M) on X. The non-gklt locus Ngklt(X,B,M)

of (X,B,M) is the union of all glc centers of (X,B,M). If M = 0, a glc

place (resp. a glc center, the non-gklt locus) of (X,B,M) will be called an

lc place (resp. an lc center, the non-klt locus) of (X,B), and we will denote

Ngklt(X,B,M) by Nklt(X,B).

We note that the definitions above are independent of the choice of U .

Theorem 2.8. Let (X,B,M)/U be a Q-factorial NQC glc g-pair such that

X is klt, and A ≥ 0 an ample/U R-divisor on X such that (X,B + A,M)

is glc and KX +B +A+MX is nef/U . Let

(X,B,M) := (X1, B1,M) ��� (X2, B2,M) ��� · · · ��� (Xi, Bi,M) ��� . . .

be a (KX+B+MX)-MMP/U with scaling of A, and let λi be the i-th scaling

number of this MMP for each i, i.e.

λi := inf{t | t ≥ 0,KXi
+Bi + tAi +MXi

is nef/U},

where Ai is the strict transform of A on Xi for each i. Then λi ≥ λi+1 for

each i, and one of the following holds:

1. This MMP terminates after finitely many steps.

2. limi→+∞ λi = 0, and (X,B,M) does not have a log minimal model

(see Definition 3.2 below).

In particular, if (X,B,M)/U is gdlt and has a log minimal model, then this

MMP terminates with log minimal model of (X,B,M)/U .
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Proof. By [22, Remark 3.25, Theorem 4.1], λi ≥ λi+1 for each i, and we may
assume that this MMP does not terminate and λi = λi+1 > 0 for any i � 0.
Let λ := limi→+∞ λi, then λi = λ > 0 for all i � 0. Since X is Q-factorial
klt, by [22, Lemma 3.4], we may pick

0 ≤ Δ ∼R,U B +MX +
λ

2
A

such that (X,Δ) is klt and Δ is big/U . Now this MMP is also a (KX +Δ)-
MMP with scaling of 0 ≤ A′ ∼R,U (1− λ

2 )A for some A′ such that (X,Δ+A′)
is klt. This MMP terminates by [9, Corollary 1.4.2], a contradiction.

The in particular part follows from the fact that (Xi, Bi,M) is Q-
factorial gdlt for each i if (X,B,M) is gdlt, and

a(D,X,B,M) < a(D,Xi, Bi,M)

for any i and any prime divisor D on X that is exceptional over Xi.

3. Models

In this sections, we will study different types of models of generalized pairs.
For the case of models of usual pairs, we refer the reader to [5, Section 2],
[25, Section 2].

3.1. Definitions

Definition 3.1 (Log smooth model). Let (X,B,M)/U be a glc g-pair and
h : W → X a log resolution of (X, SuppB) such that M descends to W . Let
BW ≥ 0 and E ≥ 0 be two R-divisors on W such that

1. KW +BW +MW = h∗(KX +B +MX) + E,
2. (W,BW ) is log smooth dlt,
3. E is h-exceptional, and
4. for any h-exceptional prime divisor D such that a(D,X,B,M) > 0,

D is a component of E.

Then (W,BW ,M) is called a log smooth model of (X,B,M).

Definition 3.2 (Models). Let (X,B,M)/U be a glc g-pair, φ : X ��� X ′

a birational map over U , and E := Exc(φ−1) the reduced φ−1-exceptional
divisor. Let B′ := φ∗B + E.

1. (X ′, B′,M)/U is called a log birational model of (X,B,M)/U .
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2. (X ′, B′,M)/U is called a weak glc model of (X,B,M)/U if

(a) (X ′, B′,M)/U is a log birational model of (X,B,M)/U ,

(b) KX′ +B′ +MX′ is nef/U , and

(c) for any prime divisor D on X which is exceptional over X ′,
a(D,X,B,M) ≤ a(D,X ′, B′,M).

3. (X ′, B′,M)/U is called a log minimal model of (X,B,M)/U if

(a) (X ′, B′,M)/U is a weak glc model of (X,B,M)/U ,

(b) (X ′, B′,M) is Q-factorial gdlt, and

(c) for any prime divisor D on X which is exceptional over X ′,
a(D,X,B,M) < a(D,X ′, B′,M).

4. (X ′, B′,M)/U is called a good minimal model of (X,B,M)/U if

(a) (X ′, B′,M)/U is a log minimal model of (X,B,M)/U , and

(b) KX′ +B′ +MX′ is semi-ample/U .

Definition-Lemma 3.3 ([22, Proposition 3.10]). Let (X,B,M)/U be a glc

g-pair. Then there exists a birational morphism f : Y → X and a glc g-pair

(Y,BY ,M)/U , such that

1. (Y,BY ,M) is Q-factorial gdlt,

2. KY +BY +MY = f∗(KX +B +MX), and

3. any f -exceptional divisor is a component of �BY �.

For any birational morphism f and (Y,BY ,M) which satisfies (1-3), f will

be called a gdlt modification of (X,B,M), and (Y,BY ,M) will be called a

gdlt model of (X,B,M).

3.2. Models under some birational maps

Lemma 3.4. Let (X,B,M)/U be a glc g-pair, (X ′, B′,M)/U a weak glc

model of (X,B,M)/U with birational map φ : X ��� X ′, and p : W → X

and q : W → X ′ a common resolution of (X,B,M) and (X ′, B′,M) such

that q = φ ◦ p. Assume that

p∗(KX +B +MX) = q∗(KX′ +B′ +MX′) + E,

then E ≥ 0 is exceptional over X ′.
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Proof. For any prime divisor D that is an irreducible component of E,

multD E = a(D,X ′, B′,M)− a(D,X,B,M).

Thus if D is not exceptional over X, then

• if D is not exceptional over X ′, then multD E = 0, and

• if D is exceptional over X ′, then multD E ≥ 0 by Definition 3.2(2.c).

Therefore, p∗E ≥ 0. Since KX′ + B′ +MX′ is nef/U , q∗(KX′ + B′ +MX′)

is nef/X, hence E is anti-nef/X. By the negativity lemma, E ≥ 0.

If E is not exceptional over X ′, then there exists a component D of

E that is not exceptional over X ′. If D is not exceptional over X, then

multD E = 0, a contradiction. Thus D is exceptional over X. By the defini-

tion of weak glc models, a(D,X ′, B′,M) = 0. Since E ≥ 0, a(D,X,B,M) ≤
a(D,X,B′,M) = 0. Since (X,B,M)/U is a glc g-pair, a(D,X,B,M) ≥ 0.

Thus a(D,X,B,M) = 0, which implies that multD E = 0, a contradic-

tion.

Lemma 3.5. Let (X,B,M)/U be a glc g-pair. Let (X1, B1,M)/U and

(X2, B2,M)/U be two weak glc models of (X,B,M)/U with induced bira-

tional map φ : X1 ��� X2, and g1 : W → X1 and g2 : W → X2 a common

resolution such that φ ◦ g1 = g2. Then:

1.

g∗1(KX1
+B1 +MX1

) = g∗2(KX2
+B2 +MX2

).

In particular, if KX2
+B2 +MX2

is ample/U , then φ is a morphism.

2. If KX1
+ B1 + MX1

is semi-ample/U , then for any weak glc model

(X ′, B′,M)/U of (X,B,M)/U , KX′ +B′ +MX′ is semi-ample/U .

