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The goal of the present work is three-fold.

The first goal is to set foundational results on optimal transport

in Lorentzian (pre-)length spaces, including cyclical monotonicity,

stability of optimal couplings and Kantorovich duality (several re-

sults are new even for smooth Lorentzian manifolds).

The second one is to give a synthetic notion of “timelike Ricci

curvature bounded below and dimension bounded above” for a

measured Lorentzian pre-length space using optimal transport.

The key idea being to analyse convexity properties of Entropy

functionals along future directed timelike geodesics of probabil-

ity measures. This notion is proved to be stable under a suitable

weak convergence of measured Lorentzian pre-length spaces, giving

a glimpse on the strength of the approach we propose.

The third goal is to draw applications, most notably extending

volume comparisons and Hawking singularity Theorem (in sharp

form) to the synthetic setting.

The framework of Lorentzian pre-length spaces includes as re-

markable classes of examples: space-times endowed with a causally

plain (or, more strongly, locally Lipschitz) continuous Lorentzian

metric, closed cone structures, some approaches to quantum grav-

ity.
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Introduction

As the title suggests, the goal of the present work is three-fold. The first goal
is to set foundational results on optimal transport in Lorentzian synthetic
spaces. The second one is to use optimal transport to give a synthetic no-
tion for a Lorentzian space of “timelike Ricci curvature bounded below and
dimension bounded above” verifying suitable properties like compatibility
with the classical case and stability under weak convergence. The third goal
is to draw applications, most notably extending volume comparisons and
Hawking singularity Theorem (in sharp form) to the synthetic framework.

The Lorentzian synthetic framework adopted in the paper is the one
of Lorentzian pre-legth (and geodesic) spaces introduced by Kunzinger and
Sämann in [55] (see also an independent approach by Sormani and Vega
[75]). The basic idea is that Lorentzian pre-length (resp. geodesic) spaces are
the non-smooth analog of Lorentzian manifolds, in the same spirit as classical
metric (resp. geodesic) spaces are the non-smooth analog of Riemannian
manifolds (see Section 1.1 for the precise notions).

In the metric (measured) framework, the celebrated work of Sturm [78,
79] and Lott-Villani [59] laid the foundations for a theory of metric measure
spaces satisfying Ricci curvature lower bounds and dimension upper bounds
in a synthetic sense via optimal transport, the so-called CD(K,N) spaces.
The theory of CD(K,N) spaces flourished in the last years with strong
connections with analysis, geometry and probability. The ambition of the
present paper is to lay the foundations for a parallel theory in the Lorentzian
setting, which is the natural geometric framework for general relativity.

Motivations

Before discussing the main results, let us motivate the questions that we
address. A main motivation for this work is the need to consider Lorentzian
metrics/spaces of low regularity. Such a necessity is clear both from the PDE
point of view in general relativity (i.e. the Cauchy initial value problem for
the Einstein equations) and from physically relevant models.

From the PDE point of view, the standard local existence results for the
vacuum Einstein equations assume the metric to be of Sobolev regularity
Hs

loc, with s > 5
2 (see for instance [72]). The Sobolev regularity of the metric

has been lowered even further (e.g. [54]). Related to the initial value problem
for the Einstein equations, one of the main open problems in the field is the
so called (weak/strong) censorship conjecture (see e.g. [25, 27]). Such a con-
jecture (strong form) states roughly that the maximal globally hyperbolic
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development of generic initial data for the Einstein equations is inextendible
as a suitably regular Lorentzian manifold. Formulating a precise statement
of the conjecture is itself non-trivial since one needs to give a precise mean-
ing to “generic initial data” and “suitably regular Lorentzian manifold”.
Understanding the latter is where Lorentzian metrics of low regularity and
related inextendibility results become significant. The strongest form of the
conjecture would prove inextendibility for a C0 metric with Christoffel sym-
bols in L2

loc. As pointed out by Chrusciel-Grant [26], causality theory for C0

metrics departs significantly from classical theory (e.g. the lightlike curves
emanating from a point may span a set with non-empty interior, a phe-
nomenon called “bubbling”). Nevertheless, Sbierski [74] gave a clever proof
of C0-inextendibility of Schwarzschild, [65] showed C0-inextendibility for
timelike geodesically complete spacetimes, and [43] pushed the inextendibil-
ity to Lorentzian length spaces.

From the point of view of physically relevant models, several types of
matter in a spacetime may give a discontinuous energy-momentum tensor
and thus, via the Einstein’s equations, lead to a Lorentzian metric of regu-
larity lower than C2 (e.g. [57]). Examples of such a behaviour are spacetimes
that model the inside and outside of a star, matched spacetimes [60], self-
gravitating compressible fluids [13], or shock waves. Some physically relevant
models require even lower regularity, for instance: spacetimes with conical
singularities [82], cosmic strings [81] and (impulsive) gravitational waves (see
for instance [71], [44, Chapter 20]).

Finally, a long term motivation for studying non-regular Lorentzian
spaces is the desire of understanding the ultimate nature of spacetime. The
rough picture is that at the quantum level (and thus in extreme physical
conditions, e.g. gravitational collapse, origin of the universe), the spacetime
may be very singular and possibly not approximable by smooth structures
(see Remark 1.13).

In case of a metric of low regularity, the approach to curvature used
so far is distributional, taking advantage that the underline spacetime is
a differentiable manifold. This permits [38] (see also [77]) to define distri-
butional curvature tensors for W 1,2

loc -Lorentzian metrics satisfying a suitable
non-degeneracy condition (satisfied for instance when the metric is C1, see
[41]). One of the goals of the present work is to address the question of (time-
like Ricci) curvature when not only the the metric tensor, but the spacetime
itself is singular.

A lower bound on the timelike Ricci curvature of a spacetime (Mn, g),

(0.1) ∃K ∈ R such that Ricg ≥ −Kg(v, v), ∀v ∈ TM timelike,
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is quite a natural assumption in general relativity. Of course, for a C2-
metric g, (0.1) is satisfied on compact subsets of the space-time. Recalling
that the Einstein’s equations postulate proportionality of Ricg and T −
1

n−2trg(T )g (where T is the so-called energy-momentum tensor), for a general
cosmological constant Λ ∈ R, (0.1) is equivalent to require that

T (v, v) ≥ − 1

n− 2
trg(T ) +

1

8π

(
K − 2Λ

n− 2

)
,

for all v ∈ TM with g(v, v) = −1. In particular, if infM trg(T ) > −∞ (or,
equivalently, infM Rg > −∞ where Rg is the scalar curvature of g), then the
weak energy condition T (v, v) ≥ 0 for all timelike v (which is believed to
hold for most physically reasonable T , according to [85, pag. 218]) implies
(0.1).

The case K = 0 in (0.1) corresponds to the strong energy condition of
Hawking and Penrose [70, 46, 48].

Let us stress that the framework (0.1) includes every solution of the
Einstein’s equations in vacuum (i.e. with null stress-energy tensor T ) with
possibly non-zero cosmological constant Λ. Already such a framework is
highly interesting as the standard black hole metrics (e.g. Schwartzshild,
Kerr) are solutions of the Einstein’s vacuum equations, and also the more
recent literature on black holes typically focuses on vacuum solutions (see
e.g. [25, 27, 28, 54]). A key role in such breakthroughs on black holes is given
by a deep analysis of the system of non-linear hyperbolic partial differential
equations corresponding to the Einstein’s vacuum equations (in a suitable
Gauge). At least in the smooth setting, it was recently proved by the second
author and Suhr [67] that the optimal transport point of view is compatible
with the hyperbolic PDEs one (in the sense that it is possible to characterise
solutions of the Einstein’s equations in terms of optimal transport). More-
over, building on top of the present paper, in [67, Appendix B], a synthetic
notion of solution of the (vacuum) Einstein equations is discussed, together
with stability properties under weak convergence.

Outline of the content of the paper

General synthetic setting. We now pass to discuss the content of the
paper. The synthetic framework is the one of measured Lorentzian pre-length
spaces (X, d,m,�,≤, τ) where X is a set endowed with a proper metric d
(i.e. closed and bounded subsets are compact) and the associated metric
topology, a preorder ≤ (playing the role of causal relation) and a transi-
tive relation � contained in ≤ (playing the role of chronological/timelike
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relation), a lower semicontinuous function τ : X ×X → [0,∞] (called time-
separation function) with {τ > 0} = {(x, y) ∈ X2 : x � y} and satisfying
reverse triangle inequality (1.1), and a non-negative Radon measure m with
suppm = X.

The subset of causal pairs is denoted with X2
≤ := {(x, y) ∈ X2 : x ≤ y}.

A curve γ : [0, 1]→ X is causal if it is continuous and for every t0 ≤ t1
it holds γt0 ≤ γt1 . One can naturally associate a τ -length to γ, denoted by
Lτ (γ) (see Definition 1.4). A causal curve is a geodesic if it maximises the
τ -length and is parametrized by τ -arc length, i.e. if Lτ (γ) = τ(γ0, γ1) and
τ(γs, γt) = (t− s) τ(γ0, γ1) for all 0 ≤ s ≤ t ≤ 1. The space X is said to be
geodesic if for all (x, y) ∈ X2

≤ there is a geodesic γ from x to y.
Important classes of examples entering the framework of measured Lo-

rentzian pre-length/geodesic spaces are spacetimes with a causally plain
(or, more strongly, locally Lipschitz) C0-metric (see Remark 1.12), closed
cone structures, as well as some approaches to quantum gravity (see Re-
mark 1.13).

Optimal transport in Lorentzian pre-length spaces. Our approach
to synthetic timelike Ricci curvature lower bounds is via optimal transport of
causally related probability measures. To this aim, in Section 2 we throughly
analyse optimal transport in Lorentzian pre-length spaces. A key object
is the space of Borel probability measures P(X) on X, and the subspace
Pc(X) of Borel probability measures with compact support. In order to lift
the causal structure of X to P(X), it is useful to consider the set of causal
couplings between two probability measures μ, ν ∈ P(X):

Π≤(μ, ν) := {π ∈ P(X2) : π(X2
≤) = 1, (P1)�π = μ, (P2)�π = ν},

where Pi : X ×X → X is the projection on the ith factor, and

(Pi)� : P(X2)→ P(X)

is the associated push-forward map defined as ((Pi)�π) (B) := π
(
P−1
i (B)

)
for every Borel subset B ⊂ X. We say that (μ, ν) are causally related if
Π≤(μ, ν) �= ∅. The rough picture is that μ and ν represent some random
distribution of events in the spacetime X, and the two are causally related
if it is possible to causally match events described by μ with events described
by ν (possibly in a multi-valued way) via the causal coupling π. We endow
P(X) with the p-Lorentz-Wasserstein distance defined by

(0.2) �p(μ, ν) := sup
π∈Π≤(μ,ν)

(∫
X×X

τ(x, y)p π(dxdy)

)1/p

, p ∈ (0, 1].
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When Π≤(μ, ν) = ∅ we set �p(μ, ν) := −∞. The name p-Lorentz-Wasserstein

distance is motivated by the fact that �p satisfies a reversed triangle inequal-

ity (see Proposition 2.5).

Note that (0.2) extends to Lorentzian pre-length spaces the correspond-

ing notion given in the smooth Lorentzian setting in [30] (see also [62, 67],

and [80] for p = 1). A coupling π ∈ Π≤(μ, ν) maximising in (0.2) is said

�p-optimal. The set of �p-optimal couplings from μ to ν is denoted by

Πp-opt
≤ (μ, ν).

Maximising over causal couplings Π≤(μ, ν) instead of all the couplings

can be modelled with an auxiliary cost (denoted with �p) taking value −∞
outside of X2

≤ (see Remark 2.2). The fact that the cost function takes value

−∞ makes the associated optimal transport problem more challenging: sev-

eral fundamental results (see e.g. [3, 83, 84]) are not available in the present

setting and classical concepts take a different flavour. These include: cycli-

cal monotonicity, stability of optimal couplings, Kantorovich duality. It is

indeed the goal of Section 2 to study such notions in this setting. It is be-

yond the scopes of the introduction to give a detailed account of the results

(several are new even in the smooth Lorentzian setting), we only mention

few notions (in a slightly simplified form) that will be useful for analysing

timelike Ricci curvature bounds.

We say that (μ, ν) ∈ Pc(X)2 is timelike p-dualisable (by π ∈ Π≤(μ, ν)) if
�p(μ, ν) ∈ (0,∞), π ∈ Πp-opt

≤ (μ, ν) and suppπ ⊂ {τ > 0}. The pair (μ, ν) ∈
Pc(X)2 is strongly timelike p-dualisable if in addition there exists a subset

Γ ⊂ {τ > 0} ⊂ X2 such that every p-optimal coupling π′ ∈ Πp-opt
≤ (μ, ν)

is concentrated on Γ, i.e. π′(Γ) = 1 (see Definitions 2.18 and 2.27 for the

precise notions).

Let us also mention that if X is geodesic and globally hyperbolic then

(Pc(X), �p) is geodesic as well, for p ∈ (0, 1). More precisely (see Proposi-

tion 2.33), if (μ0, μ1) ∈ Pc(X)2 is timelike p-dualisable, then there exists an

�p-geodesic (μt)t∈[0,1] ⊂ Pc(X) joining them.

Synthetic timelike Ricci curvature lower bounds via optimal trans-

port. The relation between optimal transport and timelike Ricci curvature

bounds in the smooth Lorentzian setting has been the object of recent works

by McCann [62] and Mondino-Suhr [67]. The key idea is that timelike Ricci

curvature lower bounds can be equivalently characterised in terms of convex-

ity properties of the Bolzmann-Shannon entropy functional Ent(·|m) along

�p-geodesics of probability measures (where, for smooth Lorentzian man-

ifolds, m is the standard volume measure). Recall that, for a probability
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measure μ ∈ P(X), the entropy Ent(μ|m) is defined by

Ent(μ|m) =

∫
X
ρ log(ρ)m,

if μ = ρm is absolutely continuous with respect to m and (ρ log(ρ))+ is

m-integrable; otherwise we set Ent(μ|m) = +∞. We denote

Dom(Ent(·|m)) := {μ ∈ P(X) : Ent(μ|m) <∞}.

The following definition is thus natural.

Definition (TCDe
p(K,N) and wTCDe

p(K,N) conditions). Fix p ∈ (0, 1),

K ∈ R, N ∈ (0,∞). We say that a measured Lorentzian pre-length space

(X, d,m,�,≤, τ) satisfies TCDe
p(K,N) (resp. wTCDe

p(K,N)) if the following

holds. For any pair (μ0, μ1) ∈ (Dom(Ent(·|m)) ∩ Pc(X))2 which is (resp.

strongly) timelike p-dualisable by some π ∈ Πp-opt
≤ (μ0, μ1), there exists an

�p-geodesic (μt)t∈[0,1] such that the function [0, 1] � t �→ e(t) := Ent(μt|m)

is semi-convex and it satisfies

e′′(t)− 1

N
e′(t)2 ≥ K

∫
X×X

τ(x, y)2 π(dxdy),

in the distributional sense on [0, 1].

Remark (Notation). The notation TCDe
p(K,N) comes by analogy with the

corresponding Lott-Sturm-Villani theory of curvature dimension conditions

in metric-measure spaces. Here the superscript e refers to the so-called “en-

tropic” formulation of the CD condition by Erbar, Kuwada and Sturm [32];

such a formulation is slightly simpler, but equivalent under suitable technical

assumptions. The possibility p ∈ (1,∞), p �= 2 was investigated by Kell [49]

in the metric-measure setting. The leading T stands for “timelike”, follow-

ing the notation of Woolgar and Wylie in their paper on N -Bakry-Émery

spacetimes [86], and of McCann [62]. The symbol w in wTCD has to be

read “weak TCD” and it is justified by the comparison with TCD requiring

convexity estimates for the entropy along a smaller family of �p-geodesics.

The TCDe
p(K,N) (resp. wTCDe

p(K,N)) condition satisfies the following

natural compatibility properties:

• TCDe
p(K,N) (respect. wTCDe

p(K,N)) implies TCDe
p(K

′, N ′) (respect.
wTCDe

p(K
′, N ′)) for all K ′ ≤ K, N ′ ≥ N , see Lemma 3.11;
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• A smooth globally hyperbolic Lorentzian manifold (Mn, g) has di-
mension n ≤ N and Ricg(v, v) ≥ −Kg(v, v) for every timelike v ∈
TM if and only if it satisfies TCDe

p(K,N), if and only if it satisfies
wTCDe

p(K,N), see Theorem 3.1 and Corollary A.2.

We show that wTCDe
p(K,N) spaces satisfy the following geometric proper-

ties:

• a timelike Brunn-Minkowski inequality, see Proposition 3.4;
• a timelike Bishop-Gromov inequality, Proposition 3.5;
• a timelike Bonnet-Myers inequality, Proposition 3.6.

A weaker variant of the TCDe
p(K,N) condition is obtained by considering

(K,N)-convexity properties only for those �p-geodesics (μt)t∈[0,1] where μ1

is a Dirac delta. In the metric measure setting, such a variant goes under the
name of Measure Contraction Property (MCP for short) and was developed
independently by Sturm [79] and Ohta [68]. We call “Timelike Measure
Contraction Property” (TMCPe(K,N) for short) such a weaker variant of
TCDe

p(K,N), see Definition 3.7 for the precise notion. The following holds:

• under mild conditions on the spaceX (satisfied for instance for causally
plain, globally hyperbolic spacetimes with a C0 metric) wTCDe

p(K,N)
implies TMCPe(K,N), see Proposition 3.12;

• TMCPe(K,N) implies TMCPe(K ′, N ′) for all K ′ ≤ K, N ′ ≥ N , see
Lemma 3.11;

• a smooth globally hyperbolic Lorentzian manifold (Mn, g) of dimen-
sion n ≥ 2 satisfies TMCPe(K,n) if and only if Ricg(v, v) ≥ −Kg(v, v)
for every timelike v ∈ TM , see Theorem A.1;

• if a smooth globally hyperbolic Lorentzian manifold (Mn, g) satisfies
TMCPe(K,N), then dim(M) = n ≤ N , see Corollary A.2;

• the aforementioned timelike Bishop-Gromov inequality (Proposition
3.5) and timelike Bonnet-Myers inequality (Proposition 3.6) remain
valid for TMCPe(K,N) spaces;

In addition to the aforementioned geometric consequences of the syn-
thetic curvature bounds, the main results of this part concern the funda-
mental property of stability. We show a weak stability property for TCD
stating that if a sequence of TCDe

p(K,N) spaces converges weakly to a limit
Lorentzian pre-length space, then the limit space satisfies wTCDe

p(K,N)
(see Theorem 3.15 for the precise statement). Instead the TMCPe(K,N)
condition is stable in the usual sense: if a sequence of TMCPe(K,N) spaces
converges weakly to a limit Lorentzian pre-length space, then the limit space
satisfies TMCPe(K,N), see Theorem 3.13.
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It is worth stressing that stability of TCDe
p(K,N) and TMCPe(K,N) has

no counterpart in the classical versions of CD (and MCP) for extended met-
rics. Indeed, while the theory of extended metric measure spaces verifying
CD has been investigated [2], so far no general results on their stability has
been established. The fact that the convexity of the entropy is required to
hold only along �p-geodesics connecting timelike p-dualisable measures does
not permit to follow the stream of ideas of the known stability arguments
of [59, 78, 79, 39] for CD and MCP and a new strategy has to be devised.

We mention another obstruction to the classical approach to stabil-
ity and Gromov (pre-)compactness: while the CD/MCP conditions imply
a control on the volume growth of metric balls and thus compactness in
pointed-measured-Gromov-Hausdorff topology (which is thus the natural
notion for weak convergence of spaces), in our setting the τ -balls typically
have infinite volume (for instance in Minkowski space, τ -spheres are hyper-
boloids); thus we cannot expect the same (pre)-compactness properties in
the pointed-measured-Gromov-Hausdorff topology (which is thus not any-
more the clearly natural notion for weak convergence of spaces).

Timelike non-branching TMCPe(K,N) and applications. An im-
portant subclass of Lorentzian geodesic spaces is the one of timelike non-
branching structures: roughly the ones for which timelike geodesic do not
branch (both forward and backward in time), see Definition 1.10 for the
precise notion. In the classical Lorentzian setting, this is satisfied for C1,1

metrics and it is expected to fail for lower regularity. The same phenomenon
happens in the Riemannian/metric setting, where the non-branching as-
sumption (or slightly weaker variants) is rather standard in the recent liter-
ature of CD/MCP spaces.

For timelike non-branching TMCPe(K,N) spaces we obtain:

• solution to the �p-Monge problem: if (μ0, μ1) are timelike p-dualisable
with μ0 ∈ Dom(Ent(·|m)), then there exists a unique �p-optimal cou-
pling π ∈ Πp-opt

≤ (μ0, μ1) such that π ({τ > 0}) = 1 and it is induced by
a map; see Theorem 3.20;
Under the same assumptions, there exists a unique �p-geodesic from
μ0 to μ1; see Theorem 3.21;

• a synthetic notion of mean curvature bounds for achronal Borel sets
having locally finite “area”, see Section 5.1;

• a sharp version (holding for every K ∈ R, N ∈ [1,∞)) of the Hawking
singularity Theorem, see Theorem 5.6. Let us mention that the state-
ment of Theorem 5.6 is sharp, as for N ∈ N the bounds are attained
in the smooth model spaces identified in [42] (see also [40]);
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• sharp versions of timelike Bishop–Gromov, Poincaré, and Bonnet–
Myers inequalities (see Propositions 5.7, 5.8, 5.9, 5.10; for the sharp-
ness see Remark 5.11).

In order to obtain the applications in the last three bullet points, in
Section 4, we study the �1-optimal transport problem associated to the τ -
distance function τV from an achronal set V (see (1.8) for the definition
of τV ). The rough idea is that τV induces a partition of I+(V ), namely “the
chronological future of V ”, into timelike geodesics (also called “rays”). In
the smooth setting (outside the cut locus) such rays correspond to the gra-
dient flow curves of τV . Such a partition of I+(V ) induces a disintegration
of m into one-dimensional conditional measures, which satisfy MCP(K,N)
(see Theorems 4.17 and 4.18 for the precise statements). In Section 5.1,
the disintegration is used to construct an “area measure” as well as “nor-
mal variations” of V , and thus define synthetic notions of mean curvature
bounds. At this point, the above applications will follow.

The fact that the one-dimensional conditional measures satisfy the mea-
sure contraction property MCP(K,N) is not trivial: recall indeed that the
TMCPe(K,N) and TCDe

p(K,N) conditions are expressed in terms of �p
(not �1) optimal transport, while here we are dealing with an �1-optimal
transport problem. The key idea to overcome this issue is to include �p-
cyclically monotone sets inside �-cyclically monotone sets; this technique was
introduced in [16] and pushed further in [18, 19] for the metric setting. In the
present setting, since the cost �p may take the value −∞, �p-cyclical mono-
tonicity does not directly imply optimality. Nontheless using the work of
Bianchini-Caravenna [10] and its consequences included in Proposition 2.8,
we will use cyclically monotone sets to construct locally optimal couplings
and to deduce local estimates on the disintegration that will be then glob-
alized. Another useful idea is that there is a natural way to construct �p-
geodesics with 0 < p < 1: translate along transport rays by a constant
“distance”. Notice that 0 < p < 1 plays a crucial role here, as an analogous
statement in the Riemannian setting does not hold true for W2.

Let us conclude the introduction by pointing out that the reader inter-
ested in space-times with continuous metrics can find the main applications
specialised to such a framework in Section 5.4.

In analogy with the huge impact that the synthetic theory of Ricci cur-
vature lower bounds had in the geometric analysis of metric measure spaces,
it is natural to expect several other geometric and analytic applications of
the tools developed here; for instance, in a forthcoming paper [22], we will
obtain isoperimetric-type inequalities and other applications.
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1. Preliminaries

1.1. Basics on Lorentzian synthetic spaces

In this section we briefly recall some basic notions and results from the
theory of Lorentzian length (resp. geodesic) spaces. We follow the approach
of Kunzinger-Sämann [55] and we refer to their paper for further details and
proofs. Let us start by recalling the notion of causal space, pioneered by
Kronheimer-Penrose [52].

Definition 1.1 (Causal space (X,�,≤)). A causal space (X,�,≤) is a set
X endowed with a preorder ≤ and a transitive relation � contained in ≤.

We write x < y when x ≤ y, x �= y. We say that x and y are timelike
(resp. causally) related if x � y (resp. x ≤ y). Let A ⊂ X be an arbitrary
subset of X. We define the chronological (resp. causal) future of A the set

I+(A) := {y ∈ X : ∃x ∈ A, x� y}
J+(A) := {y ∈ X : ∃x ∈ A, x ≤ y}

respectively. Analogously, we define I−(A) (resp. J−(A)) the chronological
(resp. causal) past of A. In case A = {x} is a singleton, with a slight abuse
of notation, we will write I±(x) (resp. J±(x)) instead of I±({x}) (resp.
J±({x})).
Definition 1.2 (Lorentzian pre-length space (X, d,�,≤, τ)). A Lorentzian
pre-length space (X, d,�,≤, τ) is a causal space (X,�,≤) additionally
equipped with a proper metric d (i.e. closed and bounded subsets are com-
pact) and a lower semicontinuous function τ : X × X → [0,∞], called
time-separation function, satisfying

τ(x, y) + τ(y, z) ≤ τ(x, z) ∀x ≤ y ≤ z reverse triangle inequality

τ(x, y) = 0, if x �≤ y, τ(x, y) > 0⇔ x� y.
(1.1)

Note that the lower semicontinuity of τ implies that I±(x) is open, for any
x ∈ X.

We endow X with the metric topology induced by d. All the topological
concepts on X will be formulated in terms of such metric topology.

If (X, d,�,≤, τ) is a Lorentzian pre-length space, notice that setting
x≤̃y (resp. x�̃y) if and only if y ≤ x (resp. y � x) and τ̃(x, y) := τ(y, x),
we obtain a new Lorentzian pre-length space (X, d, �̃, ≤̃, τ̃). The latter is
said to be the causally reversed of the former.

Throughout the paper, I ⊂ R will denote an arbitrary interval.
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Definition 1.3 (Causal/timelike curves). A non-constant curve γ : I → X
is called (future-directed) timelike (resp. causal) if γ is locally Lipschitz
continuous (with respect to d) and if for all t1, t2 ∈ I, with t1 < t2, it holds
γt1 � γt2 (resp. γt1 ≤ γt2). We say that γ is a null curve if, in addition to
being causal, no two points on γ(I) are related with respect to �.

It was proved in [55, Proposition 5.9] that for strongly causal continuous
Lorentzian metrics, this notion of causality coincides with the classical one.

The length of a causal curve is defined via the time separation function,
in analogy to the theory of length metric spaces.

Definition 1.4 (Length of a causal curve). For γ : [a, b] → X future-
directed causal we set

Lτ (γ) := inf

{
N−1∑
i=0

τ(γti , γti+1
) : a = t0 < t1 < . . . < tN = b, N ∈ N

}
.

In case the interval is half-open, say I = [a, b), then the infimum is taken
over all partitions with a = t0 < t1 < . . . < tN < b (and analogously for the
other cases).

It was proved in [55, Proposition 2.32] that for smooth strongly causal
spacetimes (M, g), this notion of length coincides with the classical one:
Lτ (γ) = Lg(γ).

A future-directed causal curve γ : [a, b]→ X is maximal if it realises the
time separation, i.e. if Lτ (γ) = τ(γa, γb).

In case the time separation function is continuous with τ(x, x) = 0 for
every x ∈ X (as it will be throughout the paper, since we will assume that
X is a globally hyperbolic geodesic Lorentzian space), then any timelike
maximal γ with finite τ -length has a (continuous, monotonically strictly
increasing) reparametrisation λ by τ -arc-length, i.e. τ(γλ(s1), γλ(s2)) = s2−s1
for all s2 ≤ s1 in the corresponding interval (see [55, Corollary 3.35]).

We therefore adopt the following convention.

Definition 1.5. A curve γ will be called geodesic if it is maximal and
continuous when parametrized by τ -arc-lenght, i.e. the set of causal geodesics
is

(1.2) Geo(X) := {γ ∈ C([0, 1], X) : τ(γs, γt) = (t− s)τ(γ0, γ1) ∀s < t}.

The set of timelike geodesic is described as follows:

(1.3) TGeo(X) := {γ ∈ Geo(X) : τ(γ0, γ1) > 0}.
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Given x ≤ y ∈ X we also set

Geo(x, y) := {γ ∈ Geo(X) : γ0 = x, γ1 = y}(1.4)

I(x, y, t) := {γt : γ ∈ Geo(x, y)}(1.5)

respectively the space of geodesics, and the set of t-intermediate points from
x to y.

If x� y ∈ X we also set

TGeo(x, y) := {γ ∈ TGeo(X) : γ0 = x, γ1 = y}.

Given two subsets A,B ⊂ X we call

(1.6) I(A,B, t) :=
⋃

x∈A,y∈B
I(x, y, t)

the subset of t-intermediate points of geodesics from points in A to points
in B.

A Lorentzian pre-length space (X, d,�,≤, τ) is called

• non-totally imprisoning if for every compact set K � X there is con-
stant C > 0 such that the d-arc-length of all causal curves contained
in K is bounded by C;

• globally hyperbolic if it is non-totally imprisoning and for every x, y ∈
X the set (called “causal diamond”) J+(x) ∩ J−(y) is compact in X;

• geodesic if for all x, y ∈ X with x ≤ y, Geo(x, y) �= ∅.

It was proved in [55, Theorem 3.28] that for a globally hyperbolic Lorentzian
geodesic (actually length would suffice) space (X, d,�,≤, τ), the time-sep-
aration function τ is finite and continuous.

The next useful result was proved by Minguzzi (see [64, Corollary 3.8]).

Proposition 1.6. Let (X, d,�,≤, τ) be a Lorentzian geodesic space. Then
X is globally hyperbolic if and only if

(i) for every K1,K2 � X compact subsets, the set (called “causal emer-
ald”) J+(K1) ∩ J−(K2) is compact in X;

(ii) the causal relation {x ≤ y} ⊂ X × X is a closed subset (i.e. X is
causally closed).

In the sequel we will use that global hyperbolicity implies (i) and (ii).
Even if not used in the present work, the reverse implication is interesting
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at a conceptual level, as (i) and (ii) do not depend on d, τ,�, but only on
the causal relation ≤ and on the topology induced by d.

Using Proposition 1.6(i), it is readily seen that if X is globally hyperbolic
and K1,K2 � X are compact subsets then

(1.7) I(K1,K2, s) �
⋃

t∈[0,1]
I(K1,K2, t) � X, ∀s ∈ [0, 1].

In the proof of the singularity theorem, we will use a slight variation of
the time separation function associated to a subset V ⊂ X. Recall that a
subset V ⊂ X is called achronal if x �� y for every x, y ∈ V . In particular,
if V is achronal, then I+(V ) ∩ I−(V ) = ∅, so we can define the signed
time-separation to V , τV : X → [−∞,+∞], by

(1.8) τV (x) :=

⎧⎪⎨
⎪⎩
supy∈V τ(y, x), for x ∈ I+(V )

− supy∈V τ(x, y), for x ∈ I−(V )

0 otherwise

.

Note that τV is lower semi-continuous on I+(V ) (and upper semi-continuous
on I−(V )), as supremum of continuous functions.

In order for these suprema to be attained, global hyperbolicity and
geodesic property of X alone are not sufficient. One should rather demand
additional compactness properties of the set V . The following notion, intro-
duced by Galloway [37] in the smooth setting, is well suited to this aim.

Definition 1.7 (Future timelike complete (FTC) subsets). A subset V ⊂ X
is future timelike complete (FTC), if for each point x ∈ I+(V ), the intersec-
tion J−(x) ∩ V ⊂ V has compact closure (w.r.t. d) in V . Analogously, one
defines past timelike completeness (PTC). A subset that is both FTC and
PTC is called timelike complete.

We denote with C the topological closure (with respect to d) of a subset
C ⊂ X.

Lemma 1.8. Let (X, d,�,≤, τ) be a globally hyperbolic Lorentzian geodesic
space and let V ⊂ X be an achronal FTC (resp. PTC) subset. Then for each
x ∈ I+(V ) (resp. x ∈ I−(V )) there exists a point yx ∈ V with τV (yx) =
τ(yx, x) > 0 (resp. τV (yx) = −τ(x, yx) < 0).

Proof. Fix a point x ∈ I+(V ) (for x ∈ I−(V ) the proof is analogous). By
the very defnition of τV and (1.1), it holds τV (x) > 0 and τ(·, x) ≡ 0 outside
of J−(x). Since by global hyperbolicity [55, Theorem 3.28] the function



Optimal transport in Lorentzian synthetic spaces 431

τ(·, x) : X → R is finite and continuous, then it admits maximum on the
compact set K := J−(x) ∩ V ⊂ V at some point yx. Thus

τ(yx, x) = max
y∈K

τ(y, x) = sup
y∈V

τ(y, x) = τV (x) > 0.

Remark 1.9. Lemma 1.8 and reverse triangle inequality (1.1) implies that

τV (x)− τV (z) ≥ τ(yz, x)− τ(yz, z) ≥ τ(z, x), ∀x, z ∈ I+(V ), z ≤ x.

