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OPTIMIZED QUASICONFORMAL PARAMETERIZATION WITH
USER-DEFINED AREA DISTORTIONS∗

KA CHUN LAM† AND LOK MING LUI‡

Abstract. Parameterization, a process of mapping a complicated domain onto a simple canon-
ical domain, is crucial in different areas such as computer graphics, medical imaging and scientific
computing. Conformal parameterization has been widely used since it preserves the local geometry
well. However, a major drawback is the area distortion introduced by the conformal parameteriza-
tion, causing inconvenience in many applications such as texture mapping in computer graphics or
visualization in medical imaging. This work proposes a remedy to construct a parameterization that
balances between conformality and area distortions. We present a variational algorithm to compute
the optimized quasiconformal parameterization with controllable area distortions. The distribution of
the area distortion can be prescribed by users according to the application. The main strategy is to
minimize a combined energy functional consisting of an area mismatching term and a regularization
term involving the Beltrami coefficient of the map. The Beltrami coefficient controls the conformality
of the parameterization. Landmark constraints can be incorporated into the model to obtain landmark-
aligned parameterization. Experiments have been carried out on both synthetic and real data. Results
demonstrate the efficacy of the proposed algorithm to compute the optimized parameterization with
controllable area distortion while preserving the local geometry as well as possible.

Keywords. Area-preserving mapping; Beltrami coefficient, conformality distortion; parameteriza-
tion, texture mapping.
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1. Introduction

Surface parameterization of 3D geometric objects has central importance in various
fields, such as computer graphics, medical imaging and scientific computing. It refers to
the process of mapping a surface one-to-one and onto a simple parameter domain. It has
been widely used in different applications, including texture mapping, shape analysis,
geometry processing, surface classification and recognition. Recently, various surface
parameterization techniques have been developed.

In general, surface parameterization introduces different kinds of distortions. De-
pending on applications, different parameterization algorithms aim to minimize differ-
ent types of distortions. For example, isometric parameterization aims to preserve the
metric tensor. Authalic projection minimizes the area distortion under the parameteri-
zation. Amongst the various parameterization techniques, conformal parameterization
has been extensively used, since it preserves angles and hence the local geometry well.
However, a major drawback is the area distortion introduced by the parameterization.
Although angles are preserved, some regions on the surface can be seriously squeezed
on the parameter domain. This leads to problems in some practical applications in sci-
entific computing and computer graphics. For instance, in computer graphics, surface
conformal parameterizations can be used for texture mapping. The goal is to project
a 2D image onto the surface to increase the realism of the 3D model. When there
is a huge area distortion under the texture map, the projected texture on the surface
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may look unnatural (see Figure 6.7(b)). In practice, it is more desirable to obtain a
parameterization whose distortions are controllable by users.

In this paper, we propose a new approach to construct an optimized quasicon-
formal parameterization with controllable area distortions. Depending on the specific
application, the distribution of the area distortion under the parameterization can be
prescribed by users. Our goal is to find an optimized parameterization from the surface
onto a simple domain, such that the area distortion follows the prescribed distribution
as much as possible while minimizing the local geometric distortion. The main strategy
is by minimizing a combined energy functional involving an area distortion term and
the Beltrami coefficient of the mapping. The Beltrami coefficient term aims to control
the conformality distortion and hence the local geometric distortion under the parame-
terization. The area term involving the logarithm of Jacobian aims to control the area
distortion under the mapping. Parameters in the energy model can be adjusted by users
to balance between the conformality and area distortions. Sometimes, landmark fea-
tures of the surface are required to be projected to desired locations. For this purpose,
landmark constraints can also be incorporated in our proposed model. In this work,
we propose to apply a splitting method to minimize the proposed energy functional,
which alternatively optimizes the energy terms involving the Beltrami coefficient and
the mapping respectively. Experiments have been carried out to parameterize different
surface models. Results demonstrate the efficacy of our proposed method to compute
an optimized parameterization that preserves both local geometry and area distortion
as well as possible. Applications of the proposed parameterization method in computer
graphics and medical imaging are also shown.

In short, the contributions of this paper are threefold. Firstly, we propose a varia-
tional approach to construct the optimized quasiconformal parameterization with con-
trollable area distortion while minimizing the conformality (local geometric) distortion.
Our formulation is general and flexible, which allows users to define a desired distribu-
tion of area distortion according to their specific applications. The method can also be
applied to high-genus surfaces. Secondly, we propose to incorporate the Beltrami coeffi-
cients into the model, by which both smoothness and bijectivity of the parameterization
can be effectively achieved. Thirdly, we propose to incorporate feature landmarks into
the model to compute a meaningful parameterization with consistent feature alignment.

