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CONVERGENCE OF THE PENALTY METHOD APPLIED TO A

CONSTRAINED CURVE STRAIGHTENING FLOW∗

DIETMAR OELZ†

Abstract. We apply the penalty method to the curve straightening flow of inextensible planar
open curves generated by the Kirchhoff bending energy. Thus we consider the curve straightening
flow of extensible planar open curves generated by a combination of the Kirchhoff bending energy
and a functional penalizing deviations from unit arc-length.

We start with the governing equations of the explicit parametrization of the curve and derive an
equivalent system for the two quantities indicatrix and arc-length. We prove existence and regularity
of solutions and use the indicatrix/arc-length representation to compute the energy dissipation. We
prove its coercivity and conclude exponential decay of the energy.

Finally, by an application of the Lions-Aubin Lemma, we prove convergence of solutions to a
limit curve which is the solution of an analogous gradient flow on the manifold of inextensible open
curves. This procedure also allows us to characterize the Lagrange multiplier in the limit model as
a weak limit of force terms present in the relaxed model.

Key words. Curve straightening flow, energy dissipation, elastic regularization, curvature flow,
penalty method.
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1. Introduction

On the set of planar, open curves

A :={z∈H2((0,1),R2); bmin< |z′|<bmax},

where bmin,bmax∈R with 0<bmin<1<bmax, we consider the family of gradient flows
generated by the potential

Eε[z] :=Ecurv[z]+Epen
ε [z]. (1.1)

The potential consists of a functional for the curvature energy

Ecurv[z] :=

∫ 1

0

|z′′|2
2

ds, (1.2)

and of a penalizing potential

Epen
ε [z] :=

1

ε

∫ 1

0

E(|z′|)ds, (1.3)

where

E∈C2((bmin,bmax),R+) with















lim
x→bmin

E(x)= lim
x→bmax

E(x)=∞,

E′′(x)≥κ>0 ∀ x∈ (bmin,bmax),

E′(1)=E(0)=0.

(1.4)
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602 CONVERGENCE OF THE PENALTY METHOD

Hence E=E(x) is a strictly convex C2-function which takes its minimum at x=1.

One possible choice is E(x)= (x−1)2

(x−1/2)(4−x) . We use the functional (1.3) to penalize

deviations from unit arc-length with a view to enforce unit arc-length by letting the
scaling parameter ε tend to zero.

The gradient flow generated by the functional (1.1) is described by the system



















∂tzε+z
′′′′
ε −

(

1
εE

′(|z′ε|)
z′

ε

|z′
ε|

)′

=0,

z′′ε ,z
′′′
ε − 1

εE
′(|z′ε|)

z′

ε

|z′
ε|

∣

∣

∣

s=0,1
=0,

zε(t=0, .)= zI(.),

(1.5)

where zI ∈A represents the initial datum of the evolution. Here and throughout the
paper ′ denotes derivatives with respect to the arc-length. With respect to this system

the center of mass
∫ 1

0
zεds is a conserved quantity.

We show in this paper that the solution zε converges to a solution of the gradient
flow generated by the Kirchhoff bending energy (1.2) only (cp. [7, 5]) on the set of
open, inextensible curves A0 :={u∈H2((0,1),R2) : |u′|≡1} described by the system































∂tz0+z
′′′′
0 −(λ0z

′
0)

′=0,

z′′0 |s=0,1=0,

z′′′0 −λ0z′|s=0,1=0,

|z′0|=1,

z0(t=0, .)= zI(.).

(1.6)

Here λ0=λ0(t,s)∈R is a Lagrange multiplier function determined by the constraint
on the arc-length

|z′0|≡1. (1.7)

The system (1.5) can be seen as a regularization of the limit system (1.6) which
is treated in detail in [9]. The results of this previous study are summarized in
Section 2. The limit model exhibits analytical properties like long time convergence
at an exponential rate which, as it turns out, can be to a large extent generalized to
the approximating model. As a matter of fact a large part of this study is devoted
to generalizing the findings on energy dissipation and large time convergence. This
provides the necessary a priori bounds to prove compactness to pass to the limit as
ε→0.

The system (1.5) can be used as a numerical approximation to the limit model
which has appeared in the modeling of actin-filaments in biological cells (cf. [10, 11]).
Most notably in combination with an augmented Lagrangian approach the penalizing
potential is currently being used in the development of numerical schemes for models
in cellular biophysics.

Furthermore the results of this study provide a characterization of the Lagrange
multiplier λ0 in the limit model (1.6) as a weak limit of a sum of forces, namely the
variation of the total energy (1.1) in the direction of the arclength (compare the second
line in (1.12), (4.4), and Theorem 1.5). Hence the variations of both the curvature
functional (1.2) and the penalizing potential (1.3) contribute to the expression for
which we show convergence to the Lagrange multiplier.
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Finally it is also worth mentioning that the present study implies existence of
solutions and long time convergence also for the limit problem, although these results
were obtained directly in a separate study ([9]).

For a short review on existing literature on curve straightening flows we refer to
[9]. Penalization is a popular method in optimization (e.g. [6]) and control theory
(e.g. [3]). One of the few papers we found which studies the application of the penalty
method to a constrained evolution problem is [2], although this is done in a totally
different context.

The whole argument is based on an approach by which we rewrite the system
(1.5) using is based on an approach by which we rewrite the system (1.5) using the
following notation. The symbol bε= bε(t,s) denotes the arc-length

bε := |z′ε|, (1.8)

and ωε=ωε(t,s)∈R represents the “indicatrix”of the curve zε (e.g. see [8]) so that

z′ε
|z′ε|

=(cos(ωε),sin(ωε)). (1.9)

The reconstruction of the curve zε from the arc-length bε and the indicatrix ωε has to

be done in such a way, that the center of mass of the initial datum z̄I :=
∫ 1

0
zI ds∈R

2

is conserved,

zε(t,s)= z̄I −
∫ 1

0

∫ s̃

0

(

cos(ωε(t, s̄))
sin(ωε(t, s̄))

)

bε ds̄ ds̃+

∫ s

0

(

cos(ωε(t, s̄))
sin(ωε(t, s̄))

)

ds̄.

Observe also that bεω
′
ε and b′ε are both orthogonal components of z′′ε since

ω′
ε=

z′⊥ε
|z′ε|2

·z′′ε and b′ε=
z′ε
|z′ε|

·z′′ε ,

and that the total energy (1.1) can be written as

Eε[z]=
∫ 1

0

(

1

2
(bω′)

2
+

1

2
(b′)2+

1

ε
E(b)

)

ds, (1.10)

where ω and b are the indicatrix and an arc-length of the curve z, respectively. Also
the initial datum zI will be occasionally written in terms of its indicatrix ωI and its
arc-length bI , which allows us to give two alternative expressions for the initial energy:

EI :=
∫ 1

0

[

1

2
|z′′I |2+

1

ε
E(|z′I |)

]

ds=

∫ 1

0

[

1

2
(bIω

′
I)

2+
1

2
(b′I)

2+
1

ε
E(bI)

]

ds. (1.11)

Furthermore, in view of (1.5), we use the following notation for what below will

be shown to be the scalar product of z′′′ε − 1
εE

′(|z′ε|) z′

|z′| with
z′⊥

|z′| and
z′

|z′| respectively,

namely

rε :=
1

bε

(

b2εω
′
ε

)′
, (1.12)

λε := bε(ω
′
ε)

2−b′′ε +
1

ε
E′ (bε) .
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The system (1.5) is then equivalent to



















∂tωε+
(

r′′ε −rε(ω′
ε)

2−λ′εω′
ε−(λεω

′
ε)

′) 1
bε
=0,

∂tbε−r′εω′
ε−(rεω

′
ε)

′−λ′′ε +(ω′
ε)

2λε=0,

ω′
ε,ω

′′
ε ,λε

∣

∣

s=0,1
=0,

ωε(t=0, .)=ωI(.).

