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BIFURCATIONS AND LIMIT CYCLES IN A MODEL FOR A VOCAL
FOLD OSCILLATOR∗

JORGE C. LUCERO†

Abstract. This article presents an analysis of the dynamics of a bidimensional oscillator, which
has been proposed as a simple model for the vocal fold motion at phonation. The model is capable of
producing an oscillation with physiologically realistic values for the parameters. A simple extension
of the model using even-powered polynomials in the damping factor is proposed, to permit the
occurrence of an oscillation hysteresis phenomenon commonly observed in voice onset-offset patterns.
This phenomenon appears from the combination of a subcritical Hopf bifurcation where an unstable
limit cycle is produced, with a fold bifurcation between limit cycles, where the unstable limit cycle
coalesces and cancels with a stable limit cycle. The results are illustrated with phase plane plots and
bifurcation diagrams obtained using numerical continuation techniques.
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1. Introduction
The vocal folds at the larynx constitute a biomechanical oscillator that acts as

the sound source in phonation. Under certain conditions of instability relating pa-
rameters of their physiology and associated airway aerodynamics, the airflow that
passes through the channel between the folds (glottis) induces their oscillation. The
vocal fold oscillation in turn modulates the glottal airflow, which after going through
the oral and nasal cavities, results in the air pressure wave that we perceive as voice
[1]. Thus, it is a self-excited flow-induced oscillation, a similar phenomenon to the
production of sound at the syrinx of songbirds [2], at blood vessels during sphygmo-
manometry [3], and at the lips in brass musical instruments [4].

Since the pioneering work by Van den Berg et al. [5] which set the basis of glottal
aerodynamics, several mathematical models have been proposed to characterize the
dynamics of this oscillator. Such models have ranged in complexity from the sim-
ple and popular one-mass [6] and two-mass [7] models, in which each vocal fold is
represented by one or two coupled mass-damper-spring systems, respectively, up to
continuum models and finite element approaches [8]. Although the more sophisti-
cated models are needed to capture subtle details of vocal fold motion and laryngeal
aerodynamics [8, 9], simple low-dimensional models are still useful to analyze the un-
derlying dynamics of the oscillation. In fact, simple models have shown a rich variety
of interesting nonlinear phenomena, including the existence of multiple equilibrium
positions and limit cycles [10, 11], several types of bifurcations [10, 11, 12], and chaotic
behavior [11, 13].

A particularly useful model has been Titze’s mucosal wave model [14]. There,
the movement of the vocal fold tissues is represented as a surface wave propagating
in the direction of the airflow. The model was originally conceived for small ampli-
tude oscillations, to study conditions for the onset of the oscillation. An extension to
the general case of large amplitude oscillations was proposed later [15, 10], by using
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a more detailed description of the glottal aerodynamics which included the effect of
formation of an air jet downstream from a divergent glottal channel. Using this exten-
sion, the existence of Appleton and van der Pol’s oscillation hysteresis phenomenon
[16] was shown. This phenomenon appears from the combination of a subcritical Hopf
bifurcation where an unstable limit cycle is produced, with a fold bifurcation between
limit cycles, where the unstable limit cycle coalesces and cancels with a stable limit
cycle. It is also known as hard-excited oscillation [17], in contrast to the soft-excited
case, which corresponds to the supercritical type of the Hopf bifurcation. Since os-
cillation onset and offset occur through different bifurcations (the Hopf bifurcation
and the cyclic fold bifurcation, respectively), this phenomenon is commonly observed
as different vocal fold’s configurations at voice onset and offset. For example, it is
known that voice onset requires a subglottal air pressure above certain positive thresh-
old level. However, after voice has started, the subglottal pressure may be decreased
below the initial threshold, without the interruption of voice. The pressure level at
which voice stops is lower than the level at which it starts [18, 19]. This phenomenon
is important to speech production, since it determines patterns of voice onset and
offset during running speech (e.g., [20]). Its occurrence has been attributed to the
flow-induced nature of the oscillation, and it appears to be a common phenomenon
in cases of aeroelastic oscillations in nature, such as those of buildings and bridges by
action of the wind, and airplane wings during flight [21].