Proof. Let φ1 : X ��� X1 and φ2 : X ��� X2 be the induced birational

maps. Possibly replacing W , we may assume that the induced birational

map h : W → X is a morphism. Let

Ei := h∗(KX +B +MX)− g∗i (KXi
+Bi +MXi

)

for i ∈ {1, 2}. By Lemma 3.4, Ei ≥ 0 and is exceptional overXi for i ∈ {1, 2}.
Thus g1,∗(E2 − E1) ≥ 0 and E1 − E2 is nef/X1, and g2,∗(E1 − E2) ≥ 0 and

E2−E1 is nef/X2. By the negativity lemma, E2−E1 ≥ 0 and E1−E2 ≥ 0.

Thus E1 = E2, which implies (1). (2) immediately follows from (1).
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Lemma 3.6. Let (X,B,M)/U be a glc g-pair, h : W → X a log resolution
of (X, SuppB) such that M descends to W , and (W,BW ,M) a log smooth
model of (X,B,M). Then any weak glc model (resp. log minimal model, good
minimal model) of (W,BW ,M)/U is a weak glc model (resp. log minimal
model, good minimal model) of (X,B,M)/U .

Proof. Since (W,BW ,M) is a log smooth model of (X,B,M), we may write

KW +BW +MW = h∗(KX +B +MX) + E

for some E ≥ 0 that is h-exceptional.

Claim 3.7. Let (X ′, B′,M)/U be a weak glc model of (W,BW ,M)/U . Then
a(D,X,B,M) ≤ a(D,X ′, B′,M) for any prime divisor D over X.

Proof. Let φW : W ��� X ′ be the induced birational map, and let p : V →
W and q : V → X ′ be a common resolution such that q = φW ◦ p. By
Lemma 3.4,

p∗(KW +BW +MW ) = q∗(KX′ +B′ +MX′) + F

for some F ≥ 0 that is exceptional over X ′. Then we have

p∗h∗(KX +B +MX) = q∗(KX′ +B′ +MX′) + F − p∗E,

thus

p∗E − F ∼R,X q∗(KX′ +B′ +MX′)

is nef/X. Since h∗p∗(F − p∗E) = h∗p∗F ≥ 0, by the negativity lemma,
F ≥ p∗E. Thus a(D,X,B,M) ≤ a(D,X ′, B′,M) for any prime divisor D
over X or X ′.

Proof of Lemma 3.6 continued. First we prove the weak glc model case.
Let (X ′, B′,M)/U be a weak glc model of (W,BW ,M)/U with induced
birational map φW : W ��� X ′. We check Definition 3.2(2) for (X,B,M)/U
and (X ′, B′,M)/U . Definition 3.2(2.b) holds by construction. For any prime
divisor D on X which is exceptional over X ′, h−1

∗ D is a prime divisor on W
which is exceptional over X ′. Thus

a(D,X,B,M) = a(D,W,BW ,M) ≤ a(D,X ′, B′,M),

and we have Definition 3.2(2.c). We are only left to show that (X ′, B′,M)/U
is a log birational model of (X,B,M)/U . Let φ : X ��� X ′ be the induced
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morphism and B′′ := φ∗B + Exc(φ−1), then we only need to show that
B′ = B′′. By construction, B′ = (φW )∗BW + Exc(φ−1

W ). Let D be a prime
divisor on X ′. There are three cases:

Case 1. D is not exceptional over X. In this case,

1−multD B′′ = a(D,X ′, B′′,M) = a(D,X,B,M)

= a(D,W,BW ,M) = a(D,X ′, B′,M) = 1−multD B′,

so multD B′ = multD B′′.

Case 2. D is exceptional over W . In this case, D is a component of Exc(φ−1
W )

and a component of Exc(φ−1), hence

multD B′ = 1 = multD B′′.

Case 3. D is exceptional over X but not exceptional over W . In this case,

1−multD B′ = a(D,X ′, B′,M) = a(D,W,BW ,M).

Since E ≥ 0, a(D,W,BW ,M) ≤ a(D,X,B,M). By Claim 3.7,

a(D,X,B,M) ≤ a(D,X ′, B′,M).

Thus

a(D,X,B,M) = a(D,X ′, B′,M) = a(D,W,BW ,M).

By Definition 3.1(4),

a(D,X,B,M) = a(D,X ′, B′,M) = a(D,W,BW ,M) = 0,

which implies that

multD B′ = 1 = multD Exc(φ−1) = multD B′′.

Thus B′ = B′′, so (X ′, B′,M)/U is a log birational model of (X,B,M)/U ,
and we have proved the weak glc model case.

Next we prove the log minimal model case. Let (X ′, B′,M)/U be a
log minimal model of (W,BW ,M)/U . We will check Definition 3.2(3) for
(X,B,M)/U and (X ′, B′,M)/U . Definition 3.2(3.a) follows from (1). Defi-
nition 3.2(3.b) is immediate from the construction. For any prime divisor D
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on X which is exceptional over X ′, f−1
∗ D is a prime divisor on W which is

exceptional over X ′. Thus

a(D,X,B,M) = a(D,W,BW ,M) < a(D,X ′, B′,M).

so we get Definition 3.2(3.c), and we have the log minimal model case.
The good minimal model case follows immediately from the log minimal

model case.

3.3. Models under pullbacks

Lemma 3.8. Let (X,B,M)/U be a glc g-pair. If (X,B,M)/U has a weak
glc model, then (X,B,M)/U has a log minimal model.

Proof. Let (X ′, B′,M)/U be a weak glc model of (X,B,M)/U . Let h :
W → X be a log resolution of (X, SuppB) such that the induced map
φW : W → X ′ is a morphism, and M descends to W . We may write

KW +BW +MW = h∗(KX +B +MX) + E

for some log smooth pair (W,BW ), such that BW := h−1
∗ B + Exc(h) and

E ≥ 0 is exceptional over X. Then (W,BW ,M) is a log smooth model of
(X,B,M). By Lemma 3.4, we have

h∗(KX +B +MX) = φ∗
W (KX′ +B′ +MX′) +G

where G ≥ 0 is exceptional over X ′. Thus

KW +BW +MW ∼R,X′ G+ E.

Claim 3.9. E is exceptional over X ′.

Proof. Let D be a component of E. Then a(D,X,B,M) > 0 and D is
exceptional over X.

Assume that D is not exceptional over X ′. Since (X ′, B′,M)/U is a
log birational model of (X,B,M)/U , a(D,X ′, B′,M) = 0. Since G ≥ 0,
a(D,X,B,M) ≤ a(D,X ′, B′,M). Thus a(D,X,B,M) = 0, hence D is not
a component of E, a contradiction.

Proof of Lemma 3.8 continued. By Claim 3.9, G+E is exceptional over X ′.
By [22, Proposition 3.9], we may run a (KW + BW +MW )-MMP/X ′ with
scaling of a general ample/X ′ divisor, which terminates with a model Y such



Existence of flips for generalized lc pairs 807

that KY +BY +MY ∼R,X′ 0, where BY is the strict transform of B on Y .
By the negativity lemma, KY +BY +MY is the pullback of KX′+B′+MX′ .
Thus KY + BY + MY is nef/U . Since (W,BW ,M) is Q-factorial gdlt and
W ��� Y is a (KW +BW +MW )-MMP/X ′, (Y,BY ,M) is Q-factorial gdlt.
Thus (Y,BY ,M)/U is a log minimal model of (W,BW ,M)/U . The lemma
follows from Lemma 3.6.