In analogy to the metric setting, it is natural to introduce the next notion
of timelike non-branching.

Definition 1.10 (Timelike non-branching). A Lorentzian pre-length space
(X, d,�,≤, τ) is said to be forward timelike non-branching if and only if for
any γ1, γ2 ∈ TGeo(X), it holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ1t = γ2t =⇒ γ1s = γ2s , ∀s ∈ [0, 1].

(1.9)

It is said to be backward timelike non-branching if the reversed causal struc-
ture is forward timelike non-branching. In case it is both forward and back-
ward timelike non-branching it is said timelike non-branching.

By Cauchy Theorem, it is clear that if (M, g) is a space-time whose
Christoffel symbols are locally-Lipschitz (e.g. in case g ∈ C1,1) then the
associated synthetic structure is timelike non-branching. It is expected that
for spacetimes with a metric of lower regularity (e.g. g ∈ C1 or g ∈ C0)
timelike branching can occur. It is also expected that timelike branching
can occur in closed cone structures (see Remark 1.13) when the Lorentz-
Finsler norm is not strictly convex (see [63, Remark 2.8]).

Definition 1.11 (Measured Lorentzian pre-length space (X, d,m,�,≤, τ)).
A measured Lorentzian pre-length space (X, d,m,�,≤, τ) is a Lorentzian
pre-length space endowed with a Radon non-negative measure m with full
support, i.e. suppm = X. We say that (X, d,m,�,≤, τ) is globally hyper-
bolic (resp. geodesic) if (X, d,�,≤, τ) is so.

Recall that a Radon measure m on a proper metric space X is a Borel-
regular measure which is finite on compact subsets. In this framework, it
is well known (see for instance [51, Section 1.6]) that Suslin sets are m-
measurable. For the sake of this paper it will be enough to recall that Suslin
sets (also called analytic sets) are precisely images via continuous mappings
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of Borel subsets in complete and separable metric spaces (for more details
see [51, 76]).

Remark 1.12 (Case of a spacetime with a continuous Lorentzian metric).
Let M be a smooth manifold, g be a continuous Lorentzian metric over M
and assume that (M, g) is time-oriented (i.e. there is a continuous timelike
vector field). Note that, for C0-metrics, the natural class of differentiability
of the manifolds is C1; now, C1 manifolds always possess a C∞ subatlas,
and one can choose some such sub-atlas whenever convenient.

A causal (respectively timelike) curve in M is by definition a locally
Lipschitz curve whose tangent vector is causal (resp. timelike) almost every-
where. It would also be possible to start from absolutely continuous (AC for
short) curves, but since causal AC curves always admit a re-parametrisation
that is Lipschitz [63, Sec. 2.1, Rem. 2.3], we do not loose in generality with
the above convention.

Denote with Lg(γ) the g-length of a causal curve γ : I →M , i.e. Lg(γ) :=∫
I

√
−g(γ̇, γ̇) dt. The time separation function τ : M ×M → [0,∞] is then

defined in the usual way, i.e.

τ(x, y) := sup{Lg(γ) : γ is future directed causal from x to y}, if x ≤ y,

and τ(x, y) = 0 otherwise. Note that the reverse triangle inequality (1.1)
follows directly from the definition. It is easy to check that an Lg-maximal
curve γ is also Lτ -maximal, and Lg(γ) = Lτ (γ) (see for instance [55, Re-
mark 5.1]). Also, we fix a complete Riemannian metric h on M and denote
by dh the associated distance function.

For a spacetime with a Lorentzian C0-metric:

• Recall that a Cauchy hypersurface is a subset which is met exactly once
by every inextendible causal curve. It is a well known fact that, even
for C0-metrics, a Cauchy hypersurface is a closed acausal topological
hypersurface [73, Proposition 5.2]. Global hyperbolicity is equivalent
to the existence of a Cauchy hypersurface [73, Theorem 5.7, Theorem
5.9] which in turn implies strong causality [73, Proposition 5.6].

• By [55, Proposition 5.8], if g is a causally plain (or, more strongly,
locally Lipschitz) Lorentzian C0-metric on M then the associated syn-
thetic structure is a pre-length Lorentzian space. More strongly, from
[55, Theorem 3.30 and Theorem 5.12] and combining the above items,
if g is a globally hyperbolic and causally plain Lorentzian C0-metric
on M then the associated synthetic structure is a globally hyperbolic
Lorentzian geodesic space.
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• Any Cauchy hypersurface is causally complete. More strongly, if V ⊂
M is Cauchy hypersurface then for every x ∈ J+(V ) it holds that
J−(x) ∩ J+(V ) is compact (and analogous statement for x ∈ J−(V )).
This fact is classical and well known in the smooth setting (see for
instance [69, Lemma 14.40] or [85, Theorem 8.3.12]) and extendable
to C0-metrics along the lines of the proof of [73, Theorem 5.7].

Remark 1.13 (Other classes of examples).

• Closed cone structures. Several results from smooth causality the-
ory can be extended to cone structures on smooth manifolds. One
of the motivations for such generalisations comes from the problem
of constructing smooth time functions in stably causal or globally
hyperbolic spacetimes. Fathi and Siconolfi [33] analysed continuous
cone structures with tools from weak KAM theory, Bernard and Suhr
[7] studied Lyapunov functions for closed cone structures and showed
(among other results) the equivalence between global hyperbolicity
and the existence of steep temporal functions in this framework, Min-
guzzi [63] gave a deep and comprehensive analysis of causality theory
for closed cone structures, including embedding and singularity theo-
rems in this framework. Closed cone structures provide a rich source
of examples of Lorentzian pre-length and length spaces, which can be
seen as the synthetic-Lorentzian analogue of Finsler manifolds (see [55,
Section 5.2] for more details).

• Outlook on examples, towards quantum gravity. The frame-
work of Lorentzian synthetic spaces allows to handle situations where
one may not have the structure of a manifold or a Lorentz(-Finsler)
metric. The optimal transport tools developed in the paper can pro-
vide a new perspective on curvature in those cases where there is no
classical notion of curvature (Riemann tensor, Ricci and sectional cur-
vature, etc.). A remarkable example of such a situation is given by
certain approaches to quantum gravity, see for instance [61] where it is
shown that from only a countable dense set of events and the causality
relation, it is possible to reconstruct a globally hyperbolic spacetime
in a purely order theoretic manner. In particular, two approaches to
quantum gravity are linked to Lorentzian synthetic spaces: the one of
causal Fermion systems [34, 35] and the theory of causal sets [12]. The
basic idea in both cases is that the structure of spacetime needs to be
adjusted on a microscopic scale to include quantum effects. This leads
to non-smoothness of the underlying geometry, and the classical struc-
ture of Lorentzian manifold emerges only in the macroscopic regime.
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For the connection to the theory of Lorentzian (pre-)length spaces we

refer to [55, Section 5.3], [34, Section 5.1]. Let us mention that the
link with causal Fermion systems looks particularly promising: indeed

the two cornerstones, used to define synthetic timelike-Ricci curva-
ture lower bounds, are Loretzian-distance and measure, and a causal

Fermion system is naturally endowed with both (the reference measure
in this setting is called universal measure).

1.2. Measures and weak/narrow convergence

In this subsection we briefly recall some basic notions of convergence of
measures that will be used in the paper. Standard references for the topic

are [3, 84].

Given a complete and separable (in particular, everything hold for

proper) metric space (X, d), we denote by B(X) the collection of its Borel
sets and by P(X) (resp. Pc(X)) the collection of all Borel probability mea-

sures (resp. with compact support).

We say that (μn) ⊂ P(X) narrowly converges to μ∞ ∈ P(X) provided

(1.10) lim
n→∞

∫
f μn =

∫
f μ∞ for every f ∈ Cb(X),

where Cb(X) denotes the space of bounded and continuous functions.

Relative narrow compactness in P(X) can be characterized by Prokho-

rov’s Theorem. Let us first recall that a set K ⊂ P(X) is said to be tight

provided for every ε > 0 there exists a compact set Kε ⊂ X such that

μ(X \Kε) ≤ ε for every μ ∈ K.

The we have the following classical result:

Theorem 1.14 (Prokhorov). Let (X, d) be complete and separable. A subset

K ⊂ P(X) is tight if and only if it is precompact in the narrow topology.

We next recall a useful tightness criterion for measures in P(X × X)

(for the proof see for instance [3, Lemma 5.2.2]). To this aim, denote with

P1, P2 : X × X → X the projections onto the first and second factor. The
push-forward is defined as (Pi)�π(A) := π(P−1

i (A)) for any A ∈ B(X).

Lemma 1.15 (Tightness criterion in P(X ×X)). A subset K ⊂ P(X ×X)
is tight if and only if (Pi)�K ⊂ P(X) is tight for i = 1, 2.
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We next recall a useful property concerning passage to the limit in (1.10)

when f is possibly unbounded, but a “uniform integrability” condition holds.

Definition 1.16 (Uniform integrability). We say that a Borel function g :

X → [0,+∞] is uniformly integrable w.r.t. a given set K ⊂ P(X) if

(1.11) lim sup
k→∞

sup
μ∈K

∫
{g≥k}

g μ = 0.

Lemma 1.17 (Lemma 5.1.7 [3]). Let (μn) ⊂ P(X) be narrowly convergent

to μ∞ ∈ P(X). If f : X → [0,∞) is continuous and uniformly integrable

with respect to the set {μn}n∈N, then

lim
n→∞

∫
f μn =

∫
f μ∞.

Conversely, if f : X → [0,∞) is continuous, f ∈ L1(μn) for every n ∈ N
and

(1.12) lim sup
n→∞

∫
X
f μn ≤

∫
X
f μ∞ < +∞,

then f is uniformly integrable with respect to the set {μn}n∈N.

1.3. Relative entropy and basic properties

We denote Pac(X) the space of probability measures absolutely continuous

with respect to m.

Definition 1.18. Given a probability measure μ ∈ P(X) we define its

relative entropy by

(1.13) Ent(μ|m) =

∫
X
ρ log(ρ)m,

if μ = ρm is absolutely continuous with respect to m and (ρ log(ρ))+ is

m-integrable. Otherwise we set Ent(μ|m) = +∞.

A simple application of Jensen inequality using the convexity of the

function (0,∞) � t �→ t log t gives

(1.14) Ent(μ|m) ≥ − logm(suppμ) > −∞, ∀μ ∈ Pc(X).



436 Fabio Cavalletti and Andrea Mondino

We set Dom(Ent(·|m)) := {μ ∈ P(X) : Ent(μ|m) ∈ R} to be the finiteness
domain of the entropy. An important property of the relative entropy is the
(joint) lower-semicontinuity under narrow convergence in case the reference
measures are probabilities (for a proof, see for instance [3, Lemma 9.4.3]):

mn,m∞ ∈ P(X), mn → m∞, μn → μ∞ narrowly

=⇒ lim inf
n→∞

Ent(μn|mn) ≥ Ent(μ∞|m∞).
(1.15)

In particular, for a general fixed reference measure m it holds:

μn → μ∞ narrowly and m

( ⋃
n∈N

suppμn

)
<∞

=⇒ lim inf
n→∞

Ent(μn|m) ≥ Ent(μ∞|m).

(1.16)

2. Optimal transport in Lorentzian synthetic spaces

2.1. The �p-optimal transport problem

Given μ, ν ∈ P(X), denote

Π(μ, ν) := {π ∈ P(X ×X) : (P1)�π = μ, (P2)�π = ν},
Π≤(μ, ν) := {π ∈ Π(μ, ν) : π(X2

≤) = 1},
Π	(μ, ν) := {π ∈ Π(μ, ν) : π(X2

	) = 1}

where X2
≤ := {(x, y) ∈ X2 : x ≤ y} and X2

	 := {(x, y) ∈ X2 : x� y}.
Definition 2.1. Let (X, d,�,≤, τ) be a Lorentzian pre-length space and let
p ∈ (0, 1]. Given μ, ν ∈ P(X), the p-Lorentz-Wasserstein distance is defined
by

(2.1) �p(μ, ν) := sup
π∈Π≤(μ,ν)

(∫
X×X

τ(x, y)p π(dxdy)

)1/p

.

When Π≤(μ, ν) = ∅ we set �p(μ, ν) := −∞.

Note that Definition 2.1 extends to Lorentzian pre-length spaces the
corresponding notion given in the smooth Lorentzian setting in [30] (see also
[62, 67], and [80] for p = 1); when Π≤(μ, ν) = ∅ we adopt the convention
of McCann [62] (note that [30] set �p(μ, ν) = 0 in this case). A coupling
π ∈ Π≤(μ, ν) maximising in (2.1) is said �p-optimal. The set of �p-optimal
couplings from μ to ν is denoted by Πp-opt

≤ (μ, ν).
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Remark 2.2 (An equivalent formulation of (2.1)). Set

(2.2) �p(x, y) :=

{
τ(x, y)p if x ≤ y,

−∞ otherwise.

Notice that for every π ∈ Π≤(μ, ν) it holds∫
X×X

τ(x, y)p π(dxdy) =

∫
X×X

�(x, y)p π(dxdy) ∈ [0,+∞].

Moreover, using the convention that ∞ −∞ = −∞, it follows that if the
coupling π ∈ Π(μ, ν) satisfies∫

X×X
�(x, y)p π(dxdy) > −∞,

then π ∈ Π≤(μ, ν). Thus the maximization problem (2.1) is equivalent (i.e.
the sup and the set of maximisers coincide) to the maximisation problem

(2.3) sup
π∈Π(μ,ν)

(∫
X×X

�p(x, y)π(dxdy)

)1/p

.

The advantage of the formulation (2.3) is that, when X is globally hyper-
bolic geodesic (so that τ is continuous) then �p is upper semi-continuous
on X ×X. Thus, one can apply to the Monge-Kantorovich problem (2.3)
standard optimal transport techniques (e.g. [84]).

We will adopt the following standard notation: given μ, ν ∈ P(X), we
denote with μ⊗ν ∈ P(X2) the product measure; given u, v : X → R∪{+∞}
we denote with u⊕v : X2 → R∪{+∞} the function u⊕v(x, y) := u(x)+v(y).

Proposition 2.3. Let (X, d,�,≤, τ) be a globally hyperbolic Lorentzian
geodesic space and let μ, ν ∈ P(X). If Π≤(μ, ν) �= ∅ and if there exist mea-
surable functions a, b : X → R, with a⊕b ∈ L1(μ⊗ν) such that �p ≤ a⊕b on
suppμ × supp ν (e.g. when μ, ν ∈ Pc(X)) then the sup in (2.1) is attained
and finite.

Proof. The claim follows from Remark 2.2 combined with [84, Theorem 4.1]
(see also [83, Theorem 1.3]).

We next show that �p satisfies the reverse triangle inequality. This was
proved in the smooth Lorentzian setting by Eckstein-Miller [30, Theorem 13],
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and it is the natural Lorentzian analogue of the fact that the Kantorovich-
Rubinstein-Wasserstein distances Wp, p ≥ 1, in the metric space setting
satisfy the usual triangle inequality (see for instance [84, Section 6]).

We first isolate the causal version of the Gluing Lemma, a classical tool
in Optimal Transport theory (see for instance [84]).

Lemma 2.4 (Gluing Lemma). Let (X, d,�,≤, τ) be a Lorentzian pre-length
space and let μi ∈ P(X) for i = 1, 2, 3. Given the couplings π12 ∈ Π≤(μ1, μ2)
and π23 ∈ Π≤(μ2, μ3), there exists π123 ∈ P(X ×X ×X) such that

(P12)�π123 = π12, (P23)�π123 = π23, (P13)�π123 ∈ Π≤(μ1, μ3).

Proof. The proof goes along the same lines of the classical Gluing Lemma
(see for instance [83, Lemma 7.6]). Disintegrate the coupling π12 with respect
to P2 and the coupling π23 with respect to P1 and obtain the following
formula

π12 =

∫
X
(π12)x μ2(dx), π23 =

∫
X
(π23)x μ2(dx), (π12)x, (π23)x ∈ P(X ×X),

with (π12)x(X × {x}) = (π23)x({x} ×X) = 1, μ2-a.e. Since π12 and π23 are
causal couplings, we have

(π12)x(X
2
≤) = (π23)x(X

2
≤) = 1, for μ2-a.e. x ∈ X.

In particular, for (π12)x-a.e. (z, x) and for (π23)x-a.e. (x, y), the transitive
property of ≤ gives that z ≤ y. Hence defining

π123 =

∫
X
(P14)�((π12)x ⊗ (π23)x)μ2(dx),

the first two claims are obtained by the classical Gluing Lemma [83, Lem-
ma 7.6] (or [84, Chapter 1]), while the last one follows from the previous
argument.

Proposition 2.5 (�p satisfies the reverse triangle inequality). Let (X, d,�,
≤, τ) be a Lorentzian pre-length space and let p ∈ (0, 1]. Then �p satisfies
the reverse triangle inequality:

(2.4) �p(μ0, μ1) + �p(μ1, μ2) ≤ �p(μ0, μ2), ∀μ0, μ1, μ2 ∈ P(X),

where we adopt the convention that ∞−∞ = −∞ to interpret the left hand
side of (2.4).



Optimal transport in Lorentzian synthetic spaces 439

Proof. We assume �p(μ0, μ1), �p(μ1, μ2) > −∞, otherwise the claim is trivial.
We first consider the case when �p(μ0, μ1), �p(μ1, μ2) < ∞. By the very

definition (2.1) of �p, for any ε > 0 we can find π01 ∈ Π≤(μ0, μ1) π12 ∈
Π≤(μ1, μ2) such that

�p(μ0, μ1) ≤
(∫

X×X
τ(x, y)p π01(dxdy)

)1/p

+ ε,

�p(μ1, μ2) ≤
(∫

X×X
τ(x, y)p π12(dxdy)

)1/p

+ ε.

We denote with π012 ∈ P(X3) the measure given by the Gluing Lemma 2.4.
Recalling that for π012-a.e. (x, z, y) ∈ X3 it holds x ≤ z ≤ y, we can use
(1.1) to compute

�p(μ0, μ2) ≥
(∫

X×X
τ(x, y)p (P13)�π012(dxdy)

)1/p

=

(∫
X×X×X

τ(x, y)p π012(dxdzdy)

)1/p

≥
(∫

X×X×X
[τ(x, z) + τ(z, y)]p π012(dxdzdy)

)1/p

≥
(∫

X×X
τ(x, z)p π012(dxdzdy)

)1/p

+

(∫
X×X

τ(z, y)p π012(dxdzdy)

)1/p

=

(∫
X×X

τ(x, z)p π01(dxdz)

)1/p

+

(∫
X×X

τ(z, y)p π12(dzdy)

)1/p

≥ �p(μ0, μ1) + �p(μ1, μ2)− 2ε,

proving the inequality, by the arbitrariness of ε > 0. If one of �p(μ0, μ1),
�p(μ1, μ2) is not bounded from above, then simply take a sequence of cou-
plings with diverging cost; repeating the above calculations we obtain that
also �p(μ0, μ2) =∞, proving the claim.

2.2. Cyclical monotonicity

The notion of cyclical monotonicity is very useful to relate an optimal cou-
pling with its support.

Definition 2.6 (τp-cyclical monotonicity and �p-cyclical monotonicity). Fix
p ∈ (0, 1] and let (X, d,�,≤, τ) be a Lorentzian pre-length space. A subset
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Γ ⊂ X2
≤ is said to be τp-cyclically monotone (resp. �p-cyclically monotone)

if, for any N ∈ N and any family (x1, y1), . . . , (xN , yN ) of points in Γ, the

next inequality holds:

(2.5)

N∑
i=1

τ(xi, yi)
p ≥

N∑
i=1

τ(xi+1, yi)
p,

(resp.
∑N

i=1 �(xi, yi)
p ≥

∑N
i=1 �(xi+1, yi)

p) with the convention xN+1 = x1.

A coupling is said to be τp-cyclically monotone (resp. �p-cyclically mono-

tone) if it is concentrated on a τp-cyclically monotone set (resp. �p-cyclically

monotone set).

Remark 2.7. Notice that Γ ⊂ X2
≤ is �p-cyclically monotone if and only if

(2.5) holds for those families with xi+1 ≤ yi for all i ∈ {1, . . . , N}. It is then
clear that

(2.6) τp-cyclical monotonicity ⇒ �p-cyclical monotonicity.

Note if P1(Γ) × P2(Γ) ⊂ X2
≤ then �p-cyclical monotonicity is equivalent to

τp-cyclical monotonicity.

Proposition 2.8 (Optimality ⇔ cyclical monotonicity). Fix p ∈ (0, 1]. Let

(X, d,�,≤, τ) be a Lorentzian pre-length space and let μ, ν ∈ P(X). Assume

that Π≤(μ, ν) �= ∅ and that there exist measurable functions a, b : X → R,
with a ⊕ b ∈ L1(μ ⊗ ν) such that �p ≤ a ⊕ b, μ ⊗ ν-a.e. Then the following

holds.

1. If π is �p-optimal then π is �p-cyclically monotone.

2. If π(X2
	) = 1 and π is �p-cyclically monotone then π is �p-optimal.

Proof. The result follows from [10], dealing with optimal transport (min-

imisation) problems associated to general Borel cost functions c(·, ·) : X2 →
[0,+∞]. Of course, the (maximising) optimal couplings in Π(μ, ν) for the

cost �p are the same as for the cost �p−(a⊕b), which is non-positive μ⊗ν-a.e.;
hence we enter in the framework of [10].

The first claim thus follows from [10, Lemma 5.2] (see also [10, Proposi-

tion B.16]).

For the second claim, notice that [10, Theorem 5.6] provides a general

condition to ensure that an �p-cyclically monotone coupling is �p-optimal.

Thanks to [10, Corollary 5.7, Proposition 5.8] it will be enough to verify the
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existence of countably many Borel sets Ai, Bi ⊂ X such that

π
( ⋃

i∈N
Ai ×Bi

)
= 1,

⋃
i∈N

Ai ×Bi ⊂ X2
≤.

The existence of such sets (that can actually chosen to be open) follows

directly from the fact that X2
	 = {τ > 0} ⊂ X2 is open by the lower

semicontinuity of τ .

Remark 2.9. Thanks to [55, Proposition 5.8], Proposition 2.8 is valid for a

causally plain (so, in particular, for a locally-Lipschitz) Lorentzian C0-metric

g on a space-time M .

In case (X, d,�,≤, τ) is a globally hyperbolic Lorentzian geodesic space

(as it will be for most of the paper), the first claim in Proposition 2.8 fol-

lows from more standard literature (see e.g. [4, Theorem 3.2]), thanks to

Remark 2.2.

We will later see that for τp-cyclically monotone causal couplings, �p-

optimality holds true (Theorem 2.26). To conclude we report a standard

fact about optimal couplings.

Lemma 2.10 (Restriction). Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a Lorentz-

ian pre-length space and let μ, ν ∈ P(X). Then for every π ∈ Πp-opt
≤ (μ, ν)

and every measurable function f : X × X → [0,∞) with
∫
f π = 1 and

f ∈ L∞(π), also the coupling fπ is optimal, i.e. denoting with

μf := (P1)�fπ, νf := (P2)�fπ,

it holds true fπ ∈ Πp-opt
≤ (μf , νf ).

Proof. Trivially fπ ∈ Π≤(μf , νf ) hence we will only be concerned about

optimality. Assume by contradiction the existence of π̂ ∈ Π≤(μf , νf ) with

∫
X×X

τ(x, y)pf(x, y)π(dxdy) <

∫
X×X

τ(x, y)pπ̂(dxdy).

Consider then the new coupling

π̄ := π − f

‖f‖∞
π +

1

‖f‖∞
π̂.
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By linearity, π̄ has the same marginals of π and it is causal, i.e. π̄ ∈ Π≤(μ, ν).
Finally∫

X×X
τ(x, y)pπ̄(dxdy)

=

∫
X×X

τ(x, y)pπ(dxdy) +
1

‖f‖∞

∫
X×X

τ(x, y)p(π̂ − fπ)(dxdy)

>

∫
X×X

τ(x, y)pπ(dxdy),

giving a contradiction.

2.3. Stability of optimal couplings

While in the Riemannian framework stability of optimal couplings follows
by stability of cyclical monotonicity, in the Lorentzian setting, due to the
upper semicontinuity of the cost function �p (opposed to continuity of the
Riemannian cost dp), a more refined analysis is needed.

Building on the previous Proposition 2.8, we can establish a first basic
stability property with respect to narrow convergence valid for a special class
of optimal couplings.

Lemma 2.11 (Stability of �p-optimal couplings I). Let (X, d,�,≤, τ) be a
globally hyperbolic Lorentzian geodesic space and fix p ∈ (0, 1].

Let (μ1
n), (μ

2
n) ⊂ P(X) be narrowly convergent to some μ1

∞, μ2
∞ ∈ P(X)

and assume that, for every n ∈ N, there exists an �p-optimal coupling πn ∈
Πp-opt

≤ (μ1
n, μ

2
n) which is also τp-cyclically monotone.

Then (πn) is narrowly relatively compact in P(X2). Furthermore, if
π∞(X2

	) = 1, then any narrow limit point π∞ belongs to Π≤(μ1
∞, μ2

∞) and
is �p-optimal.

Proof. By Prokhorov Theorem 1.14, the subsets {μ1
n}n∈N, {μ2

n}n∈N ⊂ P(X)
are tight. Lemma 1.15 implies that {πn}n∈N ⊂ P(X×X) is tight as well, and
then (again by Theorem 1.14) it converges narrowly, up to a subsequence,
to some π∞ ∈ P(X × X). Using the continuity of the projection maps, it
is readily seen that π∞ ∈ Π(μ1

∞, μ2
∞). Global hyperbolicity together with

Proposition 1.6(ii) further implies that π∞ ∈ Π≤(μ1
∞, μ2

∞). To conclude
optimality it is enough to observe that τp is continuous and therefore τp-
cyclical monotonicity is preserved under narrow convergence (note that the
same claim would be false for �p-cyclically monotone sets) and apply the
second point of Proposition 2.8 together with (2.6) (see also Theorem 2.26
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below, for a more self-contained proof of the implication π is τp-cyclically
monotone ⇒ π is �p-optimal).

To obtain stronger stability properties, we will use Γ-convergence tech-
niques. For the rest of this section, (X, d,�,≤, τ) will be a globally hyper-
bolic Lorentzian geodesic space and we also fix p ∈ (0, 1].

Let (μ1
n), (μ

2
n) ⊂ P(X) be narrowly convergent to some μ1

∞, μ2
∞ ∈ P(X).

Associated with them, we define Fn, F∞ : P(X2)→ R ∪ {±∞} as

Fi(π) =

{∫
X×X τ(x, y)p π(dxdy), π ∈ Π≤(μ1

i , μ
2
i ),

−∞, otherwise,
for i = n,∞.

Lemma 2.12 (lim sup-inequality). Let {πi}i∈N∪{∞} ⊂ P(X2) be such that
πn → π∞ narrowly and τp is uniformly integrable with respect to {πi}i∈N∪{∞}
(in particular, the second condition is satisfied if there exists a compact sub-
set containing suppπn for all n ∈ N). Then

(2.7) F∞(π∞) ≥ lim sup
n→∞

Fn(πn).

If moreover, πn(X
2
≤) = 1 for all n ∈ N, then also π∞(X2

≤) = 1 and

F∞(π∞) = lim
n→∞

Fn(πn).

Proof. Without loss of generality we can assume that πn(X
2
≤) = 1 defini-

tively, otherwise the claim (2.7) is trivial. Since by assumption X2
≤ ⊂ X2 is

closed, it follows that

π∞(X2
≤) ≥ lim sup

n→∞
πn(X

2
≤) = 1.

Using that (from global hyperbolicity) τp is continuous on X2
≤ together with

Lemma 1.17, we conclude that Fn(πn)→ F∞(π∞).

For the liminf inequality we have to select a particular family of couplings
of (μ1

n), (μ
2
n).

Lemma 2.13 (Existence of a recovery sequence). Assume that there exists
a compact subset K ⊂ X such that suppμ1

n, suppμ
2
n ⊂ K for all n ∈ N.

Assume that, for each n ∈ N, the sets Π≤(μ1
n, μ

1
∞) and Π≤(μ2

∞, μ2
n) are both

not empty. Then, for any π ∈ Π(μ1
∞, μ2

∞), there exists a sequence πn ∈
Π(μ1

n, μ
2
n) such that F∞(π) ≤ lim infn→∞ Fn(πn).
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Proof. Fix any π ∈ P(X2). If π /∈ Π≤(μ1
∞, μ2

∞) then the claim is trivial (just
take as a recovery sequence π itself). Assume then π ∈ Π≤(μ1

∞, μ2
∞). By

assumption there exists π1
n ∈ Π≤(μ1

n, μ
1
∞) and π2

n ∈ Π≤(μ2
∞, μ2

n). Then, by
Gluing Lemma 2.4 and transitivity of ≤, we obtain a π̂n ∈ P(X×X×X×X)
such that

(P12)�π̂n = π1
n, (P23)�π̂n = π, (P34)�π̂n = π2

n, (P14)�π̂n ∈ Π≤(μ
1
n, μ

2
n).

Recalling that τ is non-negative and satisfies reverse triangle inequality, we
get:

F ((P14)�π̂n) =

∫
X×X

τ(x, y)p (P14)�π̂n(dxdy)

=

∫
X×X×X×X

τ(P14(x, z, w, y))
p π̂n(dxdydzdw)

≥
∫
X×X×X×X

(τ(x, z) + τ(z, w) + τ(w, y))p π̂n(dxdydzdw)

≥
∫
X×X

τ(z, w)pπ(dzdw)

≥ F (π).

Thus the sequence πn := (P14)�π̂n satisfies the claim.

Theorem 2.14 (Stability of �p-optimal couplings II). Assume that there
exists a compact subset K ⊂ X such that suppμ1

n, suppμ
2
n ⊂ K for all

n ∈ N, and that for each n ∈ N the sets Π≤(μ1
n, μ

1
∞) and Π≤(μ2

∞, μ2
n) are

both not empty.
Then �p(μ

1
n, μ

2
n) converges to �p(μ

1
∞, μ2

∞) and any narrow-limit point of
Πp-opt

≤ (μ1
n, μ

2
n) belongs to Πp-opt

≤ (μ1
∞, μ2

∞).

Proof. For the first claim, notice that from Lemma 2.12 and the equintegra-
bility of τp granted by the assumptions, it readily follows that

lim sup
n→∞

�p(μ
1
n, μ

2
n) ≤ �p(μ

1
∞, μ2

∞).

Also, Lemma 2.13 gives �p(μ
1
∞, μ2

∞) ≤ lim infn→∞ �p(μ
1
n, μ

2
n). Hence,

�p(μ
1
n, μ

2
n)→ �p(μ

1
∞, μ2

∞).

For the second claim, if πn ∈ Πp-opt
≤ (μ1

n, μ
2
n) converges narrowly to π then,

by the continuity of the projections and the causal closedness of X, we have
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that π ∈ Π≤(μ1
∞, μ2

∞) and∫
τ(x, y)p π(dxdy) = lim

n→∞

∫
τ(x, y)p πn(dxdy) = lim

n→∞
�p(μ

1
n, μ

2
n)

p

= �p(μ
1
∞, μ2

∞)p,

where the first identity follows from Lemma 2.12 and last by the previous
part of the proof. We conclude that π ∈ Πp-opt

≤ (μ1
∞, μ2

∞).

Another simple criterion, based on ideas from Γ-convergence, to ensure
stability of �p-optimal couplings is the following one.

Lemma 2.15. Let (X, d,�,≤, τ) be a Lorentzian globally hyperbolic geo-
desic space and fix p ∈ (0, 1]. Let (μ1

n), (μ
2
n) ⊂ P(X) be narrowly convergent

to some μ1
∞, μ2

∞ ∈ P(X). Assume moreover the existence of an optimal
coupling π̄∞ ∈ Πp-opt

≤ (μ1
∞, μ2

∞) and of a sequence π̄n ∈ Π≤(μ1
n, μ

2
n) such that

Fn(π̄n)→ F∞(π̄∞).
Then for any τp-uniformly integrable sequence πn ∈ Πp-opt

≤ (μ1
n, μ

2
n), any

limit π∞ in the narrow topology is �p-optimal, i.e. π∞ ∈ Πp-opt
≤ (μ1

∞, μ2
∞).

Proof. Consider any limit point π∞ of a τp-uniformly integrable sequence
πn ∈ Πp-opt

≤ (μ1
n, μ

2
n) and π̄∞ ∈ Πp-opt

≤ (μ1
∞, μ2

∞) limit point of π̄n ∈ Π≤(μ1
n, μ

2
n).

From Lemma 2.12 we have that

(2.8) F∞(π∞) ≥ lim sup
n→∞

Fn(πn) ≥ lim sup
n→∞

Fn(π̄n) = F∞(π̄∞) ≥ F∞(π∞)

giving optimality of π∞.

From Lemma 2.15 we obtain another stability result. For this scope we
introduce the following notation:

D :=
{
ν ∈ Pc(X) : ν =

∑
i≤k

αiδxi
, for some k ∈ N

}
.