The rest of the paper is organized as follows. In Section 2, we describe some previous
works closely related to our paper. In Section 3, we introduce the basic mathematical
concepts about the conformal and quasi-conformal geometry. In Section 4, our proposed
parameterization model is described in details. The numerical implementation of the
proposed model is explained in Section 5. Experimental results are shown in Section 6.
Conclusion and future works are discussed in Section 7.

2. Previous work
In this section, we give an overview of some previous works closely related to the

paper.

2.1. Conformal parameterization. Surface conformal parameterization has
been widely used. It minimizes angular distortions and hence preserves the local geom-
etry well. Different algorithms for computing conformal parameterizations have been
developed in recent years [7–10,12,16,32,34]. For example, Hurdal et al. [10] proposed
to compute brain conformal parameterizations using circle packing and applied them
to registration of human brains. Gu et al. [7, 8, 12, 32] proposed to compute surface
conformal parameterizations using harmonic energy minimization, holomorphic 1-forms
and curvature flow. Haker et al. [9] applied the conformal surface parameterization to
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obtain angle preserving texture mapping. Although conformal parameterizations pre-
serve the local geometry well, they generally cannot cope with feature correspondence
and may cause severe area distortions.

2.2. Area preserving parameterization. Several works have been done on
flattening surfaces with the area preserving constraint. Dominitz et al. [3] applied the
optimal mass transport technique to find the area preserving parameterization, which
was used for texture mapping. Zhao et al. [35] improved the efficiency of the optimal
mass transport technique to find the area-preserving flattening, which is based on the
Monge–Brenier theory. Zou et al. [36] proposed to use Lie advection to compute the area
preserving surface mapping. However, all the above methods do not handle prescribed
landmark constraints. Moreover, conformality distortions are often introduced, and
hence the local geometry is usually not preserved under the parameterization.

2.3. Feature point mapping. Landmark-based registration has also been
widely studied and different algorithms have been proposed. Bookstein et al. [1] pro-
posed to use the thin-plate spline regularization (or biharmonic regularization) to obtain
a registration that matches landmarks as much as possible. Tosun et al. [30] proposed
to combine the iterative closest point registration, the parametric relaxation and the
inverse stereographic projection to align cortical sulci across brain surfaces. These dif-
feomorphisms obtained can better match landmark features, although not perfectly.
Wang et al. [21, 22, 24] proposed to compute the optimized harmonic registrations of
brain cortical surfaces. The main idea is to minimize a compounded energy involving a
landmark-mismatching term [23]. The obtained registration is an optimized harmonic
map that better aligns landmarks. However, landmarks are not exactly matched and
bijectivity cannot be guaranteed under large number of landmark constraints. To secure
the bijectivity of the mapping, Joshi et al. [6] proposed the large deformation diffeo-
morphic metric mapping (LDDMM) to register images with a large deformation. The
registration mapping can be shown to lie in the space of diffeomorphisms. Following this
work, Glaunés et al. [5, 6, 31] proposed to generate large deformation diffeomorphisms
with given displacements of a finite set of template landmarks. The time dependent vec-
tor fields are useful for the computation of registration with large deformations, although
the computational cost of the algorithm is more expensive. For the above methods, al-
though landmarks can be aligned, they generally cannot control conformality and area
distortions.

Quasi-conformal mapping that matches landmarks consistently has also been pro-
posed [13, 18, 20, 25]. Wei et al. [33] proposed to compute landmark-matching quasi-
conformal mappings for human face registration. The Beltrami coefficient associated
to a landmark-matching parameterization is approximated. However, neither exact
landmark matching nor the bijectivity of the mapping can be ensured when large de-
formations occur. Later, Lam et al. [14] proposed an iterative scheme, which provides
an efficient way to obtain an exact landmark matching bijective registration even with
large deformations. The above algorithms can obtain parameterizations, which align
landmarks while minimizing the conformality distortions. However, area distortions
cannot be controlled. To deal with different situations, Schüller et al. [27] proposed
an effective algorithm, which modifies different deformation energies, like the as-rigid-
as-possible (ARAP), Green’s strain or conformal energy, to guarantee local injectivity
of the mapping. Locally injective planar or volumetric piecewise-linear maps can be
obtained using a barrier term to prevent elements from flipping. Since flipping is pro-
hibited by the barrier function, the obtained registration map lies inside the class of
quasiconformal mappings. Lipman et al. [17] also introduced an algorithm to compute
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bounded distortion mappings, which prevents flipping by controlling the singular values
of the transformation on each element. With the freedom of choosing different defor-
mation energies, these methods can be combined with a suitable area distortion term to
obtain a parameterization with less area distortion. Nevertheless, it is observed that the
approach by solving Beltrami’s equation is easier to control the bijectivity and smooth-
ness via adjusting the Beltrami coefficients directly. In addition, there is an one-one
correspondence between the set of all Beltrami coefficients (with sup-norm less than 1)
and the set of all quasi-conformal homeomorphisms. Thus, the approach by adjusting
the Beltrami coefficients indeed considers the whole class of quasiconformal homeomor-
phisms. As a result, unlike other approaches, the reduction of the mapping class is
not required. Motivated by the above, we adopt the approach by solving Beltrami’s
equation in this work.

