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Length orthospectrum of convex bodies on flat tori
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In analogy with the study of Pollicott-Ruelle resonances on nega-
tively curved manifolds, we define anisotropic Sobolev spaces that
are well-adapted to the analysis of the geodesic vector field associ-
ated with any translation invariant Finsler metric on the torus Td.
Among several applications of this functional point of view, we
study properties of geodesics that are orthogonal to two convex
subsets of Td (i.e. projection of the boundaries of strictly convex
bodies of Rd). Associated with the set of lengths of such ortho-
geodesics, we define a geometric Epstein function and prove its
meromorphic continuation. We compute its residues in terms of
intrinsic volumes of the convex sets. We also prove Poisson-type
summation formulae relating the set of lengths of orthogeodesics
and the spectrum of magnetic Laplacians.
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1. Introduction

Motivated by recent developments on analytical and spectral properties of
geodesic flows on negatively curved manifolds, we study in this article re-
lated questions in the opposite setting of a completely integrable system.
Such an analysis is now known to have several types of applications ranging
from the study of correlation functions to counting problems and equidis-
tribution properties. Before discussing analytical and spectral properties of
the geodesic flow on the torus (see Section 2), we thus start by presenting
one of their applications in the context of convex geometry. All along the
article, we use the following slightly abusive terminology.

Definition 1.1. We say that K ⊂ Rd is a strictly convex compact set if

• either K is a strictly convex compact set with nonempty interior and
smooth boundary ∂K = K \ Int(K) having all its sectional curvatures
positive;
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• or K is a point.

By a classical Theorem of Hadamard [Had97] and Sacksteder [Sac60], if
S is a smooth, compact, connected, orientable hypersurface embedded in Rd

and if S has all its sectional curvatures nonnegative, then it is the boundary
of a convex body – see also [dCL69].

We let K1 and K2 be two strictly convex and compact subsets of Rd (d ≥
2) with smooth boundaries ∂K1 and ∂K2. Through the canonical projection
p : Rd → Td := Rd/2πZd, the boundaries of K1 and K2 can be identified
with immersed submanifolds of the flat torus that may have selfintersection
points. We fix an orientation on each submanifold ∂Ki either by the outgoing
normal vector to Ki or by the ingoing one. This orientation induces an
orientation on Σi := p(∂Ki). The choice of orientation is not necessarily the
same on each ∂Ki (hence on each Σi) and, once each orientation is fixed, we
denote by PK1,K2

the set of geodesic arcs (parametrized by arc length) on
Td that are directly orthogonal1 to Σ1 and Σ2. The orientation of the sets
K1,K2 is implicit in our notation (in the introduction); the results however
depend on this choice. Using the strict convexity of K1 and K2, one can first
verify the following statement.

Lemma 1.2. There exists T0 > 0 large enough, such that, for any T > 0
the subset

{γ ∈ PK1,K2
: T0 < �(γ) ≤ T}

of PK1,K2
is finite.

Note that the complementary set in PK1,K2
might be uncountable, de-

pending on the choice of orientations of Σi. We will be interested on the
asymptotic properties of the lengths of these orthogeodesics. We will for
instance verify in Theorem 9.1 below that, for T0 > 0 as in Lemma 1.2,

(1.1) � {γ ∈ PK1,K2
: T0 < �(γ) ≤ T} = π

d

2T d

(2π)dΓ
(
d
2 + 1
) +O(T d−1).

In the case where K1 = K2 = {0}, this exactly amounts to count the
number of lattice points in 2πZd of norm less than T and understanding the
optimal size of the remainder is a deep problem in number theory. Here, we
consider the setting of orthogeodesics for much more general convex sets.

1In the case where Ki is reduced to a point, every geodesic passing through Ki

is said to be orthogonal to it and we fix the natural orientation using the Euclidean
volume on Rd.
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Thus, in some sense less arithmetical tools are available and we do not
necessarily expect as strong properties on the size of the remainder. In fact,
rather than refining these asymptotic formulas, our main purpose is to study
various zeta functions associated with these length orthospectra and some
of their analytical properties. We also aim at determining the geometric
quantities encoded by these functions. Recall that counting orthogeodesics
to convex subsets in the setup of hyperbolic geometry was much studied (see
e.g. [PP16, BAPP19] and the references therein) and similar questions arise
even if the asymptotic formulae are of different nature.

1.1. Epstein zeta functions in convex geometry

The most natural way to form a zeta function starting from PK1,K2
is to

define, for T0 > 0 as in Lemma 1.2, a generalized Epstein zeta function:

(1.2) ζβ(K1,K2, s) :=
∑

γ∈PK1,K2 :�(γ)>T0

ei
∫
γ
β

�(γ)s
,

where β is a closed and real-valued one form on Td. Recall that any such form
writes β =

∑d
i=1 βidxi + df where βi ∈ R and f ∈ C∞(Td;R). The one-form

[β] =
∑d

i=1 βidxi is identified with the de Rham cohomology class of β. The
first de Rham cohomology group will be denoted by H1(Td,R) = H1

dR(T
d):

it corresponds to the kernel of the Laplacian acting on smooth real-valued
one-forms and it can be identified with the first singular cohomology group.
See [Lee13, Chapter 17 and 18] or [Lee09, Chapter 10]. We say that the
cohomology class [β] of β is in H1(Td,Z) if, in the above decomposition,
βi ∈ Z for all i ∈ {1, . . . , d}.

Thanks to (1.1), s �→ ζβ(K1,K2, s) defines a holomorphic function on
{Re(s) > d} and our first main result describes its meromorphic continuation
to C:

Theorem 1.3. Let K1 and K2 be two strictly convex compact sets of Rd

(d ≥ 2) and let β be a closed and real-valued one form on Td. The following
holds:

1. if the cohomology class [β] of β is in H1(Td,Z), then

s ∈ {Re(s) > d} �→ ζβ(K1,K2, s)

extends meromorphically to C, its poles are located at s = 1, . . . , d and
are simple;



920 Nguyen Viet Dang et al.

2. otherwise, ζβ(K1,K2, s) extends holomorphically to C.

In the case where both K1 and K2 are reduced to points, this theorem
recovers a classical property of Epstein zeta functions [Eps03]. See §1.4.1
below for a brief reminder on such arithmetic functions. Yet, to the best of
our knowledge, this result seems to be new in the case of general smooth
strictly convex subsets. Under lower regularity assumptions on the boundary
of our convex sets and eventhough we did not write all the details, our
proof should in principle allow to perform the analytic continuation up to
{Re(s) > d−N} with CN being the regularity of the boundary and N > d.

As for classical zeta functions in number theory, it is natural to compute
the explicit values of the residues and, due to the geometric nature of the
problem, one would like to express them in terms of natural geometric quan-
tities attached to the convex sets K1 and K2. In order to be more explicit on
the residues when β = 0, recall Steiner’s formula for a compact and convex
subset K of Rd [Sch14, §4]:

(1.3) for all t > 0, VolRd (K + tBd) =

d∑
�=0

Vd−� (K)
π

�

2

Γ
(
�
2 + 1
) t�,

where V� (K) ≥ 0 is the �-intrinsic volume of the convex set K, and (1.3)
may be taken as a definition of the numbers V� (K). Note that V0(K) = 1,
Vd(K) = VolRd(K). Moreover, if ∂K has smooth boundary, one finds by the
Minkowski-Steiner formula [Sch14, 4.2] [Tei16, p. 86]:

Vd−1(K) =
1

2
Vol(∂K),

where Vol is the (d − 1)-volume measure on ∂K induced by the Euclidean
structure on Rd. Observe that Vd−� (K) = 0 for any 0 ≤ � ≤ d− 1 when K
is reduced to a point. Other properties of these intrinsic volumes are their
invariance under Euclidean isometries (i.e. any composition of a rotation
with a translation), their continuity with respect to the Hausdorff metric
and their additivity2 on convex subsets of Rd, i.e.

∀ 0 ≤ � ≤ d, V� (K) + V� (L) = V� (K ∪ L) + V� (K ∩ L) ,

whenever K, L, K ∪ L, K ∩ L are convex subsets of Rd. In fact, a classical
Theorem of Hadwiger states that any functional on the convex subsets of

2A functional satisfying such an additive property is referred as a valua-
tion [Sch14, §6.1].
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Rd enjoying these three properties is a linear combination of these intrinsic

volumes [Sch14, Th. 6.4.14].

Our second main theorem expresses the residues of ζ0(K1,K2, s) (stated

for β = 0 to improve readability) in terms of these intrinsic volumes:

Theorem 1.4. Let K1 and K2 be two strictly convex compact sets of Rd

(d ≥ 2). Suppose in addition that Σ1 = p(∂K1) (resp. Σ2 = p(∂K2)) is

oriented by the outgoing (resp. ingoing) normal vector to K1 (resp. K2).

Then, the function

s �→ ζ0(K1,K2, s)−
1

(2π)d

d∑
�=1

π
�

2 �

Γ
(
�
2 + 1
) Vd−� (K1 −K2)

s− �

extends holomorphically from {Re(s) > d} to C.

Note that −K2 is a convex set and thus so is K1 − K2. Here we only

describe the case where β = 0 and geodesics are pointing outward K1 and

inward K2. Yet our proof yields an explicit expression for any β and for all

possible orientation conditions on the Σi. See formula (9.10) and §10 for more

details. When K2 is reduced to a point, this theorem in particular solves the

following geometric inverse problem: recover all �-intrinsic volumes of K1 for

0 ≤ � ≤ d− 1 from the lengths of the geodesics of Rd orthogonal to K1 and

joining K1 to an element of 2πZd (see Figure 1).

Figure 1: Lift of the orthogeodesic arcs when K2 = {0}.
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1.2. Poincaré series in convex geometry

In analogy with the case of negatively curved manifolds [PP16, BAPP19,
DR21], one can also define generalized Poincaré series for the length orthos-
pectrum:

(1.4) Zβ(K1,K2, s) :=
∑

γ∈PK1,K2 :�(γ)>T0

ei
∫
γ
β−s�(γ),

which, as a consequence of (1.1), is holomorphic on {Re(s) > 0}. As above,
β is a closed and real-valued one form on Td. For such functions, we are able
to describe the continuation up to Re(s) = 0 in the following sense:

Theorem 1.5 (Continuous continuation of Poincaré series). Let K1 and K2

be two strictly convex compact sets of Rd (d ≥ 2) and let β be a closed and
real-valued one form on Td.

Then, the function

s ∈ {Re(s) > 0} �→ Zβ(K1,K2, s)

extends continuously to

{Re(s) ≥ 0} \ {±i|ξ − [β]| : ξ ∈ Zd}.

Moreover, given ξ0 ∈ Zd, one has

1. if ξ0 − [β] = 0, then there exist a
(1)
β (K1,K2), . . . , a

(d)
β (K1,K2) in C

such that

Zβ(K1,K2, s)−
d∑

�=1

a
(�)
β (K1,K2)

s�

converges as s→ 0 (with Re(s) > 0);

2. if ξ0 − [β] �= 0 and d is odd, then one can find a
(0)
ξ0,β

(K1,K2), . . . ,

a
( d−1

2
)

ξ0,β
(K1,K2) and bξ0,β(K1,K2) in C such that

Zβ(K1,K2, s)−
d−1

2∑
�=0

a
(�)
ξ0,β

(K1,K2)

(s∓ i|ξ0 − [β]|) d+1

2
−�

− bξ0,β(K1,K2) ln(s∓ i|ξ0 − [β]|)

converges as s→ ±i|ξ0 − [β]| (with Re(s) > 0);
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3. if ξ0 − [β] �= 0 and d is even, then one can find a
(0)
ξ0,β

(K1,K2), . . . ,

a
(d/2)
ξ0,β

(K1,K2) such that

Zβ(K1,K2, s)−
d

2∑
�=0

a
(�)
ξ0β

(K1,K2)

(s∓ i|ξ0 − [β]|) d+1

2
−�

.

converges as s→ ±i|ξ0 − [β]| (with Re(s) > 0).

This Theorem is a weakened version of Theorem 9.6 where the Ck regu-

larity of the continuation of Zβ will also be discussed. Note that the set of

singular points {±i|ξ − [β]| : ξ ∈ Zd} is linked to the spectrum of a natural
magnetic Laplacian on Td, namely3 Δ−[β] = (∂x− i[β])2 – see the discussion

in Sections 2.4 and 6.2.2. For β = 0 and for the orientation conventions of

Theorem 1.4, the “residues” at s = 0 can be explicitly expressed as

∀1 ≤ � ≤ d, a
(�)
0 :=

(−1)d−1�!π
�

2

(2π)dΓ
(
�
2 + 1
)Vd−�(K1 −K2).

1.3. Application to Poisson type formulas

According to (1.1), and for T0 > 0 as in Lemma 1.2 above, we emphasize

that, on the imaginary axis, the Poincaré series

Zβ(K1,K2, it) =
∑

γ∈PK1,K2 :�(γ)>T0

ei
∫
γ
βe−it�(γ)(1.5)

is the Fourier transform of the counting measure

Tβ,K1,K2
(t) :=

∑
γ∈PK1,K2 :�(γ)>T0

ei
∫
γ
βδ(t− �(γ)) ∈ S ′(R)(1.6)

which is a tempered distribution supported in the cone (0,+∞). There-

fore, thanks to [RS75, Thm IX.16, p. 23] (see also Proposition 8.5 below),

T̂β,K1,K2
(t) can be obtained as the boundary value of a holomorphic function

as follows:

Zβ(K1,K2, it+ α) ⇀ T̂β,K1,K2
(t) in S ′(R), as α→ 0+.(1.7)

3The eigenvalues of Δ−[β] and Δ[β] coincide.
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The holomorphic function is nothing else but the analytic extension of the

Fourier transform to the upper half–plane. Hence, the reader can think of

Theorem 1.5 as a loose version of the Paley–Wiener–Schwartz Theorem, stat-

ing that the Fourier transform of a distribution supported on the half–line

(0,+∞) is the boundary value on R of a holomorphic function on the lower

half–plane (sometimes called its Fourier-Laplace transform). Note that, as a

consequence of (1.7), the Poincaré series completely determines the distri-

bution of the twisted length orthospectrum.

Remark 1.6. In case β = 0, T0,K1,K2
gives precisely the distribution of length

of orthogeodesics: namely if L(K1,K2) = {�(γ), γ ∈ PK1,K2
} denotes the set

of length of orthogeodesics, then we simply have

T0,K1,K2
(t) :=

∑
�>T0,�∈L(K1,K2)

m�δ(t− �),(1.8)

where m� = � {γ ∈ PK1,K2
, �(γ) = �} denotes the multiplicity of the length

� ∈ L(K1,K2).

As a direct application of a refined version of Theorem 1.5 (namely

Theorem 9.6 below) together with (1.7), we also obtain a new Poisson-type

summation formula, describing the distributional singularities of T̂.

Theorem 1.7 (Poisson type formula). Let K1 and K2 be two strictly convex

compact subsets of Rd (d ≥ 2) and let β be a closed and real-valued one form

on Td. Then, with Tβ,K1,K2
(τ) defined in (1.6), the singular support of

T̂β,K1,K2
(τ) =

∑
γ∈PK1,K2 :�(γ)>T0

ei
∫
γ
βe−iτ�(γ)

is included in Sp(±
√
−Δ[β]) and the singularities are explicitly described by

Theorem 9.6.

As the singular support of the geometric distribution T̂β,K1,K2
is given by

the eigenvalues of the magnetic Laplacian, it does not depend on the convex

sets K1,K2. We would like to remark that Theorem 1.7 looks like a trace

formula and we refer to paragraph 1.4.2 for a more detailed comparison. The

precise form of the singularities depends on the geometry of the convex sets

K1 and K2 – see Theorem 9.6 for precise expressions of the leading term

at each singularity. We emphasize that the singularities are obtained as the

boundary values of simple holomorphic functions as in [Hör03, Th. 3.1.11].
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In view of having simpler singularities and motivated by the recent devel-

opments on crystalline measures [Mey22], one can symmetrize (and renor-

malize) the distribution Tβ,K1,K2
(t). This is the content of our last main

result which extends in our geometric setup the Guinand–Meyer summation

formula [Mey16, Th. 5].

Theorem 1.8. Given K1 and K2 two strictly convex compact sets of Rd

(d ≥ 2) and β a closed and real-valued one form on Td such that [β] /∈
H1(Td,Z), we set μ to be the signed measure defined as

μ(t) =
∑

γ∈PK1,K2 :�(γ)>T0

ei
∫
γ
β

�(γ)
d−1

2

δ(t− �(γ))

+ (−i)d−1
∑

γ∈PK2,K1 :�(γ)>T0

e−i
∫
γ
β

�(γ)
d−1

2

δ(t+ �(γ)),

where we take the same orientation conventions for4 PK2,K1
and PK1,K2

.

Then, there exists complex numbers (cλ)λ∈Sp(±
√

−Δ[β])
and r in Lp

loc(R)

for every 1 ≤ p <∞ such that

μ̂(τ) =
∑

λ∈Sp(±
√

−Δ[β])

cλδ(τ − λ) + r.

In the case where β ∈ H1(Td,Z), the result would be similar except for

an extra singularity of the Fourier transform at τ = 0 that may be more

singular than the Dirac distribution. Following our proof, one could in fact

describe explicitly this singularity at τ = 0 even if we do not carry out the

calculation explicitly. In the case where K1 and K2 are distinct points and

where d = 3, it was in fact proved that r ≡ 0 in [Mey16, Th. 5]. The proof of

this last fact is briefly recalled in §9.5.2 using our formalism. We also explain

how it can be extended to higher dimensions (when d is odd) to give rise to

crystalline distributions, as first shown in [LR21, §2]. We finally deduce from

this discussion that r is not identically 0 as soon as d ≥ 5, even in the case

where K1,K2 are points. See also [Gui59, LO16, RV19] for earlier related

results and [Mey22] for a review on recent developments in that direction.

4In particular, both sets are a priori distinct.



926 Nguyen Viet Dang et al.

1.4. Related results

Before discussing the relation of these results to the analytical properties of

geodesic flows, let us comment how these applications to zeta functions and

Poisson formulas in convex geometry compare with similar properties and

objects appearing in different contexts, most notably in arithmetic, spectral

geometry and hyperbolic geometry.

1.4.1. Comparison with zeta functions from analytic number the-

ory. The zeta functions appearing in Theorem 1.3 are natural generaliza-

tions in the setup of convex geometry of the Hurwitz zeta function [Apo98,

Ch. 12]:

ζHur(q, s) :=
∑

ξ∈Z:ξ �=−q

1

|ξ + q|s ,

where q is some fixed element in [0, 1). In the case q = 0, this is nothing

else than twice the Riemann zeta function ζR(s). It is well known that these

functions extend meromorphically from {Re(s) > 1} to C with a simple pole

at s = 1 whose residue is equal to 2. The relation with our zeta functions

is as follows. Assume that both K1 and K2 are points in T1 = R/2πZ

that are at a distance � = 2πmin{q, 1 − q} of each other. Then, one can

verify that ζ0(K1,K2, s) = (2π)−sζHur(q, s). The fact that we are in higher

dimensions is responsible for the presence of extra poles at s = 1, . . . d and

Theorem 1.4 gives us an explicit expression of their residues in terms of

geometric quantities. Due to our use of stationary phase arguments, we

note that our proof does not work (strictly speaking) for d = 1 even if the

functions are of the same nature from the perspective of convex geometry.

Here we choose to call our functions generalized Epstein zeta functions

in analogy with the zeta functions defined by Epstein [Eps03, Eq. (2)] as

higher-dimensional analogues of the Riemann zeta function:

ζEps(q, β, s) :=
∑

ξ∈Zd\{−q}

e2iπξ·β

|ξ + q|s .

where q and β are two fixed elements in Rd and |.| is the Euclidean norm.

When K1 and K2 are reduced to two points x1 and x2, one has

ζEps

(
x2 − x1

2π
, β, s

)
= (2π)sei(x1−x2)·βζβ(K1,K2, s),
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where β ∈ Rd is identified with a closed one form, and ζβ is defined in (1.2).
Hence, up to a multiplicative factors, our zeta functions ζβ(K1,K2, s) are
the natural extension of Epstein zeta functions when one considers general
convex subsets of Rd instead of points. It is well-known that the “classical”
Epstein zeta functions extend meromorphically to the whole complex plane
with at most a simple pole at s = d. Theorems 1.3 and 1.4 show that, for
more general convex sets, one may also have poles at s = 1, . . . , d− 1. Note
that we recover the continuation of the “classical” Epstein case since, if
K1,K2 are both points, V�(K1 −K2) = 0 for all 1 ≤ � ≤ d− 1.

In Theorem 1.3, we saw that if we weight our series with some unitary
twist involving a closed and real-valued one form β, then our zeta functions
have in fact a holomorphic extension as soon as [β] /∈ H1(Td,Z). These
unitary twists can be thought of as geometric analogues of the (arithmetic)
twisting factors used when one extends the Riemann zeta function to more
general Dirichlet series [Apo98, Ch. 12]. Recall that these are defined in the
following manner. Fix a positive integer D and a morphism χ : (Z/DZ)∗ →
S1 := {z ∈ Z : |z| = 1} (the Dirichlet character). Such a morphism can
be extended into a D-periodic function χ : Z → S1 by letting χ(ξ) = 0 for
every ξ such that ξ and D are not coprime. Dirichlet series (or L-functions
of weight χ) are then defined as

L(χ, s) :=
∑
ξ∈Z∗

χ(ξ)

|ξ|s =

D∑
r=1

∑
q∈Z\{−r/D}

χ(qD + r)

|qD + r|s

=
1

Ds

D∑
r=1

χ(r)ζHur

(
s,

r

D

)
,

and they have a holomorphic extension to C except for the trivial character
χ = 1 where one has a simple pole at s = 1. Understanding the holomorphic
continuation of more general L-functions [Art24] on algebraic number fields
(for arbitrary irreducible representations) is in fact a classical topic in ana-
lytic number theory: this is for instance at the heart of Artin’s conjecture.
Here, we emphasize that our unitary twists do not have any particular arith-
metic meaning and our (strictly) convex sets are a priori arbitrary. Despite
that and thus for seemingly different reasons, these twisting factors have
the same effect as Dirichlet characters for the Riemann zeta function in the
sense that, under some natural “non-rationality” assumption on β, our zeta
functions extend holomorphically to C.
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1.4.2. Relation with trace formulas. Our main result on the singular
support of the oscillatory series T̂0,K1,K2

(t) =
∑

γ e
−it�(γ) is very reminis-

cent to the celebrated wave trace formula proved by Chazarain [Cha74] and
Duistermaat–Guillemin [DG75] extending previous results by Selberg [Sel56]
and Colin de Verdière [CdV73]. These formulas may be seen as general-
izations in spectral geometry of the Poisson summation formula, letting
Sp(
√
−Δg) denote the spectrum of the square root of the Laplace-Beltrami

operator Δg, one considers the series

T̂(t) =
∑

λ∈Sp(
√

−Δg)

e−itλ ∈ S ′(R),

which converges in tempered distributions thanks to the Weyl law. The
wave trace formula states that the singular support of the distribution T̂
is exactly the set of lengths of periodic geodesic curves for the metric g.
Furthermore, when the geodesic flow is nondegenerate, they described the
singularity of T̂ at each period in terms of geometric data attached to the
periodic orbits and of distributions of the form (t ± � + i0)−1. In other
words, the quantum spectrum determines the classical length spectrum and
these wave trace formulas are often referred as generalized Poisson formulas.
Recall from [Hör03, p. 72] that the singularities in this formula can also be
rewritten as follows

(1.9) lim
y→0+

1

t± �+ iy
= (t± �+ i0)−1 = FP

(
1

t± �

)
− iπδ(t± �),

where FP (.) is the finite part of the (non-integrable) function (t± �)−1.
Theorem 1.7 has a similar flavour except that the correspondence is in

the other sense and that it involves orthogeodesics of two given convex sets.
More precisely, we start from the length orthospectrum between two convex
sets, we then form the series T̂β,K1,K2

(t) =
∑

γ e
i
∫
γ
βe−it�(γ), and its singular

support coincides with the quantum spectrum Sp(±i
√
−Δ[β]) where Δ[β]

is the magnetic Laplacian. Another notable difference is that the singular-
ities are more complicated in the sense that they involve distributions of
the form (t ± λ − i0)−k with k ≥ 1 that may not even be an integer if d
is even. We emphasize from (1.9) that, as in the Chazarain–Duistermaat–
Guillemin formula, the singularities of T̂β,K1,K2

are not purely Dirac type
distributions (and their derivatives). This is due to the fact that the counting
measure Tβ,K1,K2

is supported on the half–line, hence its Fourier transform
Zβ,K1,K2

(it) must have its (C∞ and analytic) wave front set contained in
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the half cotangent cone {(t; τ); τ < 0} ⊂ T ∗R. This prevents the presence
of purely δ(k)(t)–like singularities whose contribution to the wave front set
would contain both positive and negative frequencies τ .

As alluded above, the formulation in Theorem 1.8 is itself motivated
by recent developments on crystalline measures [Mey22], i.e. measures on
R carried by a discrete locally finite set, belonging to S ′(R), whose Fourier
transform is still a measure carried by a discrete locally finite set. Here, we
started from a complex valued measure carried by a discrete locally finite
set on R (defined from our convex orthospectrum) and we ended up with a
Radon measure carried by the spectrum of the magnetic Laplacian (which is
a discrete locally finite set) modulo some (absolutely continuous) remainder
lying in Lp

loc. Hence, in general, it does not fall into the category of crystalline
measures due to this a priori nonvanishing remainder.

1.4.3. Poincaré series on negatively curved manifolds. Poincaré se-
ries appear naturally when one studies counting problems on a negatively
curved manifold (M, g) [PP16, BAPP19]. In that context, one aims for in-
stance at couting the number of common perpendicular geodesic curves of
two convex subsets of the universal cover (M̃, g̃). Due to the exponential
growth of the number of such orthogeodesics, it is natural to consider e−s�(γ)

rather than �(γ)−s in order to ensure the convergence of the sums. The study
of the meromorphic continuation of Poincaré series on compact manifolds
of constant negative curvature goes back to the works of Huber in the late
fifties [Hub56, Satz A], [Hub59, Satz 2]. In that setting, one can obtain
the meromorphic continuation through the relation between Poincaré series
and the spectral decomposition of the Laplacian. In the case of variable
negative curvature, the relation with the Laplacian is less explicit and one
rather needs to exploit the ergodic properties of the geodesic flow directly.
This approach was initiated by Margulis in [Mar69, Mar04]. Using this dy-
namical approach and the theory of Pollicott-Ruelle resonances, two of the
authors recently proved the meromorphic continuation of Poincaré series
on manifolds of variable negative curvature [DR21]. Here, as in the works
of Huber, we will use the tools from harmonic analysis that are available
on the torus to study the continuation of Poincaré series. Yet, rather than
making the connection with the Laplacian5, we will directly study the an-
alytical properties of the geodesic flow on the torus when acting on spaces
of distributions with anisotropic regularity as it was the case for negatively

5The fact that we aim at dealing with general convex sets (and not only points)
seems to prevent us from working with the Laplacian on Td.



930 Nguyen Viet Dang et al.

curved manifolds. See §2.2 for more details. In the negatively curved setting,

it is shown in [DR21] that one has meromorphic continuation beyond the

threshold Re(s) = htop. In the case of the flat torus, Theorem 1.5 shows

that there is barrier at Re(s) = htop = 0 where logarithmic or square root

singularities may occur at certain points that correspond to the eigenvalues

of the (magnetic) Laplacian. Outside these singularities, we are however able

to continuously/smoothly extend the function up to Re(s) = 0. As already

alluded, our study is intimately related to the analytic properties of the

geodesic vector field

V := θ · ∂x(1.10)

on the unit tangent bundle

STd := {(x, θ) ∈ Td × Sd−1}.

When studying the resolvent of this operator, we will verify that there is a

barrier at Re(s) = 0 when trying to make some analytic continuation. This

phenomenon is retated to observations made by Dyatlov and Zworski at the

end of the introduction of [DZ15], where stochastic perturbations of geodesic

vector fields on Anosov manifolds are studied. In that reference, the authors

studied stochastic perturbations of geodesic vector fields on Anosov mani-

folds. In the opposite setup of the flat 2-torus, they described the spectrum

of Pε := V + εΔST2 (with V given by (1.10)) and they observed that, in

the limit ε → 0+, the spectrum of Pε fills Y -shaped lines in the halfplane

{Re(s) ≤ 0} that are based at the same singularities as our Poincaré series.

See e.g. Figure 3 in that reference and the companion article [DGBLR22]

for more details on this issue.

1.4.4. Orthospectrum identities in hyperbolic geometry. Finally,

let us mention the following related problem in hyperbolic geometry. Con-

sider some hyperbolic manifold X with nonempty totally geodesic smooth

boundary. In that framework, an orthogeodesic γ is a geodesic arc which is

properly immersed in X and which is perpendicular to ∂X at its endpoints.

The lengths of these orthogeodesics verify certain identities connecting them

to the volume of the boundary of X (Basmajian’s identity) [Bas93]:

Vol(∂X) =
∑
γ

Vd−1

(
ln

(
coth

�(γ)

2

))
,
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where Vd−1(r) is the volume of a ball of radius r on the hyperbolic space
Hd−1 (with the convention that V1(r) = 2r). Similar equalities also re-
late this length orthospectrum with the volume of the unit tangent bundle
SX (Bridgeman-Kahn’s identity [BK10]) and the analogues of these results
on manifolds with cusps are due to McShane [McS91, McS98]. We refer
to [BT16] for a recent review on this topic. In some sense, this formula has
the same flavour as Theorem 1.4 as it relates some length orthospectrum
with some volumes associated with our convex. However, while the right-
hand side of Basmajian’s identity converges in a standard sense, our zeta
functions are defined by analytic continuation and the volumes appear as
the residues of these functions.

2. Analytical results: a functional setup for the geodesic
vector field

Let us now discuss the relation of these problems from convex geometry
with the analytical properties of geodesic flows on flat tori and come to
the statement of our main analytical results. For simplicity, we now restrict
ourselves to the case where β = 0 and where we look at geodesic arcs pointing
outside K1 and inside K2 (as in Theorem 1.4).

2.1. Lifting the problem to the unit tangent bundle

In order to prove Theorems 1.3, 1.4 and 1.5, one way is to rewrite the series
we are interested in under an integral form as follows:

∑
γ∈PK1,K2

χ(�(γ)) =

∫
Rd

δ[0](x)

(∫ +∞

0
χ(t)δ∂(K1−K2+tBd)(x, |dx|)|dt|

)
,

(2.1)

where χ is a nice enough function on R∗
+ (in the applications we have in mind,

χ ∈ C∞c (R∗
+) or χ(t) = t−s or χ(t) = e−st), where δ∂(K1−K2+tBd)(x, |dx|) is

the volume measure on ∂(K1−K2+tBd) induced by the Euclidean structure
on Rd and where

(2.2) δ[0](x) =
1

(2π)d

∑
ξ∈Zd

eiξ·x.

A precise signification of the right hand-side of (2.1) together with a proof
of this formula are given in Appendix A. With that expression at hand,
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proving our main results on convex geometry amounts to discuss the allowed

functions χ in (2.1), to decompose δ[0] according to (2.2) and to analyze the

oscillatory integrals that come out. Yet, as explained in the beginning of

the article, rather than doing that directly, we will obtain these results as

a by-product of a more general analysis6 of the geodesic vector field on

STd. In fact, since the seminal work of Margulis [Mar69, Mar04], it is well

understood that on negatively curved manifolds, it is convenient to lift this

kind of geometric problems to the unit cotangent bundle of the manifold.

For instance, properties of Poincaré series are related to the asymptotic

properties of the geodesic flow, and more specifically to its mixing properties.

In a recent work [DR21], two of the authors formulated this relation using

the theory of De Rham currents and we will see that this still makes sense in

the case of flat tori where the curvature vanishes everywhere. See Section 4

for details. Let us explain this connection without being very precise on the

sense of the various integrals. We denote by N+(Ki) (resp. N−(Ki)) the

outward (resp. inward) unit normal to Ki inside STd:

N±(Ki) := {(p(x), dp(x)θ), x ∈ ∂Ki,±θ directly orthogonal to ∂Ki at x} .

Then, given any nice enough function χ(t) (say again in C∞c (R∗
+), t

−s or

e−st), we will prove that

∑
γ∈PK1,K2

χ(�(γ)) = (−1)d−1

∫
STd

[N+(K1)] ∧
∫
R

χ(t)ιV e
−tV ∗[N−(K2)]|dt|.

(2.3)

where [N±(Ki)] is the current of integration on N±(Ki) and where

etV : (x, θ) ∈ STd → (x+ tθ, θ) ∈ STd(2.4)

is the geodesic flow. Compared with (2.1), this new formula has the ad-

vantage to explicitly involve the geodesic vector field. This current theoretic

approach also allows to deal directly with the exponential weights appearing

in our zeta functions together with the more general orientation conventions

considered in the introduction. On the contrary, the approach using (2.1)

(performed in Appendix A) seems to only apply (at least directly) to the

outgoing/ingoing convention of Theorem 1.4.

