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Scattering rigidity for analytic metrics

Yannick Guedes–Bonthonneau, Colin Guillarmou,

and Malo Jézéquel

For analytic negatively curved Riemannian manifolds with analytic
strictly convex boundary, we show that the scattering map for the
geodesic flow determines the manifold up to isometry. In particular,
one recovers both the topology and the metric. More generally our
result holds in the analytic category under the no conjugate point
and hyperbolic trapped set assumptions.

1. Introduction

On a compact connected Riemannian manifold (M, g) with boundary ∂M ,
denote by

G(M, g) := {γ : [0, 1]→M | γ is a geodesic for g, (γ(0), γ(1)) ∈ (∂M)2}

the set of geodesics with endpoints in the boundary. The scattering data of
(M, g) is the set

Sc(M, g) :=
{(

γ(0),
γ̇(0)

|γ̇(0)|g
, γ(1),

γ̇(1)

|γ̇(1)|g

)
∈ (T∂MM)2

∣∣∣ γ ∈ G(M, g)
}
,

of endpoints, together with the normalized tangent vector at the endpoints,
of all geodesics in G(M, g). This is the graph of a map Sg, called scattering
map, defined on a subset of the set of incoming tangent vectors at ∂M and
mapping to a subset of the set of outgoing tangent vectors at ∂M ; see Fig-
ure 1. A natural geometric inverse problem consists in determining the man-
ifold M and the metric g from the scattering data Sc(M, g). This problem
is called the scattering rigidity problem. A manifold (M, g) is called scat-
tering rigid if it is the only Riemannian manifold, up to isometry being the
identity on the boundary, with boundary equal (or isometric) to (∂M, g|∂M )
and with scattering data given by Sc(M, g). Here, we notice that the tangent
space T∂MM of M at ∂M can be identified with T∂M ⊕Rν where ν is the
inward pointing unit normal vector field to ∂M for g, so that the scattering
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Figure 1: The point (x, v;Sg(x, v)) ∈ S�(M, g) corresponds to the geodesic
γ ∈ G(M, g). The map (x, v) �→ Sg(x, v) is called the scattering map.

data Sc(M, g) and Sc(M ′, g′) can be compared if the boundary are isomet-

ric as Riemannian manifold (∂M, g|∂M ) � (∂M ′, g′|∂M ′) (by identifying the

inward pointing normal ν and ν ′ for g and g′). To simplify notations, we

always write (∂M, g|T∂M ) = (∂M ′, g′|T∂M ′) to mean that the boundary are

isometric.

As far as we know, there are only very few cases of manifolds that are

known to be scattering rigid:

• the product BRn(0, 1) × S1 equipped with the flat product metric —

Croke [6],

• Simple Riemannian surfaces — Wen [49].

We recall that a Riemannian manifold (M, g) is called simple ifM is topolog-

ically a ball, the boundary ∂M is strictly convex (i.e. its second fundamental

form is positive) and g has no conjugate points (see e.g. [37]).

There are however more results of scattering rigidity within certain

classes of Riemannian manifolds. To be precise, we say that a manifold

(M, g) is scattering rigid within the class of Riemannian manifold with a

given property P if (M, g) has the property P and (M, g) is the only (up

to isometry equal to the identity on the boundary) Riemannian manifold

with the property P that has the scattering data Sc(M, g). The scattering

rigidity within the class of simple Riemannian manifolds is equivalent to the

so-called boundary rigidity problem posed by Michel [32]:

For simple Riemannian manifolds, does the Riemannian distance between all
pairs of boundary points determine the metric up to isometry equal to the
identity on the boundary?
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In particular, scattering rigidity within the class of simple Riemannian

surfaces with negative curvature (resp. non-positive curvature) is a conse-

quence of the proof of boundary rigidity by Otal [35] (resp. Croke [5]), while

the resolution of the problem within the class of general simple Riemannian

surfaces is a result of Pestov–Uhlmann [38]. In dimension n ≥ 3, the scatter-

ing rigidity among simple non-positively curved Riemannian metrics follows

from the recent works of Stefanov–Uhlmann–Vasy [45]. We refer in general

to the recent book by Paternain–Salo–Uhlmann [37] for an overview of the

subject on this problem.

For what concerns Riemannian manifolds with boundary that are not

simple, in particular those which are not simply connected and have geodesics

of infinite length, the only results in the direction of scattering rigidity are

the special example of [6] mentionned above, and the result of the second

author [18] stating that two negatively curved surfaces with strictly convex

boundary and the same scattering data are conformally equivalent.

In this work, we prove that scattering rigidity holds within the class of

real analytic negatively curved manifolds:

Theorem 1. Let (M1, g1) and (M2, g2) be two real analytic negatively curved

compact connected Riemannian manifolds (of any dimension) with non-

empty analytic strictly convex boundary. Assume that (∂M1, h1) = (∂M2, h2)

where hi := gi|T∂Mi
is the metric on the boundary, and that their scattering

data Sc(M1, g1) = Sc(M2, g2) agree. Then there exists an analytic diffeomor-

phism ψ : M1 →M2 such that ψ|∂M1
= Id and ψ∗g2 = g1.

In particular for analytic negatively curved surfaces, the scattering data

determines both the topology and the geometry, and not only the conformal

class as in [18].

We note that the class of manifolds we consider have in general trapped

geodesics, that is infinite length geodesics that do not intersect the boundary.

In fact, we prove a result for a more general class of manifolds, as we now

explain. Let (M, g) be a compact Riemannian manifold with strictly convex

boundary. Let SM := {(x, v) ∈ TM | |v|gx = 1} be the unit tangent bundle

and ϕg
t : SM → SM be the geodesic flow at time t, with Xg its generating

vector field. The trapped set is the closed set defined by

Kg := {(x, v) ∈ SM | ∀t ∈ R, ϕg
t (x, v) ∈ M̊}.

This is an invariant set under ϕg
t . We will assume that the trapped set Kg is

hyperbolic for the geodesic flow, i.e there exists a continuous flow-invariant
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splitting of T (SM) over Kg:

∀z ∈ Kg, Tz(SM) = RXg(z)⊕ Es(z)⊕ Eu(z)

and constants C > 0, ν > 0 such that ‖dϕg
t |Es

‖ ≤ Ce−νt and ‖dϕg
−t|Eu

‖ ≤
Ce−νt for all t > 0; the distributions Es and Eu are called the stable and
unstable bundles. Another assumption we make is the absence of conjugate
points: recall that x, x′ are said to be conjugate points if there is v ∈ SxM ,
and t > 0 such that π0(ϕ

g
t (x, v)) = x′ and

dϕg
t (x, v)V ∩ V 
= 0,

where V := ker dπ0 ⊂ T (SM) is the vertical bundle, π0 : SM → M being
the natural projection on the base.

Definition 1.1. Let (M, g) be a smooth compact, connected, Riemannian
manifold with non-empty boundary. We say that (M, g) is of Anosov type if

1. the boundary ∂M is strictly convex,
2. the trapped set Kg is a hyperbolic set for the geodesic flow ϕg

t of g,
3. (M, g) does not have pairs of conjugate points.

Properties (2) and (3) hold when g has negative curvature. However this
needs not be always the case. Indeed, one can either perturb a negatively
curved manifold to create a small patch of positive curvature away from the
trapped set, or consider a strictly convex set inside a closed manifold with
Anosov geodesic flow. See [12] for a discussion of such manifolds.

We prove the following result, that contains Theorem 1:

Theorem 2. Let (M1, g1) and (M2, g2) be two real analytic Riemannian
manifolds of Anosov type with analytic boundary. Assume that (∂M1, h1) =
(∂M2, h2) where hi := gi|T∂Mi

is the metric on the boundary, and that their
scattering data Sc(M1, g1) = Sc(M2, g2) agree. Then there exists an analytic
diffeomorphism ψ : M1 →M2 such that ψ|∂M1

= Id and ψ∗g2 = g1.

We emphasize that we do not require to know the travel time, i.e. the
lengths of geodesics between boundary points, to obtain the rigidity. The
corresponding problem of determining the metric from both the scattering
data and the travel time is called the lens rigidity problem. For simple mani-
folds, the lens ridigity, scattering rigidity and boundary rigidity problems are
all equivalent, but this is not the case for non-simple manifolds; we refer to
the article of Croke–Wen [8] for a study of the difference between scattering
rigidity and lens rigidity.
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The lens rigidity problem has been considered in the non simple case.
There are more results on lens rigidity than on scattering rigidity, although
not many in the case with non-empty trapped set. Here are a few:

• Stefanov–Uhlmann [44] obtained a local1 lens rigidity result for a cer-
tain class of Riemannian manifolds in dimension n ≥ 3 that can have
some mild trapping.

• Vargo [47] proved lens rigidity in the class of non-trapping analytic
metrics, without assuming convexity of the boundary and in a class of
metrics that can have a certain amount of conjugate points.

• Croke–Herreros [7] proved that a 2-dimensional cylinder in negative
curvature is lens rigid.

• Guillarmou–Mazzucchelli–Tzou [22] prove lens rigidity in the class of
non-trapping surfaces with no conjugate points (but the boundary is
not assumed convex).

• Stefanov–Uhlmann–Vasy [45] prove lens rigidity in the class of Rie-
mannian manifolds admitting strictly convex foliations in dimension
n ≥ 3. This class covers some cases with conjugate points and some
mild trapping.

• Cekic–Guillarmou–Lefeuvre [2] prove a local lens rigidity result for
negatively curved compact manifolds with strictly convex boundary.

A real difficulty for the lens rigidity problem in the case of trapped geodesics
is that having same lens data for two metrics does not a priori imply that
their geodesic flows are conjugate. To avoid that problem, one can also
consider the marked lens rigidity problem, where we consider rather the lens
data on the universal cover. For two negatively curved metrics on surface
M with strictly convex boundary, having the same marked lens data is
equivalent to having conjugate geodesic flows with a conjugacy homotopic
to identity and equal to the identity on the boundary ∂SM of the unit
tangent bundle. In this direction, we mention the following results:

• Guillarmou–Mazzucchelli [21] prove that negatively curved Rieman-
nian surfaces with strictly convex boundary having the same marked
length spectrum are isometric. This has been extended recently by
Erchenko-Lefeuvre [13] for surfaces of Anosov type.

• Lefeuvre [31] prove that negatively curved Riemannian manifolds with
strictly convex boundary having the same marked length spectrum and
that are close enough in Ck norms are isometric.

1Local in the sense that two metrics in that particular class that are close enough
in some Ck norm and that have same lens data must be isometric.
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This rigidity problem is somehow closer to the marked length spectrum rigid-
ity on closed Riemannian manifolds with Anosov geodesic flow, where one
asks whether two such metrics with conjugate geodesic flows (or equiva-
lently same marked length spectrum) are actually isometric, see Otal, Croke
or Guillarmou–Lefeuvre–Paternain [36, 5, 20] for a solution on surfaces and
Guillarmou–Lefeuvre [19] for results in higher dimension. A close link be-
tween these problems on manifolds with boundary and closed manifold is
shown in the recent work of Chen–Erchenko–Gogolev [4]. It turns out that
for closed manifolds, the length spectrum rigidity and the marked length
spectrum rigidity problem are not equivalent, as there exist, by Vignéras
[48], Riemannian metrics with constant negative curvature that have the
same length spectrum but are not isometric, while surfaces with negative
curvatures and same marked length spectrum are isometric [36]. The result
in Theorem 1 thus suggests that these different phenomena in the closed case
do not seem to happen for manifolds with boundary in negative curvature,
since we do not require to know the marking to obtain rigidity, while in the
closed case this is necessary even in the analytic category.

In terms of difficulty of these rigidity problems, one has the chain of
implications:

scattering rigidity =⇒ lens rigidity =⇒ marked lens rigidity

and, as mentionned above, they are not always equivalent.
In the case of obstacles in Rn, there are related lens rigidity results by

Noakes–Stoyanov [34] who show that the scattering sojourn times allow to
recover finitely many disjoint strictly convex obstacles. In the case of analytic
strictly convex obstacles with the non-eclipse condition, De Simoi–Kaloshin–
Leguil [9] prove that the length of the marked periodic orbits generically de-
termines the obstacles under a Z2×Z2 symmetry assumption (the marking
is by the ordered sequence of obstacles hit by the orbit). This last result sug-
gests that analytic negatively curved manifold with strictly convex boundary
could also possibly be determined by their marked length spectrum (length
of periodic orbits marked by their free homotopy classes).

To conclude, let us finally state a conjecture motivated by Theorems 1
and 2:

Conjecture. Two compact Riemannian manifolds of Anosov type with the
same scattering data must be isometric by an isometry fixing the boundary.

Method of proof. Our proof shares some similarities with the solution
of the Calderón problem for analytic Riemannian metrics due to Lassas–
Uhlmann [29, 28]. In the Calderón problem case, we recall that the argument
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is first to show that the Cauchy data for the equation Δgu = 0 on M
determines the Green’s function of the Laplacian Δg near the boundary ∂M
when the metrics are assumed to be analytic. Then one proves that two
analytic metrics with the same Green’s function near ∂M are isometric in
dimension n > 2 (conformal in dimension n = 2).

In our case, we first show that the scattering data determines the met-
ric near the boundary (see Lemma 2.3), and then that it determines the
resolvent Rg of the geodesic vector field Xg near the boundary of SM (see
the proof of Lemma 3.1). For this to hold, we use the analyticity, the strict
convexity of ∂M and the fact that the trapped set has Lebesgue measure 0
(in order to have a proper notion of resolvent of Xg). The scattering data
are essentially the Cauchy data at ∂(SM) for the equation Xgu = 0 on SM .

Compared to the Calderón problem where the Green’s function is a
pseudo-differential operator (as inverse of an elliptic differential operator),
the resolvent Rg is a much more singular operator. It was analyzed for
smooth metrics with hyperbolic trapped set in [10] using microlocal meth-
ods. Its integral kernel has quite wild singularities at the trapped set, but the
C∞ wavefront set can still be described (even though it typically looks like a
fractal conical set in T (SM)). Composing by the pull-back operator π∗

0 and
the push-forward operator π0∗ (where π0 : SM → M), using the transver-
sality between the vertical and stable/unstable bundles, and the absence of
conjugate points, we obtain an operator Πg

0 := π0∗Rgπ
∗
0 that is much better

behaved. Indeed, most of the singularities disappear and Πg
0 is an elliptic

pseudo-differential operator of order −1 with principal symbol cn|ξ|−1
g for

some cn > 0 depending only on n = dim(M), as was proved in [18]. It thus
looks quite similar to the Green’s function of the Laplacian (except for its
order that is half of that of the Green’s function).

We can then use the techniques from analytic microlocal analysis de-
velopped in [17] (building from fundamental works of Helffer-Sjöstrand and
Sjöstrand [23, 41], see the work of Galkowski and Zworski [14, 15] for another
recent example of application of these methods) to analyze the Schwartz
kernel Πg

0(x, x
′) of Πg

0: we are able to show in Section 4 that, if g is in
addition analytic, the Schwartz kernel Πg

0(x, x
′) of Πg

0 is analytic outside
the diagonal. This requires in particular to prove radial estimates for the
analytic wave front set (Proposition 4.13); a related result was proved by
Galkowski-Zworski [15] but rather for smooth radial manifolds. The fact that
the operator Πg

0 is an analytic pseudo-differential operator was first proved
for simple analytic metrics by Stefanov and Uhlmann [42]. In our case, the
analysis involved is significantly more consequent due to the trapped set and
the result can not be deduced from [42]; we rely on the recent monograph
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[17]. We can then use a method developped (for the Green’s function) in [28]
to embed analytically (M, g) into L2(Nε) using Π0, where Nε is an ε-collar
neighborhood of N := ∂M , and show that the image of the embedding in
L2(Nε) is entirely determined by the scattering data. These embeddings for
two metrics with the same scattering data allow to construct an isometry
ψ : M1 →M2.

Another corollary of this work is the following (see Proposition 2.7 for a
precise statement)

Proposition 1.2. On a real analytic Riemannian manifold of Anosov type,
the X-ray transform on symmetric 2-tensors is solenoidal injective.