Lemma 3.10. Let (X,B,M)/U and (Y,BY ,M)/U be two glc g-pairs, and
f : Y → X a projective birational morphism such that

KY +BY +MY = f∗(KX +B +MX) + E

for some E ≥ 0 that is exceptional over X. Then

1. any weak glc model of (X,B,M)/U is a weak glc model of
(Y,BY ,M)/U , and

2. if (X,B,M)/U has a weak glc model (resp. log minimal model, good
minimal model), then (Y,BY ,M)/U has a weak glc model (resp. log
minimal model, good minimal model).

Proof. (1) Let (X ′, B′,M)/U be a weak glc model of (X,B,M)/U , φ :
X ��� X ′ the induced birational map, and φY := φ ◦ f . Let p : W → Y and
q : W → X ′ be a common resolution and let h := f ◦ p. By Lemma 3.4,

h∗(KX +B +MX) = q∗(KX′ +B′ +MX′) + F

for some F ≥ 0 that is exceptional over X ′. Thus

p∗(KY +BY +MY ) = q∗(KX′ +B′ +MX′) + p∗E + F.

Thus a(D,Y,BY ,M) ≤ a(D,X ′, B′,M) for any prime divisor D over X ′. In
particular, if a(D,X ′, B′,M) = 0, then a(D,Y,BY ,M) = 0.

Since (X ′, B′,M)/U is a log birational model of (X,B,M)/U , B′ =
φ∗B + Exc(φ−1). Let B′′ := (φY )∗BY + Exc(φ−1

Y ). For any prime divisor D
on X ′, there are two cases:

Case 1. D is not exceptional over X. In this case,

1−multD B′ = a(D,X ′, B′,M) = a(D,X,B,M)

= a(D,Y,BY ,M) = a(D,X ′, B′′,M) = 1−multD B′′,

so multD B′ = multD B′′.
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Case 2. D is exceptional over X. In this case,

a(D,X ′, B′,M) = 1−multD B′ = 0.

Since a(D,Y,BY ,M) ≤ a(D,X ′, B′,M), a(D,Y,BY ,M) = 0. Thus if D is
not exceptional over Y , then

multD B′′ = multD BY = 1− a(D,Y,BY ,M) = 1 = multD B′,

and if D is exceptional over Y , then

multD B′′ = multD Exc(φ−1
Y ) = 1 = multD B′.

Thus B′ = B′′, hence (X ′, B′,M)/U is a log birational model of
(Y,BY ,M)/U . Since KX′ + B′ + MX′ is nef/U , and a(D,Y,BY ,M) ≤
a(D,X ′, B′,M) for any prime divisor D over X ′, (X ′, B′,M)/U is a weak
glc model of (Y,BY ,M)/U , and we get (1).

(2) follows from (1) and Lemmas 3.8 and 3.5.

Lemma 3.11. Let (X,B,M)/U and (Y,BY ,M)/U be two NQC glc g-pairs
and let f : Y → X be a projective birational morphism such that

1. KY +BY +MY = f∗(KX +B +MX), and
2. for any prime f -exceptional divisor E, a(E,X,B,M) = 0.

Then (X,B,M)/U has a weak glc model (resp. log minimal model, good
minimal model) if and only if (Y,BY ,M)/U has a weak glc model (resp. log
minimal model, good minimal model).

Proof. By Lemma 3.10 we only need to prove the if part. Notice that as
a(D,X,B,M) = a(D,Y,BY ,M) for any prime divisor D over X and f−1

does not contract any divisor, we only need to show that any log bira-
tional model (X ′, B′,M)/U of (Y,BY ,M)/U is also a log birational model
of (X,B,M)/U . In this case, if (X ′, B′,M)/U is a weak glc model (resp. log
minimal model, good minimal model) of (Y,BY ,M)/U then (X ′, B′,M)/U
will also be a weak glc model (resp. log minimal model, good minimal model)
of (X,B,M)/U .

Let (X ′, B′,M)/U be a log birational model of (Y,BY ,M)/U with in-
duced birational maps φY : Y ��� X ′ and φ : X ��� X ′. Let B′′ :=
φ∗B +Exc(φ−1), then for any prime divisor D on X ′, there are three cases:

Case 1. D is not exceptional over X. In this case,

1−multD B′′ = a(D,X ′, B′′,M) = a(D,X,B,M)
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= a(D,Y,BY ,M) = a(D,X ′, B′,M) = 1−multD B′,

so multD B′ = multD B′′.

Case 2. D is exceptional over Y . In this case, D is a component of Exc(φ−1
Y )

and a component of Exc(φ−1), hence

multD B′ = 1 = multD B′′.

Case 3. D is exceptional over X but not exceptional over Y . In this case,
a(D,X,B,M) = a(D,Y,BY ,M) = 0. Thus

multD B′ = 1− a(D,X ′, B′,M) = 1− a(D,Y,BY ,M)

= 1 = multD Exc(φ−1) = multD B′′.

ThusB′=B′′, so (X ′, B′,M)/U is a log birational model of (X,B,M)/U ,
and the lemma follows.

4. A special good minimal model

In this section we prove the following theorem. When M = 0, it is [25,
Theorem 1.2] ([21, Theorem 1.1] for the Q-pair case).

Theorem 4.1. Let (X,B,M)/U be an NQC glc g-pair and U0 ⊂ U a
non-empty open subset. Let X0 := X ×U U0, B0 := B ×U U0, and M0 :=
M×U U0. Assume that

1. the morphism X → U is a projective morphism between normal quasi-
projective varieties,

2. (X0, B0,M0)/U0 has a good minimal model,
3. all glc centers of (X,B,M) intersect X0, and
4. M0 descends to X0 and M0

X0 ∼R,U0 0.

Then (X,B,M)/U has a good minimal model.

We need the following two lemmas:

Lemma 4.2. Let Let (X,B,M)/U be a Q-factorial NQC gdlt g-pair. As-
sume that there exists a non-empty open subset U0 ⊂ U , such that

1. the image of any strata of S := �B� in U intersects U0, and
2. M0 := M×U U0 descends to X0 := X ×U U0 and M0

X0 ∼R,U0 0.
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Then there exists an R-divisor 0 ≤ G ∼R,U MX such that (X,B + G) is lc
and Nklt(X,B +G) = Ngklt(X,B,M).

Proof. By the theory of Shokurov-type rational polytopes (cf. [22, Proposi-
tion 3.20]) and the theory of uniform rational polytopes (cf. [23, Lemma 5.3],
[11, Theorem 1.4]), we may assume that (X,B,M) is a Q-g-pair. Possibly
shrinking U0, we may assume that U0 is affine.

By [33, Proposition 6-1-3, Remark 6-1-4] (see also [38, Lemma 6]) and
standard semi-stable reduction arguments (cf. [1], [28, Theorem B.6], [32,
Theorem 2], [25, Step 2 of Proof of Lemma 3.2]), we may let f : X ′ → X be
a resolution with morphisms π′ : X ′ → U ′ and ϕ : U ′ → U , such that

• M descends to X ′.
• We may write

KX′ +BX′ +MX′ = f∗(KX +B +MX) + EX′ ,

where BX′ , EX′ ≥ 0, BX′ ∧ EX′ = 0, (X ′, Supp(BX′ + EX′)) is quasi-
smooth.

• p := π◦f = ϕ◦π′ : X ′ → U where U ′ is smooth, π′ and ϕ are projective,
f is birational, and π′ has connected equidimensional fibers.