6Similar oscillatory integrals will of course appear in our analysis.
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Remark 2.1. Formula (2.3) derives from the observation that elements in
PK1,K2

are in one-to-one correspondance with the geodesic orbits in STd

joining the two Legendrian submanifoldsN+(K1) andN−(K2). In the frame-
work of symplectic topology, such orbits are referred as the Reeb chords of
these two Legendrian submanifolds.

2.2. Defining a proper functional framework for the geodesic flow

Hence, rather than proceeding directly to the calculation of zeta functions
from (2.1), we choose to view this as a consequence of analytical properties
of geodesic vector fields. More precisely, we will define appropriate functional
frameworks to study the operators appearing in (2.3):

χ̂(−iV ) :=

∫
R

χ(t)e−tV ∗|dt|,

where χ is a nice enough function (say e−st or t−s). In the end, our main
geometrical theorems on length orthospectra for convex bodies will be simple
corollaries of this analysis – see Section 9. Even if slightly longer, we believe
that this sharp analysis, which is the content of Sections 5 to 8, is interesting
on its own and that it allows to capture the dynamical mechanism at work
when proving this kind of results. Along the way, it also has the advantage
of applying directly to other questions such as equidistribution properties of
the geodesic flow. See Theorems 2.4 or 6.5 for instance.

On top of these applications, this analysis is motivated by the study of
similar questions arising on negatively curved manifolds where one defines
appropriate spaces of anisotropic Sobolev distributions in order to make
sense of the spectrum of the geodesic vector field: the so-called Pollicott-
Ruelle spectrum [Rue76, Pol85]. More precisely, given any N > 0, one aims
at defining a Banach space BN such that the geodesic vector field (viewed
as an unbounded order 1 differential operator) has discrete spectrum on
{Re(s) > −N}. One of the difficulties when analyzing such an operator
on the unit tangent bundle SX of some manifold (X, g) is that its symbol
H(x, θ; ξ) = ξ(V (x, θ)) is not elliptic and that it vanishes on the noncompact
set:

C := {(x, θ; ξ) ∈ T ∗SX : ξ(V (x, θ)) = 0}.
In the case of a negatively curved manifold, this characteristic region is gen-
erated by two subbundles: the unstable direction and the stable one. Using
this duality, one is able to construct Banach (or Hilbert) spaces adapted to
the operator V by requiring some negative (resp. positive) Sobolev regularity
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along the unstable (resp. stable) direction and by exploiting the contraction
properties along these directions. The construction of such functional spaces
was made explicit through different methods in various geometric contexts:
Anosov flows [Liv04, BL07, Tsu10, FS11, Tsu12, GLP13, DZ16, FT17b], Ax-
iom A flows [DG16, Med21], billiard dynamics [BDL18, BD20], Morse-Smale
flows [DR20], manifolds with cusps [GBW17], analytic Anosov flows [Jéz21,
GBJ20], etc. We also refer the reader to [Bal18] for a detailed account of the
(related) case of hyperbolic diffeomorphisms.

In our framework, the geodesic flow does not belong to any of these
classes of flows as it is an integrable dynamical system without any hyper-
bolic property. Despite that and using the fact that the curvature is 0 (and
thus nonpositive), there is a notion of stable and unstable bundles [Rug07,
Ch. 3]. Yet, as opposed to the negatively curved setting, both bundles are
equal and they do not generate the whole characteristic region. They cor-
respond in fact to the tangent space to Td intersected with C. See §3.3
for details. As we will recall in §3.3, this bundle is in some sense attrac-
tive/repulsive for the lifted dynamics on the cotangent bundle to SX. This
observation is somehow enough to implement similar ideas (with of course
also some major differences) as for geodesic flows on negatively curved man-
ifolds and in order to define spaces with anisotropic regularity adapted to
the geodesic flow on STd. On STd, the “mixing” properties of the geodesic
flow are much weaker than for geodesic flows on negatively curved mani-
folds, but they turn out to be sufficient in view of proving our main results
using formula (2.3). To that aim, we will use tools from harmonic analysis
that are available on the torus in order to construct the spaces adapted to
V . In this respect, our approach is in some sense reminiscent of the one used
by Ratner [Rat87] to study the decay of correlations on hyperbolic surfaces.
Even though anisotropic Sobolev spaces are not explicitly mentioned in her
analysis, the Fourier type reduction made in [Rat87, §2] and the way it is
handled there is close to the strategy we will follow in Sections 4 and 5 of
the present work.

2.3. Anisotropic Sobolev spaces

Let us now describe more precisely the analytical properties we are aiming at
in the simplified setting where we consider functions rather than currents of
integrations as in (2.3). We define anisotropic Sobolev spaces of distributions
on STd as follows

HM,N (STd) :=

⎧⎨⎩u ∈ D′(STd) :
∑
ξ∈Zd

〈ξ〉2N‖ûξ‖2HM (Sd−1) < +∞

⎫⎬⎭ ,
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where 〈ξ〉 = (1 + |ξ|2) 1

2 , (M,N) ∈ R2 and

u(x, θ) =
∑
ξ∈Zd

ûξ(θ)
eiξ·x

(2π)
d

2

,

with ûξ ∈ D′(Sd−1), and where ‖.‖HM denotes the standard Sobolev norm on
Sd−1. Roughly speaking, u = u(x, θ) ∈ HM,N (STd) if u has HN regularity
in the variable x ∈ Td and HM regularity in the variable θ ∈ Sd−1. With
this convention at hand, we will prove the following type of results:

Theorem 2.2 (Mellin transform, function case). Let χ ∈ C∞c ([1,+∞)) such
that χ = 1 in a neighborhood of 1 and let N ∈ Z+. Then, the operator

M(s) :=

∫ ∞

1
t−se−tV ∗|dt| : C∞(STd)→ D′(STd)

splits as

M(s) =M0(s) +M∞(s),

where

M0(s) :=

∫ ∞

1
χ(t)t−se−tV ∗|dt| : HN,−N/2(STd)→ HN,−N/2(STd)

is a holomorphic family of bounded operators on C and where

M∞(s) :=

∫ ∞

1
(1− χ(t))t−se−tV ∗|dt| : HN,−N/2(STd)→ H−N,N/2(STd)

extends as a meromorphic family of bounded operators from {Re(s) > 1} to
{Re(s) > 1−N} with only a simple pole at s = 1 whose residue is given by

∀ψ ∈ C∞(STd), Ress=1 (M∞(s)) (ψ)(x, θ) =
1

(2π)d

∫
Td

ψ(y, θ)dy.

In particular, this Theorem tells us that the operator

M(s) :=

∫ ∞

1
t−se−tV ∗|dt| : C∞(STd)→ D′(STd)

extends meromorphically from {Re(s) > 1} to the whole complex plane with
only a simple pole at s = 1. Yet, the statement is more precise as it allows
us to describe the allowed regularity for this meromorphic continuation.
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We emphasize that the mapping properties of M0(s) are rather immediate
from the definition of our anisotropic norms and the main difficulty in this
statement is about the “regularizing” properties ofM∞(s). This Theorem is
a direct consequence of the much more general Theorem 8.4 (together with
Proposition 8.9), and it is one of the main results of this article. In other
words, our meromorphic continuations are valid on spaces of distributions
that are regular along the vertical bundle to STd (i.e. the tangent space to
Sd−1) and that may have negative Sobolev regularity along the horizontal
bundle (i.e. the tangent space to Td). In particular, the anisotropic Sobolev
spaces HN,−N/2 contain the Dirac distribution δ[0](x) for N > d, and this is
typically the kind of distributions that we will pick as test functions in order
to derive our main applications on convex geometry using (2.3). In order to
prove Theorems 1.3 and 1.4, we will in fact need to prove more general
statements for the action of M(s) on differential forms or more precisely
on certain anisotropic Sobolev spaces of currents. Among other things, the
action on differential forms will be responsible for the presence of the extra
poles at s = 2, . . . , d but this simplified statement already illustrates the
kind of properties we are aiming at.

The same spaces will also allow us to prove the following statement.

Theorem 2.3 (Laplace transform, function case, continuous continuation).
Let χ ∈ C∞c ([0,+∞)) such that χ = 1 in a neighborhood of 0 and let N ∈
2Z∗

+ + d. Then, the operator

L(s) := (V + s)−1 =

∫ ∞

0
e−ste−tV ∗|dt| : C∞(STd)→ D′(STd)

splits as

L(s) = L0(s) + L∞(s),

where

L0(s) :=

∫ ∞

0
χ(t)e−ste−tV ∗|dt| : HN,−N (STd)→ HN,−N (STd)

is a holomorphic family of bounded operators on C and where

L∞(s) :=

∫ ∞

0
(1− χ(t))e−ste−tV ∗|dt| : HN,−N/2(STd)→ H−N,N/2(STd)

extends continuously from {Re(s) > 0} to

1. {Re(s) ≥ 0} \ {0} if d ≥ 4,
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2. {Re(s) ≥ 0} \ {±i|ξ| : ξ ∈ Zd} if d = 2, 3.

Moreover, in any dimension, one has

(V + s)−1ψ =
1

(2π)ds

∫
Td

ψ(y, θ)dy +OD′(1), as s→ 0,Re(s) > 0,

and, when d = 2, 3, one has, for |ξ0| �= 0,

(V + s)−1ψ =

e∓iπ d−1

4 gd(s∓ i|ξ0|)
(2π)

d+1

2 |ξ0|
d−1

2

∑
ξ:|ξ|=|ξ0|

eiξ·xδ0

(
θ ∓ ξ

|ξ|

)∫
Td

ψ

(
y,± ξ

|ξ|

)
e−iξ·ydy

(modulo OD′(1)) as s→ ±i|ξ0|, Re(s) > 0, where

g2(z) :=

√
2π√
z
, and g3(z) := − ln(z).

Again, this result is the consequence of the much more precise Theo-
rem 8.8 (together with Proposition 8.9) which is valid on certain anisotropic
Sobolev spaces of currents and which will also lead us to the proof of The-
orem 1.5. In Theorem 8.8, the Ck continuation of L(s) is also discussed,
and shows that the Laplace transform actually exhibits Ck-singularities at
the points {±i|ξ| : ξ ∈ Zd} in any dimension (but for larger values of k in
higher dimension). In the companion article [DGBLR22], we show that this
result can be “improved” if we replace the Sobolev norm on Sd−1 by some
appropriate analytic norm built from the norms used in [GZ19] for the study
of analytic pseudodifferential operators of order 0. In fact, after Fourier de-
composition, studying the resolvent of V acting on functions amounts to
study a family of resolvents of multiplication operators (i.e. of pseudodiffer-
ential operators of order 0) on Sd−1. In Sobolev regularity (as we are dealing
here), one could apply the results from [ABdMG96, §7.6] (e.g. Th. 7.6.2)
based on Mourre’s commutator method. See also [CdVSR20, DZ19b] for re-
cent developments for more general pseudodifferential operators of order 0
in dimension 2. Modulo some extra work to sum over all Fourier modes, this
would yield in principle that

∀ε > 0, ∀N ∈ R, (V + s)−1 : H 1

2
+ε,N (STd)→ H− 1

2
−ε,−N (STd)

extends continuously from {Re(s) > 0} to {Re(s) ≥ 0} \ {±i|ξ| : ξ ∈ Zd}. In
view of our geometric applications to convex geometry, this analysis would
not suffice due to the low regularity properties of our currents.
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2.4. Emergence of quantum dynamics

Theorems 2.2 and 2.3 (as well as their analogues in the case of differential
forms) are consequences of the fact that, through standard stationary phase
asymptotics, we can give a full expansion of the Schwartz kernel of the
geodesic flow. For instance, the first term in the asymptotic expansion reads

Theorem 2.4 (Time asymptotics of the geodesic flow, function case, leading
term). For every smooth function ψ ∈ C∞(STd), one has

t
d−1

2

(
ψ ◦ e−tV (x, θ)− 1

(2π)d

∫
Td

ψ(y, θ)dy

)
= (2π)

d−1

2

∑
ε∈{±}

P†
ε

eiε(t
√
−Δ−π

4
(d−1))

(−Δ)
d−1

4

Pε +OD′(STd)(t
−1)

where Δ =
∑d

j=1 ∂
2
xj

is the Euclidean Laplacian on Td,

P± : ψ ∈ C∞(STd) �→
∑
ξ �=0

1

(2π)d

∫
Td

ψ

(
y,± ξ

|ξ|

)
ei(y−x)·ξdy ∈ C∞(Td)

and, for every f ∈ C∞(Td),

P†
±(f) :=

∑
ξ �=0

1

(2π)d

(∫
Td

f (y) ei(y−x)·ξdy

)
δ0

(
θ ∓ ξ

|ξ|

)
.

This Theorem is a corollary of the much more precise statement given
in Theorem 6.5 which provides a full asymptotic expansion with a precise
description of the remainder terms at each step. Once again, this result could
(and will) be expressed in terms of anisotropic Sobolev norms. Yet, due to
the absence of integration over time, this requires a refined version of the
spaces HN,−N/2(STd) with an additional regularity imposed in the direction
of the vector field θ · ∂x.

In order to keep track of the comparison with negatively curved mani-
folds, such a result can be viewed as a simple occurence of the emergence
of quantum dynamics (through the half-wave group (e±it

√
−Δ)t∈R on the

torus) in the long time dynamics of geodesic flows (i.e. (etV )t∈R on STd).
This phenomenon was recently exhibited by Faure and Tsujii in the gen-
eral context of contact Anosov flows [FT15, FT17b, FT17a, FT21]. See
also [DFG15] for related results of Dyatlov, Faure and Guillarmou in the
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particular case of geodesic flows on hyperbolic manifolds. Compared with
the results of Faure and Tsujii, we emphasize that our analysis heavily relies
on the algebraic structure of our flows as in the hyperbolic settings treated
in [Rat87, DFG15]. Moreover, we are dealing with completely integrable
systems which have in some sense opposite behaviours compared with the
dynamical situations considered in all these references. In particular, due to
the integrable nature of our system, the asymptotic expansion in terms of
the quantum propagator is polynomial rather than exponential as in [FT21,
Th. 1.2]. This is reminiscent to the much weaker mixing properties of the
geodesic flow in this situation. Finally, we refer to [DLR22a] for a short note
presenting some of the results of the present paper as well a sketches of
proofs.

2.5. Organization of the article

In Section 3, we review the necessary background on convex and differential
geometry in order to define the Poincaré series and Epstein zeta functions.
In particular, we introduce in Section 3.2 the general Finsler structures on
Td, to which our results apply and discuss some of their properties. In Sec-
tion 3.5, we introduce the general versions of the Zeta function and Poincaré
series studied in the paper, and describe some of their basic properties.

In Section 4, after some brief recollection of basic facts on de Rham
currents, we give a current theoretic interpretation of mixed volumes in
convex geometry and we define some dynamical correlation functions for
currents. We explain how the Poincaré series and Epstein zeta functions
may be understood as the Mellin and Laplace transforms of the correlation
function associated with certain currents. Then we close the section by re-
lating the dynamical correlators with the Poincaré series and Epstein zeta
function.

The long time asymptotics of the dynamical correlations involves some
estimates for oscillatory integrals. The analysis of these oscillatory integrals
is a standard topic in harmonic analysis [Her62a, Hör03, Ste93, DZ19a] and
in Section 5, we rediscuss some of their properties and pay some attention
on the control of certain estimates in terms of the frequency parameter.

In Section 6, we apply this analysis to define spaces with anisotropic
Sobolev regularity, in which we describe the asymptotic expansion of the
pullback operator e−tV ∗ as t→ +∞ acting on functions, as in Theorem 2.4.

In Section 7, we come back to the general forms/currents setting of the
article, we define anisotropic Sobolev spaces adapted to the dynamics i.e.
on which the operator χ̂(−iV ) is well defined. When χ depends on some
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complex parameter s ∈ C, we show in Section 8 that the operator χ̂(−iV )
can be continued, as in Theorems 2.2 and 2.3.

In Section 9, we apply these results to particular currents to make
the connection between these kinds of operators and geometric zeta func-
tions/Poincaré series, using the strategy initiated in [DR21]. Along the way,
we prove slightly more general versions of Theorems 1.3, 1.5, 1.7 and 1.8.

We conclude the proof of Theorem 1.4 in Section 10 by identifying the
values of certain residues using tools from convex geometry [Sch14].

2.6. Comments on generalizations

The choice of the lattice 2πZd is somewhat arbitrary and it makes the pre-
sentation slightly simpler. However, our analysis could be adapted to handle
more general flat tori of the form Rd/Γ where Γ is a lattice in Rd of maximal
rank.

Up to this point, for the sake of the exposition, we only considered the
natural Euclidean structure on Td, the associated distance function, the as-
sociated geodesic vector field θ · ∂x and flow (2.4) on STd. Yet, our analysis
works if we replace the Euclidean structure by any translation invariant
Finsler structure on Td. As explained in Section 3.2 below, the latter cor-
responds to studying on STd the vector field v(θ) · ∂x and the associated
flow:

(x, θ) ∈ STd �→ (x+ tv(θ), θ) ∈ STd,

where θ ∈ Sd−1 �→ v(θ) ∈ Rd is the parametrization by its outward normal
of the boundary of a strictly convex compact subset K having 0 ∈ Int(K).
This general set-up is described in Section 3 and we state the results at this
level of generality all along the article.

3. Background on convex and differential geometry

In this preliminary section, we review a few facts from convex geometry. We
also define precisely the general Finsler structures and the associated vector
fields, as well as their zeta functions.

3.1. Normal bundles to convex sets

Let K be a compact and convex subset of Rd with smooth boundary ∂K.
We define the unit normal bundle to ∂K as

N(∂K) :=
{
(x, θ) ∈ ∂K × Sd−1 : ∀v ∈ Tx∂K, θ · v = 0

}
.
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Except when K is reduced to a point, this submanifold of Rd × Sd−1 has
two connected components and, in that case, we introduce the direct normal
bundle to K as

N+(K) := {(x, θ) ∈ N(∂K) : θ is pointing outward K} ,

and the indirect normal bundle to K as N−(K) := N(∂K) \ N+(K). The
boundary ∂K of K is thus naturally oriented by the outward normal. In the
case where K is reduced to a point, we set N+(K) = N(∂K) = N−(K).

Remark 3.1. Recall that, when K is not reduced to a point, the shape
operator of the smooth hypersurface ∂K is the map

S(x) : v ∈ Tx∂K �→ ∇vθ ∈ Tx∂K,

where x ∈ ∂K �→ θ(x) ∈ N+,x(∂K) ⊂ Sd−1 and where ∇ is the (standard)
covariant derivative in Rd [Lee09, §4.2]. In particular, S(x) is the selfadjoint
map associated with the second fundamental form of Σ and it is invertible
if and only if ∂K has nonvanishing Gauss curvature [Lee09, Def. 4.24]. If
K is a strictly convex body (not reduced to a point), then ∂K has all its
sectional curvatures [Lee09, p. 557] positive by definition (and thus nonva-
nishing Gaussian curvature). This is equivalent to saying that all the eigen-
values of the shape operator are non zero and have the same sign thanks to
the Gauss curvature equation [Lee09, Eq. 4.10, p. 172].

If we suppose that K is strictly convex, then the Gauss map

(3.1) G : (x, θ) ∈ N+(K) �→ θ ∈ Sd−1

is a diffeomorphism and there exists a smooth map xK : Sd−1 → Rd such
that G−1(θ) = (xK(θ), θ). The map xK is the inverse Gauss map. Note that
this remains true when K = {x0} by letting xK(θ) = x0. In both cases, it is
natural to say that we can parametrize the convex set by the normal and,
when K is not reduced to a point, the map xK : Sd−1 → ∂K is in fact a
diffeomorphism which is orientation preserving. For later purposes, we also
define the following vector field on Rd × Sd−1:

V ±
K := xK(±θ) · ∂x.

If θ �→ xK(θ) parametrizes the convex K by the outward normal, then
θ �→ −xK(θ) parametrizes the reflected convex −K by the inward normal,
therefore θ �→ −xK(−θ) parametrizes −K with the outward normal. In



942 Nguyen Viet Dang et al.

terms of the vector fields V ±
±K , we note that this correspondence reads V +

−K =

−V −
K . From this point on of the article, we fix a strictly compact and

convex body K with smooth boundary in the sense of Definition 1.1 that
contains 0 in its interior, 0 ∈ Int(K). We will be interested in the induced
vector field on STd = Td × Sd−1:

(3.2) V := v(θ) · ∂x, with v := xK .

The case of the classical geodesic flow described in the introduction corre-
sponds to K = Bd, where Bd is the Euclidean ball of radius 1 centered at 0
and v(θ) = θ.

Remark 3.2. The fact that K has 0 in its interior has the following conse-
quence that will be used later on:

(3.3) for all θ ∈ Sd−1, v(θ) · θ > 0.

Indeed, if there is θ0 ∈ Sd−1 such that v(θ0)·θ0 ≤ 0, we may suppose without
loss of generality that θ0 = (1, 0, . . . , 0). This would imply that v1(θ0) ≤ 0
and contradict the fact that Rθ0 ∩K is a closed interval containing 0 in its
interior.

3.2. Finsler geometry and Hamiltonian structure

In this section, we introduce the general translation invariant Finsler geom-
etry in which we consider our Epstein Zeta function and Poincaré series.
We recall how it naturally enjoys a Hamiltonian structure and how both are
linked to vector fields of the form (3.2).

3.2.1. Generalities on convex and Finsler geometries. For K ⊂ Rd

a convex set, we start by recalling the notation for its polar set

K◦ = {p ∈ Rd : p · x ≤ 1 for all x ∈ K},

and the relation K◦◦ = K if 0 ∈ Int(K), see [Sch14, Theorem 1.6.1]. We also
recall the definition of the support function of the convex set K:

hK(p) := sup{p · x : x ∈ K}, p ∈ Rd.(3.4)

Given a convex function g : Rd → R, its Legendre transform is defined as

g∗(p) = sup{p · x− g(x) : x ∈ Rd},
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which is a convex function on Rd.
Next, a function F : Rd �→ R is called a Minkowski norm if it satisfies

the following properties [CS05, p. 2]:

• F (λy) = λF (y), ∀λ > 0,
• F : Rd \ {0} �→ R is smooth and for any y ∈ Rd \ {0}, the bilinear
form By

By(v, w) =
1

2

d2

dsdt
F 2(y + sv + tw)|s=t=0

is positive definite.

The pair (Rd, F ) is called a Minkowski space. Let us list some properties
of the pair (Rd, F ) which are consequences of the above definition [CS05,
p. 3] [BCS00, Thm 1.2.2, p. 6]:

1. F (y) � 0 and F (y) = 0 =⇒ y = 0,
2. the unit sphere {F = 1} is a smooth, strictly convex hypersurface

diffeomorphic to the unit Euclidean sphere,
3. F (x+y) � F (x)+F (y) with equality iff x, y are colinear which means

the Minkowski norm satisfies the strict triangle inequality.

We collect in the following lemma relations between Minkowski norms
and convex sets.

Lemma 3.3. Assume that K ⊂ Rd is a strictly convex compact set in the
sense of Definition 1.1 such that 0 ∈ Int(K). One can associate with K its
support function hK and the Minkowski norm FK s.t. K = {FK � 1}. Then
one has the following relations

• the norm FK and support functions hK are related via Legendre trans-
formation: FK = h∗K,

• the map K �→ hK exchanges polarity K �→ K◦ and the Legendre trans-
form which reads

hK◦ = h∗K.

If we define the Lagrangian L(y) = 1
2F

2(y) on the velocity space Rd and
the Hamiltonian

H(p) =
1

2
(F ∗)2(p) =

1

2
h2K(p)(3.5)

on the dual space Rd∗ � Rd, we have H∗ = L and L∗ = H. Moreover, the
maps x �→ ∇L(x) and u �→ ∇H(u) are bijective and inverse to each other.
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This lemma is essentially proved in [Sch14, pp. 55–56]. Let us quickly
remind how to recover the Minkowski norm F from the convex K we started
with. We would like to realize the boundary hypersurface ∂K as the unit
sphere F = 1. Note that the positive definiteness of the bilinear forms
(gu)u∈{F=1} in the definition of Minkowski norms exactly means that the

Gauss map x ∈ {F = 1} �→ ∇F (x)
|∇F (x)| ∈ Sd−1 is invertible. For every x ∈ Rd,

define F (x) = 1
t for t � 0 s.t. tx ∈ ∂K, which according to [Sch14, Lemma

1.7.13] is F = hK◦ . The fact that F ∗ = hK is proved in [BCS00, Eq. (14.7.4),
p. 404)]. By [She01, Lemma 3.1.2, p. 38], F ∗ is also a Minkowski norm on Rd

and its unit ball is nothing but the polar convex set K◦. Finally that the La-
grangian L(y) = 1

2F
2(y) on velocity space corresponds to the Hamiltonian

H on momentum space given by (3.5), follows for instance from [BCS00,
Eq. (14.8.2), p. 407]. For more informations on the Legendre transformation
and convex geometry, see [BCS00, §14.8]).

On TTd, we endow each tangent space TxT
d with the Minkowski metric

F , then this turns Td into a Riemann–Finsler manifold (Td, F ) whose Finsler
metric is translation invariant. The associated distance function is

dF (x, y) = inf

{∫ 1

0
F (γ̇(t))dt, γ ∈W 1,1([0, 1];Td), γ(0) = x, γ(1) = y

}
.

As in the Riemannian framework and in classical mechanics, one deduces
from Lemma 3.3 that curves on Td minimizing the distance dF (which we
call geodesic curves of (Td, F ) as in the Riemannian case) are projections
of Hamiltonian flow on Td, namely (x(t), p(t)) where ẋ = ∇H(p), ṗ = 0.
That is to say (x(t), p(t)) = (x0 + t∇H(p0), p0). In particular, translation
invariance implies that geodesics are straight lines in Td.

3.2.2. Parametrization by the unit normal. Let us conclude this sec-
tion with a Hamiltonian interpretation of the vector field V = v(θ) · ∂x
defined in (3.2). Here, given K ⊂ Rd a strictly convex compact set in the
sense of Definition 1.1 such that 0 ∈ Int(K), we recall that we have defined
v = xK as the inverse of the Gauss map on ∂K. Recalling (3.5) and (3.4),
one has:

HK(x, ξ) :=
1

2
hK(ξ)2 =

1

2

(
ξ · v
(

ξ

|ξ|

))2

, (x, ξ) ∈ T ∗Td \ 0Td ,

where the second equality comes from the study of the critical points of the
function θ ∈ Sd−1 �→ v(θ) · ξ – see §5 for instance or [Sch14, Remark 1.7.14,
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p. 53]. Recalling that the normal toK at v(θ) is θ by construction, we deduce

that the image of d
(
v
(

ξ
|ξ|

))
is orthogonal to ξ and thus the corresponding

Hamiltonian vector field is given by

XHK
=

(
v

(
ξ

|ξ|

)
+ d

(
v

(
ξ

|ξ|

))T

ξ

)
· ∂x = v

(
ξ

|ξ|

)
· ∂x.

This looks very much like our vector field except that the level line E :=
{H = 1

2} is not equal to Sd−1. In view of fixing this issue, we define the
following diffeomorphism:

Φ : (x, θ) ∈ STd �→
(
x,

θ

v(θ) · θ

)
∈ E ,(3.6)

and one finds Φ∗XHK
= V . In other words, our vector fields are pullbacks

on STd of Hamiltonian vector fields whose expressions are given in terms
of K or equivalently (Φ−1)∗e−tXHΦ∗ = e−tV where e−tV acts on STd and
e−tXH acts on E ⊂ T ∗Td.

Remark 3.4. Note that e−tV preserves the contact form. Indeed, by the
Lie–Cartan formula:

LV θ · dx = d(v(θ) · θ) + ιV (dθ ∧ dx) = v(θ) · dθ − v(θ) · dθ = 0

where we used the orthogonality relation θ · dv(θ) = 0 and the fact that V
is horizontal hence ιV dθ = 0. This property allows to give another proof of

identity (3.10). In fact, sinceN+(Σ1) = eV
+
K1

∗(S0T
d) (with V +

K1
= xK1

(θ)·∂x),
it is the transport by some contact flow of the fiber S0T

d which is Legendrian.
Hence N+(Σ1) is also Legendrian.

Finally, we characterize integrable Hamiltonian flows that arise from
vector fields of the form (3.2).

Lemma 3.5. Let H : Rd → R be such that

1. E = {H = 1
2} is compact and connected,

2. H is smooth near E and ∇H �= 0 on E,
3. the Hessian D2H(p)(·, ·) is positive definite for all p ∈ E when re-

stricted to TpE × TpE,
4. p �→ p · ∇H(p) is constant on E.

Then there is a strictly convex set K in the sense of Definition 1.1, with
0 ∈ Int(K) and a constant c0 > 0 such that on E, e−tXH = e−c0tXHK =
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Φ∗e−c0tV (Φ−1)∗ with V = v(θ) · ∂x where v(θ) is associated with K and Φ
defined by (3.6).

As a consequence of this lemma, the analysis of the flow e−tXH on the set
E ⊂ T ∗Td is equivalent to that of e−tV on STd. Therefore, the present article
includes the study of a family of completely integrable Hamiltonian flows
associated with strictly convex Hamiltonians. Note that the condition (4) is
reminiscent to the homogeneity of H near E . In particular, it shows that, up
to conjugation by Φ, our analysis includes the case of flows associated with
Hamiltonians of the form H(p) := 1

2p · Ap, where A is any positive definite
symmetric matrix.

Proof. By assumption, E is a smooth compact, connected and oriented
hypersurface embedded in Rd. Moreover, the convexity assumption on H
implies that its sectional curvatures are positive. Hence, by Hadamard-
Sacksteder Theorem [Had97, Sac60, dCL69], it is the boundary of a strictly
convex body K ⊂ Rd (in the sense of Definition 1.1), i.e. ∂K = E . Moreover,
assumption (4) implies that 0 ∈ Int(K) and p �→ p · ∇H(p) = c0 > 0 for all
p ∈ E . Then, according to Lemma 3.3, F := hK is a Minkowski norm on Rd

and hK◦ is a Minkowski norm on Rd such that K = {p ∈ Rd, hK◦(p) ≤ 1}.
Setting HK◦ := 1

2h
2
K◦ , we have, locally near E , K = {H ≤ 1

2} = {HK◦ ≤
1
2}, and, more precisely, H − 1

2 and HK◦ − 1
2 are two defining functions

of ∂K. Hence, there exists a smooth non-vanishing function f such that
HK◦(p) − 1

2 = f(p)
(
H(p)− 1

2

)
. Differentiating this identity and restrict-

ing it to E , we obtain ∇HK◦(p) = f(p)∇H(p) for all p ∈ E . This implies
p · ∇HK◦(p) = f(p)p · ∇H(p) for all p ∈ E . The Hamiltonian HK◦ is homo-
geneous of degree two, whence p · ∇HK◦(p) = 2HK◦ = 1 for all p ∈ E . We
deduce that f(p) = c−1

0 for all p ∈ E . This implies ∇H(p) = c0∇HK◦(p) and
hence e−tXH = e−c0tXHK◦ = Φ∗e−c0tV (Φ−1)∗ where V = v(θ) · ∂x and v(θ) is
associated with the convex set K◦ = K.

3.3. Decomposition of the tangent space of STd

The tangent space to a point (x, θ) ∈ STd decomposes in a way which is
adapted to the dynamical features of our problem. First, we write

Tx,θST
d � TxT

d × TθS
d−1.

Given θ ∈ Sd−1, we consider a family (e1(θ), . . . , ed−1(θ)), depending in a
smooth way on θ, and such that the family (θ, e1(θ), . . . , ed−1(θ)) is orthonor-
mal and

det (θ, e1(θ), . . . , ed−1(θ)) > 0.
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At a given point (x, θ) ∈ STd, we define the horizontal space as

Hx,θ := SpanTxT
d(e1(θ), . . . , ed−1(θ))× {0} ⊂ TxT

d × {0} ⊂ Tx,θ(ST
d).

Similarly, we introduce the vertical space

Vx,θ := {0} × SpanTθS
d−1(e1(θ), . . . , ed−1(θ)) = {0} × TθS

d−1 ⊂ Tx,θ(ST
d).

Note that Vx,θ is the tangent space to the submanifold SxT
d, or equivalently

the kernel of the tangent map of Π : (x, θ) ∈ STd �→ x ∈ Td. One has then
some canonical identification of all tangent fibers as:

Tx,θST
d = Rθ · ∂x ⊕Hx,θ ⊕ Vx,θ.

In the terminology of symplectic geometry, Hx,θ ⊕ Vx,θ is the kernel of the
Liouville (contact) form α(x, θ, dx, dθ) := θ · dx. This decomposition of the
tangent space allows to write the following nice expression of the tangent
map D(etV ) : Tx,θST

d �→ Tx+tv(θ),θST
d � Tx,θST

d at a point (x, θ):

(3.7) [D(etV )(x, θ)]Rθ·∂x⊕Hx,θ⊕Vx,θ
=

⎛⎝ 1 0 0
0 Id tDv(θ)
0 0 Id

⎞⎠ .

Indeed, etV commutes with translations on Td therefore D(etV ) = Id on
the horizontal part θ · ∂x ⊕ Hx,θ. Then for the other part, we just com-
pute the derivative along a C1 curve: s �→ θ(s) ∈ SxT

d, we have d
ds(x +

tv(θ(s)), θ(s)) = (tDv(θ)(θ′(s)), θ′(s)) which yields the full matrix of the
differential.