(1.13)

With respect to the energy dissipation equality

d

dt
Eε=−Dε, (1.14)

this formulation allows us to derive in a straightforward way that the energy dissipa-
tion is given by the two equivalent expressions

Dε :=

∫ 1

0

[

(ω′
εrε+λ

′
ε)

2
+(r′ε−ω′

ελε)
2
]

ds=

∫ 1

0

(

z′′′′ε −
(

1

ε
E′(|z′ε|)

z′ε
|z′ε|

)′
)2

ds,

(1.15)
which will be the main tool for the convergence proof. For later use we introduce a
short notation for the two components of the energy dissipation,

mε :=ω
′
εrε+λ

′
ε and nε := r

′
ε−ω′

ελε, (1.16)

which allows us to reformulate the system (1.13) as



















∂tωε=
1
bε
(ω′

εmε−n′ε) ,
∂tbε=ω

′
εnε+m

′
ε,

ω′
ε,ω

′′
ε ,λε

∣

∣

s=0,1
=0,

ωε(t=0, .)=ωI(.).

(1.17)

In [9] it was shown that the system (1.6) is equivalent to the system



















∂tω0+ω
′′′′
0 −ω′2

0 ω
′′−(ω′′

0λ0+2ω′
0λ

′
0)=0,

−λ′′0 +ω′2
0 λ0=ω

′′′
0 ω

′
0+(ω′′

0ω
′
0)

′,

ω′
0,ω

′′
0 ,λ0

∣

∣

s=0,1
=0,

ω0(t=0, .)=ωI(.),

(1.18)

where ω0 represents the “indicatrix” of the curve z0. It was also shown in this study
that the curvature energy of solutions to system (1.6) decays at an exponential rate
larger or equal to 2π4 and that limit curves are straight lines.

The paper will be structured as follows. In Section 2 we summarize the results of
[9] as they are used in the present paper.

In Section 3 we derive the system (1.5) and prove that as a result of the usual
construction in the theory of gradient flows and steepest descent flows (cp. [4, 1])
there exists a weak solution zε to the system (1.5).

Theorem 1.1. If zI ∈A, then there is zε∈H1
t,locL

2
s∩C0, 1

2

t L2
s∩C0, 1

8

t C1
s ∩L∞

t H
2
s such

that zε is a weak solution of (1.5) satisfying

∫ ∞

0

∫ 1

0

[

∂tzε ·v+z′′ε ·v′′+
1

ε
E′(|z′ε|)

z′ε
|z′ε|

·v′
]

dsdt=0 (1.19)
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for all v∈C∞
c (R+,C∞

s ) and zε(t=0, .)= zI . It holds that ∂tzε∈L2
tL

2
s with ‖∂tzε‖L2

tL
2
s
≤√

2EI .
Here and in the sequel we abbreviate the notation of function spaces writing the

subscripts

�t for function spaces on {t∈ [0,∞)}, and

�s for function spaces on {s∈ [0,1]}.

In Section 4 we rewrite (1.5) obtaining the system (1.13) and prove the following
theorem.

Theorem 1.2. The solution according to Theorem 1.1 gives a distributional sense
to the system (1.13), i.e. for ωε being the indicatrix of zε and bε its arc-length, and
using the notation (1.12), it holds that

∫ ∞

0

∫ 1

0

[−bεφt+(rεω
′
ε+λ

′
ε)φ

′+(ω′
ελε−r′ε)ω′

εφ]dsdt=0 , (1.20)

∫ ∞

0

∫ 1

0

[

−ωε∂tψ−(r′ε−λεω′
ε)

(

ψ

bε

)′

−(rεω
′
ε+λ

′
ε)
ω′
ε

bε
ψ

]

dsdt=0 , (1.21)

for all ψ,φ∈H1
0,tL

2
s∩L2

tH
1
0,s and λε,ω

′
ε,ω

′′
ε

∣

∣

0,1
=0 a.e. on R+. Furthermore it holds

that ωε,bε∈C0,1/8
t C0

s ∩L∞
t H

1
s and λε,rε∈L2

tH
1
s . For every T >0 it also holds that

ω′′′
ε ,b

′′
ε ∈L2(0,T ;L1

s) uniformly with respect to ε.

Next, in Section 5, we show the formal derivation of the energy dissipation (1.15)
and show that the energy dissipation equation (1.14) is satisfied in a weak sense.

Theorem 1.3. Let zI ∈A, let zε be a solution of problem (1.5) according to Theo-
rem 1.1 and let (ωε,bε,λε) be the corresponding solution to (1.13) according to Theo-
rem 1.2. Then the energy dissipation equality (1.14) holds weakly in time.

Finally in Section 6 we prove coercivity of (1.15) with respect to the total energy
given by (1.1) and (1.10) (a Poincaré type inequality), obtaining the exponential decay
of the energy.

Theorem 1.4. (Poincaré type inequality) Under the assumptions of Theorem 1.3
there is a constant C>0 such that

Eε≤EI exp(−Ct) .

Most notably at large times the total energy tends to zero, limt→∞Eε=0.

Finally we obtain the main theorem of this paper in Section 7. It states the
convergence as ε→0 and the consistency with the limit system, i.e. a subsequence of
solutions to the problem (1.13) and (1.5) converges to a solution of (1.18) and (1.6),
respectively.

Theorem 1.5. Let (ωε,bε,λε) as in Theorem 1.2 be a solution to the system (1.13).
Then there is a subsequence εi→0 and limit functions (ω0,λ0) such that

bεi →1 in L1((0,T ),W 1,r
s )∩Lq((0,T ),H1

s ) (1≤ r,q<∞),

ωεi →ω0 in L1((0,T ),W 2,r
s )∩Lq((0,T ),H1

s ) (1≤ r,q<∞),
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mεi →ω′
0ω

′′
0 +λ

′
0 in L2

tL
2
s,

nεi →ω′′′
0 −ω′

0λ0 in L2
tL

2
s,

rεi →ω′′
0 in L1((0,T ),L2

s) and r′εi ⇀ω′′′
0 in L2

tL
2
s,

λεi ⇀λ0 in L2
tH

1
s ,

as εi→0, where we use the following notation for constant functions: 1 : [0,∞]×
[0,1] 7→R, x 7→1 and 0 : [0,∞]× [0,1] 7→R, x 7→0.

The limit functions ω0 and λ0 satisfy the weak formulation of (1.18) and they
also allow us to reconstruct z0, which is then a weak solution of (1.6).

2. Preliminary and technical results

We cite here some of the results we obtained in [9] for the limit system (1.6) and
the equivalent system satisfied by the indicatrix (1.18). We define the constrained set
of curves

A0 :={z∈H2([0,1],R2) : |z′|≡1}.

Theorem 2.1. Let zI ∈A0. Then there are z0∈H1
t,locL

2
s∩C0, 1

2

t L2
s∩C0, 1

8

t C1
s ∩L∞

t H
2
s

and λ̄0∈L2
loc,tMs such that the pair (z0,λ̄0) is a weak solution of (1.6) satisfying

∫ ∞

0

∫ 1

0

[

z′′0 ·v′′+∂tz0 ·v+ λ̄0z′0 ·v′
]

dsdt=0 (2.1)

for all v∈C∞
c (R+,C∞

s ), z0(t=0, .)= z0,I and the constraint (1.7) in a pointwise sense
for all t≥0 and s∈ [0,1].