3. Mathematical background

In this section, we describe some basic mathematical concepts related to our algo-
rithms. For details, we refer the readers to [4, 15,26].

A surface S with a conformal structure is called a Riemann surface. Given two Rie-
mann surfaces M and N , a map f :M→N is conformal if it preserves the surface metric
up to a multiplicative factor called the conformal factor. An immediate consequence
is that every conformal map preserves angles. With the angle-preserving property, a
conformal map effectively preserves the local geometry of the surface structure.

A generalization of conformal maps is the quasi-conformal maps, which are orienta-
tion preserving homeomorphisms between Riemann surfaces with bounded conformality
distortion, in the sense that their first order approximations takes infinitestimal circles
to infinitestimal ellipses of bounded eccentricity [4]. Mathematically, f : C→C is quasi-
conformal provided that it satisfies the Beltrami equation

∂f

∂z
=µ(z)

∂f

∂z
(3.1)

for some complex-valued function µ satisfying ||µ||∞<1. µ is called the Beltrami coef-
ficient, which is a measure of non-conformality. It measures how far the map at each
point is deviated from a conformal map. In particular, the map f is conformal at p
when µ(p) = 0. In other words, f is angle-preserving at p when µ(p) = 0. Infinitesimally,
around a point p, f may be expressed with respect to its local parameter as follows:

f(z+p)≈f(p)+fz(p)z+fz(p)z

=f(p)+fz(p)(z+µ(p)z). (3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together with
a stretch map S(z) =z+µ(p)z, which is post-composed by a multiplication of fz(p),
which is conformal. All the conformal distortion of S(z) is caused by µ(p). S(z) is the
map that causes f to map a small circle to a small ellipse. From µ(p), we can determine
the angles of the directions of maximal magnification and shrinking and the amount of
them as well. Specifically, the angle of maximal magnification under the stretch map is
arg(µ(p))/2 with magnifying factor 1+ |µ(p)|. The angle of maximal shrinking under the
stretch map is the orthogonal angle (arg(µ(p))−π)/2 with shrinking factor 1−|µ(p)|.
Thus, the Beltrami coefficient µ gives us important information about the properties of
the map (See Figure 3.1).
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Fig. 3.1: Illustration of the relationship between a quasi-conformal map and its Beltrami coefficient.

The maximal dilation of f is given by:

K(f) =
1+ ||µ||∞
1−||µ||∞

. (3.3)

4. Proposed model
In this section, we describe our proposed variational model for the optimized qua-

siconformal parameterization with controllable area distortion in details.

4.1. Problem setting. Let S be a simply-connected open surface. Suppose
D⊂R2 is our target parameter domain, which can either be a 2D rectangle or a unit
disk D. Our goal is to look for an optimized parameterization ϕ :S→D, which satisfies
the prescribed area distribution and minimizes the conformality distortion as well as
possible.

Mathematically, our problem can be formulated as follows:

minimize
ϕ:S→D

E(ϕ)

subject to J(ϕ)
∣∣
Ωi

=λi, i= 1,. ..,m,
(4.1)

where E(ϕ) is an energy functional that controls the local geometric distortion under ϕ.
J(ϕ) is the Jacobian determinant of ϕ :S→D, which can be defined using the coordinate
chart of S. Let φp :Up→R2 be a conformal coordinate chart of a neighbourhood Up of
p∈S. Then, J(ϕ)(p) can be obtained by

J(ϕ)(p) = cφp
(p)J(ϕ◦φ−1

p )(p), (4.2)

where cφp
is the conformal factor of φp and J(ϕ◦φ−1

p ) is the usual Jacobian determinant
of the mapping ϕ◦φ−1

p . Ωi’s are the subdomains of S and λi is the prescribed area
distribution on Ωi.