We show that there is a ϕ-nef Q-divisor MU ′ on U ′ such that MX′ ∼Q,U

π′∗MU ′ . By our construction, MX′ |X′
η
∼Q 0 where X ′

η is the generic fiber
of p. Thus MX′ ∼Q 0 over the generic point ηU ′ of U ′. By Lemma 2.3,
MX′ ∼Q,U ′ D where D ≥ 0 is vertical over U ′. Since π′ is equidimensional,
π′(D) is a Q-divisor on U ′. Since U ′ is smooth, for any prime divisor P on
U ′, we may define

νP := sup{ν | ν ≥ 0, D − νπ′∗P ≥ 0},

then νP > 0 for only finitely many prime divisors P on U ′. Let D′ :=
D − π′∗(

∑
P νPP ), then MX′ ∼Q,U ′ D′ ≥ 0 and D′ is very exceptional

over U . By the general negativity lemma [5, Lemma 3.3], MX′ ∼Q,U ′ 0. In
particular, since MX′ is nef/U , MX′ ∼Q,U π′∗MU ′ for some Q-divisor MU ′

that is nef/U .
Let X ′0 := X ′ ×U U0 and U ′0 := U ′ ×U U0. Since MX′ |X′0 ∼Q,U0 0, we

have that MU ′0 := MU ′ |U ′0 ∼Q,U0 0.
To prove the claim it suffices to show that for a general element G′ ∈

|MX′/U |Q, the pair (X ′, BX′ + G′) is lc and its lc centers coincide with
the lc centers of (X ′, BX′), i.e. the strata of �BX′�. If this is the case, then
(X ′, BX′ −EX′ +G′) is sub-lc and KX′ +BX′ −EX′ +G′ ∼Q f∗(KX+B+G)
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where G = f∗G′ ∈ |MX/U |Q and (X,B + G) is log canonical and its log
canonical places coincide with the glc places of (X,B,M).

Let E ≥ 0 be an effective divisor on U ′ such that −E is ample over U
(note that E is not necessarily exceptional, but its support can be chosen to
avoid any point not in the exceptional locus). It follows that |MU ′/U |Q ⊃
|MU ′ − εE/U |Q+ εE. Since MU ′ − εE is ample over U , for a general element
G′ ∈ |MX′/U |Q we have that the set of nklt places of (X ′, BX′ + G′) are
contained in the set of nklt places of (X ′, BX′ + επ′∗E). Thus, the only
non-klt centers of (X ′, BX′ +G′) are strata of �BX′�.

To prove the claim, it suffices to show that the support of a general
element G′ ∈ |MX′/U |Q does not contain any stratum S′ of �BX′� or equiv-
alently that there exist one element G′ ∈ |MX′/U |Q whose support does
not contain any given stratum S′ of �BX′�. Note that f(S′) is a glc cen-
ter of (X,B,M). As (X,B,M) is gdlt, its glc centers are the strata of �B�
which intersect X0 by assumption. Pick a point x ∈ f(S′) ∩ X0 and let
u = π(x) ∈ U0 and u′ ∈ U ′0 such that ϕ(u′) = u. Since MU ′0 ∼Q,U0 0, we
have that mMU ′0 ∼U0 0 for some integer m > 0. It follows that OU ′(mMU ′)
is generated over U0 i.e. ϕ∗ϕ∗OU ′(mMU ′)|U ′0 → OU ′(mMU ′)|U ′0 is surjec-
tive. Since ϕ∗OU ′(mMU ′)⊗OU (H) is globally generated for any sufficiently
ample line bundle H on U , then OU ′(mMU ′ + ϕ∗H) is globally generated
at any point of U ′0. In particular we can pick a divisor Γ ∈ |mMU ′ + ϕ∗H|
whose support does not contain u′. If G′ = π′∗Γ/m ∼Q,U MX′ , then the
support of G′ does not contain S′, and this concludes the proof.

Lemma 4.3. Let (X,B,M)/U and (X,B′,M′)/U be two NQC glc g-pairs,
f : Y → X a birational morphism, KY + BY +MY := f∗(KX + B +MX)
and KY + B′

Y + M′
Y := f∗(KX + B′ + M′

X), such that Y is Q-factorial
klt, (Y,BY ,M)/U and (Y,B′

Y ,M
′)/U are glc g-pairs, and a(E,X,B,M) =

a(E,X,B′,M′) = 0 for any prime f -exceptional divisor E.
Assume that there exists a positive real number r such that KX + B +

MX ∼R,U r(KX +B′+M′
X). Then (X,B,M)/U has a good minimal model

if and only if (X,B′,M′) has a good minimal model.

Proof. Let AY be a general ample/U divisor on Y such that (Y,BY +
AY ,M)/U and (Y,B′

Y + AY ,M
′)/U are glc, and KY + BY + AY + MY

and KY +B′
Y + rAY +M′

Y are nef/U .
Without loss of generality, we may assume that (X,B,M)/U has a good

minimal model and only need to show that (X,B′,M′)/U has a good mini-
mal model. By Lemma 3.11, (Y,BY ,M)/U has a good minimal model. By
Theorem 2.8 and Lemma 3.5(2), we may let φ : Y ��� Z be a (KY + BY +
MY )-MMP/U with scaling of AY , such that (Z,BZ ,M)/U is a weak glc
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model of (Y,BY ,M)/U and KZ +BZ +MZ is semi-ample/U , where BZ is
the strict transform of BY on Z. Then φ is also a (KY +B′

Y +M′
Y )-MMP/U

with scaling of rAY . We let B′
Z be the strict transform of B′

Y on Z, then
KZ +BZ +MZ ∼R,U r(KZ +B′

Z +M′
Z). Thus (Z,B

′
Z ,M

′)/U is a weak glc
model of (Y,B′

Y ,M
′)/U and KZ +B′

Z +M′
Z is semi-ample/U . By Lemmas

3.8 and 3.5(2), (Y,B′
Y ,M

′) has a good minimal model. By Lemma 3.11,
(X,B′,M′)/U has a good minimal model.

Proof of Theorem 4.1. By Definition-Lemma 3.3 and Theorem 3.11, pos-
sibly replacing (X,B,M) with a gdlt modification, we may assume that
(X,B,M) is Q-factorial gdlt. By Lemma 4.2, we may find an R-divisor 0 ≤
G ∼R MX such that (X,B+G) is lc and Nklt(X,B+G) = Ngklt(X,B,M).
By [25, Theorem 1.2] (see also [21, Theorem 1.1]), (X,B+G)/U has a good
minimal model. By Lemma 4.3, (X,B,M)/U has a good minimal model.

5. Base-point-free, contraction, and cone theorems for
generalized pairs

In this section, we prove Theorem 1.1. For the reader’s convenience, we
will prove Theorem 1.1(1-4) (the cone theorem) and Theorem 1.1(5) (the
contraction theorem) separately, and we will also prove a base-point-free
theorem, stated as follows:

Theorem 5.1 (Base-point-free theorem for glc g-pairs). Let (X,B,M)/U
be an NQC glc g-pair and π : X → U the associated projective morphism.
Assume that MX is R-Cartier. Let L be a π-nef Cartier divisor on X such
that L−(KX+B+MX) is π-ample. Then mL is π-generated for any integer
m � 0.

5.1. Preliminary results on non-lc pairs

Before we give the proof, let us first recall some results on non-lc pairs.

Definition 5.2. Let (X,Δ) be a sub-pair. A non-lc place of (X,Δ) is a
prime divisor D over X such that a(D,X,Δ) < 0. A non-lc center of (X,Δ)
is the center of a non-lc place of (X,Δ) on X. The non-lc locus Nlc(X,Δ)
of (X,Δ) is the union of all non-lc centers of (X,Δ).