Notations. A(M) denotes the set of analytic functions on an analytic
manifold M with or without boundary, D′(M) denotes the set of distribu-
tions on a manifold M without boundary, defined as the topological dual to
the space C∞

c (M̊) of smooth compactly supported functions in the interior
M̊ , Hs(M) denotes the L2-based Sobolev space of order s on a compact
manifold with or without boundary. We shall denote by dM (·, ·) a fixed dis-
tance on M , if M is a compact manifold.
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2. Scattering map and the normal operator

2.1. Dynamical preliminaries

In this section, we introduce several important dynamical preliminaries, we
refer to [18] for a more detailed exposition.

Let (M, g) be a real-analytic Riemannian manifold with analytic strictly
convex boundary ∂M . We denote by SM its unit tangent bundle, which is

2Laboratoire de Probabilités, Statistique et Modélisation (LPSM), CNRS, Sor-
bonne Université, Université de Paris, 4, Place Jussieu, 75005, Paris, France
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also an analytic manifold with analytic boundary, and π0 : SM → M the
projection on the base. We shall use z = (x, v) for the variable on SM ,
where x = π0(z) and v ∈ SxM is the tangent vector, and we denote by
αL the Liouville 1-form on SM defined by αL(x, v)(V ) = gx(v, dπ0(V )) for
V ∈ T(x,v)(SM). Finally, we denote by −z := (x,−v) the reflected vector.

The geodesic vector field Xg has analytic coefficients and its flow is
denoted by ϕg

t : SM → SM . The boundary ∂SM splits into

∂SM = ∂−SM � ∂+SM � ∂0SM

where ∂±SM := {(x, v) ∈ ∂SM | ∓ gx(v, ν) > 0} and ∂0SM = {(x, v) ∈
∂SM | gx(v, ν) = 0}, where ν denotes the inward unit normal vector to ∂M .
Define the measure on ∂±SM

dμν(x, v) = |ι∗∂±SM iXg
ωL|

where ωL = αL ∧ dαn−1
L is the Liouville volume form, and dμL := |ωL| the

Liouville measure.
We define the escape time by

τg : SM → R+ ∪ {∞}, τg(z) = sup{t ≥ 0 | ∀s ∈]0, t], ϕg
s(z) ∈ SM}.

One has τg = 0 on ∂+SM ∪ ∂0SM by strict convexity of the boundary. The
forward (resp. backward) trapped set Γg

− (resp. Γg
+) are defined by

(1) Γg
± := {z ∈ SM | τg(∓z) =∞}.

By the analytic implicit function theorem and the fact that ∂M is strictly
convex, the map τg belongs to A(SM \ (Γg

− ∪ ∂0SM)).
The trapped set is defined by

(2) Kg := Γg
+ ∩ Γg

−.

It is a closed subset of SM̊ invariant by the flow ϕt. We assume that Kg

is hyperbolic. In that case, Vol(Γg
±) = 0, see [18, Section 2]. We define the

dual bundles E∗
0 , E

∗
s , E

∗
u ⊂ T ∗(SM) over Kg by

E∗
0(Eu ⊕ Es) = 0, E∗

u(Eu ⊕ RXg) = 0, E∗
s (Es ⊕ RXg) = 0.

By [10, Lemma 1.11], the bundle E∗
s over Kg admits a continuous extension

E∗
− to the set Γg

−, and E∗
u admits a continuous extension E∗

+ to the set Γg
+,

and they satisfy

E∗
±(RXg) = 0.



174 Yannick Guedes–Bonthonneau et al.

As explained in [18, Section 2], since (M, g) has hyperbolic trapped set

and no conjugate points, there is a small extension (Me, ge) of (M, g) which

has the same properties, with the same trapped set Kge = Kg. The sets
Γge
± associated with ge are extensions of Γg

±, and we still denote by E∗
± the

bundles associated with ge, which are extensions of those associated with g.

Finally, since (M, g) is analytic with analytic boundary, one can choose

(Me, ge) to be also analytic with analytic boundary.

Next we define the scattering map.

Definition 2.1. The scattering map Sg : ∂−SM \ Γg
− → ∂+SM \ Γg

+ is

defined by

Sg(z) := ϕg
τg(z)

(z).

The scattering operator Sg : C∞
c (∂+SM \Γg

+)→ C∞
c (∂−SM \Γg

−) is defined
by

Sgf(z) = f(Sg(z)).

By [18, Lemma 3.4], it extends as a unitary map from L2(∂+SM, dμν) to

L2(∂−SM, dμν).

We also define the backward resolvent for the flow

(3) Rg : C∞
c (SM̊ \ Γg

−)→ C∞(SM), Rgf(z) =

∫ 0

−τg(−z)
f(ϕg

t (z))dt.

This operator yields a solution to the boundary value problem

XgRgf = f, Rgf |∂−SM = 0, ∀f ∈ C∞
c (SM̊ \ Γg

−).

According to [18, Proposition 4.2], Rg extends as a bounded map

(4) Rg : L∞(SM)→ Lp(SM), ∀p ∈ [1,∞),

and XgRg = Id in D′(SM̊) with (Rgf)|∂−SM = 0 if f ∈ C∞
c (SM̊). One

can also define Rge the resolvent for the extension (Me, ge), and it is direct
to see, by convexity of ∂M , that (Rgef)|SM = Rgf if supp(f) ⊂ SM .

A closely related operator is the X-ray transform, which is defined for f ∈
C∞
c (SM \ (Γg

+ ∪ Γg
−)) by the formula

(5) Igf(y) := Rgf(y) =

∫ 0

−τg(−y)
f(ϕg

t (y))dt ∈ C∞
c (∂+SM \ Γg

+).
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It satisfies IgXgf = 0. Its adjoint using the dμν and dμ measures is denoted
I∗g , satisfies XgI

∗
g = 0 on D′(∂+SM \ Γg

+). For u ∈ C∞
c (∂+SM \ Γg

+), it is
given for z ∈ SM \ Γg

− by

(6) I∗gu(z) = u(ϕg
τg(z)

(z)).

By [18, Lemma 5.1] the operator Ig extends as a continuous map Ig :
Lp(SM)→ L2(∂−SM) for all p > 2.

By abuse of notation we also denote by (z, z′) �→ Rg(z, z
′) (resp. (z, z′) �→

Rge(z, z
′)) the Schwartz kernel of Rg (resp. Rge) which is viewed as an

element in D′(SM̊ × SM̊) (resp. D′(SM̊e × SM̊e)). We have Rg(·, ·) =
Rge |SM̊×SM̊ . The Schwartz kernel of Ig is Rge |∂+SM×SM̊ .

We finally remark that the scattering map has a Schwartz kernel given
by the restriction of the resolvent kernel of Xg to ∂±SM :

Sg = Rge |∂+SM×∂−SM .

(See [3, Proposition 3.2] in dimension 2 and [2] in general.) In compar-
ison with the Calderón problem, this is similar to the relation between
the Dirichlet-to-Neumann map and the Green kernel of the Laplacian with
Dirichlet condition.

We close this section by a description of the C∞ wave front set of the
Schwartz kernel of Rge , taken from [10]. This will be important in section 4.
We have

(7) WF(Rge) ⊂ N∗Δ(SMe) ∪ Ω+(SMe) ∪ (E∗
+ × E∗

−),

where N∗Δ(SMe) is the conormal bundle to the diagonal Δ(SMe) of SMe×
SMe,

Ω±(SMe) := {(ϕg
t (z), (dϕ

g
t (z)

−1)T ξ; z,−ξ) ∈T ∗(SMe × SMe) |
± t ≥ 0, ξ(Xg(z)) = 0}.

The dual resolvents R∗
g and R∗

ge are also well-defined (for example as maps
L2 → L1 by (4)) and have Schwartz kernel

(8) R∗
g(z, z

′) = Rg(z
′, z), R∗

ge(z, z
′) = Rge(z

′, z).

They are given by the expressions

R∗
gf(z) =

∫ τg(z)

0
f(ϕg

t (z))dt, R∗
gef(z) =

∫ τge(z)

0
f(ϕge

t (z))dt,
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they satisfy −XgR
∗
gf = f in D′(SM̊) with R∗

gf |∂+SM = 0 for f ∈ C∞(SM)

(resp. −XgeR
∗
gef = f in SM̊e if f ∈ C∞(SMe)) and the wave-front set of

the Schwartz kernel of R∗
ge satisfies

(9) WF(R∗
ge) ⊂ N∗Δ(SMe) ∪ Ω−(SMe) ∪ (E∗

− × E∗
+).

2.2. Determination of the metric near the boundary

We start with a normal form for the metric near the boundary:

Lemma 2.2. Let (M, g) be an analytic Riemannian manifold with an-
alytic strictly convex boundary. There exists an analytic diffeomorphism
ψ : [0, ε)r × ∂M → U ⊂M , called normal form for g, such that

ψ∗g = dr2 + h(r)

where r �→ h(r) ∈ A(∂M ;S2T ∗M) is a one parameter analytic family of
analytic metrics on ∂M .

Proof. It suffices to use the map ψ(r, y) = expy(rν(y)) for ν the inward unit
normal vector to ∂M . This map is analytic map since g is analytic.

Using a standard argument, we show that Sg determines the Taylor
expansion of the map r �→ h(r) at r = 0 and so it determines h(r) for r near
0 by unique continuation:

Lemma 2.3. Assume that (M1, g1) and (M2, g2) are two analytic Rie-
mannian manifolds with strictly convex analytic boundary and no conju-
gate points, and let ψ1 and ψ2 their normal form diffeomorphisms and
denote by ψ∗

i gi = dr2 + hi(r). Assume that (∂M1, h1(0)) = (∂M2, h2(0))
and that Sg1 = Sg2 (i.e. M1 and M2 have the same scattering data). Then
h1(r) = h2(r) near r = 0.

Proof. Let us denote by (N,h) := (∂M1, h1(0)) = (∂M2, h2(0)). Let bi ∈
C0(N×N) be the boundary distance function defined by bi(y, y

′) := dgi(y, y
′)

where dgi ∈ C0(Mi ×Mi) is the Riemannian distance of (Mi, gi). First, we
will show that the identity Sg1 = Sg2 implies that the boundary distances
b1 and b2 for g1 and g2 agree near the diagonal of N × N . Then, we can
apply Theorem 2.1 of Lassas–Sharafutdinov–Uhlmann [27], which says that
h1(r) − h2(r) = O(r∞) at r = 0 (since their argument is purely local near
the boundary) and deduce that h1(r) = h2(r) by analyticity.

To show that b1 = b2 near the diagonal if Sg1 = Sg2 , first choose ε > 0
small and denote the injectivity radius of gi by ri, i = 1, 2. If x, x′ ∈ N
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are such that their distance in (N,h) satisfies dh(x, x
′) < ε with ε small

enough, then dgi(x, x
′) < ri. Pick such x, x′ ∈ N . Take the minimal geodesic

curve γ : [0, 1] → N in (N,h) so that γ(0) = x and γ(1) = x′, in particular
dgi(γ(t), x) < ε. We define vi(t) to be the unit vector in the direction of γ(t),
that is (expgix )−1(γ(t))/|(expgix )−1(γ(t))|gi,x ∈ SxM , so that bi(x, γ(t)) =
τgi(x, vi(t)) (we extend vi(t) by continuity at t = 0).

We claim that vi(t) is the unique vector that has the smallest orthogonal
projection to (TN)⊥ ⊂ TM among all vectors (x, v) ∈ ∂−SMi satisfying
π0(Sgi(x, v)) = γ(t), i.e

|gi(vi(t), νi)| = min
{
|gi(v, νi)|

∣∣ v ∈ ∂−SxMi, π0(Sgi(x, v)) = γ(t)
}
,

with νi the inward unit normal at N in Mi. In particular this claim implies
that vi(t) is entirely determined by hi(0) and Sgi , and since

bi(x, x
′) =

∫ 1

0
∂t(dgi(x, γ(t)))dt =

∫ 1

0
gi(∇gidgi(x, ·)|γ(t), γ̇(t))dt,

wih ∇gidgi(x, ·)|γ(t) = Sgi(x, vi(t)) (by Gauss Lemma), we conclude that
b1 = b2 if Sg1 = Sg2 .

Let us prove the claim above. We start by observing that the projection
|gi(vi(t), νi)| is bounded by Cε for some C > 0 that does not depend on ε.
Let us now consider other geodesic curves with endpoints x and γ(t). Due
to the absence of conjugate points, there is exactly one such curve in each
homotopy class of curves with endpoints (x, γ(t)), so if ṽi(t) 
= vi(t) is such
that π0(Sgi(x, ṽi(t))) = γ(t), the corresponding curve cannot be homotopic
to γ and therefore its length τgi(x, ṽi(t)) must be larger than ri. On the
other hand, by strict convexity of the boundary, there is C > 0 such that
for all δ > 0 small and (x, v) ∈ ∂−SMi such that |gi(v, νi)| < δ, one has
τgi(x, v) ≤ C|gi(v, νi)| ([39, Lemma 4.1.2.]). We deduce that |gi(ṽi(t), νi)| > δ
since otherwise one would have

ri ≤ τgi(x, ṽi(t)) ≤ C|gi(ṽi(t), νi)| ≤ Cδ

which is a contradiction if δ > 0 is small enough. Taking ε small enough so
that Cε < δ, the claim is then proved and the proof is complete.

2.3. The normal operator

Let us now define the normal operator Πg
0 that was introduced in [18]. Let

π∗
0 : C∞(M)→ C∞(SM) be the pullback by π0 : SM →M (the projection
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on the base). It is continuous as a map π∗
0 : A(M)→ A(SM). Consider also

the dual map, called pushforward, π0∗ : D′(SM̊) → D′(M̊) and we use the
same notations for the corresponding operators on the extended manifolds
SMe and Me. Then we define

Πg
0 : C∞

c (M̊)→ D′(M̊), Πg
0 := π0∗Rgπ

∗
0.

The same definition holds on the extension Me for the corresponding op-
erator Πge

0 , and since Rg is the restriction of Rge on functions supported

in SM , we directly deduce that (Πge
0 f)|M = Πg

0f if supp(f) ⊂ M̊ . Finally,
using that π0(x,−v) = π0(x, v), one also has Πge

0 = π0∗R
∗
geπ

∗
0 and thus (this

fact also follows from the identity Πge
0 = π0∗I

ge∗Igeπ∗
0 , see [18, Section 5.1])

(10) (Πge
0 )∗ = Πge

0 .

The operator Ige0 := Igeπ∗
0 is called the X-ray transform on M , it is injective

by [18, Theorem 5].
We recall from [18, Proposition 5.7]:

Lemma 2.4. If (M, g) is a smooth manifold of Anosov type, then Πg
0 ∈

Ψ−1(M̊) is an elliptic pseudo-differential operator of order −1 on M̊ with
principal symbol σ(Πg

0) = cn|ξ|−1
g for some cn > 0 depending only on n =

dimM . It is moreover the restriction to M of the elliptic pseudo-differential
operator Πge

0 ∈ Ψ−1(M̊e). For each x0 ∈ M̊e, its Schwartz kernel has asymp-
totic behaviour as x→ x0

(11) Πge
0 (x, x0) ∼ c′ndge(x, x0)

−(n−1), c′n 
= 0

where dge denotes the Riemannian distance on (Me, ge). Similarly for any
v ∈ Tx0

M , we have as x→ x0

(12) Dx0
Πge

0 (x0, x).v ∼ −(n− 1)c′n

(
Dx0

(dge(x, x0)).v
)
dge(x, x0)

−n.

If in addition the metric is analytic, we show the following stronger
result, the proof of which is deferred to Section 4. It is the main technical
result of the paper.

Proposition 2.5. If (Me, ge) is an analytic manifold of Anosov type, then
(x, x′) �→ Πge

0 (x, x′) is analytic in M̊e × M̊e \ {diag}.

Even though it is not required for the proof of Theorem 2, we can use
the local analysis from [42] to get a more precise statement.
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Proposition 2.6. The operator Πge
0 is an elliptic analytic pseudo-differential

operator of order −1 on M̊e (in the sense of [46, Chapter V]).