Theorem 2.16 (Stability of �p-optimal couplings III). Let (X, d,�,≤, τ)
be a globally hyperbolic Lorentzian geodesic space and fix p ∈ (0, 1]. Let also
μ0, μ1 ∈ Pc(X) be given and assume the existence of π ∈ Πp-opt

≤ (μ0, μ1) with

suppπ ⊂ X2
	. Let (μ1,n) ⊂ D with suppμ1,n ⊂ suppμ1 be a sequence nar-

rowly convergent to μ1 with �p(μ0, μ1,n) ∈ [0,∞). Then there exists another
sequence (μ̄1,n) ⊂ D such that the following holds true.

The sequence (μ̄1,n) still narrowly converges to μ1 and μ̄1,n is abso-
lutely continuous with respect to μ1,n. Moreover, for any sequence πn ∈
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Πp-opt
≤ (μ0, μ̄1,n), any limit measure π∞ in the narrow topology is �p-optimal,

i.e. π∞ ∈ Πp-opt
≤ (μ0, μ1), and

�p(μ0, μ̄1,n)→ �p(μ0, μ1).

Proof. Step 1. Restricting μ0.
Since suppπ is compact and X2

	 is an open set, for any ε > 0 we
find finitely many points (xi,ε, yi,ε) with i = 1, . . . , kε such that suppπ ⊂⋃

i≤kε
Bε(xi,ε) × Bε(yi,ε) ⊂ X2

	. In particular, for any ε > 0,
μ1(

⋃
i≤kε

Bε(yi,ε)) = 1. Then narrow convergence implies that

(2.9) lim inf
n→∞

μ1,n(Aε) ≥ μ1(Aε) = 1, Aε :=
⋃
i≤kε

Bε(yi,ε).

Since we are interested in obtaining a sequence {μ̄1,n} absolutely continuous
with respect to μ1,n, we can restrict and normalize μ1,n to Aε obtaining
(thanks to (2.9)) a new sequence still converging narrowly to μ1. Hence,
without loss of generality, we will assume μ1,n(Aε) = 1 for every n ∈ N.

Step 2. Construction of the approximations.
By assumption μ1,n =

∑
i≤hn

αi,nδyi,n
, with

∑
i≤hn

αi,n = 1, αi,n ≥ 0 and

from Step 1 we have μ1,n(Aε) = 1. Let {Bi,ε}kε

i=1 be a pairwise disjoint
covering of suppπ, where each Bi,ε is a Borel subset of Bε(xi,ε)×Bε(yi,ε) ⊂
X2

	. We define the following approximations:

πi,ε := π�Bi,ε
,

πi,ε,n := (P1)�πi,ε ⊗

⎛
⎝ ∑

yi,n∈P2(Bi,ε)

αi,nδyi,n

⎞
⎠/⎛

⎝ ∑
yi,n∈P2(Bi,ε)

αi,n

⎞
⎠ ,

(2.10)

and set πε,n :=
∑

i≤kε
πi,ε,n. Observe that:

(P2)�πε,n =
∑
i≤kε

(P2)�πi,ε,n(2.11)

=
∑
i≤kε

⎛
⎝ π(Bi,ε)∑

yi,n∈P2(Bi,ε)
αi,n

∑
yi,n∈P2(Bi,ε)

αi,nδyi,n

⎞
⎠

=
∑
i≤kε

⎛
⎝ π(Bi,ε)

μ1,n(P2(Bi,ε))

∑
yi,n∈P2(Bi,ε)

αi,nδyi,n

⎞
⎠ =: μ̄1,n.
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Moreover

(2.12) (P1)�πε,n =
∑
i≤kε

(P1)�πi,ε = (P1)�π = μ0.

It is clear from (2.11) and (2.12) that πε,n ∈ Π≤(μ0, μ̄1,n) and that μ̄1,n �
μ1,n. Notice indeed that πi,ε,n is concentrated over P1(Bi,ε)×P2(Bi,ε). Being
Bi,ε a subset of the product of two balls inside X2

	, causality of πi,ε,n and
of πε,n then follow.

Step 3. Convergence of the approximations.

We now estimate the difference between πε,n and π by checking first the
difference between πi,ε,n and πi,ε in duality with (f1, f2) ∈ Cb(X)2: from
(2.10) we deduce that

∫
f1(x)f2(y)πi,ε,n(dxdy) =

∫
f1(x)πi,ε(dxdy)

∑
yi,n∈P2(Bi,ε)

αi,nf2(yi,n)∑
yi,n∈P2(Bi,ε)

αi,n
.

Since suppμ1 is compact, we have that f2|suppμ1
is uniformly continuous.

Denoting with ωf2(ε) the modulus of continuity of f2|suppμ1
at distance ε,

and recalling that P2(Bi,ε) ⊂ Bε(yi,ε) we estimate

∣∣∣∣
∫

f1(x)f2(y)πi,ε,n(dxdy)−
∫

f1(x)πi,ε(dxdy)f2(yi,ε)

∣∣∣∣
≤ ωf2(ε)

∫
|f1(x)|πi,ε(dxdy).

In the same way:∣∣∣∣
∫

f1(x)f2(y)πi,ε(dxdy)−
∫

f1(x)πi,ε(dxdy)f2(yi,ε)

∣∣∣∣
≤ ωf2(ε)

∫
|f1(x)|πi,ε(dxdy).

Hence, summing over all i ≤ kε, we obtain∣∣∣∣
∫
X×X

f1(x)f2(y)πε,n(dxdy)−
∫
X×X

f1(x)f2(y)π(dxdy)

∣∣∣∣ ≤ 2ωf2(ε)‖f1‖∞.

Recall that every ϕ ∈ C(suppμ0 × suppμ1;R) can be approximated in
C0-norm by finite linear combinations of product functions fi,1 ⊗ fi,2 with
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fi,1 ∈ C(suppμ0;R), fi,2 ∈ C(suppμ1;R). Thus, letting εn ↓ 0 be such that

lim infn→∞ μ1,n(Aεn) = 1 (the existence of the sequence (εn) is granted by

(2.9)) and defining πn := πεn,n for every n ∈ N, we have

πn ∈ Π≤(μ0, μ̄1,n), μ̄1,n � μ1,n, πn → π narrowly.

In particular the last convergence implies that μ̄1,n converges narrowly to μ1,

applying (P2)�. Since for large n the construction gives suppπn ⊂ (suppπ)ε �
X2 (here (suppπ)ε denotes an ε-enlargement of suppπ with respect to d),
we have that (πn) is τ

p-uniformly integrable and thus Fn(πn) → F∞(π) by

Lemma 2.12. The conclusion then follows from Lemma 2.15.

Remark 2.17. The previous stability results can be seen as the Lorentzian

counterpart of the metric fact that Wp(μn, μ∞)→ 0 if and only if μn → μ∞
narrowly and (μn) has uniformly integrable p-moments. The remarkable

differences in the Lorentzian setting are first that the cost is not continuous

implying the �p-optimality does not pass to the limit automatically, and

second that �p(μn, μ∞) → 0 does not imply μn → μ∞ narrowly: it is easy

to construct a counterexample (e.g. already in 1+1 dimensional Minkowski

space-time) using that if suppμ1 and suppμ2 are contained in the light cone

of a given common point then �p(μ1, μ2) = 0.

2.4. Kantorovich duality

In the smooth Lorentzian setting, Kantorovich duality has been studied in

[80, 50] in case p = 1 and in [62] for p ∈ (0, 1), see also [8, 9] for relativistic

cost functions in Rn. In this section we study Kantorovich duality in the

Lorentzian synthetic setting. The following definition, relaxing the notion

of q-separation introduced by McCann [62, Definition 4.1] in the smooth

Lorentzian setting will turn out to be very useful. Recall the definition (2.2)

of the cost function �p.

Definition 2.18 (Timelike p-dualisable). Let (X, d,�,≤, τ) be a Lorentzian
pre-length space and let p ∈ (0, 1]. We say that (μ, ν) ∈ P(X)2 is timelike

p-dualisable (by π ∈ Π	(μ, ν)) if

1. �p(μ, ν) ∈ (0,∞);

2. π ∈ Πp-opt
≤ (μ, ν) and π(X2

	) = 1;

3. there exist measurable functions a, b : X → R, with a⊕ b ∈ L1(μ⊗ ν)

such that �p ≤ a⊕ b on suppμ× supp ν.



Optimal transport in Lorentzian synthetic spaces 449

The motivation for considering timelike p-dualisable pairs of measures is

twofold: firstly the p-optimal coupling π(dxdy) matches events described by

μ(dx) with events described by ν(dy) so that x� y, secondly Kantorovich

duality holds (cf. [80, Proposition 2.7] in smooth Lorentzian setting and in

case p = 1):

Proposition 2.19 (Weak Kantorovich duality I). Fix p ∈ (0, 1]. Let (X, d,
�,≤, τ) be a globally hyperbolic Lorentz geodesic space. If (μ, ν) ∈ P(X)2 is

timelike p-dualisable, then (weak) Kantorovich duality holds:

(2.13) �p(μ, ν)
p = inf

{∫
X
uμ+

∫
X
v ν

}
,

where the inf is taken over all measurable functions u : suppμ→ R∪{+∞}
and v : supp ν → R ∪ {+∞} with u ⊕ v ≥ �p on suppμ × supp ν and

u ⊕ v ∈ L1(μ ⊗ ν). Furthermore, the value of the right hand side does not

change if one restricts the inf to bounded and continuous functions.

Proof. The claim follows from Remark 2.2 combined with [83, Theorem 1.3].

Remark 2.20. The notion of timelike p-dualisabily is not empty, indeed

for instance if X is globally hyperbolic and μ, ν ∈ Pc(X) admit an optimal

coupling π ∈ Πp-opt
≤ (μ, ν) concentrated on X2

	, then all the three conditions

are satisfied. The only one requiring a comment is the last one: since by

global hyperbolicity τ : X2 → R is continuous then it is bounded on the

compact set suppμ× supp ν � X2 and we can choose a and b to be constant

functions.

Under stronger assumptions on the causality relation on (μ, ν), (weak)

Kantorovich duality holds for general Lorentzian pre-length spaces:

Proposition 2.21 (Weak Kantorovich duality II). Fix p ∈ (0, 1]. Let (X, d,
�,≤, τ) be a Lorentzian pre-length space and let (μ, ν) ∈ P(X)2 such that

(μ⊗ν) (X2
≤) = 1. Assume that there exist measurable functions a, b : X → R,

with a⊕ b ∈ L1(μ⊗ ν) such that τp ≤ a⊕ b, μ⊗ ν-a.e.

Then (weak) Kantorovich duality (2.13) holds.

Proof. The result follows from [6, Theorem 1] where (weak) Kantorovich

duality (for the minimum optimal transport problem) is proved to hold for

general μ⊗ ν-a.e. finite Borel costs with values in [0,∞], observing that the

cost (a⊕ b)− �p takes values in [0,∞], μ⊗ ν-a.e.
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We next discuss the validity of the strong Kantorovich duality, i.e. the
existence of optimal functions (called Kantorovich potentials) achieving the
infimum in the right hand side of (2.13). To that aim the next definition is
key.

Definition 2.22 (�p-concave functions, �p-transform and �p-subdifferential).
Fix p ∈ (0, 1] and let U, V ⊂ X. A measurable function ϕ : U → R is �p-
concave relatively to (U, V ) if there exists a function ψ : V → R such that

ϕ(x) = inf
y∈V

ψ(y)− �p(x, y), ∀x ∈ U.

The function

(2.14) ϕ(�p) : V → R ∪ {−∞}, ϕ(�p)(y) := sup
x∈U

ϕ(x) + �p(x, y)

is called �p-transform of ϕ. The �p-subdifferential ∂�pϕ ⊂ (U × V ) ∩ X2
≤ is

defined by

∂�pϕ := {(x, y) ∈ (U × V ) ∩X2
≤ : ϕ(�p)(y)− ϕ(x) = �p(x, y)}.

Replacing �p with τp in all the definitions above, one obtains the notions of
τp-concave functions, τp-transform and τp-subdifferential.

Let us explicitely observe that, by the very definition (2.14) of �p-trans-
form it holds

(2.15) ϕ(�p)(y)− ϕ(x) ≥ �p(x, y), ∀(x, y) ∈ U × V,

and analogous inequality replacing �p with τp.

Definition 2.23 (Strong Kantorovich duality). Fix p ∈ (0, 1]. We say that
(μ, ν) ∈ P(X)2 satisfies strong �p-Kantorovich duality if

1. �p(μ, ν) ∈ (0,∞);
2. there exists Borel subsets A1 ⊂ suppμ,A2 ⊂ supp ν with μ(A1) =

ν(A2) = 1, and there exists ϕ : A1 → R which is �p-concave relatively
to (A1, A2) and satisfying

�p(μ, ν)
p =

∫
X
ϕ(�p)(y) ν(dy)−

∫
X
ϕ(x)μ(dx).

Replacing �p with τp in condition 2 above, one obtains the notion of strong
τp-Kantorovich duality.
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Remark 2.24. Using (2.15), it is immediate to check that if (μ, ν) ∈ P(X)2

satisfies strong �p-Kantorovich duality then the following holds. A coupling
π ∈ Π≤(μ, ν) is �p-optimal if and only if

ϕ(�p)(y)− ϕ(x) = �p(x, y) = τ(x, y)p, for π-a.e. (x, y),

i.e. if and only if π(∂�pϕ) = 1. Analogously, if (μ, ν) ∈ P(X)2 satisfies
strong τp-Kantorovich duality then π ∈ Π≤(μ, ν) is �p-optimal if and only if
π(∂τpϕ) = 1.

Remark 2.25 (The case suppμ× supp ν ⊂ X2
≤). In case suppμ× supp ν ⊂

X2
≤, it is readily seen from the definitions above that ϕ : suppμ → R is

�p-concave (relatively to (suppμ, supp ν)) if and only if it is τp-concave,
moreover ϕ(�p) = ϕ(τp), and ∂�pϕ = ∂τpϕ. It follows that also the notions of
strong �p-Kantorovich duality and strong τp-Kantorovich duality coincide in
this case.

We next relate τp-cyclical monotonicity with strong τp-Kantorovich du-
ality.

Theorem 2.26 (τp-cyclical monotonicity ⇒ strong τp-Kantorovich dual-
ity). Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a Lorentzian pre-length space and
let μ, ν ∈ P(X) with �p(μ, ν) ∈ (0,∞). and that �p(μ, ν) ∈ (0,∞). For any
π ∈ Π≤(μ, ν) the following holds.

If π is τp-cyclically monotone then π is �p-optimal. Moreover, (μ, ν)
satisfies strong τp-Kantorovich duality and π(∂τpϕ) = 1.

Proof. The proof consists in constructing a τp-concave function ϕ such that
π(∂τpϕ) = 1.

Let Γ ⊂ X2
≤ be a Borel τp-cyclically monotone set such that π(Γ) = 1,

and τ |Γ is real valued. It follows that τp is real valued on P1(Γ) × P2(Γ).
Notice that Pi(Γ) ⊂ X is a Suslin set, for i = 1, 2.

Step 1. Definition of ϕ(x0,y0) = ϕ, and proof that ϕ(x0) = 0.
Fix (x0, y0) ∈ Γ. Define ϕ(x0,y0) = ϕ : P1(Γ)→ R ∪ {±∞} by

(2.16) ϕ(x0,y0)(x) = ϕ(x) := inf

{
k∑

i=0

[
τ(x′i, y

′
i)
p − τ(x′i+1, y

′
i)
p
]}

where the inf is taken over all k ∈ N and all “chains”

{
(x′i, y

′
i)
}
0≤i≤k+1

⊂ Γ with x′k+1 = x, (x′0, y
′
0) = (x0, y0).
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Let us stress that y′k+1 does not enter in the expression of the right hand
side of (2.16) (this will be useful in step 3). It is readily seen that

(2.17) ϕ(x0) = 0.

Indeed on the one hand ϕ(x0) ≤ τ(x0, y0)
p − τ(x0, y0)

p = 0. On the other
hand, since by assumption Γ is τp-cyclically monotone, then the right hand
side of (2.16) is non-negative. Thus (2.17) is proved.

Step 2. We show that ϕ is real-valued on P1(Γ) and measurable.
Fix x ∈ P1(Γ). The very definition (2.16) of ϕ = ϕ(x0,y0) gives

ϕ(x) + [τ(x, y)p − τ(x0, y)
p] ≥ ϕ(x0)

(2.17)
= 0,

where y is such that (x, y) ∈ Γ. In particular, ϕ(x) > −∞. Analogously,

ϕ(x0) + [τ(x0, y0)
p − τ(x, y0)

p] ≥ ϕ(x)

and thus ϕ(x) < +∞. Notice that, under the stronger assumption that X
is a globally hyperbolic Lorentzian geodesic space (so that τ is continuous),
then ϕ would be upper semi-continuous (as infimum of a family of continuous
functions) and thus measurable.

We now prove that ϕ is measurable also in the general setting. Since
τp is lower semicontinuous, there exists compact subset Γj � Γ such that
Γj ⊂ Γj+1, Γ =

⋃
j∈N Γj and τp|Γj

is continuous and real valued. We choose
continuous functions cl such that cl ↑ τp. Notice that cl|Γj

→ τp|Γj
uniformly

as l→∞, for every j ∈ N, by Dini’s Theorem. Define the auxiliary functions

ϕk,j,l(x) := inf

{
k∑

i=0

[
cl(x

′
i, y

′
i)− cl(x

′
i+1, y

′
i)
]}

,

ϕk,j(x) := inf

{
k∑

i=0

[
τ(x′i, y

′
i)
p − τ(x′i+1, y

′
i)
p
]}

,

where the infimum is taken over all “chains”{
(x′i, y

′
i)
}
0≤i≤k+1

⊂ Γj with x′k+1 = x, (x′0, y
′
0) = (x0, y0) ∈ Γ1.

The uniform convergence cl|Γj
→ τp|Γj

ensures that ϕk,j,l|Γj
→ ϕk,j |Γj

point-
wise. The monotonicity of the quantities in j and k gives

ϕ(x) = lim
k→∞

lim
j→∞

ϕk,j(x) = lim
k→∞

lim
j→∞

lim
l→∞

ϕk,j,l(x), ∀x ∈ P1(Γ).
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As each ϕk,j,l is upper semi continuous, we get that ϕ is measurable.

Step 3. We show that ϕ is τp-concave relatively to (P1(Γ), P2(Γ)).
Define ψ(x0,y0) = ψ : P2(Γ)→ R ∪ {−∞} by

ψ(x0,y0)(y) = ψ(y) := inf

{
k∑

i=0

[
τ(x′i, y

′
i)
p − τ(x′i+1, y

′
i)
p
]
+ τ(x′k+1, y)

p

}
,

(2.18)

where the inf is taken over all k ∈ N and all chains

{
(x′i, y

′
i)
}
0≤i≤k+1

⊂ Γ with y′k+1 = y, (x′0, y
′
0) = (x0, y0).

Notice that, for every x ∈ P1(Γ) there exists y ∈ P2(Γ) such that (x, y) ∈ Γ;
thus, any chain in the definition (2.16) of ϕ(x) can be concatenated with
(x, y), giving an admissible chain for the definition (2.18) of ψ(y). It follows
that ϕ(x) + τ(x, y)p ≥ ψ(y) and thus

ϕ(x) ≥ inf
y∈P2(Γ)

ψ(y)− τ(x, y)p, ∀x ∈ P1(Γ).

Conversely, it is readily seen from the definition (2.16) (resp. (2.18)) of ϕ(x)
(resp. ψ(y)) that (recall that y′k+1 does not play any role in (2.16))

ϕ(x) ≤ ψ(y)− τ(x, y)p, ∀(x, y) ∈ P1(Γ)× P2(Γ).

We conclude that

ϕ(x) = inf
y∈P2(Γ)

ψ(y)− τ(x, y)p, ∀x ∈ P1(Γ).

It follows that ψ is real valued on P2(Γ) and ϕ is τp-concave relatively to
(P1(Γ), P2(Γ)).

Step 4. We show that Γ ⊂ ∂τpϕ.
Let (x̄, ȳ) ∈ Γ. From the definition (2.16) of ϕ(x) we have

ϕ(x̄) + [τ(x̄, ȳ)p − τ(x, ȳ)p] ≥ ϕ(x), ∀x ∈ P1(Γ),

which can be rewritten as

ϕ(x̄) + τ(x̄, ȳ)p ≥ sup
x∈P1(Γ)

ϕ(x) + τ(x, ȳ)p = ϕ(τp)(ȳ).
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Since the inequality ϕ(x̄) + τ(x̄, ȳ)p ≤ ϕ(τp)(ȳ) is trivial from the definition

of τp-transform, we conclude that equality holds and thus (x̄, ȳ) ∈ ∂τpϕ.

Step 5. Conclusion: we claim that

�p(μ, ν)
p =

∫
X
ϕ(τp)(y) ν(dy)−

∫
X
ϕ(x)μ(dx) =

∫
X2

τ(x, y)p π(dxdy).

(2.19)

From Step 4, we know that

ϕ(τp)(y)− ϕ(x) = τ(x, y)p, for all (x, y) ∈ Γ,

which integrated with respect to π gives the second identity of (2.19).

On the other hand, integrating the inequality

ϕ(τp)(y)− ϕ(x) ≥ τ(x, y)p, μ⊗ ν-a.e. (x, y),

with respect to any π′ ∈ Π≤(μ, ν) gives that

�p(μ, ν)
p = sup

π′∈Π≤(μ,ν)

∫
X2

τ(x, y)p π′(dxdy)

≤
∫
X
ϕ(τp)(y) ν(dy)−

∫
X
ϕ(x)μ(dx).

The claimed (2.19) follows.

Definition 2.27 (Strongly timelike p-dualisability). A pair (μ, ν) ∈ (P(X))2

is said to be strongly timelike p-dualisable if

1. (μ, ν) is timelike p-dualisable;

2. there exists a measurable �p-cyclically monotone set Γ ⊂ X2
	∩(suppμ×

supp ν) such that a coupling π ∈ Π≤(μ, ν) is �p-optimal if and only if

π is concentrated on Γ, i.e. π(Γ) = 1.

Remark 2.28. Let (μ, ν) be timelike p-dualisable and satisfying strong �p-

Kantorovich duality (resp. strong τp-Kantorovich duality). It follows from

Remark 2.24 that if Γ := ∂�pϕ ⊂ X2
	 (resp. Γ := ∂τpϕ ⊂ X2

	) then (μ, ν) is

strongly timelike p-dualisable.

In the next two corollaries we show that the notion of strongly timelike

p-dualisability is non-empty:
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Corollary 2.29. Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a globally hyperbolic
Lorentzian geodesic space and assume that μ, ν ∈ P(X) satisfy:

1. there exist measurable functions a, b : X → R with a ⊕ b ∈ L1(μ ⊗ ν)
such that τp ≤ a⊕ b on suppμ× supp ν;

2. suppμ× supp ν ⊂ X2
	.

Then (μ, ν) satisfies strong τp-Kantorovich duality and is strongly timelike
p-dualisable.

Proof. The fact that there exists π ∈ Πp-opt
≤ (μ, ν) follows from Proposi-

tion 2.3; morover, since suppπ ⊂ suppμ× supp ν ⊂ X2
	, we infer that (μ, ν)

is timelike p-dualisable.
From part 1 of Proposition 2.8 we have π is �p-cyclically monotone and

thus, from Remark 2.7, also τp-cyclically monotone since suppμ× supp ν ⊂
X2

≤.
Using now Theorem 2.26 we infer that (μ, ν) satisfies strong τp-Kanto-

rovich duality. Setting Γ := ∂τpϕ ⊂ suppμ×supp ν, it is a direct consequence
of the assumptions that Γ ⊂ X2

	 and thus Remark 2.24 yields that condition
2 of Definition 2.27 is satisfied.

In the next corollary we show that, in case ν is a Dirac measure, the
strongly timelike p-dualisability is equivalent to the timelike p-dualisability.

Corollary 2.30. Let (X, d,�,≤, τ) be a Lorentzian pre-length space and
let p ∈ (0, 1]. Fix x̄ ∈ X and let ν := δx̄. Assume that μ ∈ P(X) satisfies:

(2.20) τ(·, x̄)p ∈ L1(X,μ) and τ(·, x̄) > 0 μ-a.e.

Then (μ, ν) is strongly timelike p-dualisable. In other terms, in case ν is
a Dirac measure, the strongly timelike p-dualisability is equivalent to the
timelike p-dualisability.

Proof. Let π := μ ⊗ δx̄ and choose b ≡ 0, a(x) := τ(x, x̄)p. Noticing that
Π(μ, δx̄) = {π} we get that (2.20) implies: �p(μ, δx̄) ∈ (0,∞), π is the unique
�p-optimal coupling for (μ, δx̄) and π(X2

	) = 1. It follows that (μ, ν) is
strongly timelike p-dualisable.

2.5. �p-optimal dynamical plans

Let us start by introducing some classical notation. The evaluation map is
defined by

(2.21) et : C([0, 1], X)→ X, γ �→ et(γ) := γt, ∀t ∈ [0, 1].
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The stretching/restriction operator restrs2s1 : C([0, 1], X) → C([0, 1], X) is
defined by

(2.22) (restrs2s1γ)t := γ(1−t)s1+ts2 , ∀s1, s2 ∈ [0, 1], s1 < s2, ∀t ∈ [0, 1].

Definition 2.31 (�p-optimal dynamical plans and �p-geodesics). Let (X, d,
�,≤, τ) be a Lorentzian pre-length space and let p ∈ (0, 1]. We say that η ∈
P(Geo(X)) is an �p-optimal dynamical plan from μ0 ∈ P(X) to μ1 ∈ P(X)
if (e0)�η = μ0, (e1)�η = μ1 and

(2.23) (e0, e1)�η belongs to Πp-opt
≤ ((e0)�η, (e1)�η).

We denote by OptGeo�p(μ0, μ1) the set of �p-optimal dynamical plans from
μ0 to μ1. We say that a curve [0, 1] � t �→ μt ∈ P(X) is an �p-geodesic if there
exists an �p-optimal dynamical plan η from μ0 to μ1 such that μt = (et)�η,
for all t ∈ [0, 1].

Remark 2.32 (On the notion of �p-geodesics). In analogy with the metric
setting (cf. [84, Definition 7.20]), one could have defined an �p-geodesic to be
a curve [0, 1] � t �→ μt ∈ P(X) continuous in narrow topology and satisfying

(2.24) �p(μs, μt) = (t− s)�p(μ0, μ1) ∈ (0,∞), for all 0 ≤ s < t ≤ 1.

We claim that if η ∈ OptGeo�p(μ0, μ1), then curve

μt := (et)�η, t ∈ [0, 1],

satisfies both properties: continuity in narrow topology and identity (2.24).
Firstly if t → t0, then for any continuous and bounded function f , it

holds: ∫
X
f(x)μt(dx) =

∫
Geo(X)

f(γt) η(dγ).

Continuity in narrow topology follows from dominated convergence Theo-
rem. Next, let us prove (2.24). By construction, (es, et)�η ∈ Π≤(μs, μt) for
all s ≤ t. Thus

�p(μs, μt)
p ≥

∫
�p(γs, γt) η(dγ) = (t− s)p�p(μ0, μ1)

p, for all 0 ≤ s ≤ t ≤ 1,

(2.25)

where the last identity follows from the optimality of (e0, e1)�η. The inequal-
ity (2.25) turns into an identity by applying the reverse triangle inequality:
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indeed, applying (2.25) twice with suitable choices of intermediate times, we
get

�p(μ0, μ1) ≥ �p(μ0, μs) + �p(μs, μt) + �p(μt, μ1) ≥ �p(μ0, μ1),

forcing identities in the inequalities and showing that (es, et)�η ∈
Πp-opt

≤ (μs, μt), for all s ≤ t ∈ [0, 1].

Proposition 2.33. Fix p ∈ (0, 1) and let (X, d,�,≤, τ) be a globally hyper-
bolic, Lorentzian geodesic space. Let μ0, μ1 ∈ Pc(X) such that there exists
π ∈ Πp-opt

≤ (μ0, μ1). Then

1. There always exists an �p-optimal dynamical plan (and thus an �p-
geodesic) from μ0 to μ1.

2. If η ∈ OptGeo�p(μ0, μ1) then

ηs1,s2 := (restrs2s1)�η ∈ OptGeo�p((es1)�η, (es2)�η),

for all s1 < s2, s1, s2 ∈ [0, 1].
3. Let η ∈ OptGeo�p(μ0, μ1) and let η̃ be a non-negative Borel mea-

sure on C([0, 1], X) such that η̃ ≤ ηs1,s2, for some s1, s2 ∈ [0, 1] and
η̃(C([0, 1], X)) > 0. Then η′ := 1

η̃(C([0,1],X)) η̃ is an �p-optimal dynami-

cal plan.
4. Assume that X is timelike non-branching, η ∈ OptGeo�p(μ0, μ1) and

it is concentrated on TGeo(X).

(a) If (s1, s2) �= (0, 1) then η′ as in 3. is the unique element of
OptGeo�p((e0)�η

′, (e1)�η′), and (μ′
t := (et)�η

′)t∈[0,1] is the unique
�p-geodesic joining its endpoints.

(b) There exists a set Γ ⊂ TGeo(X) such that η(Γ) = 1 and satisfying
the following property: if γ1, γ2 ∈ Γ cross at some intermediate
time t0 ∈ (0, 1), i.e. there exists t0 ∈ (0, 1) such that γ1t0 = γ2t0,
then γ1t = γ2t for all t ∈ [0, 1].

(c) Assume that η can be written as η = λ1η
1 + λ2η

2, for some ηi ∈
P(C([0, 1], X)), λi ∈ (0, 1) for i = 1, 2, λ1 + λ2 = 1, and each ηi

is concentrated on a set Γi such that Γ1∩Γ2 = ∅. Then η1, η2 are
�p-optimal dynamical plans and they satisfy (et)�η

1 ⊥ (et)�η
2 for

all t ∈ (0, 1).

5. Every �p-geodesic (μt = (et)�η)t∈[0,1] from μ0 to μ1 is an absolutely con-
tinuous curve in the W1-Kantorovich Wasserstein space (P(X),W1)
w.r.t. d, with length

(2.26) LW1

(
(μt)t∈[0,1]

)
≤

∫
Ld(γ) η(dγ) ≤ C̄ <∞

where C̄ > 0 depends only on the set J+(suppμ0)∩J−(suppμ1) � X.
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Proof. First of all notice that by global hyperbolicity and Proposition 1.6
(i), we have ⋃

t∈[0,1]
suppμt ⊂ J+(suppμ0) ∩ J−(suppμ1) � X,

with J+(suppμ0) ∩ J−(suppμ1) =: X compact set.

Proof of 1.
Let π ∈ Πp-opt

≤ (μ0, μ1) be given by the assumptions. Consider the set

G := {(x, y, γ) ∈ X × X ×Geo(X) : x = γ0, y = γ1}.

By the continuity of τ , the set Geo(X) is closed inside the complete and
separable metric space C([0, 1],X ). Hence G is closed as well. Since X is
geodesic, P12(G) contains all the pairs (x, y) ∈ X × X such that x ≤ y.
Invoking a classical selection theorem (for instance [76, Theorem 5.5.2]),
there exists an analytic map S : X×X → Geo(X), such that (x, y, S(x, y)) ∈
G (an overview on analytic sets will be given in Section 4.2). In other words,
there is a measurable selection to join two endpoints x and y by a geodesic.
Define

η := S�π ∈ P(Geo(X)).

Since (e0, e1) ◦ S = Id, it is clear that η is an �p-optimal dynamical plan
according to Definition 2.31.

Proof of 2.
In Remark 2.32 we have shown that (es1 , es2)�η ∈ Πp-opt

≤ (μs1 , μs2). Since

(es, et)�η = (e0, e1)�η
s,t, and ηs,t(Geo(X)) = 1 (recall that restrs2s1 maps

Geo(X) into itself), the claim follows.

Proof of 3.
By the previous point, ηs1,s2 is an �p-optimal dynamical plan; thus, we can
assume with no loss in generality that s1 = 0 and s2 = 1. Since η̃ ≤ η,
then necessarily η̃ is concentrated on Geo(X) and therefore η′(Geo(X)) =
1. The optimality of (e0, e1)�η

′ follows from Lemma 2.10, by noticing that
(e0, e1)�η̃ ≤ (e0, e1)�η.

Proof of 4.
Concerning parts (a) and (b), they are routine properties of Wasserstein
geodesics in non-branching spaces. A proof of the claims can be obtained for
instance from the same proof of [84, Theorem 7.30], part (iii): the assump-
tion of having a coercive Lagrangian action is never used; a selection theorem
like the one we obtained in 1. is sufficient to follow verbatim the same proof.
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Concerning part (c): the optimality of η1 and η2 follows directly from 3.
Call μt := (et)�η and μi

t := (et)�η
i, for i = 1, 2, t ∈ [0, 1]. Assume by contra-

diction that for some t0 ∈ (0, 1) there exists

A � X compact subset s.t. A ⊂ et0(Γ
1) ∩ et0(Γ

2), μ1
t0(A) > 0, μ1

t0�A� μ2
t0 .