Definition 5.3 (cf. [3, Definition 5.2], [17, Theorem 4.5.2(1), Definition
6.7.1]). Let (X,Δ) be a (not necessarily lc) pair. We define

NE(X/U)Nlc(X,Δ) := Im(NE(Nlc(X,Δ)/U) → NE(X/U)).
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Definition 5.4 (cf. [3, Definition 5.3], [17, Definition 6.7.2]). Let (X,Δ) be
a (not necessarily lc) pair, π : X → U a projective morphism, and F an

extremal face of NE(X/U).

1. A supporting function of F is a π-nef R-divisor H such that F =

NE(X/U)∩H⊥. If H is a Q-divisor, we say that H is a rational sup-
porting function. Since F is an extremal face of NE(X/U), F always
has a supporting function.

2. For any R-Cartier R-divisor D on X, we say that F is D-negative if

F ∩NE(X/U)D≥0 = {0}.

3. We say that F is rational if F has a rational supporting function.
4. We say that F is relatively ample at infinity with respect to (X,Δ) if

F ∩NE(X/U)Nlc(X,Δ) = {0}.

Equivalently, H|Nlc(X,Δ) is π|Nlc(X,Δ)-ample for any supporting func-
tion H of F .

5.2. Proof of the cone theorem

In this subsection, we prove the cone theorem (Theorem 1.1(1-4)). We first
prove a useful lemma which allows us to associate a (not necessarily lc) pair
to a glc g-pair.

Lemma 5.5. Let (X,B,M)/U be a glc g-pair and A a nef and big/U R-
divisor on X. Then there exists a pair (X,Δ), such that

1. Δ ∼R,U B +MX +A, and
2. Nlc(X,Δ) = Ngklt(X,B,M).

Proof. Let h : W → X be a log resolution of (X, SuppB) such that M

descends to W , and suppose that

KW +BW +MW = h∗(KX +B +MX)

for some sub-glc g-sub-pair (W,BW ,M)/U . Since MW is nef/U , MW +h∗A
is nef and big/U . Thus there exists an R-divisor E ≥ 0 such that

MW + h∗A = Hn +
1

n
E
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for any positive integer n and some ample/U R-divisors Hn on W . Since
h : W → X is a log resolution of (X, SuppB), we may pick n � 0 such that
Nlc(W,BW + 1

nE) ⊂ SuppB=1
W . In particular, for any positive real number

ε, Nlc(W,BW + εB=1
W + 1

nE) = SuppB=1
W .

Now we may pick a real number 0 < ε0 � 1 such that Hn − ε0B
=1
W is

ample/U . Then we may pick 0 ≤ AW ∼R,U Hn−ε0B
=1
W such that (W,ΔW :=

BW + ε0B
=1
W + 1

nE + AW ) is a sub-pair and Nlc(W,ΔW ) = SuppB=1
W . The

pair (X,Δ := h∗ΔW ) satisfies our requirements.

Lemma 5.6. Let d ≥ 2 be an integer. Assume Theorem 1.1(1-4) in dimen-
sion ≤ d− 1.

Let (X,B,M)/U be an NQC glc g-pair of dimension d and π : X → U
the associated projective morphism. Let A be an ample/U R-divisor on X
and {Rj}j∈Λ′

A
the set of (KX + B +MX + A)-negative extremal rays (that

are not necessarily rational) in NE(X/U). Then:

1. Λ′
A is a finite set. In particular,

NE(X/U) = NE(X/U)KX+B+MX+A≥0 +
∑

j∈Λ′
A

Rj .

2. For any j ∈ Λ′
A, Rj is spanned by a rational curve Cj such that

π(Cj) = {pt} and

0 < −(KX +B +MX +A) · Cj ≤ 2 dimX.

Proof. By Lemma 5.5, we may pick 0 ≤ Δ ∼R,U B + MX + A such that
Nlc(X,Δ) = Ngklt(X,B,M).

For any glc center W̃ of (X,B,M) with normalization W → W̃ , we let
(W,BW ,MW )/U be the NQC glc g-pair given by the sub-adjunction

KW +BW +MW
W ∼R (KX +B +MX)|W

as in [24, Theorem 5.1], and let AW := A|W . By Theorem 1.1(1-4) in di-
mension ≤ d− 1, we have

NE(W/U) = NE(W/U)KW+BW+MW
W+AW≥0 +

∑

j∈ΛAW

Rj,W ,

where {Rj,W }j∈ΛAW
is the set of (KW +BW +MW

W +AW )-negative extremal

rays in NE(W/U) that are rational, where ΛAW
is a finite set. For any
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j ∈ ΛAW
, we let Rj be the image of Rj,W in X under the map

∪WNE(W/U) → NE(Nlc(X,Δ)/U) → NE(X/U)

and let Λ0
A := ∪WΛAW

. Then Λ0
A is a finite set. Finally, we let {Rj}j∈Λ1

A
be

the set of (KX +B+MX +A)-negative extremal rays in NE(X/U) that are
relatively ample at infinity with respect to (X,Δ). By [3, Theorem 5.10(ii)],
[17, Theorems 4.5.2(3), 6.7.4(2)], Λ1

A is a finite set.

Claim 5.7.

NE(X/U) = NE(X/U)KX+B+MX+A≥0 +
∑

j∈Λ0
A

Rj +
∑

j∈Λ1
A

Rj .

Proof. For simplicity, we let

V := NE(X/U)KX+B+MX+A≥0 +
∑

j∈Λ0
A

Rj +
∑

j∈Λ1
A

Rj .

For any curve C on X, we will write [C] for its class in NE(X/U), and for
any glc center W̃ of (X,B,M) with normalization W , if C ⊂ W , then we
will write [C]W for its class in NE(W/U).

Suppose thatNE(X/U) 
= V . By [3, Theorem 5.10], [17, Theorems 4.5.2,
6.7.4], we have

NE(X/U) = NE(X/U)KX+B+MX+A≥0 +NE(X/U)Nlc(X,Δ) +
∑

j∈Λ1
A

Rj .

Thus there exists an integral curve C ⊂ Nlc(X,Δ) = Ngklt(X,B,M), such
that [C] is not contained in V . We may write

C =
∑

W |W is a glc center of (X,B,M)

CW ,

where each CW is an integral curve in W . For any CW , we have

[CW ]W = c0WR0
W +

∑

j∈ΛAW

cj,WRj,W

where c0W and each cj,W are non-negative real numbers, and

R0
W ∈ NE(W/U)KW+BW+MW

W+AW≥0.
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Since the image of R0
W in X is contained in NE(X/U)KX+B+MX+A≥0, [CW ]

is contained in NE(X/U)KX+B+MX+A≥0 +
∑

j∈Λ0
A
Rj . Thus [CW ] is con-

tained in V , hence [C] is contained in V , a contradiction.

Proof of Lemma 5.6 continued. By Claim 5.7, any (KX + B + MX + A)-
negative extremal ray in NE(X/U) must be contained in {Rj}j∈Λ0

A∪Λ1
A
, so

Λ′
A ⊂ Λ0

A ∪ Λ1
A. Since Λ0

A ∪ Λ1
A is a finite set, Λ′

A is a finite set, and we
get (1).

By Theorem 1.1(1-4) in dimension ≤ d − 1, for any j ∈ ΛAW
, Rj,W is

spanned by a rational curve Cj such that the image of Cj in U is a point,
and

0 < −(KW +BW +MW
W +AW ) · Cj ≤ 2 dimW < 2 dimX.