We give another consequence of the analysis performed in Section 4,
namely that the X-ray transform on real analytic manifolds of Anosov type
is injective on the space of divergence-free symmetric 2-tensors. First, define
the operator mapping a symmetric tensor of orderm ≥ 1 onMe to a function
on SMe

π∗
m : C∞

c (M̊e;S
mT ∗M̊e)→ C∞

c (SM̊e), (π∗
mf)(x, v) := fx(⊗mv).

This operator maps real analytic tensors to real analytic functions on SMe.
We define πm∗ : D′(SM̊e) → D′(M̊e;S

mT ∗M̊e) to be its dual defined by
〈πm∗u, χ〉 := 〈u, π∗

mχ〉 for χ ∈ C∞
c (M̊e;S

mT ∗M̊e). We define the X-ray
transform on symmetric m-tensors on (Me, ge) by

Igem := Igeπ∗
m.

We obtain the same result as [42, Theorem 1] and [43, Theorem 1], but now
in the setting of manifolds of Anosov type.

Proposition 2.7. Assume that (M, g) is a real analytic Riemannian mani-
fold of Anosov type. Let f ∈ L2(M ;S2T ∗M) and assume that Ig2f = 0. Then
f = Dgh for some one-form h ∈ H1

0 (M ;T ∗M) vanishing at ∂M , where Dg

is the symmetrized Levi-Civita covariant derivative on tensors.

The proof is defered to Section 4. We notice that it can be extended
with minor modifications to m-tensors for all m ≥ 1. We focus on the case
m = 2 since we use some results from [42, 43] done for m ≤ 2 and since this
is the case of interest for lens and boundary rigidity problems.

3. Proof of Theorem 2

We consider two analytic extensions (M1
e , g

1
e) and (M2

e , g
2
e) of M1 and M2

respectively. Let us denote by N := ∂M1 = ∂M2 the common boundary of
M1,M2. Let ψ1 : [0, ε) ×N → U1 ⊂ M1

e and ψ2 : [0, ε) ×N → U2 ⊂ M2
e be

the two normal forms near the boundary for g1e , g
2
e (for ε > 0 small enough),

i.e.

ψ∗
i g

i
e = dr2 + hi(r)

with hi an analytic family of analytic metrics on N := ∂M1 = ∂M2. By
choosing the extension small enough, we can assume that ψi({ε/2} ×N) =
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∂Mi and that ψi([0, ε) × N) does not intersect π0(Kgi). Recall that ψi is
analytic, and by Lemma 2.3, h1 = h2 in r ∈ [ε/2, ε), thus everywhere in
[0, ε)×N by analytic continuation. For 0 ≤ δ ≤ ε, we denote Nδ := (0, δ)×N .

Let us now consider the map

(13) Φi : Mi → L2(Nε/4), Φi(x) = Π
gi
e

0 (x, ψi(·))|Nε/4
.

where Πgi
0 (x, x

′) is the Schwartz kernel of the operator Π
gi
e

0 associated with
gie. Here, since x ∈ Mi and ψi(Nε/4) ∩Mi = ∅, the map Φi is valued into
analytic functions on the small collar Nε/4. The choice of the space L

2(Nε/4)
is irrelevant; it only needs to be a reasonable functional Banach space. The
map Φi is analytic on Mi as a composition of analytic maps, using that

Π
gi
e

0 (x, x′) is analytic outside the diagonal.
We first show the following:

Lemma 3.1. If Sg1 = Sg2 , then Φ1(ψ1(x)) = Φ2(ψ2(x)) for each x ∈
(ε/2, ε)×N .

Proof. For i = 1, 2, let Ψi : SNε → SMi be the lift of ψi to the unit tangent
bundles, i.e. Ψi(x, v) = (ψi(x), dψi(x)v). We will show that (Ψ1⊗Ψ1)

∗Rg1
e
=

(Ψ2 ⊗Ψ2)
∗Rg2

e
on SN2

ε as distributions. Since (on the level of kernels)

Π
gi
e

0 = (π0∗ ⊗ π0∗)Rgi
e
,

the announced claim follows.
We will write ∂σSNε = Ψ−1

1 ∂σSM
1
e = Ψ−1

2 ∂σSM
2
e for σ ∈ {+,−, 0}. For

χ ∈ C∞
c (SN̊ε), call χi := Ψi∗χ and consider the distribution

ui(z) = 〈Rgi
e
(Ψi(z),Ψi(·)), χ〉 = (Rgi

e
χi)(Ψi(z)).

It suffices now to prove that u1 = u2 for any such χ. A priori, by Proposition
4.2 of [18], ui ∈ Lp(SNε) for all p < ∞. Additionnally, according to the

support of χi, we have ui ∈ C∞(SNε \Ψi(Γ
gi
e

+ )), and it satisfies

Xiui = χ, ui|∂−SNε
= 0

where Xi is the geodesic vector field of dr2 + hi(r). We have X1 = X2 in
SNε and let ϕt be the flow of X1 = X2 there. From the strict convexity of
the boundary, if z ∈ SNε, we deduce that π0(ϕt(z)) remains in Nε in at least
one of the intervals [−τg1

e
(Ψ1(−z)), 0], [0, τg1

e
(Ψ1(z))]. In the first case, from

the expression (3) we deduce directly that u1(z) = u2(z).
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Since Γ
gi
e

+ has measure 0, and ui is in Lp, we concentrate thus on the
z’s whose trajectory remains in Nε for t ∈ [0, τg1

e
(Ψ1(z))], but for which

τg1
e
(Ψ1(−z)) <∞. According to the expression

ui(z) = Igi
e
χi(ϕ

gi
e

τgie
(Ψi(z))

(Ψi(z)))−
∫ τgie

(Ψi(z))

0
χ(ϕt(z))dt,

it suffices thus to prove that the quantity Igi
e
χi(ϕ

gi
e

τgie
(Ψi(z))

(Ψi(z))), or equiv-

alently ui|∂+SNε
, does not depend on i (here we use the X-ray transform Igi

e

defined in (5)). However, the quantity Igi
e
χi(ϕ

gi
e

τgie
(Ψi(z))

(Ψi(z))) is the sum of

two terms, the first corresponds to the trajectory of Ψi(z) close to Ψi(z),
and the second to the trajectory near ∂−SM i

e. This is because χ is sup-
ported in Nε. We already know that the first contribution does not depend
on i. For the second contribution, we can use the main assumption that
Sg1 = Sg2 to deduce that they are also equal. Finally, u1(z) = u2(z) on SNε

as expected.

We next show the

Lemma 3.2. The map Φi is an analytic embedding of Mi into L2(Nε/4) for
i = 1, 2.

Proof. First, we show that Φi is an injective map. If x0, x1 ∈ Mi are such

that Φi(x0) = Φi(x1), then Π
gi
e

0 (x0, ψi(x
′)) = Π

gi
e

0 (x1, ψi(x
′)) for all x′ ∈ Nε/4.

In particular, this implies that Π
gi
e

0 (x0, x) = Π
gi
e

0 (x1, x) for all x ∈ ψi(Nε/4)
and by analytic continuation we get Πgi

0 (x0, x) = Πgi
0 (x1, x) for all x ∈

M̊ i
e \ {x0, x1}. Using the asymptotic expansion (11) and letting respectively

x tend to x0 and to x1, we deduce that x0 = x1.
Next, we show its derivative DΦi(x) is injective for x ∈ Mi. The map

Φi is C1 on Mi since Π
gi
e

0 has a smooth kernel outside the diagonal (it is
in fact analytic). Let v ∈ TxMi, and assume that DΦi(x).v = 0. We then

get DxΠ
gi
e

0 (x, x′).v = 0 for all x′ ∈M i
e \Mi. Using the analytic extension of

Π
gi
e

0 (x, x′) outside the diagonal we obtain DxΠ
gi
e

0 (x, x′).v = 0 for all x′ ∈M i
e\

{x}. By letting x′ → x and using the asymptotic expansion (12), we deduce
that v = 0, showing that Φi is an immersion, and thus an embedding.

We can now conclude the proof of Theorem 2.

Proposition 3.3. The image of Φ1 and Φ2 agree, i.e. Φ1(M1) = Φ2(M2),
and the map Φ = Φ−1

2 ◦ Φ1 : M1 → M2 is an analytic map such that
Φ∗g2 = g1.
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Proof. Let us define

U := {x ∈M1 | ∃x′ ∈M2,Φ2(x
′) = Φ1(x)}.

Since, according to Lemma 3.2, Φ2 is injective, we can define the map Φ =
Φ−1
2 ◦ Φ1 on U . Let U ′ ⊂ U be the set of points x ∈ U such that Φ is

well-defined and C1 on a neighbourhood of x. Notice, by Lemma 3.1, that
Ψ1((ε/2, ε)×N)∩M1 ⊂ U ′, so that U ′ is non empty and open. We will prove
that it is closed in M1.

Let x be an accumulation point of U ′. Since we already know that the
boundary of M1 belongs to U ′, we may assume that x belongs to the interior
of M1. Then, choose xn ∈ U ′ converging to x and let x′n := Φ(xn). Up to
extracting a subsequence, x′n → x′ for some x′ ∈ M2. By continuity of Φ1

and Φ2, we get Φ1(x) = Φ2(x
′), in particular x ∈ U . Since Φ2 ◦Φ = Φ1 in U ′

with Φ smooth there, we have DΦ2(x
′
n)DΦ(xn) = DΦ1(xn). In particular

DΦ2(x
′
n)(Tx′

n
M2) = DΦ1(xn)(Txn

M1), and since DΦi is continuous with
constant rank, we obtain that (since x′ = Φ(x))

TΦ2(x′)Φ2(M2) = DΦ2(x
′)(Tx′M2) = DΦ1(x)(TxM1) = TΦ1(x)Φ1(M1).

Next, we show that x is actually in U ′. For this, let u = Φ1(x) and
V := TuΦ1(M1) ⊂ L2(Nε/4) and V⊥ the orthogonal to V for the L2(Nε/4)
scalar product. Denote also by P : L2(Nε/4)→ V the orthogonal projection,
and let

PΦi : Mi → V.
This is an analytic map, and the differential DPΦ1(x) and DPΦ2(x

′) are
surjective by construction, as DPΦi = PDΦi, and are also injective by the
fact that Φi is an embedding. By the local inverse theorem in the analytic
category, there is a connected open neighbourhood W of u in V and an
analytic map Hi : W →Mi, diffeomorphic on its image, such that

PΦi ◦Hi(w) = w, ∀w ∈W.

Thus Φi ◦Hi(w) = w+(1−P )Φi ◦Hi(w) and if we let Qi(w) := (1−P )Φi ◦
Hi(w) ∈ V⊥, we see that Φi(Mi) is locally the graph of Qi|W . Moreover Qi

is analytic and the graph of Q1 coincides with the graph of Q2 in a non
empty open subset W ′ ⊂ W since x is an accumulation point of U ′, thus
Q1 = Q2 on W ′. This implies by analytic continuation that Q1 = Q2 in W .
In particular there is an open neighbourhood V := H1(W ) of x in U , and
Φ is thus well-defined in V . Since Φ1 ◦ H1 = Φ2 ◦ H2 on W , we also get
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Φ = Φ−1
2 ◦ Φ1 = H2 ◦ H−1

1 on V , in particular Φ is analytic on V . Hence,
x ∈ U ′, and thus U ′ is closed.

Hence, U ′ is open, closed and non-empty, so that U ′ = M1. By definition,
Φ is C1 on U ′, the proof above show that it is actually analytic. The relation
Φ2 ◦Φ = Φ1 proves that Φ is injective (since Φ1 is). Notice that the image of
Φ is closed (since M1 is compact), open (since Φ is a local diffeomorphism)
and non-empty (since M1 is non-empty). Hence, Φ(M1) = M2, and Φ is a
real-analytic diffeomorphism from M1 to M2.

It remains to prove that Φ is an isometry. For this, it suffices to observe
that Φ is an isometry when restricted to U1 ∩M1, according to Lemma 2.3.
By analytic continuation, Φ is thus an isometry everywhere.

4. Analyticity of the kernel of the Normal Operator away
from the diagonal

This section is dedicated to the proof of Proposition 2.5. The proof relies
on an analytic wave front set computation, based on classical results (el-
lipticity, propagation of singularities, . . .) and a new radial estimates in the
analytic category, Proposition 4.13. The C∞ analogue of this estimate is now
a standard tool in scattering theory (see for instance [11, Theorem E.42]).

In §4.1, we recall the results from [17] that we will use. In §4.2, we discuss
the notion of analytic wave front sets, and how one can investigate it using
the FBI transform. In §4.3, we prove the microlocal radial estimates needed
for the proof of Proposition 2.5, proof that is given in §4.4.

4.1. The FBI transform

4.1.1. Basic properties. Let M be a closed real-analytic manifold (in
the proof of Proposition 2.5, M will be an extension of the unit tangent
bundle SMe of Me, see §4.3). For convenience, we will endow M with a
real-analytic Riemannian metric. We then have a notion of Grauert tube
of radius ε > 0 of M, which we denote (M)ε. We endow T ∗M with the

corresponding real-analytic Kohn–Nirenberg metric gKN = dx2 + dξ2

〈ξ〉2 , and

consider the associated Grauert tube (T ∗M)ε. This is a conic, complex,
pseudo-convex neighbourhood of T ∗M. We define on it a Japanese bracket
(T ∗M)ε � α �→ 〈|α|〉 ∈ [1,+∞[ and the distance dKN associated with the
Kohn–Nirenberg metric (see pages 23-24 in [17] for further discussion of these
definitions). For a subset A of M, we will write T ∗

AM for the restriction of
T ∗M to A.
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In order to study the microlocal analytic regularity of distributions on

the closed real-analytic manifold M, we introduce an analytic FBI trans-

form. We follow the approach exposed in [17, Chapter 2], whose main fea-

tures we recall here. An analytic FBI transform is an operator T : D′(M)→
C∞(T ∗M) with real-analytic kernel KT :

Tu(α) =

∫
M

KT (α, y)u(y)dy, u ∈ D′(M), α = (αx, αξ) ∈ T ∗M.

The kernelKT depends on an (implicit) small semi-classical parameter h > 0

and has the following properties:

• real-analyticity: KT has a holomorphic extension to (T ∗M)ε × (M)ε
for some small ε that does not depend on h.

• KT is negligible when y and αx are away from each other: for every

δ > 0, there are ε′ ∈]0, ε[ and C > 0 such that if h > 0 is small enough,

(α, y) ∈ (T ∗M)ε′ × (M)ε′ and the distance between αx and y is larger

than δ then

|KT (α, y)| ≤ C exp

(
−〈|α|〉

Ch

)
.

• local behaviour: for (α, y) ∈ (T ∗M)ε × (M)ε, if αx and y are close to

each other, KT (α, y) is given by

KT (α, y) � ei
ΦT (α,y)

h a(α, y),

up to an error exponentially decaying in 〈|α|〉 /h. Here, ΦT and h3n/4a

are analytic symbols of orders respectively 1 and n/4 on a neighbour-

hood of uniform size for the Kohn–Nirenberg metric of {αx = y} in

(T ∗M)ε × (M)ε. See [17, Definition 1.1 and Lemma 1.6] for the def-

inition of an analytic symbols (the class of analytic symbols of order

m is called S1,m there).

Moreover, the phase ΦT satisfies the following properties:

• if (α, y) ∈ T ∗M ×M then the imaginary part of ΦT (α, y) is non-

negative;

• ΦT (α, αx) = 0 for α = (αx, αξ) ∈ T ∗M;

• for α ∈ T ∗M, we have dyΦT (α, αx) = −αξ;

• there is C > 0, such that for (α, y) ∈ T ∗M×M near {αx = y} we

have ImΦT (α, y) ≥ C−1 〈|α|〉 d(αx, y)
2.
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In the terminology of [17, Definition 1.7], ΦT is an admissible phase.
Due to the real-analyticity condition on the kernelKT of T , it is not clear

a priori that such a transform T exists. However, from [17, Theorem 6], there
is such a T , assuming h is small enough. Moreover, if we endow T ∗M with
the volume associated with the canonical symplectic form on T ∗M, then
we may assume that T is an isometry from L2(M) into L2(T ∗M). Hence,
denoting by S the adjoint of T , the composition ST is the identity operator.
Notice that S is an operator with real-analytic kernel given for α and y real
by

KS(y, α) = KT (α, y).

