
Preface

Dave Levermore
C. David (Dave) Levermore was born on November 19th, 1951 in Teaneck, New

Jersey. After graduating from Clarkson College in 1974, he studied for his doctorate
under the supervision of Peter Lax. He received his PhD from New York University
in 1982. At the beginning of his career, Dave worked in the Lawrence Livermore
National Laboratory from 1982 to 1988. He later joined the University of Arizona as
an Associate Professor and became a Professor in 1992. In 2000, he moved to the
University of Maryland as a Professor in the Department of Mathematics and in the
Institute for Physical Science and Technology, his present position.

Scientific Contributions. Dave is at the origin of several fundamental ideas and
results in the analysis of nonlinear PDEs, mostly in connection with mathematical
physics. His lasting contributions to science already began during his undergraduate
years, at a time when much of the fundamental early research in the field of soliton
theory and integrable systems was being carried out by faculty at Clarkson College.
Indeed, a careful reader of the famous 1974 paper of M. Ablowitz, D. Kaup, A. Newell,
and H. Segur in Studies in Applied Mathematics will find a footnote therein referring
to a calculation contributed by a certain precocious Clarkson undergraduate.

Dave’s doctoral thesis involved what is now known as the Lax-Levermore theory
of the small dispersion limit of the KdV equation, presented in a series of three articles
published in Communications on Pure and Applied Mathematics in 1983. Starting
from the KdV equation set on the real line, written as

∂tuε+uε∂xuε= ε2∂xxxuε , uε
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one seeks the limit of uε as ε→0. The first major result in the Lax-Levermore theory
is that the limit is given in terms of a variational problem, vaguely analogous to the
case of the vanishing viscosity limit of the Burgers equation

∂tvε+vε∂xvε= ε∂xxvε , vε
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t=0

=vin

where the limit is also given by a much simpler variational problem (involving the
inf-convolution of x2/2t with a primitive of vin) known as the Hopf-Lax formula. If
the initial data uin is a simple well, rapidly decaying at infinity, the small ε limit of
uε is governed by the Hopf equation

∂tu+u∂xu= 0, u
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as long as the solution of this equation remains smooth. After that, the dispersionless
limit of the KdV equation, given by Lax-Levermore variational formula, differs from
the usual extension of the solution of the Hopf equation involving shock waves — the
“entropy solution” that is obtained as the vanishing viscosity limit of the solution of
the Burgers equation. Instead, under some specific conditions, the Lax-Levermore
variational problem leads to the solution of a hyperbolic system of PDEs previously
obtained by G. Whitham by a formal averaging procedure that can be viewed as a
nonlinear analogue of the classical WKB ansatz used in the semiclassical limit of the
linear Schrödinger equation. In 1980, H. Flaschka, G. Forest and D. McLaughlin had
obtained a vast generalization of Whitham’s modulation ansatz, and the connection
between these results and the dispersionless limit of the KdV equation was a strik-
ing success of the Lax-Levermore theory. Some time later, with Shan Jin and D.
McLaughlin, Dave obtained an analogous theory for the one-dimensional cubic de-
focusing nonlinear Schrödinger equation. All these works are based on integrability
techniques, but Dave was also very interested in dispersionless limits of nonintegrable
problems, as seen for example in his work with J.-G. Liu on the behavior of dispersive
numerical schemes for shock waves. It should also be pointed out that the variational
approach for semiclassical limits of integrable PDE pioneered by Dave beginning with
his thesis work has since found far-reaching and unanticipated applications in the
areas of approximation theory and random matrix theory.

In connection with his work on plasmas at the Lawrence Livermore National
Laboratory, Dave studied radiative transfer in various asymptotic regimes. In 1979,
he came up with a systematic derivation of flux limited diffusion theory, based on an
appropriately designed, formal asymptotic expansion. With G. Pomraning, D. Sanzo
and J. Wong, he proposed a homogenization theory for radiative transfer in random
media, leading to a great variety of nontrivial qualitative behaviors.