(2.27)

From 3. we know that

η̄ :=
1

μt0(A)
η�(e−1

t0 (A)), η̄i :=
1

μi
t0(A)

ηi�(e−1
t0 (A) ∩ Γi) for i = 1, 2,

are all �p-optimal dynamical plans. We claim that

(2.28) γ1t0 = γ2t0 for some γi ⊂ Γi =⇒ γ1 = γ2.

Indeed, if γ1t0 = γ2t0 , then γ3 defined by concatenation

γ3(t) =

{
γ1(t) for t ∈ [0, t0]

γ2(t) for t ∈ [t0, 1],

would be a timelike geodesic, coinciding with γ1 on [0, t0]. The forward non-
branching property implies that γ1 = γ2 on [t0, 1]. The analogous argument
on [t0, 1] with the backward non-branching property gives γ1 = γ2 on [0, t0]
and thus the claim (2.28).

The combination of (2.27) with (2.28) gives that

e−1
t0 (A) ∩ Γ1 = e−1

t0 (A) ∩ Γ2.

Hence

Γ1 ∩ Γ2 ⊃ e−1
t0 (A) ∩ Γ1 ∩ Γ2 �= ∅,

yielding a contradiction.

Proof of 5.
From the non-totally imprisoning property, it follows that

sup {Ld(γ) : γ ∈ supp η}
≤ sup

{
Ld(γ) : γ(I) ⊂ J+(suppμ0) ∩ J−(suppμ1), γ : I → X causal

}
=: C̄ <∞.

In particular
∫
Ld(γ) η(dγ) ≤ C̄ < ∞. The claim (2.26) follows from [58,

Theorem 4].
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3. Synthetic Ricci curvature lower bounds

3.1. Timelike Curvature Dimension condition

The goal of this section to give a synthetic formulation of the strong en-
ergy condition (and more generally a synthetic formulation of Ricg ≥ −Kg
in the timelike directions and dim ≤ N) for a measured pre-length space
(X, d,m,�,≤, τ). Let us recall the characterization of Ricci curvature
bounded below and dimension bounded above in the smooth Lorentzian
setting proved by McCann [62, Corollary 6.6, Corollary 7.5] (see also [67,
Corollary 4.4]).

Theorem 3.1. Let (Mn, g) be a globally hyperbolic spacetime and 0 < p < 1.
Then the following are equivalent:

1. Ricg(v, v) ≥ −Kg(v, v), for every timelike v ∈ TM .
2. For any pair (μ0, μ1) ∈ (Dom(Ent(·|Volg)))2 which is timelike p-dual-

isable (in the sense of Definition 2.18) there exists a (unique) �p-
geodesic (μt)t∈[0,1] joining them such that the function

[0, 1] � t �→ e(t) := Ent(μt|Volg)

is semi-convex (and thus in particular it is locally Lipschitz in (0, 1))
and it satisfies:

(3.1) e′′(t)− 1

n
e′(t)2 ≥ K

∫
M×M

τ(x, y)2 π(dxdy),

in the distributional sense on [0, 1].
3. For any pair (μ0, μ1) ∈ (Dom(Ent(·|Volg))∩Pc(X))2 which is strongly

timelike p-dualisable (in the sense of Definition 2.27) there exists a
(unique) �p-geodesic (μt)t∈[0,1] joining them and satisfying (3.1).

Proof. The equivalence of 1 and 2 was proved in McCann [62, Corollary 6.6,
Corollary 7.5] (see also [67, Corollary 4.4]). Trivially 2 =⇒ 3. The implication
3 =⇒ 1 can be proved along the lines of [67, Corollary 4.4] using Corollary
2.29.

The following definition is thus natural.

Definition 3.2 (TCDe
p(K,N) and wTCDe

p(K,N) conditions). Fix p ∈ (0, 1),
K ∈ R, N ∈ (0,∞). We say that a measured Lorentzian pre-length space
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(X, d,m,�,≤, τ) satisfies TCDe
p(K,N) (resp. wTCDe

p(K,N)) if the follow-
ing holds. For any pair (μ0, μ1) ∈ (Dom(Ent(·|m)))2 which is timelike p-
dualisable (resp. (μ0, μ1) ∈ [Dom(Ent(·|m)) ∩ Pc(X)]2 which is strongly
timelike p-dualisable) by some π ∈ Πp-opt

	 (μ0, μ1), there exists an �p-geodesic
(μt)t∈[0,1] such that the function [0, 1] � t �→ e(t) := Ent(μt|Volg) is semi-
convex (and thus in particular it is locally Lipschitz in (0, 1)) and it satis-
fies

(3.2) e′′(t)− 1

N
e′(t)2 ≥ K

∫
X×X

τ(x, y)2 π(dxdy),

in the distributional sense on [0, 1].

Definition 3.2 corresponds to a differential/infinitesimal formulation of
the TCDe

p(K,N) condition. In order to have also an integral/global formu-
lation it is convenient to introduce the following entropy (cf. [32])

(3.3) UN (μ|m) := exp

(
−Ent(μ|m)

N

)
.

It is clear that (1.16) implies the upper-semicontinuity of UN under narrow
convergence:

μn → μ∞ narrowly and m

( ⋃
n∈N

suppμn

)
<∞

=⇒ lim sup
n→∞

UN (μn|m) ≤ UN (μ∞|m).
(3.4)

It is straightforward to check that [0, 1] � t �→ e(t) is semi-convex and
satisfies (3.1) if and only if [0, 1] � t �→ uN (t) := exp(−e(t)/N) is semi-
concave and satisfies

(3.5) u′′N ≤ −
K

N
‖τ‖2L2(π) uN .

Set

sκ(ϑ) :=

⎧⎪⎪⎨
⎪⎪⎩

1√
κ
sin(
√
κϑ), κ > 0

ϑ, κ = 0
1√
−κ

sinh(
√
−κϑ), κ < 0

,

cκ(ϑ) :=

{
cos(

√
κϑ), κ ≥ 0

cosh(
√
−κϑ) κ < 0

,

(3.6)
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and

(3.7) σ(t)
κ (ϑ) :=

⎧⎪⎨
⎪⎩

sκ(tϑ)
sκ(ϑ)

, κϑ2 �= 0 and κϑ2 < π2

t, κϑ2 = 0

+∞ κϑ2 ≥ π2

.

Note that the function κ �→ σ
(t)
κ (ϑ) is non-decreasing for every fixed ϑ, t.

With the above notation, the differential inequality (3.5) is equivalent to
the integrated version (cf. [32, Lemma 2.2]):

(3.8) uN (t) ≥ σ
(1−t)
K/N

(
‖τ‖L2(π)

)
uN (0) + σ

(t)
K/N

(
‖τ‖L2(π)

)
uN (1).

We thus proved the following proposition.

Proposition 3.3. Fix p ∈ (0, 1), K ∈ R and N ∈ (0,∞). The mea-
sured Lorentzian pre-length space (X, d,m,�,≤, τ) satisfies (resp. weak)

TCDe
p(K,N) if and only if for any pair (μ0, μ1) ∈

(
Dom(Ent(·|m))

)2
which

is timelike p-dualisable (resp. (μ0, μ1) ∈ [Dom(Ent(·|m)) ∩ Pc(X)]2 which is
strongly timelike p-dualisable) by some π ∈ Πp-opt

	 (μ0, μ1), there exists an
�p-geodesic (μt)t∈[0,1] such that the function [0, 1] � t �→ uN (t) := UN (μt|m)
satisfies (3.8).

As an example of geometric application of the TCDe
p(K,N) we next

show a timelike Brunn-Minkowski inequality (for the Riemannian/metric
counterparts see [79, 32, 19]).

Proposition 3.4 (A timelike Brunn-Minkowski inequality). Let (X, d,m,
�,≤, τ) be a measured Lorentzian pre-length space satisfying (resp. weak)
TCDe

p(K,N), for some K ∈ R, N ∈ [1,∞), p ∈ (0, 1). Let A0, A1 ⊂ X be
measurable subsets with m(A0),m(A1) ∈ (0,∞). Calling μi := 1/m(Ai)m�Ai

,
i = 1, 2, assume that (μ0, μ1) is (resp. strongly) timelike p-dualisable. Then

(3.9) m(At)
1/N ≥ σ

(1−t)
K/N (Θ) m(A0)

1/N + σ
(t)
K/N (Θ) m(A1)

1/N

where At := I(A0, A1, t) defined in (1.6) is the set of t-intermediate points
of geodesics from A0 to A1, and Θ is the maximal/minimal time-separation
between points in A0 and A1, i.e.:

Θ :=

{
sup{τ(x0, x1) : x0 ∈ A0, x1 ∈ A1} if K < 0,

inf{τ(x0, x1) : x0 ∈ A0, x1 ∈ A1} if K ≥ 0.
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In particular, if K ≥ 0 it holds:

m(At)
1/N ≥ (1− t)m(A0)

1/N + tm(A1)
1/N .

Proof. Let (μt)t∈[0,1] be the �p-geodesic given by Proposition 3.3, satisfying

UN (μt|m) ≥ σ
(1−t)
K/N

(
‖τ‖L2(π)

)
m(A0)

1/N + σ
(t)
K/N

(
‖τ‖L2(π)

)
m(A1)

1/N .

Since μt = ρtm is concentrated on At, which is Suslin, applying Jensen’s
inequality twice gives:

UN (μt|m) = exp

(
− 1

N

∫
log ρt μt

)
≤

∫
ρ
−1/N
t μt =

∫
At

ρ
1− 1

N

t m

≤ m(At)
1/N .

(3.10)

The claim follows observing that ϑ �→ σK/N (ϑ) is non-increasing for K ≤ 0
(resp. non-decreasing for K > 0) and that ‖τ‖L2(π) ≤ Θ (resp. ‖τ‖L2(π) ≥
Θ). Notice that in the case of wTCD, we first assume A0, A1 to be compact
and then obtain the full claim arguing by inner regularity of m with respect
to compact sets.

The Brunn–Minkowski inequality implies further geometric consequences
like a timelike Bishop-Gromov volume growth estimate and a timelike
Bonnet-Myers theorem. In order to state them, let us introduce some nota-
tion. Fix x0 ∈ X and let

Bτ (x0, r) := {x ∈ I+(x0) ∪ {x0} : τ(x0, x) < r}

be the τ -ball of radius r and center x0. Since typically the volume of a τ -ball
is infinite (e.g. in Minkowski space it is the region below an hyperboloid), it is
useful to localise volume estimates using star-shaped sets. To this aim, we say
that E ⊂ I+(x0)∪{x0} is τ -star-shaped with respect to x0 if I(x0, x, t) ⊂ E
for every x ∈ E and t ∈ (0, 1]. Define

v(E, r) := m(Bτ (x0, r) ∩ E),

s(E, r) := lim sup
δ↓0

1

δ
m
(
(Bτ (x0, r + δ) \Bτ (x0, r)) ∩ E

)
the volume of the τ -ball of radius r (respectively of the τ -sphere of radius
r) intersected with the compact subset E ⊂ I+(x0) ∪ {x0}, τ -star-shaped
with respect to x0. Let us mention that, for smooth Lorentzian manifolds, a
timelike Bishop-Gromov inequality was obtained in [31].
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Proposition 3.5 (A timelike Bishop-Gromov inequality). Let (X, d,m,�
,≤, τ) be a measured globally hyperbolic Lorentzian geodesic space satisfying

wTCDe
p(K,N), for some K ∈ R, N ∈ [1,∞), p ∈ (0, 1). Then, for each

x0 ∈ X, each compact subset E ⊂ I+(x0) ∪ {x0} τ -star-shaped with respect

to x0, and each 0 < r < R ≤ π
√

N/(K ∨ 0), it holds:

(3.11)
s(E, r)

s(E,R)
≥

(
sK/N (r)

sK/N (R)

)N

,
v(E, r)

v(E,R)
≥

∫ r
0 sK/N (t)Ndt∫ R
0 sK/N (t)Ndt

.

Proof. We briefly sketch the argument. The basic idea is to apply Proposi-

tion 3.4 to A0 := Bτ (x0, ε)∩E and A1 :=
(
Bτ (x0, R+ δR)\Bτ (x0, R)

)
∩E.

Observe that, for ε > 0 small enough, it holds A0 ×A1 ⊂ X2
	 and thus the

measures (μ0, μ1) in the statement of Proposition 3.4 are strongly timelike

p-dualisable thanks to Corollary 2.29. Thus we can apply Proposition 3.4

and follow verbatim the proof of [79, Theorem 2.3] replacing the coefficients

τ
(t)
K/N (ϑ) with σ

(t)
K/N (ϑ).

Proposition 3.6 (A timelike Bonnet-Myers inequality). Let (X, d,m,�,≤
, τ) be a measured globally hyperbolic Lorentzian geodesic space satisfying

wTCDe
p(K,N), for some K > 0, N ∈ [1,∞), p ∈ (0, 1). Then

(3.12) sup
x,y∈X

τ(x, y) ≤ π

√
N

K
.

In particular, for any causal curve γ it holds Lτ (γ) ≤ π
√

N
K .

Proof. Assume by contradiction that there exist x′0, x
′
1 ∈ X with τ(x′0, x

′
1) ≥

π
√

N/K + 4ε, for some ε > 0. Let δ > 0 and x0, y0 ∈ X be such that

Bd(x0, δ) ⊂ I+(x′0), Bd(x1, δ) ⊂ I−(x′1),

inf{τ(x, y) : x ∈ Bd(x0, δ), y ∈ Bd(x1, δ)} ≥ π
√

N/K + ε,

whereBd(x, r) denotes the d-metric ball of radius r centred at x. From Corol-

lary 2.29 it follows that A0 := Bd(x0, δ), A1 := Bd(x0, δ) satisfy the assump-

tions of Proposition 3.4. Note that, for this choice of sets, Θ ≥ π
√

N/K + ε

and thus m(A1/2) = +∞. However, A1/2 ⊂ J+(x′0) ∩ J−(x′1) is relatively

compact by global hyperbolicity and thus it has finite m-measure. Contra-

diction.
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3.2. Timelike Measure Contraction Property

A weaker variant of the TCDe
p(K,N) condition is obtained by considering

(K,N)-convexity properties only for those �p-geodesics (μt)t∈[0,1] where μ1

is a Dirac delta. In the metric measure setting, such a variant goes under the
name of Measure Contraction Property (MCP for short) and was developed
independently by Sturm [79] and Ohta [68].

Definition 3.7. Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). The measured Lorentz-
ian pre-lengh space (X, d,m,�,≤, τ) satisfies TMCPe(K,N) if and only if
for any μ0 ∈ Pc(X) ∩Dom(Ent(·|m)) and for any x1 ∈ X such that x� x1
for μ0-a.e. x ∈ X, there exists an �p-geodesic (μt)t∈[0,1] from μ0 to μ1 = δx1

such that

(3.13) UN (μt|m) ≥ σ
(1−t)
K/N

(
‖τ(·, x1)‖L2(μ0)

)
UN (μ0|m), ∀t ∈ [0, 1).

Remark 3.8. The validity of the TMCPe(K,N) condition is independent of
the choice of p ∈ (0, 1) in Definition 3.7. Indeed for any p, q ∈ (0, 1), a curve
(μt)t∈[0,1] with μ1 = δx̄ is an �p-geodesic if and only if it is an �q-geodesic.
The claim follows easily by the very definition of �p-geodesic (see Definition
2.31) and by the fact that the only coupling (and thus optimal) from μ0 to
μ1 = δx̄ is π = μ0 ⊗ δx̄.

Remark 3.9 (Geometric Properties). As in the Riemannian/metric case
[79], many properties valid for TCDe

p(K,N) remain true also for
TMCPe(K,N). More precisely, this is the case for:

• Timelike Bishop-Gromov inequality, Proposition 3.5;
• Timelike Bonnet-Myers inequality, Proposition 3.6.

Actually, in Section 5.3, the above results will be improved to sharp forms in
case of timelike non-branching TMCPe(K,N) spaces. Such an improvement
will be a product of the techniques developed in Section 3.4 and Section 4.

Remark 3.10. If a Lorentzian pre-lengh space (X, d,m,�,≤, τ) satisfies
TMCPe(K,N), then for any x1 ∈ X and m-a.e. x � x1 there exists γ ∈
TGeo(X) such that γ0 = x and γ1 = x. If in addition X is globally hyper-
bolic, it follows that X is time-like geodesic. Indeed, given any x1 ∈ X and
x � x1 by TMCPe(K,N) there is a sequence xn → x and γn ∈ TGeo(X)
with γn0 = xn and γn1 = x1. From global hyperbolicity and Proposition 1.6(i),
it follows the existence of a limit γ∞ ∈ TGeo(X) with γ∞0 = x and γ∞1 = x1
giving that X is timelike geodesic.
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If instead x ≤ y one needs to further assume X to be causally path
connected, i.e. for any x, y ∈ X such that x ≤ y there exists a causal curve
γ with γ0 = x and γ1 = y. Hence if a Lorentzian pre-lengh space (X, d,m,�
,≤, τ) satisfies TMCPe(K,N), it is globally hyperbolic and causally path
connected, then it is geodesic.

Lemma 3.11. Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). Let the measured
Lorentzian pre-length space (X, d,m,�,≤, τ) satisfy TCDe

p(K,N) (resp.
wTCDe

p(K,N), TMCPe(K,N)). Then

1. Consistency: (X, d,m,�,≤, τ) satisfy TCDe
p(K

′, N ′) (resp.
wTCDe

p(K
′, N ′), TMCPe(K ′, N ′)) for every K ′ ≤ K and N ′ ≥ N .

2. Scaling: The rescaled space (X, a · d, b · m,�,≤, r · τ), for a, b, r > 0
satisfies TCDe

p(K/r2, N) (resp. wTCDe
p(K/r2, N),TMCPe(K/r2, N)).

Proof. 1. Consistency for TCDe
p(K,N) follows directly by the definition

(3.2).
Regarding TMCPe: the consistency in K follows by the fact that the

map κ �→ σ
(t)
κ (ϑ) is monotone increasing. For the consistency in N , observe

that taking the logarithm of (3.13) one obtains the equivalent condition

(3.14) Ent(μt|m) ≤ Ent(μ0|m)−N log
(
σ
(1−t)
K/N

(
‖τ(·, x1)‖L2(μ0)

))
.

It follows from [79, Lemma 1.2] that, for all t ∈ [0, 1], K ∈ R, N ′ ≥ N , it
holds: (

σ
(t)
K/N ′(ϑ)

)N ′

≤ tN
′−N

(
σ
(t)
K/N (ϑ)

)N
≤

(
σ
(t)
K/N (ϑ)

)N
,

giving that the function N �→ −N log
(
σ
(1−t)
K/N (ϑ)

)
is non-decreasing for every

fixed K, t, ϑ.
2. Follows by the very definitions, observing that Ent(μ|b·m)=Ent(μ|m)−

log(b), ‖r · τ‖L2(π) = r‖τ‖L2(π) and that σ
(t)
κ/r2(r · ϑ) = σ

(t)
κ (ϑ).

We refer to Appendix A for a discussion of TMCPe(K,N) in case of
smooth Lorentzian manifolds.

Proposition 3.12 (wTCDe
p(K,N) ⇒ TMCPe(K,N)). Fix p ∈ (0, 1), K ∈

R, N ∈ (0,∞). The wTCDe
p(K,N) condition implies TMCPe(K,N) for glob-

ally hyperbolic Lorentzian geodesic spaces.

Proof. Step 1.
Let μ0 = ρ0m ∈ Dom(Ent(·|m)) ∩ Pc(X) and x1 ∈ X be such that x � x1
for μ0-a.e. x ∈ X.
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For each ε > 0 consider Kε � suppμ0 � X compact subset such that (the
last condition will be used later in step 2)∫
X\Kε

ρ0 | log(ρ0)|m ≤ ε, μ0(Kε) ≥ 1−ε, Kε×{x1}⊂{τ > 0} ⊂ X2,

and consider the restricted measure με
0 := μ0�Kε

/μ0(Kε). A straightforward
computation gives

Ent(μ0|m) =

∫
X\Kε

ρ log(ρ)m+ Ent(με
0|m)μ0(Kε) + μ0(Kε) log(μ0(Kε)).

(3.15)

Hence

Ent(μ0|m) ≥ Ent(με
0|m)(1− ε)− 2ε,

giving

(3.16) UN (με
0|m) ≥ exp

(
− 2ε

N(1− ε)

)
UN (μ0|m)1/(1−ε).

Step 2.
Fix ε � 1. Since the set {τ > 0} ⊂ X ×X is open and by construction it
contains Kε × {x1}, for η > 0 small enough it holds

(3.17) Kε ×Bη(x1) ⊂ {τ > 0}.

Define μη
1 := m�Bη(x1)/m(Bη(x1)). By Corollary 2.29, we know that (με

0, μ
η
1)

is strongly timelike p-dualisable. It also clear that με
0, μ

η
1 ∈ Dom(Ent(·|m))∩

Pc(X). The wTCDe
p(K,N) condition thus implies that for each ε, η > 0

small enough there exists an �p-optimal coupling πε,η ∈ Π≤(με
0, μ

η
1) and an

�p-geodesic (με,η
t )t∈[0,1] joining με

0 and μη
1 verifying for all t ∈ [0, 1]:

UN (με,η
t |m) ≥ σ

(1−t)
K/N

(
‖τ‖L2(πε,η)

)
UN (με

0|m) + σ
(t)
K/N

(
‖τ‖L2(πε,η)

)
UN (μη

1|m)

(3.18)

≥ σ
(1−t)
K/N

(
‖τ‖L2(πε,η)

)
UN (με

0|m)

≥ σ
(1−t)
K/N

(
‖τ‖L2(πε,η)

)
exp

(
− 2ε

N(1− ε)

)
UN (μ0|m)1/(1−ε),

where in the last inequality we used (3.16).
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Step 3.

In this last step we pass into the limit, first as η → 0, then as ε→ 0.

First of all it is clear that με
0 → μ0 and μη

1 → μ1 narrowly. Global

hyperbolicity, via Proposition 1.6(i), implies that

K̄ :=
⋃

s∈[0,1]
I(Kε0 , Bη0

(x1), s) � X

is a compact subset, see (1.6), (1.7). It is easily seen that

(3.19) suppμε,η
t ⊂ I(Kε, Bη(x1), t) ⊂ K̄, ∀t ∈ [0, 1], η ∈ [0, η0].

Fix ε ∈ (0, ε0) and a sequence (ηn) with ηn ↓ 0. We aim to construct a limit

�p-geodesic (με
t )t∈[0,1] from με

0 to μ1 = δx1
. From (2.26) we get that

sup
n∈N

LW1

(
(με,ηn

t )t∈[0,1]
)
≤ C̄ <∞.

By the metric Arzelá-Ascoli Theorem we deduce that there exists a limit

continuous curve (με
t )t∈[0,1] ⊂ (P(K̄),W1) such that (up to a sub-sequence)

W1 (μ
ε,ηn

t , με
t ) → 0 and thus με,ηn

t → με
t narrowly, as n → ∞. Lemma 2.11

yields that

(3.20) �p(μ
ε
0, μ

ε
t ) = lim

n→∞
�p(μ

ε
0, μ

ε,ηn

t ) = t lim
n→∞

�p(μ
ε
0, μ

ηn

1 ) = t �p(μ
ε
0, μ1).

In other terms, the curve (με
t )t∈[0,1] is an �p-geodesic from με

0 to μ1 = δx1
.

The upper-semicontinuity of UN (·|m) under narrow convergence (3.4) yields

(3.21) lim sup
i→∞

UN (μ
ε,ηni

t |m) ≤ UN (με
t ), ∀t ∈ [0, 1].

Moreover, it is readily seen that πε,ηni → με
0 ⊗ δx1

narrowly and

(3.22) lim
i→∞

σ
(1−t)
K/N

(
‖τ‖L2(πε,ηni

)

)
= σ

(1−t)
K/N

(
‖τ(·, x1)‖L2(με

0)

)
.

Combining (3.18), (3.21) and (3.22) gives

UN (με
t |m) ≥ σ

(1−t)
K/N

(
‖τ(·, x1)‖L2(με

0)

)
exp

(
− 2ε

N(1− ε)

)
UN (μ0|m)1/(1−ε),

(3.23)
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for all t ∈ [0, 1]. In order to conclude the proof we now pass to the limit as
ε ↓ 0 in (3.23). Observe that

K̄ ′ :=
⋃

s∈[0,1]
I(suppμ0, x1, s) � X

is a compact subset by global hyperbolicity (via Proposition 1.6(i)) and

suppμε
t ⊂ I(suppμ0, x1, t) ⊂ K̄ ′, ∀t ∈ [0, 1], ε ∈ [0, ε0].

The argument from (3.19) to (3.23) can be adapted to show that there exists
an �p-geodesic (μt)t∈[0,1] satisfying (3.13).

3.3. Stability of TCDe
p(K,N) and TMCPe(K,N) conditions

This section is of independent interest and will not be used in the rest of the
paper. In the next theorem we show the stability of the TMCPe(K,N) con-
dition under convergence of Lorentzian spaces. We will adopt a Lorentzian
counterpart of the pointed measured Gromov convergence for metric mea-
sure spaces [39]. Throughout this part we will make use of topological em-
beddings to identify spaces with their image inside a larger space. Recall
that a topological embedding is a map f : X → Y between two topological
spaces X and Y such that f is continuous, injective and with continuous
inverse between X and f(X). We also say that a space X is pointed, if a
reference point � ∈ X is specified.

Theorem 3.13 (Stability of TMCPe(K,N)). Let {(Xj , dj ,mj , �j ,�j ,
≤j , τj)}j∈N∪{∞} be a sequence of pointed measured Lorentzian geodesic spaces
satisfying the following properties:

1. There exists a globally hyperbolic Lorentzian geodesic space (X̄, d̄,�,
≤̄, τ̄) such that each (Xj , dj ,mj ,�j ,≤j , τj), j ∈ N ∪ {∞}, is isomor-
phically embedded in it, i.e. there exist topological embedding maps
ιj : Xj → X̄ such that

• x1j ≤j x
2
j if and only if ιj(x

1
j )≤̄ιj(x2j ), for every j ∈ N∪ {∞}, for

every x1j , x
2
j ∈ Xj;

• τ̄(ιj(x
1
j ), ιj(x

2
j )) = τj(x

1
j , x

2
j ) for every x1j , x

2
j ∈ Xj, for every

j ∈ N ∪ {∞};
2. The measures (ιj)�mj converge to (ι∞)�m∞ weakly in duality with

Cc(X̄) in X̄, i.e.

(3.24)

∫
ϕ (ιj)�mj →

∫
ϕ (ι∞)�m∞ ∀ϕ ∈ Cc(X̄),
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where Cc(X̄) denotes the set of continuous functions with compact
support.

3. Convergence of the reference points: ιj(�j)→ ι∞(�∞) in X̄.
4. For every compact subset K � X̄, it holds that

(3.25) {γ ∈ TGeo(X̄) : γ([0, 1]) ⊂ K} ⊂ C([0, 1], X̄) is pre-compact.

5. There exist p ∈ (0, 1),K ∈ R, N ∈ (0,∞) such that (Xj , dj ,mj ,�j ,
≤j , τj) satisfies TMCPe(K,N), for each j ∈ N.

Then also the limit space (X∞, d∞,m∞,�∞,≤∞, τ∞) satisfies
TMCPe(K,N).

Remark 3.14. Even though we haven’t specifically list any topological as-
sumption on the sequence of spaces Xj , they actually inherit them from X̄
via the topological embeddings ιj . The map ιj preserves both the causal rela-
tions and τj hence (Xj , dj ,mj ,�j ,≤j , τj) are globally hyperbolic Lorentzian
geodesic (by assumption) spaces.

Proof. For simplicity of notation, we will identify Xj with its isomorphic
image ιj(Xj) ⊂ X̄ and the measure mj with (ιj)�mj , for each j ∈ N ∪ {∞}.

Fix arbitrary μ∞
0 = ρ∞0 m∞ ∈ Pc(X∞)∩Dom(Ent(·|m∞)) and x∞1 ∈ X∞

such that x �∞ x∞1 for μ∞
0 -a.e. x ∈ X∞. Since μ∞

0 has compact support
and X̄ is globally hyperbolic, we can restrict all the arguments to a large
compact subset E � X̄ such that

• J+
X̄
(suppμ∞

0 ) ∩ J−
X̄
(x∞1 ) ⊂ E;

• m∞(E) = limj→∞mj(E).

Thus, m̃j := mj(E)−1mj�E are probability measures supported in the com-
pact subset E � X̄ and narrowly converge to m̃∞ := m∞(E)−1m∞�E.
With a slight abuse of notation, for simplicity, we will write mj for m̃j ,
j ∈ N ∪ {∞}. Since on compact metric spaces narrow convergence is equiv-

alent to W2 convergence, we actually assume mj → m∞ in W
(X̄,d̄)
2 . Denote

with γj ∈ Π(m∞,mj) an optimal coupling for W
(X̄,d̄)
2 .

Step 1. We show that, up to a subsequence, for every j ∈ N there exists
μj
0 ∈ Pc(Xj) ∩Dom(Ent(·|mj)), x

j
1 ∈ Xj ∩ E such that

μj
0

(
I−	j

(xj1)
)
= 1, xj1 → x∞1 , μj

0 → μ∞
0 narrowly,

UN (μ∞
0 |m∞) ≤ lim inf

j→∞
UN (μj

0|mj).
(3.26)
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Step 1a. Let us first consider the case μ∞
0 = ρ∞0 m∞ ∈ Pc(X∞) has

density ρ∞0 ∈ L∞(m∞) and x∞1 ∈ X∞ is such that suppμ∞
0 � I−	∞(x∞1 ).

From narrow convergence we deduce the existence of a sequence xj1 ∈
suppmj ⊂ Xj ∩ E with xj1 → x∞1 with respect to d̄. Since τ̄ : X̄2 → R is
continuous and suppμ∞

0 is compact,

lim
j→∞

min
x∈suppμ∞

0

τ̄(x, xj1) = min
x∈suppμ∞

0

τ̄(x, x∞1 ) = min
x∈suppμ∞

0

τ∞(x, x∞1 ) > 0.

Hence, for j sufficiently large, we can assume that x�̄xj1 for μ
∞
0 -a.e. x ∈ X∞.

Then since I−	̄(xj1) is open, any narrow converging sequence of probability

measures μk
0 → μ∞

0 satisfies

(3.27) lim inf
k→∞

μk
0(I

−
	̄(xj1)) ≥ μ∞

0 (I−	̄(xj1)) = 1.

Define now γ ′
j ∈ P(X̄2) as γ ′

j(dxdy) := ρ∞0 (x)γj(dxdy) and μ̂j
0 :=

(P2)�γ
′
j ∈ P(Xj) ⊂ P(X̄). By construction, γ ′

j � γj , hence μ̂
j
0 � (P2)�γj =

mj . Let μ̂j
0 = ρ̂j0mj . It is readily checked from the definition that it holds

ρ̂j0(y) =
∫
ρ∞0 (x) (γj)y(dx), where {(γj)y} is the disintegration of γj w.r.t.

the projection on the second marginal. In particular, ‖ρ̂j0‖L∞(mj) ≤
‖ρ∞0 ‖L∞(m∞).

By Jensen’s inequality applied to the convex function u(z) = z log(z) we
have

Ent(μ̂j
0|mj) =

∫
u(ρ̂j0)mj =

∫
u

(∫
ρ∞0 (x) (γj)y(dx)

)
mj(dy)

≤
∫

u(ρ∞0 (x)) (γj)y(dx)mj(dy) =

∫
u(ρ∞0 (x))γj(dxdy)

=

∫
u(ρ∞0 ) (P1)�γj =

∫
u(ρ∞0 )m∞ = Ent(μ∞

0 |m∞).

Since by construction we have γ′
j ∈ Π(μ∞

0 , μ̂j
0), it holds

(
W

(X̄,d̄)
2 (μ∞

0 , μ̂j
0)
)2
≤

∫
d̄2(x, y)γ ′

j(dxdy) =

∫
ρ∞0 (x)d̄2(x, y)γj(dxdy)

≤ ‖ρ∞0 ‖L∞(m∞)

(
W

(X̄,d̄)
2 (m∞,mj)

)2
,

and therefore W
(X̄,d̄)
2 (μ∞

0 , μ̂j
0)→ 0. In particular μ̂j

0 → μ∞
0 narrowly in X̄.
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Moreover μ̂j
0 has compact support, indeed supp μ̂j

0 ⊂ suppmj ⊂ E � X̄.

We will also cutoff where the density ρ̂j0 is too small in the following manner.

Consider the set Kj := {ρ̂j0 ≥ 1/j} that is easily verified to satisfy μ̂j
0(Kj) ≥

1− 1/j and define

μ̄j
0 := μ̂j

0�Kj
/μ̂j

0(Kj).

The difference between Ent(μ̄j
0|mj) and Ent(μ̂j

0|mj) is controlled (see (3.15))
by ∫

{ρ̂j
0≤1/j}

|ρ̂j0 log(ρ̂
j
0)|mj ≤

1

j
log(j).