Remark 3.6. Recall that v : θ ∈ Sd−1 → ∂K is a diffeomorphism. Moreover,
by construction, Dv(θ) can be identified with an isomorphism of TθS

d−1, as
the normal to ∂K at v(θ) is given by θ. From this expression of the tangent
map, we deduce that every vector in Hx,θ⊕Vx,θ is stretched in the direction
of the horizontal bundle under the action of the tangent map as t → ±∞.
See Figure 2.

Remark 3.7. Recalling (3.3), one knows that V is transversal to Hx,θ⊕Vx,θ.
Remark 3.8. We will denote by E∗

0 = Rα ⊂ T ∗STd the annihilator of H ⊕
V, by H∗ ⊂ T ∗STd the annihilator of RV ⊕ V and by V∗ ⊂ T ∗STd the
annihilator of RV ⊕H. The action of the tangent map on T ∗STd reads

(3.8) [D(etV )(x, θ)T ]−1
Rα(x,θ)⊕H∗

x,θ⊕V∗
x,θ

=

⎛⎝ 1 0 0
0 Id 0
0 −tDv(θ)T Id

⎞⎠ .
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Figure 2: Action of the tangent map on the kernel of the contact form.

3.4. Admissible submanifolds

In view of defining our zeta functions, we will need the following admissibility
property:

Definition 3.9. We say that Σ1 ⊂ Td is admissible if there exists a strictly
convex and compact subset K1 ⊂ Rd with smooth boundary such that

p(∂K1) = Σ1.

This definition includes the case where Σ1 is reduced to a point. We
also observe that the map p : ∂K1 → Td is a smooth immersion but it
is not necessarily injective, i.e. Σ1 may have selfintersection points. Using
the inverse of the Gauss map (3.1), one can then define the direct/indirect
normal bundles to Σ:

(3.9) N±(Σ1) :=
{
(x̃(θ) := p ◦ xK1

(θ),±θ) : θ ∈ Sd−1
}
,

and N(Σ1) = N+(Σ1) ∪ N−(Σ1), where θ ∈ Sd−1 �→ x̃(θ) ∈ Σ1 ⊂ Td is the
parametrization of Σ1 by its normal. Even if Σ1 is not a proper submanifold
(as it may have selfintersection points), N(Σ1) and N±(Σ1) are smooth,
compact and embedded submanifolds of Td × Sd−1. Using the conventions
of §3.3, one has

Lemma 3.10. Let Σ1 ⊂ Td be admissible. Then, for every point (x, θ) =
(x̃(θ), θ) in N±(Σ1), one has

Tx,θN±(Σ1) ⊂ Hx,θ ⊕ Vx,θ,(3.10)
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Tx,θST
d = Rθ · ∂x ⊕Hx,θ ⊕ Tx,θN±(Σ1).(3.11)

In the terminology of symplectic geometry, (3.10) says that N±(Σ1) is a
Legendrian submanifold as its tangent space lies in the kernel of the Liouville
contact form. Property (3.11) is a transversality property, see Figure 3. It
says that our unit normal bundle is never tangent to the horizontal bundle
inside STd.

Figure 3: Tangent space to N+(Σ1).

Proof of Lemma 3.10. We start proving (3.10) and only discuss the case of
N+(Σ1) (the other case can be handled similarly). We recall that N+(Σ1) is
defined in (3.9). In particular, the tangent set to a point (x̃(θ), θ) is given
by

Tx̃(θ),θN+(Σ1) =
{
(Dx̃(θ)v, v) : v ∈ Vx̃(θ),θ

}
⊂
(
Rθ · ∂x ⊕Hx̃(θ),θ

)
⊕ Vx̃(θ),θ

(3.12)

Thus, in order to prove (3.10), we need to check that Dx̃(θ)v ⊥ V (x̃(θ), θ)
for every v ∈ Vx̃(θ),θ. To see this, we only need to discuss the case where
Dx̃(θ)v �= 0. By construction, this means that DxK1

(θ)v �= 0. By definition,
such a vector is an element in TxK1 (θ)

∂K1 and thus orthogonal to θ · ∂x
which is the outward normal to ∂K1 at xK1

(θ). This implies that Dx̃(θ)v is
orthogonal to V (x̃(θ), θ), hence the conclusion (3.10).

Finally, recalling the decomposition of the tangent space (3.12), these
Legendrian submanifolds verify the transversality property (3.11).
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3.5. Epstein zeta functions and Poincaré series for admissible
submanifolds

Let now Σ1 and Σ2 be two admissible subsets of Td and let σ1 and σ2 be
two elements in {±}. The ultimate goal of the present section is to prove
Lemma 1.2 stating finiteness of the set of certain geodesic curves of length
≤ T , as well as an a priori upper bound on its cardinal, namely O(T d). In
turn, this will imply that generalized Epstein functions like (1.2) are well
defined for Re(s) > d and that Poincaré series like (1.4) are well-defined for
Re(s) > 0. This relies on a reformulation of length of geodesics in terms of
the geodesic flow on STd. We follow this program in the general context of
Finsler invariant structures on the torus described in Section 3.2, that is to
say for general flows (e−tV ) associated with a strictly convex compact set in
the sense of Definition 1.1 such that 0 ∈ Int(K).

To this aim, we define for t > 0,

Et(Σ1,Σ2) := Nσ1
(Σ1) ∩ etV (Nσ2

(Σ2)) ⊂ STd.(3.13)

and describe the set of times t ∈ R+ such that Et(Σ1,Σ2) �= ∅. Note that
the orientations σi are implicit in this notation.

3.5.1. A priori bounds on the number of intersection points. The
first basic statement concerns finiteness of Et(Σ1,Σ2) together with the set
of times t for which Et(Σ1,Σ2) is nonempty.

Lemma 3.11. There exists some T0 > 0 such that, for every t ≥ T0,
Et(Σ1,Σ2) is a (possibly empty) finite set. Moreover, setting

mΣ1,Σ2
(t) := � Et(Σ1,Σ2) <∞, t ≥ T0,

for any [a, b] ⊂ [T0,+∞),

{t ∈ [a, b] : Et(Σ1,Σ2) �= ∅} = {t ∈ [a, b] : mΣ1,Σ2
(t) �= 0},

is as well a finite set.

Note that Lemma 1.2 is then a reformulation of Lemma 3.11. The lat-
ter states that after some time T0, all possible intersections in (3.13) are
transverse and thus our counting problem is well–posed. This property can
be visualized as follows. When pushing a convex hypersurface ∂K1 by the
flow of V in the cover Rd, it behaves more and more like a flat hypersurface;
Therefore, after some time T0, its sectional curvatures will be strictly less
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than the sectional curvatures of ∂K2. In turn, this implies that the inter-

sections occurring in STd of the corresponding normal bundles will become

transverse right after T0.

Proof of Lemma 3.11. Given t0 ∈ R+, one can always find some ε > 0 such

that ⋃
t∈(t0−ε,t0+ε)

etV (Nσ2
(Σ2))

is a smooth submanifold (with boundary) of dimension d inside STd. More-

over, thanks to (3.11) and to (3.7), we know that, for t0 large enough, one can

find ε > 0 such that, for every (x, θ) ∈ Nσ1
(Σ1)∩∪t∈(t0−ε,t0+ε)e

tV (Nσ2
(Σ2)),

(3.14) Tx,θST
d = Tx,θNσ1

(Σ1)⊕ Tx,θ

(
∪t∈(t0−ε,t0+ε)e

tV (Nσ2
(Σ2))

)
.

In other words, the two submanifolds are transversal and, by compactness,

they intersect at only finitely many points. Note that the transversal in-

tersection implies that the boundary of ∪t∈(t0−ε,t0+ε)e
tV (Nσ2

(Σ2)) does not

meet Nσ1
(Σ1).

We now provide with an a priori polynomial upper bound on mΣ1,Σ2
(t).

This is essential to ensure that Epstein functions like (1.2) and Poincaré

series like (1.4) do converge for Re(s) large enough.

Lemma 3.12. Let Σ1 and Σ2 be two admissible subsets of Td. Then, for T0

as in Lemma 3.11, there is C0 > 0 such that, for every T ≥ T0,∑
T≤t≤T+1

mΣ1,Σ2
(t) ≤ C0T

d−1.

In particular, as T → +∞,∑
T0≤t≤T

mΣ1,Σ2
(t) = O(T d).

Proof. In order to obtain such an upper bound, it is more convenient to lift

the problem to Rd and to recall that the lift of Σj is by definition the smooth

boundary of a compact and strictly convex set. As a consequence, we have

for any t > 0

mΣ1,Σ2
(t) = � Et(Σ1,Σ2) = � Et(∂K1, ∂K2),
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where

Et(∂K1, ∂K2) :=
{
(x, θ) ∈ Nσ1

(∂K1 + 2πZd) : (x− tv(θ), θ) ∈ Nσ2
(∂K2)

}
.

Recalling that, when lifting the problem to Rd,

N±(∂Kj) :=
{
(xKj

(θ), σjθ) : θ ∈ Sd−1
}
=
{
(xKj

(σjθ), θ) : θ ∈ Sd−1
}
,

we notice that

(x, θ) ∈ Et(∂K1, ∂K2) =⇒ tv(θ) + xK1
(σ1θ)− xK2

(σ2θ) ∈ 2πZd,

whence

� Et(∂K1, ∂K2) = �

{
θ ∈ Sd−1 : t

(
v(θ) +

xK1
(σ1θ)− xK2

(σ2θ)

t

)
∈ 2πZd

}
.

This implies that ∑
T≤t≤T+1

� Et(∂K1, ∂K2) ≤ �
{
ξ ∈ Zd : (∗)

}
,

where (∗) means that there exist T ≤ t ≤ T + 1 and θ ∈ Sd−1 such that

2πξ = tv(θ) + xK1
(σ1θ) − xK2

(σ2θ). As we made the assumption that K

contains 0 in its interior, there exists some c0, C > 0 (depending only on

K1, K2 and K) such that, for T > 0 large enough,∑
T≤t≤T+1

� Et(∂K1, ∂K2) ≤ �
(
2πZd ∩ CT

)
≤ C VolRd(CT ),

with CT = (T +1+c0)K \ (T −c0)K. We finally deduce from [Her62b, Th. 1]

that, for T0 > 0 as in Lemma 3.11,∑
T≤t≤T+1

mΣ1,Σ2
(t) =

∑
T≤t≤T+1

� Et(∂K1, ∂K2) ≤ CT d−1, T ≥ T0,

which concludes the proof of the lemma.

3.5.2. Generalized Epstein zeta functions and Poincaré series. We

may now come back to Epstein zeta functions and Poincaré series. We fix
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T0 > 0 large enough to ensure that Lemma 3.11 (and thus 3.12) apply. We

also fix β = β0 + df with

β0 ∈ H1(Td,R) :=

⎧⎨⎩
d∑

j=1

βjdxj : (β1, . . . , βd) ∈ Rd

⎫⎬⎭ .

In particular, for such a T0 and such a β, we can define, for Re(s) > d, the

generalized Epstein zeta function as

(3.15) ζβ(K2,K1, s)

:=
∑

t>T0:Et(Σ1,Σ2) �=∅
t−s

⎛⎝ ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0

−t
β(V )(x+τv(θ),θ)|dτ |

⎞⎠ ,

where Et(Σ1,Σ2) is defined in (3.13) and is a finite set thanks to Lemma 3.11.

Lemma 3.12 ensures that this defines a holomorphic function in {Re(s) > d}.
Similarly, for Re(s) > 0, we define the generalized Poincaré series as

(3.16) Zβ(K2,K1, s)

:=
∑

t>T0:Et(Σ1,Σ2) �=∅
e−st

⎛⎝ ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0

−t
β(V )(x+τv(θ),θ)|dτ |

⎞⎠ .

Again Lemma 3.12 shows that this defines a holomorphic function in the

halfplane {Re(s) > 0}.
Remark 3.13. When V = θ · ∂x (i.e. for K = Bd in the definition of V )

and except for the role of K1 and K2 that are reversed compared with the

introduction, these two functions are exactly the two series defined in (1.2)

and (1.4) in the introduction.

Remark 3.14. When K1 = K2 = {0}, the times t appearing in these zeta

functions correspond to dilation parameters t such that tK intersects 2πZd,

with K being the convex subset used to define V = v(θ) · ∂x.

3.6. Sums of convex subsets

Let K be a compact and convex subset of Rd. In this paragraph, it is not

necessarily strictly convex or with a smooth boundary. Following [Sch14,
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§1.7], we define the supporting hyperplane to K with exterior normal v ∈
Rd \ {0} as

H(K, v) :=

{
w ∈ Rd : v · w = max

x∈K
v · x
}
.

Note that the maximum in this definition is necessarily attained at a point
x0 ∈ ∂K. In particular, if a point x lies in H(K, v) ∩K, then it belongs to
∂K. For such a point, v is called an outward normal vector of K at x. Then,
the normal bundle Nx(K) to K at the point x consists in the collection of all
the outward normal vectors of K at x together with the zero vector [Sch14,
§2.2].
Remark 3.15. Note that for strictly convex smooth domains, as considered in
the present article, Nx(K) is a one-dimensional cone. This is not necessarily
the case for general convex sets, see for instance K := {(x, y) ∈ R2

+ : x+y ≤
1}.

In that manner, we can extend the definition given in §3.1 to any compact
and convex subset of Rd:

N+(K) :=
⋃
x∈K

{(x, v) : v ∈ Nx(K)} ∩ Sd−1.

Given two compact and convex subsets K and L of Rd, one has according
to [Sch14, Th. 2.2.1]

(3.17) ∀(x, y) ∈ K × L, Nx+y(K + L) = Nx(K) ∩Ny(L)

In particular, if K and L are two strictly convex bodies with smooth bound-
aries Nx+y(K+L) is not reduced to 0 if and only if the outward unit normal
vectors at x ∈ ∂K and y ∈ ∂L coincide. We may summarize the formula for
the normal bundle of the sum of two strictly convex subsets as

(3.18) N+ (K + L) = {(x+ y; ξ); (x; ξ) ∈ N+(K), (y; ξ) ∈ N+(L)}.

Thanks to (3.17), we deduce the following fact of independent interest

Lemma 3.16. Let K1,K2 be two strictly convex subsets of Rd with smooth
boundaries ∂K1, ∂K2 that are parametrized by their outward normals through
the maps xK1

, xK2
: Sd−1 �→ Rd. Then, the Minkowski sum K1 +K2 is such

that its boundary ∂ (K1 +K2) is parametrized by the sum:

xK1
+ xK2

: Sd−1 �→ Rd.
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Remark 3.17. With the conventions of the previous paragraphs, the bound-

ary of the compact convex set K2 − K1 + tK is parametrized by the map
θ ∈ Sd−1 �→ xK2

(θ)− xK1
(−θ) + tv(θ) ∈ Rd.

4. Correlation functions for differential forms

In view of defining our functional setup for the vector field V and of its
applications to convex geometry, we need to describe as precisely as possible
the long time behaviour of the flow etV acting on differential forms of STd.

More precisely, given (ϕ,ψ) ∈ Ω2d−1−k(STd) × Ωk(STd) (where Ωl(STd) is
the space of differential of degree l), we aim at describing the correlation

function

(4.1) Cϕ,ψ(t) :=

∫
STd

ϕ ∧ e−tV ∗(ψ), as t→ +∞.

In this section, we will show how to write a Fourier decomposition of such

integrals in view of reducing our analysis to the study of classical oscillatory
integrals. Using the notion of current [Sch66, Ch.IX], we will also explain

how such correlation functions naturally appears when studying the zeta
functions of Section 3.

4.1. Some conventions

Given an open subset U of Sd−1, we will denote by Ωk
m(Td × U) the space

of (complex valued) differential forms [Lee09, Ch. 8] of degree k compactly
supported in Td × U and having Cm-regularity with respect to the variable

(x, θ) ∈ Td × U . When U = Sd−1, we will just write Ωk(STd). For smooth
forms, we will use the standard convention

Ωk(Td × U) =
⋂
m≥0

Ωk
m(Td × U), Ωk(STd) =

⋂
m≥0

Ωk
m(STd).

We will decompose differential forms as follows:

ψ(x, θ, dx, dθ) =
∑

I⊂{1,...,d},|I|≤k

dxI ∧ ψI(x, θ, dθ),

where dxI = dxi1 ∧ dxi2 . . . ∧ dxil for some I = {i1 < i2 < . . . < il} ⊂
{1, . . . , d} and where ψI : x ∈ Td �→ ψI(x, θ, dθ) ∈ Ωk−|I|(U).



956 Nguyen Viet Dang et al.

Remark 4.1. The convention dx and dθ in the arguments of ψ ∈ Ωk
m(STd)

will always indicate that we are considering differential forms in the x and

θ variables.

Similarly to the case of distributions, one can define, for any 0 ≤ k ≤
2d− 1, the set D′k(Td×U) of currents of degree k [Sch66, Ch.IX, §2] as the
topological dual to Ω2d−1−k(Td × U) with respect to the bilinear pairing

(ψ1, ψ2) ∈ Ωk(STd)× Ω2d−1−k(STd) �→ 〈ψ1, ψ2〉 :=
∫
STd

ψ1 ∧ ψ2 ∈ C.

In the following, we letV = LV be the operator acting as the Lie derivative

along V on differential forms (or currents). In particular, we write the action

by pullback as etV = etV ∗.
Using the structure of the torus, we can decompose differential forms

(and thus currents) into Fourier series along the x-variable. To that aim, we

set, for every ξ ∈ Zd,

eξ(x) :=
eiξ·x

(2π)
d

2

.

We can decompose any current u in D′k(STd) as

(4.2) u(x, θ, dx, dθ) =
∑
ξ∈Zd

∑
I⊂{1,...,d}

eξ(x)dx
I ∧ ûIξ(θ, dθ),

where each ûIξ is a current of degree k − |I| on Sd−1 and ûIξ = 0 whenever

|I| > k. For the sake of compactness, we also set

π
(k)
ξ (u)(θ, dx, dθ) :=

∑
I⊂{1,...,d}

dxI ∧ ûIξ(θ, dθ),

and

Π
(k)
ξ (u)(x, θ, dx, dθ) :=

∑
I⊂{1,...,d}

eξ(x)dx
I ∧ ûIξ(θ, dθ)

= eξ(x)π
(k)
ξ (u)(θ, dx, dθ).

These operators are projectors in the sense that

(4.3) ∀ξ, ξ′ ∈ Zd, Π
(k)
ξ Π

(k)
ξ′ = δξ,ξ′Π

(k)
ξ ,
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where δξ,ξ′ is the Kronecker symbol. These conventions allow to decompose
any element u ∈ D′k(STd) as follows

u =
∑
ξ∈Zd

Π
(k)
ξ (u) =

∑
ξ∈Zd

π
(k)
ξ (u)eξ.

Definition 4.2. Suppose that we are given a Sobolev or Hölder type norm
‖.‖B(Sd) on some Banach space B(Sd) continuously included in

d−1⊕
l=0

D′l(Sd−1).

If we identify π
(k)
ξ (u) with some vector valued distribution (ûIξ)I⊂{1,...,k} on

Sd−1, we then define

‖π(k)
ξ (u)‖B(Sd−1) := sup

{
‖ûIξ‖B(Sd−1) : I ⊂ {1, . . . , d}, |I| ≤ k

}
.

Similarly, for some open set U of Sd−1, we set

‖π(k)
ξ (u)‖B(U) := sup

{
‖ûIξ‖B(U) : I ⊂ {1, . . . , d}, |I| ≤ k

}
.

4.2. Orientation conventions

We note that we implicitely fix an orientation on Td by fixing the volume
form dx1 ∧ . . . ∧ dxd which can be identified with the Lebesgue measure
on Td. When we want to insist on the fact that we view it as the Lebesgue
measure, we will use the convention |dx| and we will use the same convention
to distinguish volume forms and measures on Rd, Sd−1 or R. In the following,
we choose to orient Sd−1 with the standard d− 1 form

VolSd−1(θ, dθ) =

d∑
p=1

(−1)p+1θp

d∧
q=1,q �=p

dθq, θ ∈ Sd−1,

and STd with the 2d− 1-form

dx1 ∧ . . . ∧ dxd ∧VolSd−1(θ, dθ).

In view of alleviating notation, we will simply write dVol(θ) := VolSd−1(θ, dθ)
and, when we want to emphasize that we view it as a measure on Sd−1, we
will write |dVol(θ)| or |dVol|.
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Remark 4.3 (Orientation conventions for the sphere). If we denote by Bd :=

{y ∈ Rd : |y| ≤ 1}, the natural orientation on Bd is given by that on

Rd. In spherical coordinates (r, θ), the current of integration on Bd reads

[Bd](r, θ, dr, dθ) = 1[0,1](r) so that

[Sd−1](r, θ, dr, dθ) = ∂[Bd](r, θ, dr, dθ) := −d[Bd](r, θ, dr, dθ) = δ0(r − 1)dr.

In particular, VolSd−1(θ, dθ) is the orientation on Sd−1 = ∂B
d induced by the

one on Rd as 〈
[Sd−1],VolSd−1

〉
=

∫
Rd

[Sd−1] ∧VolSd−1 > 0.

4.3. Fundamental examples of currents of integration

We now discuss an important example of current in view of our analysis. In

the sequel, [0] denotes the equivalence class of 0 mod 2πZd. We introduce

the following current of degree d on Td:

δ2πZd(x, dx) :=
1

(2π)
d

2

∑
ξ∈Zd

eξ(x)dx1 ∧ . . . ∧ dxd,

acting on functions f ∈ C∞(Td) by 〈δ2πZd(x, dx), f〉 = f([0]). We will also

use the notation

(4.4) δ[0](x) =
1

(2π)
d

2

∑
ξ∈Zd

eξ(x),

so that we can write

(4.5) δ2πZd(x, dx) = δ[0](x)dx1 ∧ . . . ∧ dxd.

If we view this current as a current7 on STd via the pullback by the map

(x, θ) ∈ STd �→ x ∈ Td, then it is in fact the current of integration on the

fiber S[0]T
d viewed as a submanifold of dimension d−1. We can now slightly

modify this example by fixing a smooth map x̃ : Sd−1 → Rd so that we can

7Again, we use the same notation for the current on the base and its pullback
on STd. We keep this convention for simplicity and we will in fact mostly consider
the pullback in the following.
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set

(4.6) [N ] := δ[0](x− x̃(θ))

d∧
i=1

d (xi − x̃i(θ)) ∈ D′d(STd).

Note that this is the current of integration on the d − 1 dimensional sub-
manifold

N := {(x̃(θ), θ) : θ ∈ Sd−1} ⊂ Td × Sd−1

that we have oriented with VolSd−1(θ, dθ) [DR18, Cor. D.4]. This is typically
the kind of currents to which we will apply e−tV ∗ in our applications to
convex geometry. See Lemma 4.16 for instance.

Thanks to (4.4), we have the following Fourier decomposition

[N ](x, θ, dx, dθ) = δ0(x− x̃(θ))

d∧
i=1

d (xi − x̃i(θ)) ∈ D′d(STd)

=
1

(2π)
d

2

∑
ξ∈Zd

eξ(x)e
−iξ·x̃(θ)

d∧
i=1

d (xi − x̃i(θ)) ∈ D′d(STd).

Thus, for every ξ ∈ Zd, one finds using the conventions of §4.1:

(4.7) π
(d)
ξ ([N ])(θ, dx, dθ) = eξ(−x̃(θ))

d∧
i=1

d (xi − x̃i(θ)) ∈ Ωd(STd).

4.4. Relations with volumes in convex geometry

These currents of integration are naturally linked with the volumes of convex
sets:

Lemma 4.4. With the above conventions, for any strictly convex set K in
the sense of Definition 1.1, one has

VolRd(K) =
1

d!

∫
STd

[S[0]T
d] ∧Vd−1ιV (dx1 ∧ . . . ∧ dxd) .

Remark 4.5. Note that the assumption of having 0 in the interior of K is
not useful in this lemma. Recalling that V = v(θ) · ∂x and Lemma 3.16, we
recover that, for strictly convex subsets (K1,K2) and for every λ1, λ2 > 0,
VolRd(λ1K1 + λ2K2) is a homogeneous polynomial in (λ1, λ2) [Sch14]. The
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coefficients are the so-called mixed volumes of K1 and K2. In particular,
if we take λ1 = 1, λ2 = t, K1 = K and K2 = Bd, we recover Steiner’s
formula (1.3) from the introduction.

Proof. We let t > 0. Suppose that, near a given point x0 ∈ ∂tK, tK is
parametrized by {f ≤ 0} with ∇f(x0) �= 0. Then, the direct normal bundle
writes locally near x0:

N+(∂(tK)) :=

{(
x,
∇f(x)

|∇f(x)|

)
: f(x) = 0

}
.

Given ψ ∈ Ωd−1(Rd) (not necessarily compactly supported), we write∫
SRd

[N+(∂(tK))] ∧ P ∗(ψ)

=

∫
SRd

δR0 (f)df ∧
[{

θ =
∇f(x)

|∇f(x)|

}]
∧ ψ(x, dx) =

∫
Rd

[∂(tK)] ∧ ψ,

where P : SRd → Rd denotes the canonical projection. Recalling that
−d[K] = [∂K], we find that∫

SRd

[N+(∂(tK))] ∧ P ∗(ψ) =

∫
tK

dψ.

Making use of (4.9) below, we thus obtain∫
tK

dψ =

∫
SRd

[N+(∂(tK))] ∧ P ∗(ψ) =

∫
SRd

e−tV ∗[S0R
d] ∧ P ∗(ψ)

=

∫
SRd

[S0R
d] ∧ etV ∗P ∗(ψ).

Now, we choose ψ = x1dx2∧ . . .∧dxd and observe that [S0R
d] = δR

d

0 (x)dx1∧
. . . ∧ dxd and that

d∑
�=0

t�

�!
V�P ∗(ψ) = etV ∗P ∗(ψ) = ψ(x+ tv(θ), d(x+ tv(θ))).

See for instance the proof of Lemma 4.7 below to see that this is indeed a
polynomial in t. Hence, when making the pairing of these two quantities, we
end up with∫

SRd

[S0R
d] ∧ etV ∗P ∗(ψ) =

td

d!

∫
SRd

[S0R
d] ∧VdP ∗(ψ)
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=
td

d!

∫
SRd

[S0R
d] ∧Vd−1ιV P

∗(dψ),

where we used the Cartan formula and the Stokes formula to write down the

last equality. Finally, remarking that dψ is translation invariant, we obtain∫
SRd [S0R

d] ∧Vd−1ιV P
∗(dψ) =

∫
STd [S0R

d] ∧Vd−1ιV P
∗(dψ). Setting t = 1

in the above formula yields the expected result.

Replacing tK by K0+ tK in the above proof and recalling Lemma 3.16,

we also get the following useful equality from the above proof:

Lemma 4.6. Let K0 and K be two compact and strictly convex sets in the

sense of Definition 1.1. Then, one has

VolRd(K0 + tK) =

d∑
�=0

t�

�!

∫
STd

[S0T
d] ∧ eVK0∗V�ιV (dx1 ∧ dx2 ∧ . . . ∧ dxd)

= VolRd(K0) +

d∑
�=1

t�

�!

∫
STd

[S[0]T
d] ∧ eVK0∗V�−1ιV (dx1 ∧ . . . ∧ dxd) .

In particular, when K = Bd, this yields a somewhat explicit expression

of Steiner’s formula (1.3). We also record the following result that implicitely

appeared in the proof of Lemma 4.4:

Lemma 4.7. Setting ω := ιV (dx1 ∧ · · · ∧ dxd) ∈ Ωd−1(STd), then the form

e−tVω is a polynomial of degree d − 1 in t with coefficients in Ωd−1(STd),

with leading coefficient 1
(d−1)!V

d−1ω.

Proof. We start from

ω =

d∑
j=1

vj(θ)(dx1∧· · ·∧dxd)(∂xj
) =

d∑
j=1

(−1)j+1vj(θ) dx1∧· · ·∧d̂xj∧· · ·∧dxd,

from which we deduce that e−tVω is equal to

d∑
j=1

(−1)j+1vj(θ) d(x1 − tv1(θ)) ∧ · · · ∧ ̂d(xj − tvj(θ)) ∧ · · · ∧ d(xd − tvd(θ))

is a polynomial of degree d− 1 in t.



962 Nguyen Viet Dang et al.

4.5. Translation maps

If we fix a smooth map x̃ : Sd−1 → Rd, then we can define a translation map
on STd:

(4.8) Tx̃ : (x, θ) ∈ STd �→ (x+ x̃(θ), θ) ∈ STd.

As we saw, these operators naturally appear when we consider the currents
we are interested in. For instance, we can rewrite Example (4.6) as

(4.9) [N ] = T∗
−x̃[S[0]T

d] = [Tx̃(S[0]T
d)].

Remark 4.8. An important example for our analysis will be of course given
by the action of the flow, that is to say etV = Ttv.

We also record the following useful properties of these translation maps:

Lemma 4.9. Let x̃ : Sd−1 → Rd be a smooth map and Tx̃ defined by (4.8),
then one has

∀ξ ∈ Zd, T∗
x̃Π

(k)
ξ (u)(x, θ, dx, dθ) = eiξ·x̃(θ)Π(k)

ξ (u)(x, θ, dx+Dx̃(θ), dθ),

(4.10)

and

(4.11) T∗
x̃V = VT∗

x̃, ιV T
∗
x̃ = T∗

x̃ιV .

Proof. The first point is a direct consequence of the action by pullback.
For the second point, we notice that etV Tx̃(x, θ) = (x + x̃(θ) + tθ, θ) =
Tx̃e

tV (x, θ), from which the first equality in (4.11) follows.
Next, due to the specific forms of the operators T∗

x̃, it is sufficient to
verify the last on the smooth forms dxI with I ⊂ {1, . . . , d}. To that aim,
we write

ιV T
∗
x̃(dx

I) = ιV

(
l∧

m=1

d(xim + x̃im(θ))

)

=

l∑
m=1

(−1)l+1vim(θ)

l∧
m′=1,m′ �=m

d(xim′ + x̃im′ (θ))

= T∗
x̃

⎛⎝ l∑
m=1

(−1)l+1vim(θ)

l∧
m′=1,m′ �=m

dxim′

⎞⎠ = T∗
x̃ιV (dx

I).



Length orthospectrum of convex bodies on flat tori 963

4.6. Twisted correlations

We fix8 β ∈ Ω1
R
(Td) such that dβ = 0. Recall that any such 1-form can be

written as β0 + df where f ∈ C∞(Td,R) and β0 is a constant 1-form on Td.

Hence, we can define the twisted Lie derivative for such a general closed

1-form β,

(4.12) Vβ := V + iβ(V ) = (d+ iβ∧)ιV + ιV (d+ iβ∧) = e−ifVβ0
eif .

We can record the following a priori estimate:

Lemma 4.10. Let β ∈ Ω1
R
(Td) such that dβ = 0. Let χ ∈ C∞(R) such that

td−1χ(t) ∈ L1(R). Then, for every 0 ≤ k ≤ 2d− 1,

χ̂(−iVβ) : ψ ∈ Ωk
0(ST

d) �→
∫
R

χ(t)e−tVβ(ψ)|dt| ∈ Ωk
0(ST

d)

is a bounded operator on the space of continuous k-forms Ωk
0(ST

d).

Proof. This follows from the fact that for any k–form ψ ∈ Ωk(STd), we

have the polynomial bound ‖e−tVβψ‖L∞ = O(td−1) which comes from the

definition of the flow exactly like in the proof of Lemma 4.7.

Remark 4.11. Note that there is a slight abuse of notations when writing

χ̂(−iVβ) as the operator −iVβ is not selfadjoint even on L2-spaces (except

if k = 0 or 2d−1). Yet, this convention from functional calculus is convenient

and we will use it in the following except when it may create some confusions

with the standard spectral Theorem [Ste09, § 12.7].
In fact, slightly more generally than the correlation function (4.1), we

want to fix a smooth map x̃ : Sd−1 → Rd and some element β0 ∈ H1(Td,R)

and to describe the twisted correlations

Cϕ,T∗
−x̃(ψ)

(t, β0) :=

∫
STd

ϕ ∧ e−tVβ0T∗
−x̃(ψ),(4.13)

as t→ +∞ in terms of ϕ, ψ and the map x̃ which will be needed later in our

applications to convex geometry. The element β0 plays the role of magnetic

potential. Here, ϕ and ψ are two differential forms on STd of respective

degree k1 and k2 such that k1 + k2 = 2d− 1, and Tx̃ is defined in (4.8).

8The index R means that the coefficients of the form are real valued.
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Coming back to our correlation function, we will also use at some points
that, for every smooth map x̃ : Sd−1 → Rd,

(4.14)

∫
STd

ϕ ∧ e−tVβ0T∗
−x̃(ψ) =

∫
STd

etV−β0T∗
x̃(ϕ) ∧ ψ,

as a consequence of the change of variable formula and of the commutation
of etV−β0 and Tx̃. With the above conventions, we can decompose differential
forms using Fourier series. Following §4.1, we write

(4.15) ϕ(x, θ, dx, dθ) =
∑
ξ∈Zd

eξ(x)π
(k1)
ξ (ϕ) (θ, dx, dθ) .