Due to the real-analyticity of KT , we see that if u is a distribution (or
even a hyperfunction), then Tu is in fact real-analytic, with a holomorphic
extension to (T ∗M)ε. Hence, if Λ is a perturbation of T ∗M in (T ∗M)ε, we
can define a FBI transform associated with Λ by restriction: TΛu := (Tu)|Λ .
Of course, in order to have interesting properties for TΛ, we need to make
assumptions on Λ. We will only consider Λ’s of the form

(14) Λ = ΛG = eH
ωI
G T ∗M.

Here, G is a real valued symbol of order at most 1 in the Kohn–Nirenberg
class on (T ∗M)ε, and HωI

G is the Hamiltonian vector field of G for the real
symplectic form ωI , which is the imaginary part of the canonical complex
symplectic form on the cotangent bundle of the complexification of M. For
practical purposes, we will always assume that G is a small symbol of order
1, so that Λ is C∞ close to T ∗M. In particular, the real part ωR of the
canonical complex symplectic form defines a symplectic form on Λ.

From the geometric properties of Λ, there is a symbol H on Λ, of the
same order as G such that dH = − Im θ|Λ, where θ denotes the canonical
complex Liouville 1-form on the cotangent bundle of the complexification of
M. Letting dα be the volume form associated with the symplectic form ωR

on Λ, we will work with the weighted L2 spaces

L2
k(Λ) := L2

(
Λ, 〈|α|〉2k e− 2H

h dα
)
, k ∈ R,

and their equivalents on M

Hk
Λ := {u ∈ O((M)δ)

′ : TΛu ∈ L2
k(Λ)}.

Here, δ > 0 is fixed, depending on the geometry of M and O((M)δ) is
the closure of bounded holomorphic functions on (M)2δ, in the space of
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holomorphic functions on (M)δ endowed with the sup norm, and O((M)δ)
′

its topological dual. According to [17, Corollary 2.2], these are complex
Hilbert spaces, and according to [17, Corollary 2.3], real analytic functions
are dense in them. We will also use H∞

Λ =
⋂

k∈RHk
Λ.

Later on, we will work with G’s of order log〈ξ〉 instead of 〈ξ〉. In that
case, the spaces Hk

Λ only contain distributions, and we can replace O((M)δ)
′

by D′(M) in the definition. We will thus avoid completely the discussion of
hyperfunctions. However, the reader should keep in mind that as h→ 0, the
distributions in the space Hk

Λ will potentially be of order C/h. The norm on
Hk

Λ is given by

(15) ‖u‖2Hk
Λ
=

∫
Λ
|TΛu|2 〈|α|〉2k e−

2H

h dα

for u ∈ D′(M).
By restricting the kernel of S toM×Λ, we get an operator SΛ that turns

functions on Λ growing at a subexponential rate into elements of O((M)δ)
′.

Moreover, the composition SΛTΛ is well-defined, and is the identity operator
[17, Lemma 2.7]. The structure of the operator ΠΛ := TΛSΛ is given in [17,
Lemmata 2.9 and 2.10]. In particular [17, Proposition 2.4], ΠΛ is bounded
on L2

k(Λ) for every k ∈ R.
The motivation for working with such a Λ is the following central result

(this is a particular case of [17, Theorem 7]).

Proposition 4.1 (Multiplication formula). Let P be an analytic semi-
classical differential operator of order m ∈ N on M. Assume that G in
the definition of Λ is small enough. Then there is a symbol q of order m on

Λ such that for every u ∈ Hm/2
Λ we have∫

Λ
TΛ(Pu)TΛue

− 2H

h dα =

∫
Λ
q |TΛu|2 e−

2H

h dα+O(h∞).

More precisely the remainder is smaller than CNhN‖u‖2H(m−N)/2
Λ

for N ≥ 0.

Additionally, up to a O(h) in the space of Kohn–Nirenberg symbols of
order m − 1 on Λ, the symbol q is the restriction to Λ of the holomorphic
continuation of the principal symbol of P .

In order to prove Proposition 2.5, we would like to apply this formula to
the generator of the geodesic flow on SMe. However, once SMe is embedded
into a closed real-analytic manifold, the generator of the geodesic flow is
only analytic near SMe, so that we need a local version of the multiplication
formula. We explain now how this difficulty can be overcome.
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4.1.2. Pseudo-locality properties. The pseudo-locality property of the
FBI transform is the first thing to notice.

Lemma 4.2. Let K0 and K1 be compact subsets ofM that do not intersect.
There exist C0 > 0 and a conic neighbourhood V of T ∗

K1
M in (T ∗M)ε

such that, for every N ∈ R, there is a constant C such that for every u ∈
H−N (M) supported in K0 and α ∈ V , we have

|Tu(α)| ≤ C ‖u‖H−N exp

(
−〈|α|〉

C0h

)
.

Proof. This is an immediate consequence of the assumption that the kernel
KT of T is small away from the diagonal (the second assumption onKT ).

This consequence of Lemma 4.2 will be used several times.

Lemma 4.3. Let K0 be a compact subset ofM. Let K1 be a compact subset
of M that does not intersect K0. Assume that G is a small enough symbol
of order 1 on (T ∗M)ε and let Λ = ΛG. Let N, k ∈ R. There is a constant
C > 0 such that for every u ∈ H−N (M) supported in K0 we have∫

Λ∩(T ∗
K1

M)ε

〈|α|〉2k |Tu(α)|2 e−
2H(α)

h dα ≤ C ‖u‖2H−N exp

(
− 1

Ch

)
.

We end this section with the adaptation of Proposition 4.1 to differential
operators that are analytic only on a part of M. We use here the norm
introduced in (15).

Proposition 4.4. Let P be a semi-classical differential operator of order m
on M. Let K0 be a compact subset of M. Assume that P has real-analytic
coefficients on a neighbourhood of K0. Assume that G is a small enough
symbol of order 1 on (T ∗M)ε and let Λ = ΛG. There exists a Kohn–Nirenberg
symbol q of order m on Λ such that for every N,m1,m2 ∈ R such that
m = m1 + m2 − 1, there exists a constant C > 0 such that for every u ∈
H−N (M) ∩H∞

Λ supported in K0 we have∣∣∣∣∫
Λ
TΛ(Pu)TΛue

− 2H

h dα−
∫
Λ
q |Tu|2 e− 2H

h dα

∣∣∣∣
≤ C exp

(
− 1

Ch

)
‖u‖2H−N + Ch ‖u‖Hm1

Λ
‖u‖Hm2

Λ
.

Moreover, near T ∗
K0
M, the symbol q is the restriction of the principal symbol

of P to Λ.
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In order to prove Proposition 4.4, let χ ∈ C∞((M)ε) be such that χ ≡ 1

on a neighbourhood of K0, and P has a holomorphic extension on a neigh-

bourhood of the support of χ. We identify χ with the function α �→ χ(αx)

on (T ∗M)ε, and with the corresponding multiplication operator. Proposi-

tion 4.4 will be deduced from the two following lemmas.

Lemma 4.5. Under the assumption of Proposition 4.4, we have

TΛPu(α) = χTΛPSΛχTΛu(α) +O
(
exp

(
−〈|α|〉

Ch

)
‖u‖H−N

)
,

for α ∈ Λ.

Lemma 4.6. Under the assumption of Proposition 4.4, let BΛ denote the

orthogonal projector from L2
0(Λ) to its closed subspace TΛH0

Λ. Then there

exists a Kohn–Nirenberg symbol q̃ of order m on Λ such that

BΛχTΛPSΛχBΛ = BΛq̃BΛ +R,

where R is O(h∞) as an operator from L2
k(Λ) to L2

−k(Λ) for every k ∈ R.

Moreover, q̃ = χ2q mod hSm−1
KN (Λ) where q is the restriction of the principal

symbol of P to Λ near T ∗
K0
M.

Before proving Lemmas 4.5 and 4.6, let us explain how they can be used

to prove Proposition 4.4.

Proof of Proposition 4.4. Applying Lemma 4.5 and then Lemma 4.6, we find

that:∫
Λ
TΛPu.TΛue

− 2H

h dα

=

∫
Λ
χTΛPSΛχTΛu.TΛue

− 2H

h dα+O
(
exp

(
− 1

Ch

)
‖u‖2H−N

)
=

∫
Λ
χTΛPSΛχBΛTΛu.BΛTΛue

− 2H

h dα+O
(
exp

(
− 1

Ch

)
‖u‖2H−N

)
=

∫
Λ
BΛχTΛPSΛχBΛTΛu.TΛue

− 2H

h dα+O
(
exp

(
− 1

Ch

)
‖u‖2H−N

)
=

∫
Λ
BΛq̃BΛTΛu.TΛue

− 2H

h dα

+O
(
exp

(
− 1

Ch

)
‖u‖2H−N + h∞ ‖u‖Hm1

Λ
‖u‖Hm2

Λ

)



Scattering rigidity for analytic metrics 189

=

∫
Λ
q̃ |TΛu|2 e−

2H

h dα

+O
(
exp

(
− 1

Ch

)
‖u‖2H−N + h∞ ‖u‖Hm1

Λ
‖u‖Hm2

Λ

)
=

∫
Λ
q |TΛu|2 e−

2H

h dα

+O
(
exp

(
− 1

Ch

)
‖u‖2H−N + h ‖u‖Hm1

Λ
‖u‖Hm2

Λ

)
.

On the first line, we have not used u ∈ H∞
Λ , but rather that TΛu(α) is at

most of the size O(eδ〈|α|〉/h ‖u‖H−N ) on Λ, with δ that can be made arbi-
trarily small by taking G small enough (as follows from a direct inspection
of KT ).

Proof of Lemma 4.5. We start by applying Lemma 4.2 to find that, for u ∈
H−N (M) ∩H∞

Λ supported in K0,

TΛPu(α) = χTΛPu(α) +O
(
exp

(
−〈|α|〉

Ch

)
‖u‖H−N

)
= χTΛPSΛTΛu(α) +O

(
exp

(
−〈|α|〉

Ch

)
‖u‖H−N

)
= χTΛPSΛχTΛu(α) + χTΛPSΛ(1− χ)TΛu(α)

+O
(
exp

(
−〈|α|〉

Ch

)
‖u‖H−N

)
.

Now, we claim that χTΛPSΛ(1 − χ)TΛu(α) can in fact be put in the error
term. The Schwartz kernel of the operator χTΛPSΛ(1− χ) is given by

χ(αx)(1− χ(βx))

∫
M

KT (α, y)Py(KS(y, β))dy.

We can split the integral here into the y’s that are close to αx and those
that are not. If y is away from αx then by assumption the kernel KT (α, y) is
O (exp(−〈|α|〉 /Ch)). On the other handKS(y, β) is alwaysO(exp(δ 〈β〉 /h))
where δ > 0 can be chosen arbitrarily small by imposing that β remains close
to real (which will be verified if G is small enough). Hence, the y’s away from
αx contribute to the kernel of χTΛPSΛ(1− χ) by an

(16) O
(
exp

(
−〈|α|〉

Ch
+

δ 〈|β|〉
h

))
.
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When y is close to αx, then Py(KS(y, β)) is analytic in y, with a holomorphic

extension bounded by O(exp( δ〈β〉h )) on a neighbourhood of αx of fixed size.
Hence, we can apply the non-stationary phase method [17, Proposition 1.1],
as in the proof of [17, Lemma 2.4] for instance (see the estimate on TDu
defined by (2.25) there), to find that the y’s close to α contribute to the
kernel of χTΛPSΛ(1 − χ) by a term of the same size as (16). The kernel
itself is then of size at most (16). Using Lemma 4.2 to estimate the size of
Tu(β) when χ(β) 
= 1, and choosing δ > 0 small enough, we find indeed

that χTΛPSΛ(1− χ)TΛu(α) is an O(exp(− 〈|α|〉
Ch ) ‖u‖H−N ), so that we have

(17) TΛPu(α) = χTΛPSΛχTΛu(α) +O
(
exp

(
−〈|α|〉

Ch

)
‖u‖H−N

)
.

Proof of Lemma 4.6. Lemma 4.6 is the equivalent of [17, Proposition 2.10].
The proof of the latter can be rewritten here without changing a word of
it, once we prove that the operator χTΛPSΛχ satisfies [17, Lemma 2.9 and
2.10] (see also [17, Remark 2.15]). Thus, let us explain how to prove that
the operator χTΛPSΛχ satisfies [17, Lemma 2.9 and 2.10].

The kernel of the operator χTΛPSΛχ is given for α, β ∈ (T ∗M)ε by

χTΛPSΛχ(α, β) = χ(αx)χ(βx)

∫
M

KT (α, y)Py(KT (y, β))dy.

Since the kernel KT (α, y) and KS(y, β) are negligible when y is away from
αx and βx, the y’s in this integral that are away from the support of χ only
contributes by a negligible term: if U is a neighbourhood of suppχ ∩M,
then there is ε′ > 0 such that

χTΛPSΛχ(α, β) = χ(αx)χ(βx)

∫
U
KT (α, y)Py(KT (y, β))dy

+O
(
exp

(
−〈|α|〉+ 〈|β|〉

Ch

))
,

(18)

for α, β ∈ (T ∗M)ε′ . The remaining integral over U only involves real-analytic
functions that are exponentially small on the boundary of U , and can con-
sequently be dealt with following exactly the same steps as in the proof of
Lemmas 2.9 and 2.10 in [17] in the analytic case pp.110–111 (here we do
not need the much more complicated proof required for the Gevrey case).
For the convenience of the reader, we recall here the main lines of the argu-
ment.
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The equivalent of [17, Lemma 2.9] is that the kernel of χTΛPSΛχ is neg-
ligible away from the diagonal: for every η > 0, there are C, ε′ > 0 such that
if α, β ∈ (T ∗M)ε′ are such that dKN (α, β) ≥ η/2 then

χTΛPSΛχ(α, β) = O
(
exp

(
−〈|α|〉+ 〈|β|〉

Ch

))
.

The proof of this fact is very similar to the proof of Proposition 4.7 given
in Appendix A. Notice that we only need to consider the case of αx and
βx in the support of χ. We will take ε′ � η � 1 and let α̃x and β̃x denote
elements of M that are at distance at most ε′ of αx and βx respectively. If
the distance between αx and βx is larger than η/4, we write∫

U
KT (α, y)Py(KT (y, β))dy

=

∫
D(α̃x,η/100)

KT (α, y)Py(KT (y, β))dy

+

∫
D(β̃x,η/100)

KT (α, y)Py(KT (y, β))dy

+

∫
U\(D(α̃x,η/100)∪D(β̃x,η/100))

KT (α, y)Py(KT (y, β))dy.

The third integral is negligible because KT (α, y) and KS(y, β) are negligible
when y is away from αx and βx (this is the second assumption we made on
KT ). The other two integral are dealt with similarly. For the first one for
instance, we use the local behaviour of KT to rewrite it, up to negligible
terms, as

(19)

∫
D(α̃x,η/100)

ei
ΦT (α,y)

h a(α, y)Py(KT (y, β))dy.

Here, since αx is away from βx, the function y �→ Py(KT (y, β)) is analytic
with a holomorphic extension bounded by O(exp(−〈|β|〉 /Ch)) on a neigh-
bourhood of fixed size of the domain of integration. Moreover, for η and ε′

small enough the phase ΦT is non-stationary (as dyΦT (α, αx) = −αξ) and
has positive imaginary part on the boundary of the domain of integration.
We can consequently use the non-stationary phase method [17, Proposi-
tion 1.5] to see that the integral (19) is indeed negligible.

If αx and βx are close, but αξ and βξ are away from each other, we can
use local coordinates and rewrite up to negligible (exponentially decaying)
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terms
(20)∫

U
KT (α, y)Py(KT (y, β))dy �

∫
D(α̃x,η/100)

ei
ΦT (α,y)+ΦS(y,β)

h a(α, y)b̃(y, β)dy,

where b̃ is an analytic symbol. Since dyΦT (α, αx) = −αξ and dyΦS(βx, β) =
βξ, we see that when αξ and βξ are away from each other, the phase in (20) is
non-stationary again, and the non-stationary phase method gives that (20)
is negligible (see the proof of Proposition 4.7 in Appendix A for a similar
argument).