Hence μ̄j
0 still verifies all the properties we have checked for μ̂j

0. Finally it is

only left to restrict μ̄j
0 to I	̄(xj1). From (3.27), adopting a diagonal argument,

we also obtain that μ̄j
0(I	̄(xj1)) ≥ 1− 1/j. Hence we define

μj
0 := μ̄j

0�I�̄(xj
1)
/μ̄j

0(I	̄(xj1)).

Again the difference between Ent(μ̄j
0|mj) and Ent(μj

0|mj) is controlled (see
(3.15)) by∫

X\I�̄(xj
1)
ρ̂j0 | log(ρ̂

j
0)|mj ≤ log(j) μ̄j

0(X \ I	̄(xj1)) ≤
1

j
log(j).

Thus (3.26) is proved in this case.

Step 1b. μ∞
0 = ρ∞0 m∞ ∈ Pc(X∞) has density ρ∞0 ∈ L∞(m∞), and

x∞1 ∈ X∞ is such that x�∞ x∞1 for μ∞
0 -a.e. x ∈ X∞.

For n ∈ N define μ∞
0,n := c̄nμ

∞
0 �{τ∞(·, x∞1 ) ≥ 1

n} ∈ P(X∞), where c̄n ↓ 1 are
the normalising constants. By the continuity of τ∞, it is readily seen that
suppμ∞

0,n � I−	∞(x∞1 ). Moreover

lim
n→∞

Ent(μ∞
0,n|m∞) = Ent(μ∞

0 |m∞), lim
n→∞

W
(X̄,d̄)
2 (μ∞

0,n, μ
∞
0 ) = 0.

Then apply Step 1a to μ∞
0,n and conclude with a diagonal argument.

Step 1c. General case. If ρ∞0 is not bounded, for k ∈ N define ρ∞0,k :=
c̄k min{ρ∞0 , k}, c̄k ↓ 1 being such that μ∞

0,k := ρ∞0,k m∞ ∈ P(X∞). Clearly, it
holds

lim
k→∞

Ent(μ∞
0,k|m∞) = Ent(μ∞

0 |m∞), lim
k→∞

W
(X̄,d̄)
2 (μ∞

0,k, μ
∞
0 ) = 0.
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Then apply Step 1b to μ∞
0,k and conclude with a diagonal argument.

Step 2. Conclusion. Using the assumption that (Xj , dj ,mj ,�j ,≤j , τj)

satisfies TMCPe(K,N), we obtain an �p-geodesic (μ
j
t )t∈[0,1] from μj

0 to μj
1 :=

δxj
1
such that

(3.28) UN (μj
t |mj) ≥ σ

(1−t)
K/N

(
‖τj(·, xj1)‖L2(μj

0)

)
UN (μj

0|mj), ∀t ∈ [0, 1).

From (3.26), it is readily seen that μj
0 ⊗ δxj

1
→ μ∞

0 ⊗ δx∞
1

narrowly in X̄2.
Thus, recalling that τ̄ is continuous and bounded (on E), we infer that

‖τj(·, xj1)‖2L2(μj
0)
=

∫
X̄2

τ̄(x, y)2 μj
0 ⊗ δxj

1
(dxdy)

−→
j→∞

∫
X̄2

τ̄(x, y)2 μ∞
0 ⊗ δx∞

1
(dxdy) = ‖τ∞(·, x∞1 )‖2L2(μ∞

0 ).

(3.29)

Since by construction
⋃

j∈N suppμj
0

⋃
(xj1)j∈N ⊂ E � X̄ and X̄ is globally

hyperbolic, then there exists a compact subset K � X̄ such that

(3.30)
⋃

t∈[0,1],j∈N
suppμj

t ⊂ K � X̄.

Let ηj ∈ P(C([0, 1], X̄) be the �p-optimal dynamical plan representing the

�p-geodesic (μj
t )t∈[0,1]. Prokhoroff Theorem combined with (3.25) and (3.30)

yields that the sequence (ηj)j∈N ⊂ P(C([0, 1], X̄)) is pre-compact in narrow
topology, i.e. there exists η∞ ⊂ P(C([0, 1], X̄)) such that, up to a subse-
quence, ηj → η∞ narrowly.

We now claim that η∞ is an �p-optimal dynamical plan from μ∞
0 to

μ∞
1 = δx∞

1
. Indeed, by the continuity of et : C([0, 1], X̄) → X̄, it is easily

seen that

(3.31) μj
t = (et)�η

j −→
j→∞

(et)�η
∞ =: μ∞

t narrowly, for every t ∈ [0, 1].

But since (ei)�η
j = μj

i converges narrowly to μ∞
i for i = 0, 1, by the unique-

ness of the narrow limit we infer that (ei)�η
∞ = μ∞

i , for i = 0, 1. Recalling
that by construction μ∞

1 = δx∞
1
and that μ∞

0 ⊗δx∞
1
is the unique coupling be-

tween μ∞
0 and δx∞

1
(which is hence optimal), it follows that (e0, e1)�η

∞ is an
�p-optimal coupling and thus η∞ is an �p-optimal dynamical plan, proving
the claim.
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Finally, the joint upper semicontinuity of UN under narrow convergence

(1.15) together with (3.31) yields:

(3.32) UN (μ∞
t |m∞) ≥ lim sup

j∈N
UN (μj

t |mj), ∀t ∈ [0, 1],

obtaining in particular that (μ∞
t )t∈[0,1] ⊂ P(X∞). The combination of (3.26),

(3.28), (3.29) and (3.32) gives that

UN (μ∞
t |m∞) ≥ σ

(1−t)
K/N

(
‖τ̄(·, x∞1 )‖L2(μ∞

0 )

)
UN (μ∞

0 |m∞), ∀t ∈ [0, 1).

as desired.

In the next theorem we show that if a sequence of TCDe
p(K,N) Lorentzian

spaces converge to a limit Lorentzian space, then the latter is wTCDe
p(K,N).

The same observation of Remark 3.14 will be valid for the next theorem.

Theorem 3.15 (Weak stability of TCDe
p(K,N)). Let {(Xj , dj ,mj , �j ,

�j ,≤j , τj)}j∈N∪{∞} be a sequence of pointed measured Lorentzian geodesic

spaces satisfying the following properties:

1. There exists a globally hyperbolic Lorentzian geodesic space (X̄, d̄,�,

≤̄, τ̄) such that each (Xj , dj ,mj ,�j ,≤j , τj), j ∈ N ∪ {∞}, is isomor-

phically embedded in it (as in 1. of Theorem 3.13).

2. The measures (ιj)�mj converge to (ι∞)�m∞ weakly in duality with

Cc(X̄) in X̄, i.e. (3.24) holds.

3. Convergence of the reference points: ιj(�j)→ ι∞(�∞) in X̄.

4. For every compact subset K � X̄, the pre-compactness condition (3.25)

holds.

5. There exist p ∈ (0, 1),K ∈ R, N ∈ (0,∞) such that (Xj , dj ,mj ,�j ,

≤j , τj) satisfies TCDe
p(K,N), for each j ∈ N.

Then the limit space (X∞, d∞,m∞,�∞,≤∞, τ∞) satisfies the wTCDe
p(K,N)

condition.

Proof. Without affecting generality, we will identify Xj with its isomorphic

image ιj(Xj) ⊂ X̄ and the measure mj with (ιj)�mj , for each j ∈ N ∪ {∞}.
Fix μ∞

0 , μ∞
1 ∈ Dom(Ent(·|m∞))∩Pc(X∞) strongly timelike p-dualisable,

i.e. such that there exists π∞ ∈ Πp-opt
≤∞

(μ∞
0 , μ∞

1 ) with π∞({τ∞ > 0}) = 1 and

there exists a measurable �p-cyclically monotone set

Γ ⊂ (X2
∞)	∞ ∩ (suppμ∞

0 × suppμ∞
1 )
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such that a coupling π ∈ Π≤∞(μ∞
0 , μ∞

1 ) is �p-optimal if and only if π is

concentrated on Γ. Since μ∞
0 , μ∞

1 have compact support and X̄ is globally

hyperbolic, we can restrict all the arguments to a large compact subset of

E � X̄ such that

• J+
X̄
(suppμ∞

0 ) ∩ J−
X̄
(suppμ∞

1 ) ⊂ E;

• m∞(E) = limj→∞mj(E).

Thus, m̃j := mj(E)−1mj�E are probability measures supported in the com-

pact subset E � X̄ and narrowly converge to m̃∞ := m∞(E)−1m∞�E. With

a slight abuse of notation, for simplicity, we will write mj for m̃j , j ∈ N∪{∞}.

Step 1. We prove that, up to a subsequence, for every j ∈ N there exists

(μj
0, μ

j
1) ∈ P(Xj)

2 timelike p-dualisable such that

μj
0 → μ∞

0 , μj
1 → μ∞

1 narrowly in X̄ and �p(μ
j
0, μ

j
1)→ �p(μ

∞
0 , μ∞

1 ) as j →∞.

(3.33)

Since E � X̄ is compact, the narrow convergence mj → m∞ implies that

mj → m∞ in W
(X̄,d̄)
2 . Let

(3.34) γj ∈ Π(m∞,mj) be a W
(X̄,d̄)
2 -optimal coupling.

Thanks to the next Lemma 3.16, we can approximate π∞ by

π∞,n = ρ∞,nm∞ ⊗m∞, ρ∞,n ∈ L∞(m∞ ⊗m∞),

π∞,n({τ̄ > 0}) = 1, π∞,n → π∞ narrowly,

lim
n→∞

Ent((P1)�π∞,n|m∞) = Ent(μ∞
0 |m∞),

lim
n→∞

Ent((P2)�π∞,n|m∞) = Ent(μ∞
1 |m∞).

(3.35)

Define then

π̃j,n(dx1dx2dx3dx4) := ρ∞,n(x1, x3)γj(dx1 dx2)⊗ γj(dx3 dx4),

πj,n := (P24)�π̃j,n,
(3.36)

and observe that πj,n � mj ⊗mj and that πj,n → π∞,n narrowly as j →∞.

By lower semicontinuity over open subsets, we have that

lim inf
j→∞

πj,n({τ̄ > 0}) ≥ π∞,n({τ̄ > 0}) = 1.
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Thus, calling cj,n := 1/πj,n({τ̄ > 0}) for j large enough, it holds that

π′
j,n := cj,nπj,n�{τ̄ > 0} → π∞,n narrowly and

lim
j→∞

∫
τ̄p π′

j,n =

∫
τ̄p π∞,n > 0

(3.37)

by Lemma 1.17. Let

(3.38) (μ′)j,n0 := (P1)�π
′
j,n, (μ

′)j,n1 := (P2)�π
′
j,n

and notice that �p
(
(μ′)j,n0 , (μ′)j,n1

)
∈ (0,∞). Let

(3.39) π′′
j,n ∈ Πp-opt

≤̄
(
(μ′)j,n0 , (μ′)j,n1

)
be an �p-optimal coupling (whose existence is ensured by Proposition 2.3).

Combining (3.37) with Lemma 1.15, with Prokhorov Theorem 1.14 and
with the causal closeness of X̄ we deduce that there exists

π̂∞,n ∈ Π≤((P1)�π∞,n, (P2)�π∞,n)

such that, up to a subsequence, π′′
j,n → π̂∞,n narrowly as j → ∞. Re-

peating once more the tightness argument, we deduce that there exists
π̂∞ ∈ Π≤(μ∞

0 , μ∞
1 ) such that, up to a subsequence, π̂n,∞ → π̂∞ narrowly as

n→∞. We conclude that there exist sequences (nk), (jk) such that

(3.40) π′′
jk,nk

→ π̂∞ narrowly and

∫
τ̄p π̂∞ = lim

k→∞

∫
τ̄p π′′

jk,nk
≥

∫
τ̄p π∞,

where the last inequality follows from Lemma 1.17, (3.35), (3.37) and the op-
timality of π′′

jk,nk
. Combining (3.40) with the fact that π∞ ∈ Πp-opt

≤∞
(μ∞

0 , μ∞
1 ),

we get that π̂∞ ∈ Πp-opt
≤∞

(μ∞
0 , μ∞

1 ) as well.
Since by assumption (μ∞

0 , μ∞
1 ) is strongly timelike p-dualisable, we infer

that π̂∞{τ̄ > 0} = 1. Thus lim infk→∞ π′′
jk,nk

({τ̄ > 0}) ≥ π̂∞({τ̄ > 0}) = 1.
For k large enough, set

c′′k := 1/π′′
jk,nk

({τ̄ > 0}), πk = c′′kπ
′′
jk,nk

�{τ̄ > 0}
μk
0 := (P1)�πk, μk

1 := (P2)�πk
(3.41)

and notice that

(3.42) πk → π̂∞, μk
0 → μ∞

0 , μk
1 → μ∞

1 narrowly.
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Since the restriction of an optimal coupling is optimal (Lemma 2.10), it
follows that πk ∈ Πp-opt

≤̄ (μk
0, μ

k
1) and by construction πk({τ̄ > 0} = 1.

We conclude that (μk
0, μ

k
1) is timelike p-dualisable by πk and �p(μ

k
0, μ

k
1) →

�p(μ
∞
0 , μ∞

1 ). Up to renaming the indices, the claim (3.33) follows.

Step 2. We prove that the sequences (μj
0), (μ

j
1) constructed in Step 1

satisfy:

lim sup
j→∞

Ent(μj
0|mj) ≤ Ent(μ∞

0 |m∞), lim sup
j→∞

Ent(μj
1|mj) ≤ Ent(μ∞

1 |m∞).

(3.43)

We divide this step into two substeps.
Recall the definition (3.36) of π̃j,n(dx1dx2dx3dx4) and set

μj,n
0 := (P2)�π̃j,n, μj,n

1 := (P4)�π̃j,n.

Step 2a. We first prove that, for all j, n ∈ N, it holds:

Ent(μj,n
0 |mj) ≤ Ent((P1)�π∞,n|m∞), Ent(μj,n

1 |mj) ≤ Ent((P2)�π∞,n|m∞),

(3.44)

We give the argument for the former in (3.44), the latter being completely
analogous. The explicit expression (3.36) of π̃j,n(dx1dx2dx3dx4) combined
with (3.35) and with Fubini’s Theorem permits to write

(P1)�π∞,n = ρ∞,n
0 m∞; ρ∞,n

0 (x1) =

∫
X
ρ∞,n(x1, x3)m∞(dx3),

for (P1)�π∞,n-a.e. x1 ∈ X∞; and

μj,n
0 = ρj,n0 mj ; ρj,n0 (x2) =

∫
X

(∫
X2

ρ∞,n(x1, x3)γj(dx3dx4)

)
(γj)x2

(dx1),

(3.45)

for μj,n
0 -a.e. x2 ∈ Xj ; where {(γj)x2

} is the disintegration of γj with respect
to P2. Since u(t) = t log t is convex on [0,∞), Jensen’s inequality gives:

Ent(μj,n
0 |mj) =

∫
X
u
(
ρj,n0 (x2)

)
mj(dx2)

≤
∫
X

∫
X
u

(∫
X2

ρ∞,n(x1, x3)γj(dx3dx4)

)
(γj)x2

(dx1)mj(dx2)
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=

∫
X2

u
(
ρ∞,n
0 (x1)

)
γj(dx1dx2) =

∫
X
u
(
ρ∞,n
0 (x1)m∞(dx1)

= Ent((P1)�π∞,n|m∞).

Step 2b. We prove that the sequences (μj
0), (μ

j
1) constructed in Step 1

satisfy:

(3.46) lim sup
j→∞

Ent(μj
i |mj) ≤ lim sup

k→∞
Ent(μjk,nk

i |mjk), i = 0, 1.

We give the argument for i = 0, the case i = 1 being completely analogous.
From the construction of μk

0 in Step 1 (see (3.36), (3.37), (3.38), (3.39),
(3.41), see also (3.45)) it is not hard to check that μk

0 = ρk0mjk , where
ρk0 ∈ L∞(mjk) satisfies

0 ≤ ρk0 ≤ ck ρ
jk,nk

0 ≤ ck‖ρ∞,nk
‖L∞(m∞⊗m∞) ∀k ∈ N, ck → 1 as k →∞.

(3.47)

The fact that u(t) := t log t is convex on [0,∞) and u(0) = 0, easily yields

u(t+ h)− u(t) ≥ u(h), ∀t, h ∈ [0,∞).

Thus, (3.47) combined with Jensen’s inequality gives∫
u(ckρ

jk,nk

0 )mjk −
∫

u(ρk0)mjk ≥
∫

u(ckρ
jk,nk

0 − ρk0)mjk(3.48)

≥ u

(∫
(ckρ

jk,nk

0 − ρk0)mjk

)
= u (ck − 1)→ 0 as k →∞.

The claim (3.46) follows immediately from (3.48). The claim (3.43) is a
straightforward consequence of (3.44) combined with (3.35) and (3.46).

Step 3. Passing to the limit in the TCD condition.
For simplicity of presentation we give the argument for the TCDe

p(0, N)
condition, the one for general K ∈ R being analogous just a bit more
cumbersome due to the distortion coefficients. Since for each j ∈ N the
pair (μj

0, μ
j
1) ∈

(
Dom(Ent(·|mj))

)2 ⊂ P(Xj)
2 is timelike p-dualisable, the

assumption that (Xj , dj ,mj ,�j ,≤j , τj) satisfies the TCDe
p(0, N) condition

yields the existence of an �p-geodesic (μj
t )t∈[0,1] such that

(3.49) UN (μj
t |mj) ≥ (1− t)UN (μj

0|mj)+ t UN (μj
1|mj), ∀t ∈ [0, 1], ∀j ∈ N.
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Since by construction ⋃
j∈N,i∈{0,1}

suppμj
i ⊂ E � X̄

and X̄ is globally hyperbolic, Proposition 1.6 yields that there exists a com-
pact subset K � X̄ such that

(3.50)
⋃

j∈N,t∈[0,1]
suppμj

t ⊂ K � X̄.

Let ηj ∈ P(C([0, 1],K) be the �p-optimal dynamical plan representing the

�p-geodesic (μj
t )t∈[0,1]. Prokhoroff Theorem combined with (3.25) and (3.50)

yields that the sequence (ηj)j∈N ⊂ P(C([0, 1], X̄)) is pre-compact in narrow
topology, i.e. there exists η∞ ⊂ P(C([0, 1], X̄)) such that, up to a subse-
quence, ηj → η∞ narrowly.

We now claim that η∞ is an �p-optimal dynamical plan from μ∞
0 to μ∞

1 .
Indeed, by the continuity of et : C([0, 1], X̄)→ X̄, it is easily seen that

μj
t = (et)�η

j −→
j→∞

(et)�η
∞ =: μ∞

t narrowly, for every t ∈ [0, 1],(3.51)

(e0, e1)�η
j −→
j→∞

(e0, e1)�η
∞ narrowly.(3.52)

By the uniqueness of the narrow limit we infer that (ei)�η
∞ = μ∞

i , for
i = 0, 1. The causal closedness of X̄ ensures that

(e0, e1)�η
∞ ⊂ Π≤(μ

∞
0 , μ∞

1 ).

We claim that such a coupling is �p-optimal. Recalling that τ̄ is contin-
uous and bounded (on E) and that the plans (e0, e1)�η

j are �p-optimal, we
infer that

�p(μ
j
0, μ

j
1) =

∫
X̄2

τ̄(x, y)p (e0, e1)�η
j(dxdy)(3.53)

−→
j→∞

∫
X̄2

τ̄(x, y)p (e0, e1)�η
∞(dxdy).

The �p-optimality of (e0, e1)�η
∞ follows by the combination of (3.33) and

(3.53).
We are left to show that the �p-geodesic (μ∞

t )t∈[0,1] defined in (3.51)
satisfies the TCDe

p(0, N) condition. The joint upper semicontinuity of UN
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under narrow convergence (1.15) yields:

(3.54) UN (μ∞
t |m∞) ≥ lim sup

j∈N
UN (μj

t |mj), ∀t ∈ [0, 1].

The combination of (3.43), (3.49) and (3.54) gives that

UN (μ∞
t |m∞) ≥ (1− t)UN (μ∞

0 |m∞) + t UN (μ∞
1 ,m∞), ∀t ∈ [0, 1],

as desired.

In the proof of Theorem 3.15 we made use of the following approximation
result.

Lemma 3.16. Let (X, d,m,�,≤, τ) be a globally hyperbolic Lorentzian geo-
desic space.

Let μ, ν ∈ Pc(X), μ, ν � m such that there exists π ∈ Πp-opt
≤ (μ, ν) with

π({τ > 0}) = 1.
Then there exists a sequence (πn) ⊂ Π	(X2) with the following proper-

ties:

1. πn = ρnm⊗m� m⊗m with ρn ∈ L∞(m⊗m);
2. πn → π in the narrow convergence;
3. If (P1)�πn =: μn = ρμn

m and (P2)�πn =: νn = ρνn
m, it holds that

ρμn
→ ρμ and ρνn

→ ρν in L1(m). Moreover,

(3.55) lim
n→∞

Ent(μn|m) = Ent(μ|m), lim
n→∞

Ent(νn|m) = Ent(ν|m).

Proof. Step 1. Basic approximation by product measures.
First, we cover {τ > 0} with a countable family of products of open subsets
Ai ×Bi ⊂ {τ > 0}:

(3.56) {τ > 0} =
⋃
i∈N

Ai ×Bi, with Ai, Bi ⊂ X open subsets.

Let π̄n := π�⋃
i≤n Ai×Bi

and define πn := π̄n − π̄n−1, π0 = 0. We have the
following decomposition:

π =
∑
n∈N

πn, πn ⊥ πm, πn({τ > 0} \An ×Bn) = 0.

For n ≥ 1, consider

μn := (P1)�πn, νn := (P2)�πn, ηn := μn ⊗ νn/πn(X
2).
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Observe that μn(X \ An) = νn(X \ Bn) = ηn(X
2 \ {τ > 0}) = 0 and,

by linearity of projections, μ =
∑

n∈N μn, ν =
∑

n∈N νn. Notice moreover
that the factor 1/πn(X

2) in the definition of ηn is necessary to obtain that
(P1)�ηn = μn and (P2)�ηn = νn. Finally, set η :=

∑
n∈N ηn and note that

η ∈ Π≤(μ, ν), η(X2
	) = 1, η � m⊗m.

Notice moreover that, writing η = ρm⊗m, then

ρ(x, y) = ρμn
(x) ρνn

(y) ≤ ρμ(x) ρν(y), η-a.e. (x, y) ∈ An ×Bn,

where ρμ (respectively ρν , ρμn
, ρνn

) is the density of μ (resp. ν, μn, νn))
with respect to m.

Step 2. We iterate the construction taking finer coverings of the form
(3.56) to obtain a sequence (ηm) converging in the narrow topology to π.

Fix any f, g ∈ Cb(X) and observe that∫
X2

f(x)g(y)π(dxdy)−
∫
X2

f(x)g(y)η(dxdy)(3.57)

=

∞∑
n=1

∫
X2

f(x)g(y)πn(dxdy)−
∫
X
f(x)μn(dx)

∫
X
g(y)

νn(dy)

πn(X2)
.

Since μ, ν have compact support, we have that f, g are uniformly continuous
on suppμ ∪ supp ν � X. Given any (xn, yn) ∈ An ×Bn, we estimate∣∣∣∣

∫
X2

f(x)g(y)πn(dxdy)− f(xn)g(yn)πn(X
2)

∣∣∣∣(3.58)

≤ επn(X
2)(‖f‖∞ + ‖g‖∞),

where ε is the modulus of continuity of both f and g over An and Bn

respectively. Analogously,∣∣∣∣
∫
X
f(x)μn(dx)

∫
X
g(y)

νn(dy)

πn(X2)
− f(xn)g(yn)πn(X

2)

∣∣∣∣
=

∣∣∣∣
∫
X
f(x)μn(dx)

∫
X
g(y)

νn(dy)

πn(X2)
− f(xn)μn(X)g(yn)

∣∣∣∣
≤

∣∣∣∣
∫
X
(f(x)− f(xn))μn(dx)

∫
X
g(y)

νn(dy)

πn(X2)

∣∣∣∣
+ |f(xn)μn(X)|

∣∣∣∣
∫
X
g(y)

νn(dy)

πn(X2)
− g(yn)

∣∣∣∣
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≤ εμn(X)‖g‖∞ + εμn(X)‖f‖∞ = επn(X)(‖g‖∞ + ‖f‖∞).(3.59)

Combining (3.57), (3.58) and (3.59), we obtain∣∣∣∣
∫
X2

f(x)g(y)π −
∫
X2

f(x)g(y)η

∣∣∣∣ ≤ 2ε(‖g‖∞ + ‖f‖∞),

where ε is the modulus of continuity of both f and g over subsets of suppμ ∪
supp ν � X with diameter at most supn∈N max{diam (An), diam (Bn)}.

Then, considering finer and finer open coverings

{τ > 0} =
⋃
i∈N

Am
i ×Bm

i , with Am
i , Bm

i ⊂ X open sets,

lim
m→∞

sup
i∈N

max{diam (Am
i ), diam (Bm

i )} = 0,

and the corresponding measures ηm constructed in Step 1, it holds

ηm ∈ Π≤(μ, ν), ηm(X2
	) = 1, ηm � m⊗m, ηm → π narrowly.

Step 3. Conclusion by truncation and dominated convergence Theorem.

Let ηm = ρmm ⊗ m be the sequence constructed in Step 2. For any C > 0
define

ηCm := αC,mmin{ρm, C} m⊗m,

where αC,m is the normalization constant. It is easy to check that ηCm → ηm
narrowly as C →∞. By a diagonal argument we obtain a sequence ηCm

m → π

narrowly for some Cm →∞. Define

μm := (P1)�η
Cm
m , νm := (P2)�η

Cm
m .

Writing μm = ρμ,mm, it holds

ρμ,m(x) = αCm,m

∫
X
min{ρm(x, y), Cm}m(dy)(3.60)

≤ αCm,m

∫
X
ρm(x, y)m(dy) = αCm,mρμ(x),

where the last identity follows from (P1)�ηm = μ for any m ∈ N. Hence, by

dominated convergence Theorem, ρμ,m(x)/αCm,m is converging to ρμ(x) in
the stronger L1(m) norm, as m→∞.
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For the last claim (3.55), without loss of generality we can assume
Ent(μ|m) <∞ (otherwise it is trivial). From dominated convergence Theo-
rem and (3.60), we deduce that Ent(μm|m)→ Ent(μ|m).

To conclude the proof, repeat the last arguments also for ν.

Remark 3.17. Recalling from Theorem 3.1 that smooth globally hyperbolic
spacetimes of dimension ≤ N with timelike Ricci curvature bounded below
by K ∈ R satisfy TCDe

p(K,N), Theorem 3.15 yields that their limit spaces
(in the sense of Theorem 3.15) satisfy wTCDe

p(K,N).

3.4. Optimal maps in timelike non-branching TMCPe(K,N)
spaces

In this section we prove some results about existence of optimal transport
maps in timelike non-branching TMCPe(K,N) spaces, from which we will
deduce the uniqueness of �p-geodesics (this section should be compared with
[20] where the analogous results were obtained for metric-measure spaces
satisfying MCP(K,N) and essentially non-branching).

Lemma 3.18. Let (X, d,m,�,≤, τ) be a timelike non-branching, globally
hyperbolic, Lorentzian geodesic space satisfying TMCPe(K,N) for some p ∈
(0, 1),K ∈ R, N ∈ (0,∞). Let μ0 ∈ Pc(X), with μ0 ∈ Dom(Ent(·|m)) and
μ1 be a finite convex combination of Dirac masses, i.e. μ1 :=

∑n
j=1 λjδxj

for some {xj}j=1,...,n ⊂ X with xi �= xj for i �= j, and {λj}j=1,...,n ⊂ (0, 1]
with

∑n
j=1 λj = 1. Assume that there exists π ∈ Πp-opt

≤ (μ0, μ1) such that
suppπ � {τ > 0}.

Then π is the unique element in Πp-opt
≤ (μ0, μ1) = {π} with suppπ �

{τ > 0}. Moreover such a π is induced by a map T , i.e. π = (Id, T )�μ0 and

�p(μ0, μ1)
p =

∫
X
τ(x, T (x))p μ0(dx).

Proof. We first show that π is induced by a map, the uniqueness will follow.

Consider the set

(3.61) S := {x ∈ X : ∃xi �= xj with (x, xi), (x, xj) ∈ suppπ} ⊂ suppμ0,

and, since suppμ0 is compact, S is easily seen to be a closed set and therefore
compact. It will be enough to prove the stronger statement μ0(S) = 0.

Suppose by contradiction μ0(S) > 0. Since μ1 is a finite sum of Dirac
masses, up to taking a smaller S and up to relabelling the points xj , we can
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assume the existence of

T1, T2 : S → X, graph(T1), graph(T2) ⊂ suppπ,

both μ0-measurable with T1(x) = x1 and T2(x) = x2 for all x ∈ S, with
x1 �= x2.

Possibly restricting to a subset of S, still of positive m-measure, we also
assume that if 1/C ≤ ρ0 ≤ C over S, where ρ0 is the density of μ0 with
respect to m. Thanks to Lemma 2.10 the couplings

(3.62)
χS×{x1}
ρ0m(S)

π,
χS×{x2}
ρ0m(S)

π,

are optimal. Hence, with no loss of generality, we can redefine μ0 :=
m�S/m(S) and consider η1 ∈ OptGeo�p(μ0, δx1

) and η2 ∈ OptGeo�p(μ0, δx2
)

given by Proposition 2.33.
Necessarily supp η1∩supp η2 = ∅; indeed for i = 1, 2 it holds ηi({γ : γ1 =

xi}) = 1 and by construction x1 �= x2. Thus, again by Proposition 2.33, it
holds

(3.63) (et)�η
1 ⊥ (et)�η

2, ∀t ∈ (0, 1].

The TMCPe(K,N) condition (3.13) gives that (see (3.14)), for i = 1, 2,

(3.64)

∫
ρit log(ρ

i
t)m ≤ − log(m(S))−N log(σ

(1−t)
K/N (‖τ‖L2((e0,e1)�ηi))),

for all t ∈ [0, 1), i = 1, 2, where we have written (et)�η
i = ρitm. By Jensen’s

inequality (1.14) we have∫
X
ρit log(ρ

i
t)m ≥ − log(m({ρit > 0}))

which, combined with (3.64), gives

(3.65) lim inf
t→0

m
(
{ρit > 0}

)
≥ m (S) = m

(
{ρi0 > 0}

)
.

Denote now

E :=
⋃

t∈[0,1],i=1,2

supp (et)�η
i

Sε
E := {y ∈ E : τ(x, y) ≤ ε for some x ∈ S}
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and notice that, by global hyperbolicity and Proposition 1.6(i), E (and thus
also Sε

E) is a compact subset of X. Moreover, by Dominated Convergence
Theorem, we have limε→0m(Sε

E) = m(S). In particular there exists ε0 > 0
such that

(3.66) m(Sε0
E ) ≤ 3

2
m(S).

We now claim that there exists a small t0 > 0, such that

(3.67) m
(
{ρ1t0 > 0} ∩ {ρ2t0 > 0}

)
> 0.

To this aim notice that, by construction, for (et)�η
i-a.e. x ∈ X there exists a

timelike geodesic γ ∈ TGeo(X) such that x = γt, γ0 ∈ S, γ1 = xi, i = 1, 2; in
particular, for t ∈ [0, ε0] the measure (et)�η

i is concentrated on Sε0
E . But then

the combination of (3.65) and (3.66) implies that there exists t0 ∈ (0, ε0)
satisfying the claim (3.67).

Observing that (3.67) contradicts (3.63), we conclude that π is induced
by a map.

We now show that there exists a unique element π ∈ Πp-opt
≤ (μ0, μ1)

satisfying suppπ � {τ > 0}. Assume by contradiction that there exist
π1, π2 ∈ Πp-opt

≤ (μ0, μ1) satisfying suppπ1, suppπ2 � {τ > 0} with π1 �= π2.
By the first part of the proof, we know that there exist maps T1, T2 : X → X
such that πi = (Id, Ti)�μ0; in particular T1 �= T2 on a μ0-nonnegligible
subset. It is straightforward to check that π := 1

2(π1 + π2) satisfies π ∈
Πp-opt

≤ (μ0, μ1), suppπ � {τ > 0} and that π cannot be induced by a map.
This contradicts the first part of the proof.

Proposition 3.19. Let (X, d,m,�,≤, τ) be a timelike non-branching, glob-
ally hyperbolic, Lorentzian geodesic space satisfying TMCPe(K,N) for some
p ∈ (0, 1),K ∈ R, N ∈ (0,∞). Let μ0, μ1 ∈ Pc(X), with μ0 ∈ Dom(Ent(·|m)).
Assume that there exists π ∈ Πp-opt

≤ (μ0, μ1) such that suppπ � {τ > 0}.
Then there exist π̂ ∈ Πp-opt

≤ (μ0, μ1) with π̂({τ > 0}) = 1 and an �p-
geodesic (μt)t∈[0,1] from μ0 to μ1 satisfying

(3.68) UN (μt|m) ≥ σ
(1−t)
K/N (‖τ‖L2(π̂))UN (μ0|m), ∀t ∈ [0, 1).