We collect in the following lemma several useful properties of the correlation
function Cϕ,T∗

−x̃(ψ)
(t, β0).

Lemma 4.12. Using the above conventions, one has, for every (ϕ,ψ) ∈
Ωk1(STd)× Ωk2(STd), and t ∈ R,

Cϕ,T∗
−x̃(ψ)

(t, β0) =

min{k1,k2}∑
l=0

Cl
ϕ,T∗

−x̃(ψ)
(t, β0) with

(4.16)

Cl
ϕ,T∗

−x̃(ψ)
(t, β0) =

tl

l!

∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·v(θ)eiξ·x̃(θ)B(k2,l)
x̃,ξ (ϕ,ψ)(θ)dVol(θ)

(4.17)

and

(4.18) B
(k2,l)
x̃,ξ (ϕ,ψ)dVol := (−1)lπ(k1)

ξ (ϕ) ∧VlT∗
−x̃π

(k2)
−ξ (ψ).

Moreover, for every m ∈ Z+ (resp. s ∈ R), one can find some constant
Cm > 0 (resp. Cs > 0) (depending also on d, x̃) such that, for every open
set U ⊂ Sd−1, for every ξ ∈ Zd, for every k1 + k2 = 2d − 1, for every
0 ≤ l ≤ min{k2, k1} and for every (ϕ,ψ) ∈ Ωk1(STd)× Ωk2(STd),

(4.19)
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
Wm,1(U)

≤ Cm

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
Hm(U)

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
Hm(U)

,

resp.

(4.20)
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
L1(Sd−1)

≤ Cs

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
Hs(Sd−1)

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
H−s(Sd−1)

,
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where Wm,1(U) is the Sobolev norm of order m and exponent p = 1 and
where Hm(U) = Wm,2(U) is the Sobolev norm of order m (and exponent
p = 2) on differential forms on the set U .

The decomposition of the dynamical correlator C in terms of Fourier
series and in powers of t introduced in the above lemma will play a crucial
role in the sequel, especially for our applications to convex geometry.

Proof. We first expand ψ in Fourier series using (4.15). Then, we can make
use of (4.10) so that each term of the sum over ξ becomes of the form

e−iξ·x̃(θ)eξ(x)π
(k)
ξ (ψ)(θ, d(x− x̃(θ)), dθ). Then, the action of e−tVβ0 yields:

(4.21) (e−tVβ0T∗
−x̃ψ)(x, θ, dx, dθ) =

∑
ξ∈Zd

eξ(x)e
−it(ξ+β0)·v(θ)e−iξ·x̃(θ)

×
min{k2,d−1}∑

l=0

(−1)ltl
l!

×Vl ◦T∗
−x̃ ◦ π

(k2)
ξ (ψ) (θ, dx, dθ) .

Hence, using (4.15) applied to ϕ, (4.11), (4.21) and (4.14), one has

Cϕ,T∗
−x̃(ψ)

(t, β0)

=

min{k1,k2}∑
l=0

tl

l!

∑
ξ∈Zd

∫
Sd−1

eiξ·x̃(θ)eit(ξ−β0)·v(θ)B(k2,l)
x̃,ξ (ϕ,ψ)(θ)dVol(θ)

with B
(k2,l)
x̃,ξ (ϕ,ψ)(θ)VolSTd(θ, dx, dθ) given by (4.18). Note that, in order

to verify that the sum over l runs up to min(k1, k2), we used (4.14) and
considered the action of e±tVβ0 on the form of smallest degree. This readily
yields (4.16)–(4.17).

Finally, estimate (4.19) and (4.20) follow from the fact that the coeffi-

cients B
(k2,l)
x̃,ξ (ϕ,ψ) depend in a bilinear way on (π

(k1)
ξ (ϕ), π

(k2)
−ξ (ψ)), together

with the Cauchy-Schwarz inequality.

According to Lemma 4.12, understanding the properties of the correla-
tion function as t→ +∞ amounts to describe the behaviour of the integrals

(4.22) IF (ξ − β0, t) :=

∫
Sd−1

ei(ξ−β0).(tv(θ)+x̃(θ))eiβ0·x̃(θ)F (θ)dVol(θ),

as t → +∞, where ξ ∈ Zd \ {0}, where β0 plays the role of the magnetic
potential and where F is a smooth function. In view of applications, one
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needs to make this asymptotic description with a uniform control in terms
of the Wm,1-norm of F and of ξ ∈ Zd.

Remark 4.13. The extra oscillating term eiξ·x̃(θ) makes things slightly more
involved than when one treats the case of dilating convex sets as for instance
in [Hla50, Her62b, Ran66]. Indeed, in that setup, the parameter t is also in
factor of ξ · x̃(θ) which allows to deal with t|ξ| as a large parameter. Despite
this technical issue, the strategy to analyze these integrals remains the same.
See Section 5 below.

Remark 4.14. In the case where k1 = 2d− 1 and k2 = 0, one has

ϕ(x, θ, dx, dθ) =
∑
ξ∈Zd

ϕ̂ξ(θ)eξ(x)dx1 ∧ . . . dxd ∧ dVol(θ),

and

ψ(x, θ, dx, dθ) =
∑
ξ∈Zd

ψ̂ξ(θ)eξ(x).

Hence, one gets the simpler expression

Cϕ,T∗
−x̃(ψ)

(t, β0) =
∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·v(θ)eiξ·x̃(θ)ϕ̂ξ(θ)ψ̂−ξ(θ)dVol(θ).

4.7. Back to generalized Epstein functions and Poincaré series

Before going further in the analysis of oscillatory integrals, let us explain
how the zeta functions from §3 (or at least truncated versions of it) can be
naturally rewritten using the theory of currents in terms of certain twisted
correlation functions. This will be achieved by considering the current of
integration [N±(Σ)] on the unit normal bundle to some admissible Σ (in
the sense of Definition 3.9). Recall that this current was explicitely defined
in (4.6) if one uses the Gauss coordinates (3.9).

4.7.1. Wavefront sets of the currents of integration. The following
lemma studies the wavefront set of this current in view of pairing two such
objects.

Lemma 4.15. For any admissible subset Σ of Td, we have

WF([N+(Σ)]) ∩ T ∗
(x,θ)ST

d = E∗
0(x̃(θ), θ)⊕

{(
0, ξ,−(Dx̃(±θ))T ξ

)
: ξ ∈ H∗}

⊂ (E∗
0 ⊕H∗ ⊕ V∗) (x̃(θ), θ).(4.23)
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Moreover, for any conical neighborhood Γ of E∗
0⊕V∗, there exists T0 > 0 such

that, for every T ≥ T0, the wavefront set of e−TV ∗[N+(Σ)] = [eTV (N+(Σ))]
satisfies

(4.24) WF
(
e−TV ∗[N+(Σ)]

)
⊂ {(x, θ; ξ) ∈ T ∗STd : e−TV (x, θ) ∈ N+(Σ), ξ ∈ Γ(x, θ)}.

The same holds for N−(Σ) with the appropriate sign changes. In particular,
if Σ1 and Σ2 are two admissible subsets and if σ1, σ2 ∈ {±}, then one can
find T0 > 0 such that, for every T ≥ T0,

WF([Nσ1
(Σ1)]) ∩WF

(
e−TV ∗[Nσ2

(Σ2)]
)
⊂ E∗

0 .(4.25)

Proof. The wavefront set of the current [N+(Σ)] is given according to [Hör03,
Th. 8.1.5]9 by the conormal bundle to N+(Σ), namely

N ∗(N+(Σ)) :={
(x, θ; ξ) ∈ T ∗STd \ 0 : (x, θ) ∈ N+(Σ), ∀v ∈ Tx,θN+(Σ), ξ(v) = 0

}
.

In particular, thanks to (3.10), the fiber N ∗
(x,θ)(N+(Σ)) ⊂ T ∗

(x,θ)ST
d over

(x; θ) always contains the annihilator E∗
0(x, θ) of H ⊕ V(x, θ). Using the

description of Tx,θN+(Σ) in (3.12) in the coordinates (3.9), this wavefront
set can in fact be identified as

N ∗
(x,θ)(N+(Σ)) = E∗

0(x̃(θ), θ)⊕
{(

0, ξ,−(Dx̃(θ))T ξ
)
: ξ ∈ H∗}

⊂ (E∗
0 ⊕H∗ ⊕ V∗) (x̃(θ), θ),

whence the first statement (4.23). Hence, thanks to (3.8) and to [Hör03,
Th. 8.2.4] (see also [BDH16, Prop. 5.1]), we deduce property (4.24). The last
statement (4.25) follows from the first by choosing Γ some sufficiently small
conical neighborhood of E∗

0 ⊕ V∗ so that (WF ([Nσ1
(Σ1)]) ∩ Γ) ⊂ E∗

0 .

4.7.2. Representation of truncated series using currents. In the
end, our goal will be to use our fine analysis of the geodesic vector field
to study the continuation of these series beyond their natural halfplane of

9The proof in that reference is given for a linear space and it can be transfered to
submanifolds through a local chart thanks to [Hör03, Th. 8.2.4]. See Example 8.2.5
in that reference.
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definition. As in [DR21, Prop. 4.10], one starts with the following result,
relating the above discrete sums on intersection points between two sub-
manifolds with the geodesic flow acting on currents.

Lemma 4.16. Let Σ1 and Σ2 be two admissible subsets of Td and let σ1
and σ2 be elements in {±}. Let β = β0 + df be a closed one-form with
β0 ∈ H1(Td,R) and f ∈ C∞(Td,R).

There exists T0 > 0 large enough such that for every χ ∈ C∞c ((T0,+∞)),

IT (χ) := (−1)d−1

∫
STd

[Nσ1
(Σ1)] ∧

∫
R

χ(t)e−tVβ ιV ([Nσ2
(Σ2)])|dt|

is well defined and is equal to

∑
t:Et(Σ1,Σ2) �=∅

χ(t)

⎛⎝ ∑
(x,θ)∈Et(Σ1,Σ2)

εt(x)e
−i

∫ 0

−t
β(V )(x+τv(θ),θ)|dτ |

⎞⎠ ,

where εt(x) = 1 if

T(x,θ)Nσ1
(Σ1)⊕ RV (x, θ)⊕D(etV )(e−tV (x, θ))

(
Te−tV (x,θ)Nσ2

(Σ2)
)
,

has the same orientation as STd and εt(x) = −1 otherwise.

This result follows from [DR21, §2] together with Lemma 4.15. Strictly
speaking, the proof from [DR21] does not include exponential weights but
it can be adapted directly to deal with such twisted transport equations.
Note that, in view of applying the result from this reference, it is crucial
here to have that v(θ) · θ > 0 for every θ ∈ Sd−1 as follows from (3.3).
Indeed, this property ensures that v(θ) ·∂x is transverse to the contact plane
where the tangent space to N(Σi) always lies. Here, [N±(Σ1)] is an element
in D′d(STd) and

∫
R
χ(t)e−tV ιV ([N+(Σ2)])|dt| is an element in D′d−1(STd).

The key point in the argument of [DR21] is that the wavefront sets of these
two currents are disjoint so that we can take their wedge product. Here,
the wavefront set of [Nσ1

(Σ1)] is given by (4.23) while the wavefront set of∫
R
χ(t)e−tV ιV ([Nσ2

(Σ2)])|dt| is contained in a small conical neighborhood
of V∗ thanks to Lemma 4.15 and to the integration over time. See [DR21,
Lemma 4.11] for more details. We would like to emphasize that this lemma
states that the dynamical correlator

IT : t �→ (−1)d−1

∫
STd

[Nσ1
(Σ1)] ∧ e−tVβ ιV ([Nσ2

(Σ2)])
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is in fact a distribution of the variable t which writes as a weighted
sum of δ. The distribution IT is a weighted counting measure, its Mellin
transform is the Epstein function and its Laplace transform is the Poincaré
series.

In order to make the connection with the series of §3, we need to clarify
the values of εt(x) in our case:

Lemma 4.17. There exists T0 > 0 such that, for every t ≥ T0, εt(x) = 1.

Proof. Recall that we oriented N±(Σ1) with the d − 1-form VolSd−1(θ, dθ),
or equivalently with the polyvector (e1(θ) · ∂θ) ∧ . . . ∧ (ed(θ) · ∂θ) where
(θ, e1(θ), . . . , ed(θ)) is a direct orthonormal basis of Rd. The same holds true
for Σ2 but we need to take into account the action of the tangent map as
given by (3.7) which transforms this polyvector into

(e1(θ) · ∂θ + tDv(θ)e1(θ) · ∂x) ∧ . . . ∧ (ed(θ) · ∂θ + tDv(θ)ed(θ) · ∂x) .

Finally, RV (x) is oriented through the vector v(θ) · ∂x and it yields the
following orientation

td−1 (e1(θ) · ∂θ) ∧ . . . ∧ (ed(θ) · ∂θ) ∧ v(θ) · ∂x
∧ (Dv(θ)e1(θ) · ∂x) ∧ . . . ∧ (Dv(θ)ed(θ) · ∂x) ,

which is the same as the orientation on STd up to the factor (−1)d(d−1) = 1
as the inverse Gauss map θ �→ v(θ) is orientation preserving.

Letting x̃±j (θ) = x̃Kj
(±θ), we derive the following corollary.

Corollary 4.18. There is T0 > 0 and t0 ∈ (0, T0) such that for every
χ ∈ C∞c ((T0 − t0,+∞)) with χ = 1 on [T0,+∞), we have

(4.26) (−1)d−1
∑

t>T0−t0

χ(t)

⎛⎝ ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0

−t
β(V )(x+τv(θ),θ)|dτ |

⎞⎠
=

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧

∫
R

χ(t)
(
e−tVβ0T∗

x̃
σ1
1 −x̃

σ2
2

)
ιV (δ2πZd)|dt|,

where we recall that the notation (δ2πZd) stands for a current of degree d.

We now recognize on the right hand-side the twisted dynamical cor-
relations of Lemma 4.12 except that the test “functions” are much more
singular.
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Proof. According to Lemma 4.17, for T0 > 0 large enough and recall-
ing (4.12), one deduces from Lemma 4.16 that, for every χ ∈ C∞c ((T0 −
t0,+∞)),

(4.27)
∑

t>T0−t0

χ(t)

⎛⎝ ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0

−t
β(V )(x+τv(θ),θ)|dτ |

⎞⎠
= (−1)d−1

∫
STd

e−if [Nσ1
(Σ1)] ∧

∫
R

χ(t)e−tVβ0 ιV (e
if [Nσ2

(Σ2)])|dt|.

Thanks to (4.6), we can write, for j = 1, 2,

e±if [Nσj
(Σj)] = e±if(x)T∗

−x̃
σj
j

(δ2πZd) = e±if(x̃
σj
j )T∗

−x̃
σj
j

(δ2πZd).

Combined with (4.11) in Lemma 4.9, this allows to rewrite (4.27) as (4.26).

5. Asymptotics of oscillatory integrals

In view of describing the long time asymptotics of the correlation func-
tion (or integrated versions of it), we need to describe with some accuracy
the oscillatory integrals appearing in Lemma 4.12. More precisely, we want
to study the behaviour as t → +∞ (and for ξ − β0 �= 0) of the oscilla-
tory integral IF (ξ − β0, t) in (4.22), where β0 ∈ Rd, F ∈ C∞(Sd−1,C) and
x̃ ∈ C∞(Sd−1,R). Estimating these kind of integrals as t → +∞ is a clas-
sical topic in harmonic analysis. See [Her62a, Lit63] for a rough estimate,
and [Hör03, Th. 7.7.14], [Ste93, Section VIII-3, p. 347] and [DZ19a, Th. 3.38,
p. 140] for fine asymptotic expansions. The only additional difficulty com-
pared with these references is that we need to have a good control in terms
of |ξ|. Thus, we need to pay a little attention to the extra term eiξ·x̃(θ) when
revisiting the classical stationary phase arguments used to describe these
integrals: this is the content of the present section. There is a subtle com-
petition between the large times t and the large momenta |ξ| which is what
we deal with in the next lemmas.

As usual, we split these oscillatory integrals in two parts: one correspond-
ing to nonstationary points and one corresponding to stationary ones. Recall
that the phase function we are interested in is of the form θ ∈ Sd−1 �→ v(θ)·ω
for some fixed ω ∈ Sd−1 (typically ω = ±(ξ − β0)/|ξ − β0|). This is equiv-
alent to considering the function v ∈ ∂K �→ v · ω which is nothing but
the height function in the direction ω which has two critical points on the
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convex boundary ∂K. One can verify that the differential of this function

at v can be identified with the linear form y �→ (ω − (θ∂K(v) · ω)θ∂K(v)) · y
where θ∂K(v) is the normal to ∂K at v. In particular, θ∂K(v(θ)) = θ. Hence,

the phase has exactly two critical points v± that correspond to the points

where θ∂K = ±ω. Recalling the definition of the shape operator S(v) in

Remark 3.1, the Hessian of the phase at these points is given by ∓S(v±),
all of whose eigenvalues are positive (resp. negative) thanks to the strict

convexity of K. Coming back to Sd−1, the phase of our oscillatory integrals

has two critical points located at ±ω and the determinant of their Hessian

is exactly the Gauss curvature κ(±ω) (up to sign). We will thus decompose

our integrals accordingly.

5.1. Splitting the oscillatory integral

We first define cutoff functions that will be used all along the paper and

that we will fix once and for all in Lemma 5.3.

Definition 5.1. We let (χj)j∈{−1,0,1} be any smooth partition of unity of

the closed interval [−1, 1] such that χ1 is equal to one in a neighborhood of

1, supp(χ1) ⊂ (0, 1], χ−1(s) = χ1(−s), and supp(χ0) ⊂ (−1, 1).

We will make a ξ–dependent partition of unity of the sphere θ ∈ Sd−1

by letting

θ �→ χj

(
θ · ξ − β0
|ξ − β0|

)
, j ∈ {−1, 0, 1}, ξ �= β0,

that is to say, for j = ±1, localization near the poles ± ξ−β0

|ξ−β0| , and for j = 0,

localization near the equator
(

ξ−β0

|ξ−β0|

)⊥
.

We split the integral IF defined in (4.22) accordingly as

(5.1) IF (ξ − β0, t) = I
(−1)
F (ξ − β0, t) + I

(0)
F (ξ − β0, t) + I

(1)
F (ξ − β0, t),

with

(5.2) I
(j)
F (ξ − β0, t) :=∫

Sd−1

χj

(
θ · ξ − β0
|ξ − β0|

)
ei(ξ−β0)·(tv(θ)+x̃(θ))eiβ0·x̃(θ)F (θ)dVol(θ).
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We first rewrite ξ − β0 as ξ − β0 = λω with λ = |ξ − β0| �= 0 and
ω = ξ−β0

|ξ−β0| ∈ Sd−1. The above splitting (5.1) of IF into three pieces now

reads

IF (λω, t) = I
(−1)
F (λω, t) + I

(0)
F (λω, t) + I

(1)
F (λω, t), with(5.3)

I
(j)
F (λω, t) :=

∫
Sd−1

χj (θ · ω) eiλω·(tv(θ)+x̃(θ))eiβ0·x̃(θ)F (θ)dVol(θ),(5.4)

and we study each piece separately. To state our results, we also define, for
η ∈ Rd \ {0},

Cj(η) :=

{
θ ∈ Sd−1 such that θ · η

|η| ∈ supp(χj)

}
, for j = −1, 0, 1.

(5.5)

These are three closed subsets of the sphere. According to the above prop-
erties of the cutoff functions χj , we have, for all η ∈ Rd \ {0},

C−1(η) ∪C0(η) ∪C1(η) = Sd−1,

C±1(η) is a neighborhood of ± η
|η| in Sd−1, and C0(η) is a neighborhood of(

η
|η|

)⊥
in Sd−1. We also notice that these three sets only depend on η

|η| = ω,

whence Cj(η) = Cj(
η
|η|) = Cj(ω).

5.2. Nonstationary points

We start with the integral I
(0)
F for which we will use the following lemma.

Lemma 5.2 (Nonstationary points). There is a function r �→ CN (r) > 0
and t0 > 0 depending only on x̃,v : Sd−1 �→ Rd and χ0 from definition 5.1
such that for all t ≥ t0 and F ∈ CN (Sd−1), we have

I
(0)
F (λω, t)

= (iλt)−N

∫
Sd−1

eiλω·(tv(θ)+x̃(θ))Lω
N,t

(
χ0 (θ · ω) eiβ0·x̃(θ)F (θ)

)
dVol(θ),

or equivalently for ξ ∈ Rd \ {β0},

(i|ξ − β0|t)NI
(0)
F (ξ − β0, t)
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=

∫
Sd−1

ei(ξ−β0)·(tv(θ)+x̃(θ))L
ξ−β0
|ξ−β0|
N,t

(
χ0

(
θ · ξ − β0
|ξ − β0|

)
eiβ0·x̃(θ)F (θ)

)
dVol(θ),

where Lω
N,t is a differential operator of order N on Sd−1 with smooth coef-

ficients only depending on X,ω and t and such that for all ψ ∈ CN (Sd−1),
for all ω ∈ Sd−1, for all θ ∈ C0(ω), and all t ≥ t0 we have

∣∣(Lω
N,tψ)(θ)

∣∣ ≤ CN

(
‖x̃‖CN+1(C0(ω))

)⎛⎝ ∑
|α|≤N

|∇α
θψ(θ)|

⎞⎠ .

In particular,

|I(0)F (λω, t)| ≤ CN

(
‖x̃‖CN+1(C0(ω))

)
(λt)−N‖F‖WN,1(C0(ω)),

or equivalently, for ξ ∈ Rd \ {β0}

|I(0)F (ξ − β0, t)| ≤ CN

(
‖x̃‖CN+1(C0(ξ−β0))

)
(|ξ − β0|t)−N‖F‖WN,1(C0(ξ−β0)).

Again, this kind of estimates is classical and the only novelty here is the
explicit control in terms of the various parameters involved which will be
obtained by a careful inspection of the usual arguments.

Proof. We let φt,ω := ω ·
(
v(θ) + x̃(θ)

t

)
so that

∇φt,ω

‖∇φt,ω‖2
(
eiλω·(tv(θ)+x̃(θ))

)
= (iλt)eiλω·(tv(θ)+x̃(θ)).

Note that

∇φt,ω = ∇φ∞,ω(θ) +
Dx̃(θ)ω

t
, φ∞,ω(θ) = ω · v(θ),

and that there exists some constant c0 > 0 depending only on v such that
‖∇φ∞,ω(θ)‖ ≥ c0dSd−1(θ,±ω) = c0(1 − |θ · ω|) (as the critical points are
nondegenerate). In particular, this operator is well defined as soon as θ · ω
lies on the support of χ0 and as t ≥ t0 := c(χ0,v)‖Dx̃‖L∞ (for some constant
depending only on χ0 and v). Hence, we get the first of the Lemma by letting

Lω
N,t :=

((
∇φt,ω

i‖∇φt,ω‖2
)∗)N

.
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The second part follows from the fact that this is a differential operator of
order ≤ N whose coefficients depend on a certain number of derivatives of
x̃ (and v).

Once and for all, we will use the function χ0 ∈ C∞c (−1, 1) from defini-
tion 5.1 with large enough support to meet the requirements on the support
of χ±1 in Lemma 5.3 below. Then, the reference time

t0 := C(χ0,v)‖Dx̃‖L∞(Sd−1)

is fixed, depending only on χ0 and the parametrization x̃ of some given
convex boundary by the outward normal. The time t0 will always only de-
pend on these three ingredients appearing in the phase function part of the
oscillatory integral and not on the amplitude unless specified otherwise, it
only deals with the nonstationary part of the oscillatory integral and tells
us when the effect of x̃ becomes negligible compared to the size of tω · v(θ).

5.3. Stationary points

We now turn to the terms I
(±1)
F and need the following lemma, which is

again more or less classical (asymptotics of the Fourier transform of the
surface measure on a convex set):

Lemma 5.3. For all χ1 ∈ C∞([−1, 1]) compactly supported in a small
enough neighborhood of 1 and equal to one on a slightly smaller neighbor-
hood of 1, with χ−1(s) = χ1(−s), and for all N ∈ N∗, we have, for all
t > 0, ξ ∈ Rd \ {β0}, x̃ ∈ C2N+d(Sd−1) and all F ∈ C2N+d(C±1(ξ − β0)),

I
(±1)
F (ξ − β0, t) =

e
it(ξ−β0)·v

(
± ξ−β0

|ξ−β0|

)
e∓iπ

4
(d−1)√

κ
(
v
(
± ξ−β0

|ξ−β0|

)) (
2π

t|ξ − β0|

) d−1

2

×
N−1∑
j=0

1

(t|ξ − β0|)j
L±
j,

ξ−β0
|ξ−β0|

(eiξ·x̃(·)F )

(
± ξ − β0
|ξ − β0|

)

+ON,β0
(1)
‖F‖W 2N+d,1(C±1(ξ))

(t|ξ − β0|)N+ d−1

2

×max
{
1, ‖x̃‖2N+d

W 2N+d,∞(C±1(ξ−β0))
|ξ − β0|2N+d

}
,

where the constant in the remainder ON,β0
(1) depends only on N , v and the

cutoff functions, where L±
j,ω are differential operators of order ≤ 2j whose
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coefficients are uniformly bounded in ω ∈ Sd−1, where L0 = 1 and κ(v(±θ))
is the Gauss curvature at the point v(±θ) of ∂K.

Remark 5.4. We note that the growth in |ξ| is a priori quite bad (except
if x̃ = 0, which is e.g. the case when studying dynamical correlations for
functions, see Section 6 below) and we will have to pay attention to this
problem in the upcoming sections. For instance, this reads, for N = 1 and
for a constant C depending on x̃,

I
(±1)
F (ξ − β0, t)

=
e
it(ξ−β0)·v

(
± ξ−β0

|ξ−β0|

)
e−iπ

4
(d−1)√

κ
(
v
(
± ξ−β0

|ξ−β0|

)) (
2π

t|ξ|

) d−1

2

e
iξ·x̃

(
ξ−β0
|ξ−β0|

)
F

(
ξ − β0
|ξ − β0|

)

+O
(

|ξ − β0|2+d

(t|ξ − β0|)1+
d−1

2

‖F‖W 2+d,1(C1(ξ))

)
.

Again, the proof of Lemma 5.3 is classical. After using a convenient
coordinate chart on the sphere of the form

BRd−1(0, 1) → {x ∈ Sd−1,±xd > 0}
x′ �→

(
x′,±
√

1− |x′|2
)
,

we are in the set-up of the standard stationary phase asymptotics Lemma
as stated in [Zwo12, Th. 3.16]. Compared with the proof in this reference,
only two points require a particular attention:

• The first one is that we want some uniformity of the constants with re-
spect to the parameter ω = ξ−β0

|ξ−β0| . Equivalently, we need to apply some

Morse Lemma with parameter ω. Hence, we need to verify that the size
of the chart when applying the Morse Lemma in the proof of [Zwo12,
Th. 3.16] can be made uniform and that the coordinate charts have
derivatives uniformly bounded in terms of ω. This can verified by re-
calling that the Morse lemma near a (nondegenerate) critical point
x0 = 0 of a function φ is obtained by writing the Taylor formula

φ(x) = φ(0) + xT
(∫ 1

0
(1− t)d2φ(tx)dt

)
x.

Then, recall that, given a symmetric matrix Q0, the map M ∈ {M :
Q0M ∈ Sn(R)} �→ MTQ0M ∈ Sn(R) is invertible in a neighbor-
hood of Id (whose size depends on Q0). Hence, one concludes that
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(
∫ 1
0 (1 − t)d2φ(tx)dt) = 1

2M(x)Td2φ(0)M(x), for some smooth func-
tion x �→ M(x) defined in a neighborhood of 0 whose size depends
on d2φ(0). The size of this neighborhood can be chosen in a way that
depends linearly on the norm of d2φ(0). As our critical points vary in
a compact part, their corresponding Hessian varies in a compact part
and the neighborhood (and thus the size of the support of χ1) can be
chosen uniformly as well as the involved constants.

• The second point is that the statement of [Zwo12, Th. 3.16] involves
the C2N+d-norm. Yet, inspecting the proof (namely, step 3 in the proof
of p. 43 together with the proof of Lemma 3.5(ii)), one finds a control
by the W 2N+d,1-norm.

We refer to [DLR22b] for detailed proofs of Lemmas 5.2 and 5.3 in case
v(θ) = θ.

For later purposes, we introduce the translation invariant Hamiltoninan

(5.6) λ±(ξ) := (ξ − β0) · v
(
± ξ − β0
|ξ − β0|

)
= ±hK(±(ξ − β0)),

where hK is the support function of the convex set K in the definition of
v (see Section 3.2 for the second equality). We also introduce the critical
values of the height function that will play a special role in our analysis:

(5.7) Λβ0
:=
{
λ±(ξ), ξ ∈ Zd \ {β0}

}
.

Thanks to (3.3), this forms a discrete and locally finite subset of R. Note
also that, thanks to (3.3), ±λ±(ξ) ≥ c1|ξ − β0| for some uniform c1 > 0
(depending only on v). In that direction, we record the following useful
lemma.

Lemma 5.5. There exists c0 > 0 such that, for χ1 ∈ C∞([−1, 1]) compactly
supported in a small enough neighborhood of 1 and equal to one on a slightly

smaller neighborhood of 1, and for all (θ, ξ) in the support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
,

one has
|v(θ) · (ξ − β0)| ≥ c0|ξ − β0|.

Proof. We let ε0 > 0 be such that supp(χ1) = [1− ε0, 1]. Then, for (θ, ξ) in
the support of χ±1(θ · ξ−β0

|ξ−β0|) with ξ �= β0, one has∣∣∣∣v(θ) · (ξ − β0)

|ξ − β0|

∣∣∣∣ = |λ±(ξ)/|ξ − β0||+O(ε0) ≥ c1 −O(ε0),

which proves the statement for ε0 small enough.
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6. Asymptotics of twisted dynamical correlations

In this section, as a first application of these fine stationary phase asymp-
totics, we give an accurate description of the correlation function as t→ +∞.
See Theorem 6.5 for a precise statement. As a byproduct, this shows how
anisotropic Sobolev norms naturally appear when studying analytical prop-
erties of geodesic flows and it also proves Theorem 2.4 from the introduction.

For the sake of simplicity, we restrict ourselves to the case where k1 =
2d− 1, k2 = 0 and x̃(θ) = 0. Namely, we fix two smooth functions ϕ and ψ
in C∞(STd) and we want to analyze the behaviour as t→ +∞ of

Cϕ,ψ(t, β0) :=

∫
STd

ϕ(x, θ)e−tVβ0 (ψ)(x, θ)|dx|dVol(θ)

=

∫
STd

e−itv(θ)·β0ϕ(x, θ)ψ(x− tv(θ), θ)|dx|dVol(θ)

where β0 ∈ H1(Td,R) � Rd. According to Remark 4.14, this can be rewrit-
ten as

Cϕ,ψ(t, β0) =
∑
ξ∈Zd

∫
Sd−1

ϕ̂ξ(θ)ψ̂−ξ(θ)e
it(ξ−β0)·v(θ)dVol(θ),

where

ϕ(x, θ) =
∑
ξ∈Zd

ϕ̂ξ(θ)eξ(x), and ψ(x, θ) =
∑
ξ∈Zd

ψ̂ξ(θ)eξ(x).

We will now implement the decomposition (5.1)–(5.2) together with Lem-
mas 5.2 and 5.3 in order to analyze the asymptotic expansion of Cϕ,ψ(t, β0)
as t→ +∞.

Remark 6.1. Modulo some tedious work, the analysis could be extended to
the more general framework of Lemma 4.12 except that the terms in the
asymptotic expansion will be slightly less explicit.

First, we write

Cϕ,ψ(t, β0) = Eβ0
(ϕ,ψ) +

∑
ξ∈Zd\{β0}

∫
Sd−1

ϕ̂ξ(θ)ψ̂−ξ(θ)e
it(ξ−β0)·v(θ)dVol(θ),

where

(6.1) Eβ0
(ϕ,ψ) :=

∫
Sd−1

ϕ̂β0
(θ)ψ̂−β0

(θ)dVol(θ), if β0 ∈ Zd,

and Eβ0
(ϕ,ψ) = 0 otherwise.
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6.1. Anisotropic Sobolev spaces of distributions, splitting the
correlation function

We decompose these correlations further by writing

Cϕ,ψ(t, β0) = Eβ0
(ϕ,ψ) + C−1,ϕ,ψ(t) + C0,ϕ,ψ(t) + C1,ϕ,ψ(t),(6.2)

with, for j ∈ {−1, 0, 1},

Cj,ϕ,ψ(t) :=∑
ξ∈Zd\{β0}

∫
Sd−1

χj

(
θ · ξ − β0
|ξ − β0|

)
ϕ̂ξ(θ)ψ̂−ξ(θ)e

it(ξ−β0)·v(θ)dVol(θ),

where the χj are the cutoff functions defined in §5.1 and Eβ0
(ϕ,ψ) is defined

in (6.1). Below, we will drop the dependance in (ϕ,ψ) in the index of C to
avoid too heavy notations.