Theorem 2.2. The solution according to Theorem 2.1 gives a distributional sense to
the system (1.18), i.e. for ω0 being the indicatrix of z0 and λ0= λ̄0+ω

′2 it holds that

∫ ∞

0

∫ 1

0

[

−ω0∂tψ−ω′′′
0 ψ

′−ω′′
0 (ω

′
0)

2ψ−λ′0ω′
0ψ+λ0ω

′
0ψ

′
]

dsdt=0 and (2.2)

∫ ∞

0

∫ 1

0

[

−ω′′′
0 ω

′
0φ+ω

′′
0ω

′
0φ

′+λ′0φ
′+λ0 (ω

′
0)

2φ
]

dsdt=0 (2.3)

for all ψ∈H1
0,tL

2
s∩L2

tH
1
0,s, φ∈L2

tH
1
0,s, and λ0,ω

′
0,ω

′′
0

∣

∣

0,1
=0 a.e. on R+. Furthermore

it holds that ω0∈C0,1/8
t C0

s with ω′
0∈L∞

t L
2
s∩L2

tH
2
s and λ0∈L2

tH
1
s .

Theorem 2.3. Let zI ∈A0, let (z0,λ̄0) be a solution of problem (1.6) according
to Theorem 2.1, and let (ω0,λ0) be the corresponding solution to (1.18) according to
Theorem 2.2. The curvature energy can then be equivalently formulated in terms of
z0 and in terms of ω0 as

E0 :=
∫ 1

0

1

2
|z′′0 |2 ds=

∫ 1

0

1

2
(ω′

0)
2 ds, (2.4)

and the curvature energy of the initial datum is given by

E0,I :=
∫ 1

0

1

2
|z′′0,I |2 ds. (2.5)
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The energy dissipation is then given by

d

dt
E0=−D0 with D0 :=

∫ 1

0

[

(ω′
0ω

′′
0 +λ

′
0)

2
+(ω′′′

0 −ω′
0λ0)

2
]

ds, (2.6)

in the sense that (2.6) holds weakly in time.

Finally the coercivity of D0 with respect to the curvature energy E0 (a Poincaré
type inequality) yields the exponential decay of the energy.

Theorem 2.4. (Poincaré type inequality) Under the assumptions of Theorem 2.3,
let the energy of the initial datum be given by (2.5), then it holds that

E0≤E0,I exp(−2π4t),

where again the curvature energy is alternatively given by (2.4).
As a consequence it holds that

‖∂tz0‖2L2
tL

2
s
=

∫ ∞

0

D0 dt=E0,I . (2.7)

Finally we add here a technical statement which derives from the definition of
the integrand of the punishing potential (1.4) two inequalities that we will use below
in Section 6 and Section 7.

Lemma 2.5. Let the punishing profile be as defined in (1.4), which implies among
other things that E′′(x)≥κ for all x∈ (bmin,bmax). Then it satisfies

κ

2
(x−1)2≤E(x)≤ 1

2κ
E′(x)2

for all x∈ (bmin,bmax).

Proof. If 1≤x<bmax integrate E′′(x)≥κ twice on (1,x) to obtain the first
inequality. For the second inequality use E′(x)≥0 to obtain E′(x)E′′(x)≥κE′(x)
which gives the result after one integration.

If bmin<x<1 integrate instead on (x,1) and use −E′(x)≥0.

3. Existence of solutions

The definition of the curvature energy (1.2) and the notation used in (1.10) imply
that

∫ 1

0

(ω′)2 ds≤2 b−2
minEcurv[z],

∫ 1

0

(b′)2 ds≤2Ecurv[z], and

∫ 1

0

|z′′|2 ds≤2Ecurv[z].

(3.1)
We introduce the time step approximation scheme

Z0
ε = zI and Zn

ε ∈argminw:[0,1] 7→R

{

Eτ (Zn−1
ε )[w]+Eε[w]

}

, (3.2)

where τ >0 is the constant size of the time steps, n=0,1, ... is the index of the respec-
tive time step, and

Eτ (Zn−1
ε )[w] :=

∫ 1

0

|w(s)−Zn−1
ε |2

2τ
ds.
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Lemma 3.1. For any given u∈A there are constants C1>0 and C2>0 such that

Eτ (u)[w]+Eε[w]≥C1‖w‖H2
s
−C2.

Proof. Here we use (3.1) and the fact that the norm |||w||| :=‖w‖L2 +‖∂ssw‖L2

is equivalent to the usual norm in H2
s .

Lemma 3.2. Let τ >0 and Zn
ε ∈A. Then Ecurv is weakly lower semicontinuous and

Epen
ε and Eτ are weakly continuous with respect to the H2(0,1)2-topology.

Proof. Weak lower semicontinuity is a consequence of the convexity of Ecurv.
The integrand of Eτ only depends on w in a Lipschitz continuous way. Since due to
Lemma 3.1 and embedding into C1 there is a δ>0 such that bmin+δ≤|w′|≤ bmax−δ,
the same is true for Epen

ε with respect to w′. The result is therefore a consequence of
the compact embedding of H2(0,1) in C1([0,1]).

This proves the existence of a sequence (Zn
ε )n=0,1,... defined by (3.2) with Zn

ε ∈H2
s .

Approximations of the solution of the continuous problem are then defined by linear
interpolation and by piecewise constant extension:

Zε,τ (t,s) :=Z
n
ε (s)+

(

t
τ −n

)(

Zn+1
ε (s)−Zn

ε (s)
)

,

Zold
ε,τ (t,s) :=Z

n
ε (s),

Znew
ε,τ (t,s) :=Zn+1

ε (s),











for nτ <t≤ (n+1)τ.

Lemma 3.3. For every fixed finite T >0, Zε,τ ∈H1((0,T ),L2(0,1)) uniformly in τ .
Proof. The variational principle (3.2) implies that

∫ 1

0

[

1

2τ

(

Zn
ε −Zn−1

ε

)2
]

ds+Eε[Zn
ε ]≤Eε[Zn−1

ε ]. (3.3)

As a consequence it holds that

1

2τ
‖Zn+1

ε −Zn
ε ‖2L2(0,1)≤Eε[Zn]−Eε[Zn+1]. (3.4)

Since the time derivative of Zε,τ is piecewise constant, taking the sum n=0,1, ...,m−1
in (3.4) where m= dT/τe implies

∫ mτ

0

‖∂tZε,τ‖2L2(0,1)dt=
1

τ

m−1
∑

n=0

‖Zn+1
ε −Zn

ε ‖2L2(0,1)≤2Eε[zI ], (3.5)

completing the proof.

This result sets the stage for passing to the limit in the approximate solutions.

Lemma 3.4. For every fixed finite T >0,

lim
τ→0

Zε,τ = zε∈L∞
(

(0,T );H2(0,1)
)

∩C0,1/8
(

[0,T ];C1([0,1])
)

∩H1
(

(0,T );L2(0,1)
)

,

(restricting to subsequences) where the convergence is strong in C
(

[0,T ];C1([0,1])
)

,

weak in H1
(

(0,T );L2(0,1)
)

, and weak* in L∞
(

(0,T );H2(0,1)
)

. The piecewise con-

stant approximations Zold
ε,τ and Znew

ε,τ converge to z strongly in L∞
(

[0,T ];C1([0,1])
)

and weakly* in L∞
(

(0,T );H2(0,1)
)

.
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Proof. The inequalities (3.3) and (3.1) imply that (Zε,τ )τ is bounded in
L∞

(

(0,T );H2(0,1)
)

uniformly with respect to τ , which already shows the weak*
convergence. The weak convergence is a consequence of the previous lemma since the
inequality (3.5) for T→∞ implies that

‖∂tzε‖2L2
tL

2
s
≤2Eε[zI ]. (3.6)

Another consequence is that Zε,τ is uniformly bounded in C0,1/2
(

[0,T ];L2(0,1)
)

. The
interpolation inequality

‖u‖C1,α([0,1])≤ c‖u‖(1−2α)/4
L2(0,1) ‖u‖(3+2α)/4

H2(0,1) ,

for 0≤α≤1/2, can then be used together with the H2(0,1)-bound to obtain

‖Zε,τ (t2)−Zε,τ (t1)‖C1,α([0,1])≤ cT |t2− t1|(1−2α)/8,

completing the convergence proof for Zε,τ by an application of the Arzelà-Ascoli
theorem. The convergence results for Zold

ε,τ and Znew
ε,τ are straightforward

consequences.