In particular μt � m for all t ∈ [0, 1). Moreover any optimal dynamical plan
η representing (μt)t∈[0,1] is such that (e0, e1)�η({τ > 0}) = 1.

Proof. Step 1. Additionally assume suppμ0 × suppμ1 ⊂ {τ > 0}.
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If suppμ1 is made of finitely many points, an easier variant of the following

arguments give the result (more precisely it is enough to take n to be the

number of points in suppμ1 and stop at the end of Step 2). Thus without loss

of generality we can assume that suppμ1 contains infinitely many points.

Let Bi ⊂ suppμ1, i = 1, . . . , n be a finite Borel partition of suppμ1 with

μ1(Bi) > 0 for each i. For every i pick a point xi1 ∈ Bi and define

μ̄1 :=

n∑
i=1

aiδxi
1
,

where ai := μ1(Bi). Since suppμ0 × suppμ1 ⊂ {τ > 0}, there exists π̄ ∈
Πp-opt

≤ (μ0, μ̄1) such that supp π̄ � {τ > 0}. Let T : X → X be the �p(μ0, μ̄1)-

optimal map associated to π̄ by Lemma 3.18 and define Ai := T−1(xi1).

Observe that the sets Ci = Ai×{xi1} satisfy Ci � {τ > 0} and form a finite

Borel partition of supp π̄. Set π̄i := 1
ai
π̄�Ci

and

μ̄i
0 := (P1)�π̄

i, μ̄i
1 := (P2)�π̄

i = δxi
1
.

Note that, by construction, μ0 =
∑

i aiμ̄
i
0 and

(3.69) μ̄i
0 ⊥ μ̄j

0, ∀i �= j.

Noting that supp π̄i � {τ > 0}, the TMCPe(K,N) condition ensures that

there exists an �p-geodesic (μ̄i
t)t∈[0,1] from μ̄i

0 to μ̄i
1 satisfying

UN (μ̄i
t|m) ≥ σ

(1−t)
K/N (‖τ(·, xi1)‖L2(μ̄i

0)
)UN (μ̄i

0|m), ∀i = 1, . . . , n, t ∈ [0, 1).

(3.70)

Step 2. Taking the logarithm of (3.70) and summing over i (recalling

that
∑

i ai = 1), we obtain

− 1

N

∑
i

aiEnt(μ̄
i
t|m) ≥

∑
i

ai log
(
σ
(1−t)
K/N (‖τ(·, xi1)‖L2(μ̄i

0)
)
)

(3.71)

− 1

N

∑
i

aiEnt(μ̄
i
0|m).

Call η̄i ∈ OptGeo�p(μ̄
i
0, μ̄

i
1) the �p-optimal dynamical plan representing the

�p-geodesic (μ̄i
t)t∈[0,1]. Since by construction μ̄i

1 = δxi
1
and xi1 �= xj1 for i �= j,
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it follows that supp η̄i ∩ supp η̄j = ∅ for i �= j. Proposition 2.33 implies that

(3.72) μ̄i
t ⊥ μ̄j

t , ∀t ∈ (0, 1), ∀i �= j.

Calling μ̄t :=
∑

i aiμ̄
i
t and using (3.69), (3.72) we get that, for all t ∈ [0, 1):

(3.73) Ent(μ̄t|m) = Ent

(∑
i

aiμ̄
i
t|m

)
=

∑
i

aiEnt(μ̄
i
t|m) +

∑
i

ai log(ai).

Hence adding − 1
N

∑
i ai log(ai) to both sides of (3.71), using (3.73), and the

convexity of the function (−∞, π2) � k → log σ
(t)
k (1) (recall that σ

(t)
k (ϑ) =

σ
(t)
kϑ2(1)) we obtain

UN (μ̄t|m) ≥ σ
(1−t)
K/N (‖τ‖L2(π̄))UN (μ0|m), ∀t ∈ [0, 1).

Step 3. Taking finer partitions of suppμ1 we can construct a sequence
{μ̄k

1}k∈N ⊂ Pc(X) such that each μ̄k
1 is a finite convex combination of Dirac

masses, supp μ̄k
1 ⊂ suppμ1 for each k, and μ̄k

1 → μ1 narrowly. We then
invoke Theorem 2.16 to obtain another sequence, that we still denote by μ̄k

1,
that is converging to μ1 narrowly and which is absolutely continuous with
the previous μ̄k

1, hence still obtained as a finite convex combination of Dirac
deltas.

For each k let (μ̄k
t = (et)�η̄

k)t∈[0,1] be the �p-geodesic from μ0 to μ̄k
1 and

π̄k ∈ Πp-opt
≤ (μ0, μ̄

k
1) the optimal coupling constructed in Step 2 satisfying

(3.74) UN (μ̄k
t |m) ≥ σ

(1−t)
K/N (‖τ‖L2((e0,e1)�η̄k))UN (μ0|m), ∀t ∈ [0, 1).

Notice indeed that by construction, (e0, e1)�η̄
k = π̄k.

We aim to construct a limit �p-geodesic (μt)t∈[0,1] from μ0 to μ1 satisfying
(3.68). First of all notice that by global hyperbolicity and Proposition 1.6(i),

K̄ :=
⋃

t∈[0,1]
I(suppμ0, suppμ1, t) � X

is a compact subset, see (1.6), (1.7). It is easily seen that

(3.75) supp μ̄k
t ⊂ I(suppμ0, suppμ1, t) ⊂ K̄, ∀t ∈ [0, 1], k ∈ N.

From (2.26) we deduce that

sup
k∈N

LW1

(
(μ̄k

t )t∈[0,1]
)
≤ C̄ <∞.
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By the metric Arzelá-Ascoli Theorem we deduce that there exists a limit
continuous curve (μt)t∈[0,1] ⊂ (P(K̄),W1) such that (up to a sub-sequence)

W1

(
μ̄k
t , μt

)
→ 0 and thus μ̄k

t → μt narrowly, as n → ∞. Recalling the

assumption of π ∈ Πp-opt
≤ (μ0, μ1) with suppπ � {τ > 0}, Theorem 2.16 and

Lemma 2.12 yield that

(3.76) t�p(μ0, μ1) = t lim
k→∞

�p(μ0, μ̄
k
1) = lim

k→∞
�p(μ0, μ̄

k
t ) ≤ �p(μ0, μt).

Thus, by reverse triangle inequality, the curve (μt)t∈[0,1] is an �p-geodesic
from μ0 to μ1 and any narrow limit π̂ of (π̄k) is �p-optimal. The upper-
semicontinuity (3.4) of UN (·|m) in narrow topology yields

(3.77) lim sup
j→∞

UN (μ̄
kj

t |m) ≤ UN (μt|m), ∀t ∈ [0, 1).

Combining (3.74) and (3.77) gives the desired (3.68). By the additional
assumption suppμ0 × suppμ1 ⊂ {τ > 0}, it follows that π̂({τ > 0}) = 1
and the analogous property for any optimal dynamical plan representing the
geodesic.

Step 4. Removing the assumption suppμ0 × suppμ1 ⊂ {τ > 0}.
By assumption there exists π ∈ Πp-opt

≤ (μ0, μ1) such that suppπ � {τ > 0}.
Since suppπ is compact, we can find finitely many products of open subsets
Ai×Bi � {τ > 0}, i = 1, . . . , n, such that suppπ ⊂

⋃n
i=1Ai×Bi. Argueing

by induction over n ∈ N noticing that

n⋃
i=1

Ai ×Bi =

((
An \

n−1⋃
i=1

Ai

)
×Bn

)
∪

(
n−1⋃
i=1

(Ai ∩An)× (Bi ∪Bn)

)

∪
(

n−1⋃
i=1

(Ai \An)×Bi

)
,

it is easy to see that we can assume with no loss in generality thatAi∩Aj = ∅,
provided we admit Ai to be Borel. In this way we obtain that suppπ ⊂⋃n

i=1Ai × Bi and suppμ0 ⊂
⋃n

i=1Ai are both finite Borel pairwise disjoint
unions with Ai×Bi � {τ > 0} for every i = 1, . . . , n. Up to taking a subset
of indices, we can assume that π(Ai ×Bi) > 0, for all i = 1, . . . , n.

Setting π̄i := π�Ai×Bi
, we obtain the following decomposition:

π =
∑
i≤n

π̄i, π̄i ⊥ π̄j for i �= j, π̄i({τ > 0} \Ai ×Bi) = 0.
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Finally, set πi := π̄i/π̄i(X ×X) and μ0,i := (P1)�πi, μ1,i := (P2)�πi. Clearly,

it holds μ0,i ⊥ μ0,j if i �= j. By restriction property, πi ∈ Πp-opt
	 (μ0,i, μ1,i)

and we can apply the previous part of the proof to the marginals μ0,i, μ1,i:

there exists π̂i ∈ Πp-opt
≤ (μ0,i, μ1,i) and an �p-geodesic (μt,i)t∈[0,1] from μ0,i to

μ1,i satisfying

UN (μt,i|m) ≥ σ
(1−t)
K/N (‖τ‖L2(π̂i))UN (μ0,i|m), ∀t ∈ [0, 1).

In particular μt,i � m for all t ∈ [0, 1). We can then sum over i the previous

inequality and, reasoning like in Step 2 by using mutual orthogonality of

μ0,i, we have the claims.

Theorem 3.20. Let (X, d,m,�,≤, τ) be a timelike non-branching, globally

hyperbolic, Lorentzian geodesic space satisfying TMCPe(K,N) for some p ∈
(0, 1),K ∈ R, N ∈ (0,∞).

Let μ0, μ1 ∈ Pc(X), with μ0 ∈ Dom(Ent(·|m)). Assume that there exists

π ∈ Πp-opt
≤ (μ0, μ1) such that π ({τ > 0}) = 1.

Then there exists a unique optimal coupling π ∈ Πp-opt
≤ (μ0, μ1) such that

π ({τ > 0}) = 1 and it is induced by a map T , i.e. π = (Id, T )�μ0 and

�p(μ0, μ1)
p =

∫
X
τ(x, T (x))p μ0(dx).

Proof. The arguments are along the same lines of the proof of Lemma 3.18

but with some (non-completely trivial) modifications that we briefly discuss.

Step 1. Let Γ ⊂ X2
	 be an �p-monotone subset such that π(Γ) = 1,

given by Proposition 2.8. Define

(3.78) Γ(x) := P2

(
Γ ∩ ({x} ×X)

)
,

and S the set of those x ∈ X such that Γ(x) is not a singleton. Note that the

set S is Suslin. It will be enough to prove the stronger statement μ0(S) = 0.

So suppose by contradiction μ0(S) > 0. By Von Neumann Selection

Theorem, there exists

T1, T2 : S → X, graph(T1), graph(T2) ⊂ Γ,

both μ0-measurable and d(T1(x), T2(x)) > 0, for all x ∈ S. By Lusin Theo-

rem, there exists a compact set S1 ⊂ S such that the maps T1 and T2 are
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both continuous when restricted to S1 and μ0(S1) > 0. In particular

inf
x∈S1

d(T1(x), T2(x)) = min
x∈S1

d(T1(x), T2(x)) = 2r > 0.

Then one can deduce the existence of a pair of points x1, x2 ∈ X, of a positive
r > 0 and of a compact set S2 ⊂ S1, again with μ0(S2) > 0, such that

{T1(x) : x ∈ S2} ⊂ Br(x1), {T2(x) : x ∈ S2} ⊂ Br(x2),

with d(x1, x2) > 2r, where Br(xi) is the open ball centred in xi and radius r,
for i = 1, 2 with respect to d. By the continuity of τ , up to further reducing
r > 0, we can also suppose that S2 × (Br(x1) ∪Br(x2)) � {τ > 0}.

Step 2. Following the arguments of the proof of Lemma 3.18 (see in
particular (3.62)), we can invoke Lemma 2.10 and assume with no loss of
generality μ0 to be restricted and renormalised to S2. In particular we rede-
fine μ0 := m�S2

/m(S2); the following measures are well defined as well

μ1
1 := (T1)�μ0, μ2

1 := (T2)�μ0;

in particular μ1
1, μ

2
1 are probability measures with suppμ1

1 ∩ suppμ2
1 = ∅.

By Proposition 3.19 we know there exist �p-geodesics (μ
i
t)t∈[0,1] from μ0

to μi
1, i = 1, 2, satisfying

(3.79) UN (μi
t|m) ≥ σ

(1−t)
K/N (‖τ‖L2(π̂i))UN (μ0|m), ∀t ∈ [0, 1), i = 1, 2.

Using (3.79), one can now follow verbatim the proof of Lemma 3.18 and
conclude.

Theorem 3.21. Let (X, d,m,�,≤, τ) be a timelike non-branching, globally
hyperbolic, Lorentzian geodesic space satisfying TMCPe(K,N) for some p ∈
(0, 1),K ∈ R, N ∈ (0,∞).

Let μ0, μ1 ∈ Pc(X), with μ0 ∈ Dom(Ent(·|m)). Assume that there exists
π ∈ Πp-opt

≤ (μ0, μ1) such that π({τ > 0}) = 1.
Then there exists a unique η ∈ OptGeo�p(μ0, μ1) with (e0, e1)�η ({τ >

0}) = 1 and such η is induced by a map, i.e. there exists T : X → TGeo(X)
such that η = T�μ0.

Proof. As usual, it is sufficient to show that every η ∈ OptGeo�p(μ0, μ1) with
(e0, e1)�η ({τ > 0}) = 1 is induced by a map; indeed if there exist η1 �= η2 ∈
OptGeo�p(μ0, μ1) with (e0, e1)�ηi ({τ > 0}) = 1 then also η̄ := 1

2(η1 + η2)
would be an element of OptGeo�p(μ0, μ1) with (e0, e1)�η̄ ({τ > 0}) = 1 but
η̄ cannot be given by a map.
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Assume by contradiction there exists η ∈ OptGeo�p(μ0, μ1) not induced
by a map. In particular, given the disintegration of η with respect to the
evaluation map e0 : TGeo(X)→ X

η =

∫
X
ηx μ0(dx),

there exists a compact subset D ⊂ supp(μ0) with μ0(D) > 0 such that for
μ0-a.e. x ∈ D the probability measure ηx is not a Dirac mass. Via a selection
argument, for μ0-a.e. x ∈ D we can also assume that ηx is the sum of two
Dirac masses. Then for μ0-a.e. x ∈ D there exist t = t(x) ∈ (0, 1) such that
(et)�ηx is not a Dirac mass over X. Then by continuity there exists an open
interval I = I(x) ⊂ (0, 1) containing t(x) above such that (es)�ηx is still not
a Dirac mass over X, for every s ∈ I(x).

It follows that we can find a subset D̄ ⊂ D ⊂ X still satisfying μ0(D̄) > 0
with the following property: there exists q̄ ∈ Q ∩ (0, 1) such that (eq̄)�ηx is
not a Dirac mass, for every x ∈ D̄.

Indeed, since D =
⋃

q∈Q∩(0,1)Dq where

Dq := {x ∈ D : (eq)�ηx is not a Dirac mass}

and since μ0(D) > 0, there must exist q̄ ∈ Q ∩ (0, 1) with μ0(Dq̄) > 0; we
then set D̄ := Dq̄. Set now

η̄ =
1

μ0(D̄)

∫
D̄
ηx μ0(dx).

Note that η̄ is an �p-optimal dynamical plan satisfying (e0, eq̄)�η̄ ({τ > 0}) =
1. But (e0, eq̄)�η̄ is an �p-optimal coupling which is not given by a map,
contradicting Theorem 3.20.

We then summarise the consequences of the previous results in the par-
ticular case of a uniform distribution as μ0. The main applications will be on
the regularity of conditional measures of the disintegration of the reference
measure m.

Corollary 3.22. Let (X, d,m,�,≤, τ) be a timelike non-branching, globally
hyperbolic, Lorentzian geodesic space satisfying TMCPe(K,N) for some p ∈
(0, 1),K ∈ R, N ∈ [1,∞). Let μ0, μ1 ∈ Pc(X) be two probability measures
and assume that there exists π ∈ Πp-opt

≤ (μ0, μ1) such that π({τ > 0}) = 1.

Then π is the unique element of Πp-opt
≤ (μ0, μ1) with π({τ > 0}) = 1. Ac-

cordingly there exists a unique optimal dynamical plan η such that
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(e0, e1)�η = π. Moreover, the �p-geodesic μt = (et)�η satisfies μt = ρtm� m.
Finally, if μ0 = m�A0

/m(A0) with A0 ⊂ X compact subset, then

(3.80) m({ρt > 0}) ≥ σ
(1−t)
K/N (‖τ‖L2(π))

Nm(A0).

In particular, calling A1 = suppμ1 and using the notation of Proposition 3.4,
the following timelike half-Brunn-Minkowski inequality holds:

m(At)
1/N ≥ σ

(1−t)
K/N (Θ)m(A0)

1/N .

Proof. From Theorem 3.20 it follows the uniqueness of the elements in
Πp-opt

≤ (μ0, μ1) that are also concentrated on X2
	; hence π is unique. From

Theorem 3.21 we deduce the existence of a unique η ∈ OptGeo�p(μ0, μ1)
such that (e0, e1)�η ({τ > 0}) = 1. In particular there is only one optimal
dynamical plan η such that (e0, e1)�η = π.

To deduce (3.80) we invoke Proposition 3.19 together with the following
approximation procedure: denote by T the optimal map associated to π,
i.e. (Id, T )�μ0 = π (Theorem 3.20). Then by inner regularity, we can find
compact sets {Kn}n∈N such that

Kn ⊂ A, m(A \Kn)→ 0, {(x, T (x)) : x ∈ Kn} ⊂ {τ > 0},

and T : Kn → X is continuous. In particular, the optimal transport plan
πn := (Id, T )�m�Kn

/m(Kn) is such that sptπn is a compact subset of {τ >
0}.

Using Proposition 3.19 with the uniqueness properties obtained just few

lines above, we deduce that UN (μn
t |m) ≥ σ

(1−t)
K/N (‖τ‖L2(πn))m(Kn)

1/N , where

μn
t = (et)�πn. Then by taking the limit as n → ∞, from the upper semi-

continuity of UN (3.4) and the convergence of ‖τ‖L2(πn) to ‖τ‖L2(π) by the

boundedness of τ , we deduce that UN (μt|m) ≥ σ
(1−t)
K/N (‖τ‖L2(π))m(A)1/N .

We conclude applying twice Jensen’s inequality as in (3.10).

4. Localization of the timelike Measure Contraction
Property

4.1. Transport relation and disintegration associated to a time
separation function

From now on, we make the standing assumptions that (X, d,�,≤, τ) is a
globally hyperbolic Lorentzian geodesic space and V ⊂ X is an achronal
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FTC Borel subset (see Definition 1.7). Recall that, associated to V , we have
the signed time-separation function τV : X → [−∞,+∞] defined in (1.8).

Lemma 4.1. For each x ∈ I+(V ) there exists a point yx ∈ V such that
τV (x) = τ(yx, x) > 0. Moreover:

τV (z)− τV (x) ≥ τ(yx, z)− τ(yx, x) ≥ τ(x, z), ∀x, z ∈ I+(V ) ∪ V, x ≤ z.
(4.1)

Proof. The first claim follows directly from Lemma 1.8.
If x ≤ z and τ(yx, x) > 0, then also yx ≤ z by transitivity. By reverse

triangle inequality (1.1), we deduce (4.1).

Notice that (4.1) can be extended to the whole X2 simply by replacing
τ with � (recall (2.2)):

(4.2) τV (z)− τV (x) ≥ �(x, z), ∀x, z ∈ (I+(V ) ∪ V )2.

We can therefore naturally associate to V the following transport relation:

ΓV := {(x, z) ∈ (I+(V ) ∪ V )2 ∩X2
≤ : τV (z)− τV (x) = τ(x, z) > 0}(4.3)

∪ {(x, x) : x ∈ I+(V ) ∪ V }.

Recalling the Definition 2.6, inequality (4.2) readily yields:

Lemma 4.2. The set ΓV is �-cyclically monotone.

Proof. Take (x1, z1), . . . , (xn, zn) ∈ ΓV and sum

n∑
i=1

�(xi, zi) =

n∑
i=1

τ(xi, zi) =

n∑
i=1

τV (zi)− τV (xi) ≥
n∑

i=1

�(xi+1, zi).

A consequence of �-cyclical monotonicity is the alignment along geodesics
of the pairs:

Lemma 4.3. Consider (x, z) ∈ ΓV with x �= z, x /∈ V . Then there exist
y ∈ V, γ ∈ TGeo(y, z) and t ∈ (0, 1) such that

x = γt, τ(y, γs) = τV (γs) ∀s ∈ [0, 1], (γs, γt) ∈ ΓV ∀s ∈ [0, t].

Proof. From Lemma 4.1, we have the existence of y ∈ V such that τV (x) =
τ(y, x) > 0. Moreover from (x, z) ∈ ΓV we get (y, z) ∈ X2

≤ and

τ(y, z) ≤ τV (z) = τV (x) + τ(x, z) = τ(y, x) + τ(x, z) ≤ τ(y, z),
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yielding 0 < τ(y, x) + τ(x, z) = τ(y, z) and (y, z) ∈ ΓV . Hence we can
concatenate a timelike geodesic from y to x with a timelike geodesic from x
to z (whose existence is guaranteed by fact that X is a Lorentzian geodesic
space) in order to obtain γ ∈ TGeo(y, z) and t ∈ (0, 1) such that γt = x,
proving first claim. In order to show the second claim, observe that for any
s ∈ [0, 1] it holds:

τV (γs) = τV (γ1)− τV (γ1) + τV (γs) = τ(y, z)− τV (γ1) + τV (γs).

From (4.1) we know that τV (γ1)− τV (γs) ≥ τ(γs, γ1) hence it follows that

τ(y, γs) ≤ τV (γs) ≤ τ(y, z)− τ(γs, z) = τ(y, γs),

proving the second point. For the last point, simply observe that

τV (γt)− τV (γs) = τ(y, γt)− τ(y, γs) = τ(γs, γt).

Next, we set Γ−1
V := {(x, y) : (y, x) ∈ ΓV } and we consider the transport

relation RV and the transport set with endpoints T e
V :

(4.4) RV := ΓV ∪ Γ−1
V , T e

V := P1(RV \ {x = y}).

The transport relation will be an equivalence relation on a specific subset of
T e
V that we will now construct. First, consider the following subsets of T e

V :

a(T e
V ) := {x ∈ T e

V : �y ∈ T e
V s.t. (y, x) ∈ ΓV , y �= x}

b(T e
V ) := {x ∈ T e

V : �y ∈ T e
V s.t. (x, y) ∈ ΓV , y �= x},

(4.5)

called the set of initial and final points, respectively. Define the transport
set without endpoints

(4.6) TV := T e
V \ (a(T e

V ) ∪ b(T e
V )).

Lemma 4.4. It holds I+(V ) = (TV ∪ b(T e
V )) \ V and V ⊃ a(T e

V ).

Proof. By definition RV ⊂ (I+(V )∪V )2 and since V is achronal I+(V )∩V =
∅; hence the inclusion I+(V ) ⊃ (TV ∪ b(T e

V )) \ V is trivial. To show the
converse inclusion, for every x ∈ I+(V ) Lemma 4.1 ensures the existence
of y ∈ V such that τV (x) = τ(y, x) > 0. Thus (x, y) ∈ Γ−1

V ⊂ RV , giving
that x ∈ T e

V \ a(T e
V ) = TV ∪ b(T e

V ). The argument for the second inclusion is
trivial.
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Proposition 4.5. Assume in addition to the previous assumptions that X is
timelike (backward and forward) non-branching. Then the transport relation
RV is an equivalence relation over TV .

Proof. The reflexive property (x, x) ∈ RV for all x ∈ TV , as well as sym-
metry, hold by the very definitions of ΓV and RV . We are then left to show
transitivity: for every (x, y), (y, z) ∈ RV we next prove that (x, z) ∈ RV .
Clearly we can assume x �= y �= z, otherwise the claim is trivial.

Case 1: (x, y), (y, z) ∈ ΓV . Using (4.1) and reverse triangle inequality
we have

τV (z)− τV (x) ≥ τ(x, z) ≥ τ(x, y) + τ(y, z)

= τV (y)− τV (x) + τV (z)− τV (y) = τV (z)− τV (x).

Hence τ(x, z) = τV (z)− τV (x) and therefore (x, z) ∈ ΓV ⊂ RV .

Case 2: (x, y), (y, z) ∈ Γ−1
V . Hence (z, y), (y, x) ∈ ΓV and therefore

(z, x) ∈ ΓV from case 1.

Case 3: (x, y) ∈ ΓV and (y, z) ∈ Γ−1
V . Hence (x, y), (z, y) ∈ ΓV . Since

y /∈ b(T e
V ), there exists w ∈ TV such that (y, w) ∈ ΓV and y �= w. Hence

from (x, y), (z, y), (y, w) ∈ ΓV we deduce like in case 1 that

τ(x, y) + τ(y, w) = τ(x,w) > 0, τ(z, y) + τ(y, w) = τ(z, w) > 0.

Since by assumption X is a Lorentzian geodesic space, there exist γ1 ∈
TGeo(x,w), γ2 ∈ TGeo(z, w) with common intermediate point y. Then from
the backward non-branching assumption, necessarily γ1[0,1] ⊂ γ2[0,1] (or the

other inclusion) holds true. Indeed if the two maximizing geodesics γ1 and
γ2 are distinct they cannot meet at the intermediate point y: otherwise one
defines a new timelike curve η, say from z to w, defined by γ2 from z to y
and by γ1 from y to w. The curve η will be a timelike geodesic from z to w
by construction, it will coincide with γ2 on a non-trivial interval, nonetheless
it will not coicide with γ2 giving a contradiction.

The last claim of Lemma 4.3 finally gives (x, z) ∈ RV .

Case 4: (x, y) ∈ Γ−1
V and (y, z) ∈ ΓV . The argument is analogous to

case 3: since y /∈ a(T e
v ), there exists w ∈ TV such that (w, y) ∈ ΓV and

w �= y. Then from the Lorentzian geodesic and (now forward) non-branching
assumption, necessarily all the points w, y, x, z lie on the same strictly time-
like geodesics, giving that (x, z) ∈ RV .
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Lemma 4.6. For each equivalence class [x] of (TV,RV ) there exists a convex
set I ⊂ R of the Real line and a bijective map F : I → [x] satisfying:

(4.7) τ(F (t1), F (t2)) = t2 − t1, ∀ t1 ≤ t2 ∈ I.

Moreover, calling {z ∈ [x]} the topological closure of {z ∈ [x]} ⊂ X, it holds

(4.8) {z ∈ [x]} \ {z ∈ [x]} = {z ∈ [x]} \ TV ⊂ a(T e
V ) ∪ b(T e

V ).

Proof. For any x ∈ TV , denote with [x] the associated equivalence class.
Consider the maps

F : (0,∞) ∩Dom(F ) � t �→ {y : (x, y) ∈ ΓV , τ(x, y) = t}

and

F : (−∞, 0) ∩Dom(F ) � t �→ {y : (y, x) ∈ ΓV , τ(y, x) = −t}

and F (0) = x. First observe that F is surjective: for each y ∈ [x], y �= x with
(x, y) ∈ ΓV (resp. (x, y) ∈ Γ−1

V ) it holds τ(x, y) ∈ (0,∞), hence τ(x, y) ∈
Dom(F ) and y ∈ F (τ(x, y)) (resp. τ(y, x) ∈ Dom(F ) and y ∈ F (−τ(y, x))).

The fact that F is injective follows readily from its definition.
We next show that F is a single valued map. Assume by contradiction

y �= z ∈ F (t) for some t > 0 (resp. t < 0); since x is not an initial (resp. fi-
nal) point, using the geodesic assumption like in the proof of Proposition 4.5
would produce a forward (resp. backward) branching time-like geodesic giv-
ing a contradiction with the non-branching assumption.

Given t ∈ Dom(F ), with a slight abuse of notation, we identify F (t)
with {F (t)}.

For t1 < t2 ∈ Dom(F ), Lemma 4.3 implies that the interval [t1, t2] ⊂ F
(i.e. Dom(F ) ⊂ R is a convex subset) and that (4.7) holds.

We now show (4.8). Let (zn) ⊂ [x] be with infn τV (zn) > 0 and zn → z̄.
It is easily seen that there exists x̄ ∈ [x] such that (x̄, zn) ∈ ΓV and x̄ �= z̄.
Using the continuity of τ (by global hyperbolicity), the lower semicontinuity
of τV , (4.1) and the causal closeness (see Proposition 1.6(ii)), it is easy to
check that (x̄, z̄) ∈ ΓV ⊂ RV and thus z̄ ∈ T e

V . Since by Proposition (4.5)
the equivalence classes of RV form a partition of TV , it follows that if z̄ /∈ [x]
then z̄ /∈ TV ; more precisely it is easily seen that z̄ ∈ b(T e

V ).
Let now (zn) ⊂ [x] be with τV (zn) → 0 and zn → z̄. By lower semicon-

tinuity of τV , it follows that τV (z̄) = 0. Using the continuity of τ it is easy
to check that z̄ ∈ T e

V and (z̄, x) ∈ RV . Arguing as above, it follows that if
z̄ /∈ [x] then z̄ /∈ TV ; more precisely it is easily seen that z̄ ∈ a(T e

V ).
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4.2. Disintegration of m associated to τV

For ease of reading we recall same basic facts about analytic sets referring
to Section 4 of [76] for more details.

If X is a general complete and separable metric space (that only here
we abbreviate with Polish space), the projective class Σ1

1(X) is the family of
subsets A ⊂ X for which there exists a Polish space Y and B ∈ B(X × Y )
(where B is the Borel σ-algebra) such that A = P1(B). The coprojective
class Π1

1(X) is the complement in X of the class Σ1
1(X). The construction

can be iterated but we will consider only Σ1
1 that is also called the class

of analytic sets ; accordingly Π1
1 is the class of coanalytic sets. We list few

properties of these family of sets: Σ1
1 and Π1

1 are closed under countable
unions and intersections; Σ1

1 is closed w.r.t. projections while Π1
1 is closed

w.r.t. coprojections; if A ∈ Σ1
1, then X \ A ∈ Π1

1; the intersection Σ1
1 ∩ Π1

1

is the Borel σ-algebra B. If A denotes the σ-algebra generated by Σ1
1, then

clearly B(X) ⊂ A.
Finally a subset of X is universally measurable if it belongs to all com-

pleted σ-algebras of all Borel measures on X: it can be proved that every
set in A is universally measurable.

We start with some measurability properties of the sets we have consid-
ered in this paper. For any x ∈ X the set I+(x) = {y ∈ X : τ(x, y) > 0}
is open by continuity of τ (ensured by global hyperbolicity). Accordingly,
I+(V ) =

⋃
x∈V I+(x) is an open subset of X.

By the very definition (1.8), τV is sup of continuous functions thus it
is lower semi-continuous. It follows that the set ΓV is Borel measurable
(see (4.3)). It follows that also RV is Borel measurable, yielding that T e

V

defined in (4.4) is an analytic set. To conclude, we obtain measurability of
the transport set TV defined in (4.6).

Lemma 4.7. The set TV is analytic.

Proof. Just notice that TV coincides with the following set

P2{(x, y, z) ∈ I+(V )× I+(V )× I+(V ) : (x, y) ∈ ΓV , (y, z) ∈ ΓV ,

d(z, y) �= 0, d(x, y) �= 0}.

Being the projection of a Borel set, the claim follows.

One can also prove that a(T e
V ) and b(T e

V ) are coanalytic sets. We next
build an m-measurable quotient map Q of the equivalence relation RV

over TV .
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Before proceeding, we recall a result on the existence of a section for an
equivalence relation proved in [11]; the terminology is borrowed from [76].
For readers’ convenience we will include its proof.

Theorem 4.8 (Corollary 2.7 of [11]). Let X be a Polish space and F ⊂ X×
X be A-measurable such that Fx is closed. Define the following equivalence
relation: x ∼ y ⇐⇒ F (x) = F (y). Then there exists an A-measurable map
f : P1(F )→ X such that (x, f(x)) ∈ F and f(x) = f(y) if x ∼ y.

Few comments are in order. The set F can be regarded also as a multival-
ued map with the following notation Fx := F ∩{x}×X and F (x) := P2(Fx).
The assumption of F being A-measurable means that F−1(U) ∈ A for any
open set U , where F−1(U) := {x ∈ X : F (x) ∩ U �= ∅} = P1(F ∩X × U).

Proof. For all open sets U ⊂ X, consider the sets F−1(U); by assumption
they will be in A. Let R be the σ-algebra generated by all such F−1(U): by
assumption R ⊂ A.

If x ∼ y, then

x ∈ F−1(U) ⇐⇒ y ∈ F−1(U),

so that each equivalence class is contained in an atom of R. Moreover by
construction the multivalued map x �→ F (x) is R-measurable. We can thus
apply [76, Theorem 5.2.1] ensuring the existence of an R-measurable selec-
tion f of F , that is a map f : P1(F )→ X such that f(x) ∈ F (x).