Note that both λi and Ωi are user-defined. We assume the area distribution λi is
prescribed according to the following condition:

A(D)−
m∑
i=1

∫
Ωi

λidA

{
= 0 if

⋃m
i=1 Ωi=S

> 0 if
⋃m
i=1 Ωi⊂S

, (4.3)

where A(D) is the total area of the parameter domain D.
The above condition ensures the area distribution is correctly prescribed. More

specifically, the prescribed total area of the sub-domains Ωi’s must be smaller than the
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total area of D. In practice, we normalize the area of D such that it has the same area
as the surface area of S. When λi= 1, the area of Ωi is supposed to be preserved under
the parameterization. On the other hand, Ωi is expected to be expanded or squeezed
on the parameter domain D under the parameterization if λi>1 or λi<1 respectively.
Therefore, users can prescribe their desired area distortions under the parameterization
according to their applications.

In some situations, one might want to parameterize S in such a way that feature
landmarks on S are aligned to prescribed locations in D. This type of parameterization
is called the landmark-aligned parameterization. For example, in computer graphics,
a landmark aligned parameterization is required for an accurate texture mapping. For
this purpose, the aforementioned model can be extended to compute a landmark-aligned
optimized quasiconformal parameterization with controllable area distortion. Denote
the corresponding landmark constraints by {pi∈S}ni=1↔{qi∈D}ni=1. We require that
ϕ(pi) = qi for 1≤ i≤n. The extended model can be formulated as follows:

minimize
ϕ:S→D

E(ϕ)

subject to ϕ(pi) = qi, i= 1,. ..,n

J(ϕ)
∣∣
Ωi

=λi, i= 1,. ..,m.

(4.4)

4.2. Energy model. In this subsection, we describe how we can set the energy
functional E to control the local geometric distortion of the parameterization.

The local geometric distortion can be described by its conformality distortion. The
conformality distortion of a parameterization ϕ :S→D can be measured by its Beltrami
differential, which is a collection of Beltrami coefficients with respect to different coor-
dinate charts of S. For any p∈S, the Beltrami coefficient µ(ϕ)(p) at p with respect to
a conformal coordinate chart φp :Up→R2 is given by

µ(ϕ)(p) =
∂ϕ̃

∂z̄
(zp)/

∂ϕ̃

∂z
(zp), (4.5)

where ϕ̃ :=ϕ◦φ−1
p is a mapping in R2 and zp=φp(p). In other words, µ(ϕ)(p) is a

complex number. In particular, a local conformal parameterization φp on the chart Up is
introduced. Note that the argument of µ(ϕ) depends on the conformal coordinate chart
φp. However, its magnitude |µ(ϕ)(p)| is invariant under different choices of conformal
coordinate chart. In fact, let ϕ̃1 =ϕ◦φ−1

1 and ϕ̃2 =ϕ◦φ−1
2 , where φ1 and φ2 are two

different coordinate charts of S. Denote φ2 ◦φ−1
1 (on a well-defined region) by Φ, which

is conformal. Also, we denote µ1(ϕ) and µ1(ϕ) to be the Beltrami coefficients of ϕ with
respect to the coordinate charts φ1 and φ2 respectively. Then, by simple calculation,
we obtain

µ1(ϕ) =
∂ϕ̃1

∂z̄
/
∂ϕ̃1

∂z
=
∂ϕ̃2 ◦Φ

∂z̄
/
∂ϕ̃2 ◦Φ

∂z
=

Φz
Φz

µ2(ϕ)◦Φ. (4.6)

Hence, |µ1(ϕ)|= |µ2(ϕ)◦Φ|= |µ2(ϕ)| and their arguments differ by Φz

Φz
. In practice, we

compute µ(ϕ) with a global conformal parameterization of S. In the following, since we
are mainly concerned about the magnitude (rather than the arguments) of the Beltrami
coefficient, we assume that µ(ϕ) of a parameterization is measured with respect to a
given global conformal parameterization φ.

A parameterization ϕ is conformal at p if and only if µ(ϕ)(p) = 0. This motivates
us to look for ϕ that minimizes |µ(ϕ)|. Hence, we define the energy functional E as
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follows:

E(ϕ) =

∫
S

|µ(ϕ)|2 +

∫
S

|∇µ(ϕ)|2. (4.7)

The first energy term aims to minimize the conformality distortion. The second
energy term is a regularization term that enhances the smoothness of ϕ.

To simplify the problem, we eliminate the hard constraint J(ϕ)
∣∣
Ωi

=λi by incorpo-
rating it into the energy functional

Ẽ(ϕ) =

∫
S

|µ(ϕ)|2 +

∫
S

|∇µ(ϕ)|2 +α

(
m∑
i=1

∫
Ωi

|logJ(ϕ)− logλi|2
)
. (4.8)

Here, α is called the penalty parameter. It controls how well the parameterization ϕ
follows the prescribed area distribution. If α is set to be large, ϕ follows the prescribed
area distortion more in the cost of losing the conformality. When α is small, the first
two energy terms are more dominant. Thus, more conformality and smoothness can be
achieved, however, ϕ follows the prescribed area distribution less.