The equivalent of [17, Lemma 2.10] in our context is a description of the
structure of the kernel of χTΛPSΛχ near the diagonal: there are small η > 0
and ε′ > 0, such that for α, β ∈ (T ∗M)ε′ with dKN (α, β) < η we have, up
to exponentially decaying terms

(21) χTΛPSΛχ(α, β) � ei
ΦTS(α,β)

h e(α, β),

where ΦTS(α, β) is the critical value of y �→ ΦT (α, y) + ΦS(y, β) and e is a
Kohn–Nirenberg symbol supported near the diagonal. Moreover, e is given
at first order on the diagonal by

e(α, α) =
1

(2πh)n
χ(α)2p(α) +O

(
h−n+1 〈|α|〉m−1

)
,

where p is the (holomorphic extension of the) principal symbol of P . In order
to prove (21), we just notice that the only relevant term in (18) is the inte-
gral over U , and since α and β are close to each other, this integral is given
up to negligible terms by (20). Then, we observe that when α = β the phase
y �→ ΦT (α, y)+ΦS(y, β) has a non-degenerate critical point at y = αx = βx.
Moreover, provided ε′ � η � 1, the phase is positive on the boundary of
the domain of integration. We can consequently apply the holomorphic sta-
tionary phase method [17, Poposition 1.6] (see also [40, Théorème 2.8 and
Remarque 2.10]) to get (21).

4.2. Some properties of the analytic wavefront set

4.2.1. General facts about analytic wave front set. We will use the
notion of analytic wave front set WFa(u) of a distribution u on a real-analytic
manifold. See for instance [25, §8.4 & 8.5], [40, §6] or [24] for the definition
and basic properties of this notion, the definition from [40] is recalled in Ap-
pendix A. These references define differently the analytic wave front set, but
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all the classical definitions of the analytic wave front set coincide according
to a result of Bony [1]. Notice also that these references deal mainly with
the case of distributions on open subsets of Rn, but the case of distributions
on a real-analytic manifold follows immediately since the notion is invariant
by real-analytic change of coordinates.

Let us start by recalling that if u is a distribution on a real-analytic
manifold M then WFa(u) is a closed conic subset of T ∗M \ {0} whose
projection to M is the analytic singular support of u, that is the set of
points x ∈ M such that u is not analytic on a neighbourhood of x (see for
instance [25, Theorem 8.4.5] or [40, Theorem 6.3]).

In this paper, we will use the following characterization of the analytic
wave front set in term of the FBI transform. There is no surprise in the
proof of this theorem, that can be found in Appendix A. We use here the
same notation as in §4.1, in particularM is a closed real-analytic manifold,
and T an analytic FBI transform on M.

Proposition 4.7. Let u ∈ D′(M) be independent of h. Let α0 ∈ T ∗M\{0}.
Then the following assertions are equivalent:

(i) α0 does not belong to WFa(u);
(ii) there is neighbourhood Ω ⊆ T ∗M of α0 and a constant C > 0 such

that for h small enough and α ∈ Ω we have

(22) |Tu(α)| ≤ C exp

(
− 1

Ch

)
.

(iii) there is conic neighbourhood Ω ⊆ T ∗M of α0 and a constant C > 0
such that for h small enough and α ∈ Ω large enough we have

(23) |Tu(α)| ≤ C exp

(
−〈α〉
Ch

)
.

Remark 1. One could add a fourth equivalent property in Proposition 4.7
by letting α tends to +∞ while h is fixed. Using this characterization of
the analytic wave front set, one could prove without much trouble the basic
properties of the analytic wave front set (behaviour under pull-back and
push-forward for instance). Some other standard properties of the analytic
wave front set, such as the elliptic estimates and propagation of singularities
may also be proved using the FBI transform, in the spirit of the proof of
Propositions 4.13 and 4.14 below.

We will also need the following result, which follows easily by using
Sjöstrand’s definition [40, Definition 6.1]. See Appendix A for a proof.
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Lemma 4.8. Let u ∈ D′(M×M). Let (x, y) ∈M×M. Assume that u is
C∞ near (x, y) and that u is analytic in the first variable, uniformly in the
second variable, on a neighbourhood of (x, y). Then WFa(u)∩T ∗

xM×T ∗
yM⊆

{0} × T ∗
yM.

4.2.2. Lagrangian deformation and analytic regularity. We explain
now how the spaces Hk

Λ from §4.1 associated with a complex Lagrangian Λ
are related to regularity issues. In order to do so, we will use a Lagrangian
Λ defined by (14) using a function G which is a symbol of logarithmic order,
meaning that in local coordinates x̃ = x + iy and ξ̃ = ξ + iη, for every
γ, δ, ρ, σ ∈ Nn there is a constant Cγ,δ,ρ,σ such that∣∣∣∂γ

x∂
δ
y∂

ρ
ξ∂

σ
ηG(x̃, ξ̃)

∣∣∣ ≤ Cγ,δ,ρ,σ(1 + |ξ|)−|ρ|−|σ| log (2 + |ξ|)

for x̃ in a coordinate patch for (M)ε and |η| ≤ ε(1 + |ξ|).
In particular, G will be of order 1, so that the theory from [17] will

apply, but since Λ is now much closer to T ∗M, the spaces Hk
Λ will contain

C∞(M) (see Lemma 4.10). However, G will not depend on h, so that a
distribution that belongs to H0

Λ with some uniform estimates in h must have
its analytic wave front set localized outside of the set of negative ellipticity of
G (see Lemma 4.12). To put it shortly, we are doing C∞ microlocal analysis
from the classical point of view, but real-analytic microlocal analysis in the
semiclassical perspective.

Notice that an advantage of working with a symbol of logarithmic order
G is that the assumption that G is small enough as a symbol of order 1
(needed to apply the results from [17]) can easily be satisfied by multiplying
G by a function that vanishes on a large neighbourhood of 0 and takes
value 1 near infinity. As we do not care about the value of G near 0 in the
applications below, this is particularly practical for us.

We start with an estimate which will be useful to discard the part of the
phase space that is not of interest for our purpose.

Lemma 4.9. Let G be a symbol of logarithmic order on (T ∗M)ε. Assume
that G is small enough as a symbol of order 1. Let Λ = ΛG be the associated
Lagrangian defined by (14). Let Ω ⊆ T ∗M be such that there is δ > 0 such
that for α ∈ Ω such that 〈α〉 ≥ δ−1, we have:

(24) G(α) ≥ δ log 〈α〉 .

Write Ω′ = eH
ωI
G Ω ⊆ Λ. There is a constant C0 > 0 such that, for every

N, k ∈ R, there is a constant C > 0 such that for all h small enough and
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every u ∈ H−N (M) we have

(25)

∫
Ω′
|TΛu|2 e−

2H

h 〈|α|〉2k dα ≤ Ce
C0
h ‖u‖2H−N .

Here the constant C0 can be made arbitrarily small taking G arbitrarily
small, but we will not need this. Actually, this growth only comes from small
frequencies.

Proof. We can assume that u is real-analytic, as the general result then
follows by an approximation argument. Indeed, using for instance the eigen-
functions of the Lapalce operator associated to a real-analytic metric, one
can produce a sequence (un)n≥0 of real-analytic functions converging to u in
H−N (M). Then if each un satisfies (25) (with constants C and C0 that does
not depend on un), it follows from Fatou’s lemma that u also satisfies (25)
since (TΛun)n≥0 converges pointwise to TΛu. Without loss of generality, we
may also assume that N is a positive integer.

Denote by KTS the kernel of TS and its holomorphic extension. Recall
that TΛu = (Tu)|Λ where Tu is considered as a function on (T ∗M)ε by holo-
morphic extension. Then, since u is real-analytic, Tu decays exponentially
fast, and we can use the formula

(26) TΛu(α) =

∫
T ∗M

KTS(α, β)Tu(β)dβ for α ∈ Λ

to bound TΛu. The formula (26) follows from the fact that ST is the identity
operator.

According to Lemma 2.9 in [17], given η > 0, if G is small enough,
and dKN (α, β) > η, with α ∈ Λ and β ∈ T ∗M, the kernel KTS(α, β) is
exponentially small in (〈|α|〉+ 〈|β|〉)/h. In particular,

TΛu(α) =

∫
β∈T ∗M, dKN (α,β)≤η

KTS(α, β)Tu(β)dβ +O(e−〈|α|〉/Ch‖u‖H−N ).

Here we used the fact that Hk
T ∗M is the semi-classical Sobolev space of order

k (see Corollary 2.4 in [17]).

Let us turn now to the points close to α. Here we can use Lemma 2.10
of [17]. For η > 0 small enough and dKN (α, β) < η,

(27) KTS(α, β) = ei
ΦTS(α,β)

h e(α, β) +O
(
exp

(
−〈|α|〉

h

))
,
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where hne is a symbol of order 0 and the phase ΦTS(α, β) is the critical
value of y �→ ΦT (α, y) + ΦS(β, y). This formula is only stated for α, β ∈ Λ
in [17, Lemma 2.10], but since we can rely here on the proof given in the
analytic case, the formula actually holds as soon as α and β are close enough
to the diagonal of T ∗M (for the same reason, e is actually analytic near the
diagonal). This is explained at the start of the proof (p.111) and also in the
remark before figure 1 therein.

Now using the same argument as before to deal with the remainder, we
can concentrate on

I(α) :=

∫
dKN (α,β)<η

ei
ΦTS(α,β)

h e(α, β)Tu(β)dβ

in order to bound TΛu(α). Choose R > δ−1 large. For |α| < R, the integral
I(α) is controlled by

(28) CeC0/h‖u‖H−N ,

where the constant C0 only depends on Λ and R.
Let us assume now that |α| > R. Then we estimate the imaginary part

of the phase ΦTS(α, β), assuming that α ∈ Ω′ and β ∈ T ∗M are at distance
at most η. Write α = eH

ωI
G γ for some γ ∈ Ω. Using that the imaginary part

of ΦTS(γ, β) is non-negative (see [17, Lemma 2.13]), we find

ImΦTS(α, β) ≥ Im
(
ΦTS(e

H
ωI
G γ, β)− ΦTS(γ, β)

)
≥ dα ImΦTS(γ, β) ·HωI

G (γ) +O
(
(log 〈|α|〉)2
〈|α|〉

)
≥ dα ImΦTS(α, α) ·HωI

G (α) +O
(
(log 〈|α|〉)2
〈|α|〉 + η log 〈|α|〉

)
≥ Im(θ(HωI

G )(α)) +O
(
(log 〈|α|〉)2
〈|α|〉 + η log 〈|α|〉

)
.

Here, we used the fact that G has logarithmic order (which implies that
both HωI

G and the distance between α and γ are O(log〈|α|〉/〈|α|〉)) and that
dαΦTS(α, α) = θ, where θ is the canonical 1-form on the cotangent bundle

of the complexification M̃ of M (see [17, (2.73)]). We recall the explicit
formula [17, (2.9)] for the weight H:

H =

∫ 1

0

(
e(τ−1)H

ωI
G

)∗
(G− Im θ(HωI

G ))dτ,
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in order to see that

H(α) = G(α)− Im(θ(HωI

G )(α)) +O
(
(log 〈|α|〉)2
〈|α|〉

)
= G(γ)− Im(θ(HωI

G )(α)) +O
(
(log 〈|α|〉)2
〈|α|〉

)
.

It follows, using assumption (24), that

ImΦTS(α, β) ≥ G(γ)−H(α) +O
(
(log 〈|α|〉)2
〈|α|〉 + η log 〈|α|〉

)
≥ δ log 〈|α|〉 −H(α) +O

(
(log 〈|α|〉)2
〈|α|〉 + η log 〈|α|〉

)
≥ δ

2
log 〈|α|〉 −H(α),

provided η is small enough and R is large enough. We insert this estimate
in our formula

|I(α)| ≤ e
H(α)

h

∫
dKN (α,β)<η

e−
δ log〈|α|〉

2h |e(α, β)||Tu(β)|dβ,

≤ e
H(α)

h 〈|α|〉− δ

2hh−n

∫
dKN (α,β)<η

|Tu(β)|dβ,

≤ e
H(α)

h 〈|α|〉n

2
+N− δ

2hh−n−N‖u‖H−N .

Since, TΛu(α) coincides with I(α) up to exponentially decaying terms, we
deduce that∫

α∈Ω′, |α|>R
|TΛu(α)|2e−2H(α)

h 〈|α|〉2kdα ≤ CNe−1/Ch‖u‖2H−N .

The result then follows since for low frequencies e−H(α)/h |TΛu(α)| is bounded
by (28).

The point of working with a logarithmic weight G is that C∞ regular-
ity is enough to prove that a distribution belongs to Hk

Λ, as expressed in
the following lemma. However, notice that the value of the integral in (29)
could a priori blows up when h tends to 0. The main point in the proof of
Proposition 4.13 below is to prove that it does not happen.

Lemma 4.10. Let G be a symbol of logarithmic order on (T ∗M)ε. Assume
that G is small enough as a symbol of order 1. Let Ω be a closed conic subset
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of T ∗M. Let Ω′ = eH
ωI
G Ω. Let u ∈ D′(M) be such that WF(u) ∩ Ω = ∅,

where WF(u) denotes the C∞ wave front set of u. Then, for every k ∈ R,
and h > 0 small enough

(29)

∫
Ω′
|TΛu|2 e−

2H

h 〈|α|〉2k dα < +∞.

Proof. Since the wave front set of u does not intersect Ω, it follows for
instance from [50, Theorem 4.8] that for every N > 0, there is a constant
CN > 0 such that for α ∈ Ω, we have

(30) |Tu(α)| ≤ CNhN 〈|α|〉−N .

Then, we can estimate the imaginary part of ΦTS(α, β) as in the proof of
Lemma 4.9. Since we do not make an ellipticity assumption on G anymore,
we only find that ImΦTS(α, β) + H(α) is a O(log 〈|α|〉) for α ∈ Λ and

β ∈ T ∗M close to each other. Hence, using (26) to estimate e−
H

h |TΛu|, we
find that there is a constant C0, that does not depend on N (while CN does),
such that for α ∈ Ω′ large, we have

(31) e−
H(α)

h |TΛu(α)| ≤ CN 〈|α|〉
C0
h
−N .

The bound (29) follows by taking N large enough (depending on h).

If we consider the analytic wave front set instead of the C∞ wave front
set, then the dependence on h of the bound in Lemma 4.10 becomes explicit.

Lemma 4.11. Let G be a symbol of logarithmic order on (T ∗M)ε. Assume
that G is small enough as a symbol of order 1. Let Ω be a closed conic subset
of T ∗M. Let Ω′ = eH

ωI
G Ω. Let u ∈ D′(M) be such that WFa(u) ∩ Ω = ∅.

Then for every k ∈ R there is a constant C > 0 such that, for h small
enough, we have ∫

Ω′
|TΛu|2 e−

2H

h 〈|α|〉2k dα ≤ Ce
C

h .

Proof. The proof is the same as for Lemma 4.10 with (30) replaced by (23).
Then (31) becomes

e−
H(α)

h |Tu(α)| ≤ C exp

(
C0

h
log 〈|α|〉 − C1

h
〈|α|〉

)
,

for some C,C0, C1 > 0 and α ∈ Ω′ large enough. The result follows (small
frequencies give rise at most to an O(eC/h)).
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Finally, we give a result that allows to get regularity estimates from
estimates in the space H0

Λ.

Lemma 4.12. Let G be a symbol of logarithmic order. Assume that G is
small enough as a symbol of order 1. Let Ω be a conic subset of T ∗M\{0}.
Assume that there is δ > 0 such that for every α ∈ Ω large enough we have

G(α) ≤ −δ log 〈α〉 .

Let u ∈ D′(M) not depend on h. Assume that u ∈ H0
Λ and that there is a

constant C > 0 such that, for h small enough, we have

‖u‖H0
Λ
≤ C exp

(
C

h

)
,

then the analytic wave front set of u does not intersect Ω.