The property f(x) ∈ F (x) simply means that (x, f(x)) ∈ F . The R-
measurability condition implies that f has to be costant on the atoms of R.
Since R does not separate the equivalence classes of F , this implies that if
x ∼ y then f(x) = f(y), proving all the claims.

Proposition 4.9. There exists an A-measurable quotient map Q : TV → X
of the equivalence relation RV over TV , i.e.

(4.9) Q : TV → TV , (x,Q(x)) ∈ RV , (x, y) ∈ RV ⇒ Q(x) = Q(y).

Proof. First consider the following saturated family of subsets of TV :

En := {y ∈ TV : (x, y) ∈ RV for some x ∈ TV with τV (x) > 1/n},

for all n ∈ N, n ≥ 1. By construction En is analytic, En ⊂ En+1 and
TV =

⋃
nEn. Set Fn := En \ En−1, with F1 = E1, so that Fn ∈ A. Define

the set G ⊂ X ×X by

G =
⋃
n

Fn × τ−1
V ([1/2n, 1/n]) ∩RV ∩ TV × TV .
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As multivalued map G is A-measurable: indeed for any U open set,

G−1(U) =
⋃
n

{
x ∈ Fn : RV (x) ∩ τ−1

V ([1/2n, 1/n]) ∩ U �= ∅
}

=
⋃
n

Fn ∩ P1

(
RV ∩ (X × (U ∩ τ−1

V ([1/2n, 1/n]))
)
,

showing that G−1(U) is A-measurable. By construction Gx is closed and
for x, y ∈ TV , G(x) = G(y) if and only if (x, y) ∈ RV . Hence we can apply
Theorem 4.8 and obtain a A-measurable map Q : P1(G) → X such that
(x,Q(x)) ∈ G ⊂ R(V ) and Q(x) = Q(y) if (x, y) ∈ RV . Since P1(G) = TV ,
the claim follows.

Notation. From now on we will denote Q := Q(TV ) ⊂ X the quotient set
(which is A-measurable). The equivalence classes of RV inside TV will be
called rays and denoted with Xα, with α ∈ Q.

Applying the same trick used in [21, Section 3.1], Proposition 4.9 allows
to apply Disintegration Theorem [36, Section 452] (see also [17, Section 6.3]),
provided the measure m is suitably modified into a finite measure. To this
aim, it will be useful the next elementary lemma (for its proof see [21,
Lemma 3.3]).

Lemma 4.10. There exists a Borel function f : X → (0,∞) satisfying

(4.10) inf
K

f > 0, for any bounded subset K ⊂ X,

∫
TV

f m = 1.

Then, given f : X → (0,∞) satisfying (4.10), set μ := f m�TV
, and define

the normalized quotient measure q := Q� μ ∈ P(X). It is straightforward to
check that

Q�(m�TV
)� q.

Take indeed E ⊂ Q with q(E) = 0; then by definition
∫
Q−1(E) f(x)m(dx) =

0, implying m(Q−1(E)) = 0, since f > 0. From the Disintegration Theorem
[36, Section 452], we deduce the existence of a map

Q � α �−→ μα ∈ P(X)

verifying the following properties:

(1) for any μ-measurable set B ⊂ X, the map α �→ μα(B) is q-measurable;
(2) for q-a.e. α ∈ Q, μα is concentrated on Q−1(α);
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(3) for any μ-measurable set B ⊂ X and q-measurable set C ⊂ Q, the
following disintegration formula holds:

μ(B ∩Q−1(C)) =

∫
C
μα(B) q(dα).

Finally the disintegration is q-essentially unique, i.e. if any other map Q �
α �−→ μ̄α ∈ P(X) satisfies the previous three points, then

(4.11) μ̄α = μα, q-a.e. α ∈ Q.

Hence once q is given (recall that q depends on f from Lemma 4.10), the
disintegration is unique up to a set of q-measure zero. In the case m(X) <∞,
the natural choice, that we tacitly assume, is to take as f the characteristic
function of TV normalised by m(TV ) so that q := Q�(m�TV

/m(TV )).
All the previous properties will be summarized saying that Q � α �→ μα

is a disintegration of μ strongly consistent with respect to Q. It follows from
[36, Proposition 452F] that∫

X
g(x)μ(dx) =

∫
Q

∫
g(x)μα(dx) q(dα),

for every g : X → R ∪ {±∞} such that
∫
gμ is well-defined in R ∪ {±∞}.

Hence picking g = 1/f (where f is the one used to define μ), we get that

m�TV
=

∫
Q

μα

f
q(dα),

where the identity has to be understood in duality with test functions as
the previous formula.

Defining mα := μα/f , we obtain that mα (called conditional measure)
is a Radon non-negative measure over X, verifying all the measurability
properties (with respect to α ∈ Q) of μα and giving a disintegration of m�TV

strongly consistent with respect to Q. Moreover, for every bounded subset
K ⊂ X, it holds

1

supK f
μα(K) ≤ mα(K) =

μα

f
(K) ≤ 1

infK f
, for q-a.e. α ∈ Q.

In the next statement, we summarize what obtained so far (cf. [21]). We
denote byM+(X) the space of non-negative Radon measures over (X, d).
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Theorem 4.11. Let (X, d,�,≤, τ) be a timelike non-braching globally hy-
perbolic Lorentzian geodesic space, and V ⊂ X a Borel achronal FTC subset.

Then the measure m restricted to the transport set without endpoints TV
admits the following disintegration formula:

m�TV
=

∫
Q
mα q(dα),

where q is a Borel probability measure over Q ⊂ X such that Q�(m�TV
)� q

and the map Q � α �→ mα ∈M+(X) satisfies the following properties:

(1) for any m-measurable set B, the map α �→ mα(B) is q-measurable;
(2) for q-a.e. α ∈ Q, mα is concentrated on Q−1(α) = Xα (strong consis-

tency);
(3) for any m-measurable set B and q-measurable set C, the following

disintegration formula holds:

m(B ∩Q−1(C)) =

∫
C
mα(B) q(dα);

(4) For every bounded subset K ⊂ X there exists a constant CK ∈ (0,∞)
such that

mα(K) ≤ CK, for q-a.e. α ∈ Q.

Moreover, fixed any q as above such that Q�(m�TV
) � q, the disintegration

is q-essentially unique (in the sense of (4.11)).

4.3. �p-cyclically monotone subsets contained in the transport
set TV

We will now obtain two results permitting to include �p-cyclically monotone
sets inside �-cyclically monotone sets. This technique has been introduced
in [16] and pushed further in [18, 19] for the metric setting, to generalize lo-
calization paradigm to metric measure spaces using the equivalence between
optimality and cyclical monotonicity.

In the present setting, since the cost �p may take the value −∞, �p-
cyclical monotonicity does not directly imply optimality. Nontheless using
[10] and its consequences included in Proposition 2.8, we will use cyclically
monotone sets to construct locally optimal couplings and to deduce local
estimates on the disintegration that will be then globalized.

There is a simple and natural way to construct Wasserstein geodesics
with 0 < p < 1: translate along transport rays by a constant “distance”.
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Notice that 0 < p < 1 plays a crucial role, as an analogous statement in the
Riemannian setting does not hold true for W2.

Proposition 4.12. Consider Λ ⊂ ΓV with the following property: there
exists t > 0 such that for each (x, y) ∈ Λ, τ(x, y) = t. Then for each
0 < p < 1 the set Λ is �p-cyclically monotone.

Proof. Given (x1, y1), . . . , (xn, yn) ∈ Λ, we need to prove

n∑
i=1

�(xi, yi)
p ≥

n∑
i=1

�(xi+1, yi)
p,

that can be rewritten as

(4.12) t ≥
(
1

n

n∑
i=1

�(xi+1, yi)
p

)1/p

.

From Lemma 4.2 the corresponding inequality for p = 1 is valid:

nt =

n∑
i=1

�(xi, yi) ≥
n∑

i=1

�(xi+1, yi);

we rewrite it as

(4.13) t ≥ 1

n

n∑
i=1

�(xi+1, yi).

Since by assumption 0 < p < 1, the concavity of the function R � s �→ sp

implies (
1

n

n∑
i=1

�(xi+1, yi)

)p

≥ 1

n

n∑
i=1

�(xi+1, yi)
p,

which, combined with (4.13), gives (4.12).

In the next proposition we give a second way to construct �p-cyclically
monotone sets (cf. [16]).

Proposition 4.13. Let Δ ⊂ ΓV be such that

(τV (x0)− τV (x1))(τV (y0)− τV (y1)) ≥ 0, for all (x0, y0), (x1, y1) ∈ Δ.
(4.14)

Then Δ is �p-cyclically monotone for each p ∈ (0, 1).
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Proof. Let {(x1, y1), . . . , (xN , yN )} ⊂ Δ be an arbitrary finite subset of Δ.
Define si := τV (xi), ti := τV (yi) and consider the auxiliary measures

η0 :=
1

N

N∑
i=1

δsi , η1 :=
1

N

N∑
i=1

δti .

Notice that the support η0 and η1 are confined inside a compact real interval,
say I. Consider finally the map F : I → I defined by

(4.15) F (s) =

{
ti if s = si,

0 elsewhere.

Trivially F�η0 = η1; moreover, by (4.14), F is monotone on supp η0. This
implies that graph(F ) is also | · |2-cyclically monotone on supp η0 and in
particular ∫

|x− F (x)|2η0(dx) = W2(η0, η1),

where W2 is intended to be defined over P2(R). By [83, Remark 2.19 (ii)],
F is optimal for any cost c(x, y) = h(|x − y|), with h strictly convex and
non-negative. For p ∈ (0, 1), consider the function h(r) := −rp + a, where a
can be taken to be

a > 2 sup
s∈I
|s|p.

Thus c̄(s, t) := −|t − s|p + a is non-negative and falls into the hypothesis
of [83, Remark 2.19 (ii)]. Hence graph(F ) restricted to supp η0 is also c̄-
cyclically monotone. We can now conclude as follows:

N∑
i=1

�(xi, yi)
p =

N∑
i=1

(τV (yi)− τV (xi))
p = −

N∑
i=1

c̄(si, ti) +Na

≥ −
N∑
i=1

c̄(si, ti+1) +Na =

N∑
i=1

(|τV (yi+1)− τV (xi)|)p

≥
N∑
i=1

�(xi, yi+1)
p,

where in the last inequality we used (4.2).
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4.4. Regularity of the conditional measures

Recall that by the Disintegration Theorem 4.11 we can write m =∫
Qmαq(dα), where mα is a non-negative Radon measure on X concentrated
on the ray Xα, for q-a.e. α ∈ Q. The goal of this section is to prove that
the conditional measures mα’s are absolutely continuous with respect to the
Hausdorff measure H1 restricted to the ray Xα, for q-a.e. α ∈ Q. Such a
regularity of mα can be inferred from the behavior of m with respect to
translation along the transport set TV (cf. [11]).

Let us set some notation. First recall the definition (4.4) of transport
set with endpoints T e

V . For any Borel set A ⊂ T e
V and t ∈ [0,+∞) we can

associate its “forward” translation

At := P2{(x, y) ∈ (A× T e
V ) ∩ ΓV : τ(x, y) = t}.

If A is an analytic set, At is analytic as well (recall that projections of
analytic set is again analytic). In particular, for A ⊂ T e

V having m(A) > 0 it
makes sense to consider the set

{t ∈ [0,+∞) : m(At) > 0}

and to evaluate its Lebesgue measure.

Proposition 4.14. Let (X, d,m,�,≤, τ) be a timelike non-branching, glob-
ally hyperbolic, Lorentzian geodesic space satisfying TMCPe(K,N) for some
p ∈ (0, 1),K ∈ R, N ∈ [1,∞). For any analytic set A ⊂ T e

V \ b(T e
V ) having

m(A) > 0 there exists s > 0 and a compact subset B ⊂ A such that

(4.16)
⋃

t∈[0,s]
Bt � X, Bt ⊂ T e

V \ b(T e
V ) and m(Bt) > 0 ∀t ∈ [0, s).

In particular, |{t ∈ [0,+∞) : m(At) > 0}| > 0.

Proof. Consider A ⊂ T e
V \ b(T e

v ) with m(A) > 0. Take s ∈ [0,+∞) and
consider the following subset of ΓV :

Λs := {(x, y) ∈ (A× T e
V ) ∩ ΓV : τ(x, y) = s}.

From Proposition 4.12 we deduce that Λs is �
p-cyclically monotone, for each

s ∈ [0,+∞). We also observe that

0 ≤ s1 ≤ s2 =⇒ P1(Λs1) ⊂ P1(Λs2) ⊂ A.
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Moreover, since A ⊂ T e
V \ b(T e

V ), it follows that for each x ∈ A there exist
s ∈ (0,+∞) and z ∈ TV such that (x, z) ∈ Λs, showing that⋃

s>0

P1(Λs) = A.

In particular, by monotone convergence, we have lims↓0m(P1(Λs)) = m(A) >
0. Define then B := P1(Λs) for s > 0 small enough so that m(B) > 0. We
can also find a compact subset of B of positive m-measure, that we still
denote by B, and a measurable map T : B → TV such that (x, T (x)) ∈ Λs

for all x ∈ B. We then consider the following measures

μ0 := m�B/m(B), μ1 := T�μ0.

By construction, the coupling associated to T , i.e. πT = (Id, T )�μ0 verifies
the following two conditions:∫

τ(x, y)pπT (dxdy) = sp ∈ (0,+∞).

Since πT is �p-cyclically monotone and πT ({τ > 0}) = 1, Proposition 2.8
ensures it is an �p-optimal coupling. Up to further restricting π, we can
assume that suppπ � {τ > 0}. By Corollary 3.22, there is a unique �p-
geodesic (μt)t∈[0,1] between μ0 and μ1, and μt � m for all t ∈ [0, 1). K-global
hyperbolicity implies that

⋃
t∈[0,1] suppμt � X.

Since T is a translation of length s, it follows that μt is concentrated
inside Bts ⊂ Ats; being absolutely continuous, it implies that

m(Ats) > m(Bts) > 0, ∀t ∈ [0, 1),

proving the claim.

Corollary 4.15. Under the same assumptions of Proposition 4.14, it holds
m(a(T e

V )) = 0.

Proof. Assume by contradiction m(a(T e
V )) > 0. Setting A = a(T e

V ) in Propo-
sition 4.14, we obtain B ⊂ A compact subset satisfying (4.16).

Step 1. With the same notation of Proposition 4.14, we first claim that

(4.17) Bt0 ∩Bt1 = ∅, for any 0 < t0 < t1 < s.

Indeed, if by contradiction there exists y ∈ Bt0 ∩Bt1 then there exist x, z ∈
a(T e

V ) such that τ(x, y) = t0, τ(z, y) = t1, (x, y) ∈ ΓV and (z, y) ∈ ΓV .
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Since y /∈ b(T e
V ), we can repeat the argument in Case 3 of the proof of

Proposition 4.5 and get that (z, x) ∈ ΓV contradicting that x ∈ a(T e
V ).

Step 2. From Proposition 4.14 we have that there are uncountably many
t ∈ [0, s) satisfying m(Bt) > 0 and (4.17). Hence, on the one hand,

(4.18) m

⎛
⎝ ⋃

t∈(0,s)
Bt

⎞
⎠ = +∞.

On the other hand, since by (4.16)
⋃

t∈[0,s]Bt is relatively compact and m is

by assumption a Radon measure, we have m(
⋃

t∈[0,s]Bt) <∞ contradicting
(4.18).

Of course, if we assume that X endowed with the reversed causal struc-
ture satisfies the assumptions of Proposition 4.14, then also m(b(T e

V )) = 0.

Proposition 4.16. Under the same assumptions of Proposition 4.14, the
conditional measure mα (given in the Disintegration Theorem 4.11) is abso-
lutely continuous with respect to the Lebesgue measure L1�Xα

along the ray
Xα, for q-a.e. α ∈ Q.

Proof. Assume by contradiction there is a Borel subset Q̂ ⊂ Q with q(Q̂) > 0
such that mα �� L1�Xα

for each α ∈ Q̂.
Let mα = hαL1�Xα

+m⊥
α be the Lebesgue decomposition of mα with

respect to L1�Xα
, with m⊥

α ⊥ L1�Xα
. Then, for every α ∈ Q̂ there exists a

Borel subset Aα ⊂ Xα such that

(4.19) L1(Aα) = 0 and m⊥
α = m⊥

α �Aα .

Define A :=
⋃

α∈Q̂Aα ⊂ TV and observe that the Disintegration Theo-
rem 4.11 gives

m(A) =

∫
Q
mα(A) q(dα) =

∫
Q̂
m+

α (A
α) q(dα) > 0.

Proposition 4.14 implies

0 <

∫
R+

m(At)dt =

∫
R+

(∫
Q
mα(At)q(dα)

)
dt =

∫
Q

(∫
R+

mα(At) dt

)
q(dα),

(4.20)

where in the second equality we used the Disintegration Theorem 4.11, and
the third equality follows by Fubini-Tonelli’s Theorem. In order to simplify
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the notation, for the rest of the proof we identify Xα with an interval in the

Real line (see Lemma 4.6). Observe that

∫
R+

mα(At) dt = L1 ⊗mα {(t, x) : t > 0, x ∈ Xα, x− t ∈ Aα}(4.21)

=

∫
Xα

L1({t > 0 : x− t ∈ Aα})mα(dx) = 0,

where in the last equality we used that

L1({t > 0 : x− t ∈ Aα}) = L1(Aα) = 0,

by the invariance properties of the Lebesgue measure and (4.19).

Plugging (4.21) into (4.20) gives the contradiction 0 < 0.

We summarise the content of this subsection, combined with Lemma 4.4

and the Disintegration Theorem 4.11, in the next statement.

Theorem 4.17. Let (X, d,m,�,≤, τ) be a timelike non-branching, globally

hyperbolic, Lorentzian geodesic space satisfying TMCPe(K,N) for some p ∈
(0, 1),K ∈ R, N ∈ [1,∞), and assume that the causally-reversed structure

satisfies the same conditions. Let V ⊂ X be a Borel achronal FTC subset,

T e
V , a(T e

V ), b(T e
V ) and TV be defined in (4.4), (4.5), (4.6).

Then m(a(T e
V )) = m(b(T e

V ) = 0 and the following disintegration formula

holds true:

(4.22) m�I+(V )= m�T e
V
= m�TV

=

∫
Q
mα q(dα) =

∫
Q
h(α, ·)L1�Xα

q(dα),

where

• q is a probability measure over the Borel quotient set Q ⊂ TV ;
• h(α, ·) ∈ L1

loc(Xα,L1�Xα
) for q-a.e. α ∈ Q;

• the map α �→ mα(A) = h(α, ·)L1�Xα
(A) is q-measurable for every

Borel set A ⊂ TV .

4.5. Localization of TMCPe(K,N)

In this section we localize the curvature condition TMCPe(K,N) to the one

dimensional metric measures spaces (Xα, | · |,mα) decomposing TV , in the

sense of the Disintegration Theorem 4.17 (cf. [11, 21]).
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Theorem 4.18. Let (X, d,m,�,≤, τ) and V ⊂ X be as in Theorem 4.17
with N ∈ (1,∞), and recall the Disintegration formula (4.22).

Then, for q-a.e. α ∈ Q, the density h(α, ·) has an almost everywhere
representative that is locally Lipschitz and strictly positive in the interior of
Xα, continuous on its closure, and satisfying

(
sK/(N−1)(b− τV (x1))

sK/(N−1)(b− τV (x0))

)N−1

≤ h(α, x1)

h(α, x0)
≤

(
sK/(N−1)(τV (x1)− a)

sK/(N−1)(τV (x0)− a)

)N−1

,

(4.23)

for all x0, x1∈Xα, with 0 ≤ a<τV (x0)<τV (x1)<b<π
√

(N − 1)/(K ∨ 0).
In other words, for q-a.e. α ∈ Q, the one-dimensional metric measure

space (Xα, | · |,mα) satisfies MCP(K,N).

Proof. For x ∈ TV we will write R(x) to denote its equivalence class in
(TV , RV ), i.e. the “ray passing through x” (recall Proposition 4.5). For a
subset B ⊂ TV , we denote R(B) :=

⋃
x∈B R(x).

Let Q̄ ⊂ Q be an arbitrary compact subset of positive q-measure for
which there exist ε > 0 and 0 < a0 < a1 such that

sup
x,y∈Xα

τ(x, y) > ε, Xα ∩ {τV = a0} �= ∅, Xα ∩ {τV = a1} �= ∅ ∀α ∈ Q̄,

R(Q̄) ∩ τ−1
V ([a0, a1]) � X,

{(x, y) ∈ ΓV : x, y ∈ R(Q̄), τV (x) = a0, τV (y) = a1} � {τ > 0}.

For any A0 ∈ (a0, a1) and L0 > 0 satisfying A0 + L0 < a1, consider the
probability measure

μ0 := cQ̄,A0,L0
·m�τ−1

V (A0,A0+L0)∩R(Q̄),

where cQ̄,A0,L0
is the normalization constant so that μ0 ∈ Pc(X).

Let Ta1
: R(Q̄) → R(Q̄) ∩ τ−1

V (a1) be the “ray-projection map” de-
fined by Ta1

(x) = τ−1
V (a1) ∩ R(x) and set μ1 := (Ta1

)�μ0. Notice that
{(x, Ta1

(x)) : x ∈ suppμ0} � {τ > 0}. Moreover, Proposition 4.13 im-
plies that the associated coupling πTa1

= (Id, Ta1
)�μ0 is �p-cyclically mono-

tone and thus, by Proposition 2.8, �p-optimal. Analogously, setting T t(x) :=
τ−1
V ((1− t)τV (x) + ta1)∩R(x), it follows that the curve of probability mea-
sures μ̄t = T t

�μ0 is an �p-geodesic. Notice that

(4.24) μ̄t

(
τ−1
V (At,At + Lt) ∩R(Q̄)

)
= 1,

where At := (1− t)A0 + ta1 and Lt := (1− t)L0.
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Since by Corollary 3.22 there is a unique �p-geodesic (μt)t∈[0,1] between
μ0 and μ1, it must be (μt)t∈[0,1] = (μ̄t)t∈[0,1]. Thus, combining (4.24) with
(3.80), we get

m(τ−1
V (At, At+Lt)∩R(Q̄))≥σ

(1−t)
K/N (‖τ‖L2(πTa1

))
Nm(τ−1

V (A0, A0+L0)∩R(Q̄)),

that can be rewritten using the Disintegration formula (4.22) as∫
Q̄
mα(τ

−1
V (At, At + Lt) q(dα)

≥ σ
(1−t)
K/N (‖τ‖L2(πTa1

))
N

∫
Q̄
mα(τ

−1
V (A0, A0 + L0)) q(dα).

Recalling that mα = h(α, ·)L1, the arbitrariness of Q̄, a0, a1, A0, L0 (letting
L0 ↓ 0) implies that

(1− t)hα((1− t)A0 + ta1) ≥ σ
(1−t)
K/N (a1 −A0)

Nhα(A0)

for q-a.e. α ∈ Q, L1-a.e. t ∈ (0, 1), that can be rewritten as

b− s

b− a
hα(s)≥σ

( b−s

b−a
)

K/N (b− a)Nhα(a), for q-a.e. α∈Q, L1-a.e. s∈(a, b)⊂Xα.

(4.25)

It is a standard trick to obtain the first inequality in (4.23) out of (4.25).
We anyway include few details for the case K > 0, the other one be-
ing completely analogous. Using the notation of [79] and of [5] we con-

sider τ
(t)
K,N (ϑ) := t1/Nσ

(t)
K/(N−1)(ϑ)

N−1

N . While τ
(t)
K,N (ϑ) is always larger than

σ
(t)
K/N (ϑ), for ϑ� 1 the two coefficients are almost identical: to be precise if

0 < K ′ < K̃ < K we can choose ϑ∗ > 0 so that for all 0 ≤ ϑ ≤ ϑ∗ and all
t ∈ [0, 1] the reverse inequality τ

(t)
K′,N (ϑ) ≤ σ

(t)

K̃/N
(ϑ) is valid. Hence (4.25)

becomes:
b− s

b− a
hα(s) ≥ τ

( b−s

b−a
)

K′,N (b− a)Nhα(a),

provided 0 < b− a < ϑ∗, that can be rewritten in the following form:

(4.26) hα(s) ≥ σ
( b−s

b−a
)

K′/(N−1)(b− a)N−1hα(a),

for q-a.e. α ∈ Q, L1-a.e. s ∈ (a, b) ⊂ Xα, b − a < ϑ∗. We have therefore
proved that for each K ′ < K the following is true: for any point a there
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exists a neighborhood of a where (4.26) is valid. As shown for instance in

[5, 23] this implies that the same inequality is valid on the whole domain of

hα (local-to-global property). Taking then the limit as K ′ → K from below

we obtain the first inequality of (4.23).

Applying the analogous procedure to the causal-reversed structure we

obtain the second inequality of (4.23).

Remark 4.19 (The case N = 1). In case N = 1, under the same assump-

tions of Theorem 4.18 one can follow the proof up to (4.25) and obtain

that

b− s

b− a
hα(s) ≥ σ

( b−s

b−a
)

K (b−a)hα(a), for q-a.e. α ∈ Q, L1-a.e. s ∈ (a, b) ⊂ Xα.

If K ≥ 0, then σ
( b−s

b−a
)

K (b − a) ≥ b−s
b−a implying hα(s) ≥ hα(a); reversing

the causal structure, it follows that hα has to be constant. For K < 0 we

compute the Taylor expansion

σ
(t)
K (θ) = t

[
1 + t2 θ

2

6 (−K) + o(θ4)

1 + θ2

6 (−K) + o(θ4)

]
= t

[
1− θ2

6
(−K)(1− t) + o(θ4)

]
.

Hence we can conclude that lim infb→a(hα(b) − hα(a))/(b − a) ≥ 0. Again

reversing the causal structure we obtain that hα is locally Lipschitz and the

reverse inequality holds, yielding hα constant as well.

5. Applications

5.1. Synthetic mean curvature bounds for achronal FTC subsets

In this section we will work under the standing assumptions of Theorem 4.17.

Recall that, thanks to Lemma 1.8 and Lemma 4.4, T e
V ⊂ {τV > 0} ∪ V .

For each t ≥ 0, we consider the map ft : Dom(ft) ⊂ Q→ T e
V , where

Dom(ft) := {α ∈ Q : X̄α ∩ {τV = t} \ b(T e
V ) �= ∅},

ft(α) := X̄α ∩ {τV = t} \ b(T e
V ),

(5.1)

where X̄α denotes the closure of the ray Xα ⊂ X.

Proposition 4.5 ensures that ft is single valued for every t ≥ 0 and injec-

tive for t > 0. Moreover f0(α) ∈ V for all α ∈ Dom(f0) (see Proposition 4.8).
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Thus, for each m-measurable subset A ⊂ T e
V having m(A) <∞ the next

identities hold true:

(5.2) m(A) =

∫
Q

∫
A∩Xα

h(α, t)dt q(dα) =

∫
[0,+∞)

(ft)�(h(·, t) q(dα))(A) dt,

where the first identity is the Disintegration formula (4.22) and the second

identity follows from Fubini-Tonelli’s Theorem. Define then

(5.3) Ht := (ft)� h(·, t)q, for all t ≥ 0.

By definition, Ht is concentrated on the level set {τV = t}. In particular H0

is concentrated on V . An expert reader will recognise that Ht({τV = t}) is
a kind of τ -Minkowski content of the set {τV = t}, with respect to m. We

summarize this construction in the following

Proposition 5.1. The following coarea-type formula holds true:

m�T e
V
=

∫ ∞

0
Ht dt,

meaning that for each measurable set A ⊂ T e
V with m(A) < ∞, the map

[0,∞) � t �→ Ht(A) is measurable and

m(A) =

∫ ∞

0
Ht(A)dt =

∫ ∞

0
Ht(A ∩ {τV = t})dt.

We use the previous codimension-one measures to propose the following

weak notion of upper bound on the mean curvature of V . Notice that, even

if H0 (as well as Ht for every t ≥ 0) is a well defined measure, in general it

is not finite (even locally). Since from a geometric point of view the mean

curvature is the first variation of the area, in order to speak of the former it

is natural to assume that the latter is locally finite. In what follows, we will

thus assume that H0 is a non-negative Radon measure.

In the next definition we use the “initial-point projection map” a : TV →
V, a := f0 ◦Q. It is not hard to check it is Borel measurable: notice indeed

that

graph(a) = {(x, y) ∈ TV × V : τV (x) = τ(y, x)},

showing that graph(a) is analytic (recall that TV is analytic). Then by [76,

Theorem 4.5.2] the map a : TV → V is Borel.
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Definition 5.2. The Borel achronal FTC subset V ⊂ X has forward mean

curvature bounded below by H0 ∈ R if H0 is a non-negative Radon measure

with (f0)�q� H0 and such that for any normal variation

Vt,φ := {x ∈ TV : 0 ≤ τV (x) ≤ tφ(a(x))},

the following inequality holds true:

lim sup
t→0

m(Vt,φ)− t
∫
V φH0

t2/2
≥ H0

∫
V
φ2H0,

for any bounded Borel function φ : V → [0,∞) with compact support.

Analogously V has forward mean curvature bounded above by H0 ∈ R if H0

is a non-negative Radon measure and for any normal variation Vt,φ as above

the following inequality holds true:

(5.4) lim inf
t→0

m(Vt,φ)− t
∫
V φH0

t2/2
≤ H0

∫
V
φ2H0,

for any bounded Borel function φ : V → [0,∞) with compact support.

Remark 5.3 (The condition (f0)�q� H0). The condition

(5.5) (f0)�q� H0 or, equivalently, h(α, 0) > 0 for q-a.e. α ∈ Q,

should be read as a natural “codimension one” assumption on V , in the

sense of τ -Minkowski content. More precisely, (5.5) is equivalent to require

that

(5.6) ∀E ⊂ V Borel with q(f−1
0 (E)) > 0 it holds lim inf

t↓0

1

t
m(Vt,χE

) > 0.

Indeed, from Theorem 4.18, it follows that there exists a continuous function

ωK,N : [0,∞)→ [0,∞) with ωK,N (0) = 0 such that for q-a.e. α ∈ Q it holds

|h(α, s)− h(α, 0)| ≤ ωK,N (s). Therefore

m(Vt,χE
) =

∫ t

0

∫
E
h(α, s) q(dα) ds = t

∫
E
h(α, 0) q(dα) + o(t)

= tH0(E) + o(t),

and (5.6) is easily seen to be equivalent to (5.5).
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Let us also mention the following sufficient condition implying (5.5):

For q-a.e. α ∈ Q ∃x ∈ I−(V ), y ∈ Xα ⊂ TV such that

τ(x, y) = τ(x, a(y)) + τ(a(y), y).
(5.7)

Recalling that a(y) ∈ V , (5.7) amounts to ask that the ray Xα can be
slightly extended past V , for q-a.e. α ∈ Q; in this way, the point a(y) =
f0(α) ∈ V becomes an interior point of the extended ray (X̃α, | · |, m̃α), i.e.
Xα = X̃α ∩ {τV > 0}, mα = m̃α�{τV > 0}.

We next briefly discuss why (5.7) implies (5.5). It is not hard to check
that the family of (maximally) extended rays {(X̃α, |·|, m̃α)}α∈Q corresponds
to (a part of) the disintegration of m�(I+(V ) ∪ I−(V )) associated to the
signed time separation function τV . Following verbatim the proof of Theo-
rem 4.18, we get that (X̃α, | · |, m̃α) satisfies MCP(K,N) for q-a.e. α ∈ Q.
In particular, (4.23) ensures that the density h(α, ·) does not vanish in the
interior of X̃α and thus h(α, 0) > 0 for q-a.e. α ∈ Q.

Remark 5.4 (The disintegration formula, the measures Ht and the mean
curvature bounds in the smooth setting). Let (Mn, g) be a 2 ≤ n-dimen-
sional smooth globally hyperbolic space-time and V ⊂M be a smooth com-
pact achronal spacelike hypersurface without boundary. Then, the signed
time-separation function τV from V is smooth on a neighbourhood U of
V and ∇τV is the smooth timelike past-pointing unit normal vector field
along V . More precisely,

∇τV (x) ⊥ TxV, g(∇τV (x),∇τV (x)) = −1, ∀x ∈ V.

Denote with Volg the volume measure of (Mn, g) and with VolV the induced
(n−1)-dimensional volume measure on V . By compactness of V , there exists
δ > 0 such that the g-geodesic [0, δ] � t �→ expx(−t∇τV (x)) is a future
pointing maximal geodesic, for every x ∈ V . Define

U := V × [0, δ] ⊂ V × R, Φ : U →M, Φ(x, t) := expx(−t∇τV (x)).

For δ > 0 small enough it is a standard fact (tubular neighbourhood the-
orem) that Φ is a diffeomorphism onto its image and that the following
integration formula holds true:

∫
M

ϕdVolg =

∫
V

∫ δ

0
ϕ ◦ Φ(x, t) detDΦ(x,t)|TxV dtVolV (dx), ∀ϕ∈Cc(Φ(U)).