In the late 1980s, R. DiPerna and P.-L. Lions made considerable progress on
the analysis of several kinetic models, by constructing global weak solutions of these
equations for all physically admissible initial data. Most notably, they obtained global
solutions of the Boltzmann equation in the three-dimensional Euclidean space for all
initial data with finite total mass, energy and entropy. These solutions are somewhat
weaker than what one would normally call weak solutions, and were called “renormal-
ized solutions” by DiPerna and Lions. Being obtained by a compactness argument,
these solutions are not known to be uniquely determined by their initial data. More-
over they satisfy a certain entropy inequality that is a weaker variant of Boltzmann’s
famous H-Theorem — and that would be equivalent to the H-Theorem in the case
that the inequality becomes an equality.

The similarities between DiPerna-Lions solutions of the Boltzmann equation and
Leray solutions of the incompressible Navier-Stokes equations were too obvious to
remain unnoticed. Besides, the problem of deriving the equations of fluid mechanics
from Boltzmann’s kinetic theory had been famous in the mathematical community
since Hilbert’s plenary address to the 1900 International Congress of Mathematicians
in Paris, where this question was formulated as an example in Hilbert’s 6th problem
on the axiomatization of physics. At the same time, functional analytic tools for
deriving degenerate nonlinear diffusion approximations of various kinetic models had
been developed in the Paris PDE school. While the Chapman-Enskog asymptotic ex-
pansion relating the Boltzmann equation to the compressible Navier-Stokes equations
had been known for a long time in the mathematical community, the corresponding
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theory in the incompressible case remained unknown1. With C. Bardos and F. Golse,
Dave formulated a general asymptotic theory leading to the incompressible Euler or
Navier-Stokes equations, or to the time-dependent Stokes equations, depending on
the relative sizes of the Knudsen and Mach numbers in the gas flow. Unlike earlier
asymptotic theories (pioneered by Hilbert, Chapman and Enskog), this new asymp-
totic theory was based on taking appropriate closures in equations for moments (in
the velocity variable) of the distribution function. Hopefully, these closures relations
could be established by a careful study of the entropy production term in Boltzmann’s
H-Theorem — more exactly, in the DiPerna-Lions variant thereof. Together with C.
Bardos and F. Golse, Dave proposed a program for deriving Leray solutions of the
incompressible Navier-Stokes equations from DiPerna-Lions solutions of the Boltz-
mann equation, and laid out the main steps for a proof. Eventually, there remained
three outstanding difficulties that were solved in the following decade. The first such
difficulty was the control of fast oscillations due to acoustic waves, solved in 2000 by a
beautiful argument due to P.-L. Lions and N. Masmoudi. A second difficulty was that
the local conservation of momentum — a well-known property of classical solutions
of the Boltzmann equation — is not a consequence of the DiPerna-Lions theory of
renormalized solutions of the Boltzmann equation. That the renormalized solutions
of the Boltzmann equation may fail to satisfy the local momentum conservation shed
some doubts on their physical value — and on the soundness of the project of de-
riving fluid dynamical equations from such solutions. In 2000, Dave realized, with
C. Bardos and F. Golse, that the local conservation laws of momentum and energy
could be established after passing to the fluid dynamic limit, without necessarily be-
ing satisfied by solutions of the Boltzmann equation for positive Knudsen numbers,
i.e. before passing to the limit. This was observed originally on the limit of the
Boltzmann equation leading to the acoustic system; Dave subsequently extended this
result to the Stokes-Fourier limit with F. Golse. The final difficulty to be handled was
a nonlinear compactness of number density fluctuations, which, in the Navier-Stokes
limit, controlled the defect of local momentum and energy conservation. Although
the Leray energy inequality for Navier-Stokes solutions was obtained as the limiting
form of the DiPerna-Lions variant of Boltzmann’s H-Theorem, Boltzmann’s entropy
functional