Proof. We will work as in the proofs of Lemmas 4.9 and 4.10, except that
we go from Λ to T ∗M instead of going from T ∗M to Λ. The formula (26)
becomes for α ∈ Ω

(32) Tu(α) =

∫
Λ
KTS(α, β)TΛu(β)dβ

This formula is deduced from (26) by a contour shift, and the convergence is
ensured by the decay of KTS away from the diagonal, and the estimate we
assumed on TΛu. Then, we work as in the proof of Lemma 4.9 to estimate
the imaginary part of the phase, taking into account the sign shifts (notice
in particular that dβΦTS(β, β) = −θ, where θ is the canonical 1-form on
(T ∗M)ε), we find that for α ∈ Ω and β ∈ Λ close to each other and large
enough we have

ImΦTS(α, β)−H(β) ≥ δ

2
log 〈|α|〉 .

Since Ω is closed, this estimate actually holds on a conic neighbourhod of Ω
(up to taking δ slightly smaller). Neglecting off-diagonal terms as always, it

follows from (32) and the fact that e−
H

h Tu is square integrable on Λ that

(33) |Tu(α)| ≤ Ce
C

h
− δ

4

log〈|α|〉
h

for α large enough in a conic neighbourhood of Ω. Let then Ω0 be a compact
part of T ∗M such that Ω ⊆

⋃
t>0 tΩ0 and the elements of Ω0 are large
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enough so that (33) gives that |Tu(α)| is a O(e−1/Ch) for α ∈ Ω0. According
to Proposition 4.7, the set Ω0 does not intersect WFa(u). The same is true
for Ω since WFa(u) is conic.

4.3. Analytic radial estimates

We leave now the generality from §4.1–4.2 to come back to the geometric
context of Proposition 2.5. Our analysis will be based on the framework from
[10], and we will try to use notations that are coherent with this reference.

We work on the unit tangent bundle SMe of the extension (Me, ge) of
(M, g). In order to be consistent with [10], we will write U instead of SMe.
Notice that U is a real-analytic manifold with boundary. We denote the
interior of U by U and its boundary by ∂U . We embed U into a closed
real-analytic manifold M. To see that it is possible, notice that the Sasaki
metric on U is analytic, hence there is an analytic inward pointing vector field
defined on the neighbourhood of ∂U given by the gradient of the distance to
∂U . Thus, ∂U admits a collar neighbourhood that identifies with ∂U × [0, ε[
via real-analytic coordinates. We can use this collar neighbourhood to put
a real-analytic structure on the double manifold M of U .

As in §4.1–4.2, we endow M with a real-analytic Riemannian metric
(a priori unrelated to the metric ge on Me) and define an analytic FBI
transform T on M. For notational simplicity, we drop in this section the
index ge and denote by X the generator of the geodesic flow on SMe, by ϕt

its flow, by Γ± the incoming/outgoing trapped sets, etc. The vector field X
is real-analytic on U and satisfies the assumptions (A1)–(A5) from [10] (see
[10, §5.2]). As in [10], we extend X to a vector field on M such that U and
U are convex for the flow of X. In order to have the intermediate results
from [10] available, we assume that the extension of X is precisely the one
constructed in [10]. There is a priori no reason for X to be analytic away
from U , however, it is clear from the proof of [10, Lemma 1.1] that we can
assume that X is analytic on a neighbourhood of U . Thanks to Theorem 4.4,
this is enough in order to apply the methods from [17].

We will still denote by (ϕt)t∈R the flow generated by X and by (Φt)t∈R
the lift of ϕt to T ∗M:

Φt(α) =
(
ϕt(αx), (dϕt(αx)

−1)
αξ

)
, α = (αx, αξ) ∈ T ∗M.

We denote by X̃ the generator of the flow (Φt)t∈R. We also recall that the
Γ± = Γg

± and K = Kg are defined by (1) and (2). Finally, we denote by



Scattering rigidity for analytic metrics 201

p the principal symbol of X, which is also the symbol of the semi-classical
differential operator hX:

p(α) = iαξ(X(αx)) for α ∈ T ∗M.

Notice that this formula also defines a holomorphic extension for p.
This section is dedicated to the proof of the following estimate which is

crucial in the proof of Proposition 2.5.

Proposition 4.13. Let u be a distribution on U . Assume that Xu is com-
pactly supported in U , that the analytic wave front set WFa(Xu) of Xu does
not intersect E∗

+, that the C∞ wave front set WF(u) of u does not intersect
E∗

+ and that u|∂+U = 0. Then the analytic wave front set WFa(u) of u does
not intersect E∗

+.

Notice that replacing X by −X, we also get:

Proposition 4.14. Let u be a distribution on U . Assume that Xu is com-
pactly supported in U , that the analytic wave front set WFa(Xu) of Xu does
not intersect E∗

−, that the C∞ wave front set WF(u) of u does not intersect
E∗

− and that u|∂−U = 0. Then the analytic wave front set WFa(u) of u does
not intersect E∗

−.

Remark 2. We refer to Propositions 4.13 and 4.14 as radial estimates since
their proof relies on the source/sink structure of E∗

− and E∗
+ for the Hamil-

tonian flow (Φt)t∈R. The C∞ analogues of Propositions 4.13 and 4.14 in the
case of Anosov flows follow from the radial estimates [11, Theorems E.52
and E.54], and the case of open systems is dealt with in [10].

The analytic radial estimates that we prove here for open systems also
apply to Anosov flows. The same proof using the tools from [17] would also
give a Gevrey version of Propositions 4.13 and 4.14. It is also likely that one
could deal with more general operators with source/sink structure.

See [15] for a similar statement near some smooth radial submanifolds.

4.3.1. Construction of an escape function. The main tool in the proof
of Proposition 4.13 is the construction of an escape function.

Lemma 4.15. Let Ω0 be a conic neighbourhood of E∗
+ in T ∗M and K0 be a

compact subset of U . There is a symbol G of logarithmic order on (T ∗M)ε,
a conic neighbourhood Ω ⊆ Ω0 of E∗

+ in T ∗M and a constant C > 0 such
that for α ∈ T ∗M with 〈α〉 ≥ C and αx ∈ K0, we have:

(i) if α /∈ Ω, then G(α) ≥ C−1 log 〈α〉;
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(ii) if α ∈ Ω, then −HωI

Re pG(α) ≤ −C−1;

(iii) if α ∈ E∗
+, then G(α) ≤ −C−1 log 〈α〉.

The proof of Lemma 4.15 will require the following fact, that follows
from [10, Lemma 1.11].

Lemma 4.16. Let κ : T ∗M \ {0} → S∗M be the canonical projection on
the cosphere bundle S∗M of M. Let U+ be a small enough neighbourhood
of κ(E∗

+) in S∗M. Then, there is a function ε : R+ → R+ that tends to 0
in +∞ and constants C, γ̃ > 0 such that, for all α ∈ T ∗M\ {0} and t ≥ 0
such that κ(α) ∈ U+, αx ∈ U and ϕt(αx) ∈ U , we have

dS∗M(κ(Φt(α)), κ(E
∗
+)) ≤ ε(t) and |Φt(α)| ≥ C−1eγ̃t |α| .

Proof. The main difference between Lemma 4.16 and [10, Lemma 1.11] is
that we do not require here that α belongs to the kernel of the principal
symbol p ofX. This restriction can be removed by noticing that the Liouville
1-form αL is invariant by the flow (φt)t∈R and p(αL) = i. Hence, we can write
α = β + cαL with β in the kernel of p and then apply [10, Lemma 1.11]
to β.

With Lemma 4.16 at our disposal, we can adapt the proof of [10, Lem-
ma 1.12] to prove the following. Here, we let X̃ act on S∗M by pushing it
forward by the action of κ.

Lemma 4.17. Let U+ be a small enough neighbourhood of κ(E∗
+) in S∗M.

Then, there is m+ ∈ C∞(S∗M) with the following properties:

1. m+ ≡ 1 on a neighbourhood of κ(E∗
+) and 0 ≤ m+ ≤ 1 everywhere;

2. suppm+ ∩ κ(T ∗
UM) ⊆ U+;

3. if α ∈ T ∗
UM, then X̃m+(κ(α)) ≥ 0;

4. there is δ > 0 such that if α ∈ T ∗
UM\{0} and 1

4 ≤ m+(κ(α)) ≤ 3
4 then

X̃m+(κ(α)) ≥ δ.

Proof. First, [10, Lemma 1.4] says that if W is a neighbourhood of the
trapped set Kg, ∃T > 0 large enough so that

(34) x ∈ U , ϕ2T (x) ∈ U =⇒ ϕT (x) ∈W

and [10, Lemma 1.3] says that if x ∈ Γ+, then dM(ϕt(x),Kg) → 0 as t →
−∞. Let us choose a C∞ function m0 : S∗M → [0, 1], supported in U+ ∩
κ(T ∗

UM) and such that m0 ≡ 1 on a neighbourhood of κ(E∗
u) = κ(E∗

+ ∩
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T ∗
KgM). Denote by W the projection of this neighbourhood to M. Then,

for T > 0 large, define the function

m+ : α �→ 1

T

∫ −T

−2T
m0(κ(Φt(α)))dt.

Let us show that m+ has the required properties when T is chosen large

enough. The proof is the same as [10, Lemma 1.12], we summarize the ar-

gument for the convenience of the reader:

(1) It follows from a continuity argument and the fact that for W as

above and all α ∈ κ(E∗
+), we have Φt(α) ∈ κ(E∗

+ ∩ T ∗
WM) for all

t ∈ [−2T,−T ] if T > 0 is large enough.

(2) If α ∈ supp(m+) and αx ∈ U , then ∃t ∈ [−T,−2T ] such that Φt(α) ∈
supp(m0), and αx, ϕt(αx) ∈ U while κ(Φt(α)) ∈ U+, then Lemma 4.16

implies that α ∈ U+, assuming T is large enough.

(3) For αx ∈ U , one has TX̃m+(α) = m0(κ(Φ−T (α)) −m0(κ(Φ−2T (α))).

Assume that m0(κ(Φ−T (α)) < 1 and m0(κ(Φ−2T (α))) > 0, then

ϕ−2T (αx) ∈ U and ϕ−T (αx) ∈ W if T is large enough (by (34)), but

dS∗M(κ(Φ−T (α)), κ(E
∗
u)) > ε for some ε > 0 depending only on m0.

Since also κ(Φ−2T (α)) ∈ U+, Lemma 4.16 gives a contradiction with

dS∗M(κ(Φ−T (α)), κ(E
∗
u)) > ε if T > 0 is chosen large enough. Thus

X̃m+(α) ≥ 0.

(4) Let α ∈ T ∗
UM\{0} be such that 1

4 ≤ m+(κ(α)) ≤ 3
4 . Sincem+(κ(α)) ≤

3
4 , then the proportion of t’s in [−2T,−T ] such that m0(κ(Φt(α))) = 1

is at most 3
4 . Hence, there is a t ∈

[
−7

4T,−T
]
such thatm0(κ(Φt(α))) <

1. Thus, if T > 0 is large enough, the same argument as for (3) based

on Lemma 4.16 shows that m0(κ(Φ−2T (α))) = 0. Similarly, we get

m0(κ(Φ−T (α))) = 1, so that X̃m+(κ(α)) =
1
T .

Remark 3. Before we give the proof of Lemma 4.15, let us link HωI

Re p to Φt.

From equation (2.3) in [17], we see that for a smooth function f , we have in

local coordinates x̃ = x+ iy, ξ̃ = ξ + iη

HωI

f =

n∑
j=1

∂ηj
f∂xj

− ∂xj
f∂ηj

+ ∂ξjf∂yj
− ∂yj

f∂ξj .

If f vanishes on the reals, we see that HωI

f is tangent to the reals. If addi-

tionally f = Re q, q being holomorphic and pure imaginary on the reals, we
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can use the Cauchy–Riemann equations to find

HωI

f =

n∑
j=1

∂ηj
f∂xj

− ∂yj
f∂ξj +O(|y|+ |η|)

=

n∑
j=1

Re(∂ηj
q)∂xj

− Re(∂yj
q)∂ξj +O(|y|+ |η|)

= −
n∑

j=1

∂ξj Im(q)∂xj
− ∂xj

Im(q)∂ξj +O(|y|+ |η|)

In the last line, we recognize the usual Hamilton vector field of − Im q on
the reals. In particular,

(35) −HωI

Re p = X̃ on T ∗M.

Proof of Lemma 4.15. Let r be a non-negative symbol of logarithmic order
on T ∗M such that r(α) = log 〈α〉 when α is large. Let

G0(α) =

∫ 0

−T
r(Φt(α))dt,

for T large enough. Thanks to Lemma 4.16, we see that there is a neigh-
bourhood U+ of κ(E∗

+) in S∗M and a constant C > 0 such that

(36) ∀α ∈ κ−1 (U+) ∩ T ∗
UM, C ≥ X̃G0(α) ≥ C−1.

Then, up to making U+ smaller, we can assume that U+ ⊆ κ(Ω0) and apply
Lemma 4.17. Let m+ be the resulting function. We let m̃ be a symbol of
order 0 on T ∗M that coincides with 1− 2m+ ◦ κ outside of a bounded set.
Define then

G = m̃G0.

For α ∈ T ∗
UM large enough, using (35), we have

−HωI

Re pG(α) = −2X̃m+(κ(α))G0(α) + (1− 2m+ ◦ κ(α))X̃G0(α).

Let Ω = κ−1({m+ ≥ 1
4}) ⊂ κ−1(U+), and notice that G ≥ 1

2 log〈α〉, if |α| is
large enough and not in Ω; this gives point (i).

If α ∈ E∗
+ then m+(κ(α)) = 1, so that G(α) = −G0(α), and (iii) follows.

Now, if α ∈ Ω is large, either m+(κ(α)) ≥ 3
4 , in which case we have by point
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(3) of Lemma 4.17 and (36)

−HωI

Re pG(α) ≤ −1

2
C−1,

orm+(κ(α)) ≤ 3
4 , in which case X̃m+(κ(α)) ≥ δ by point (4) of Lemma 4.17,

and thus

−HωI

Re pG(α) ≤ −2δG0(α) + C

and (ii) follows since G0 ≥ ε log〈α〉 for large |α|.

4.3.2. Proof of Proposition 4.13. Set f = Xu. We start by reducing to

the case of u compactly supported in U . If x ∈ Γ+ ∩ ∂U , then u vanishes on

a neighbourhood of x, since Xu does, u|∂+U = 0 and X is transversal to the

outgoing boundary. By compactness of Γ+ ∩ ∂U , we find a compact subset

K1 of U such that supp f ⊆ K1 and U \K1 does not intersect Γ+ ∩ suppu.

Let χ ∈ C∞(M) be supported in U and such that χ ≡ 1 on a neighbourhood

of K1. Then χu is a distribution on M, supported in U and

X(χu) = χf + (Xχ)u = f + (Xχ)u.

Notice that Xχ is supported in U \ K1, so that (Xχ)u is supported away

from Γ+. In particular the analytic wave front set of (Xχ)u, and hence of

f + (Xχ)u does not intersect E∗
+. Since χ is C∞, and since WF(u) ∩ E∗

+ =

∅ by the assumptions on u, then WF(χu) ∩ E∗
+ = ∅. Since χ ≡ 1 on a

neighbourhood of Γ+ ∩ suppu, we have WFa(u) ∩ E∗
+ = WFa(χu) ∩ E∗

+.

Consequently, we may replace u by χu and f by f + (Xχ)u and assume

that u is compactly supported in U . We let K0 ⊆ U denote a compact

neighbourhood of suppu and supp f .

By assumption, there is a conic neighbourhood Ω0 of E∗
+ in T ∗M such

that WF(u)∩Ω0 = ∅ andWFa(f)∩Ω0 = ∅. LetG and Ω be as in Lemma 4.15.

Multiplying G by a smooth function equal to 1 outside {|α| > R} and

supported in {|α| > R/2}, we can assume that G is small enough as a

symbol of order 1. Let Λ := ΛG and decompose Λ as

Λ = Λ1 ∪ Λ2 ∪ Λ3,

where Λ1,Λ2 and Λ3 are respectively the images of T ∗
M\K0

M, T ∗
K0
M \ Ω

and T ∗
K0
M∩ Ω by eH

ωI
G . According to Lemma 4.3 and since u is supported
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in the interior of K0, for every N > 0 large enough and all k ∈ R, there is
C = Ck > 0 such that

(37)

∫
Λ1

|TΛu|2 〈|α|〉2k e−
2H

h dα ≤ C exp

(
−C

h

)
‖u‖2H−N .