Furthermore, ϕ is required to be bijective. The bijectivity of ϕ can be controlled
by |µ(ϕ)|. In fact, ||µ(ϕ)||∞<1 if and only if ϕ is bijective. This fact can be observed
from the following theorem.

Theorem 4.1. Suppose µ : Ω→C be a complex-valued function defined on a simply-
connected open set Ω⊂C satisfying ||µ||∞<1. Then, its associated quasiconformal map
fµ : Ω→D is bijective, where D :=fµ(Ω). Conversely, if fµ : Ω→D is an orientation-
preserving homeomorphism, then ||µ||∞<1.

Proof. Please refer to [4] and [14].

Suppose S is a simply-connected open surface. S can be globally and conformally
parameterized by φ :S→D⊂C. Then, ||µ(ϕ)||∞<1 if and only if ||µ(ϕ◦φ−1)||∞<1.
This implies ϕ◦φ−1 is a bijection by Theorem 4.1 and hence ϕ is a bijection.

Our optimization problem can now be formulated as follows:

minimize
ϕ:S→D

Ẽ(ϕ) :=

∫
S

|µ(ϕ)|2 +

∫
S

|∇µ(ϕ)|2 +α

(
m∑
i=1

∫
Ωi

|logJ(ϕ)− logλi|2
)

subject to (1) ϕ(pi) = qi, i= 1,. ..,n

(2) ‖µ(ϕ)‖∞<1.

(4.9)

The above variational model (4.9) enforces hard landmark constraints. Sometimes,
it may be more suitable to enforce soft landmark constraints, which allows certain degree
of landmark mismatching. This situation occurs when landmarks cannot be precisely
located. In the situation when exact landmark matching is not necessary, enforcing
soft landmark constraints allows more conformality to be achieved. Model (4.9) can be
easily modified to a variational model with soft landmark constraints by minimizing

Ẽsoft(ϕ) =

∫
S

|µ(ϕ)|2 +

∫
S

|∇µ(ϕ)|2 +α

(
m∑
i=1

∫
Ωi

|logJ(ϕ)− logλi|2
)

+β
n∑
i=1

|ϕ(pi)−qi|2

(4.10)

subject to the constraint that ‖µ(ϕ)‖∞<1.
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Note that minimizing the above variational models (4.9) or (4.10) over ϕ is chal-
lenging. In particular, µ(ϕ) is defined as the quotient of first derivatives of ϕ, whereas
∇µ(ϕ) involves the second derivatives of ϕ. The Euler–Lagrange equations of the en-
ergy functionals are complicated. To alleviate this issue, we simplify our optimization
process using the splitting method. Note that the original model (4.9) is equivalent to
minimizing

Ẽ′(ν,ϕ) =

∫
S

|ν|2 +

∫
S

|∇ν|2 +α

(
m∑
i=1

∫
Ωi

|logJ(ϕ)− logλi|2
)

(4.11)

subject to (1) ϕ(pi) = qi for i= 1,2,...,n; (2) ||ν||∞<1 and (3) ν=µ(ϕ).
We consider the following simplified model of the original variational problem (4.9):

minimize
ν:S→C,ϕ:S→D

Ẽsplit(ν,ϕ) :=

∫
S

|ν|2 +

∫
S

|∇ν|2 +α

(
m∑
i=1

∫
Ωi

|logJ(ϕ)− logλi|2
)

+γ

∫
S

|ν−µ(ϕ)|2

subject to (1) ϕ(pi) = qi, i= 1,. ..,n

(2) ‖ν‖∞<1. (4.12)

The last term aims to enforce the constraint (3) of the original problem (4.11) as
much as possible. γ is the penalty parameter. When γ is large enough, the constraint
(3) can be well satisfied. We minimize the simplified model (4.12) alternatively. That
is, we minimize the model with respect to ν and ϕ alternatively. This will be explained
in more details in the next subsection.

Similarly, the soft landmark constraint model (4.10) can also be simplified as follows
by minimizing:

Ẽsplitsoft (ν,ϕ) =

∫
S

|ν|2 +

∫
S

|∇ν|2 +α

(
m∑
i=1

∫
Ωi

|logJ(ϕ)− logλi|2
)

+β

n∑
i=1

|ϕ(pi)−qi|2

+γ

∫
S

|ν−µ(ϕ)|2 (4.13)

subject to the constraint that ‖ν‖∞<1.