H[F ] :=
∫∫

F (t,x,v)lnF (t,x,v)dxdv

fails to control functionals that are quadratic in the distribution function F , or fluc-
tuations thereof about some uniform equilibrium distribution — i.e. Maxwell distri-
bution. This difficulty was finally removed in 2004 by F. Golse and L. Saint-Raymond
in the simplest possible case of particle interactions, by combining new ideas on the
entropy production with a limiting L1 case of velocity averaging involving disper-
sion arguments. The case of more general particle interactions, including elastic hard
sphere collisions, and more generally all hard potentials satisfying Grad’s angular
cutoff assumption was subsequently obtained by the same authors. In collaboration
with N. Masmoudi, Dave finally extended the incompressible limit to the most gen-
eral case of cutoff potentials known at the date of this writing. This completed the
Bardos-Golse-Levermore program.

In connection with his work on the fluid dynamic limits of the Boltzmann equa-
tions, Dave proposed a general framework for obtaining moment closures from dissi-

1Except in the steady case, obtained by Y. Sone as early as 1969.
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pative kinetic models. Being based on entropy and entropy production, his approach
is physically natural and intrinsic, and leads to a symmetrizable hyperbolic system
in the sense of Godunov, and is therefore different from earlier, and sometime rather
arbitrary closure strategies. (For instance, Dave’s method leads to a 14-moment sys-
tem instead of Grad’s celebrated 13-moment system.) Various numerical methods in
gas dynamics or radiative transfer are based on Dave’s closure method.

With G.Q. Chen and T.-P. Liu, Dave studied hyperbolic systems of conservation
laws pertrubed by stiff relaxation terms. Reduced systems, inviscid and viscous local
conservation laws, and weakly nonlinear limits are derived through asymptotic expan-
sions. There is an obvious analogy between this situation and the fluid dynamic limits
of the Boltzmann equation. Here also, the role of entropy is extremely important: an
entropy condition is introduced for N×N systems that entails the hyperbolicity of
the reduced inviscid system, and the resulting characteristic speeds are shown to be
interlaced with those of the original system. Besides, the first correction to the re-
duced system is shown to be dissipative. Interestingly, there is a partial converse of
this result in the simplest case of 2×2 systems.

Dave has also strong interests in numerical analysis. His work with Shi Jin on nu-
merical transport in diffusive regimes, and on hyperbolic conservation laws with stiff
relaxation terms, were some of the earliest examples of the now-popular “asymptotic-
preserving (AP) schemes” for multiscale kinetic equations that are efficient also in the
hydrodynamic regimes. With F. Golse and Shi Jin, he provided the first theoretical
framework to understand the uniform convergence of an AP scheme, using the exam-
ple of numerical passage from (the boundary-value problem of) the linear transport
equation to its diffusion limit.

Since Dave was trained as both a physicist and a mathematician, there is perhaps
little surprise that core physical notions such as entropy and entropy production, or
the transition from microscopic to the macroscopic models are so ubiquitous in his
scientific work. In fact, kinetic models and integrable systems are two examples of
mathematical theories rooted in very classical and distinguished branches of physics
and which have gone through very exciting developments in the past 50 years, and
Dave’s contributions to both subjects are truly remarkable.

Dave as a Teacher, Mentor, Advisor, and Collaborator. To date, Dave
Levermore has supervised 21 PhD dissertations written by his students at the Uni-
versity of California — Davis, at the University of Arizona, and most recently at the
University of Maryland.