We first consider the term C0(t). Applying Lemma 5.2 to x̃ = 0 and

F = ϕ̂ξψ̂−ξ combined with the Cauchy-Schwarz inequality

‖ϕ̂ξψ̂−ξ‖WN,1(C0(ξ−β0))) � ‖ϕ̂ξ‖HN (C0(ξ−β0))‖ψ̂−ξ‖HN (C0(ξ−β0)),

we have the following statement:

Lemma 6.2. For all N ∈ N, there is CN > 0 such that for every t > 0,
every β0 ∈ Rd, and every ϕ,ψ ∈ C∞(STd), we have

|C0(t)| ≤ CN t−N
∑

ξ∈Zd\{β0}

‖ϕ̂ξ‖HN (C0(ξ−β0))

∥∥∥ψ̂−ξ

∥∥∥
HN (C0(ξ−β0))

|ξ − β0|N
.

We now consider the terms C±1(t). Applying similarly Lemma 5.3 to

x̃(θ) = 0 and F = ϕ̂ξψ̂−ξ, we have the following statement:

Lemma 6.3. For all χ1 ∈ C∞([−1, 1]) compactly supported in a small
enough neighborhood of 1 and equal to one on a slightly smaller neighborhood
of 1, with χ−1(s) = χ1(−s), and for all N ∈ N∗, we have for every β0 ∈ Rd,

C±1(t) =
∑

ξ∈Zd\{β0}

eitλ±(ξ)e∓iπ
4
(d−1)√

κ ◦ v
(
± ξ−β0

|ξ−β0|

) ( 2π

t|ξ − β0|

) d−1

2
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×
N−1∑
j=0

1

(t|ξ − β0|)j
L±
j,

ξ−β0
|ξ−β0|

(
ϕ̂ξψ̂−ξ

)(
± ξ − β0
|ξ − β0|

)

+ON

(
t−N− d−1

2

) ∑
ξ∈Zd\{β0}

‖ϕ̂ξ‖H2N+d(C±1(ξ−β0))

∥∥∥ψ̂−ξ

∥∥∥
H2N+d(C±1(ξ−β0))

|ξ − β0|N+ d−1

2

,

as t→ +∞, where the constant in the remainder ON (t−N− d−1

2 ) depends also
on β0 ∈ Rd and where λ±(ξ) was defined in (5.6) and depends on β0 and K.

In view of this Lemma, we define:

Definition 6.4 (Anisotropic Sobolev spaces). Let (s0, s1, N0, N1) be an el-
ement in Z2

+ × R2 and let γ ∈ Rd. For every ϕ(x, θ) =
∑

ξ ϕ̂ξ(θ)eξ(x) ∈
C∞(STd), we define the following anisotropic Sobolev norms:

‖ϕ‖2Hs0,N0,s1,N1
γ

:=
∑
ξ∈Zd

〈ξ〉2N0 ‖ϕ̂ξ‖2Hs0 (C0(ξ−γ))

+
∑

ξ∈Zd,±
〈ξ〉2N1 ‖ϕ̂ξ‖2Hs1 (C±1(ξ−γ)) .

In our applications, these norms are used for γ = ±β0. The geometric
content of these anisotropic norms is discussed in Section 6.3 below.

6.2. Asymptotics of the correlation function

Now, combining this definition with the reduction made in §6.1, we find

Theorem 6.5 (Asymptotics of twisted correlations). Let β0 ∈ H1(Td,R)
and let N ∈ Z∗

+. For every ϕ(x, θ) =
∑

ξ∈Zd ϕ̂ξ(θ)eξ(x) and ψ(x, θ) =∑
ξ∈Zd ψ̂ξ(θ)eξ(x) in C∞(STd), one has

Cϕ,ψ(t, β0) :=

∫
STd

e−itβ0·v(θ)ϕ(x, θ)ψ ◦ e−tV (x, θ)|dx|dVol(θ)

= Eβ0
(ϕ,ψ)

+ (2π)
d−1

2

N−1∑
j=0

∑
ξ∈Zd\{β0},±

ei(tλ±(ξ)∓π

4
(d−1))L±

j,
ξ−β0
|ξ−β0|

(
ϕ̂ξψ̂−ξ

)(
± ξ−β0

|ξ−β0|

)
√

κ ◦ v
(
± ξ−β0

|ξ−β0|

)
(t|ξ − β0|)j+

d−1

2

+ON,ϕ,ψ

(
1

tN+ d−1

2

)
,
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where Eβ0
(ϕ,ψ) was defined in (6.1), L±

j,ω is the differential operator of

degree 2j appearing in Lemma 5.3 and, for every integer s ≥ N + d the
constant in the remainder is controlled by

CN ‖ϕ‖
Hs,− s

2
,2N+d,−N

2
− d−1

4
β0

‖ψ‖
Hs,− s

2
,2N+d,−N

2
− d−1

4
−β0

with CN > 0 depending only on d, N , s, β0 and the choice of the cutoff

functions (χj)j∈{0,±1} used in §5.

Theorem 2.4 from the introduction is a direct consequence of this result,

obtained by taking β0 = 0 and N = 1.

Remark 6.6. Note that this result states convergence of the correlation func-

tion towards a constant Eβ0
(ϕ,ψ) at rate t−

d−1

2 . the fluctuations around the

equilibrium are governed by the quantum evolution operators eitλ±(D). The
latter is the magnetic half-wave group for the translation invariant Finsler

structure on T ∗Td, associated with the convex setK. Here, recall that the op-

erators λ±(D) = ±hK(±(D−β0)) (see (5.6) Section 3.2 for the notation) are
a translation invariant Fourier multipliers that, on account to the assumption

that 0 ∈ Int(K), are elliptic pseudodifferential operators of order one on Td.
The critical set Λβ0

in (5.7) is precisely the union of the spectra of λ+(D)

and λ−(D). See [Rat87, FT15, DFG15, FT17b, FT17a, FT21] for related

considerations in the context of contact Anosov flows. See also [DLR22a]
and Section 6.2.2 below for a more explicit connection with the Laplacian

in the case v(θ) = θ.

Recalling from the proof of Lemma 5.3 that the operators L±
j can be

computed explicitly (up to some tedious work), this theorem provides an
explicit asymptotic expansion of the twisted correlation function for smooth

observables. Besides that, another interesting feature of this theorem is that
it illustrates how anisotropic Sobolev norms naturally appears when study-

ing the asymptotic behaviour of the geodesic flow on the torus. This is

particularly clear in the case of the remainder while for the term in the
asymptotic expansion, one can remark that, using the standard Sobolev

inequalities [Eva10, §5.6.3],∣∣∣∣L±
j,

ξ−β0
|ξ−β0|

(
ϕ̂ξψ̂−ξ

)(
± ξ − β0
|ξ − β0|

)∣∣∣∣
≤ Cj‖ϕ̂ξ‖C2j(C±1(ξ−β0))‖ψ̂−ξ‖C2j(C±1(ξ−β0))

≤ C̃j‖ϕ̂ξ‖H2j+d/2+1(C±1(ξ−β0))‖ψ̂−ξ‖H2j+d/2+1(C±1(ξ−β0)).
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Hence, each term in the sum over j is controlled by some anisotropic Sobolev
semi-norm (that depends on j). In summary, test functions can have a priori
arbitrarily large polynomial growth in |ξ| away from the direction of ξ− β0.
Close to ξ−β0, the situations is not as good and one needs to have moderate
growth in |ξ| to ensure the convergence of the sums.

6.2.1. Further comments. Let us now comment a little bit more on
Theorem 6.5. First, we emphasize that our strategy can be viewed as an
analogue on flat tori of the strategy used by Ratner [Rat87] to describe
the asymptotic behaviour of the correlation function for the geodesic flow
on hyperbolic manifolds. Like in this reference, we use tools from harmonic
analysis to describe accurately the correlations and we end up naturally with
anisotropic Sobolev norms (see e.g. [Rat87, Th. 1] for the use of spaces with
anisotropic Hölder regularity). As in [Rat87, Cor. 1], it is interesting to look
at the case where ϕ and ψ do not depend on θ. In that case, the asymptotic
expansion of Theorem 6.5 reads as follows

Cϕ,ψ(t, β0) :=

∫
STd

e−itβ0·v(θ)ϕ(x)ψ(x− tv(θ))|dx|dVol(θ)

=
2π

d−1

2 δZd,β0

Γ
(
d−1
2

) (∫
Td

ϕ(x)e−β0
(x)|dx|

)(∫
Td

ψ(x)eβ0
(x)|dx|

)

+ (2π)
d−1

2

N−1∑
j=0

∑
ξ∈Z\{β0},±

c±j (ξ − β0)
ei(tλ±(ξ)∓π

4
(d−1))

(t|ξ − β0|)j+
d−1

2

ϕ̂ξψ̂−ξ

+ON,ϕ,ψ

(
1

tN+ d−1

2

)
,

where δZd,β0
= 1 if β0 ∈ Zd and δZd,β0

= 0 otherwise and where the coeffi-
cients c±j (ξ − β0) depend only on the geometry of Sd−1 and are uniformly
bounded in terms of ξ. In particular, we can verify that the term of degree j
is controlled by the following quantity (up to some constant depending only
on j and d)

⎛⎝ ∑
ξ∈Zd\{β0}

|ξ − β0|−j− d−1

2 |ϕ̂ξ|2
⎞⎠ 1

2
⎛⎝ ∑

ξ∈Zd\{β0}
|ξ + β0|−j− d−1

2 |ψ̂ξ|2
⎞⎠ 1

2

≤ Cβ0
‖ϕ‖L2‖ψ‖L2 .

The same bound would hold on the remainder term. Hence, L2 is the natural
space to consider when considering observables depending only on x as in
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the case of hyperbolic manifolds [Rat87, Cor. 1]. See also [HR17, Prop. 2.1]
for related results on Birkhoff averages in the case of flat tori.

6.2.2. Relation with the magnetic Laplacian. When v(θ) = θ and
when the observables ϕ,ψ depend only on x and not on θ, the above discus-
sion can also be understood differently if we make the connection with the
magnetic Laplacian

Δβ0
:=

d∑
j=1

(
∂xj

+ iβ0,j
)2

.

Indeed, if we rewrite according to [Ste93, Eq. (25), p. 347]

Cϕ,ψ(t, β0) :=

∫
STd

e−itβ0·θϕ(x)ψ(x− tθ)|dx|dVol(θ)

=
∑
ξ∈Zd

ϕ̂ξψ̂−ξ

∫
Sd−1

eit(ξ−β0)·θdVol(θ)

= 2π
∑
ξ∈Zd

ϕ̂−ξψ̂ξ(t|ξ + β0|)
2−d

2 J d−2

2
(2πt|ξ + β0|)

= 2π

∫
Td

ϕ(x)
(
t
√
−Δβ0

) 2−d

2

J d−2

2

(
2πt
√
−Δβ0

)
ψ(x)|dx|,

where Jν is the standard Bessel function of the first kind. In particular, if
we denote by Π : (x, θ) ∈ STd �→ x ∈ Td the canonical projection, we obtain
the following relation between the twisted geodesic flow and the magnetic
Laplacian

(6.3) Π∗e
it(iV−β0(V ))Π∗ = 2π

(
t
√
−Δβ0

) 2−d

2

J d−2

2

(
2πt
√
−Δβ0

)
.

For observables depending also on the θ variable, the expressions are
slightly less explicit. Yet, as in Theorem 2.4, we can for instance consider
the first term in the asymptotic expansion of Theorem 6.5, which is given
by

(2π)
d−1

2

∑
ξ∈Zd\{β0},±

e±i(t|ξ−β0|−π

4
(d−1))

(t|ξ − β0|)
d−1

2

(
ϕ̂ξψ̂−ξ

)(
± ξ − β0
|ξ − β0|

)

= (2π)
d−1

2

∑
ξ∈Zd\{β0},±

e±i(t|ξ+β0|−π

4
(d−1))

(t|ξ + β0|)
d−1

2

(
ϕ̂−ξψ̂ξ

)(
∓ ξ + β0
|ξ + β0|

)
.
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If we introduce the following map

Π±
β0
(ϕ) :=

∑
ξ∈Zd\{−β0}

ϕ̂ξ

(
± ξ + β0
|ξ + β0|

)
eξ,

then the (first term) asymptotic expansion of Cϕ,ψ(t, β0) in Theorem 6.5 can

be rewritten, modulo Oϕ,ψ

(
1

t1+
d−1
2

)
, as

(6.4) Cϕ,ψ(t, β0)

=

(
2π

t

) d−1

2 ∑
±

e∓
iπ(d−1)

4

∫
Td

(
e±it

√
−Δ−β0

(−Δ−β0
)

d−1

4

◦Π±
−β0

(ϕ)

)
(x)Π∓

β0
(ψ)(x)|dx|

=

(
2π

t

) d−1

2 ∑
±

e∓
iπ(d−1)

4

∫
Td

Π±
−β0

(ϕ)(x)

(
e±it

√
−Δβ0

(−Δβ0
)

d−1

4

◦Π∓
β0
(ψ)

)
(x)|dx|,

after having used the Plancherel Theorem. Similarly, all the terms in the
asymptotic expansion can be written in the same fashion except that the
expression will be slightly more involved.

6.3. Geometry of the anisotropic Sobolev norms

With the geometric description of §3.3 at hand, we can give a rough geo-
metric interpretation of our anisotropic spaces using the notion of pseudod-
ifferential operators [Hör85]. Usually, Sobolev spaces are designed using the
quantization of a symbol of the form (1+ |(ξ,Θ)|2x,θ)

s

2 where (x, θ, ξ,Θ) is an

element in T ∗STd and s is the Sobolev regularity. Here, due to the explicit
structure of the problem, we did not write exactly things in that fashion.
Yet, our spaces would in principle correspond to replace s by a function
s(x, θ, ξ,Θ) whose values depend on the directions in T ∗STd and thus to
work with anisotropic symbols. More precisely, taking γ = 0 for simplicity,
we would in fact require using this pseudodifferential approach that

• near E∗
0 , the symbol is given by (1+ |ξ|2)

N1
2 (1+ |Θ|2θ)

s1
2 . Thus, we are

roughly requiring a Sobolev regularity N1 along E∗
0 .

• near H∗ ⊕ V∗, the symbol is given by (1 + |ξ|2)
N0
2 (1 + |Θ|2θ)

s0
2 . In

particular, on V∗, this correspond to a Sobolev regularity of order s0
while on H∗, the Sobolev regularity is N0.

See Figure 4.
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Figure 4: Schematic representation of the Sobolev regularity in the cotangent
picture.

7. Anisotropic spaces of currents

In Lemma 4.10, we saw that, for β0 ∈ H1(Td,R) and for a smooth function

χ : R→ R with enough decay at infinity, the operator

χ̂(−iVβ0
) :=

∫
R

χ(t)e−tVβ0 |dt|

is bounded when acting on the space of continuous differential forms. Now

we aim at describing anisotropic Sobolev spaces adapted to the dynamics of

the geodesic flow on which χ̂(−iVβ0
) will still extend continuously.

7.1. Anisotropic Sobolev spaces

Motivated by the norms of Definition 6.4 appearing in the description of the

correlation function, we introduce the following spaces of currents.

Definition 7.1 (Anisotropic Sobolev spaces of currents). Let β0 be an ele-

ment in H1(Td,R), let 0 ≤ k ≤ 2d − 1 and let (s0, s1, N0, N1) in Z2
+ × R2.

We define the following anisotropic Sobolev norm:

‖ϕ‖2Hs0,N0,s1,N1
k,β0

:=
∑
ξ∈Zd

〈ξ〉2N0

∥∥∥π(k)
ξ (ϕ)

∥∥∥2
Hs0 (C0(ξ−β0))

+
∑

ξ∈Zd,±
〈ξ〉2N1

∥∥∥π(k)
ξ (ϕ)

∥∥∥2
Hs1 (C±1(ξ−β0))

,
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where 〈η〉 := (1 + |η|2) 1

2 and where the Sobolev norms Hs on forms are

understood in the sense of Remark 4.2. We define the space Hs0,N0,s1,N1

k,β0
to

be the completion of Ωk(STd) for this norm.

As above, we note that these norms depend implicitely on the cutoff
functions used in §5.1. In particular, the conic neighborhood C±1(ω) can be
chosen arbitrarily close to ω ∈ Sd−1 but it cannot be too large in order to
apply Lemma 5.3. Using these spaces, one gets

Theorem 7.2. Let 0 ≤ k ≤ 2d−1, M,N be elements in Z+, β0 ∈ H1(Td,R)
and χ ∈ C∞c (R∗

+). Then,

χ̂(−iVβ0
) : HM,−M/2,0,−N/2

k,−β0
→ (HM,−M/2,0,−N/2

2d+1−k,β0
)′

defines a continuous linear map, where (HM,−M/2,0,N/2
2d+1−k,β0

)′ ⊂ D′k(STd) is the

topological dual of HM,−M/2,0,N/2
2d+1−k,β0

.

Compared with the spaces appearing when describing the asymptotics of
the correlation function, we now require that test currents are regular enough
along the vertical space V while they can be singular along the horizontal
space RV ⊕H. See Figure 4 with s0 = M , N0 = −M/2 and N1 = −N/2.

7.2. Mapping properties

For later applications to counting orthogeodesics, we also fix a smooth map

x̃ : Sd−1 → Rd,

and our goal is to study more generally the analytical properties of the
operator:

χ̂(−iVβ0
)T∗

−x̃ :=

∫
R

χ(t)e−tVβ0T∗
−x̃|dt|,

under appropriate assumptions on χ. To that aim, we fix 0 ≤ k1, k2 ≤ 2d−1
and two smooth forms (ϕ,ψ) ∈ Ωk1(STd)×Ωk2(STd) (with k1+k2 = 2d−1).
Hence, for χ with enough regularity, we want to study the properties of

(7.1)

∫
STd

ϕ ∧ χ̂(−iVβ0
)T∗

−x̃(ψ) =

∫
R

χ(t)Cϕ,T∗
−x̃(ψ)

(t, β0)|dt|

in terms of the anisotropic Sobolev norms we have just introduced. It is
precisely in the present section that we will benefit from the regularization
effect due to averaging on the time t variable.
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In order to state the main technical result of this section, let us introduce
the following definition:

Definition 7.3. Let p ∈ R and let N ∈ Z+. We say that χ is (N, p)-
admissible if χ ∈ C∞(R+) and if it satisfies the following properties:

• the support of χ does not contain 0,
• for every 0 ≤ m ≤ N ,

lim
t→+∞

dm

dtm
(tpχ(t)) = 0,

• for every 0 ≤ m ≤ N , t �→ dm

dtm (tpχ(t)) ∈ L1(R+).

This definition includes the case of smooth compactly supported func-
tions on R∗

+ and Theorem 7.2 is actually a corollary of the much more precise
statement:

Theorem 7.4. Let k1 + k2 = 2d − 1, let β0 ∈ H1(Td,R) and let M,N be
elements in Z+. There exists a constant CM,N > 0 such that for all (ϕ,ψ) ∈
Ωk1(STd)×Ωk2(STd) and for all χ which is (N,min{k1, k2})-admissible and
which satisfies10 suppχ ⊂ (t0,∞), one has

∫
R

χ(t)Cϕ,T∗
−x̃(ψ)

(t, β0)|dt| =
min{k1,k2}∑

l=0

J(l)χ (ϕ,ψ),(7.2)

where, for all 0 ≤ l ≤ min{k1, k2},∣∣∣∣∣∣J(l)χ (ϕ,ψ)−
E

(l)
β0

l!

∫
R

χ(t)tl|dt|

∣∣∣∣∣∣
≤ CM,N max

{
‖χ(t)tl−M‖L1(R+),

∥∥∥∥ dNdtN (tlχ)
∥∥∥∥
L1(R+)

}
‖ϕ‖H1

‖ψ‖H2

with H1 := HM,−M/2,0,−N/2
k1,β0

and H2 := HM,−M/2,0,−N/2
k2,−β0

defined by Defini-
tion 7.1, and with

E
(l)
β0

=

∫
Sd−1

eiβ0·x̃(θ)B(k2,l)
x̃,β0

(ϕ,ψ)(θ)dVol(θ) if β0 ∈ H1(Td,Z),(7.3)

10The constant is the one from Lemma 5.2.
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E
(l)
β0

= 0 otherwise,

where the explicit expression for B
(k2,l)
x̃,β0

is given by (4.18).

The function χ0 appearing in this Theorem is the one from Definition 5.1
and we recall that each function χj implicitely appears in the definition of

the anisotropic spaces. The term E
(l)
β0

is a generalization of the term Eβ0
,

defined in (6.1), to the case of differential forms. Before entering the details
of the proof, we start with the following observation which follows from a
direct integration by parts argument:

Lemma 7.5. Suppose that χ is (N, p)-admissible. Then, for every λ �= 0,
one has ∣∣∣∣∫

R+

tpχ(t)e−itλ|dt|
∣∣∣∣ ≤ |λ|−N

∥∥∥∥ dNdtN (tpχ(t))

∥∥∥∥
L1(R+)

.

This lemma will allow us to gain a decay in |ξ| that is lacking in the
region where the phase is stationary. In other words, it will allow us to
take observables that may be singular along the direction of V while for the
correlation function we required to have some regularity along V ; that is
to say, we can now choose N1 � −1 in Figure 4. Henceforth, in the proof
of Theorem 7.4, we only make use of the non-stationary phase estimate of
Lemma 5.2 and do not rely on stationary phase estimates of Lemma 5.3.

Proof of Theorem 7.4. According to Lemma 4.12, we start from the decom-
position (4.16)–(4.17) of the dynamical correlator C according to the poly-
nomial degree in the variable t. Integrating the expression of Cl

ϕ,T∗
−x̃(ψ)

(t, β0)

in (4.16) against χ(t) will then yield (7.2) with

J(l)χ (ϕ,ψ) =

∫
R

χ(t)Cl
ϕ,T∗

−x̃(ψ)
(t, β0)|dt|.(7.4)

We decompose Cl
ϕ,T∗

−x̃(ψ)
(t, β0) further by writing

Cl
ϕ,T∗

−x̃(ψ)
(t, β0) =

tl

l!
E

(l)
β0

+
tl

l!
Cl
−1(t) +

tl

l!
Cl
0(t) +

tl

l!
Cl
1(t),(7.5)

where E
(l)
β0

is defined in (7.3) and, with, for j ∈ {−1, 0, 1},

Cl
j(t) =

∑
ξ∈Zd\{β0}

∫
Sd−1

. . . dVol(θ),
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where . . . means

χj

(
θ · ξ − β0
|ξ − β0|

)
eit(ξ−β0)·v(θ)eiξ·x̃(θ)B(k2,l)

x̃,ξ (ϕ,ψ)(θ),

and where the functions χj were introduced in Definition 5.1. Note that E
(l)
β0

concerns the Fourier coefficient ξ = β0 (in the case β0 ∈ Zd and it vanishes

otherwise). Moreover, E
(l)
β0

is a time invariant quantity. The above decompo-
sition indexed by j = −1, 0, 1 corresponds to the different integration regions
of Sd−1 on which we study the oscillatory integral.

We now compute each term in (7.5). The first term is nothing but

∫
R

χ(t)
tl

l!
E

(l)
β0
|dt| =

E
(l)
β0

l!

∫
R

χ(t)tl|dt|.(7.6)

We next consider the term involving Cl
0(t). Applying Lemma 5.2 to the

function F (θ) = B
(k2,l)
x̃,ξ (ϕ,ψ)(θ), we have the following statement: there

exists t0 > 0 such that for all M ∈ Z+, there is CM > 0 such that for all
t > t0, |ξ − β0| ≥ 1, (ϕ,ψ) ∈ Ωk1(STd)× Ωk2(STd), we have∣∣∣Cl

0(t)
∣∣∣ ≤ ∑

ξ∈Zd\{β0}
CM

1

(|ξ − β0|t)M
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)(·)
∥∥∥
WM,1(C0(ξ−β0))

.

According to (4.19), this implies for every k1 + k2 = 2d − 1, for every 0 ≤
l ≤ min{k1, k2} and for every (ϕ,ψ) ∈ Ωk1(STd)× Ωk2(STd),

∣∣∣Cl
0(t)
∣∣∣ ≤ CM

tM

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
HM (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HM (C0(ξ−β0))

|ξ − β0|M
.

We thus obtain, if suppχ ⊂ (t0,∞), that

(7.7)

∣∣∣∣∫
R

χ(t)
tl

l!
Cl
0(t)|dt|

∣∣∣∣ ≤ CM‖χ(t)tl−M‖L1(R+)

×
∑

ξ∈Zd\{β0}

1

|ξ − β0|M
∥∥∥π(k1)

ξ (ϕ)
∥∥∥
HM (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HM (C0(ξ−β0))

.

For the remaining two terms, we write
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∫
R

χ(t)
tl

l!
Cl
±1(t)|dt| =

∑
ξ∈Zd\{β0}

∫
Sd−1

(∫
R

χ(t)
tl

l!
eit(ξ−β0)·v(θ)|dt|

)

× χ±1

(
θ · ξ − β0
|ξ − β0|

)
eiξ·x̃(θ)B(k2,l)

x̃,ξ (ϕ,ψ)(θ)dVol(θ).

According to Lemma 5.5, one has by integration by parts in time, for all

(θ, ξ) in the support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
,

∣∣∣∣∫
R

χ(t)tleit(ξ−β0)·v(θ)|dt|
∣∣∣∣ ≤ 1

|(ξ − β0) · v(θ)|N

∥∥∥∥ dNdtN (tlχ)
∥∥∥∥
L1(R+)

(7.8)

≤ 1

|c0(ξ − β0)|N

∥∥∥∥ dNdtN (tlχ)
∥∥∥∥
L1(R+)

,

Coming back to our problem, we can derive the estimate∣∣∣∣∫
R

χ(t)
tl

l!
Cl
±1(t)|dt|

∣∣∣∣
≤ cN (χ)

∑
ξ∈Zd\{β0}

1

|(ξ − β0)|N
‖B(k2,l)

x̃,ξ (ϕ,ψ)(θ)‖L1(C±1(ξ−β0))

≤ cN (χ)
∑

ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
L2(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
L2(C±1(ξ−β0))

|(ξ − β0)|N
,

where cN (χ) is of the form cN

∥∥∥ dN

dtN

(
tlχ
)∥∥∥

L1(R+)
for some positive constant

cN depending only on N . Combining this together with (7.6) and (7.7)

in (7.4)–(7.5), and recalling the definition of the norms HM,−M/2,0,−N/2
k,β0

in
Definition 7.1, we have obtained the expected bound.

8. Mellin and Laplace transforms

We will now apply the results of Section 5 to two fundamental cases which,
besides their own interest, will be instrumental in our description of zeta
functions associated with the length orthospectrum, defined in Section 3.5.2.
These two cases are the two main analytical statements of the article.

All along this section, we will take χ∞ to be a smooth function on R

satisfying the following properties
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(8.1) ∃T0 ≥ 1, ∃t0 > 0, such that supp(χ∞) ⊂ [T0,∞)

and χ∞(t) = 1 for t ≥ T0 + t0.

Typically, for our applications, we will in fact work with nondecreasing func-

tions of this type. We now aim at refining the results of Section 7.1 when

the function χ depends on some extra complex parameter, e.g.

χL
s (t) := χ∞(t)e−st and χM

s (t) := χ∞(t)t−s,

where s ∈ C has large enough real part. Equivalently, this amounts to study

the Laplace and the Mellin transforms of χ∞(t)e−tVβ0 :

χ̂L
s (−iVβ0

) :=

∫ ∞

0
e−stχ∞(t)e−tVβ0 |dt| and(8.2)

χ̂M
s (−iVβ0

) :=

∫ ∞

1
t−sχ∞(t)e−tVβ0 |dt|.

Note that, for Re(s) large enough, we are in the setting of application of

Theorem 7.4. Hence, for such s, these operators are well defined on the

anisotropic Sobolev spaces we have introduced in Section 7.1. Our goal is to

show that these operators in fact extend to appropriate subsets of the com-

plex plane when considered on these spaces. See Theorems 8.4 and 8.8 for

precise statements. This section is divided in two main parts correspond-

ing respectively to the analysis of χ̂M
s (−iVβ0

) (§8.1) and to the one of

χ̂L
s (−iVβ0

) (§8.2).
Remark 8.1. Besides applications to Poincaré series, note that the Laplace

transform appears naturally when studying the resolvent of Vβ0
. In fact,

one has

(s+Vβ0
)−1 :=

∫ +∞

0
e−ste−tVβ0 |dt|

=

∫ +∞

0
(1− χ∞(t))e−ste−tVβ0 |dt|+ χ̂L

s (−iVβ0
),

which defines a bounded operator from Ωk(STd) to D′k(STd) for Re(s) large

enough. Note that the first integral on the right hand side is over a compact

interval. Hence, this part extends holomorphically to the whole complex

plane as an operator from Ωk(STd) to Ωk(STd). Equivalently, understanding

the extension of the resolvent amounts to understand the continuation of
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χ̂L
s (−iV ). The same remarks hold for the integral∫ +∞

1
t−se−tVβ0 |dt|.

We refer to Section 8.3 below for precise statements. A refined analysis of the
resolvent when k = 0 and in the case of analytic regularity will be discussed
in [DGBLR22].

8.1. Mellin transform

We begin with the case of the Mellin transform which is slightly easier to
handle as it only requires nonstationary phase estimates.

8.1.1. A preliminary lemma. In the case of the Mellin transform, the
analysis relies on the following elementary lemma:

Lemma 8.2. Let T0 ≥ 1 and φ ∈ C∞(R) be such that supp(φ) ⊂ [T0,+∞)
and φ is constant near infinity. Then, the following hold:

1. For any λ ∈ R, the function

fφ,λ(s) :=

∫
R

φ(t)t−seiλt|dt|

is a well-defined holomorphic function for Re(s) > 1 satisfying

|fφ,λ(s)| ≤ ‖φ‖L∞(R)
T
−(Re(s)−1)
0

Re(s)− 1
, for s ∈ C,Re(s) > 1.

2. If φ is compactly supported, fφ,λ is actually defined on the whole com-
plex plane and defines an entire function on C such that

|fφ,λ(s)| ≤ Cφ
T
−Re(s)
0

〈Re(s)〉 , for s ∈ C.

3. If λ = 0 and φ = 1 in a neighborhood of +∞, then fφ,0 extends to C

as a meromorphic function with a single simple pole at s = 1 whose
residue is equal to 1. Moreover,

fφ,0(s) =
fφ′,0(s− 1)

s− 1
, for all s ∈ C \ {1}.(8.3)
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4. If λ �= 0 and φ = 1 in a neighborhood of +∞, then fφ,λ extends to C

as an entire function. Moreover, this extended function satisfies, for
all m ∈ N∗ and all s ∈ C,

(8.4) fφ,λ(s) =
1

(iλ)m

m−1∑
j=0

(
m
j

)
(−1)m−jPj(s)fφ(m−j),λ(s+ j)

+
Pm(s)

(iλ)m
fφ,λ(s+m),

where

Pj(s) =

j−1∏
k=0

(s+ k), for j ∈ Z∗
+, and P0(s) = 1,(8.5)

and, for all m ∈ Z+, there is a constant Cφ,m > 0 such that for all
λ �= 0,

|fφ,λ(s)| ≤ Cφ,m
〈|s|〉m
|λ|m

T
−Re(s)+1
0

Re(s) +m− 1
, for Re(s) > −(m− 1).

(8.6)

Proof. Item 1 follows from the rough estimate |φ(t)t−seiλt| ≤ ‖φ‖L∞t−Re(s).
In case suppφ ⊂ [T0, T1], this yields in particular the estimate

(8.7) |fφ,λ(s)| ≤ ‖φ‖L∞

∫ T1

T0

t−Re(s)|dt| = T
−Re(s)+1
0 − T

−Re(s)+1
1

Re(s)− 1
,

which, combined with holomorphy under the integral, provides a proof of
Item 2. Item 3 consists in proving (8.3) for Re(s) > 1 by an integration
by parts, and then observing that fφ′,0 is an entire function, whence the
right hand-side of (8.3) has the sought properties. The result for all s ∈ C

follows from analytic continuation and the residue is fφ′,0(0) =
∫
R
φ′(t)dt =

φ(+∞)− φ(0) = 1.

The proof of Item 4 (in case λ �= 0) also consists in proving first (8.4)
for Re(s) > 1 by integration by parts. After m integrations by parts, one
finds for Re(s) > 1

fφ,λ(s) =

(
−1
iλ

)m ∫
R

∂m
t (φ(t)t−s)eiλt|dt|.
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The Leibniz formula together with the fact that (t−s)(j) = (−1)jPj(s)t
−s−j

then implies (8.4) for Re(s) > 1.
Next, we observe that the first term on the right hand-side of (8.4) is

an entire function (as φ(m−j) is compactly supported for j ≤ m − 1) and
the second term is holomorphic on the half space Re(s) > −m + 1. Hence,
for all m ∈ N∗, the right hand-side of (8.4) is a holomorphic function on
Re(s) > −m + 1, and all these functions coincide with fφ,λ(s) on Re(s) >
−m+1. As a consequence of analytic continuation, for any m ∈ N, fφ,λ can
be extended uniquely to a holomorphic function on Re(s) > −m + 1 (still
denoted fφ,λ), which satisfies (8.4) on Re(s) > −m+ 1.

