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Fig. 6.5. (Example 3) Zero set projection of the g1 function corresponding to ω1. On the left, the
multiple valued surface is projected into three dimensions by plotting x1,x2 versus k1. On the right,
the same surface is represented as a contour plot with axis limits set equal to those in Figure 6.3 and
Figure 6.4 for comparison.
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Fig. 6.6. (Example 3) Energy density at t= .32 with ε=1/(80π) computed with Gaussian beams.

in many physically important problems such as Maxwell’s equations and the elastic
wave equations. Furthermore we introduce a highly efficient Lagrangian method with
a geometric reduction of computational complexity to the numerical evaluation of the
energy and energy flux. Numerical examples in both one and two space dimensions are
given to show the validity of the new computational methods.

Appendix A. A few linear algebra identities.
Lemma A.1. Suppose M is an α×α matrix with det(M) 
=0. Write M and M−1 in
block form as

M =

(
A B
C D

)
and M−1=

(
Ã B̃

C̃ D̃

)

where A and Ã are β×β matrices for some β<α. Then

det(A)=det(M)det(D̃). (A.1)
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Proof. Examine the two cases:

Case: Assume that det(A)=0. Then there exists va 
=0, where Ava=0, so take(
A B
C D

)
,

(
va

0

)
=

(
0

Cva

)

where Cva 
=0, since det(M) 
=0. Then by definition(
Ã B̃

C̃ D̃

)(
0

Cva

)
=

(
B̃Cva

D̃Cva

)
=

(
va

0

)

which implies that det(D̃)=0 since Cva 
=0. Thus (A.1) holds in this case.

Case: Assume that det(A) 
=0. Then note first that

det

(
A B
C D

)
=det

((
A 0
C I

)(
I A−1B
0 D−CA−1B

))
=det(A)det(D−CA−1B)=det(M)

(A.2)
where we point out for the sake of the following steps that (A.2) implies det(D−
CA−1B) 
=0. Then, from the block matrix inversion formula:(

A B
C D

)(
−A−1B(D−CA−1B)−1

(D−CA−1B)−1

)
=

(
0
I

)
.

In particular D̃=(D−CA−1B)−1 so that

det(M)det(D̃)=det(M)det((D−CA−1B)−1)=
det(M)

det(D−CA−1B)
=det(A).

Thus (A.1) again holds.

Theorem A.2. Given β,α∈N with β<α, let {v1, ...,vβ ,vβ+1, ...,vα} and
{w1, ...,wβ ,wβ+1, ...,wα} be sets of linearly independent vectors in R

α, where

wi ·wj=0 for all i∈{1, ...,β},j∈{β+1, ...,α} . (A.3)

Let M be an α×α matrix with det(M) 
=0 and where

vi=Mwi for all i∈{1, ...,β}

and

wj=MTvj for all j∈{β+1, ...,α}.

Then

vol(v1, ...,vβ)vol(wβ+1, ...,wα)= |det(M)|vol(vβ+1, ...,vα)vol(w1, ...,wβ)

Proof. Because of (A.3), without loss of generality we may choose an orthonormal
basis wherein

(w1, ...,wβ)=

(
W1

0

)
α×β

and (wβ+1, ...,wα)=

(
0
W4

)
α×(α−β)

,
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where W1 is a β×β matrix and W4 is an (α−β)×(α−β) matrix. The matrices M and
M−1 may be written in bock form as

M =

(
A B
C D

)
and M−1=

(
Ã B̃

C̃ D̃

)
,

where A and Ã are β×β matrices. Then from the definitions,

(v1, ...,vβ)=

(
AW1

CW1

)
and (vβ+1, ...,vα)=

(
C̃TW4

D̃TW4

)
.