A different large amplitude extension was recently proposed by Laje et al. [22],
which kept Titze’s original equations but added a nonlinear damping characteristic
for the tissues. The nonlinear damping was introduced ad-hoc to limit the oscillation
amplitude at large oscillations, and it would account for nonlinear effects such as
pressure losses at the glottis for air viscosity, collision between the opposite folds and
consequent interruption of the airflow, formation of an air jet downstream from the
glottis, nonlinearities of tissue biomechanics, and other factors. A similar nonlinear
damping characteristic was also used in a recent modeling work [20], based on tissue
biomechanics considerations. This model is attractive in its simplicity, and has been
also applied to the labia oscillation at the syrinx of songbirds [2].

The purpose of this paper is to investigate the dynamics of Laje et al.’s model
[22]. Particularly, it intends to determine the type of bifurcation that produces the os-
cillation, and whether the model allows for the occurrence of the oscillation hysteresis
phenomenon, discussed above. The following sections will first review the derivation
of the model’s equation. Next, its dynamical structure will be analyzed and illustrated
through phase plane plots and bifurcation diagrams. The results will be summarized
and discussed in a final conclusion section.

2. Vocal fold model
The model is illustrated in Fig. 1 [14]. For clarity of the present analysis, main

steps of the derivation of the model’s equation are reproduced here.
Complete right-left symmetry of the folds is assumed, and motion is allowed only

in the horizontal direction. A surface wave propagates through the superficial mucosal
tissues of the folds, in the direction of the airflow (upward). Letting ξ be displacement
of the tissues from their rest position, and y the vertical distance from the midpoint
of the glottis in the direction of the airflow, then the surface wave has the general
expression

ξ(y,t)=x(t−y/c), (2.1)

where t is time, x(t)= ξ(0,t) is the displacement of the tissues at the midpoint of the
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Fig. 2.1. Vocal fold model [14].

glottis and c is the wave velocity. This expression is next expanded into a Taylor
series around y =0, and approximated by the linear terms

ξ(y,t)≈x(t)−(y/c)ẋ(t). (2.2)

The above approximation is valid assuming that the time delay τ =T/(2c) for the
surface wave to travel half the glottal height T/2 is sufficiently small, compared to
the period of the oscillation[14, 10].

We consider the simple case in which the vocal fold separation along the glottal
height is constant, when they are at their rest position. In this case, the glottal
cross sectional area a at the height y is a=2L(x0 +ξ), where x0 is the half-width
at the rest position, and L is the glottal length. The glottal areas a1 and a2 at the
lower (y =−T/2) and upper (y =T/2) edges of the vocal folds, respectively, are then
approximated by

a1 =2L(x0 +x+τ ẋ), (2.3)

a2 =2L(x0 +x−τ ẋ). (2.4)

From the lungs up to the exit of the glottis, the air flow is assumed approximately
frictionless, stationary, and incompressible [24]. Under these conditions, Bernoulli’s
energy equation may be used to describe the flow. The equations are further simplified
by neglecting pressure losses at the bronchi and trachea and hence assuming that the
subglottal pressure is constant and equal to the lung pressure PL. Also, pressure at the
exit of the glottis is assumed constant and equal to the atmospheric pressure Po =0.
These are standard assumptions to investigate the main mechanism of the vocal fold
oscillation, isolated from vocal tract and subglottal influences, and approximately
correspond to laboratory conditions of excised larynges [18].

Considering that the area of the trachea is much larger than the glottal area, and
according to Bernoulli’s equation, the pressure difference between PL at the exit of
the trachea and P2 at the upper edge of the vocal folds is

PL−P2 =
ρu2

2a2
2

, (2.5)
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where ρ is the air density, and u is the volume velocity of the glottal airflow. At the
glottal exit, and due to the abrupt area expansion, the flow detaches from the glottal
wall and forms a jet stream, losing almost all its energy by turbulence [24]. Hence,
P2≈Po =0.

The glottal pressure acting on the vocal fold medial surface is calculated as the
mean glottal pressure

Pg =
1
T

∫ T/2

−T/2

P (y)dy, (2.6)

where P (y) is the pressure distribution along the glottal height. This distribution may
be obtained by applying again Bernoulli’s equation between the position at height y
and the glottal exit

P (y) =
ρu2

2

(
1
a2
2

− 1
a(y)2

)
,

= PL

(
1− a2

2

a(y)2

)
.