To prove the estimate, we use (8.4) and write

|λ|m|fφ,λ(s)| ≤
m−1∑
j=0

(
m
j

)
|Pj(s)||fφ(m−j),λ(s+ j)|+ |Pm(s)||fφ,λ(s+m)|.

Taking 1 ≤ T0 < T1 such that supp(φ′) ⊂ [T0, T1] and using item 1 together
with (8.7), we deduce

|λ|m|fφ,λ(s)| ≤ Cm

m−1∑
j=0

〈|s|〉j‖φ(m−j)‖L∞

∫ T1

T0

t−Re(s)−j |dt|

+ Cm〈|s|〉m‖φ‖L∞(R)
T
−(Re(s)+m−1)
0

Re(s) +m− 1
,

from which the statement follows.

8.1.2. Meromorphic continuation of χ̂M
s (−iVβ0

). Before discussing
the meromorphic continuation, let us first clarify its holomorphic properties
on Re(s) > d:

Proposition 8.3. Let χ∞ be a function verifying assumption (8.1), let β0 ∈
H1(Td,R) and let x̃ : Sd−1 → Rd be a smooth function.

Then, for all (ϕ,ψ) ∈ Ωk1(STd) × Ωk2(STd) with k1 + k2 = 2d − 1, the
function

(8.8) s �→M(ϕ,ψ)(s) :=

∫
STd

ϕ ∧ χ̂M
s (−iVβ0

)T∗
−x̃(ψ)

is holomorphic on Re(s) > min{k1, k2}+ 1 and it satisfies

∣∣M(ϕ,ψ)(s)
∣∣ ≤ C

T
−(Re(s)−min{k1,k2}−1)
0

Re(s)−min{k1, k2} − 1
‖ϕ‖L2(STd)‖ψ‖L2(STd).(8.9)
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Note that in this expression, min{k1, k2}+ 1 can be always be replaced
by d (but it downgrades the statement).

Proof. Recalling (7.1), we use one more time Lemma 4.12 and the decom-
position (4.16) and (4.17). Integrating (4.16)–(4.17) against χ∞(t)t−s then
yields

(8.10) M(ϕ,ψ)(s) =

∫
STd

ϕ ∧ χ̂M
s (−iVβ0

)T∗
−x̃(ψ) =

min{k1,k2}∑
l=0

M
(l)
(ϕ,ψ)(s),

with

M
(l)
(ϕ,ψ)(s) =

∫ ∞

1
χ∞(t)t−sCl

ϕ,T∗
−x̃(ψ)

(t, β0)|dt|.(8.11)

We then notice that the index l is bounded by l ≤ min{k1, k2} ≤ d− 1, and
that

∣∣∣Cl
ϕ,T∗

−x̃(ψ)
(t, β0)

∣∣∣ =
∣∣∣∣∣∣ t

l

l!

∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·v(θ)eiξ·x̃(θ)B(k2,l)
x̃,ξ (ϕ,ψ)(θ)dVol(θ)

∣∣∣∣∣∣
(8.12)

≤ tl

l!

∑
ξ∈Zd

∫
Sd−1

∣∣∣B(k2,l)
x̃,ξ (ϕ,ψ)(θ)

∣∣∣ dVol(θ)
≤ Ctl‖ϕ‖L2(STd)‖ψ‖L2(STd)

according to (4.19). We deduce that∣∣∣χ∞(t)t−sCl
ϕ,T∗

−x̃(ψ)
(t, β0)

∣∣∣ ≤ Cχ∞(t)tl−s‖ϕ‖L2(STd)‖ψ‖L2(STd).

Recalling that l ≤ min{k1, k2}, (8.11) then implies holomorphy of M
(l)
(ϕ,ψ)

in Re(s) > l + 1 (and in particular in Re(s) > min{k1, k2} + 1). Item 1 in
Lemma 8.2 finally yields

∣∣∣M(l)
(ϕ,ψ)(s)

∣∣∣ ≤ T
−(Re(s)−min{k1,k2}−1)
0

Re(s)−min{k1, k2} − 1
C‖ϕ‖L2(STd)‖ψ‖L2(STd),

from which we infer (8.9) thanks to (8.10).

We now turn to our main statement on these regularized Mellin trans-
forms.



Length orthospectrum of convex bodies on flat tori 995

Theorem 8.4. Let χ∞ be a function verifying assumption (8.1), let β0 ∈
H1(Td,R) and let x̃ : Sd−1 → Rd be a smooth function. Suppose in addition
that T0 ≥ t0 where T0 ≥ 1 is the constant appearing in (8.1) and t0 > 0 the

one from Lemma 5.2. Recall that E
(l)
β0

is defined in (7.3).
Then, using the conventions of Proposition 8.3, for any N ∈ Z∗

+, there
exists CN > 0 such that, for every couple

(ϕ,ψ) ∈ HN,−N/2,0,−N/2
k1,β0

×HN,−N/2,0,−N/2
k2,−β0

with k1 + k2 = 2d− 1, the function

M(ϕ,ψ)(s)−
min{k1,k2}∑

l=0

1

l!

E
(l)
β0

s− l − 1
,

originally defined on Re(s) > min{k1, k2}+1 extends holomorphically to the
half-plane Re(s) > −N +min{k1, k2}+ 1 with∣∣∣∣∣∣M(ϕ,ψ)(s)−

min{k1,k2}∑
l=0

1

l!

E
(l)
β0

s− l − 1

∣∣∣∣∣∣
≤ CN 〈|s|〉N

Re(s)−min{k1, k2} − 1 +N
‖ϕ‖HN,−N/2,0,−N/2

k1,β0

‖ψ‖HN,−N/2,0,−N/2
k2,−β0

.

The proof is very close to that of Theorem 7.4 and we just need to
pay attention to the dependence on the parameter s ∈ C. Combined with
Proposition 8.9, this proves Theorem 2.2 from the introduction by picking

β0 = 0, k1 = 2d− 1 and k2 = 0. Note that the term E
(l)
β0

is only bounded by
the norm ‖ϕ‖L2‖ψ‖L2 .

Proof. By bilinearity of the considered mappings with respect to (ϕ,ψ) and
by density, it is sufficient to prove these analytical estimates when (ϕ,ψ) ∈
Ωk1(STd)×Ωk2(STd). As in the proof of Proposition 8.3, we can decompose
Cl
ϕ,T∗

−x̃(ψ)
(t, β0) using (7.5). Then, we are left with describing the terms

M
(l)
(ϕ,ψ)(s) in (8.11) that can be decomposed accordingly as

M
(l)
(ϕ,ψ)(s) = M

(l,E)
(ϕ,ψ)(s) +M

(l,−1)
(ϕ,ψ) (s) +M

(l,0)
(ϕ,ψ)(s) +M

(l,1)
(ϕ,ψ)(s),(8.13)

with

M
(l,E)
(ϕ,ψ)(s) =

∫
R

χ∞(t)t−s t
l

l!
E

(l)
β0
|dt|, and



996 Nguyen Viet Dang et al.

M
(l,j)
(ϕ,ψ)(s) =

∫
R

χ∞(t)t−s t
l

l!
Cl
j(t)|dt|, for j ∈ {−1, 0, 1}.

We now study each of these terms separately.

Firstly, as supp(χ∞) ⊂ [1,∞), we have

M
(l,E)
(ϕ,ψ)(s) = E

(l)
β0

1

l!

∫ ∞

1
χ∞(t)t−s+l|dt|(8.14)

=
1

l!

E
(l)
β0

s− l − 1
+

E
(l)
β0

l!

∫ ∞

1
(1− χ∞(t))t−s+l|dt|,

where the second term on the right-hand side of the equation is an entire
function. Hence, this term has the claimed properties.

Secondly, we consider the term with M
(l,0)
(ϕ,ψ)(s) and proceed as in the

proof of Theorem 7.4. According to Lemma 5.2, we have, for t > t0

Cl
0(t) =

∑
ξ∈Zd\{β0}

(i|ξ − β0|t)−N

∫
Sd−1

F (t, ξ, θ)dVol(θ),

with

F (t, ξ, θ)

= ei(ξ−β0)·(tv(θ)+x̃(θ))L
ξ−β0
|ξ−β0|
N,t

(
χ0

(
θ · ξ − β0
|ξ − β0|

)
eiβ0·x̃(θ)B(k2,l)

x̃,ξ (ϕ,ψ)(θ)

)
,

and, for all ω ∈ Sd−1, for all θ ∈ C0(ω), and all t > t0,

∣∣(Lω
N,tψ)(θ)

∣∣ ≤ CN

⎛⎝ ∑
|α|≤N

|∇α
θψ(θ)|

⎞⎠ .

Coming back to M
(l,0)
(ϕ,ψ)(s), we have

M
(l,0)
(ϕ,ψ)(s) =

∫
R

χ∞(t)t−s t
l

l!
Cl
0(t)|dt|

=

∫
R

∑
ξ∈Zd\{β0}

∫
Sd−1

χ∞(t)t−s t
l

l!
(i|ξ − β0|t)−NF (t, ξ, θ)dVol(θ)|dt|,
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where, as supp(χ∞) ⊂ [T0,+∞) with T0 ≥ max{1, t0}, one has∣∣∣∣χ∞(t)t−s t
l

l!
(i|ξ − β0|t)−NF (t, ξ, θ)

∣∣∣∣
≤ χ∞(t)t−Re(s)+l−N |ξ − β0|−NCN

∑
|α|≤N

∣∣∣∇α
θB

(k2,l)
x̃,ξ (ϕ,ψ)(θ)

∣∣∣ ,
uniformly for t ≥ max{1, t0}, ξ ∈ Rd \ {β0} and θ ∈ C0(ξ − β0). We deduce

from that bound and from (4.19) the holomorphy of the term M
(l,0)
(ϕ,ψ)(s) in

Re(s) > −N + l + 1 together with the estimate

∣∣∣M(l,0)
(ϕ,ψ)(s)

∣∣∣ ≤ CN‖χ∞(t)tl−Re(s)−N‖L1(R+)

(8.15)

×
∑

ξ∈Zd\{β0}

1

|ξ − β0|N
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
W 1,N (C0(ξ−β0))

≤ CN‖χ∞(t)tl−Re(s)−N‖L1(R+)

×
∑

ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
HN (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HN (C0(ξ−β0))

|ξ − β0|N

≤ CN
T
−(Re(s)+N−l−1)
0

Re(s) +N − l − 1

×
∑

ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
HN (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HN (C0(ξ−β0))

|ξ − β0|N
.

Thirdly, we consider the two termsM
(l,±1)
(ϕ,ψ) (s) and proceed as in the proof

of Theorem 7.4 (i.e. take advantage of the integration over time). We write

M
(l,±1)
(ϕ,ψ) (s) =

∑
ξ∈Zd\{β0}

∫
Sd−1

(∫
R

χ∞(t)t−s t
l

l!
eit(ξ−β0)·v(θ)|dt|

)

× χ±1

(
θ · ξ − β0
|ξ − β0|

)
eiξ·x̃(θ)B(k2,l)

x̃,ξ (ϕ,ψ)(θ)dVol(θ).

Item 4 in Lemma 8.2 together with Lemma 5.5 then imply that the inte-
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gral ∫
R

χ∞(t)t−s t
l

l!
eit(ξ−β0)·v(θ)|dt| = 1

l!
fχ∞,(ξ−β0)·v(θ)(s− l)

extends as an entire function in s for any given (θ, ξ) in the support of

χ±1

(
θ · ξ−β0

|ξ−β0|

)
. According to Lemma 5.5 and to (8.6), it satisfies in addi-

tion, for any m ∈ Z∗
+,

|fχ∞,(ξ−β0)·θ(s− l)| ≤ Cχ∞,m
〈|s|〉m

cm0 |ξ − β0|m
T
−Re(s)+l+1
0

Re(s)− l +m− 1
,

for Re(s) > −m+ l + 1. Coming back to M
(l,±1)
(ϕ,ψ) (s), we find that it is holo-

morphic in Re(s) > −m+ l + 1 together with the estimate∣∣∣M(l,±1)
(ϕ,ψ) (s)

∣∣∣
�m

〈|s|〉mT
−Re(s)+l+1
0

Re(s)− l +m− 1

∑
ξ∈Zd\{β0}

‖B(k2,l)
x̃,ξ (ϕ,ψ)(θ)‖L1(C±1(ξ−β0))

|ξ − β0|m

�m
〈|s|〉mT

−Re(s)+l+1
0

Re(s)− l +m− 1

×
∑

ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
L2(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
L2(C±1(ξ−β0))

|ξ − β0|m
.

Finally, combining this together with (8.15) (and the statement preced-
ing this estimate), and choosing m = N , we have obtained in the decompo-
sition (8.13) that the function

M
(l)
(ϕ,ψ)(s)−M

(l,E)
(ϕ,ψ)(s) = M

(l,−1)
(ϕ,ψ) (s) +M

(l,0)
(ϕ,ψ)(s) +M

(l,1)
(ϕ,ψ)(s)

is a holomorphic function in Re(s) > −N+ l+1. As long as T0 ≥ max{1, t0}
and recalling the definition of the norm HN,−N/2,0,−N/2

k,±β0
in Definition 7.1, we

end up with the estimate∣∣∣M(l)
(ϕ,ψ)(s)−M

(l,E)
(ϕ,ψ)(s)

∣∣∣
≤ CN

〈|s|〉NT
−Re(s)+l+1
0

Re(s)− l +N − 1
‖ϕ‖HN,−N/2,0,−N/2

k1,β0

‖ψ‖HN,−N/2,0,−N/2
k2,−β0

.
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Coming back to the decomposition (8.10), recalling that l ≤ min{k1, k2} and
using the fact that M

(l,E)
(ϕ,ψ)(s) is entire by the identity (8.14) concludes the

proof of the theorem.

8.2. Laplace transform

Here and in the whole section, we write

C+ := {z ∈ C,Re(z) ≥ 0} ,

and we say that a function is in Ck(C+) if it is the restriction in C+ of a

function in Ck(C). In this part, we are going to use the notion of distributions

obtained as boundary values of holomorphic functions [Hör03, Th. 3.1.11]

in the most elementary way. We state a proposition which characterizes

those distributions which arise as boundary values from the upper or lower

half–plane of holomorphic functions:

Proposition 8.5. Let T ∈ S ′(R) be a tempered distribution supported in

R∗
±. Then, denoting by F (· ∓ iy) the Fourier transform of x �→ T (x)e∓yx,

the function (x + iy) �→ F (x ∓ iy) is holomorphic on the half plane H∓ =

{(x∓ iy) : y > 0} and we have

T̂ = lim
ε→0+

F (.∓ iε) in S ′(R).

We will write T̂ = F (. ∓ i0). Conversely, if we are given a holomorphic

function F on H∓, such that there exists C,N and some polynomial P such

that ∀y > 0:

|F (x∓ iy)| � C|P (x∓ iy)|
(
1 + y−N

)
then the following limit

T̂ = lim
y→0+

F (.∓ iy)

exists in S ′(R) and it is the Fourier transform of a distribution T carried

on R∗
±.

This is a particular case of a more general result valid on Rd and de-

scribed in [RS75, Thm IX.16, p. 23]. Given λ < 0, we can now give the
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fundamental example of such boundary values together with their Fourier
transform. Namely, if we consider

T (x) :=
2πe∓iλπ

2

Γ(−λ) 1R∗
+
(±x)|x|−1−λ,

where 1R∗
+
is the indicator of the positive reals, then the Fourier transform

T̂ (ξ) is given by (ξ ∓ i0)λ [GS, p. 360]. The function 1R∗
+
(±x)|x|−1−λ is in

L1
loc(R) and bounded polynomially. Hence it defines a tempered distribution

for all λ < 0. In the litterature, one can also find the notation ξ−1−λ
∓ =(

1R∗
+
(∓ξ)|ξ|−1−λ

)
[GS, §3.2, p. 48]. We will use the above proposition to

describe the singularities of our Poincaré series.

The useful analogue to Lemma 8.2 is the following elementary result:

Lemma 8.6. Let T1 > T0 > 0 and φ ∈ C∞(R) be such that supp(φ) ⊂
[T0,+∞) and φ = 1 on [T1 +∞). Then, the following hold:

1. For any α ∈ R, the function

Fφ,α(z) :=

∫
R+

φ(t)t−αe−zt|dt|, for Re(z) > 0,

defines a holomorphic function in Re(z) > 0 which satisfies

|Fφ,α(z)| ≤ Cφ,α, forz ∈ C+, if α > 1,

|Fφ,α(z)| ≤
Cφ,α

Re(z)1−α
, for z ∈ C,Re(z) > 0, if α < 1,

|Fφ,1(z)| ≤ Cφ,1(| lnRe(z)|+ 1), for z ∈ C,Re(z) > 0, if α = 1.

2. ∂k
zFφ,α(z) = (−1)kFφ,α−k(z) for all k ∈ Z+, z ∈ C,Re(z) > 0, and

Fφ,α ∈ Ck(C+) for all k ∈ Z+ such that α− k > 1.
3. If α < 1, the function Fφ,α can be extended to C \ R− (and even

to C \ {0} if α ∈ Z−) as a holomorphic function satisfying Fφ,α(z) =
Γ(1−α)
z1−α +Hα(z) where Hα is an entire function such that, for all k ≥ 0,

|∂k
zHα(z)| ≤ Cφ,α,k(e

−T1 Re(z)+1) on C, for some Cφ,α,k > 0. Moreover,
we have the following identity which holds in S ′(R):

lim
x→0+

Fφ,α(x+ iy) =
Γ(1− α)ei

π

2
(α−1)

(y − i0)1−α
+Hα(iy)(8.16)
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4. If α = 1, the function Fφ,1 can be extended to the cut plane C \ R−

as a holomorphic function satisfying Fφ,1(z) = − log(z)+H1(z) where
log is the principal determination of the logarithm and H1 is an entire
function such that, for all k ≥ 0, |∂k

zH1(z)| ≤ Cφ,k(e
−T1 Re(z) + 1) on

C, for some Cφ,α,k > 0. Moreover, we have the following identity which
holds in S ′(R):

lim
x→0+

Fφ,α(x+ iy) = − log(y − i0)− π

2
+H1(iy).(8.17)

5. For all β ∈ R,m ∈ Z∗
+,

Fφ,β(z) =
1

zm
Eβ,m(z) + (−1)mPm(β)

zm
Fφ,β+m(z),(8.18)

where Pj(β) is defined in (8.5) and Eβ,m(z) is an entire function such
that

(8.19) |Eβ,m(z)| ≤ Cφ,β,m(e−T1 Re(z) + 1), z ∈ C.

6. If α > 1, α /∈ Z+, the function Fφ,α can be extended to the cut plane
C \ R− as a holomorphic function satisfying

Fφ,α(z) =
π

sin(πα)Γ(α)
zα−1 +Hα(z)

where Hα is an entire function such that, for all k ≥ 0, |∂k
zHα(z)| ≤

Cφ,α,k〈|z|〉�α�(e−T1 Re(z) + 1) on C, for some Cφ,α,k > 0. Moreover,
extended by the value zero at zero, we have Fφ,α ∈ C�α�−1(C+).

7. If α = n ∈ Z∗
+, n � 2, the function Fφ,n can be extended to the cut

plane C \ R− as a holomorphic function satisfying

Fφ,n(z) =
(−1)n
n!

zn−1 log(z) +Hn(z)

where Hn is an entire function such that, for all k ≥ 0, |∂k
zHn(z)| ≤

Cφ,n,k〈|z|〉n−1(e−T1 Re(z) + 1) on C, for some Cφ,n,k > 0. Moreover,
extended by the value zero at zero and for n ≥ 2, we have Fφ,n ∈
Cn−2(C+).

Proof. Let us first prove Item 1. The statement for α > 1 follows from a
crude bound and continuity under the integral. For α < 1, we have

|Fφ,α(z)| ≤ ‖φ‖∞
∫ ∞

T0

t−αe−Re(z)t|dt| = ‖φ‖∞Re(z)1−α

∫ ∞

T0 Re(z)
σ−αe−σ|dσ|



1002 Nguyen Viet Dang et al.

≤ ‖φ‖∞Re(z)1−α

∫ ∞

0
σ−αe−σ|dσ|,

which is the sought estimate. In the case α = 1, we have

|Fφ,1(z)| ≤ ‖φ‖∞
∫ ∞

T0

t−1e−Re(z)t|dt| = ‖φ‖∞
∫ ∞

T0 Re(z)
σ−1e−σ|dσ|

≤ ‖φ‖∞
∫ 1

T0 Re(z)
σ−1|dσ|+ ‖φ‖∞

∫ ∞

1
e−σ|dσ|

≤ −‖φ‖∞ ln(T0Re(z)) + ‖φ‖∞e−1.

Item 2 is a straightforward consequence of Item 1 and differentiation under
the integral.

For Item 3, we first notice that for γ := −α > −1 and z ∈ R∗
+, we have

Fφ,−γ =

∫ ∞

0
tγe−zt|dt|+

∫ ∞

0
(φ(t)− 1)tγe−zt|dt|

=
1

zγ+1

∫ ∞

0
σγe−σ|dσ|+

∫ ∞

0
(φ(t)− 1)tγe−zt|dt|.

The last integral is an entire function satisfying the sought bound and the
result follows from analytic continuation, where the cut plane C\R− is cho-
sen arbitrarily. These bounds give exactly the necessary moderate growth
assumption so that the distributional limit Fφ,α(iy + 0) exists by Proposi-
tion 8.5.

To prove Item 4, we differentiate Fφ,1 in Re(z) > 0 to obtain

∂zFφ,1(z) = −
∫ ∞

0
φ(t)e−ztdt = −

∫ ∞

0
e−ztdt+

∫ ∞

0
(1− φ(t))e−ztdt

= −1

z
+

∫ ∞

0
(1− φ(t))e−ztdt.

Integrating this equation on the segment [1, z] for Re(z) > 0 implies

Fφ,1(z)− Fφ,1(1) = − log(z) +

∫ ∞

0
(1− φ(t))

∫ z

1
e−stdsdt,

whence, for Re(z) > 0,

Fφ,1(z) = − log(z) +

∫ ∞

0
φ(t)t−1e−tdt+

∫ ∞

0
(1− φ(t))e−

1+z

2
t sinh

(
z−1
2 t
)

t
dt.
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The right hand side continues holomorphically to C \ R−, the last integral

being on the compact set [0, T1]. Using now that sinh(a+ ib) = sinh a cos b+

i cosh a sin b, we have | sinh(t(a+ib))
t | ≤ | sinh(ta)t |+cosh(ta) ≤ 2 cosh(ta) ≤ e|ta|,

whence∣∣∣∣∣
∫ ∞

0
(1− φ(t))e−

1+z

2
t sinh

(
z−1
2 t
)

t
dt

∣∣∣∣∣
≤ Cφ

∫ T1

0
e−

1+Re(z)

2
te

|Re(z)−1|
2

tdt = Cφ

(
eT1A − 1

A

) ∣∣∣
A= | Re(z)−1|−(Re(z)+1)

2

,

which implies the sought estimate. The distributional limit again follows

from Proposition 8.5 and the bound from item 1.

Item 5 is proved as in Lemma 8.2 and consists in integrating by parts m

times to obtain, for Re(z) > 0,

Fφ,α(z) =

∫ ∞

0

(
1

z

d

dt

)m

(φ(t)t−α)e−zt|dt|,

and then expanding with the Leibniz formula. We obtain the formula (8.18)

with

Eα,m(z) =

m−1∑
j=0

(−1)j
(
m
j

)
Pj(α)Fφ(m−j),α+j(z),

and the estimate (8.19) follows from the fact that

|Fφ(m−j),α(z)| ≤ Cφ,α(e
−T1 Re(z) + 1)

for z ∈ C if m− j > 0 since φ(m−j) is compactly supported in R∗
+.

Item 6 is a consequence of Items 3 and 5 for m = �α� ∈ Z+ and β =

α− �α� ∈ (0, 1). From (8.18), we obtain

Fφ,α(z) = Fφ,β+m(z) = (−1)m zm

Pm(β)
Fφ,β(z)−

(−1)m
Pm(β)

Eβ,m(z)

= (−1)m zm

Pm(β)

(
Γ(1− β)

z1−β
+Hβ(z)

)
− (−1)m

Pm(β)
Eβ,m(z),
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where we have used Item 3 in the second line. We further notice from Γ(z+

1) = zΓ(z) that Pm(β) = Γ(β+m)
Γ(β) (see (8.5)) whence

Fφ,α(z) = (−1)mzm+β−1Γ(1− β)Γ(β)

Γ(β +m)
+

(−1)mzm

Pm(β)
Hβ(z)−

(−1)m
Pm(β)

Eβ,m(z),

and hence the sought formula recalling Γ(1− β)Γ(β) = (−1)m π
sin(π(m+β)) .

Item 7 is a consequence of Items 4 and 5 taken for β = 1 and m = n−1,

and the fact that Pn−1(1) = n!.

8.2.1. Continuous/Ck continuation of χ̂L
s (−iVβ0

). Before discussing

the Continuous/Ck continuation, let us first clarify its holomorphic proper-

ties on Re(s) > 0:

Proposition 8.7. Let χ∞ be a function verifying assumption (8.1), let β0 ∈
H1(Td,R) and let x̃ : Sd−1 → Rd be a smooth function. Then, for all (ϕ,ψ) ∈
Ωk1(STd)× Ωk2(STd) with k1 + k2 = 2d− 1, the function

(8.20) s �→ L(ϕ,ψ)(s) :=

∫
STd

ϕ ∧ χ̂L
s (−iVβ0

)T∗
−x̃(ψ)

is holomorphic on Re(s) > 0 and it satisfies

∣∣L(ϕ,ψ)(s)
∣∣ ≤ C

Re(s)min{k1,k2}+1
‖ϕ‖L2(STd)‖ψ‖L2(STd).(8.21)

Recall that min{k1, k2} ≤ d − 1 so that the latter estimate can always

be roughly bounded by C
Re(s)d .

Proof. We start with (7.1) and we use again Lemma 4.12 to write

Cϕ,T∗
−x̃(ψ)

(t, β0) =

min{k1,k2}∑
l=0

Cl
ϕ,T∗

−x̃(ψ)
(t, β0)

with

Cl
ϕ,T∗

−x̃(ψ)
(t, β0) =

tl

l!

∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·v(θ)eiξ·x̃(θ)B(k2,l)
x̃,ξ (ϕ,ψ)(θ)dVol(θ).
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Integrating against χ∞(t)e−st then yields

L(ϕ,ψ)(s) =

∫
STd

ϕ ∧ χ̂M
s (−iVβ0

)T∗
−x̃(ψ)(8.22)

=

min{k1,k2}∑
l=0

L
(l)
(ϕ,ψ)(s),

with

L
(l)
(ϕ,ψ)(s) =

∫
R

χ∞(t)e−stCl
ϕ,T∗

−x̃(ψ)
(t, β0)|dt|.(8.23)

According to (8.12), we have∣∣∣Cl
ϕ,T∗

−x̃(ψ)
(t, β0)

∣∣∣ ≤ Ctl‖ϕ‖L2(STd)‖ψ‖L2(STd),

which according to (8.23) implies holomorphy of L(l)
(ϕ,ψ) in Re(s) > 0. We

further deduce that∣∣∣L(l)
(ϕ,ψ)(s)

∣∣∣ ≤ ∫
R

∣∣∣χ∞(t)e−stCl
ϕ,T∗

−x̃(ψ)
(t, β0)

∣∣∣ |dt|
≤ C

∫
R

∣∣∣χ∞(t)tle−st
∣∣∣ |dt|‖ϕ‖L2(STd)‖ψ‖L2(STd).

Recalling that l ≤ min{k1, k2}, Item 1 in Lemma 8.6 then yields, as Re(s)→
0+, ∣∣∣L(l)

(ϕ,ψ)(s)
∣∣∣ ≤ C

Re(s)1+min{k1,k2} ‖ϕ‖L2(STd)‖ψ‖L2(STd),

from which we infer (8.21) thanks to (8.22).

We now turn to our main statement on these regularized Laplace trans-

forms. Lemma 8.6 leads us to introduce the functions

Fα(z) :=

⎧⎪⎨⎪⎩
Γ(1− α)

z1−α
, if α < 1 or α > 1, α /∈ Z+,

(−1)n
n!

zn−1 log(z), if α = n ∈ Z+,
(8.24)

these functions are considered as holomorphic functions on the plane C\R−
(except if α ∈ Z∗

− in which case Fα is holomorphic in C∗). We also associate



1006 Nguyen Viet Dang et al.

the corresponding distributions obtained as boundary values that we still

denote by Fα:

Fα(iy + 0) :=

⎧⎪⎪⎨⎪⎪⎩
Γ(1− α)ei

π

2
(α−1)

(y − i0)1−α
, if α < 1 or α > 1, α /∈ Z+

(−1)neiπ2 (n−1)

n!
yn−1
(
log(y − i0) +

π

2

)
, if α = n ∈ Z+

(8.25)

Both will describe the singularities of the Laplace transform of correlators

up to the imaginary axis. For a given α ∈ R, Fα is essentially the Laplace

transform of t−α (near t = +∞).

We also denote

C
Λ
+ :=

{
s ∈ C+, | Im(s)| ≤ Λ

}
= {s ∈ C,Re(z) ≥ 0, | Im(s)| ≤ Λ} ,

and explain how the Laplace transform extends to this set.

Theorem 8.8. Suppose that the assumptions of Theorem 8.4 on x̃, χ∞
and T0 are satisfied and let11 c0 > 0 be the constant from Lemma 5.5. Given

N,N0 ∈ Z2
+,m ≥ 0,Λ ≥ 1, and (ϕ,ψ) ∈ Ωk1(STd)×Ωk2(STd) with k1+k2 =

2d− 1, we define, for all s ∈ C with Re(s) > 0,

R
(N,Λ)
(ϕ,ψ) (s) := L(ϕ,ψ)(s)−

min{k1,k2}∑
l=0

E
(l)
β0

sl+1
(8.26)

−
min{k1,k2}∑

l=0

∑
±

N−1∑
j=0

∑
0<|ξ−β0|≤2c−1

0 Λ

F d−1

2
+j−l

(
s− iλ±(ξ)

)
l!|ξ − β0|

d−1

2
+j

× P±
j,l,ξ[ϕ,ψ]

(
± ξ − β0
|ξ − β0|

)
,

where E
(l)
β0

is defined in (7.3), Fα in (8.24), and, letting L±
j,ω being that of

Lemma 5.3, with, for ω ∈ Sd−1

P±
j,l,ξ[ϕ,ψ] (ω) =

e∓iπ
4
(d−1)√

κ ◦ v(±ω)
(2π)

d−1

2 L±
j,ω(e

iξ·x̃(·)B(k2,l)
x̃,ξ (ϕ,ψ)) (ω) .(8.27)

11In particular, it only depends on the choice of χ1 in the stationary phase
Lemma.
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Both sides of (8.26) extend for s = x + iy when x → 0+ as tempered
distributions of the variable y where Fα is defined in (8.25).

For any N,N0 ∈ Z2
+ such that

k := k(N0, N) = min

{
N0, N +

⌈
d− 1

2

⌉}
−min{k1, k2} − 2 > 0,

and for any m ≥ 0, there exists C = CN0,N,m > 0 such that for any Λ ≥ 1

and for every (ϕ,ψ) ∈ HN0,−N0/2,2N+d,−m
k1,β0

× HN0,−N0/2,2N+d,−m
k2,−β0

with k1 +

k2 = 2d− 1 the function R
(N,Λ)
(ϕ,ψ) originally defined for Re(s) > 0, extends as

a function R
(N,Λ)
(ϕ,ψ) ∈ Ck(C

Λ
+) for k = k(N0, N) with

∥∥∥R(N,Λ)
(ϕ,ψ)

∥∥∥
Ck(C

Λ

+)
≤ CΛ2m+N+ d+1

2 ‖ϕ‖HN0,−N0/2,2N+d,−m

k1,β0

‖ψ‖HN0,−N0/2,2N+d,−m

k2,−β0

,

(8.28)

using the notation of Definition 7.1.

In particular, this theorem states that for (ϕ,ψ) ∈ Ωk1(STd)×Ωk2(STd),
the Laplace transform L(ϕ,ψ)(s) extends as a C∞ function in a neighborhood

in C+ of any point z0 ∈ iR\(iΛβ0
∪ {0}), where Λβ0

was defined in (5.7). This
follows from the fact that bookkeeping the regularities in the proof below,
we may choose the regularity exponent k = inf(N0− 2− inf(k1, k2), N − 2−
inf(k1, k2) +

d−1
2 ) and we see that k → +∞ when N,N0 → +∞. Moreover,

when Re(s) > 0 goes to zero, then y �→ L(ϕ,ψ)(iy + 0) makes sense as a
tempered distribution obtained as boundary value of holomorphic function
and Theorem 8.8 describes its singularity near any point in Λβ0

explicitly in
terms of the distributions Fα in (8.25). In particular, if d is odd, (8.26) gives
an expansion of the limit Laplace transform limx→0+ L(ϕ,ψ)(x+ iy) in terms

of the distributions 1
(y−i0−zj)m

and (y − zj)
n log(y − i0 − zj), for zj ∈ Λβ0

and m,n ∈ Z+,m ≤ min{k1, k2} − d−1
2 . If d is even, (8.26) is an expansion

of the limit Laplace transform in terms of the distributions 1
(y−i0−zj)m/2 for

zj ∈ Λβ0
and m ∈ Z,m ≤ 2min{k1, k2} − d + 1. The coefficients in this

expansion are in principle explicit; recall for instance that L±
0,ω = 1. Note

also that in (8.28) the regularity of the resolvent up to the imaginary axis,
given by the index k(N0, N), depends explicitly on the anisotropic Sobolev
regularity HN0,−N0/2,2N+d,−m/2 of the currents (ϕ,ψ). The bigger N0, N are,
the better the regularity of this background remainder term is.