This implies Theorem 1.1 due to the following argument.

Proof. (Proof of Theorem 1.1.) By construction the variational equation of
(3.2),

δEτ (Zn
ε )[Z

n+1
ε ]v(t, ·)+δEε(Zn

ε )[Z
n+1
ε ]v(t, ·)=0,

holds for a test function v∈C∞
c (R+,C∞

s ) and nτ <t≤ (n+1)τ . With the definitions
of Zε,τ , Z

old
ε,τ , and Z

new
ε,τ this can be written as

∫ 1

0

[

∂tZε,τ ·v+∂2sZnew
ε,τ ·∂2sv+

1

ε
E′(|∂sZnew

ε,τ |)
∂sZ

new
ε,τ

|∂sZnew
ε,τ | ·∂sv

]

ds=0.

After integration with respect to t, we pass to the limit. Note that the weakly conver-
gent terms ∂2sZ

new
τ and ∂tZε,τ occur only linearly, and that all other terms converge

strongly.

4. Indicatrix representation

As mentioned above, rε and λε, which are defined in (1.12), are two components

of z′′′ε − 1
εE

′(|z′ε|) z′

|z′| , namely

rε=

(

z′′′ε − 1

ε
E′(|z′ε|)

z′ε
|z′ε|

)

· z
′⊥
ε

|z′ε|
= z′′′ε · z

′⊥
ε

|z′ε|
, (4.1)

λε=

(

z′′′ε − 1

ε
E′(|z′ε|)

z′ε
|z′ε|

)

· z
′
ε

|z′ε|
= z′′′ε · z

′
ε

|z′ε|
− 1

ε
E′(|z′ε|). (4.2)

Hence the system (1.5) can be written as















∂tzε+
(

rε
z′⊥

ε

|z′
ε|

)′

−
(

λε
z′

ε

|z′
ε|

)′

=0,

z′′ε ,rε,λε

∣

∣

∣

s=0,1
=0,

zε(t=0, .)= zI(.).

(4.3)
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The definitions in (1.12) are motivated by the variation of Eε as formulated in (1.10),

δEε[ω,b](δω,δb)=
∫ 1

0

(

b2ω′(δω)′+b(ω′)2δb+b′δb′+
1

ε
E′(b)δb

)

ds

=
[

b2ω′δω+b′δb
]1

0
+

∫ 1

0

−
(

b2ω′
)′
δω+

(

b(ω′)2−b′′+ 1

ε
E′(b)

)

δbds.

Replacing the variations of the indicatrix and of the arc-length by δω= z′⊥ ·δz′/|z′|2
and δb= z′ ·δz′/|z′|, respectively, we obtain

δEεδz=
[(

bω′ z
′⊥

|z′| +b
′ z

′

|z′|

)

·δz′
]1

0

+

∫ 1

0

δz′ ·
(

−1

b

(

b2ω′
)′ z′⊥

|z′| +
(

b(ω′)2−b′′+ 1

ε
E′(b)

)

z′

|z′|

)

ds, (4.4)

which motivates the definitions (1.12). The boundary terms in (4.4) also suggest that
we replace the boundary condition z′′ε |s=0,1=0 by ω′

ε,b
′
ε|s=0,1=0.

Lemma 4.1. Let zI ∈A and let zε be a weak solution to problem (1.5) according

to Theorem 1.1. Then there is ωε∈C0,1/8
t C0

s ∩L∞
t H

1
s such that ωε is an indicatrix of

zε. Furthermore it holds that bε∈C0,1/8
t C0

s ∩L∞
t H

1
s and (zε,ωε,bε) constitute a weak

solution of (4.3) satisfying

∫ ∞

0

∫ 1

0

[

∂tzε ·v+b2εω′
ε

(

1

bε

z′⊥ε
|z′ε|

·v′ε
)′

+

(

bε(ω
′
ε)

2+
1

ε
E′(bε)

)

z′ε
|z′ε|

·v′+b′ε
(

z′ε
|z′ε|

·v′
)′]

dsdt=0 (4.5)

for all v∈C∞
c (R+,C∞

s ).

Proof. The regularity of z′ε according to Theorem 1.1 allows us to identify

ωε∈C0,1/8
t C0

s ∩L∞
t H

1
s up to an additive constant which is a multiple of 2π. The

regularity of bε is due to its definition and the result of Theorem 1.1. The rest of the
statement is then a consequence of the discussion above.

Lemma 4.2 (Regularity, a-priori estimates). Let (zε,ωε,λε) be a weak solution
of (4.3) in the sense of Lemma 4.1, where we use the notation (1.12). Then it holds
that rε∈L2

tL
∞
s , ω′

εrε∈L2
tL

2
s, λε∈L2

tL
∞
s , ω′

ελε∈L2
tL

2
s, r

′
ε∈L2

tL
2
s, and λ

′
ε∈L2

tL
2
s. It

also holds that
∫ ∞

0

∫ 1

0

[

(r′ε−λεω′
ε)

2
+(λ′ε+ω

′
εrε)

2
]

dsdt=‖∂tzε‖2L2
tL

2
s
.

Proof. First note that
∫ s

0
∂tzε∈L2

tL
∞
s since

∫ ∞

0

∥

∥

∥

∥

∫ s

0

∂tzε ds

∥

∥

∥

∥

2

∞

dt≤
∫ ∞

0

(
∫ 1

0

|∂tzε|ds
)2

dt≤
∫ ∞

0

∫ 1

0

|∂tzε|2 dsdt<2EI

by (3.6). We go back to the integrated version of (4.3),














∫ s

0
∂tzε ds+rε

z′⊥

ε

|z′
ε|
−λε z′

ε

|z′
ε|
=0,

ω′
ε,b

′
ε

∣

∣

∣

s=0,1
=0,

zε(t=0, .)= zI(.),
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where ω′
ε,b

′
ε

∣

∣

∣

s=0,1
=0 is an equivalent notation for z′′ε

∣

∣

∣

s=0,1
=0, and obtain

z′⊥ε
|z′ε|

·
∫ s

0

∂tzε ds=−rε and
z′ε
|z′ε|

·
∫ s

0

∂tzε ds=λε,

which implies rε∈L2
tL

∞
s and λε∈L2

tL
∞
s .

Moreover we find that

∫ ∞

0

∫ 1

0

(λεω
′
ε)

2
dsdt≤

∫ ∞

0

‖λε‖2L∞
s

∫ 1

0

(ω′
ε)

2
dsdt

≤2EI b−2
min

∫ ∞

0

‖λε‖2L∞
s
dt< (2EI)2 b−2

min, (4.6)

where we used (3.1). This computation and an analogous one for ω′
εrε imply

ω′
ελε∈L2

tL
2
s and ω′

εrε∈L2
tL

2
s. (4.7)

We write the weak formulation (4.5) of problem (4.3) after two integrations by
parts,

∫ ∞

0

∫ 1

0

(

∂tzε+

(

rε
z′⊥ε
|z′ε|

)′

−
(

λε
z′ε
|z′ε|

)′
)

·v dsdt

+

∫ ∞

0

[

−rε
z′⊥ε
|z′ε|

·v+λε
z′ε
|z′ε|

·v+bεω′
ε

z′⊥ε
|z′ε|

·v′+b′ε
z′ε
|z′ε|

·v′
]1

0

dt=0, (4.8)

for all v∈C∞
c (R+,C∞

s ).