(5.8)
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Consider also the map Q : Φ(U)→ V given by Q := P1 ◦ Φ−1. Notice that,
for every x ∈ V , it holds

Q−1(V ) = T e
V ∩ Φ(U) = TV ∩ Φ(U),

Q−1(x) = R(x) ∩ Φ(U) = [x](TV ,RV ) ∩ Φ(U),

i.e. Q−1(x) is the transport ray associated to τV intersected with Φ(U).
Moreover,

q := Q�(Volg�Φ(U)) = ψVolV � VolV ,

where

ψ(x) :=

(∫ δ

0
detDΦ(x,t)|TxV dt

)
, ∀x ∈ V.

Hence, we can identify Q with V , and the quotient measure q with ψVolV .
The integration formula (5.8) can be thus rewritten as

(5.9)

∫
M

ϕdVolg =

∫
V

1

ψ(x)

∫ δ

0
ϕ ◦ Φ(x, t) detDΦ(x,t)|TxV dt q(dx),

for all ϕ ∈ Cc(Φ(U)). The uniqueness statement (4.11) in the disintegration
formula combined with (4.22) and (5.9) gives:

hα(t) =
1

ψ(α)
detDΦ(α,t)|TαV , hα(0) =

1

ψ(α)
, ∀α ∈ V, ∀t ∈ [0, δ].

Moreover, observing that Φ(α, t) = ft(α) where the latter was defined in
(5.1), it follows that the measure Ht defined in (5.3) can written as

Ht := (ft)� h(·, t)q = Φ(·, t)�
(
detDΦ(α,t)|TαV VolV (dα)

)
, for all t ≥ 0,

in particular, H0 = VolV , Ht is the (n−1)-volume measure on the hypersur-
face {Φ(x, t) : x ∈ V } and Proposition 5.1 reduces to the standard co-area
formula. The definition 5.2 of mean curvature bounds also reduces to the
classical notions. Indeed, for φ ∈ C∞(V ;R≥0), the region Vt,φ is the domain
trapped between V and the normal graph of φ. The first variation of the vol-
ume is thus d

dtVolg(Vt,φ) = Hn−1({Φ(x, tφ(x)) : x ∈ V }), where Hn−1 is the
standard (n − 1)-volume of the hypersurface {Φ(x, tφ(x)) : x ∈ V }; in par-
ticular, d

dt

∣∣
t=0

Volg(Vt,φ) = VolV (V ) = H0(V ). The left hand side in (5.4),
corresponding to the second variation of volume, is thus the first variation
of the area which gives the mean curvature �HV of V :

lim
t↓0

m(Vt,φ)− t
∫
V φH0

t2/2
=

d

dt2

∣∣∣∣
t=0

Volg(Vt,φ) =

∫
V
φ2 g( �HV ,∇τV )VolV .
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Remark 5.5 (Example of a surface with a conical singularity). The notion
of forward mean curvature bound should be compared with the recent re-
lated definition proposed by Ketterer [53]. In the notation of [53], in order
to have finite bound H0 one needs that the rays Xα are extendable passing
through V , which corresponds to have an interior & exterior ball condition
(equivalent, in the smooth setting, to a local L∞ bound on the full sec-
ond fundamental form), see [53, Remark 5.9]. The notion proposed above
in Definition 5.2 instead works well even if the set V has corners or conical
singularities. Indeed, for instance, it is not hard to see that the set

V = {(x, t) ⊂ Rn,1 : t = α|x|}, α ∈ (0, 1),

in the (n + 1)-dimensional Minkowski space-time Rn,1 is an achronal topo-
logical hypersurface, smooth outside the origin (where it is Lipschitz) and
having forward mean curvature bounded above by H0 = 0 in the sense of
Definition 5.2. Notice that for any compact subset, one could choose the
upper bound on the mean curvature to be strictly negative, but such an
upper bound approaches zero as |x| → ∞.

5.2. Hawking Singularity theorem in a synthetic framework

Let us define DH0,K,N > 0 as follows:

DH0,K,N :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π
2

√
N−1
K if K > 0, N > 1, H0 = 0√

N−1
K cot−1

(
−H0√
K(N−1)

)
if K > 0, N > 1, H0 �= 0

−N−1
H0

if K = 0, N > 1, H0 < 0√
−N−1

K coth−1

(
−H0√

−K(N−1)

)
if K < 0, N > 1,

H0 < −
√
−K(N − 1).

(5.10)

Theorem 5.6 (Hawking Singularity Theorem for TMCPe(K,N) spaces).
Let (X, d,m,�,≤, τ) be a timelike non-branching, globally hyperbolic, Lo-
rentzian geodesic space satisfying TMCPe(K,N) for some p ∈ (0, 1), K ∈ R,
N ∈ [1,∞) and assume that the causally-reversed structure satisfies the same
conditions.

Let V ⊂ X be a Borel achronal FTC subset having forward mean cur-
vature bounded above by H0 in the sense of Definition 5.2. If
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1. K > 0, N > 1 and H0 ∈ R, or
2. K = 0, N > 1 and H0 < 0, or

3. K < 0, N > 1 and H0 < −
√
−K(N − 1) < 0,

then for every x ∈ I+(V ) it holds τV (x) ≤ DH0,K,N . In particular, for every

timelike geodesic γ ∈ TGeo(X) with γ0 ∈ V , the maximal (on the right)

domain of definition is contained in
[
0, DH0,K,N

]
. In case N = 1, H0 < 0,

it holds that I+(V ) = ∅.

Proof. Step 1: We show that supx∈I+(V ) τV (x) ≤ DH0,K,N , case N ∈ (1,∞).

Recall that, from Lemma 4.4, it holds I+(V ) = T e
V \ V . Moreover, from

Theorem 4.17 we have the disintegration formula

(5.11) m�I+(V )= m�T e
V
=

∫
Q
h(α, ·)L1�Xα

q(dα),

where the closure X̄α of each Xα is a timelike geodesic starting at a point

aα ∈ V and parametrized by arclength on a (apriori possibly unbounded)

closed Real interval Iα := [0, dα] ⊂ [0,∞) in terms of τV (·) = τ(aα, ·), see
Lemma 4.6. For simplicity of notation, in the rest of the proof we will identify

X̄α with the closed Real interval Iα ⊂ [0,∞).

From Theorem 4.18, for q-a.e. α ∈ Q, the density h(α, ·) in (5.11), has

an almost everywhere representative that is locally Lipschitz and strictly

positive in the interior of Iα and continuous on Iα satisfying

(5.12) h(α, t) ≥ h(α, 0)

(
sK/(N−1)(bα − t)

sK/(N−1)(bα)

)N−1

for all t ∈ [0, bα], bα ∈ Iα.

Recalling the notation of Definition 5.2 and using (5.11)-(5.12), for every

bounded Borel function φ : V → [0,∞) with compact support satisfying

φ(f0(α)) ∈ Iα for every α ∈ Q, and for any q-measurable assignment Q �
α �→ bα ∈ Iα with bα ≥ φ(f0(α)), bα > 0 for every α ∈ Q it holds:

m(Vt,φ)− t

∫
V
φH0

=

∫
Q

(∫
[0,tφ(f0(α))]

h(α, x)dx

)
q(dα)− t

∫
Q
φ(f0(α))h(α, 0)q(dα)

=

∫
Q

(∫
[0,t]

h(α, sφ(f0(α)))φ(f0(α))ds

)
q(dα)− t

∫
Q
φ(f0(α))h(α, 0)q(dα)
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=

∫
Q

(∫
[0,t]

(h(α, sφ(f0(α)))− h(α, 0))ds

)
φ(f0(α)) q(dα)

≥
∫
Q

∫
[0,t]

((
sK/(N−1)(bα − sφ(f0(α)))

sK/(N−1)(bα)

)N−1

− 1

)
ds

· φ(f0(α))h(α, 0) q(dα)

=

∫
Q

∫
[0,t]

(
−
√
|K|(N − 1)

cK/(N−1)(bα)

sK/(N−1)(bα)
sφ(f0(α)) + o(s)

)
ds

· φ(f0(α))h(α, 0) q(dα)

=

∫
Q

(
−
√
|K|(N − 1)

cK/(N−1)(bα)

sK/(N−1)(bα)

t2

2
+ o(t2)

)
φ(f0(α))

2 h(α, 0)q(dα),

for all t ∈ (0, 1). Taking lim inf of both sides of the last inequality, using
Fatou’s Lemma and the assumption that the forward mean curvature of V

is bounded above by H0 we deduce that

H0

∫
V
φ2H0 ≥ lim inf

t→0

m(Vt,φ)− t
∫
V φH0

t2/2

≥
∫
V
−
√
|K|(N − 1)

cK/(N−1)(bα)

sK/(N−1)(bα)
φ2H0,

implying

bα ≤ DH0,K,N q-a.e. α ∈ Q.

By the arbitrariness of the assignment Q � α �→ bα ∈ Iα = [0, dα] ⊂ [0,∞),

it follows that

(5.13) dα ≤ DH0,K,N q-a.e. α ∈ Q.

Since by construction dα = supx∈Xα
τV (x), the combination of (5.13) and

the disintegration formula (5.11) yields

(5.14) τV (x) ≤ DH0,K,N , m-a.e. x ∈ I+(V ).

The lower semi-continuity of τV on I+(V ) permits to promote (5.14) to every

x ∈ I+(V ).

Step 2: Consider any timelike geodesic γ parametrized by arclength
and defined on a maximal (on the right) interval [0, a) ⊂ [0,∞) such that
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γ0 ∈ V . We claim that a ≤ DH0,K,N . Indeed, if by contradiction for some
s0 ∈ [0, a)

τ(γ0, γs0) = s0 > DH0,K,N ,

the very definition (1.8) of τV would imply τV (γs0) > DH0,K,N contradicting
Step 1.

Step 3: The case N = 1, H0 < 0.
Recalling Remark 4.19, in case N = 1 the density hα(·) is costant on Iα.
Thus, arguing along the lines of Step 1, we get that H0

∫
V φ2H0 ≥ 0 which

gives a contradiction unless I+(V ) = ∅.

5.3. Timelike Bishop-Gromov, Bonnet-Myers and Poincaré
inequalities for TMCPe(K,N)

In order to state the next result we need to introduce a bit of notation. Given
a Borel achronal FTC subset V ⊂ X, we say that a subset E ⊂ I+(V ) ∪ V
is (τV , R0)-conically shaped if

E={x∈I+(V )∪V : τV (x)≤R0, yx∈E for all yx∈V with τ(yx, x)=τV (x)}.

Note that, for a closed subset E, the condition is equivalent to ask that for
every x ∈ E ∩ TV the intersection E ∩ [x](TV ,RV ) corresponds to the interval
[0, R0] via the map F of Lemma 4.6.

Proposition 5.7 (A Bishop-Gromov type inequality for achronal FTC sets
in TMCPe(K,N) spaces). Let (X, d,m,�,≤, τ) be a timelike non-branching,
globally hyperbolic, Lorentzian geodesic space satisfying TMCPe(N,N) for
some p ∈ (0, 1),K ∈ R, N ∈ (1,∞) and assume that the causally-reversed
structure satisfies the same conditions.

Let V ⊂ X be a Borel achronal FTC subset. Then, for every compact
(τV , R0)-conically shaped subset E ⊂ I+(V )∪V it holds (recall the definition
(5.3) of Ht):

Hr({τV = r} ∩ E)

HR({τV = R} ∩ E)
≥

(
sK/(N−1)(r)

sK/(N−1)(R)

)N−1

, for all 0 ≤ r ≤ R ≤ R0

(5.15)

m({τV ≤ r} ∩ E)

m({τV ≤ R} ∩ E)
≥

∫ r
0

(
sK/(N−1)(t)

)N−1
dt∫ R

0

(
sK/(N−1)(t)

)N−1
dt

, for all 0 ≤ r ≤ R ≤ R0.

(5.16)
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Proof. In order to show (5.15) observe that the combination of (5.2), (5.3)
and Theorem 4.18 gives

Hr({τV = r} ∩ E) =

∫
V ∩E

h(α, r) q(dα)

≥
(
sK/(N−1)(r)

sK/(N−1)(R)

)N−1 ∫
V ∩E

h(α,R) q(dα)

=

(
sK/(N−1)(r)

sK/(N−1)(R)

)N−1

Hr({τV = R} ∩ E).

The claim (5.16) follows from (5.15) by recalling (5.2), (5.3) and the classical
Gromov’s Lemma (see for instance [24, Lemma III.4.1]).

Notice that, in particular, if {τV ≤ R0} ⊂ X is a compact subset then
(5.15) and (5.16) remain valid without capping with the cutoff set E in the
left hand side.

Let us introduce some notation for the next result. For u : X → R we
will use the short-hand notation u(α, t) to denote u(X̄α ∩ {τV = t}). Notice
that if u is Lipschitz then, for every α ∈ Q, the function t �→ u(α, t) is
locally Lipschitz and thus L1-a.e. differentiable with derivative denoted as
∂
∂tu(α, t). For u with compact support, we will also use the notation

uα :=
1

mα(suppu)

∫
Xα

umα if mα(suppu) �= 0, and uα := 0 otherwise,

to denote the average of u on (Xα,mα).

Proposition 5.8 (A timelike Poincaré inequality for TMCPe(K,N)). For
every (K,N,D) ∈ R×(1,∞)×(0,∞), there exists a constant λMCPK,N,D

> 0
with the following property.

Let (X, d,m,�,≤, τ) and V ⊂ X be as in Proposition 5.7. Then, for
every u : X → R Lipschitz with compact support contained in I+(V ) it
holds

(5.17)

∫
X
|u− uα|2m ≤ λMCPK,N,D

∫
X

∣∣∣∣ ∂∂tu(α, t)
∣∣∣∣
2

m,

where D := supα∈Q supx,y∈Xα∩suppu τ(x, y) ≤ supx,y∈suppu τ(x, y) <∞.
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Proof. Since from Theorem 4.18 each ray (Xα,mα) is an MCP(K,N) space,

from [45] we know that

∫
Xα

|u(α, t)− uα|2 mα(dt) ≤ λMCPK,N,D

∫
Xα

∣∣∣∣ ∂∂tu(α, t)
∣∣∣∣
2

mα(dt).

The claimed (5.17) follows then from the disintegration formula (4.22).

It is possible to give quite precise estimates on the constan λMCPK,N,D
,

the interested reader is referred to [45].

Finally we take advantage of the techniques developed in the second

part of the paper to sharpen, for timelike non-branching spaces, the time-

like Bishop-Gromov inequality obtained in Proposition 3.5 and the timelike

Bonnet-Myers inequality obtained in Proposition 3.6.

Proposition 5.9 (A timelike Bishop-Gromov inequality for timelike non-

branching TMCPe(K,N)). Let (X, d,m,�,≤, τ) be as in Proposition 5.7.

Then, for each x0 ∈ X, each compact subset E ⊂ I+(x0) ∪ {x0} τ -star-

shaped with respect to x0, and each 0 < r < R ≤ π
√

(N − 1)/(K ∨ 0), it

holds:

s(E, r)

s(E,R)
≥

(
sK/(N−1)(r)

sK/(N−1)(R)

)N−1

,
v(E, r)

v(E,R)
≥

∫ r
0 sK/(N−1)(t)

N−1dt∫ R
0 sK/(N−1)(t)N−1dt

.

(5.18)

Proof. Consider τx0
(·) := τ(x0, ·) : I+(x0) → R. One can repeat verbatim

(actually here it would be slightly easier) the constructions of Section 4

replacing τV by τx0
and obtain a partition (up to a set of m-measure zero) of

I+(x0) into transport rays {Xα}α∈Q associated to τx0
, i.e. eachXα is a future

pointing radial τ -geodesic emanating from x0. One can disintegrate m�I+(x0)

accordingly as m�I+(x0)=
∫
Qmα q(dα) where each mα is concentrated on Xα,

and (Xα, | · |,mα) is a 1-dim. MCP(K,N) m.m.s. One can now prove (5.18)

along the same lines of the proof of Proposition 5.7.

Proposition 5.10 (A timelike Bonnet-Myers inequality for timelike non-

branching TMCPe(K,N)). Let (X, d,m,�,≤, τ) be as in Proposition 5.7,

with K > 0. Then

(5.19) sup
x,y∈X

τ(x, y) ≤ π

√
N − 1

K
.
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Proof. Assume by contradiction that there exist x0, x1 ∈ X with τ(x0, x1) ≥
π
√

(N − 1)/K + 2ε, for some ε > 0. Let δ > 0 be such that

inf{τ(x0, y) : y ∈ Bd(x1, δ)} ≥ π
√

(N − 1)/K + ε.

Consider the disintegration m�I+(x0)=
∫
Qmα q(dα) associated to τx0

, as out-

lined in the proof of Proposition 5.9. Since m(Bd(x1, δ)) > 0, it follows that
Lτ (Xα) ≥ π

√
(N − 1)/K+ ε for a q-non negligible subset of rays. But since

every (Xα, | · |,mα) is a 1-dim. MCP(K,N) m.m.s. with full support, its
diameter is at most π

√
(N − 1)/K (as it’s easily seen from (4.23)). Contra-

diction.

Remark 5.11 (Sharpness). The Lorentzian model spaces are: for K < 0
(scaled) de Sitter space, K = 0 Minkowski space, K > 0 (scaled) anti-de
Sitter space. Recall that the standard de Sitter space (Mn, gdS) has con-
stant sectional curvature equal to 1, thus RicgdS(v, v) = −(n − 1)gdS(v, v)
for v timelike, and hence it is the model space for K = −(n − 1). The
Minkowski space has null sectional (and thus Ricci) curvatures, thus is the
model space for K = 0. The anti de-Sitter space (Mn, gadS) has constant
sectional curvature equal to −1, thus RicgadS

(v, v) = (n − 1)gdS(v, v) for v
timelike, and hence it is the model space for K = n−1. It is well known that
any globally hyperbolic subset of (Mn, gadS) has timelike diameter at most
π, with sharp bound; this shows the sharpeness of Proposition 5.10. Using
that in the model spaces the sectional curvature is constant, direct volume
computations via Jacobi fields show that equality is achieved in (5.18); thus
also Proposition 5.9 is sharp. Choosing V to be a level set of the natural
time-function in the model spaces, it is possible to check that equality is
achieved in (5.15) and (5.16) as well.

5.4. The case of a spacetime with continuous metric

Next we specialise Theorem 5.6 to the case of a spacetime with a contin-
uous metric. As observed in [26], spacetimes with continuous metrics may
present pathological causal behaviour. For instance [26] (see also [55, Sec-
tion 5.1]) gives examples of spacetimes with Hölder-continous metrics where
the null curves emanating from a point cover a set with non-empty interior,
a phenomenon called “bubbling”. In order to prevent such a pathological
behavior, [26] proposed the notion of “causally plain” metric. Let us briefly
recall it together with the needed notation.
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The notion of causally plain Lorentzian metric. Let ǧ, g be two
Lorentzian metrics. We write ǧ ≺ g if {v �= 0 : ǧ(v, v) ≤ 0} ⊂ {v : g(v, v) <
0}. For a neighbourhood U of x ∈M , set

Ǐ+g (x, U) := {y ∈ U : ∃ a smooth Lorentzian metric ǧ ≺ g

and a future pointing ǧ-timelike curve

γ : [0, 1]→ U , with γ0 = x, γ1 = y and ǧ(γ̇, γ̇) < 0}.

The set Ǐ−g (x, U) is defined analogously. It is clear that Ǐ±g ⊂ I±g and equality
holds for smooth metrics. Let us also recall that a cylindrical neighbourhood
of a point x ∈ X with respect to g, is a relatively compact chart domain
containing x such that, in this chart, g equals the Minkowski metric at x and
the slopes of the light cones of g stay close to 1 (for the precise definition
see [26, Def. 1.8]).

A spacetime (M, g) is said to be causally plain if every x ∈ M admits
a cylindrical neighbourhood U such that ∂Ǐ±g (x, U) = ∂J±(x, U); otherwise
(M, g) is said to be bubbling [26, Def. 1.16].

The rough idea is that (M, g) is causally plain provided, for every x ∈M ,
the span of all null curves emanating from x has empty interior.

It was proved in [26, Corollary 1.17] that a spacetime with locally Lip-
schitz continuous Lorentzian metric is causally plain. In the same paper
[26, Section 1.1] (see also [55, Section 5.1]) examples of Hölder-continuos
bubbling Lorentzian metrics are discussed.

Let (M, g) be a spacetime with a C0-Lorentzian metric. Recall that any
Cauchy hypersurface is causally complete.

It is then clear that Proposition 3.4, Proposition 3.5, Proposition 3.6
and Remark 3.9 give the following:

Corollary 5.12 (Geometric properties of a globally hyperbolic causally
plain spacetime with C0 metric, with synthetic timelike Ricci bounded be-
low). Let (M, g) be a 2 ≤ n-dimensional globally hyperbolic, causally plain
spacetime with a C0-Lorentzian metric.

• Timelike Bishop-Gromov: If (M, g) satisfies TMCPe(K,N) for some
p ∈ (0, 1),K ∈ R, N ∈ [1,∞), then for each x0 ∈ M , each compact
subset E ⊂ I+(x0) ∪ {x0} τ -star-shaped with respect to x0, and each
0 < r < R ≤ π

√
N/(K ∨ 0), inequality (3.11) holds.

• Timelike Bonnet-Myers: If (M, g) satisfies TMCPe(K,N) for some p ∈
(0, 1),K > 0, N ∈ [1,∞), then (3.12) holds. In particular (M, g) is not
timelike geodesically complete.
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• Timelike Brunn-Minkowski: If (M, g) satisfies wTCDe
p(K,N) for some

p ∈ (0, 1),K ∈ R, N ∈ [1,∞), then (3.9) holds.

In Corollary 5.16 below, taking advantage of the techniques developed
in Section 3.4 and Section 4, the results of Corollary 5.12 will be improved
to sharp forms in case of timelike non-branching structures.

It is clear that Theorem 5.6 implies the following result for a spacetime
with C0-Lorentzian metric.

Corollary 5.13 (Hawking Singularity Theorem for a spacetime with a
C0-Lorentzian metric). Let (M, g) be a 2 ≤ n-dimensional timelike non-
branching, globally hyperbolic, causally plain spacetime with a C0-Lorentzian
metric satisfying TMCPe(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ (1,∞) and
assume that the causally-reversed structure satisfies the same conditions.

Let V ⊂ M be a Borel achronal FTC subset (or, more strongly, let V
be a Cauchy hypersurface) having forward mean curvature bounded above by
H0 < 0 in the sense of Definition 5.2.

Then for every x ∈ I+(V ) it holds τV (x) ≤ DH0,K,N , provided H0,K,N
fall in the range specified in Theorem 5.6. In particular, for every timelike
geodesic γ ∈ TGeo(M) with γ0 ∈ V , the maximal (on the right) domain of
definition is contained in

[
0, DH0,K,N

]
; in particular (M, g) is not timelike

geodesically complete.

Remark 5.14 (Literature about Hawking singularity Theorem). Hawking
singularity Theorem was proved in [47, Theorem 4, p. 272] for smooth space-
times (the proof works for C2 metrics) assuming that V is a compact space-
like slice. The result was extended to C1,1 metrics in [56] and to C1 metrics
in [41], by approximating the metric of low regularity with smoother metrics.
The extension to non-compact future causally complete V was established
in [37, Theorem 3.1] (see also [42]) in the smooth setting, and extended to
C1,1 metrics in [40]. Theorem 5.6 and Corollary 5.13, already in the smooth
setting, relax the future causal completeness with the weaker future timelike
completeness (in addition to extend the results to a synthetic framework,
including C0 metrics with timelike non-branching geodesics).

Hawking (as well as Penrose and Hawking-Penrose) singularity Theo-
rem was also extended to (smooth) closed cone structures [63] and smooth
weighted Lorentz-Finsler manifolds [66]. Let us mention that a first synthetic
singularity theorem was recently shown in [1] under the stronger assump-
tions that the space is a synthetic warped product with lower bound on
sectional curvature in the sense of comparison triangles (á la Alexandrov).

Few weeks after we announced the present work, we learnt of [14], prov-
ing a Riemannian version of Hawking’s singularity theorem in the framework
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of metric measure spaces with Ricci curvature bounded below in a synthetic
sense via optimal transport.

Remark 5.15 (On the timelike non-branching assumption).

• The validity of the non-branching property for timelike geodesics (as-
sumed in Theorem 5.6 and Corollary 5.13) is verified for C1,1

loc -Lorentz-
ian metrics by standard Cauchy-Lipschitz theory of ODEs.

• In the metric theory, it was recently proved [29] that infinitesimally
Hilbertian CD(K,N) spaces are non-branching. It is natural to expect
that an analogous result holds also in the Lorentzian setting, namely
that infinitesimally Minkowskian (to be properly defined) TCDe

p(K,N)
spaces are timelike non-branching.

Specialising Proposition 5.7, Proposition 5.8, Proposition 5.9, Proposi-
tion 5.10 to the case of a spacetime with a C0-Lorentzian metric give:

Corollary 5.16 (Timelike Bishop-Gromov, Bonnet-Myers and Poincare’
inequalities). Let (M, g) be a 2 ≤ n-dimensional timelike non-branching,
globally hyperbolic, causally plain spacetime with a C0-Lorentzian metric
satisfying TMCPe(K,N) for some p ∈ (0, 1),K ∈ R, N ∈ (1,∞) and assume
that the causally-reversed structure satisfies the same conditions.

Let V ⊂M be a Borel achronal FTC subset (or, more strongly, let V be
a Cauchy hypersurface). Then:

• Timelike Bishop-Gromov I: For every compact (τV , R0)-conically
shaped subset E ⊂ I+(V ) ∪ V the inequalities (5.15) and (5.16) hold.
In particular, if {τV ≤ R0} ⊂ X is a compact subset then (5.15) and
(5.16) remain valid without capping with the cutoff set E in the left
hand side.

• Timelike Bishop-Gromov II: For each x0 ∈ M , each compact subset
E ⊂ I+(x0)∪ {x0} τ -star-shaped with respect to x0, and each 0 < r <
R ≤ π

√
(N − 1)/(K ∨ 0), the inequalities (5.18) hold.

• Timelike Poincaré: For every u : M → R Lipschitz with compact sup-
port contained in I+(V ), the inequality (5.17) holds.

• Timelike Bonnet-Myers: If K > 0, then inequality (5.19) holds.

Appendix A. TMCPe(K,N) on smooth Lorentzian manifolds

Theorem A.1. Let (Mn, g) be a globally hyperbolic smooth spacetime of
dimension n ≥ 2 without boundary. Then the associated Lorentzian geodesic
space satisfies TMCPe(K,n) if only if Ricg(v, v) ≥ −Kg(v, v) for every time-
like vector v ∈ TM .
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Proof. Step 1: “If” implication.
From Theorem 3.1, the Lorentzian geodesic space associated to (Mn, g)
satisfies the TCDe

p(K,n) condition, which in turn implies TMCPe(K,n) by
Proposition 3.12 (see also Remark 1.12).

Step 2: “Only if” implication.
Fix x ∈ M and v ∈ TpM future pointing with g(v, v) = −1. Let U be a
compact subset of {w ∈ TxM : w is future pointing with g(w,w) < 0}, star-
shaped with respect to 0, such that rv ∈ U for r > 0 small enough and such
that the exponential map expgx : U →M of g based at x is a diffeomorphism
onto its image when restricted to U . Calling dVolg the volume density on
M associated to g, recall that it can be represented as

dVolg(y) = (expgx)� (Ax(r, ξ)drdξ) , for all y = expgx(rξ) ∈ expgx(U),
(A.1)

where Ax(r, ξ) denotes the volume density on {rξ ∈ U : g(ξ, ξ) = −1}
induced by g.

Fix a g-orthonormal basis e1, e2, . . . , en of TpM with e1 = v and de-
note by κi the sectional curvature of the plane spanned by e1 and ei, for

i = 2, . . . , n. Recalling the definitions (3.6), (3.7) of sκ(ϑ) and σ
(t)
κ (ϑ) re-

spectively, it is easy to check that for small r > 0 it holds:

(A.2) σ(1/2)
κ (2r) =

sκ(r)

sκ(2r)
=

1

2

(
1 +

κ

2
r2 +O(r4)

)
.

Standard Jacobi-fields computations (see for instance [31] for the Lorentzian
setting) give that

(A.3)
Ax(r, v)

Ax(2r, v)
=

n∏
i=2

sκi
(r)

sκi
(2r)

+O(r3).

Plugging (A.2) into (A.3) yields

Ax(r, v)

Ax(2r, v)
=

1

2n−1

n∏
i=2

(
1 +

κi
2
r2

)
+O(r3) =

1

2n−1

(
1 +

n∑
i=2

κir
2

)
+O(r3)

(A.4)

=
1

2n−1

(
1 + Ricg(v, v)r

2
)
+O(r3).

We next relate Ax(r, v)/Ax(2r, v) with the TMCPe(K,n) condition via lo-
calisation.
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Consider τx(·) := τ(x, ·) : I+(x) ⊃ expgx(U) → R. By the very defini-
tions, we have τx (exp

g
x(rξ)) = r for every rξ ∈ U , g(ξ, ξ) = −1. In other

terms, the partition of expgx(U) \ {x} by future pointing g-geodesics ema-
nating from x coincides with the partition by transport rays induced by τx.

Under this identification, the disintegration of dVolg induced by τx is
nothing but (A.1). Theorem 4.18 then gives that r �→ Ax(r, v) is an
MCP(K,n) density on an interval (0, εv) (see for instance the proof of [68,
Theorem 3.2]): it thus satisfies

(A.5)
Ax(r, v)

Ax(2r, v)
≥

(
sK/(n−1)(r)

sK/(n−1)(2r)

)n−1

.

Combining (A.4) with (A.5), we obtain

Ricg(v, v)r
2 ≥

(
2sK/(n−1)(r)

sK/(n−1)(2r)

)n−1

− 1 +O(r3)

=

(
1 +

K

n− 1
r2

)n−1

− 1 +O(r3)

= Kr2 +O(r3).

Dividing both sides by r2 and sending r ↓ 0, we thus obtain

Ricg(v, v) ≥ K = −Kg(v, v).

By the arbitrariness of x and v, the proof is complete.

Corollary A.2. Let (Mn, g) be a globally hyperbolic smooth spacetime of
dimension n ≥ 2 without boundary.

1. If Ricg(v, v) ≥ −Kg(v, v) for every timelike vector v ∈ TM , then the
associated Lorentzian geodesic space satisfies TMCPe(K ′, N ′) for every
K ′ ≤ K and N ′ ≥ N .

2. Assume that the Lorentzian geodesic space associated to (Mn, g) sat-
isfies TMCPe(K,N). Then n ≤ N .

Proof. The first statement follows from Theorem A.1 and Lemma 3.11 (or
from Theorem 3.1 and Proposition 3.12).

We now prove the second statement. We will build on the proof of The-
orem A.1. Fix x ∈M and let

U ⊂ {w ∈ TxM : w is future pointing with g(w,w) < 0}
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be compact star-shaped with respect to 0, with non-empty interior, such
that the exponential map expgx : U →M of g based at x is a diffeomorphism
onto its image when restricted to U . Calling

Bg
r (x, U) := expgx({w ∈ U : |g(w,w)| ≤ r}), r > 0,

it is easy to see that there exists c = cU > 0 such that

(A.6) Volg(B
g
r (x, U)) = c rn +O(rn+1), for small r > 0.

On the other hand, using that r �→ Ax(r, v) is an MCP(K,N) density (see
the discussion before (A.5)) and recalling (A.1), we obtain via the classical
Gromov’s Lemma (see for instance [24, Lemma III.4.1]) that

(A.7) (0, ε) � r �→ Volg(B
g
r (x, U))∫ r

0

[
sK/(N−1)(t)

]N−1
dt

is monotone non-increasing.

Since sK/(N−1)(t) = O(t) for small t > 0, it is easy to see that the combina-
tion of (A.6) and (A.7) yields n ≤ N .

Remark A.3. In general, TMCPe(K,N) on a globally hyperbolic smooth
spacetime does not imply that Ricg(v, v) ≥ −Kg(v, v) for every timelike
vector v ∈ TM . It follows that TMCPe(K,N) is a strictly weaker condition
than wTCDe

p(K,N). More precisely, the following holds: For each N > 1
there exists a constant cN > 0 such that each globally hyperbolic smooth
spacetime with timelike Ricci curvature ≥ 0, dimension ≤ N − 1 and τ -
diameter ≤ L satisfies TMCPe(K,N) for each positive K ≤ cN/L2 (compare
with [79, Remark 5.6] for the Riemannian setting).

Proof. From Theorem A.1 we know that TMCPe(0, N − 1) holds. Recalling
that the TMCPe(K,N) condition is equivalent to (3.14), it is sufficient to
show that

tN−1 ≥
(
σ
(t)
K/N (ϑ)

)N
, ∀t ∈ [0, 1], ϑ ∈ [0, L].

Now, for sufficiently small cN ∈ (0, 1) and all Kϑ2 ≤ cN , the right-hand side
can be estimated from above by tN (1 + (1 − t2)Kϑ2). But clearly tN−1 ≥
tN

(
1 + (1− t2)Kϑ2

)
, for all Kϑ2 ≤ cN .
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