(2.7)

Note that the approximation given by (2.2) implies that

da

dy
=2L

dξ

dy
≈−2L

c
ẋ (2.8)

which is independent of y. Hence, the assumption of a small value for τ implies a
linear variation of the glottal area along the glottal height, between the lower and
upper area values a1 and a2, respectively. In this case, computation of the integral in
(2.6) yields [14, 10]

Pg =PL

(
1− a2

a1

)
, (2.9)

=
2PLτ ẋ

x0 +x+τ ẋ
. (2.10)

Note that (2.10) was derived considering that the glottis is open, and so the
denominator must be a1 >0, or equivalently, x0 +x+τ ẋ>0.

The above equations allows us to offer a simplified explanation of the vocal fold
oscillation mechanics (see also [1, 14]). Note first, in (2.3) and (2.4), that when the
vocal folds move away from each other (ẋ>0) the glottal channel takes a convergent
shape (a1 >a2). In this case, the area reduction causes a positive glottal pressure,
as indicated by (2.9), which acts in the sense of pushing the folds apart. On the
other hand, when the vocal folds move towards each other (ẋ<0) closing the glottis,
the opposite situation occurs. In this case the glottal channel is divergent (a1 <a2),
and the area expansion causes a negative glottal pressure, which acts in the sense of
sucking the folds together. Thus, the glottal pressure always acts in the same direction
of movement as that of the folds (note in 2.10 that the glottal pressure Pg has the
same sign as the vocal fold velocity ẋ), which implies a transfer of energy from the
airflow to the vocal fold. When this energy is enough to overcome the energy lost by
dissipation in the tissues, the oscillation starts.

The mechanical properties of the vocal fold tissues are lumped at the midpoint
of the glottis, which yields the equation of motion

Mẍ+B(1+ηx2)ẋ+Kx=Pg, (2.11)
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where M , B, and K are the mass, damping, and stiffness, respectively, per unit area of
the vocal fold medial surface, and η is a phenomenological nonlinear coefficient. This
equation includes a nonlinear damping term B(1+ηx2)ẋ instead of the usual linear
one Bẋ used by Titze [14] in his small amplitude analysis. As mentioned in §1, this
term accounts for nonlinear effects of the glottal aerodynamics, tissue viscoelasticity,
and vocal fold collision, which act as limiting factors of the oscillation amplitude
[22]. In a previous modeling work [20], a similar term of the form B(1+η|x|)ẋ) was
also incorporated into a vocal fold model. The adoption of such term was based on
empirical data from vocal fold tissues [23], which showed that the time constant of
tissue relaxation curves increases with the level of strain imposed. Such an empirical
result may be modeled by a damping term which increases with the deformation
of tissues, as the one proposed above. The data show larger variations of the time
constant at larger levels of strain, which seems to indicate that a nonlinear term with
x2 would be more appropriate than the previous one with |x|. However, the available
numerical data is rather limited for a better comparison.

Joining (2.11) and (2.10), we obtain finally the complete equation

Mẍ+B(1+ηx2)ẋ+Kx=
2PLτ ẋ

x0 +x+τ ẋ
, withx0 +x+τ ẋ>0. (2.12)

More details on the above equations may be easily found in the indicated refer-
ences. Note that the differential equation (2.12) holds under an inequality constraint.
The conditions for this constraint to be satisfied (or not) will be also explored in the
following sections.

3. Normalization and numerical example
The number of parameters may be reduced by introducing the new adimensional

variables u=x/x0, ν = t
√

K/M , and the parameters α=B/
√

MK, β =x2
0η, and γ =

2τPL/(x0

√
MK), δ = τ

√
K/M which yields the differential equation

u′′+α(1+βu2)u′+u=
γu′

1+u+δu′ , with1+u+δu′ >0, (3.1)

and u′ =du/dν. Letting v =u′, the following equivalent bidimensional form is obtained{
u′ = v,

v′ = −α(1+βu2)v−u+
γv

1+u+δv
, with1+u+δv >0.

(3.2)

Typical adult values for the parameters are c=100 cm/s, T =3 mm, x0 =1 mm,
M =0.476 g/cm2, B =100 dyne s/cm3, K =200000 dyne/cm3 [14]. For a numerical
example, we consider PL =8000 dyne/cm2, which is the lung pressure of an adult’s
normal voice [1], and η =1000 cm−2. The adimensional parameters are then α=0.32,
β =100, γ =0.78, δ =0.97.