Note finally that in case x̃ = 0 (and when computing the resolvent
acting on functions), the proof simplifies slightly and the estimate (8.28) of
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the remainder is better behaved in terms of spaces and powers of Λ. As far as
the proof is concerned, it is worth noticing that, as opposed to the proofs of
Theorems 7.4 and 8.4,we do actually make use of both non-stationary
and stationary phase estimates of Lemmas 5.2 and 5.3.

Proof of Theorem 8.8. As in the proof of Proposition 8.7, we consider (ϕ,ψ)
in Ωk1(STd)× Ωk2(STd) and we decompose the function Cϕ,T∗

−x̃(ψ)
(t, β0) as

a sum of Cl
ϕ,T∗

−x̃(ψ)
(t, β0) according to (4.16)–(4.17). Then decomposing the

function Cl
ϕ,T∗

−x̃(ψ)
(t, β0) according to (7.5), we are left with describing the

terms L
(l)
(ϕ,ψ)(s) in (8.22)–(8.23), which we again decompose accordingly as

L
(l)
(ϕ,ψ)(s) = L

(l,E)
(ϕ,ψ)(s) + L

(l,−1)
(ϕ,ψ) (s) + L

(l,0)
(ϕ,ψ)(s) + L

(l,1)
(ϕ,ψ)(s),(8.29)

with

L
(l,E)
(ϕ,ψ)(s) =

∫ ∞

0
χ∞(t)e−st t

l

l!
E

(l)
β0
|dt|, and

L
(l,j)
(ϕ,ψ)(s) =

∫ ∞

0
χ∞(t)e−st t

l

l!
Cl
j(t)|dt|, for j ∈ {−1, 0, 1}.(8.30)

We now study each of these terms separately.

Firstly, we have using Item 3 of Lemma 8.6

L
(l,E)
(ϕ,ψ)(s) = E

(l)
β0

1

l!

∫ ∞

0
χ∞(t)tle−st|dt|(8.31)

=
E

(l)
β0

l!
Fχ∞,−l(s) =

E
(l)
β0

sl+1
+

E
(l)
β0

l!
H−l(s),

where H−l is an entire function such that |∂k
sH−l(s)| ≤ Cχ∞,−l,k(e

−T1 Re(s)+
1) on C.

Secondly, we consider the term with L
(l,0)
(ϕ,ψ)(s) and proceed as in the

proof of Theorem 7.4. The index j = 0 means that we consider a good term
in the nonstationary phase region. According to Lemma 5.2, we have, for
t ≥ t0, all N ∈ Z+,

|Cl
0(t)| ≤ CN

∑
ξ∈Zd\{β0}

(|ξ − β0|t)−N‖B(k2,l)
x̃,ξ (ϕ,ψ)‖WN,1(C0(ξ−β0)).
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We now use that supp(χ∞) ⊂ [T0,+∞) with T0 ≥ max{1, t0}. Integrating
in (8.30), using Item 1 in Lemma 8.6, we deduce that L

(l,0)
(ϕ,ψ)(s) extends as

a function in C∞(C+) with

(8.32)
∣∣∣∂k

sL
(l,0)
(ϕ,ψ)(s)

∣∣∣ ≤ CN0

×
∫ ∞

0
χ∞(t)tl+kt−N0e−Re(s)t|dt|

∑
ξ∈Zd\{β0}

‖B(k2,l)
x̃,ξ (ϕ,ψ)‖WN0,1(C0(ξ−β0))

|ξ − β0|N0

≤ CN0,k

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
HN0 (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HN0 (C0(ξ−β0))

|ξ − β0|N0
,

uniformly on Re(s) ≥ 0, as soon as N0 − k − l > 1. Recalling that l ≤
min{k1, k2}, this holds for all N0, k such that N0 > k +min{k1, k2}+ 1.

Thirdly, we consider the term with L
(l,±1)
(ϕ,ψ) (s). According to (8.30) and

the expression of C(l,±1)(t) in (7.5), we have

L
(l,±1)
(ϕ,ψ) (s) =

∑
ξ∈Zd\{β0}

∫
Sd−1

(∫
R

χ∞(t)
tl

l!
e−steit(ξ−β0)·v(θ)|dt|

)

× χ±1

(
θ · ξ − β0
|ξ − β0|

)
eiξ·x̃(θ)B(k2,l)

x̃,ξ (ϕ,ψ)(θ)dVol(θ).

An extra decomposition in large and small Fourier modes

Given Λ > 0, we recall that we always assume | Im(s)| ≤ Λ, and we split
(further) this expression according to

L
(l,±1)
(ϕ,ψ) (s) = L

(l,±1)
≤ (s) + L

(l,±1)
> (s),

with

L
(l,±1)
≤ (s) :=

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

· · · ,

and

L
(l,±1)
> (s) :=

∑
ξ∈Zd,|ξ−β0|>2c−1

0 Λ

· · · ,
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where c0 > 0 is the constant from Lemma 5.5 (depending only on χ1 and
K). In other words, we decomposed the sum

∑
ξ into an infinite sum over

large Fourier modes (i.e. |ξ| far from |s|) and into a finite sum over small
Fourier modes. We will apply stationary phase estimates only to the finite
sum and use integration by parts with the infinite sum to get decay in ξ.

Let us first consider the good term L
(l,±1)
> (s). Recalling Lemma 5.5, one

has |v(θ) · (ξ − β0)| ≥ c0|ξ − β0| for (θ, ξ) in the support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
.

For | Im(s)| ≤ Λ, and (θ, ξ) in the support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
and such that

|ξ − β0| > 2
c0
Λ, we thus have a lower bound on the phase factor:

|s−i(ξ−β0)·v(θ)| ≥ | Im(s)−(ξ−β0)·v(θ)| ≥ c0|ξ−β0|−| Im(s)| ≥ c0
2
|ξ−β0|.

According to Items 1, 2 and 5 of Lemma 8.6 applied with z = s− i(ξ− β0) ·
v(θ), α = −l and β = −(l + k), we deduce that for any m, k ∈ Z+,∣∣∣∣∂k

s

∫
R

χ∞(t)
tl

l!
e−steit(ξ−β0)·v(θ)|dt|

∣∣∣∣ ≤ Cm,k

|s− i(ξ − β0) · v(θ)|m
≤ Cm,k

|ξ − β0|m
,

uniformly in Λ > 0, Re(s) ≥ 0, | Im(s)| ≤ Λ, |ξ − β0| > 2c−1
0 Λ, (θ, ξ) in the

support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
. Moreover, this integral extends as a function in

C∞(C
Λ
+). As a consequence, L

(l,±1)
> also extends as a function in C∞(C

Λ
+)

with, for s ∈ C
Λ
+,∣∣∣∂k

sL
(l,±1)
> (s)

∣∣∣(8.33)

≤ Cm,k

∑
ξ∈Zd,|ξ−β0|>2c−1

0 Λ

1

|ξ − β0|m
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
L1(C±1(ξ−β0))

≤ Cm,k

∑
ξ∈Zd,|ξ−β0|>2c−1

0 Λ

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
L2(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
L2(C±1(ξ−β0))

|ξ − β0|m
.

We next consider the term L
(l,±1)
≤ (s), which we rewrite as

L
(l,±1)
≤ (s) :=

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

∫
R

χ∞(t)
tl

l!
e−stI

(±1)

B
(k2,l)

x̃,ξ (ϕ,ψ)
(ξ − β0, t)|dt|,

(8.34)
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where I
(±1)
F (ξ−β0, t) is defined in (5.2). We then use the asymptotic expan-

sion in Lemma 5.3 which yields, with P±
j,l,ξ[ϕ,ψ] defined in (8.27),

I
(±1)

B
(k2,l)

x̃,ξ (ϕ,ψ)
(ξ − β0, t) =

N−1∑
j=0

eitλ±(ξ)

(t|ξ − β0|)
d−1

2
+j

P±
j,l,ξ[ϕ,ψ]

(
± ξ − β0
|ξ − β0|

)

+
R±

N [ϕ,ψ](ξ, t)

tN+ d−1

2

,

where

|R±
N [ϕ,ψ](ξ, t)| ≤ CN |ξ − β0|N+ d+1

2 ‖B(k2,l)
x̃,ξ (ϕ,ψ)‖W 2N+d,1(C±1(ξ−β0))(8.35)

(except if x̃ = 0, in which case this remainder is much better behaved in
terms of ξ and it is not necessary to split this again). Note that when x̃ is
non zero, the remainder in the stationary phase estimates has good decay
properties in the t variable but not in ξ, but this is not of our concern since
the extra decomposition involves only a finite sum

∑
|ξ−β0|�2Λ. Coming back

to (8.34), we have obtained

L
(l,±1)
≤ (s) =

c±d
l!

N−1∑
j=0

Tj(s) + RN (s),(8.36)

where

T±
j (s)

=
∑

ξ∈Zd,0<|ξ−β0|≤2c−1
0 Λ

(∫
R+

χ∞(t)
e−st+itλ±(ξ)

t
d−1

2
+j−l

|dt|
) P±

j,l,ξ[ϕ,ψ]
(
± ξ−β0

|ξ−β0|

)
|ξ − β0|

d−1

2
+j

,

and

R±
N (s) =

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

∫
R+

χ∞(t)
R±

N [ϕ,ψ](ξ, t)

tN+ d−1

2
−l

e−st|dt|.

According to Items 1 and 2 of Lemma 8.6 and the uniform in t estimate

in (8.35), R±
N extends as a function in Ck(CΛ

+) as soon as N + d−1
2 − l−k > 1

(which, recalling l ≤ min{k1, k2}, holds for all l if N, k are such that N >
k +min{k1, k2}+ 1− d−1

2 ), with the estimate for m ≥ 0
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(8.37)
∣∣∣∂k

sR
±
N (s)
∣∣∣

≤ CN,k

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

|ξ − β0|N+ d+1

2 ‖B(k2,l)
x̃,ξ (ϕ,ψ)‖W 2N+d,1(C±1(ξ))

≤ CN,m,kΛ
2m+N+ d+1

2

×
∑

ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
H2N+d(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
H2N+d(C±1(ξ−β0))

|ξ − β0|2m
.

Then, we have

T±
j (s) =

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

Fχ∞, d−1

2
+j−l

(
s− iλ±(ξ)

)P±
j,l,ξ[ϕ,ψ]

(
± ξ−β0

|ξ−β0|

)
|ξ − β0|

d−1

2
+j

,

where the singularity of s �→ Fχ∞, d−1

2
+j−l

(
s− iλ±(ξ)

)
near s = ±i|ξ − β0| is

described in Items 3-4-6-7 of Lemma 8.6, namely:

Fχ∞, d−1

2
+j−l(z) = F d−1

2
+j−l(z) +H d−1

2
+j−l(z),

with Fα defined in (8.24), and Hα are entire functions whose derivatives are

uniformly bounded by a constant times 〈z〉 d−1

2 on Re(s) ≥ −1. Moreover,
the terms T±

j (s) have a limit limx→0+ T±
j (x + iy) in S ′ since the terms Fα

have boundary value distributions by Lemma 8.6 defined by (8.25). This
allows us to rewrite Tj(s) as

T±
j (s) =

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

F d−1

2
+j−l

(
s− iλ±(ξ)

)P±
j,l,ξ[ϕ,ψ]

(
± ξ−β0

|ξ−β0|

)
|ξ − β0|

d−1

2
+j

+ R̃±
j [ϕ,ψ](s),

where

R̃±
j [ϕ,ψ](s) =

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

H d−1

2
+j−l

(
s−iλ±(ξ)

)P±
j,l,ξ[ϕ,ψ]

(
± ξ−β0

|ξ−β0|

)
|ξ − β0|

d−1

2
+j

.

The function R̃±
j is holomorphic on Re(s) > −1. Moreover, recalling (8.27),

the fact that the operators L±
j,

ξ−β0
|ξ−β0|

are of order 2j, and using a Sobolev
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embedding, this can be estimated as follows, for s ∈ C
Λ
+ ∩ {|Re(s)| ≤ 1},∣∣∣∂k

s R̃
±
j [ϕ,ψ](s)

∣∣∣
�k 〈Λ〉

d−1

2

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

∣∣∣∣L±
j,

ξ−β0
|ξ−β0|

(eiξ·x̃(·)B(k2,l)
x̃,ξ (ϕ,ψ))

(
± ξ−β0

|ξ−β0|

)∣∣∣∣
|ξ − β0|

d−1

2
+j

�k 〈Λ〉
d−1

2

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

∥∥∥eiξ·x̃(·)B(k2,l)
x̃,ξ (ϕ,ψ)

∥∥∥
W 2j,∞(C±1(ξ−β0))

|ξ − β0|
d−1

2
+j

�k 〈Λ〉
d−1

2

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

〈ξ〉2j
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
W 2j+d+1,1(C±1(ξ−β0))

|ξ − β0|
d−1

2
+j

,

which can be bounded one more time using the Cauchy-Schwarz inequality
in terms of the norms of ϕ and ψ. This yields actually a better bound than
the estimate (8.37) we already have on R±

N as j ≤ N − 1.

Coming back to the definition of L
(l)
(ϕ,ψ) in (8.29) and collecting (8.31),

(8.32), (8.33), (8.36), (8.37) together with the last three lines, we obtain that
if N + d−1

2 − l − k > 1, N0 − k − l > 1, and m ≥ 0, then the function

R
(l,N)
(ϕ,ψ)(s) := L

(l)
(ϕ,ψ)(s)−

E
(l)
β0

sl+1

−
∑
±

N−1∑
j=0

∑
ξ∈Zd,0<|ξ−β0|≤2c−1

0 Λ

1

l!

F d−1

2
+j−l

(
s− iλ±(ξ)

)
|ξ − β0|

d−1

2
+j

× P±
j,l,ξ[ϕ,ψ]

(
± ξ − β0
|ξ − β0|

)
,

extends as R
(l,N)
(ϕ,ψ) ∈ Ck(C

Λ
+) with, for s ∈ C

Λ
+ with Re(s) ≤ 1,

∣∣∣∂k
sR

(l,N)
(ϕ,ψ)(s)

∣∣∣
≤ CN0,N,m,kΛ

2m+N+ d+1

2 ‖ϕ‖HN0,−N0/2,2N+d,−m

k1,β0

‖ϕ‖HN0,−N0/2,2N+d,−m

k2,−β0

,

where we have used the notation of Definition 7.1. When collecting all terms
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in (8.22)–(8.23) this includes the statement of the theorem as R
(N,Λ)
(ϕ,ψ) (s) =∑min{k1,k2}

l=0 R
(l,N)
(ϕ,ψ)(s).

8.3. Terms near zero in the Mellin and Laplace transforms

To conclude the proofs of Theorems 2.2 and 2.3 (together with their gener-
alization to the case of forms/currents) it remains to describe the properties
of the part of the integrals involving χ0 = 1− χ∞:

Proposition 8.9. Let T1 ≥ 1, assume that χ0 ∈ C∞c (R) has supp(χ0) ⊂
[−T1, T1], and let σ,N ∈ R. Consider the operator functions

AM : s �→
∫ ∞

1
t−sχ0(t)e

−tVβ0 |dt| and AL : s �→
∫ ∞

0
e−stχ0(t)e

−tVβ0 |dt|.

Then, there exists C > 0 such that for all (k1, k2) with k1 + k2 = 2d− 1, for

every (ϕ,ψ) ∈ Hσ,N,σ,N
k1,β0

×H−σ,−N,−σ,−N
k2,−β0

,

AM,ϕ,ψ : s �→
∫
STd

ϕ∧AM(s)T∗
−x̃(ψ), AL,ϕ,ψ : s �→

∫
STd

ϕ∧AL(s)T
∗
−x̃(ψ)

are entire functions satisfying for all s ∈ C,

|AM,ϕ,ψ(s)| ≤ C
T
−Re(s)+d
1 + 1

〈Re(s)〉 ‖ϕ‖Hσ,N,σ,N
k1,β0

‖ψ‖H−σ,−N,−σ,−N
k2,−β0

,

|AL,ϕ,ψ(s)| ≤ C
e−T1 Re(s) + 1

〈Re(s)〉 ‖ϕ‖Hσ,N,σ,N
k1,β0

‖ψ‖H−σ,−N,−σ,−N
k2,−β0

.

Proof. We prove the result for AM,ϕ,ψ(s); the proof for AL,ϕ,ψ(s) being the
same. We start with the same decomposition as in (8.10)–(8.11), namely

AM,ϕ,ψ(s) =

min{k1,k2}∑
l=0

A
(l)
M,ϕ,ψ(s),

with

A
(l)
M,ϕ,ψ(s) =

∫ ∞

1
χ0(t)t

−sCl
ϕ,T∗

−x̃(ψ)
(t, β0)|dt|

=

∫ ∞

1
χ0(t)t

−s t
l

l!

∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·v(θ)eiξ·x̃(θ)B(k2,l)
x̃,ξ (ϕ,ψ)(θ)dVol(θ)|dt|,
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which is an entire function as χ0 is compactly supported in R. We also have
the rough bound∣∣∣A(l)

M,ϕ,ψ(s)
∣∣∣

≤ Cl

∫ ∞

1
|χ0(t)|t−Re(s)+l

∑
ξ∈Zd

∫
Sd−1

∣∣∣B(k2,l)
x̃,ξ (ϕ,ψ)(θ)

∣∣∣ dVol(θ)|dt|.
The conclusion of the proposition follows

∣∣∣A(l)
M,ϕ,ψ(s)

∣∣∣ ≤ C
T
−Re(s)+l+1
1 + 1

〈Re(s)〉
×
∑
ξ∈Zd

〈ξ〉N
∥∥∥π(k1)

ξ (ϕ)
∥∥∥
Hσ(Sd−1)

〈ξ〉−N
∥∥∥π(k2)

−ξ (ψ)
∥∥∥
H−σ(Sd−1)

,

where we have used (4.20), and the Cauchy-Schwarz inequality.

9. Proofs of Theorems 1.3, 1.5, 1.7 and 1.8

Now that we have given a precise description of the analytical properties of
our vector field, we are in position to derive, essentially as corollaries of this
sharp analysis and of Corollary 4.18, the expected properties of generalized
Epstein zeta functions and Poincaré series, as well as some asymptotics of
counting functions. In this section, we take a general v(θ) as defined in §3
and we thus prove (and state) the main Theorems from the introduction at
this level of generality.

9.1. Asymptotic of the counting function

As a first application of this construction, we will refine the a priori bounds
obtained in Lemma 3.12 and prove formula (1.1) from the introduction.
Namely, we fix two admissible submanifolds Σ1,Σ2 ⊂ Td and σ1, σ2 ∈ {±}.
We want to compute a precise asymptotic formula for∑

T0≤t≤T

mΣ1,Σ2
(t) =

∑
T0≤t≤T

� Et(Σ1,Σ2),

with Et(Σ1,Σ2) = Nσ1
(Σ1)∩ etV (Nσ2

(Σ2)), where we refer to Section 3.5 for
the notation.
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Theorem 9.1. Let Σ1,Σ2 ⊂ Td be two admissible submanifolds, let σ1, σ2 ∈
{±}. Then, there exists T0 > 0 such that, as T → +∞

∑
T0≤t≤T

� Et(Σ1,Σ2) =
VolRd(K)T d

(2π)d
+O(T d−1).

Even if it may not be the simplest manner to prove such a result, this
discussion illustrates how our current-theoretical approach to this problem
can be implemented. An interesting question would be to understand how
the remainder term depends on Σ1 and Σ2. See [vdC20, Hla50, Her62b,
Ran66, CdV77] for such results. We do not pursue this here and we rather
focus on the application of this approach to zeta functions associated with
our families of orthogeodesics.

Proof. First fix T0 > 0 large enough so that all the above lemmas apply.
In order to study this quantity, we take β = 0 in (4.26) and we choose
appropriate cutoff functions χ approximating the characteristic function of
the interval [T0, T ]. More precisely, we fix T > 0 (large enough) and t0 > 0
(small enough). We define two smooth cutoff functions χ±

T ∈ C∞c (R, [0, 1])
with the following properties:

• χ+
T is equal to 1 on [T0, T ], it is compactly supported on (T0−t0, T+t0),

it is nonincreasing on [T, T + t0].
• χ−

T is equal to 1 on [T0 + t0, T − t0], it is compactly supported on
(T0, T ), it is nonincreasing on [T − t0, T ].

With such functions at hand, one has

(9.1)
∑

t>T0−t0

χ−
T (t)mΣ1,Σ2

(t) ≤
∑

T0≤t≤T

mΣ1,Σ2
(t) ≤

∑
t>T0−t0

χ+
T (t)mΣ1,Σ2

(t).

Hence, thanks to (4.26), we have to study∑
t>T0−t0

χ±
T (t)mΣ1,Σ2

(t)

= (−1)d−1

∫
STd

δ2πZd ∧
∫
R

χ±
T (t)
(
e−tVT∗

x̃
σ1
1 −x̃

σ2
2

)
ιV (δ2πZd)|dt|,

which can be analyzed using Theorem 7.4. Indeed, the cutoff functions χ±
T

are compactly supported which implies that they satisfy the assumption of
this Theorem (as they are (N, p)-admissible for every (N, p)). We just have
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to pay some attention to their dependence in T as T → +∞. More precisely,
we need to apply this theorem with k1 = d, k2 = d− 1 and

ϕ = δ2πZd , ψ = ιV (δ2πZd).

We have

ϕ ∈ H+∞,− d

2
−,+∞,− d

2
−

d,0 :=
⋂

ε∈(0,1]
H

1

ε
,− d

2
−ε, 1

ε
,− d

2
−ε

d,0 ,(9.2)

and

ψ ∈ H+∞,− d

2
−,+∞,− d

2
−

d−1,0 .(9.3)

Thus, we are left with analyzing the size of the different integrals involving
χ±
T . First, for 0 ≤ l ≤ d− 1, one has

T l+1

l + 1
+O(1) ≤

∫
R

χ+
T (t)t

l|dt| ≤ (T + t0)
l+1

l + 1
+O(1), as T → +∞,

and

(T − t0)
l+1

l + 1
+O(1) ≤

∫
R

χ−
T (t)t

l|dt| ≤ T l+1

l + 1
+O(1), as T → +∞.

Similarly, we can treat the remainder terms involving terms of the type
‖(χ±

T,δt
l)(2d+1)‖L1(R+) = O(T d−1). Finally, the term ‖χ±

T,δt
l−(2d+1)‖L1(R+) is

bounded uniformly in terms of T since l ≤ d − 1. Gathering these bounds,
we find that∫

STd

δ2πZd ∧
∫
R

χ±
T (t)
(
e−tVT∗

x̃
σ1
1 −x̃

σ2
2

)
ιV (δ2πZd)|dt|

=
T d

d!

∫
Sd−1

B
(d−1,d−1)

x̃
σ2
2 −x̃

σ1
1 ,0

(δ2πZd , ιV (δ2πZd))dVol(θ) +O(T d−1).

Recall now that B
(d−1,d−1)

x̃
σ2
2 −x̃

σ1
1 ,0

(δ2πZd , ιV (δ2πZd))dVol(θ) is defined in (4.18) as

B
(d−1,d−1)

x̃
σ2
2 −x̃

σ1
1 ,0

(δ2πZd , ιV (δ2πZd))dVol(θ)

= (−1)d−1π
(d)
0 (δ2πZd) ∧T∗

x̃
σ1
1 −x̃

σ2
2
Vd−1π

(d−1)
0 (ιV (δ2πZd))

= (−1)d−1(2π)−2ddx1 ∧ . . . dxd ∧T∗
x̃
σ1
1 −x̃

σ2
2
Vd−1π

(d−1)
0 (ιV (dx1 ∧ . . . dxd),
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after having used (4.4)–(4.5). Inserting this expression in the above calcu-

lation and recalling Lemma 4.4 allows to conclude the proof. Technically

speaking, in Lemma 4.4, there is no map T∗
x̃
σ1
1 −x̃

σ2
2

but, inserting it in the

proof of this lemma, we find that, as t→ +∞,∫
SRd

[S0R
d] ∧ etV ∗P ∗(x1dx2 ∧ . . . ∧ dxd)

∼
∫
SRd

[S0R
d] ∧T∗

x̃
σ1
1 −x̃

σ2
2
etV ∗P ∗(x1dx2 ∧ . . . ∧ dxd).

Hence the leading term in td is the same in both formulas. As the leading

term on the left-hand side computes the volume of K according to the proof

of Lemma 4.4, we are done.

9.2. Continuation of generalized Epstein zeta functions

We now aim at proving Theorem 1.3 and its generalization in the case of

a general v(θ). This amounts to studying the meromorphic properties of

the generalized Epstein zeta function defined in (3.15). As an application

of Lemma 3.12, it defines a holomorphic function on {Re(s) > d} and we

want to understand its possible extension beyond the threshold Re(s) > d.

To that aim, the first step is to use Lemma 4.16 to interpret ζΣ1,Σ2,T0
(s) as

the Mellin transform of a correlation function of appropriate currents, and

then make use of Theorem 8.4.

Lemma 9.2. There is T ∗
0 > 0 such that for all T0 > T ∗

0 , one can find χ∞
verifying assumption (8.1) with t0 > 0 small enough such that, for Re(s)

large enough,

(9.4) ζβ(K2,K1, s)

= (−1)d−1

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧ χ̂M

s (−iVβ0
)T∗

x̃
σ1
1 −x̃

σ2
2
ιV (δ2πZd)|dt|,

where χ̂M
s (−iVβ0

) was defined in (8.2).

In a more compact manner and using the conventions of Theorem 8.4

with x̃ = x̃σ2

2 − x̃σ1

1 , the right hand-side of (9.4) can be rewritten as

M(
ei(f(x̃

σ2
2

)−f(x̃
σ1
1

))δ2πZd ,ιV (δ2πZd )
)(s)
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=

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧ χ̂M

s (−iVβ0
)T∗

x̃ιV (δ2πZd)|dt|.

The difficulty in making the connection with ζβ(K2,K1, s) is that the state-

ment of Lemma 4.16 is only valid for compactly supported function while

the function χ∞ used to define χ̂M
s (−iVβ0

) has noncompact support. This

lemma shows that we can in fact allow such a test function in Lemma 4.16

in view of connecting the zeta function with its integral representation.

Proof. First, we fix a smooth nondecreasing function χ∞ which is equal to 1

on [T0+ t0,∞) and to 0 on (−∞, T0] for some small enough t0 > 0 to ensure

that mΣ1,Σ2
(t) = 0 for all t ∈ (T0, T0 + t0]. Here T0 > 0 is large enough to

apply Corollary 4.18. We also fix a smooth function χ ∈ C∞c ((−2, 2), [0, 1])
such that

∀t ∈ R,
∑
j∈Z

χ(t+ j) = 1.

We let χ∞,j(t) := χ∞(t)χ(t + j). Using (4.26), this leads to the following

decomposition

ζβ(K2,K1, s) =
∑
j∈Z

∑
t>T0

χ∞,j(t)t
−s

⎛⎝ ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0

−t
β(V )(x+τθ,θ)|dτ |

⎞⎠
= (−1)d−1

∑
j∈Z

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd

∧
∫
R

χ∞,j(t)t
−s
(
e−tVβ0T∗

x̃

)
ιV (δ2πZd)|dt|.(9.5)

These sums over j are absolutely convergent and the only remaining diffi-

culty is to check that the righthand-side indeed converges to the operator

χ̂M
s (−iVβ0

) in the appropriate functional spaces. We now fix some N large

enough in order to apply Theorem 7.4 (with N = M) to x̃ = x̃2 − x̃1, to

k1 = d, k2 = d− 1, and to the currents

ϕ = ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∈ D′d(STd), and ψ = ιV (δ2πZd) ∈ D′d−1(STd).

In order to apply this theorem, we have (in practice) to split the sum over

j into a finite sum and an infinite one corresponding to the cutoff functions

χ∞(t)χ(t + j) in the range of application of this statement. We also have

to control the growth of several integrals, namely for 0 ≤ l ≤ d− 1 and for
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Re(s) large enough,∫
R

χ∞(t)χ(t+ j)t−s+l|dt| = O(j−s+l),

∫
R

χ∞(t)χ(t+ j)t−s+l−N |dt| = O(j−s+l−N ),

and ∫
R

∣∣∣∣ dNdtN (χ∞(t)χ(t+ j)t−s+l
)∣∣∣∣ |dt| = O(j−s+l).

These bounds allow to apply Theorem 7.4 for Re(s) large enough and thus
the sums under consideration converge in the anisotropic Sobolev spaces of
Section 7.1 as long as N is large enough to have ϕ and ψ in that space.

The next step is to make use of Theorem 8.4 to deduce the meromorphic
continuation.

Theorem 9.3. If β0 /∈ Zd, the function ζβ(K2,K1, s) extends holomorphi-
cally to the whole complex plane. If β0 ∈ Zd, the function extends mero-
morphically to the whole complex plane with (at most) simple poles at s =
1, . . . , d whose residues are given by

(9.6) Ress=�(ζβ(K2,K1, s)) =
(−1)d−1

(�− 1)!
E

(�−1)
β0

, for � ∈ {1, . . . , d},

with

(9.7) E
(�−1)
β0

=
(−1)d+�

(2π)2d

×
∫
STd

e
i
∫
x̃
σ1
1

(θ)→x̃
σ2
2

(θ)
β
dx1 ∧ . . .∧ dxd ∧ ιV V

�−1T∗
x̃
σ1
1 −x̃

σ2
2
(dx1 ∧ . . . ∧ dxd) .

Note that (9.7) corresponds to (7.3) specified to the currents associated

with convex sets, see (9.8) below (but we kept the same notation E
(�−1)
β0

).

Recall that, for β0 /∈ Zd, we used the convention that E
(�)
0 = 0 for every

1 ≤ � ≤ d.
This lemma proves in particular Theorem 1.3 as a particular case (see

Remark 3.13). In order to prove Theorem 1.4, we are left with giving an
expression of these residues in terms of geometric quantities associated with
our convex subsets. This will be the topic of Section 10.
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Remark 9.4. Before getting to this, let us already observe that, for β0 ∈ Zd,

the residue at s = d can be written explicitly as

1

(2π)2d

∫
STd

e
i
∫
x̃
σ1
1

(θ)→x̃
σ2
2

(θ)
β
[S[0]T

d] ∧Vd−1ιV (dx1 ∧ . . . ∧ dxd) ,

which looks like the quantity appearing in Lemma 4.4. Moreover, if x̃σ1

1 = x̃σ2

2

or if Σ1 and Σ2 are both points, all these residues vanish except for the one

at s = d which is equal to

e
i
∫
x̃
σ1
1

→x̃
σ2
2

β
VolRd(K)

(2π)d
.

In that case and when v(θ) = θ, we recall that the lengths of the geodesic

arcs joining Σ1 to Σ2 are given explicitly by (|2πξ+x̃σ2

2 −x̃σ1

1 |)ξ∈Zd so that we

end up with the classical Epstein zeta function [Eps03]. Hence, we see that

this property of having a single pole remains true for a general v(θ) which

corresponds to the case where one looks at dilations of a general strictly

convex set.

Proof of Theorem 9.3. Given (9.4), we are now in position to apply Theo-

rem 8.4 to

ϕ = ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∈ H+∞,− d

2
−,+∞,− d

2
−

d,β0
,(9.8)

and

ψ = ιV (δ2πZd) ∈ H+∞,− d

2
−,+∞,− d

2
−

d−1,−β0
,(9.9)

where the notation is taken from (9.2). Up to increasing slightly the value of

T0 to be in the setup of Theorem 8.4, this result can be applied to these test

functions if we pick N > d/2. This theorem implies that for β0 /∈ Zd, the

function ζΣ1,Σ2,T0
(s) extends holomorphically to the whole complex plane

(as E
(l)
β0

= 0 in that case). When β0 ∈ Zd, Theorem 8.4 implies that the

function extends meromorphically to the whole complex plane with possibly

some simple poles at s = 1, . . . , d. Moreover, together with (9.4), we deduce

that if β0 ∈ Zd, then

Ress=l+1(ζβ(K2,K1, s)) =
(−1)d−1

l!
E

(l)
β0
, for l ∈ {0, . . . , d− 1},
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with E
(l)
β0

given by the integral over Sd−1 (with respect to dVol(θ)) of

eiβ0·(x̃σ2
2 (θ)−x̃

σ1
1 (θ))B

(d−1,l)

x̃
σ2
2 −x̃

σ1
1 ,β0

(
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

)
(θ),

where the bilinear operator B is defined in (4.18). From the expression of
B, one can verify that ei(f(x̃

σ2
2 )−f(x̃

σ1
1 )) can be put in factor so that, in the

resulting exponential, we obtain a term

β0 · (x̃σ2

2 (θ)− x̃σ1

1 (θ)) + f(x̃σ2

2 )− f(x̃σ1

1 ) =

∫
x̃
σ1
1 (θ)→x̃

σ2
2 (θ)

β,

which is independent of the choice of the path between x̃σ1

1 (θ) and x̃σ2

2 (θ)
modulo 2πZ. Therefore, the residue at s = � := l + 1 ∈ {1, . . . , d} is given
by

E
(�−1)
β0

=

∫
Sd−1

e
i
∫
x̃
σ1
1

(θ)→x̃
σ2
2

(θ)
β
B

(d−1,�−1)

x̃
σ2
2 −x̃

σ1
1 ,β0

(δ2πZd , ιV (δ2πZd)) (θ)dVol(θ).