The uniform estimates we obtained allow us to set v=
z′⊥

ε

|z′
ε|
φ for a test function

φ∈D(([0,∞)× [0,1]) and to obtain
∫∞

0

∫ 1

0

[

∂tzε · z
′⊥

ε

|z′
ε|
φ+r′εφ−λεω′

εφ
]

dsdt=0.

Specializing (4.8) for v=
z′

ε

|z′
ε|
ψ with ψ∈D([0,∞)× [0,1]), we conclude by an anal-

ogous computation
∫∞

0

∫ 1

0

[

∂tzε · z′

ε

|z′
ε|
ψ−ω′

εrεψ−λ′εψ
]

dsdt=0. Due to (3.6) and (4.7),

this implies

z′⊥ε
|z′ε|

·∂tzε+r′ε−λεω′
ε=0 a.e. and

z′ε
|z′ε|

·∂tzε−ω′
εrε−λ′ε=0 a.e., (4.9)

hence r′ε∈L2
tL

2
s and λ′ε∈L2

tL
2
s. Finally (4.9) implies

∫ ∞

0

∫ 1

0

[

(r′ε−λεω′
ε)

2
+(λ′ε+ω

′
εrε)

2
]

dsdt

=

∫ ∞

0

∫ 1

0

[

(

z′⊥ε
|z′ε|

·∂tzε
)2

+

(

z′ε
|z′ε|

·∂tzε
)2
]

dsdt=‖∂tzε‖2L2
tL

2
s
. (4.10)

Using this result we also get insight into regularity of higher derivatives of ωε and
bε.

Lemma 4.3 (Regularity of higher derivatives). Let (zε,ωε,λε) be a weak solution
of (4.3) in the sense of Lemma 4.1. Then it holds for every T >0 that the family
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{ωε} is uniformly bounded in L1(0,T ;W 3,1(0,1)) and that the family {bε} is uniformly
bounded in L1(0,T ;W 2,1(0,1)). It also holds that b′′′ε ∈L2(0,T ;L1

s), but not uniformly
with respect to ε.

Proof. For the proof we use the definitions in (1.12). It holds that ω′′
ε =

rε−2b′εω
′

ε

bε
,

hence

‖ω′′
ε ‖L2(0,T ;L1

s)
≤ 1

bmin

(

‖rε‖L2(0,T ;L2
s)
+2‖b′ε‖L2(0,T ;L2

s)
‖ω′

ε‖L2(0,T ;L2
s)

)

,

which is uniformly bounded due to Lemma 4.2 and Lemma 4.1.
Furthermore the definition of rε in (1.12) also implies that ω′′′

ε = r′ε−2b′′εω
′
ε−

3b′εω
′′
ε )/bε. Hence we estimate

‖ω′′′
ε ‖L1(0,T ;L1

s)
≤ b−1

min

(

‖r′ε‖L1(0,T ;L1
s)
+2‖b′′ε‖L2(0,T ;L1

s)
‖ω′

ε‖L2(0,T ;L∞
s )

+3‖b′ε‖L2(0,T ;L∞
s )‖ω′′

ε ‖L2(0,T ;L1
s)

)

≤ b−1
min

(√
T‖r′ε‖L2(0,T ;L2

s)
+5‖b′′ε‖L2(0,T ;L1

s)
‖ω′′

ε ‖L2(0,T ;L1
s)

)

,

which is uniformly bounded due to the result above.
Observe that due to Lemma 3.1 and embedding into C1 there is a δ>0 such that

bmin+δ≤|z′ε|≤ bmax−δ. Hence, using b′′ε = bε(ω′
ε)

2−λε+ 1
εE

′ (bε), we conclude that

‖b′′ε‖L2(0,T ;L1
s)
≤ bmax‖ω′

ε‖L2(0,T ;L2
s)
+2‖λε‖L2(0,T ;L2

s)
+

1

ε
max

bmin+δ≤x≤bmax−δ
E′(x)

(4.11)
is bounded due to Lemma 4.2 and Lemma 4.1. This bound is not uniform with respect
to ε, but can be replaced by a uniform one using the following computation.

Integrating the definition of λε against E′(bε) we obtain

∫ 1

0

λεE
′(bε)ds̃=

∫ 1

0

[

bε(ω
′
ε)

2E′(bε)+b
′2
ε E

′′(bε)+
1

ε
E′ (bε)

2

]

ds̃.

This implies the inequality

∫ 1

0

1

ε
E′ (bε)

2
ds̃≤

∫ 1

0

(

λεE
′(bε)−bε(ω′

ε)
2E′(bε)

)

ds̃≤‖λε−bε(ω′
ε)

2‖L2‖E′(bε)‖L2 .

Hence we conclude that

1

ε
‖E′(bε)‖L2 ≤‖λε−bε(ω′

ε)
2‖L2 , (4.12)

which allows us to replace (4.11) by

‖b′′ε‖L2(0,T ;L1
s)
≤ bmax‖ω′

ε‖L2(0,T ;L2
s)
+2‖λε‖L2(0,T ;L2

s)
+‖λε−bε(ω′

ε)
2‖L2(0,T ;L2

s)
,

which is uniformly bounded due to the results of Lemma 4.2 and Lemma 4.1.
Furthermore the definition of λε in (1.12) also implies that b′′′ε = b′ε(ω

′
ε)

2+
2bεω

′
εω

′′
ε −λ′ε+ 1

εE
′′ (bε)b

′
ε. Hence we estimate

‖b′′′ε ‖L1(0,T ;L1
s)
≤‖b′ε‖L1(0,T ;L∞

s )‖(ω′
ε)

2‖L∞(0,T ;L1
s)
+2bmax‖ω′′

ε ‖2L2(0,T ;L1
s)
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+‖λ′ε‖L1(0,T ;L2
s)
+

1

ε
‖b′ε‖L1(0,T ;L1

s)
max

bmin+δ≤x≤bmax−δ
E′′(x),

which is bounded due to the result above, but not uniformly with respect to ε.

Next we will derive the governing equations for the quantities ωε and bε making
use of the following identities:

(

z′

|z′|

)′

=ω′ z
′⊥

|z′| and

(

z′⊥

|z′|

)′

=−ω′ z
′

|z′| , (4.13)

which hold for a curve z with sufficient regularity and its indicatrix ω. We take
formally the derivative of the evolution equation in (4.3) and evaluate explicitly all of
the derivatives, obtaining

∂tz
′
ε+(r′′ε −(λεω

′
ε)

′)
z′⊥ε
|z′ε|

−
(

r′εω
′
ε−λεω′2

ε

) z′ε
|z′ε|

−(λ′′ε +(r′εω
′
ε)

′)
z′ε
|z′ε|

−
(

λ′′εω
′
ε+r

′
εω

′2
ε

) z′⊥ε
|z′ε|

=0. (4.14)

We multiply by z′⊥ε /|z′ε|2 and z′ε/|z′ε| and use ∂tωε=∂tz
′
ε ·z′⊥ε /|z′ε|2 and ∂tbε=∂tz

′
ε ·

z′ε/|z′ε| to obtain (1.13).
We present the proof of Theorem 1.2, which collects the regularity statements

of lemmas 4.1, 4.2, and 4.3 and justifies the above computation in the distributional
sense.