Fig. 3.1 shows a phase portrait for the above parameters, with six trajectories.
The dashed line corresponds to the singular condition 1+u+δv =0, and marks the
limit of validity of (3.2). At this condition, the opposite vocal folds become in contact
and close the glottis, interrupting the airflow. Trajectory 1 is the normal case of
phonation. The rest position at (u,v)=(0,0) is unstable, which causes an oscillation
of increasing amplitude, until reaching a limit cycle. Trajectories 2, 3, and 4 are
outside the limit cycle, but still within its basin of attraction. Trajectory 5 marks the
limit of the basin of attraction of the limit cycle. Note that this trajectory tends to
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Fig. 3.1. A phase portrait for Eq. 3.2, and α=0.32, β =100, γ =0.78, δ =0.97.

the singular point (−1,0), at which both the numerator and denominators at the left
side of (3.2) become zero. Trajectory 6 is outside the basin of attraction of the limit
cycle. This trajectory, as well as the whole region below trajectory 5, are outside
the region of validity of the model as a representation of the vocal fold oscillator,
since they do not correspond to licit vocal fold motion. The phase portrait duplicates
results obtained by Laje et al.’s [22]. In the next section, the formation of the limit
cycle is analyzed in more detail.

4. Stability of the rest position and Hopf bifurcation
The dynamical structure of the above model will be explored considering γ as

control parameter. This parameter is directly related to the lung pressure, which is
the main parameter to control voicing offset and onset, as well as voice intensity [1].

Equation (3.2) has one equilibrium position at (u,v)=(0,0). The eigenvalues λ
of the Jacobian matrix at this position are given by the characteristic equation

λ2 +(α−γ)λ+1=0. (4.1)

This equation has a pair of conjugate complex roots, which crosses the imaginary axis
from left to right as γ increases and crosses the bifurcation value γ =α. At this value,
a Hopf bifurcation occurs, in which the equilibrium position changes its stability: it
is a stable focus for γ <=α, and an unstable one at γ >α. At the same time, a limit
cycle is generated [25].

Let us recall that there are two types of Hopf bifurcation: the supercritical case, in
which a stable limit cycle is expelled from the equilibrium position, and the subcritical
case, in which an unstable limit cycle is absorbed. To determine the type of Hopf
bifurcation, we may follow Perko’s version of Hopf’s bifurcation Theorem for planar
systems [25]: Let s be the signed distance along a line through the origin, and P (s)
be the Poincaré map for the focus. Further, let σ≡d′′′(0) be the Lyapunov number
for the focus, where d(s)=P (s)−s is the displacement function. Then, if σ 6=0, the
origin is a weak focus and a Hopf bifurcation occurs at the bifurcation value of the



J. C. LUCERO 523

control parameter, and the sign of σ indicates its type: it is supercritical for σ <0,
and subcritical for σ >0. For a general planar analytic system

ẋ = ax+by+p(x,y),
ẏ = cx+dy+q(x,y), (4.2)

where ∆=ad−bc>0, a+d=0, and the analytic functions p(x,y)=
∑

i+j≥2aijx
iyj ,

q(x,y)=
∑

i+j≥2 bijx
iyj , the origin is a weak focus and the Lyapunov number is given

by

σ =
−3π

2b∆3/2

{[
ac(a2

11 +a11b02 +a02b11)+ab(b2
11 +a20b11 +a11b02)

+c2(a11a02 +2a02b02)−2ac(b2
02−a20a02)−2ab(a2

20 +b20b02)

−b2(2a20b20 +b11b20)+(bc−2a2)(b11b02−a11a20)
]

−(a2 +bc)[3(cb03−ba30)+2a(a21 +b12)+(ca12−bb21)]
}

. (4.3)

In our case, for γ =α, we have{
u′ = v,
v′ = −u−αvu−αδv2−α(β−1)u2v+2αδuv2 +αδ2v3 + ...

(4.4)

which produces

σ =
3π

2
α(1−β+αδ+3δ2). (4.5)

Hence, for 1−β+αδ+3δ2 <0 (σ <0) the Hopf bifurcation is supercritical, and
for 1−β+αδ+3δ2 >0 (σ >0) it is subcritical.