Therefore, for any j ∈ Λ0
A = ∪WΛAW

, Rj is spanned by the curve Cj such
that π(Cj) = {pt} and

0 < −(KX +B +MX +A) · Cj ≤ 2 dimX.

By [17, Theorems 4.5.2(5)], for any j ∈ Λ1
A, Rj is spanned by a rational

curve Cj such that π(Cj) = {pt} and

0 < −(KX +B +MX +A) · Cj ≤ 2 dimX.

Thus (2) holds and the proof is complete.

Lemma 5.8. Let d ≥ 2 be an integer. Assume Theorem 1.1(1-4) in dimen-
sion ≤ d− 1.

Let (X,B,M)/U be an NQC glc g-pair of dimension d and π : X → U
the associated projective morphism. Let A be an ample/U R-divisor on X
and {Rj}j∈ΛA

the set of (KX + B + MX + A)-negative extremal rays in
NE(X/U) that are rational. Then ΛA is a finite set, and

NE(X/U) = NE(X/U)KX+B+MX+A≥0 +
∑

j∈ΛA

Rj .

Proof. Let Λ′
A be the set of (KX +B +MX +A)-negative extremal rays in

NE(X/U) (that are not necessarily rational). By Lemma 5.6, Λ′
A is a finite

set. Possibly perturbing the coefficients, by the theory of Shokurov-type
rational polytopes (cf. [22, Proposition 3.20]), and the theory of uniform
rational polytopes (cf. [23, Lemma 5.3], [11, Therem 1.4]), we may assume
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that (X,B,M)/U is a Q-g-pair and A is a Q-divisor. Moreover, ΛA ⊂ Λ′
A is

a finite set.
For simplicity, we let V := NE(X/U)KX+B+MX+A≥0 +

∑
j∈ΛA

Rj . Sup-

pose that V 
= NE(X/U). Since dimR N1(X/U) ≥ 2, there exists a Cartier
divisor N on X satisfying the following:

• N is not numerically equivalent to a multiple of KX + B +MX + A
over U ,

• N is positive on V \{0}, and
• N · z0 < 0 for some z0 ∈ NE(X/U).

Let Q be the dual cone of NE(X/U)KX+B+MX+A≥0, i.e.,

Q = {D ∈ N1(X/U) | D · z ≥ 0 for any z ∈ NE(X/U)KX+B+MX+A≥0},

then Q is generated by π-nef divisors and KX + B + MX + A. Since N
is positive on NE(X/U)KX+B+MX+A≥0\{0}, N is in the interior of Q. By
Kleiman’s Criterion, there exists an ample/U Q-divisor H on X and a pos-
itive real number p, such that

N = H + p(KX +B +MX +A).

Since N · z0 < 0 and H is ample/U , we may let

t := sup{s | H + s(KX +B +MX +A) is nef/U}.

Then 0 < t < p. Since (H + t(KX + B + MX + A)) · z ≥ 0 for any z ∈
NE(X/U)KX+B+MX+A≥0, by Lemma 5.6,

t = max{s | (H + s(KX +B +MX +A)) ·Rj ≥ 0, ∀j ∈ Λ′
A}

where {Rj}j∈Λ′
A
the set of (KX + B +MX + A)-negative extremal rays in

NE(X/U) and is a finite set. Thus t is a rational number. Since N is not
a multiple of KX + B +MX + A, H + t(KX + B +MX + A) is a rational
supporting function of a (KX + B +MX + A)-negative extremal face FN ,
which is spanned by (KX+B+MX+A)-negative extremal rays. By Lemma
5.6, FN is spanned by finitely many (KX +B+MX +A)-negative extremal
rays R1, . . . , Rn in NE(X/U) for some positive integer n. In particular, we
may pick a Cartier divisor L on X such that L · R1 > 0 and L · Ri < 0
for any i ≥ 2. Since H is ample/U and N is not numerically equivalent to
a multiple of KX + B + MX + A over U , we may pick a rational number
ε ∈ (0, 1) such that
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• Nε := (H − εL) + p(KX +B+MX +A) is not numerically equivalent
to a multiple of KX +B +MX +A over U for any ε ∈ (0, ε0),

• H − ε0L is ample/U , and
• Nε0 · z0 < 0.

Thus Nε is positive on NE(X/U)KX+B+MX+A≥0. Since ΛA is a finite set
and N · Rj > 0 for any j ∈ ΛA, we may pick a rational number ε1 ∈ (0, ε0)
such that Nε1 · Rj > 0 for any j ∈ ΛA. In particular, Nε1 is positive on
V \{0}. Now we let

t1 := sup{s | H − ε1L+ s(KX +B +MX +A) is nef/U}.

By our construction,

t1 =
(H − ε1L) ·R1

−(KX +B +MX +A) ·R1

is a rational number, 0 < t1 < t < p, and H − ε1L+ t1(KX +B +MX +A)
is a rational supporting function of R1. Thus R1 ∈ ΛA, and so Nε1 ·R1 > 0.
Therefore, p < t1, a contradiction.

Proof of Theorem 1.1(1-4). We apply induction on dimension of X. The
dimX = 1 case is obviously true. So we may assume that dimX = d where
d ≥ 2 is an integer and Theorem 1.1(1-4) holds in dimension ≤ d− 1.

For any (KX+B+MX)-negative extremal ray R in NE(X/U), R is also
a (KX + B +MX + A)-negative extremal ray for some ample/U R-divisor
A on X. By Lemma 5.8, R is rational. By Lemma 5.6(2), R is generated by
a rational curve C such that π(C) = {pt} and

0 < −(KX +B +MX +A) · C ≤ 2 dimX.

Since R is also a (KX+B+MX+εA)-negative extremal ray for any ε ∈ (0, 1),
by Lemma 5.6(2) again, we have

0 < −(KX +B +MX + εA) · C ≤ 2 dimX

for any ε ∈ (0, 1). Thus

0 < −(KX +B +MX) · C ≤ 2 dimX,

and we get (2). (3) follows from Lemma 5.8 and the fact that

{Rj}j∈Λ ⊂ ∪+∞
n=1{Rj}j∈Λ 1

n
A
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for any ample/U R-divisor A on X. (1) follows from (3).

We now prove (4). For any (KX + B +MX)-negative extremal face F

in NE(X/U), F is also a (KX + B +MX + A)-negative extremal face for

some ample/U R-divisor A on X. Let V := F⊥ ⊂ N1(X/U). Then since F

is spanned by a subset of {Rj}j∈ΛA
, V is defined over Q. We let

WF := NE(X/U)KX+B+MX+A≥0 +
∑

j|j∈ΛA,Rj �⊂F

Rj .

Then WF is a closed cone, NE(X/U) = WF + F , and WF ∩ F = {0}.
The supporting functions of F are the elements in V that are positive on

WF \{0}, which is a non-empty open subset of V , and hence contains a

rational element H. In particular, F = H⊥∩NE(X/U), hence F is rational,

and we get (4).

5.3. Proof of the base-point-free theorem and the contraction

theorem

Now we prove the base-point-free theorem (Theorem 5.1) for glc g-pairs.

First we prove an auxiliary lemma.

Lemma 5.9. Let (X,B,M)/U be a glc g-pair such that MX is R-Cartier

and Ngklt(X,B,M) = Nklt(X,B). Then there exists a birational morphism

h : W → X such that M descends to W and Supp(h∗MX −MW ) = Exc(h).

Proof. Let f : Y → X be a log resolution of (X,B) such that M descends

to Y . Let F = Exc(f) be the reduced exceptional divisor. Write KY +

f−1
∗ B + G = f∗(KX + B) and MY + E = f∗MX . Write SuppE = ∪iEi.