Proof. (Theorem 1.2.) We start with a weak solution of (4.3) satisfying (4.5)
and (4.8) respectively for all v∈C∞

c (R+,C∞
s ) according to Lemma 4.1. The boundary

integrals imply that ω′
ε,b

′
ε,λε,rε

∣

∣

0,1
=0 a.e. on R+.

We choose a regularizing sequence ηk with suppηk⊂B(0,1/k)⊂R
2 and set v=

ηk(t̃− t, s̃−s) for (t̃, s̃)∈Uk with Uk := [1/k,∞)×(1/k,1−1/k), obtaining

∂tzε,k+

(

rε
z′⊥ε
|z′ε|

)′

∗ηk−
(

λε
z′ε
|z′ε|

)′

∗ηk=0,

where zε,k := zε ∗ηk. We omit the tilde and integrate against −
(

z′

ε,k

|z′

ε,k
|ϕ+

z′⊥

ε,k

|z′

ε,k
|2ψ

)′

with ϕ,ψ∈D(R+× [0,1]) and k large enough such that Uk covers the support of both
test functions,

∫∫

Uk

[

−∂tzε,k ·
(

z′⊥ε,k
1

|z′ε,k|2
ψ

)′

−
(

(

rε
z′⊥ε
|z′ε|

)′

∗ηk−
(

λε
z′ε
|z′ε|

)′

∗ηk
)

·
(

z′⊥ε,k
1

|z′ε,k|2
ψ

)′
]

dsdt=0,

∫∫

Uk

−∂tzε,k ·
(

z′ε,k
|z′ε,k|

ϕ

)′

−
(

(

rε
z′⊥ε
|z′ε|

)′

∗ηk−
(

λε
z′ε
|z′ε|

)′

∗ηk
)

·
(

z′ε,k
|z′ε,k|

ϕ

)′

dsdt=0.

(4.15)
Making use of the regularity results in Theorem 1.1 it holds that z′ε,k→z′ε and, as a
consequence, also ωε,k→ωε uniformly on compact subsets of R+× [0,1], where ωε,k is
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the indicatrix of zε,k satisfying z′ε,k/|z′ε,k|=
(

cos(ωε,k),sin(ωε,k)
)

. Using these results
we perform integrations by parts with respect to s and t with the expressions in (4.15)
that involve ∂tzε,k and pass to the limit, obtaining

∫∫

Uk

−∂tzε,k ·
(

z′ε
|z′ε|

ϕ

)′

dsdt=

∫∫

Uk

∂tz
′
ε,k ·

z′ε
|z′ε|

ϕdsdt

=

∫∫

Uk

−|z′ε,k|∂tϕdsdt→
∫∫

Uk

−bε∂tϕdsdt as k→∞,

and

∫∫

Uk

−∂tzε,k ·
(

z′⊥ε,k
1

|z′ε,k|2
ψ

)′

dsdt =

∫∫

Uk

∂tz
′
ε,k ·z′⊥ε,k

1

|z′ε,k|2
ψdsdt

=

∫∫

Uk

∂tωε,kψdsdt=

∫∫

Uk

−ωε,k∂tψdsdt

→
∫ ∞

0

∫ 1

0

−ωε∂tψdsdt as k→∞,

where we used that ∂tωε,k=∂tz
′
ε,k ·z′⊥ε,k 1

|z′

ε,k
|2 . Making use of the the fact that z′′ε ∈

L∞
t L

2
s by Theorem 1.1 and r′ε,λ

′
ε∈L2

tL
2
s by Lemma 4.2, we now pass to the limit

k→∞ in the remaining expressions of (4.15) and conclude that

∫ ∞

0

∫ 1

0

[

−ωε∂tψ−
(

r′ε
z′⊥ε
|z′ε|

−λ′ε
z′ε
|z′ε|

−rεω′
ε

z′ε
|z′ε|

−λεω′
ε

z′⊥ε
|z′ε|

)

·
(

− z′ε
|z′ε|

ω′
ε

ψ

|z′ε|
+
z′⊥ε
|z′ε|

(

ψ

|z′ε|

)′
)]

dsdt=0,

∫ ∞

0

∫ 1

0

[

−bε∂tϕ−
(

r′ε
z′⊥ε
|z′ε|

−λ′ε
z′ε
|z′ε|

−rεω′
ε

z′ε
|z′ε|

−λεω′
ε

z′⊥ε
|z′ε|

)

·
(

z′⊥ε
|z′ε|

ω′
εϕ+

z′ε
|z′ε|

ϕ′

)

]

dsdt=0.

This implies (1.20), (1.21) where every term is well defined by Lemma 4.2, and where
we allow for ψ, φ in function spaces in which test functions are densely contained.

5. Energy dissipation

Observe that the formal time derivative of the total energy as formulated in (1.10)
is given by

d

dt
Eε=

∫ 1

0

(

b2ω′
ε∂tω

′
ε+λε∂tbε

)

ds.

Now test the first equation in (1.13) formally against (b2εω
′
ε)

′= bεrε, obtaining

∫ 1

0

b2ω′
ε∂tω

′
ε ds=

∫ 1

0

[

−(r′ε)
2−r2ε(ω′

ε)
2−λ′εω′

εrε+ω
′
ελεr

′
ε

]

ds,
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and the second one in (1.13) against λε, which yields

∫ 1

0

λε∂tbε ds=

∫ 1

0

[

r′εω
′
ελε−(rεω

′
ε)λ

′
ε−(λ′ε)

2−(ω′
ε)

2(λε)
2
]

ds.

Take the sum to conclude the energy dissipation equality (1.14) on a formal level.
This can be made rigorous by stating that (1.14) holds weakly in time (Theo-

rem 1.3).

Proof. (Theorem 1.3.) Here the problem is that we cannot directly set ψ in (1.21)
equal to bεr

′
ε, since its time derivative cannot necessarily be interpreted as a function.

Therefore we regularize with respect to t using a sequence of mollifiers (ηk)k=1,2,...

with suppηk⊂ [−1/k,1/k].
For t̃≥1/k we denote by ωε,k(t̃,s) :=(ωε ∗t ηk)(t̃,s)=

∫∞

0
ωε(t,s)ηk(t̃− t)dt the reg-

ularized version of ωε and evaluate (1.21) using ψ(t,s)=ηk(t̃− t)(b2ε,kω′
ε,k)

′(t̃,s). The
time integral becomes part of the convolution and we find the following expression,
which holds pointwise for every t̃≥1/k:

∫ 1

0

[

∂tωε,k (b
2
ε,kω

′
ε,k)

′−
(

(r′ε−λεω′
ε)

1

bε

)

∗t ηk (bε,krε,k)
′

+

(

(r′ε−λεω′
ε)
b′ε
b2ε

)

∗t ηk bε,krε,k−
(

(rεω
′
ε+λ

′
ε)
ω′
ε

bε

)

∗t ηk bε,krε,k
]

ds=0.

Observe that we write the convolution of various expressions and ηk explicitly
using the symbol ∗t. Furthermore, setting φ=ηk(t̃− t)λε,k(t̃,s) in (1.20) where λε,k=
bε,k(ω

′
ε,k)

2−b′′ε,k+ 1
εE

′ (bε,k),

∫ 1

0

[

∂tbε,kλε,k+(rεω
′
ε+λ

′
ε)∗t ηkλ′ε,k+((ω′

ελε−r′ε)ω′
ε)∗t ηkλε,k

]

ds=0.