Two of us were students of Dave’s at the University of Arizona in the late 1980s
and early 1990’s, and we are in a position to share some of our thoughts on his
character as a teacher, mentor, and departmental citizen. As a teacher and thesis
advisor, Dave has a well-deserved reputation for fostering self-confidence and inde-
pendent thinking in his students. He has made repeated efforts to allow his students
to thrive in the aftermath of graduation, at times even changing his research emphasis
to avoid competing with his former students. Dave teaches his students to see the
“big picture”, but he also strongly emphasizes concern for details. Those who were
lucky enough to have Dave as an advisor still remember after many years learning not
only how to think of nature existing on a hierarchy of dynamically interacting space
and time scales but also how (and why) one should always insert a “thin space” in
TEX code between the integrand and the dx of an integral.

Not only does Dave teach his students to write well, and to write about important
things, but he is equally concerned that his students learn to publicly present their
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work in an effective fashion. One of us recalls giving a talk as a student at a Los
Alamos conference in which Dave stood in the back of the room listening carefully to
the lecture. Immediately afterward Dave offered an honest postgame critique: “Good
job,” he said, “but starting out your talk by saying that the methodology you’re
going to use is essentially due to someone else is shooting yourself in the foot.” The
message of course was to be clear about what your unique contributions are; we are
all “standing on the shoulders of giants” in Newton’s famous words.

Another aspect of Dave’s character as an advisor is that he is selfless about
pointing out to his students and collaborators those specific problems or broader
areas of applied mathematics that are “ripe for picking”. One of us remembers several
conversations in various cafes scattered around northern New Mexico in which Dave
revealed what he thought were great opportunities for scientific advancement. This
advice was not offered in a vague sense, but rather with words such as “If I were you,
I would go and learn . . . and start working on . . . ” Those who took this sort of advice
and acted upon it can vouch for his uncanny ability to smell “the next big thing.”

During his years in Tucson, Dave was actively involved in many projects with
students, postdocs, and fellow faculty. Without giving too much away, we could men-
tion that several of the faculty earned nicknames among the student population, and
Dave’s nickname reflected his dedication and extraordinary level of involvement; he
was simply “Superdave.” Not only did he work well with his colleagues and stu-
dents, but he also socialized with them when work was over, for example, playing on
the flag-football team with the graduate students, joining a weekend hike among the
saguaro cacti in Sabino Canyon, or enjoying the annual “Derelict of the Year” party
(even though he never actually won the award in spite of his vigorous campaigning,
he remained a good sport about it all and was happy to raise his glass in honor of the
winner).

Those days in the late 1980’s and early 1990’s in Tucson were filled with exciting
intellectual activity centered around Dave. He had enough students simultaneously to
form several “working groups” with whom he met weekly, either presenting material
himself or listening as his students spoke on various topics. The density of his students
was so high at one point that there were two consecutive days in 1994 during which at
least three of Dave’s students defended their dissertations in “tag-team” fashion. Even
after the thesis defense, Dave remained a mentor and advisor, helping his students
sort out the transition from school to work. One of us recalls that when Dave himself
came up dry with advice on what to expect when going to work in Australia after
graduation, he sought out a colleague from Los Alamos with the relevant experience
and arranged a meeting to make sure the correct advice got delivered even if it couldn’t
come directly from him.

All three of us have benefited greatly from the experience of working with Dave
as a collaborator. For one thing, Dave is a deeply thoughtful practitioner of scientific
writing as a discipline of its own. He truly frets over exactly which phrase to coin
to best describe a new phenomenon, or even which Greek letter should be used to
best represent a certain quantity. He prefers not to name things after the symbols
commonly used to write them (e.g. “theta-function”) but rather wants the name to
suggest to the reader what the thing named actually is. His grammatical sense is spot-
on. But it is Dave’s unique and insightful scientific skill and infectious enthusiasm
that makes collaboration with him a real joy. We know that many others, including
the numerous contributors to this volume, have also felt lucky to have worked with
Dave on various scientific projects, and we know that there will be many more to
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come in the future. Dave, with great joy and sincerest respect, we wish you all the
best on the auspicious occasion of your 60th birthday!

François Golse
Shi Jin

Peter Miller
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