4.3. Minimization of the energy model. In this subsection, we describe how
we minimize the energy models (4.12).

To simplify the problem, the surface S is firstly parameterized onto D globally using
a conformal map φ :S→D. The parameterization is further adjusted by composing it
with a map f :D→D, such that the overall parameterization follows the prescribed area
distribution while minimizing the conformality distortion. As a result, our problem is
now reduced to a 2D problem to look for an optimal map f :D→D such that the
composition map ϕ :=f ◦φ is our desired parameterization.

We first consider the minimization problem (4.12). Let Ω̃i=φ(Ωi). With the pa-
rameterization as introduced above, our optimization problem can be formulated as:

minimize
ν:D→C,f :D→D

Ẽsplit(ν,f) :=

∫
D

|ν|2 +

∫
D

|∇ν|2 +α

(
m∑
i=1

∫
Ω̃i

|logJ(f)− logλi|2
)
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+γ

∫
D

|ν−µ(f)|2

subject to (1) f ◦φ(pi) = qi, i= 1,. ..,n

(2) ‖ν‖∞<1. (4.14)

Under this setting, the area distribution λi is now defined on Ω̃i, which should be
adjusted based on the conformal factor of φ to compensate for the area distortion
introduced by φ.

Conventional penalty method increases the penalty parameter γ in each iteration
until∞. To further improve the efficiency of the algorithm, we fix the penalty parameter
γ to be a large enough constant and solve only one optimization problem.

Suppose we are in the nth iteration with (νn,fn), we first consider the derivative
of the area mismatching term Earea(f) =

∫
Ω
|logJ(f)− logλ|2. Here, we simplify our

discussion by considering the area mismatching on Ω only.
Now we wish to find a vector field v to perturb fn, so that the area mismatching

term E(f+εv) decreases for some small value of ε. More precisely, we wish to find
the first variation of E(fn) such that E(fn+εv) decreases most rapidly. The desired
direction is simply the negative of the functional derivative. Consider

d

dε
Earea(fn+εv)

∣∣∣∣
ε=0

=

∫
Ω

∂

∂ε

(
|logJ(fn+εv)− logλ|2

)∣∣∣∣
ε=0

=

∫
Ω

2

J(fn+εv)
(logJ(fn+εv)− logλ)

d

dε
J(fn+εv)

∣∣∣∣
ε=0

=

∫
Ω

4

J(fn)
(logJ(fn)− logλ)

(
∂f1

n

∂x

∂v2

∂y
+
∂f2

n

∂y

∂v1

∂x
− ∂f

1
n

∂y

∂v2

∂x
− ∂f

2
n

∂x

∂v1

∂y

)
,

where fn= (f1
n,f

2
n) :R2→R2 and v= (v1,v2) :R2→R2. By using integration by parts,

we have

<∇Earea(fn),v >

=
d

dε
Earea(fn+εv)

∣∣∣∣
ε=0

=

∫
Ω

[
∂

∂x

(
4

J(fn)
(logJ(fn)− logλ)

∂f2
n

∂y

)
− ∂

∂y

(
4

J(fn)
(logJ(fn)− logλ)

∂f2
n

∂x

)]
v1

+

[
∂

∂y

(
4

J(fn)
(logJ(fn)− logλ)

∂f1
n

∂x

)
− ∂

∂x

(
4

J(fn)
(logJ(fn)− logλ)

∂f1
n

∂y

)]
v2.

Therefore, the functional derivative ∇E is obtained. By taking the negative of ∇E, we
have the descent direction:

dfn=−

 ∂
∂x

(
4

J(fn) (logJ(fn)− logλ)
∂f2

n

∂y

)
− ∂
∂y

(
4

J(fn) (logJ(fn)− logλ)
∂f2

n

∂x

)
∂
∂y

(
4

J(fn) (logJ(fn)− logλ)
∂f1

n

∂x

)
− ∂
∂x

(
4

J(fn) (logJ(fn)− logλ)
∂f1

n

∂y

).
(4.15)

Once we have found dfn, the mapping is updated to fn+κdfn for some step-size κ.
Determining a suitable step-size is important for the minimization process, which will
be discussed in Section 5.3.
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As the mapping is perturbed from fn to fn+κdfn, its associated Beltrami coefficient
is also purturbed. From the Beltrami equation, the pertubation µdfn of the Beltrami
coefficient can be explicitly computed. Note that

∂(fn+κdfn)

∂z̄
= (µ(fn)+µdfn)

∂(fn+κdfn)

∂z
. (4.16)