We omit the tildes, take the sum of the two equations above, and integrate against
the test function in time ϑ∈D(R+), obtaining

0=

∫ ∞

1/k

[

−∂tϑEε,k+ϑ
∫ 1

0

[(

(r′ε−λεω′
ε)

1

bε

)

∗t ηk (bε,krε,k)
′

+

(

−(r′ε−λεω′
ε)
b′ε
b2ε

+(rεω
′
ε+λ

′
ε)
ω′
ε

bε

)

∗t ηk bε,krε,k

+(rεω
′
ε+λ

′
ε)∗t ηkλ′ε,k+((ω′

ελε−r′ε)ω′
ε)∗t ηkλε,k

]

ds

]

dt ∀ t̃≥1/k, (5.1)

where Eε,k=
∫ 1

0

[

1
2

(

ω′2
ε,k b

2
ε,k+(b′ε,k)

2
)

+ 1
εE(bε,k)

]

ds and k is large enough so that

suppϑ⊂ [1/k,∞). Next we use the fact that all the convolved terms like ω′
ε,k, r

′
ε,k,

(rε(ω
′
ε)

2)∗t ηk, etc. converge strongly in L2
t,locL

2
s to their original counterparts, which

is illustrated in more detail in the proof of Theorem 4 in [9]. Hence we pass to the
limit as k→∞ in (5.1), obtaining

∫ ∞

0

∂tϑEε dt=
∫ ∞

0

[

ϑ

∫ 1

0

[

(

(r′ε−λεω′
ε)

1

bε

)

(bεrε)
′
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+

(

−(r′ε−λεω′
ε)
b′ε
b2ε

+(rεω
′
ε+λ

′
ε)
ω′
ε

bε

)

bεrε

+(rεω
′
ε+λ

′
ε)λ

′
ε+((ω′

ελε−r′ε)ω′
ε)λε

]

ds

]

dt ∀ t̃≥1/k

=

∫ ∞

0

ϑ

∫ 1

0

[

(r′ε−λεω′
ε)

2
+(rεω

′
ε+λ

′
ε)

2
]

dsdt ∀ t̃≥0,

which is a weak in time formulation of (1.14).
The second equivalent formulation in (1.15) is then a consequence of the following

computation

(

z′′′′ε −
(

1

ε
E′(|z′ε|)

z′ε
|z′ε|

)′
)2

=

(

(

rε
z′⊥ε
|z′ε|

+λε
z′ε
|z′ε|

)′
)2

=

(

r′ε
z′⊥ε
|z′ε|

+λ′ε
z′ε
|z′ε|

−rεω′
ε

z′ε
|z′ε|

+λεω
′
ε

z′⊥ε
|z′ε|

)2

=(r′ε+λεω
′
ε)

2
+(λ′ε−rεω′

ε)
2
,

which concludes the proof.

6. Long time convergence

One of the main tools in this section will be the fact that the best constant in the
Poincaré-type inequality

∫ 1

0

v2ds≤C
∫ 1

0

v′2ds (6.1)

for v∈H1
0 ((0,1)) is given by the reciprocal value of the first eigenvalue of the differ-

ential operator v′′ in that space, C=1/π2.
As a first step in proving coercivity of Dε with respect to Eε, we find the following

lemma.

Lemma 6.1. Let Eε be the total energy defined in (1.1) and (1.10), respectively, and
let rε and λε be as defined in (1.12). Then there is a constant C1>0 such that

Eε≤C1 (‖rε‖2L2
s
+‖λε‖2L2

s
).

Proof. We will treat the three different expressions in (1.10) separately. First
observe that

∫ 1

0

(bεω
′
ε)

2 ds̃≤ 1

π2

∫ 1

0

((bεω
′
ε)

′)
2
ds̃≤ b2max

π2

∫ 1

0

r2ε ds̃,

which immediately implies that

‖ω′
ε‖2L2 ≤ b2max

π2b2min

∫ 1

0

r2ε ds̃. (6.2)

Next we use the definition of λε in (1.12), which we multiply by (bε−1) obtaining
−(bε−1)b′′ε ≤ (bε−1)λε+bε(ω

′
ε)

2 since (b−1) 1εE
′ (bε)≥0, as E is convex and takes its

minimum at x=1. We integrate, and using b′ε(0)= b
′
ε(1)=0 we obtain
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∫ 1

0

(b′ε)
2 ds̃≤

∫ 1

0

[

(bε−1)λε+bε(ω
′
ε)

2
]

ds̃

≤max(bmax−1,1−bmin)‖λε‖2L2 +bmax‖ω′
ε‖2L2 . (6.3)

Finally, to obtain a control on
∫ 1

0
1
εE(bε)ds̃, we use Lemma 2.5 and (4.12), which

imply that

1

ε
‖E′(bε)‖2L2 ≤ ε‖λε−bε(ω′

ε)
2‖2L2 .

The fact that ω′′
ε =

rε−2b′εω
′

ε

bε
allows us to estimate

‖ω′
ε‖2L∞ =

∥

∥

∥

∥

∫ s

0

ω′′
ε ds̃

∥

∥

∥

∥

2

L∞

≤‖ω′′
ε ‖2L1

≤ 2

b2min

(

‖rε‖2L1 +4‖b′ε‖2L2‖ω′
ε‖2L2

)

≤ 2

b2min

(

‖rε‖2L1 +8b−2
minEI ‖b′ε‖2L2

)

, (6.4)

where we used (3.1). In summary, now using Lemma 2.5, we obtain

∫ 1

0

1

ε
E(bε)ds̃≤

1

2κ

∫ 1

0

1

ε
E′(bε)

2 ds̃≤ 1

2κ
ε‖λε−bε(ω′

ε)
2‖2L2

≤ ε 1
κ

(

‖λε‖2L2 +b2max‖(ω′
ε)

2‖2L2

)

≤ ε 1
κ

(

‖λε‖2L2 +b2max‖ω′
ε‖2L∞‖ω′

ε‖2L2

)

≤ ε 1
κ

(

‖λε‖2L2 +2b−2
minEI b2max‖ω′

ε‖2L∞

)

. (6.5)

Now apply the inequalities (6.2), (6.3), and (6.5) combined with (6.4) to the total
energy as formulated in (1.10) to obtain the result.

We finally conclude the exponential decay of the energy formulated in Theo-
rem 1.4.

Proof. (Theorem 1.4.) We start with the result of Lemma 6.1 and obtain

Eε≤C1

∫ 1

0

(

r2ε+λ
2
ε

)

ds

=C1

∫ 1

0

[

(

z′′′ε · z
′⊥
ε

|z′ε|

)2

+

(

z′′′ε · z
′
ε

|z′ε|
− 1

ε
E(|z′ε|)

)2
]

ds

=C1

∫ 1

0

∣

∣

∣

∣

z′′′ε − 1

ε
E(|z′ε|)

z′ε
|z′ε|

∣

∣

∣

∣

2

ds

≤ C1

π2

∫ 1

0

∣

∣

∣

∣

∣

(

z′′′ε − 1

ε
E(|z′ε|)

z′ε
|z′ε|

)′
∣

∣

∣

∣

∣

2

ds=
C1

π2
Dε, (6.6)

where we used (1.15). As a consequence, the energy dissipation Dε is coercive with
respect to the energy and and the following Poincaré-type inequality holds:

Dε/Eε≥π2/C1, (6.7)
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which implies directly the result.

As an immediate consequence of Theorem 1.4 we obtain the following refined
bounds.

Corollary 6.2. Using the definitions in (1.16) we have

‖∂tzε‖2L2
tL

2
s
=‖mε‖2L2

tL
2
s
+‖nε‖2L2

tL
2
s
=EI . (6.8)

As a consequence it holds that

‖mε‖L2
tL

2
s
≤
√

EI , ‖nε‖L2
tL

2
s
≤
√

EI .

We also obtain sharper bounds on the following quantities:

‖rε‖L2
tL

∞
s
, ‖λε‖L2

tL
∞
s
≤
√

EI ,
‖ω′

ελε‖L2
tL

2
s
, ‖ω′

εrε‖L2
tL

2
s
≤
√
2EI b−1

min, and

‖λ′ε‖L2
tL

2
s
, ‖r′ε‖L2

tL
2
s
≤
√
2EI b−1

min+
√

EI .