5. Continuation analysis
The characteristics of the limit cycle and bifurcations in the system may be ex-

plored using the software package MATCONT [26]. This package is a collection of
numerical algorithms implemented as a MATLAB Toolbox, for detection and contin-
uation of equilibria, limit cycles and bifurcations in differential equations.

Fig. 5.1 shows the limit cycle generated at the Hopf bifurcation, when varying γ,
with the other parameters at their previous typical values of §4. As this γ crosses
its bifurcation value and increases, a stable limit cycle is expelled from the origin,
and grows in amplitude. In this case, (4.5) produces σ =−144.5<0, indicating a
supercritical bifurcation.

It is interesting to see how the dynamics of the system change for different values
of β. The other parameters, α and δ, depend on physiological properties of the
vocal fold tissues such as mass, stiffness, and damping ratio, which are relatively well
known. Parameter β, on the other hand, is related to the phenomenological parameter
η, which accounts for several nonlinear effects at large amplitude oscillations, and
hence its value is more uncertain. Further, it is also proportional to x0 (vocal fold
separation), which is a parameter actively used by speakers to control voicing onset
and offset in consonant production during speech (see, e.g., [20]). Parameters α and
δ, should be more constant during speech, except for variations to control voice pitch
(oscillation frequency).

Fig. 5.2 shows limit cycle curves for several values of β. Point H denotes the Hopf
bifurcation. Curves growing to the right from H represent stable limit cycles, and
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Fig. 5.2. Amplitude of limit cycles vs. γ, for α=0.32, δ =0.97, and various values of β. The
vertical axis is the maximum amplitude of u for the limit cycle. From left to right, the curves
correspond to values of β =0.1,5,10,20,30,40,50,100. Dashed line 1 is the maximum amplitude that
the limit cycle might reach. Dashed line 2 is the location of a cyclic fold bifurcation.

the bifurcation is supercritical. Those growing from H to the left represent unstable
cycles, and the bifurcation is subcritical. The amplitude of the limit cycles may grow
until reaching line 1. Beyond this point, trajectories starting near the origin spiral
out and get attracted to the singular point at (−1,0), which prevents the formation
of the limit cycle. Fig. 5.3 shows an example of such case.

Some curves growing to the right from H change direction and turn to the left
at larger amplitudes. The point of direction inversion represents a fold bifurcation
between limit cycles. The portion of the curve growing to the right represents a
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Fig. 5.4. Phase portrait for γ =0.35, β =10, α=0.32, δ =0.97. Limit cycle 1 is unstable, and
limit cycle 2 is stable.

stable limit cycle, and the upper portion growing to the left represents an unstable
limit cycle. Thus, for some values of γ, both limit cycles may co-exist, as shown in
Fig. 5.4. As γ increases, both limit cycles coalesce and cancel each other.

Fig. 5.2 also shows an important fact: in the case of a subcritical bifurcation
(curves growing to the left from H), there is no stable limit cycle for any value of
γ. See an example in Fig. 5.5. The range of parameters which allow the subcritical
bifurcation is then outside the region of validity of the model as a representation of the
vocal fold oscillator. Therefore, this model can not reproduce the oscillation hysteresis
phenomenon discussed in §1, which requires a subcritical bifurcation. Let us note
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that this conclusion holds for the adopted values of parameters α=0.32 and δ =0.97,
which were kept fixed along the analysis. It is not clear whether other values for
those parameters would lead to a different result, which certainly poses an interesting
question for further research. However, let us also recall from §3 that the adopted
values are typical for a normal adult larynx [14]. Thus, the fact that the model can
not reproduce hysteresis patterns in such configuration limits its application to voice
production studies.