Note that E = f−1(f(E)). If this is not the case, then since the fibers of

f are connected, there is a curve C contained in a fiber f−1(x) such that

C intersects the support of E but is not contained in the support of E.

But then −E · C < 0 contradicting the fact that −E is nef over X. Let

Y 0 = Y \ SuppE and let X0 = X \ f(SuppE), then Y 0 = f−1(X0).

Since Ngklt(X,B,M) = Nklt(X,B), the support of E does not con-

tain any strata of G=1. In particular E ∧ G=1 = 0, and no element in

Ngklt(X,B,M) is contained in X \X0.

We now consider the generalized pair

(Y, f−1
∗ B + eG=1 + (1− e)F +

∑

i

siEi, tMY )/X
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where 0 < si � e � 1, t � 1, and the real numbers si are sufficiently
general (i.e. their representatives in R/Q are sufficiently general). We have

KY + f−1
∗ B + eG=1 + (1− e)F +

∑

i

siEi + tMY

∼R,X eG=1 + (1− e)F −G− tE +
∑

i

siEi ∼R,X F ′ − E′

where the coefficients of E′ are sufficiently general real numbers, SuppE′ =
SuppE, and SuppF ′ consists of the set of exceptional divisors not contained
in the support of E ∨G=1.

We will now apply Theorem 4.1 to this generalized pair. To check the
hypothesis, we consider the open subset Y 0 and X0 defined above. (1)
clearly holds, (3) has been checked above, and (4) holds since MY |Y 0 =
(f |Y 0)∗MX |X0 as E|Y 0 = 0. For (2), we must check that

(Y 0, (f−1
∗ B + eG=1 + (1− e)F +

∑

i

siEi)|Y 0 , tMY |Y 0)

= (Y 0, (f−1
∗ B + eG=1 + (1− e)F )|Y 0 , 0)

has a good minimal model over X0. Since KY 0 + (f−1
∗ B + eG=1 + (1 −

e)F )|Y 0 ∼R,X0 F ′|Y 0 where F ′|Y 0 is effective and exceptional over X0, by
[22, Proposition 3.9], (Y 0, (f−1

∗ B + eG=1 + (1 − e)F )|Y 0)/X0 has a good
minimal model and (2) holds. Therefore, by Theorems 4.1 and 2.8, we can
run a (KY +f−1

∗ B+eG=1+(1−e)F+
∑

i siEi+tMY )-MMP/X, say Y ��� Z
which contracts F ′ and obtain a good minimal model/X.

By [10, Lemma 4.4(3)], MY descends to Z, hence M descends to Z. Let
EZ , E

′
Z be the strict transforms of E, E′ on the minimal model Z respec-

tively. Then −E′
Z is semi-ample/X and we can then take the corresponding

ample model g : Z → W of −E′
Z/X. Since −E′

W is ample over X, the only
h : W → X exceptional divisors are the components of −E′

W .
Since the coefficients of E′

Z are sufficiently general, no component of
SuppE′

Z = SuppEZ is contracted by h : Z → W . To see this, note that if
E′

Z ·C = 0 for any curve C overX, then the same is true for every component
of E′

Z . Since E′
Z ≡W 0, it follows that P ≡W 0 for any component P of the

support of E′
Z . By the negativity lemma, P is not exceptional. Note that

g : Z → W is also the ample model of any small perturbation of −E′
Z and

so g∗P is Q-Cartier and P = g∗g∗P . But then MZ ∼R,X −EZ = −g∗(EW )
where EW = g∗EZ . Thus MZ = g∗g∗MZ = g∗MW , so M descends to W .

Therefore, W satisfies our requirements.
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Proof of Theorem 5.1. Since L−(KX+B+MX) is ample, L−(KX+B+(1−
ε)MX) is π-ample for any 0 < ε � 1. Possibly replacing M with (1 − ε)M
for some 0 < ε � 1, we may assume that Ngklt(X,B,M) = Nklt(X,B). Let
A := 1

2(L− (KX +B +MX)), then A is π-ample/U .
Let f : Y → X be a birational morphism such that M descends to Y .

By the negativity lemma, we may assume that MY = f∗MX − E for some
E ≥ 0 that is exceptional over X. By Lemma 5.9, we may then assume that
Exc(f) = SuppE.

Let KY + BY := f∗(KX + B). By our construction, Exc(f) = SuppE
does not contain any lc place of (X,B). Thus we may pick E′ ≥ 0 on Y such
that −E′ is ample/X and E′ does not contain any lc place of (X,B). Since
Ngklt(X,B,M) = Nklt(X,B), we may find 0 < ε � 1 such that f∗A−εE′ is
ample/U and (Y,BY +εE′) is sub-lc. In particular, we may find an ample/U
R-divisor 0 ≤ HY ∼R,U MY +f∗A− εE′ on Y such that (Y,BY +HY + εE′)
is sub-lc. Let Δ := B + f∗HY , then (X,Δ) is lc and Δ ∼R,U B +MX +A.

In particular, L − (KX + Δ) ∼R,U A is ample/U . The theorem follows
from [3, Theorem 5.3], [17, Theorems 4.5.5, 6.5.1].

The contraction theorem (Theorem 1.1(5)) immediately follows from the
base-point-free theorem:

Proof of Theorem 1.1(5). By Theorem 1.1(1-4), F has a supporting function
H that is a π-nef Cartier divisor. In particular, we may assume that H −
(KX + B + MX) is π-ample. By Theorem 5.1, H is semi-ample/U , hence
defines a contraction contF : X → Y over U . (a) and (b) immediately follow.

Since −(KX+B+MX) is ample/Y , for any line bundle L onX such that
L · C = 0 for any C such that [C] ∈ F , L − (KX + B +MX) is ample/Y .
By Theorem 5.1, mL is contF -generated and mL ≡Y 0 for any m � 0.
Therefore, contF is defined by |mL| and |(m+ 1)L| over Y for any m � 0,
which implies that mL ∼= f∗LY,m and (m + 1)L ∼= f∗LY,m+1 for some line
bundles LY,m and LY,m+1 on Y . We may let LY := LY,m+1 − LY,m, and we
obtain (c).

5.4. Corollaries

With the cone and contraction theorems proven, we can prove the follow-
ing three corollaries, which guarantee that negative extremal contractions
associated with NQC glc g-pairs behave similarly to negative extremal con-
tractions associated with usual pairs. We omit the proofs as they are very
similar to [35, Corollaries 3.17, 3.18]. These corollaries are necessary for us
to run the minimal model program.
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Corollary 5.10. Let (X,B,M)/U be a Q-factorial NQC glc g-pair and
f : X → Z a contraction of a (KX +B+MX)-negative extremal ray R over
U . Then ρ(X) = ρ(Z) + 1.

Corollary 5.11. Let (X,B,M)/U be a Q-factorial NQC glc g-pair and
f : X → Z a contraction of a (KX +B+MX)-negative extremal ray R over
U . Assume that f is a divisorial contraction, i.e. dimX = dimZ and the
exceptional locus of f is an irreducible divisor. Then Z is Q-factorial.

Corollary 5.12. Let (X,B,M)/U be a Q-factorial NQC glc g-pair and
f : X → Z a contraction of a (KX +B+MX)-negative extremal ray R over

U . Assume that f is a Fano contraction, i.e. dimX > dimZ. Then Z is
Q-factorial.

The following corollary will allow us to run the Q-factorial generalized
MMP with scaling (once the existence of flips is proven in the next section).
The proof is very similar to [22, Lemma 3.23] so we omit it.