Proof. Integrate (1.14) with respect to time and combine it with (4.10). Using
this result we go again through the estimates in the proof of Lemma 4.2.

7. Convergence as ε→0
Lemma 7.1. Let (ωε,bε,λε) be a solution to (1.13) according to Theorem 1.2. Then
there is ω0 such that ωε→ω0 in L1((0,T ),W 2,r(0,1))∩Lq((0,T ),H1(0,1)), 1≤ r,q<
∞.

Proof. We obtain the strong convergence of ωε by an application of the Lions-
Aubin Lemma as formulated in [12]. On the one hand, using (1.17), observe that the
family of distributions {∂tωε} is uniformly bounded in L1(0,T ;H−1((0,1))) as

〈∂tωε,v〉H−1
s

=

∫ 1

0

[

nε

(

v′

bε
− v

b2ε
b′ε

)

+mεω
′
ε

v

bε

]

ds

≤ 1

bmin

(
∫ 1

0

|nε||v′|ds+
‖v‖L∞

s

bmin

∫ 1

0

|nε||b′ε|ds+‖v‖L∞
s

∫ 1

0

|ω′
ε||mε|ds

)

for all v∈H1
0 ((0,1)). This implies

∫ T

0

∣

∣

∣

∣

∣

sup
v∈H1

0

〈∂tωε,v〉H−1
s

‖v‖H1
0

∣

∣

∣

∣

∣

dt

≤ sup
v∈H1

0

1

bmin‖v‖H1
0

(

∫ T

0

∫ 1

0

|nε||v′|dsdt+
‖v‖L∞

s

bmin

∫ T

0

∫ 1

0

|nε||b′ε|dsdt

+‖v‖L∞
s

∫ T

0

∫ 1

0

|ω′
ε||mε|dsdt

)

≤ 1

bmin

(√
T ‖nε‖L2(0,T ;L2

s)
+

1

bmin
‖b′ε‖L2(0,T ;L2

s)
‖nε‖L2(0,T ;L2

s)

+‖ω′
ε‖L2(0,T ;L2

s)
‖mε‖L2(0,T ;L2

s)

)
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≤
√
T

bmin

(

‖nε‖L2(0,T ;L2
s)
+
√

2EI
(

1

bmin
‖nε‖L2(0,T ;L2

s)
+b−2

min‖mε‖L2(0,T ;L2
s)

)

)

.

Here we used the uniform bounds of (3.1) and Corollary 6.2.
Since the family {ωε} is uniformly bounded in L1(0,T ;W 3,1(0,1)) by Lemma 4.3,

and due to the compact embeddingW 1,1((0,1)) ↪→Lr((0,1)) (1≤ r<∞), it holds that
the family ωε is relatively compact in L1(0,T ;W 2,r(0,1)).

By interpolation, using the uniform bound in L∞
t H

1(0,1)) on ωε, this also holds
true in Lq(0,T ;H1(0,1)) for any 1≤ q<∞.

Lemma 7.2. Let (ωε,bε,λε) be a solution to (1.13) according to Theorem 1.2. Then
it holds that bε→1 in L1((0,T ),W 1,r(0,1))∩Lq((0,T ),H1(0,1)), 1≤ r,q<∞.

Proof. We obtain the strong convergence of bε by an application of the Lions-
Aubin Lemma as formulated in [12]. On the one hand, using (1.13) and the defini-
tions (1.16), observe that the family of distributions {∂tbε} is uniformly bounded in
L1(0,T ;H−1((0,1))) as

〈∂tbε,v〉H−1
s

=

∫ 1

0

[−mεv
′+nεω

′
εv]ds≤

∫ 1

0

|mε||v′|ds+‖v‖L∞
s

∫ 1

0

|ω′
ε||nε|ds

for all v∈H1
0 ((0,1)). This implies

∫ T

0

∣

∣

∣

∣

∣

sup
v∈H1

0

〈∂tbε,v〉H−1
s

‖v‖H1
0

∣

∣

∣

∣

∣

dt

≤ sup
v∈H1

0

1

‖v‖H1
0

(

∫ T

0

∫ 1

0

|mε||v′|dsdt+‖v‖L∞
s

∫ T

0

∫ 1

0

|ω′
ε||nε|dsdt

)

≤
∫ T

0

‖mε‖L2
s
dt+‖ω′

ε‖L2(0,T ;L2
s)
‖nε‖L2(0,T ;L2

s)

≤
√
T ‖nε‖L2(0,T ;L2

s)
+

√

T2 b−2
minEI‖mε‖L2(0,T ;L2

s)
.

Here we used the uniform bounds of (3.1) and Corollary 6.2.
Since the family {bε} is uniformly bounded in L1(0,T ;W 2,1(0,1)) by Lemma 4.3,

and due to the compact embeddingW 1,1((0,1)) ↪→Lr((0,1)) (1≤ r<∞), it holds that
the family bε is relatively compact in L1(0,T ;W 1,r(0,1)).

By interpolation, using the uniform bound in L∞
t H

1(0,1)) on bε, this holds also
true in Lq(0,T ;H1(0,1)) for any 1≤ q<∞.

Finally, we consider the first inequality formulated in Lemma 2.5 and obtain as a
consequence of energy dissipation (1.14) that

‖bε(t,.)−1‖L2
s
≤ 2

κ

√

εEI for all t>0, (7.1)

which allows us to identify the limit of any strongly converging subsequence of the
family {bε} as the constant function 1.

Lemma 7.3. Let (ωε,bε,λε) be a solution to (1.13) according to Theorem 1.2. Then
there are subsequences and limit functions such that λε⇀λ0 in L2

tH
1
s and rε→ω′′

0 in
L2((0,T ),L2

s), with rε⇀ω′′
0 in L2

tH
1
s .
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Proof. The strong convergence of ωε and bε (Lemma 7.1 and 7.2) imply the
strong convergence of rε to ω′′

0 . The weak convergence of r′ε and also the weak con-
vergence of λε to a limit function λ0 are a consequence of the uniform bounds stated
in Corollary 6.2.

Finally we finish with the proof of Theorem 1.5, which summarizes the results of
lemmas 7.1, 7.2, and 7.3 and states the consistency of the model (1.5) with the limit
model (1.6) and, as a consequence, the strong convergence of mε and nε.

Proof. (Theorem 1.5) The convergence results of lemmas 7.1, 7.2, and 7.3 imme-
diately allow us to pass to the limit as ε→0 in the system (1.20), (1.21), obtaining
(2.2), (2.3) as the limit system.

Observe that the definitions (1.16), together with the strong convergence of ωε

(Lemma 7.1) and the weak convergence of rε and λε (Lemma 7.3), imply that

mε⇀ω′
0ω

′′
0 +λ

′
0 and nε⇀ω′′′

0 −ω′
0λ0 in L2

tL
2
s.

The fact that the equality (6.8) also holds in the limit as εj →0, (2.7), implies

‖mε‖2L2
tL

2
s
+‖nε‖2L2

tL
2
s
=EI =‖ω′

0ω
′′
0 +λ

′
0‖2L2

tL
2
s
+‖ω′′′

0 −ω′
0λ0‖2L2

tL
2
s
.

These two facts imply the strong convergence of mε and nε since

∫ ∞

0

∫ 1

0

[

(mε−m0)
2+(nε−n0)2

]

dsdt

=

∫ ∞

0

∫ 1

0

[

m2
ε−2mεm0+m

2
0+n

2
ε−2nεn0+n

2
0

]

dsdt→0 as ε→0.
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