6. Modification of the model
A possible way to allow for both a subcritical bifurcation and a stable limit cycle

is to augment the model by adding higher powers of u to the damping factor in
(3.1). The shape of the curves that represent the limit cycle amplitudes (as those
shown in Fig. 5.2) may be easily altered by using suitable even-powered polynomials.
This approach has been used to model subcritical Hopf bifurcations and oscillation
hysteresis in other mechanical systems, such as axial flow compressors [27]. Here, the
simple modification of (3.1) is considered

u′′+α(1+β1u
2 +β2u

4)u′+u=
γu′

1+u+δu′ , with1+u+δu′ >0. (6.1)

The Lyapunov number is given by an expression similar to (4.5), substituting β1

in place of β. The bifurcation is then subcritical (σ >0) for small values of β1.
Fig. 6.1 shows plots of limit cycle continuations, for β1 =0 and various values of

β2. As in Fig. 5.2, line 1 indicates the maximum amplitude of the limit cycle allowed
by the system, and line 2 is a continuation of the cyclic fold between limit cycles of
opposite stability.

Fig. 6.2 shows curve for β2 =200 in more detail. H denotes the Hopf bifurcation
and CF the cyclic fold bifurcation. The dotted line represents an unstable limit cycle,
produced at the Hopf bifurcation, which is of the subcritical type. This limit cycle
coalesces and cancels out with a stable limit cycle, indicated by the full line, at the
cyclic fold.
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Fig. 6.1. Amplitude of limit cycles vs. γ, for β1 =0 and various values of β2. The vertical
axis is the maximum amplitude of u for the limit cycle. From left to right, the curves correspond to
values of β2 =10,20,50,70,100,150,200,300. Dashed line 1 is the maximum amplitude that the limit
cycle might reach. Dashed line 2 is the location of a cyclic fold bifurcation.
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Fig. 6.2. Amplitude of limit cycles vs. γ, for β1 =0 and β2 =200. The vertical axis is the
maximum amplitude of u for the limit cycle. The full line represents a stable limit cycle, and the
dashed line represents an unstable limit cycle.

Fig. 6.2 also shows the occurrence of the oscillation hysteresis phenomenon. Let
us assume that the system is at its rest position in (0,0) and that control parameter
γ increases from zero. This is the common case at the start of phonation, when the
vocal folds are set at rest at their prephonatory position, and the lung pressure builds
up from zero. When γ reaches its Hopf bifurcation value (γ =α), the rest position
becomes unstable, and an oscillatory motion starts. This is represented by the “on”
arrow in Fig. 6.2. The oscillatory motion grows in amplitude until stabilizing in a limit
cycle (at the full line curve). Further increase of γ causes the limit cycle to increase
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in amplitude, following the full curve to the right. Next, assume that γ is decreased,
with the intention of stopping the oscillation. The limit cycle decreases in amplitude
following its curve to the left. However, the limit cycle will vanish only when reaching
the cyclic fold bifurcation at CF. At this point, the oscillation will damp out and the
system will return to its rest position, as represented by the “off” arrow.

In this way, the oscillation onset and offset occur at different values of the control
parameter γ, creating a hysteresis loop. As discussed in §1, this phenomenon has been
observed in several experimental studies of voicing onset-offset. For example, recent
direct measurements of phonation threshold pressures in subjects has detected lower
values at offset vs. onset for adult speakers performing a number of speech tasks [19].
It must be noted that those measurements show differences between onset and offset
pressures much larger than the one shown in Fig. 6.2. In some cases, the offset value
is about half the onset value. However, let us keep in mind that the model under
study is a gross simplification of the actual vocal fold biodynamics, and hence precise
quantitative predictions must not be expected. In comparison, the previous large
amplitude model [15, 10], which included a more detailed description of the glottal
aerodynamics, has been able to produce offset/onset pressure ratios from 0.5 to 1,
which is in the range of the experimental results.

7. Conclusion
This paper has investigated the dynamics of a simple bidimensional model for the

vocal fold oscillation at phonation. The model is capable of producing an oscillation
with physiologically realistic values for the parameters, and hence may be used as a
valid representation for the vocal folds in studies of voice production. Simple exten-
sions of the model using even-powered polynomials in the damping factor allow for
the reproduction of more subtle details, such as the oscillation hysteresis phenomenon
commonly observed in voice onset-offset patterns.

The model must be used with caution, perhaps limited to qualitative studies sur-
rounding the oscillation onset and offset, rather than full simulations of the vocal fold
oscillation. The actual oscillation includes more complex phenomena such as colli-
sion between the opposite folds, air viscous effects when the folds are close together,
formation of air jets and vortices at the glottal exit, and other effects which have
not been considered here. More sophisticated models must be used, when pretending
quantitative predictions of voice production.
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