Next note that

MTM =

(
ATA+CTC ATB+CTD
BTA+DTC BTB+DTD

)

and

M−1
(
M−1

)
T =

(
ÃÃT +B̃B̃T ÃC̃T +B̃D̃T

C̃ÃT +D̃B̃T C̃C̃T +D̃D̃T

)
,

so that since det(MTM)=det(M)2, Lemma A.1 gives that

det(ATA+CTC)=det(M)2det(C̃C̃T +D̃D̃T ). (A.4)

Then

vol(v1, ...,vβ)vol(wβ+1, ...,wα)

=vol

(
AW1

CW1

)
vol

(
0
W4

)
=
√
det(WT

1 ATAW1+WT
1 CTCW1) |det(W4)|

=
√
det(ATA+CTC) |det(W1)| |det(W4)|

= |det(M)|
√
det(C̃C̃T +D̃D̃T ) |det(W1)| |det(W4)|

= |det(M)|
√
det(WT

4 C̃C̃TW4+WT
4 D̃D̃TW4) |det(W1)|

= |det(M)|vol
(
C̃TW4

D̃TW4

)
vol

(
W1

0

)
= |det(M)|vol(vβ+1, ...,vα)vol(w1, ...,wβ),

which proves the result.

Corollary A.3. Let wi and vi be the vectors given in Theorem A.2. Written in
block form they become

(w1, ...,wβ)=

(
W1

W2

)
α×β

, (wβ+1, ...,wα)=

(
W3

W4

)
α×(α−β)

and

(v1, ...,vβ)=

(
V1

V2

)
α×β

, (vβ+1, ...,vα)=

(
V3

V4

)
α×(α−β)

,

where W1 and V1 are both β×β matrices while W4 and V4 are both (α−β)×(α−β).
Then

vol(V1)vol(W4)= |det(M)|vol(V4)vol(W1). (A.5)
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Proof. By orthogonality

WT
1 W3+WT

2 W4=0. (A.6)

If vol(W1)=vol(W4)=0, (A.5) holds trivially. Thus assume vol(W1) 
=0 so that

vol(W4)vol

(
W1

W2

)
= |det(W4)|

√
det(WT

1 W1+WT
2 W2)

= |det(W4)| |det(W1)|
√
det(I+(W−1

1 )TWT
2 W2W

−1
1 )

= |det(W4)| |det(W1)|
√
det(I+W2W

−1
1 (W−1

1 )TWT
2 )

= |det(W1)|
√
det(WT

4 W4+WT
4 W2W

−1
1 (W−1

1 )TWT
2 W4)

= |det(W1)|
√
det(WT

4 W4+WT
3 W1W

−1
1 (W−1

1 )TWT
1 W3)

= |det(W1)|
√
det(WT

4 W4+WT
3 W3)

= vol(W1)vol

(
W3

W4

)
,

(A.7)

where the third line of (A.7) follows from Sylvester’s determinant theorem and the fifth

line follows from (A.6). Note that linear independence implies that vol

(
W1

W2

)

=0 and

vol

(
W3

W4

)

=0, so that (A.7) gives vol(W4) 
=0. Since similar steps give the same result

as (A.7) in the case where vol(W4) 
=0, one gets that vol(W1) 
=0 iff vol(W4) 
=0. By
first noting that

vi ·vj=0 for all i∈{1, ...,β}, j∈{β+1, ...,α}

is also guaranteed by the statement of Theorem A.2, an equivalent result to (A.7) then
holds for the vi vectors so that in summary

vol(W4)vol

(
W1

W2

)
=vol(W1)vol

(
W3

W4

)
and vol(V4)vol

(
V1

V2

)
=vol(V1)vol

(
V3

V4

)
.

(A.8)
Finally, from Theorem A.2

vol

(
V1

V2

)
vol

(
W3

W4

)
= |det(M)|vol

(
V3

V4

)
vol

(
W1

W2

)
. (A.9)

Multiplying both sides of (A.9) by vol(V1)vol(W4) and using (A.8) gives

vol(V1)vol(W4)vol

(
V1

V2

)
vol

(
W3

W4

)
= |det(M)|vol(V4)vol(W1)vol

(
V1

V2

)
vol

(
W3

W4

)
,

which after cancelation gives (A.5).
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