By a simple calculation, we obtain

µdfn =κ

(
∂dfn
∂z̄
−µ(fn)

∂dfn
∂z

)/
∂(fn+κdfn)

∂z
. (4.17)

From above, we transform the displacement dfn of the mapping fn to the variation
of the Beltrami coefficient µdfn . Similarly, we can compute the decent direction for the
energy term

∫
D
|νn−µ(fn)|2, which is given by

dµp= 2(νn−µ(fn)). (4.18)

Therefore, the decent direction for the energy term

α

(
m∑
i=1

∫
Ω̃i

|logJ(fn)− logλi|2
)

+γ

∫
D

|νn−µ(fn)|2

is given by dµ=αµdfn +γdµp. We then update µn to µ̃=µn+ tdµ for some small step-
size t.

To sum up, the above discussion tells us how to update the Beltrami coefficient so
as to minimize:

α

(
m∑
i=1

∫
Ω̃i

|logJ(fn)− logλi|2
)

+γ

∫
D

|νn−µ(fn)|2. (4.19)

We can then solve the Beltrami equation with µ̃ as the Beltrami coefficient, while
enforcing the landmark constraints f ◦φ(pi) = qi, i= 1,2,. ..,n. We then obtain the cor-
responding mapping f̃ , whose Beltrami coefficient closely resembles to µ̃. Note that
this mapping satisfies the hard landmark constraints. Since µ̃ may not be admissible
with the landmark constraints enforced, the Beltrami coefficient of f̃ may not be exactly
equal to µ̃. We set µn+1 =µ(f̃).

In this paper, we solve the Beltrami equation using the Linear Beltrami Solver
(LBS) as introduced in [19]. We will now describe LBS briefly. In fact, the Beltrami
equation can be reduced to two elliptic PDEs. We write f =u+

√
−1v. From the

Beltrami Equation (3.1),

µ=
(ux−vy)+

√
−1 (vx+uy)

(ux+vy)+
√
−1(vx−uy)

. (4.20)

Suppose µ=ρ+
√
−1 τ . Then

∇·
(
A

(
ux
uy

))
= 0 and ∇·

(
A

(
vx
vy

))
= 0. (4.21)

Here, A=

(
α1 α2

α2 α3

)
is symmetric positive definite where α1 = (ρ−1)2+τ2

1−ρ2−τ2 ; α2 =− 2τ
1−ρ2−τ2

and α3 = 1+2ρ+ρ2+τ2

1−ρ2−τ2 .
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Hence, given µ, the quasi-conformal map f can be reconstructed by solving equa-
tions (4.21) subject to the landmark constraints. In the discrete case, the elliptic PDEs
(4.21) can be discretized as two linear systems subject to the landmark constraints.
Such a solver for quasi-conformal map is called the Linear Beltrami Solver (LBS). For
details, please refer to [19].

With the new Beltrami coefficient µn+1, our next step is to minimize the energy
terms

Ê(ν) :=

∫
D

|ν|2 +

∫
D

|∇ν|2 +γ

∫
D

|ν−µn+1|2 (4.22)

with respect to ν. Note that these terms act as the regularizer of the energy model
as well as minimizing the Beltrami coefficient to enforce the bijectivity constraint. By
considering the Euler–Lagrange equation, the optimization problem (4.22) is equivalent
to solving

(−∆+2I+2γI)ν= 2γµn+1. (4.23)

By solving the Euler–Lagrange Equation (4.23), νn+1 can be obtained, which min-
imizes the energy functional (4.22). The energy functional involves the L2 norm of
ν. We remark that minimizing the L2 norm of ν cannot theoretically guarantee the
constraint ‖ν‖∞<1 to be satisfied. However, in our experiments, it is observed that
minimizing the L2 norm of ν is already sufficient to produce a diffeomorphic mapping
(that is, ‖ν‖∞<1), even for the case with a very large deformation. In the very extreme
case with an extremely large deformation, one may minimize the Lp norm of ν with
bigger p instead of the L2 norm. However, the optimization problem can no longer be
solved efficiently by solving a sparse linear system. Alternatively, a simple projection
(truncation) step can also be added in the procedure to obtain a diffeomorphic mapping
for the very extreme case:

Pδ(νn+1)(x) =

{
νn+1(x) if |νn+1(x)|<1

(1−δ)(cos(arg(νn+1))+ isin(arg(νn+1))) if |νn+1(x)|≥1.
(4.24)

In practical situations, the truncation step is never needed to ensure the bijectivity.
Minimizing L2 norm of ν already suffices to handle very large deformations. The trun-
cation step may only be necessary when we are handling extremely large deformations.
Such extreme cases are not common in practical situations.