Using expression (4.18) together with (4.11) in Lemma 4.9, we finally obtain

(9.10) E
(�−1)
β0

=
(−1)�−1

(2π)d

×
∫
STd

e
i
∫
x̃
σ1
1

(θ)→x̃
σ2
2

(θ)
β
dx1 ∧ . . . ∧ dxd ∧ ιV V

�−1T∗
x̃
σ1
1 −x̃

σ2
2
(δ2πZd) .

for 1 ≤ � ≤ d. The latter can be rewriten as (9.7) when recalling (4.4)–
(4.5).

9.3. Continuation of generalized Poincaré series

We now turn to the proof of Theorem 1.5 which amounts to study the
properties of the generalized Poincaré series defined in (3.16). Arguing as
in Lemma 9.2 with e−st instead of t−s, we can make use of Theorem 7.4
and Lemma 4.16 to interpret Zβ(K2,K1, s) as the Laplace transform of a
correlation function of appropriate currents.

Lemma 9.5. There is T ∗
0 > 0 such that for all T0 > T ∗

0 , one can find χ∞
verifying assumption (8.1) with t0 > 0 small enough such that

(9.11) Zβ(K2,K1, s)

= (−1)d−1

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧ χ̂L

s (−iVβ0
)T∗

x̃
σ1
1 −x̃

σ2
2
ιV (δ2πZd).
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Again, using the conventions of Theorem 8.8 with x̃ = x̃σ2

2 − x̃σ1

1 , the
right-hand side can be rewritten as

L
(ei(f(x̃

σ2
2

)−f(x̃
σ1
1

))δ2πZd ,ιV (δ2πZd ))
(s)

=

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧ χ̂L

s (−iVβ0
)T∗

x̃ιV (δ2πZd)

We are thus in position to apply Theorem 8.8.

Theorem 9.6. Setting Sβ0
= iΛβ0

∪{0} if β0 ∈ Zd and Sβ0
= iΛβ0

otherwise,
the following statements hold:

1. Zβ(K2,K1, s) extends as a function in C∞(C+ \ Sβ0
) and the limit

limx→0+ Zβ(K2,K1, x+ iy) exists in S ′(R) as boundary value of holo-
morphic function,

2. The function

Zβ(K2,K1, s)−
d∑

�=1

E
(�−1)
β0

s�

is a C∞ function in a neighborhood of zero in C+ where E
(�−1)
β0

is given

by (9.10) (recalling that E
(�−1)
β0

= 0 if β0 /∈ Zd).
3. There exist constants Cj,�−1(ξ, β0) for every � ∈ {1, . . . , d} and j ∈ Z+,

such that for any ir±0 = iλ±(ξ) ∈ Sβ0
\ {0}, the function

(9.12) Zβ(K2,K1, s)

−
d∑

�=1

N−1∑
j=0

⎛⎝ ∑
ξ∈Zd,λ±(ξ)=r±0

1

(�− 1)!
C±
j,�−1

(
ξ, β0
)⎞⎠F d−1

2
+j+1−�

(
s−ir±0

)
,

extends as a CN−1−! d+1

2 " function in a neighborhood of ir±0 in C+.
Moreover, the most singular term in this expansion near ir±0 is given
by (j = 0 and � = d)

(−1)d−1e∓iπ
4
(d−1)F− d−1

2

(
s− ir±0

)
(2π)

d+1

2 |r±0 |
d−1

2

×

⎛⎜⎜⎝ ∑
ξ∈Zd,λ±(ξ)=r±0

e
iξ·(x̃σ2

2 −x̃
σ1
1 )
(
± ξ−β0

|ξ−β0|

)
e
i(f(x̃

σ2
2 )−f(x̃

σ1
1 ))
(
± ξ−β0

|ξ−β0|

)
√

κ ◦ v
(
± ξ−β0

|ξ−β0|

)
⎞⎟⎟⎠ .
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Recall that for α ∈ R, the distribution Fα is defined in (8.25) and it is

essentially the Laplace transform of t−α (near t = +∞). We also recall that

Λβ0
is defined in (5.7) and that Sβ0

\{0} = i (Sp(λ+(D)) ∪ Sp(λ−(D))) where

λ±(D) is the Fourier multiplier of symbol λ±(ξ) on Td (see Remark 6.6).

Note the important fact that the difference

(9.13) lim
x→0+

Zβ(K2,K1, x+ iy)

−
d∑

�=1

N−1∑
j=0

⎛⎝ ∑
ξ∈Zd,λ±(ξ)=r±0

1

(�− 1)!
C±
j,�−1

(
ξ, β0
)⎞⎠F d−1

2
+j+1−�

(
x+ iy− ir±0

)
,

viewed as tempered distributions in S ′(R) of the variable y is an element

in CN−1−! d+1

2 " near y = r±0 . Here we view the difference as a distribution

obtained as boundary values of holomorphic functions.

Proof. We apply Theorem 8.8 to x̃ = x̃σ2

2 − x̃σ1

1 and to the currents ϕ,ψ

in (9.8). Theorem 8.8 thus applies to all N0 > d,N > 0,m > d/2 and Item 1

readily follows. As for Item 2, Theorem 8.8 implies the expected result after

recalling the definition of E
(l)
β0
.

We next prove Item 3. We fix a point r±0 := λ±(ξ) such that ir±0 =

iλ±(ξ) ∈ Sβ0
\{0}, and describe Zβ(K2,K1, s) near ir

±
0 . Theorem 8.8, taken

for N0 > d large enough (compared to N), implies that

Zβ(K2,K1, s)−
d−1∑
l=0

N−1∑
j=0

⎛⎝ ∑
ξ∈Zd,λ±(ξ)=r±0

1

l!
C±
j,l

(
ξ, β0
)⎞⎠F d−1

2
+j−l

(
s− ir±0

)
,

extends as a Ck function in a neighborhood of ir±0 in C+, where

k = N +

⌈
d− 1

2

⌉
−min{k1, k2} − 2 = N − 1−

⌈
d+ 1

2

⌉
,

(recall that min{k1, k2} = d− 1 here) and

(9.14) C±
j,l(ξ, β0)

=
1

|ξ0 − β0|
d−1

2
+j

P±
j,l,ξ

[
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

](
± ξ − β0
|ξ − β0|

)
.
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Now, recalling the definition of Fα in (8.24), we notice that the most singular
term in the expansion (9.12) is for l = d− 1 and j = 0, and is given by⎛⎝ ∑

ξ∈Zd,λ±(ξ)=r±0

1

(d− 1)!
C±
0,d−1

(
ξ, β0
)⎞⎠F− d−1

2

(
s− ir±0

)
.(9.15)

We now compute it explicitly. We first compute C±
0,l(ω) according to the

definition of P±
j,l,ξ in (8.27), recalling from Lemma 5.3 that L±

0,∓ω = 1, as

(9.16)

P±
0,l,ξ

[
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

]
(±ω) = e∓iπ

4
(d−1)(2π)

d−1

2 eiξ·x̃(ω)

×B
(d−1,l)
x̃,ξ

(
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

)
(±ω) .

Combining (9.14)–(9.15)–(9.16), this concludes the proof of the statement
in Item 3.

9.4. A summation formula in the spirit of Guinand–Meyer

We now turn to the proof of Theorem 1.8 and we emphasize that it is
important here to have v(θ) = θ. The proof would work as well for more
general v if we suppose in addition that θ · v(−θ) = −θ · v(θ) for every
θ ∈ Sd−1 (e.g. if the convex K defining v is an ellipsoid with 0 ∈ Int(K)).
Repeating the arguments in Section 9.3 for certain variations of Poincaré
series, we can in fact deduce a summation formula in the spirit of the recent
results on crystalline measures by Meyer [Mey16]. More precisely, we set

Z̃β(K2,K1, s) :=
∑

t>T0:Et(Σ1,Σ2) �=∅

e−st

t
d−1

2

⎛⎝ ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0

−t
β(V )(x+τθ,θ)|dτ |

⎞⎠ ,

(9.17)

and we emphasize that this function depends on the choice of orientation
(σ1, σ2) even if we drop this dependence for the moment. As for Poincaré
series in Section 9.3, the limit as x → 0+ of y �→ Z̃β(K2,K1, x + iy) ex-
ists as a tempered distribution on R thanks to Lemma 3.12. Arguing as
in the proof of Theorem 9.6, one can verify that the singular support of
this distribution is the same as for limx→0+ Zβ(K2,K1, x + iy) but the sin-

gularity are slightly simpler due to the renormalization factor t−
d−1

2 . More
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precisely, using the conventions of this theorem, one finds that, near y = r+0 ,
limx→0+ Z̃β(K2,K1, x+ iy) is equal to

lim
x→0+

(−1)d−1e−iπ
4
(d−1)

(2π)
d+1

2 |r+0 |
d−1

2 (x+ iy − ir+0 )

×

⎛⎝ ∑
ξ∈Zd,|ξ−β0|=|r+0 |

e
iξ·(x̃σ2

2 −x̃
σ1
1 )
(

ξ−β0
|ξ−β0|

)
e
i(f(x̃

σ2
2 )−f(x̃

σ1
1 ))
(

ξ−β0
|ξ−β0|

)⎞⎠ ,

modulo some remainder belonging to Lp((r+0 − δ, r+0 + δ)) for some posi-
tive δ and for every 1 ≤ p < ∞. Similarly, one has that, near y = r+0 ,
limx→0+ Z̃β(K2,K1, x− iy) is equal to

lim
x→0+

(−1)d−1ei
π

4
(d−1)

(2π)
d+1

2 |r+0 |
d−1

2 (x− iy + ir+0 )

×

⎛⎝ ∑
ξ∈Zd,|ξ−β0|=|r+0 |

e
iξ·(x̃σ2

2 −x̃
σ1
1 )
(
− ξ−β0

|ξ−β0|

)
e
i(f(x̃

σ2
2 )−f(x̃

σ1
1 ))
(
− ξ−β0

|ξ−β0|

)⎞⎠ ,

modulo some remainder belonging to Lp((r+0 − δ, r+0 + δ)) for every 1 ≤ p <
∞. Recalling from [Hör03, Eq. (3.2.11), p. 72] that

lim
x→0+

(
1

y + ix
− 1

y − ix

)
= −2iπδ0(y),

we finally find that, near y = r+0 , the tempered distribution12

lim
x→0+

(
ei

π

4
(d−1)Z̃σ2,σ1

β (K2,K1, x+ iy) + e−iπ
4
(d−1)Z̃−σ2,−σ1

β (K2,K1, x− iy)
)

is equal, modulo OLp(1), to

(−1)d−1δ0(y − r+0 )

(2π)
d−1

2 |r+0 |
d−1

2

×

⎛⎝ ∑
ξ∈Zd,|ξ−β0|=|r+0 |

e
iξ·(x̃σ2

2 −x̃
σ1
1 )
(

ξ−β0
|ξ−β0|

)
e
i(f(x̃

σ2
2 )−f(x̃

σ1
1 ))
(

ξ−β0
|ξ−β0|

)⎞⎠ .

12We restablish the dependence in the orientation to get the expected cancella-
tion.
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The same discussion of course holds near y = r−0 . Hence, if β0 /∈ H1(Td,Z),
one finds that the distribution

ei
π

4
(d−1)Z̃σ2,σ1

β (K2,K1, iy) + e−iπ
4
(d−1)Z̃−σ2,−σ1

β (K2,K1,−iy)

is a combination of Dirac masses modulo some Lp
loc remainder which proves

Theorem 1.8.

9.5. The case when K1,K2 are points

In this section we finally discuss the particular case where the convex sets
are reduced to points (or to balls) and we still suppose that v(θ) = θ. In
that case, the proofs are simpler and lead to very explicit formulas with
connections to the magnetic Laplacian.

9.5.1. Meromorphic continuation of Poincaré series.

Proposition 9.7. Assume K1 := {x} and K2 := {y} where x, y ∈ Rd

are two points and β = β0 + df is a closed real valued one-form such that
[β] = β0 ∈ H1(Td,R) � Rd. Then we have, in D′(R∗

+)

(9.18)
∑

γ∈Px,y

ei
∫
γ
βδ(t− �(γ)) = 2πt

d

2 ei(f(y)−f(x))
J d−2

2

(
2πt
√
−Δβ0

)
(√
−Δβ0

) d−2

2

(x, y).

If moreover x �= y, then (9.18) also holds in D′((−t0,∞)) for some small
enough t0 > 0, and we have, for Re(s) > 0,

Zβ(x, y, s) = 2dπ
d−1

2 Γ

(
d+ 1

2

)
ei(f(y)−f(x))s(s2 − 4π2Δβ0

)−
d+1

2 (x, y).

(9.19)

Recall that in the right hand-side of (9.19), (s2 − 4π2Δβ0
)−

d+1

2 (x, y)

denotes the Schwartz kernel of the operator (s2− 4π2Δβ0
)−

d+1

2 taken at the
point (x, y). The proof relies on the fact that the twisted counting measure∑

γ e
i
∫
γ
βδ(t − �(γ)) has an explicit relation with the Schwartz kernel of

Π∗e−t(V+iβ0(V ))Π∗ (acting on functions) at (x, y).

Proof. On the one hand, by a direct calculation, one has

Π∗e
−t(V+iβ0(V ))Π∗(x, y) =

1

(2π)d

∑
ξ∈Zd

eiξ·(y−x)

∫
Sd−1

eit(ξ−β0)·θdVol(θ).
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On the other hand, one can make use of Lemma 4.16 (applied either for

x �= y or for t > 0) to write the twisted counting measure when K2 = {x}
and K1 = {y}. This yields that this is equal to the previous quantity up to

a normalization factor:∑
γ∈Px,y

ei
∫
γ
βδ(t− �(γ)) = ei(f(y)−f(x))td−1Π∗e

−t(V+iβ0(V ))Π∗(x, y) in D′(R∗
+).

In particular, according to (6.3), one has (9.18). Note that, as soon as x �= y,

the formula (9.18) still makes sense in D′((−t0,∞)) for some small enough

t0 > 0. For x �= y, we can then make the Laplace transform of this equality:

∑
γ∈Px,y

ei
∫
γ
βe−s�(γ) = 2πei(f(y)−f(x))

∫ ∞

0
t

d

2

J d−2

2

(
2πt
√
−Δβ0

)
(√
−Δβ0

) d−2

2

(x, y)e−st|dt|.

We now recall that, for every ν > −1 and for every a ∈ R,∫ ∞

0
e−sttν+1Jν(at)|dt| = 2ν+1π− 1

2Γ

(
ν +

3

2

)
aνs(s2+a2)−ν− 3

2 , Re(s) > 0,

see e.g. [EMOT54, Table 8, line (8), p. 182]. Combining the last two lines,

we obtain∑
γ∈Px,y

ei
∫
γ
βe−s�(γ) = 2dπ

d−1

2 Γ

(
d+ 1

2

)
ei(f(y)−f(x))s(s2−4π2Δβ0

)−
d+1

2 (x, y),

which is the sought result.

In particular, using the spectral properties of the operator Δβ0
, we can

directly recover Theorem 1.5 from the introduction in that case. Precisely,

one has, for x �= y,

Zβ(x, y, s) = π− d+1

2 Γ

(
d+ 1

2

)
ei(f(y)−f(x))s

∑
ξ∈Zd

eiξ·(x−y)

(s2 + 4π2|ξ + β0|2)
d+1

2

.

(9.20)

We can even be slightly more precise as we can verify that

• if d is odd, this expression has a meromorphic extension to C with

poles located at Sp
(
±i
√
−Δβ0

)
;
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• if d is even, this expression has a meromorphic extension for instance
to

(9.21) C \
{
iλ+ R−, λ ∈ ± Sp

(√
−Δβ0

)
\ {0}
}
,

due to the presence, in this case, of squareroot singularities at the
points of Sp

(
±i
√
−Δβ0

)
\ {0}. Note that the only possible pole in

the region described in (9.21) is then at 0 and that it only occurs if
β0 ∈ Zd.

Finally, when the convex sets K1 and K2 are two round balls, i.e. K1 =
B(x, r1) and K1 = B(y, r2), with x �= y and small enough radii r1 and r2,
the Poincaré series is slightly modified by a factor e−s(r1+r2) and the above
formula yields

(9.22) Zβ(K1,K2, s) = π− d+1

2 Γ

(
d+ 1

2

)
ei(f(y)−f(x))se−s(r2+r1)

×
∑
ξ∈Zd

eiξ·(x−y)

(s2 + 4π2|ξ + β0|2)
d+1

2

,

where we have taken (σ1, σ2) = (+,−) for the (implicit) choice of orienta-
tions of the two balls.

9.5.2. A Guinand-Meyer formula when d is odd. Let us now discuss
a variant of Theorem 1.8 when K1 := {x} and K2 := {y} are reduced to
points that are distinct. Following [Mey16, Th. 5], we define, for x �= y,

(9.23) μGM (t) :=
∑

γ∈Px,y

ei
∫
γ
β

�(γ)
(δ(t− �(γ))− δ(t+ �(γ))) ,

which is a Radon measure in S ′(R) carried by a discrete and locally finite set
of R. Note that compared to the twisted counting measure in (9.18), μGM

is symmetrized and renormalized by t−1. In particular, this is not the same
renormalization as in Theorem 1.8 except if d = 3.

Proposition 9.8. Assume that d is odd, that x �= y and that

β0 /∈ H1(Td,Z) � Zd.

Then, the Fourier transform of μGM in (9.23) is given by

μ̂GM (τ) = i(−1) d−3

2 2dπ
d+1

2 ei(f(y)−f(x))
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×
∑
ξ∈Zd

(
δ(

d−3

2 )(τ − 2π|ξ + β0|)
(τ + 2π|ξ + β0|)

d−1

2

+
δ(

d−3

2 )(τ + 2π|ξ + β0|)
(τ − 2π|ξ + β0|)

d−1

2

)
.

The assumption β0 /∈ H1(Td,Z) � Zd implies that the continuation of
the Laplace transform of μGM has no pole at s = 0 while the assumption
d odd ensures that the Poincaré series extends meromorphically to C with
poles located on the imaginary axis. When d = 3, this proposition recov-
ers [Mey16, Th. 5] and, for d ≥ 5, it corresponds to the more general state-
ment from [LR21, Corollary 2.4]. In particular, if d = 3, μGM is a crystalline
measure: a measure in S ′(R) carried by a discrete and locally finite set of R
with Fourier transform having the same properties. In odd dimension d �= 3,
μ̂GM is no longer a crystalline measure since its Fourier transform is not a
measure (but a distribution of order d−3

2 ). Following [LR21], one says that
the measure μGM is a crystalline distribution, i.e. a distribution in S ′(R)
carried by a discrete and locally finite set of R with Fourier transform hav-
ing the same properties. Compared to the measure in Theorem 1.8, μ̂GM has
the drawback of not being a measure here. However, it has the advantage to
be carried by a discrete and locally finite set of R (i.e. there is no absolutely
continuous remainder r as in Theorem 1.8).

Proof. Dividing (9.18) by t (which we may since x �= y), we obtain

∑
γ∈Px,y

ei
∫
γ
β

�(γ)
δ(t− �(γ)) = 2πt

d−2

2 ei(f(y)−f(x))
J d−2

2

(
2πt
√
−Δβ0

)
(√
−Δβ0

) d−2

2

(x, y).

Taking the Laplace transform, one finds that, for Re(s) > 0,

∑
γ∈Px,y

ei
∫
γ
β

�(γ)
e−s�(γ)

= 2πei(f(y)−f(x))

∫ ∞

0
e−stt

d−2

2

J d−2

2

(
2πt
√
−Δβ0

)
(√
−Δβ0

) d−2

2

(x, y)|dt|.

Recalling that, for every ν > −1/2 and for every a ∈ R,∫ ∞

0
e−sttνJν(at)|dt| = 2νπ− 1

2Γ

(
ν +

1

2

)
aν(s2 + a2)−ν− 1

2 , Re(s) > 0,

see e.g. [EMOT54, Table 8, line (7), p. 182], we deduce that
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(9.24)
∑

γ∈Px,y

ei
∫
γ
β

�(γ)
e−s�(γ)

= 2d−1π
d−1

2 Γ

(
d− 1

2

)
ei(f(y)−f(x))(s2 − 4π4Δβ0

)−
d−1

2 (x, y).

Recalling the definition of μGM in (9.23), its Fourier transform is given by

μ̂GM (τ) =
∑

γ∈Px,y

ei
∫
γ
β

�(γ)

(
e−iτ�(γ) − eiτ�(γ)

)
= lim

α→0+

∑
γ∈Px,y

ei
∫
γ
β

�(γ)

(
e−(iτ+α)�(γ) − e−(−iτ+α)�(γ)

)
.

This is an odd distribution and, according to (9.24), it is smooth near τ = 0
since β0 /∈ Zd.

Next, from (9.24), one knows that

μ̂GM (τ) = 2d−1π
d−1

2 Γ

(
d− 1

2

)
ei(f(y)−f(x))

× lim
α→0+

(
((iτ + α)2 − 4π4Δβ0

)−
d−1

2 − ((−iτ + α)2 − 4π4Δβ0
)−

d−1

2

)
(x, y).

As μ̂GM is odd and smooth near 0, we just need to understand this distri-
bution for τ > 0. To do that, we write that, for λ > 0 and τ > 0,

lim
α→0+

(
((iτ + α)2 + λ2)−

d−1

2 − ((−iτ + α)2 + λ2)−
d−1

2

)
=

1

(τ + λ)
d−1

2

lim
α→0+

(
(τ − λ− iα)−

d−1

2 − (τ − λ+ iα)−
d−1

2

)
.

Implementing [Hör03, Eq. (3.2.11), p. 72] one more time, one finds

lim
α→0+

(
((iτ + α)2 + λ2)−

d−1

2 − ((−iτ + α)2 + λ2)−
d−1

2

)
=

(−1) d−3

2 2iπ

Γ
(
d−1
2

)
(τ + λ)

d−1

2

δ(
d−3

2 )(τ − λ).

We can now rewrite μ̂GM (τ) using this formula. It yields, for τ > 0,
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μ̂GM (τ) = i(−1) d−3

2 2dπ
d+1

2 ei(f(y)−f(x))

×
∑
ξ∈Zd

1

(τ + 2π|ξ + β0|)
d−1

2

δ(
d−3

2 )(τ − 2π|ξ + β0|).

Recalling that μ̂GM is smooth near 0 and odd, this completely determines
the Fourier transform and concludes the proof of the propotition.

Remark 9.9. Recall that in Theorem 1.8, we are rather interested (in the
more general setting of two convex sets) by a renormalized version of (9.23),
namely

μ̃GM (t) := e
iπ

4
(d−1)

∑
γ∈Px,y

ei
∫
γ
β

�(γ)
d−1

2

δ(t− �(γ))

+ e−
iπ

4
(d−1)

∑
γ∈Px,y

ei
∫
γ
β

�(γ)
d−1

2

δ(t+ �(γ)).

In particular, when d = 5, one has

̂̃μGM (τ) = −
∑

γ∈Px,y

ei
∫
γ
β

�(γ)2

(
eiτ�(γ) + e−iτ�(γ)

)
, ̂̃μ′

GM (τ) = μ̂GM (τ),

and, thanks to Proposition 9.8, the remainder r in Theorem 1.8 is not iden-
tically 0 (as r′(τ) is a combination of Dirac distributions). A similar remark
holds for d ≥ 5.

10. Geometric interpretation of the residues and proof of
Theorem 1.4

In this Section, we aim at computing somehow explicitly the residues ap-
pearing in (9.10) in terms of geometric quantities. We will always suppose
in the following that β = 0 which will make the content of this residue more
geometric. Along the way, we will prove Theorem 1.4 from the introduction.

Recall that the admissible manifolds Σ1 and Σ2 used to define our gener-
alized Epstein zeta functions are constructed from two compact and strictly
convex subsetsK1 andK2 of R

d with smooth boundaries ∂K1 and ∂K2 (pos-
sibly reduced to a point). The submanifolds Σi are parametrized through
the inverse Gauss map x̃i : Sd−1 → Td (using the convention that ∂Ki is
oriented using the outward normal vector toKi). In order to take the various
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possibilities for our orthospectrum (outward or inward pointing geodesics),
we introduced orientation parameters σi ∈ {±} and we have set

x̃σi

i (θ) = x̃i(σiθ).

In this paragraph, we suppose that σ1 = − and that σ2 = +. Equiva-
lently, it means that we consider geodesic arcs that go from Σ2 to Σ1 and that
point outside K2 and inward K1 (when lifted to Rd). Let 1 ≤ � ≤ d. Thanks

to (9.6)–(9.7), we now compute the coefficients E
(�−1)
0 or equivalently the

residues

Ress=� (ζ0(K2,K1, s)) =
(−1)�+d

(2π)2d(�− 1)!

×
∫
STd

dx1 ∧ . . . ∧ dxd ∧T∗
x̃−
1 −x̃+

2
ιV V

�−1 (dx1 ∧ . . . ∧ dxd) .

In view of emphasizing the dependence on the convex sets, we make use
of §3.1 and we set

V +
−K1

− := −x̃1(−θ) · ∂x, V +
K2

:= x̃2(θ) · ∂x, and V +
K := V = v(θ) · ∂x.

In particular, the residues can be rewritten as

Ress=� (ζ0(K2,K1, s)) =
(−1)�+d

(2π)2d(�− 1)!

×
∫
STd

dx1 ∧ . . . ∧ dxd ∧ e(V−K1−VK2)
∗
V�−1

K ιVK
(dx1 ∧ . . . ∧ dxd) .

Recalling Lemma 3.16, the map θ ∈ Sd−1 �→ −x̃1(−θ) + x̃2(θ) ∈ Rd is a
parametrization of the convex set −K1+K2 so that the previous inequality
rewrites as

Ress=� (ζ0(K2,K1, s))

=
1

(2π)2d(�− 1)!

∫
STd

eV
∗
K2−K1V�−1

K ιVK
(dx1 ∧ . . . ∧ dxd) ∧ dx1 ∧ . . . ∧ dxd.

In particular, one has

(10.1)
1

(2π)d

d∑
�=1

t�−1

(�− 1)!

∫
STd

[S[0]T
d] ∧ eV

∗
K2−K1V�−1

K ιVK
(dx1 ∧ . . . ∧ dxd)
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=

d∑
�=1

t�−1Ress=� (ζ0(K2,K1, s)) .

Recalling Lemma 4.6, we recognize on the left hand side the derivatives of
the map t �→ VolRd(K2 −K1 + tK) so that

(10.2)

d∑
�=1

t�−1Ress=�+1 (ζ0(K2,K1, s)) =
1

(2π)d
d

dt
VolRd (K2 −K1 + tK) .

Recalling Steiner’s formula (1.3), this concludes the proof of Theorem 1.4. It
also shows how the residues can be expressed in terms of mixed volumes (see
Remark 4.5) when we consider a more general vector v(θ) · ∂x than θ · ∂x.

Appendix A. Another formula for zeta functions

We now briefly explain how to prove (2.1) without appealing the theory of
De Rham currents and how it may slightly simplify the exposition of the
proofs of Theorems 1.3, 1.4 and 1.5. Yet, this would be at the expense of
loosing the dynamical pictures behind these results and thus the relation of
these results with our other (more clearly dynamical) applications. Recall
also that this formula only holds a priori for a specific choice of orientations
for K1 and K2 while our current theoretic approach allows to handle any
orientation convention and to easily implement exponential weights in our
zeta functions.

First, from §3.1, ∂K1 and ∂K2 can be parametrized by their outward
normal vector θ ∈ Sd−1 through the maps xKj

: Sd−1 → Rd, j ∈ {1, 2}.
Moreover, according to §3.6, the maps

θ �→ xK1
(θ)− xK2

(−θ) + tθ

parametrize the boundary of the convex set K1 − K2 + tBd for every 0 ≤
t ≤ T. Let us now remark that γ belongs to PK1,K2

with 0 < �(γ) = t ≤ T
if and only if there exist θ ∈ Sd−1 and ξ ∈ Zd such that

xK2
(−θ) = xK1

(θ) + tθ − 2πξ.

Equivalently, it means that there exists ξ ∈ Zd such that 2πξ belongs to
∂(K1 −K2 + tθ). Hence, elements γ in PK1,K2

are in one-to-one correspon-
dance with the set

2πZd ∩ (K1 −K2 + TBd) \ (K1 −K2) .



Length orthospectrum of convex bodies on flat tori 1035

Now observe that the restriction of the Lebesgue measure to the set

(K1 −K2 + TBd) \ (K2 −K1)

can be disintegrated as follows∫ T

0
δ∂(K1−K2+tBd)(x, |dx|)|dt|,

so that

� {γ ∈ PK1,K2
: 0 ≤ �(γ) ≤ T} =

∫
Rd

δ[0](x)

∫ T

0
δ∂(K1−K2+tBd)(x, |dx|)|dt|,

with δ[0] defined in (2.2). Similarly, if we weight the Lebesgue measure with
χ(t) on each sublevel ∂(K1 − K2 + tθ), we derive formula (2.1) from the
introduction. Now, in order to prove our theorems on convex geometry from
this formula, one would need to decompose δ[0](x) according to (2.2) and
to make sense of the right side after this decomposition for the functions
t−s and e−st. For Re(s) large enough, this is not a problem through a direct
calculation. Then, one would need to make the meromorphic continuation of
the right hand side through the natural threshold. This could be achieved by
reducing to the oscillatory integrals of Section 5 (through the parametriza-
tion of K1 −K2 + tBd by θ as in Sections 9 and 10) and by arguing as in
Section 8 with the simplifications that we only deal with δ functions rather
than general test functions (as in §9.2 and 9.3). Thus, the analytical dif-
ficulties would remain exactly the same through this approach. The main
advantage would be that the fact that the residues involve the intrinsic vol-
ume would be more direct (from the analysis of the Fourier mode 0). Finally,
we considered here the case of Bd but the proof could be adapted as well
when Bd is replaced by a strictly convex set K (with 0 in its interior) as we
did all along the article.
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Soc., Zürich, 2016.

[BAPP19] A. Broise-Alamichel, J. Parkkonen, and F. Paulin. Equidis-

tribution and counting under equilibrium states in negative

curvature and trees, volume 329 of Progress in Mathematics.
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[DZ16] S. Dyatlov and M. Zworski. Dynamical zeta functions for

Anosov flows via microlocal analysis. Ann. Sci. Éc. Norm.
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[EMOT54] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi.

Tables of integral transforms. Vol. I. McGraw-Hill Book Co.,

Inc., New York-Toronto-London, 1954. Based, in part, on notes

left by Harry Bateman.

https://arxiv.org/abs/2207.05410
https://arxiv.org/abs/2005.13235


Length orthospectrum of convex bodies on flat tori 1039

[Eva10] L. C. Evans. Partial differential equations, volume 19 of Grad-

uate Studies in Mathematics. American Mathematical Society,

Providence, RI, second edition, 2010.
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[Hör03] L. Hörmander. The analysis of linear partial differential op-

erators. I. Classics in Mathematics. Springer-Verlag, Berlin,

2003. Distribution theory and Fourier analysis, Reprint of the

second (1990) edition.
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page Exp. No. 1194, 2022. Séminaire Bourbaki, Vol. 2021/2022.

[PP16] J. Parkkonen and F. Paulin. Counting arcs in negative cur-

vature. In Geometry, topology, and dynamics in negative cur-

vature, volume 425 of London Math. Soc. Lecture Note Ser.,

pages 289–344. Cambridge Univ. Press, Cambridge, 2016.

[Pol85] M. Pollicott. On the rate of mixing of Axiom A flows. Invent.

Math., 81(3):413–426, 1985.

[RV19] D. Radchenko and M. Viazovska. Fourier interpolation on the

real line. Publ. Math. Inst. Hautes Études Sci., 129:51–81,

2019.

https://arxiv.org/abs/2107.08875


1042 Nguyen Viet Dang et al.

[Ran66] B. Randol. A lattice-point problem. Trans. Amer. Math. Soc.,
121:257–268, 1966.

[Rat87] M. Ratner. The rate of mixing for geodesic and horocycle flows.
Ergodic Theory Dynam. Systems, 7(2):267–288, 1987.

[RS75] Michael Reed and Barry Simon. II: Fourier analysis, self-
adjointness, volume 2. Elsevier, 1975.

[Rue76] D. Ruelle. Zeta-functions for expanding maps and Anosov
flows. Invent. Math., 34(3):231–242, 1976.

[Rug07] R. O. Ruggiero. Dynamics and global geometry of manifolds
without conjugate points, volume 12 of Ensaios Matemáticos
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Laboratoire de Mathématiques d’Orsay, UMR 8628
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