Corollary 5.13. Let (X,B,M)/U be a Q-factorial NQC glc g-pair, D ≥ 0
an R-divisor on X, and N an NQC/U b-divisor over X, such that (X,B+
D,M + N) is glc and KX + B + D + MX + NX is nef/U . Then either
KX + B + MX is nef/U , or there exists an extremal ray R of NE(X/U),
such that (KX +B+MX) ·R < 0 and (KX +B+ tD+MX + tNX) ·R = 0,
where

t := inf{s ≥ 0 | KX +B + sD +MX + sNX is nef/U}.

In particular, KX +B + tD +MX + tNX is nef/U .

We also refer the reader to [26, 36] for related results and further appli-
cations.

6. Proof of Theorems 1.2, 1.3, and 1.4

Now we are ready to prove the rest of our main theorems. We start with
Theorem 1.2. In fact, we can prove a slightly stronger result only assuming
that MX is R-Cartier.

Theorem 6.1. Let (X,B,M)/U be an NQC glc g-pair and f : X → Z a
(KX+B+MX)-flipping contraction over U . Assume that MX is R-Cartier.
Then the flip f+ : X+ → Z of f exists. In particular, MX+ is R-Cartier,
and if X is Q-factorial, then X+ is Q-factorial and ρ(X) = ρ(X+).



Existence of flips for generalized lc pairs 823

Proof. We prove the theorem in three steps. In Step 1, we construct the
morphism f+ : X+ → Z. In Step 2, we show that the morphism f+ con-
structed in Step 1 is a (KX + B + MX)-flip. In Step 3, we prove the in
particular part of the theorem.

Step 1. In this step, we construct the morphism f+ : X+ → Z.
Let h : X̃ → X be a birational morphism such that M descends to X̃.

Since MX is R-Cartier and MX̃ is nef/X, we have

MX̃ + E = h∗MX

for some E ≥ 0 that is exceptional over X. Let T ⊂ X be the flipping locus
and let C be any flipping curve contracted by f . There are two cases:

Case 1. MX · C ≥ 0. Then (KX + B) · C < 0, and f is also a (KX + B)-
flipping contraction. Thus there exists an ample/Z R-divisor A ≥ 0 on X
such that KX + B + A ∼R,Z 0 and (X,B + A) is lc. By [25, Theorem
1.1], (X,B)/U has a good minimal model. By Theorem 1.1(5.c), we have
KX +B ∼R,Z r(KX +B +MX) for some positive real number r. We let g :
Y → X be a dlt modification of (X,B) and let KY +BY = g∗(KX+B), then
KY +BY +MY = g∗(KX +B+MX), and (Y,BY ,M)/U and (Y,BY ,0)/U
are glc g-pairs such that Y is Q-factorial klt. By Lemma 4.3, (X,B,M)/Z
has a good minimal model (X ′, B′,M)/Z, and we may let X ′ → X+ be the
contraction induced by KX′ + B′ + MX′ over Z and let f+ : X+ → Z be
the induced morphism.

Case 2. MX · C < 0. In this case, C ⊂ h(E), hence T ⊂ h(E). Let Z0 :=
Z\{f(h(E))}, X0 := X ×Z Z0, B0 := B ×Z Z0, and M0 := M ×Z Z0.
Since centerX E does not contain any glc center of (X,B, (1− ε)M), for any
ε ∈ (0, 1),

• all glc centers of (X,B, (1− ε)M) intersect X0,
• (X0, B0, (1 − ε)M0)/Z0 is a good minimal model of itself (this is be-
cause X0 ∼= Z0), and

• M0 descends to X0 and M0
X0 ∼R,Z0 0.

Let ε0 ∈ (0, 1) be a real number such that f is also a (KX + B + (1 −
ε0)MX)-flipping contraction. By Theorem 4.1, (X,B, (1 − ε0)M)/Z has a
good minimal model. Since ρ(X/Z) = 1, there exists a positive real number
r such that KX + B + MX ≡Z r(KX + B + (1 − ε0)MX). By Theorem
1.1(5.c), KX + B + MX ∼R,Z r(KX + B + (1 − ε0)MX). Let g : Y → X
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be a dlt modification of (X,B) and let KY + BY := g∗(KX + B), then
KY +BY +(1− ε0)MY = g∗(KX +B+(1− ε0)MX) and KY +BY +MY =
g∗(KX +B +MX), and (Y,BY , (1− ε0)M)/U and (Y,BY ,M)/U are glc g-
pairs such that Y is Q-factorial klt. By Lemma 4.3, (X,B,M)/Z has a good
minimal model (X ′, B′,M)/Z, and we may let X ′ → X+ be the contraction
induced by KX′ + B′ +MX′ over Z and let f+ : X+ → Z be the induced
morphism.

Step 2. In this step, we show that the f+ we constructed in Step 1 is a
(KX +B +MX)-flip. Let B+ be the strict transform of B on X+. We only
need to check the following two conditions by the definition of a flip:

(I) KX+ +B+ +MX+ is R-Cartier and ample/Z.
(II) f+ is small.

(I) is immediate from our construction. Since f is small, to prove (II), we
only need to show that the rational map X ��� X+ does not extract any
divisor.

Let p : W → X and q : W → X ′ be a resolution of indeterminacy of
X ��� X ′. By Lemma 3.4, p∗(KX + B +MX) = q∗(KX′ + B′ +MX′) + F
where F ≥ 0 is exceptional over X ′. Let D be a prime divisor on X ′ that is
exceptional over X and DW its strict transform on W . Then DW is covered
by a family of p-vertical curves Σt such that Σt · p∗(KX + BX +MX) = 0.
Since F · Σt ≥ 0, then Σt · q∗(KX′ + B′ + MX′) ≤ 0. Let Σ′

t = q∗Σt, then
Σ′
t · (KX′ +B′+MX′) ≤ 0 so that Σ′

t are contracted by X ′ → X+ and hence
D is also contracted. Thus X ��� X+ does not extract any divisor, which
implies (II). Thus f+ is a (KX +B +MX)-flip.

Step 3. Now we prove the in particular part of the theorem. Pick any R-
divisor D+ on X+, and let D be the strict transform of D+ on X.

Assume that D is R-Cartier. Since ρ(X/Z) = 1, there exists a real
number t such that D + t(KX + B + MX) ≡Z 0. By Theorem 1.1(5.c),
D + t(KX + B + MX) ∼R,Z 0. Thus D + t(KX + B + MX) ∼R f∗DZ for
some R-Cartier R-divisorDZ on Z. Therefore, D++t(KX++B++MX+) ∼R

(f+)∗DZ . Since KX+ +B++MX+ is R-Cartier, D+ is R-Cartier. Therefore,
if MX is R-Cartier, then MX+ is R-Cartier, and if X is Q-factorial, then
X+ is Q-factorial.

Since X ��� X+ is an isomorphism in codimension 1, there is a natural
isomorphism between the groups of Weil divisors on X and X+. When X
and X+ are both Q-factorial, we have ρ(X) = ρ(X+), and the proof is
concluded.



Existence of flips for generalized lc pairs 825

Proof of Theorem 1.2. It immediately follows from Theorem 6.1.

Proof of Theorem 1.3. It immediately follows from Theorems 6.1, 1.1, and

Corollaries 5.10 and 5.11.

Proof of Theorem 1.4. It immediately follows from Theorem 1.3 and [12,

Theorems 1.2, 1.3] ([20, Corollary 1] for the Q-coefficient case).
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