According to the properties of G (Lemma 4.15), G is larger than δ log〈|α|〉
for α large enough in T ∗

K0
M\ Ω, so we can apply Lemma 4.9 and obtain

(38)

∫
Λ2

|TΛu|2 〈|α|〉2k e−
2H

h dα ≤ C exp

(
C

h

)
‖u‖2H−N .

Now, since the C∞ wave front set of u does not intersect Ω0, we see from
Lemma 4.10, that for h > 0 small enough and every k ∈ R, we have∫

Λ3

|TΛu|2 e−
2H

h 〈|α|〉2k dα < +∞.

Hence, we have u ∈ H∞
Λ , and we may apply the multiplication formula of

Proposition 4.4 with P = hX to find that

Re

(∫
Λ
TΛuTΛPue−

2H

h dα

)
≤

∫
Λ
Re q |TΛu|2 e−

2H

h dα

+ Ch

∫
Λ
|TΛu|2 e−

2H

h dα+ C‖u‖2H−N e−
C

h ,

where q is the restriction to Λ of the principal symbol p of P . Since q is a
symbol of order 1, we may apply (37) and (38) with k = 1

2 to find that∫
Λ
Re q |TΛu|2 e−

2H

h dα ≤
∫
Λ3

Re q |TΛu|2 e−
2H

h dα+ Ch

∫
Λ3

|TΛu|2 e−
2H

h dα

+ Ce
C

h ‖u‖2H−N .

Now, if α ∈ Λ3, we have α = eH
ωI
G β with β ∈ T ∗

K0
M∩ Ω. Hence, recalling

that p denotes the holomorphic extension of the symbol of P , we have

Re q(α) = Re p(α) = Re p(β) +HωI

G Re p(β) +O
(
log 〈|α|〉2

〈|α|〉

)

= −HωI

Re pG+O
(
log 〈|α|〉2

〈|α|〉

)
≤ −C−1,
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where the last inequality holds for α large enough and we used the fact that

Re(p(β)) = 0 for β ∈ T ∗M a real covector. Since small frequencies always

produce a term that grows at most exponentially fast when h tends to 0, we

have∫
Λ3

Re q |TΛu|2 e−
2H

h dα ≤ −C−1

∫
Λ3

|TΛu|2 e−
2H

h dα+ Ce
C

h ‖u‖2H−N .

It follows that

Re

(∫
Λ
TΛuTΛPue−

2H

h dα

)
≤ (−C−1 + Ch)

∫
Λ3

|TΛu|2e−
2H

h dα

+ Ce
C

h ‖u‖2H−N ,

so that for h small enough, we have∫
Λ3

|TΛu|2 e−
2H

h dα ≤ −C Re

(∫
Λ
TΛuTΛPue−

2H

h dα

)
+ Ce

C

h ‖u‖2H−N

≤ Cδ

∫
Λ
|TΛu|2 e−

2H

h dα+ Cδ−1

∫
Λ
|TΛPu|2 e− 2H

h dα

+ Ce
C

h ‖u‖2H−N

≤ Cδ

∫
Λ3

|TΛu|2 e−
2H

h dα+ Cδ−1

∫
Λ3

|TΛPu|2 e− 2H

h dα

+ Ce
C

h ‖u‖2H−N .

Here δ is any small positive number, and we noticed that (37) and (38) still

holds when u is replaced by Pu, for the same reasons. Since the analytic

wave front set of Pu = hf does not intersect Ω0, we deduce from Lemma 4.11

that there is a constant C(u) > 0 depending on u such that∫
Λ3

|TΛPu|2 e− 2H

h dα ≤ C(u)e
C(u)

h .

So that by taking δ small enough and using (37) and (38) again, we see that

‖u‖2H0
Λ
≤ C(u)e

C(u)

h .

Hence, since G is elliptic on E∗
+, it follows from Lemma 4.12 that WFa(u)∩

E∗
+ = ∅.
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4.4. Proof of Proposition 2.5

We now have at our disposal all the microlocal estimates required from the
proof of Proposition 2.5, which will follow from the following result.

Lemma 4.18. Let v ∈ D′(M̊e) be supported in the interior of Me. If x does
not belong to the support of v then Πge

0 v is analytic on a neighbourhood of x.

In addition to microlocal estimates, the proof of Lemma 4.18 will require
to understand the dynamics of the geodesic flow lifted to T ∗(SMe) ⊆ T ∗M.
To do so, introduce the horizontal bundle, defined for x ∈ SMe by

H∗(x) = {ξ ∈ T ∗
x (SMe) | ξ| ker dπ0(x) = 0} for x ∈ SMe.

Here, we recall that π0 is the canonical projection SMe → Me. The impor-
tance of the bundle H∗ is due to the following two results.

Lemma 4.19. Let u ∈ D′(M̊e) be compactly supported, then the analytic
wave front set of π∗

0u is contained in H∗. The same holds true for π∗
2u if

u ∈ D′(M̊e;S
2T ∗M̊e).

Lemma 4.20. Let u ∈ D′(M) be supported in the interior of SMe. Let x be
a point in the interior of M and assume that for every y ∈ π−1

0 ({x}) the hor-
izontal direction H∗(y) does not intersect WFa(u). Then π0∗u is analytic on
a neighbourhood of x. The same holds true for π2∗u if u ∈ D′(M̊e;S

2T ∗M̊e).

Lemma 4.19 is a consequence of [25, Theorem 8.5.1] and the fact that
π0 is analytic. Lemma 4.20 follows from [30, §3.b)] (see also [25, Theorem
8.5.4]), and the fact that the projection of the analytic wave front set to
the physical space is the analytic singular support [40, Theorem 6.3]. The
arguments apply as well for π∗

2 and π2∗.
Most of the geometric information needed for the proof of Lemma 4.18 is

contained in the following lemma, which is a consequence of the hyperbolicity
of the trapped set and the absence of conjugate points.

Lemma 4.21. For x ∈ Γge
± one has H∗(x) ∩ E∗

±(x) = {0}. Moreover, if
α = (αx, αξ) ∈ T ∗(SMe) is such that αξ(X(x)) = 0, αξ ∈ H∗(x) and
(dϕge

t (x)−1)
αξ ∈ H∗(ϕge
t (x)), then αξ = 0.

Proof. The proof is contained in the proof of [18, Proposition 5.1]: the fact
that H∗(x)∩E∗

±(x) = {0} follows from the hyperbolicity of Kg and a result
of Klingenberg [26, Proposition p.6], and the second statement is equivalent
to the fact that (π0(ϕ

ge
s (x)))s∈[0,t] is free of conjugate points.
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We are now ready to prove Lemma 4.18.

Proof of Lemma 4.18. Let v ∈ D′(M̊e) be supported in the interior of Me.

Write f = π∗
0v and u = R∗

gef . Then Πge
0 v = π0∗u, see (10). Notice that we

have Xgeu = −f with u = 0 near ∂+SMe, and by (9) and the composition
rules for wave-front sets we have WF(u) ∩ E∗

+ = ∅.
Let x be a point that does not belong to the support of v. According

to Lemma 4.20, we only need to prove that the analytic wave front set of u

does not intersect H∗(y) for all y ∈ π−1
0 ({x}).

Let y be a point of π−1
0 ({x}) and α ∈ H∗(y). From Lemma 4.19, we

know that the analytic wave front set of f is contained in H∗∩π−1
0 (supp v).

In particular, α /∈ WFa(f) (since π0(y) = x /∈ supp v). If p(α) 
= 0, with p

the principal symbol of X, we know that α /∈ WFa(u) by ellipticity of X
(see [25, Theorem 8.6.1] or [40, Theorem 6.4]).

Let us then consider the case p(α) = 0. Thanks to Lemma 4.21, we know

that the orbit of α for the lift of the geodesic flow to T ∗(SMe) never intersects

the analytic wave front set of f . Hence, by propagation of singularity (see for

instance [24, Theorem 2.9.1]), we only need to prove that this orbit leaves

the analytic wave front set of u. If y /∈ Γge
− , then ϕge

t (y) must intersect ∂+U ,
and u vanishes near ∂+U . If y ∈ Γge

− , then α /∈ E∗
− due to Lemma 4.21, and

thus Φt(α) converges to E∗
+ due to [10, Lemma 1.10]. Hence, we only need

to prove that the analytic wave front set of u does not intersect E∗
+ (since

the analytic wave front set is closed). This fact follows from Proposition 4.13

since Xu = −f , the analytic wave front set of f does not intersect E∗
+ by

Lemmas 4.19 and 4.21, the C∞ wave front set of u does not intersect E∗
+

and u = 0 near ∂+U .

From Lemma 4.18 and some functional analysis, we deduce the following:

Corollary 4.22. Let K0 and K1 be disjoint compact subsets of M̊e. Let

N ∈ R. Then there is a constant C > 0 and a complex neighbourhood V
of K1 such that if u ∈ H−N (M̊e) is supported in K0, then Πge

0 u has a

holomorphic extension to V bounded by C ‖u‖H−N .

Proof. LetH−N (K0) denote the subspace ofH
−N (M̊e) made of the elements

that are supported in K0. Let (Vn)n≥0 be a decreasing family of complex
neighbourhoods of K1 such that K1 =

⋂
n≥0 Vn. For every m,n ≥ 0, intro-

duce

Fm,n = {u ∈ H−N (K0) : Π
ge
0 u has a holomorphic extension

to Vn bounded by m}.
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Then, Lemma 4.18 implies that

H−N (K0) =
⋃

m,n≥0

Fm,n.

Let us prove that the Fm,n’s are closed in H−N (K0). Fix m and n and let
(up)p≥0 be a sequence of elements of Fm,n that converges to u ∈ H−N (K0).
Set vp = Πge

0 up and let denote by ṽp the holomorphic extension of vp to Vn.
By Montel’s Theorem, we may assume, up to extracting a subsequence,
that ṽp converges uniformly on all compact subsets of Vn to a holomorphic
function ṽ bounded by m. Since Πge

0 is a (C∞) pseudo-differential operator,
we know that vp converges to Πge

0 u as a distribution, so that the restrictions
of ṽ and Πge

0 u to Vn ∩Me coincides, proving that u ∈ Fm,n.
Since the Fm,n’s are closed, it follows from Baire’s Theorem that one of

them has non-empty interior. Hence, for some n ≥ 0, the linear subspace⋃
m≥0

Fm,n

has non-empty interior, and is thus equal to H−N (K0). The result follows
then from the uniform boundedness theorem applied to the family of linear
forms u �→ Πge

0 u(x) for x ∈ Vn.

Proof of Proposition 2.5. Apply Πge
0 to a Dirac mass to deduce from Corol-

lary 4.22 that, away from the diagonal, the kernel of Πge
0 is analytic in x

uniformly in y. The result follows then from Lemma 4.8, the fact that Πge
0

is symmetric and the fact that the projection of the analytic wave front set
to the physical space is the analytic singular support.

Proof of Proposition 2.6. Since we already know that the kernel of Πge
0 is

analytic away from the diagonal, we only need to understand the kernel of
Πge

0 near the diagonal. Let us choose x0 ∈ M̊e and ε > 0 very small so that
the ball Bε := {x ∈ Me | dge(x, x0) < ε} satisfies dge(Bε, ∂Me) > 5ε, the
radius of injectivity of (Me, ge) is larger than 10ε and the boundary of Bε

is strictly convex. In particular Bε is a simple manifold, in the terminology
of the introduction. Let us consider A : C∞

c (Bε) → C∞(Bε) defined by
Au := (Πge

0 u)|Bε
. Thanks to Proposition 2.5, it is enough to prove that A is

analytic pseudo-differential operator. By the proof of [18, Proposition 5.7],
we can write

R∗
ge = e3εXgeR∗

ge +

∫ 3ε

0
etXgedt, Πge

0 = π0∗e
3εXgeR∗

geπ
∗
0 + π0∗

∫ 3ε

0
etXgedtπ∗

0
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Let us write A = A1 + A2 where A1u = (π0∗
∫ 3ε
0 etXgedtπ∗

0u)|Bε
for all

u ∈ C∞
c (Bε). By [18, Section 5.1], A1 = (IBε

0 )∗IBε

0 is the normal operator for
the X-ray transform IBε

0 on the simple manifold (Bε, ge). In [42, Proposition
3.2], Stefanov and Uhlmann proved that a similar operator is a real-analytic
pseudo-differential operator. The same analysis applies here if we replace the
formula [42, (2.1)] by the formula for the kernel of the normal operator given
in [38, Lemma 3.1]. Hence, we find that A1 is an elliptic analytic pseudo-
differential on Bε. Next we consider A2. We can use the same argument
as above, in the proof of Proposition 2.5 to see that A2 has an analytic
kernel. The only difference is that, adapting the proof of Lemma 4.18, we
work with u = e3εXgeR∗

gef for f = π∗
0v and v a distribution supported in

Bε, and A2v = (π0∗u)|Bε
. We only need to use that e3εXge : f �→ f ◦ ϕge

3ε,
with ϕge

3ε an analytic diffeomorphism, and that 10ε is smaller than the radius
of injectivity of (Me, ge) to deduce that A2v is analytic in Bε (the singular
support of π0∗u is at least at distance ε from Bε).

Proof of Proposition 2.7. By using again [42, Proposition 3.2] (which con-
tains the analysis for symmetric 2-tensors on simple manifolds) to deal with
the operator

u ∈ C∞
c (Bε;S

2T ∗Bε) �→
(
π2∗

∫ 3ε

0
etXgedtπ∗

2u
)∣∣∣

Bε

∈ C∞(Bε;S
2T ∗Bε),

(39)

the same exact argument as in the proof of Proposition 2.6 shows that the
normal operator Πge

2 = (Ige2 )∗Ige2 is an analytic pseudo-differential operator
with principal symbol being the same as for simple manifolds. The only
difference consists in changing π∗

0, π0∗ by π∗
2, π2∗, which is harmless for the

wave-front set analysis as these operators share the same exact (analytic)
microlocal properties. Once we know this fact and that Πg

2 = (Ig2 )
∗Ig2 , the

proof of solenoidal injectivity is an adaptation of the proof of [43, Theo-
rem 1]. We summarize the argument of that proof for the convenience of the
reader and since our geometric assumption is not the same:

1) Any L2(M) symmetric 2-tensor can be decomposed as f = f s +
Dgw with D∗

gf
s = 0 and w ∈ H1(M ;T ∗M) with w|∂M = 0, with Dg :

C∞(M ;T ∗M) → C∞(M ;S2T ∗M) the symmetrized Levi-Civita covariant
derivative, D∗

g is its formal adjoint (called divergence). The tensor fs is
called the solenoidal projection of f and one has Ig2f = Ig2f

s since Ig2Dgw =
IgXgπ

∗
1w = 0. This decomposition can be done by setting w = (ΔDg

)−1D∗
gf

where ΔDg
= D∗

gDg is the symmetric Laplacian with Dirichlet condition.
See [43, §2.3] or [39, Theorem 3.3.2] for details.
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2) The operator Πg
2 is elliptic on solenoidal tensors in the sense that its

principal symbol p(x, ξ) is injective on {f ∈ S2T ∗
xM | f(ξ�, ·) = 0} if ξ� ∈

TxM is the dual vector to ξ by gx. This follows from the local description (39)
of Πg

2 up to smoothing operators. Then by analytic ellipticity of Πg
2 (since

Πg
2 is an analytic pseudodifferential operator as mentioned above), we find

that if Ig2f
s = 0, then f s is analytic in the interior of M . Then, working as

in [43, Lemma 6] (see also [42, Proposition 3.4]), we find f s ∈ A(M), that
is f s is analytic up to the boundary. Note that to get the property near the
boundary, we use Πge

2 and the fact that ge is analytic on Me.
3) According to [43, Lemma 4], if Ig2f

s = 0, there exists an analytic one
form w0 ∈ A(U ;T ∗M) vanishing on ∂M , so that h := f s − Dgw0 satisfies
h(ψ∗∂r, ·) = 0 and h vanishes to infinite order at ∂M , if ψ : [0, ε] × ∂M →
U ⊂ M is the normal form of Lemma 2.2. Since h is analytic in U , this
implies that h = 0 and thus f s = Dgw0 near ∂M .

4) The analytic 1-form w0 defined in U admits an analytic extension
to M and f s = Dgw0 on M , which implies that w0 = 0 since f s is the
solenoidal projection of f . To prove the existence of the extension of w0, we
proceed as in the proof of [43, Theorem 1]. For x ∈ M \ U , take x0 ∈ ∂M
and γ a geodesic between x0 and x. Let S ⊂ U be a local codimension 1
submanifold orthogonal to γ, we can then use geodesic normal coordinates
(t, y) associated to S, covering a neighborhood Vγ of γ. We can then solve
the equation (f s−Dgw1)(∂t, ·) = 0 in Vγ with initial condition w1|S = w0|S .
As shown in the proof of [43, Lemma 4], this is an ODE which has a unique
analytic solution, and this solution is equal to w0 in U ; this gives an ex-
tension of w1 in Vγ , in particular near x. Moreover f s = Dgw1 in Vγ by
unique continuation from U ∩ Vγ . We need to check that this extension is
independent of the choice of x0 and γ. Let x′0 and γ′ another pair as above
and consider the analytic continuation of w1 from Vγ ∩Vγ′ to Vγ′ by the pro-
cess describes above, but starting from a submanifold S′ passing through x
orthogonal to γ′. We need to show that w1 = w0 in U ∩Vγ′ . First, we observe
that by the process above, w1 extends analytically in a neighborhood of all
broken geodesic γ′′ with endpoints x0, x

′
0, that is obtained by a homotopy

of broken geodesics from γ ∪ γ′, and the value of w1 near x′0 is indepen-
dent of such curve by unique continuation. Let us then take the unique (non
broken) geodesic γ0 : [0, �γ0

] in this homotopy class (it is unique by [21,
Lemma 2.2] since g has no conjugate points). Let us consider the finite di-
mensional manifold Gk(x0, x

′
0, γ0) of piecewise geodesics c : [0, 1] → M in

the homotopy class of γ0 with (c(0), c(1)) = (x0, x
′
0), with k pieces and with

each geodesic segment of size less than the injectivity radius (k is chosen
large enough). A standard argument using the gradient flow of the energy
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functional E(c) =
∫ 1
0 ‖ċ(t)‖2gdt on Gk(x0, x

′
0, γ0) ∩E−1([0, E(γ ∪ γ′)]) shows

that there is a homotopy from γ ∪ γ′ to γ0 in Gk(x0, x
′
0, γ0) (see for example

[33, Theorem 16.3] and its adaptation to the case with strictly convex bound-
ary as in the proof of [21, Lemma 2.2]). Let us define v0 := γ̇0(0) ∈ ∂−SM ,
v′0 := γ̇0(�(γ0)) and Sg(x0, v0) = (x′0, v

′
0), then we have

Ig2f
s(x′0, v

′
0) = 0 = w1(x

′
0)v

′
0 − w1(x0)v0 = w1(x

′
0)v

′
0 − w0(x0)v0 = w1(x

′
0)v

′
0

since w0 vanishes on ∂M . Since similarly one has Ig2f
s(x′0, v) = 0 = w1(x

′
0)v

for all (x′0, v) ∈ ∂+SM near (x′0, v
′
0), we obtain w1(x

′
0) = 0. Moving now

x′0 slightly, the same argument shows that w1 = 0 on ∂M near x′0. Since
f s = Dgw0 = Dgw1 near x′0 and w1 = w0 = 0 on ∂M near x′0, we deduce
that w1 = w0 in a neighborhood of x′0 in M (the solution of this PDE being
unique locally). We have thus proved the result.

Appendix A. Technical results on the analytic wave front set

For the convenience of the reader, we recall here the definition of the analytic
wave front set of a distribution [40, Definition 6.1]. As the notion is invariant
by analytic change of coordinates, we give the definition on an open subset
of Rn.

Definition A.1. Let U be an open susbet of Rn and u ∈ D′(U). Let
(x0, ξ0) ∈ T ∗Rn \ {0} � Rn × (Rn \ {0}). Let:

• ϕ(x, α) be an analytic function on a neighbourhood of (x0, x0, ξ0) such
that ϕ(x, α) = 0 and dxϕ(x, α) = αξ when x = αx, and Imϕ(x, αx) ≥
C−1|x− αx|2 when x and α are real.

• aλ(x, α) be an analytic function on a neighbourhood of (x0, x0, ξ0)
depending on a parameter λ ≥ λ0. We assume that aλ(x, α) is bounded
and bounded away from zero, uniformly in λ ≥ λ0 on a fixed complex
neighbourhood of (x0, x0, ξ0).

• χ ∈ C∞c (U) supported near x0 and identically equal to 1 on a neigh-
bourhood of x0.

Then (x0, ξ0) does not belong to the analytic wave front set of u if and only
if ∫

Rn

eiλϕ(x,α)aλ(x, α)χ(x)u(x)dx

decays exponentially fast when λ tends to +∞, uniformly for α in a neigh-
bourhood of (x0, ξ0).
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It follows from [40, Proposition 6.2] that this definition does not depend
on the choice of ϕ, aλ or χ.

Proof of Proposition 4.7. The equivalence between (i) and (ii) is an imme-
diate consequence of [40, Proposition 6.2]. It is clear that (iii) implies (ii),
so let us prove that (ii) implies (iii).

We consider thus Ω0 a bounded neighbourhood of α0 ∈ T ∗M\{0} where
Tu is exponentially small in h. Then we pick Ω1 another neighbourhood of
α0, contained and relatively compact in Ω0, and let Ω =

⋃
t>0 tΩ1. For α ∈ Ω,

we write α = tα′ with α′ ∈ Ω1 and t ∈ R∗
+.

Assuming t > 1 and letting h̃ = h/t, we will need to distinguish the FBI
transform with semi-classical paramater h and h̃, so that we will write Th,
Th̃ instead of just T and Sh, Sh̃ instead of S to make it clear. Let us then

use the inversion formula to write Thu = ThSh̃Th̃u for h and h̃ small enough.
The action of the operator Sh̃ on functions that grows at most polynomially
is defined by duality. Hence, for α ∈ T ∗M, we have

(40) ThSh̃Th̃u(α) =

∫
T ∗M

Kh,h̃(α, β)Th̃u(β)dβ,

where the kernel Kh,h̃ is defined by

Kh,h̃(α, β) =

∫
M

KTh
(α, y)KSh̃

(y, β)dy.

The integral in (40) is convergent as Th̃u grows at most polynomially and
Kh,h̃(α, β) decays exponentially fast in β when α is fixed, since y �→ KTh

(α, y)
is real-analytic.

Let us start with a very crude estimate on the kernel Kh,h̃. It follows
from the definition of KTh

and KSh̃
that there is C such that if α, β ∈ T ∗M

and y ∈M, we have

|KTh
(α, y)| ≤ Ch−3n/4 〈α〉n/4 and

∣∣KSh̃
(y, β)

∣∣ ≤ Ch̃−3n/4 〈β〉n/4 .

Hence, up to making C larger, we have for α, β ∈ T ∗M that

(41)
∣∣∣Kh,h̃(α, β)

∣∣∣ ≤ C(hh̃)−3n/4 〈α〉n/4 〈β〉n/4 .

With these notations, we can split

(42) Thu(α) =

∫
Ω0

Kh,h̃(α, β)Th̃u(β)dβ +

∫
T ∗M\Ω0

Kh,h̃(α, β)Th̃u(β)dβ.
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We can use the crude estimate (41) and the assumption (ii) that we made

on u to deduce that the first integral is a O(e−1/Ch̃) = O(e−〈α〉/Ch). Since
we assumed that u is a distribution, Tu grows at most polynomially, and it
suffices in order to get (iii) to prove that for α ∈ Ω and β /∈ Ω0,

(43)
∣∣∣Kh,h̃(α, β)

∣∣∣ ≤ C exp

(
−C−1

(
〈α〉
h

+
〈β〉
h̃

))
,

which implies that the second integral in (42) is also O(e−1/Ch̃).

Now, α ∈ Ω and β /∈ Ω0 implies that α/h and β/h̃ are not close to each
other, which is the right condition for (43) to hold, as we will now prove.
The argument is very close to the proof of [17, Lemma 2.9].

Let us first assume that α, β ∈ T ∗M are such that the distance between
αx and βx is larger than some small η > 0. Then, we may split the integral
defining Kh,h̃(α, β) into

Kh,h̃(α, β) =

∫
D(αx,η/100)

KTh
(α, y)KSh̃

(y, β)dy

+

∫
D(βx,η/100)

KTh
(α, y)KSh̃

(y, β)dy

+

∫
M\(D(αx,η/100)∪D(βx,η/100))

KTh
(α, y)KSh̃

(y, β)dy.

(44)

The third integral in (44) is easily dealt with: by assumptions KTh
and

KSh̃
are small there. Let us look at the first integral (the second one is dealt

with similarly). It may be rewritten, up to a neglectible term, as∫
D(αx,η/100)

ei
ΦT (α,y)

h a(α, y)KSh̃
(y, β)dy.

Here, the phase ΦT (α, y) is non-stationary, as y is close to αx and we have
dyΦT (α, αx) = −αξ, and the function y �→ KSh̃

(y, β) is real-analytic and

has a holomorphic extension bounded by O(exp(−〈|β|〉 /Ch̃)) on a complex
neighbourhood of D(αx, η/100) whose size is uniform in α, β, h and h̃. We
can consequently apply the non-stationary phase method [17, Proposition
1.5] to see that this integral is indeed of the size (43). Let us mention that we
apply here [17, Proposition 1.4] in the case s = 1, and that the assumption
of positivity of ImΦT on the boundary of D(αx, η/100) follows from the
fourth assumptions we made on ΦT .
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We want now to understand Kh,h̃(α, β) when the distance between αx

and βx is less than 2η, but α
h and β

h̃
are away from each other in the Kohn–

Nirenberg metric. As αx and βx are close to each other, we may work in

coordinates, and the fact that α
h and β

h̃
are away from each other will write

|αξ

h −
βξ

h̃
| ≥ Aη( 〈α〉h + 〈β〉

h̃
), for a large constant A to be determined later. We

split the integral defining Kh,h̃(α, β) in two:

Kh,h̃(α, β) =

(∫
D(αx,100η)

+

∫
M\D(αx,100η)

)
KTh

(α, y)KSh̃
(y, β)dy.

The second integral is dealt with as the third integral in (44), it is at most

of the size (43). The first integral may be rewritten as∫
D(αx,100η)

ei(
ΦT (α,y)

h
+

ΦS(y,β)

h̃ )a(α, y)b(β, y)dy,

where a and b are analytic symbols. The phase is non-stationary as

dy

(
ΦT (α, y)

h
+

ΦS(y, β)

h̃

)
=

dyΦT (α, αx)

h
+

dyΦS(βx, β)

h̃
+O

((
〈α〉
h

+
〈β〉
h̃

)
η

)
=

βξ

h̃
− αξ

h
+O

((
〈α〉
h

+
〈β〉
h̃

)
η

)
.

Taking A large enough, we get∣∣∣∣dy (
ΦT (α, y)

h
+

ΦS(y, β)

h̃

)∣∣∣∣ ≥ C−1

∣∣∣∣〈α〉h +
〈β〉
h̃

∣∣∣∣ .
Hence, the non-stationary phase method gives again that (43) holds. Here,

we cannot use [17, Proposition 1.4] directly since ΦT is divided by h and

ΦS by h̃. However, we can apply [17, Proposition 1.1] and a rescaling argu-

ment.

Proof of Lemma 4.8. We use here Definition A.1 of the analytic wave front

set. Let (α, β) ∈ T ∗
xM× T ∗

yM be such that αξ 
= 0. Choose then ϕ,ψ be

real-analytic functions defined respectively on a neighbourhood of (x, α) and
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(y, β) in M× T ∗M, that satisfy{
ϕ(x′, α′) = 0, dxϕ(x

′, α′) = α′
ξ when α′

x = x′,

ψ(y′, β′) = 0, dyψ(y
′, β′) = β′

ξ when β′
x = y′.

We also assume that there is C > 0 so that Imϕ(x′, α′) ≥ C−1d(x′, α′
x)

2 and
Imψ(y′, β′) ≥ C−1d(y′, β′

x)
2 for x′, α′, y′, β′ real, respectively near x, α, y, β.

Let then χ and ρ be C∞ functions on M that are identically equal to 1,
respectively near x and y. We want to prove that the integral

(45)

∫
M×M

eiλ(ϕ(x
′,α′)+ψ(y′,β′))χ(x′)ρ(y′)u(x′, y′)dx′dy′

decays exponentially fast when λ tends to +∞ and α′ and β′ are near α
and β. Notice that here we take aλ = 1 in the notation from Definition A.1,
which we can do since the definition does not depend on the choice of aλ.
Let us write the integral (45) as∫

M
eiλψ(y

′,β′)ρ(y′)

(∫
M

eiλϕ(x
′,α′)χ(x′)u(x′, y′)dx′

)
dy′.

In the inner integral, the x′ that are away from x are negligible by positivity
of Imϕ, and the x′ near x are dealt with by the non-stationary phase method
[17, Proposition 1.1], using that αξ 
= 0. We find that the inner integral
decays exponentially fast with λ uniformly in y′. Since the imaginary part
of ψ(y′, β′) is non-negative when y′ and β′ are real, we find that (45) decays
exponentially fast with λ, which ends the proof of the lemma.

Appendix B. Application to lens rigidity for analytic
asymptotically hyperbolic manifolds

We notice that Theorem 2 implies a renormalized lens rigidity result for
analytic asymptotically hyperbolic manifolds. These are complete manifolds
with curvature tending to −1 at infinity, and conformal to compact Rie-
mannian manifolds with a conformal factor blowing up at infinity: (M, g) is
the interior of a compact manifold with boundary M and there is a smooth
boundary defining function ρ ∈ C∞(M, [0, 1]) such that (M,ρ2g) is a smooth
Riemannian manifold with boundary with |dρ|ρ2g = 1 on ∂M . Once a confor-
mal representative is chosen in the scattering infinity for g (see for instance
the introduction of [16]), the scattering map for the geodesic flow on an
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asymptotically hyperbolic manifold (M, g) with hyperbolic traped set can be
defined as map Sg : T ∗∂M → T ∗∂M , see [16, Proposition 2.6], and the renor-
malized length Lg can be defined by taking the constant term in the asymp-
totic expansion as ε→ 0 of the length �g(γ∩{ρ ≥ ε}) for complete geodesics
γ with both endpoints at infinity (see [16, Definition 4.2]). In the proof of
[16, Theorem 1.4], it is shown in particular that two analytic asymptoti-
cally hyperbolic manifolds (M1, g1) and (M2, g2) with (Lg1 , Sg1) = (Lg2 , Sg2)
must be isometric near ∂M , with an isometry ψ : U1 → U2 for Ui an open
neighborhood of ∂M i. Up to reducing this neighborhood we can choose U1

(and thus U2) to be strictly convex in Mi since the level sets {ρi = ε} are
easily seen to be strictly convex if ε > 0 is small for the boundary defining
functions ρi as above (i.e. |dρi|ρ2

i g
= 1 on ∂M i). The fact that Sg1 = Sg2

implies that the compact manifolds (M1 \U1, g1) and (M2 \U2, g2) have the
same scattering maps. If we assume in addition that (Mi, gi) have negative
curvature, or more generally no conjugate points and a hyperbolic trapped
set, then we can use Theorem 2 to deduce the following:

Corollary B.1. Let (M1, g1) and (M2, g2) be two real analytic asymptot-
ically hyperbolic manifolds with no conjugate points and with hyperbolic
trapped set. If, after a choice of conformal representatives in the confor-
mal infinity of g1 and g2, we have (Lg1 , Sg1) = (Lg2 , Sg2), then (M1, g1) is
isometric to (M2, g2).

This improves Theorem 1.4 in [16], which was showing the same result
as Corollary B.1 under the extra assumption that the relative fundamental
group π1(M1, ∂M1) = 0.
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Classes and Anosov Flows. Astérisque SMF, to appear.
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