Once νn+1 is obtained, we can then update fn+1 by solving the Beltrami equation
with µ=νn+1 using LBS. We repeat the above process until ‖µ(fn+1)−µ(fn)‖∞≤ ε
for some small threshold ε. The overall procedure is summarized in Algorithm 1.

4.4. Optimized parameterization of high-genus surfaces. The discussions
in last subsections assume the underlying surface to be simply-connected. In fact, our
proposed method can also be applied to high-genus surfaces. For high-genus surfaces,
we propose to compute the optimized quasiconformal parameterization into its universal
covering space, which follows the prescribed area distribution while minimizing the local
geometric distortion.

Every high-genus surface S (with genus g≥1) is associated with a universal covering

space Ŝ⊆R2. A universal covering space is a simply-connected space with a continuous
surjective map ψ : Ŝ→S satisfying the following: for any p∈S, there exists an open
neighborhood U of p such that ψ−1(U) is a disjoint union of open sets in Ŝ, in which
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Algorithm 1: Optimized conformal parameterization with controllable area dis-
tortion

Input: Surface S and its conformal parameterization φ; Prescribed area
distribution λ; Boundary condition for the target domain D.

Output: Optimized parameterization f ◦φ :S→D balancing between the area
distortion and conformality distortion.

1 Initial ν0 = 0; f0 = Id; µ0 = 0;
2 repeat
3 Compute dfn minimizing the area mismatching term;
4 Compute the step-size κ as described in Section 5.3;
5 Compute µdfn , dµp and dµ=αµdfn +γdµp. Set µ̃=µn+ tdµ;

6 Use LBS to reconstruct f̃ from µ̃ with landmark constraints;

7 Compute µn+1 =µ(f̃);
8 Solve νn+1 from the Euler-Lagrange equation

(−∆+2I+2γI)ν= 2γµn+1;

9 Update νn+1←Pδ(νn+1) (See equation 4.24);
10 Use LBS to reconstruct fn+1 from νn+1 with landmark constraints;
11 Compute µ(fn+1);

12 until ||µ(fn+1)−µ(fn)||∞≤ ε;

each of these disjoint open sets is mapped homeomorphically onto U by ψ. We call
ψ the covering map. The covering map is invariant under the deck transformation.
A deck transformation is a map σ : Ŝ→ Ŝ such that ψ◦σ=ψ. The collection of all
deck transformations forms a group, called the Deck transformation group, which is
2g dimensional. When g= 1, Ŝ is equal to the whole plane R2. When g>1, Ŝ is the
Poincarè disk H2. The Poincarè disk H2 is a unit disk equipped with a metric defined
as follows:

ds2 =
4dzdz̄

(1−zz̄)2
. (4.25)

Let p∈S be a point on S, which is called a base point. We consider the collection of
all closed loops based at p. Two such closed loops c1 and c2 are said to be equivalent if
there exists a homotopy H : [0,1]× [0,1]→S such that H(0,·) = c1 and H(1,·) = c2. All
equivalent loops form an equivalence class. The set of all equivalent classes form a group
called the fundamental group, π(S,p), of S. Let {a1,b1,...,ai,bi,...,ag,bg} be a basis of
π(S,p). Suppose r, s are two elements of π(S,p), which are two closed loops based at
p. The product of r and s is defined as follows:

(rs)(t) :=

{
r(2t) 0 ≤ t ≤ 1

2 ,
s(2t−1) 1

2 ≤ t ≤ 1.
(4.26)

The identity element is the constant map at the base point. The inverse a−1
i of a

loop ai is the same loop with opposite direction at the base point. Slicing along the
basis, S becomes a simply-connected open surface, denoted by Scut, which is called
the fundamental domain. The fundamental group basis {a1,b1,a2,b2,...,ag,bg} is called
canonical if any two loops intersect only at the base point p. From algebraic topology,
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(a) Torus and its fundamental polygon (b) 2-Tours and its fundamental polygon

Fig. 4.1: Illustration of conformal embedding of high-genus surfaces into their universal covering
spaces. (a) shows a genus one torus and the corresponding conformal embedding into the universal
covering space (C). (b) shows a genus two 2-torus and the corresponding conformal embedding into
the universal covering space (Poincarè disk).

the boundary of the fundamental domain with respect to the canonical loops is given
by

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 ·· ·agbga−1
g b−1

g . (4.27)

Each canonical cut can be chosen to be the shortest path in its equivalence class. The
fundamental domain Scut can be conformally embedded onto a 2D domain Ω⊂R2,
called the fundamental polygon. By glueing copies of Ω together along its boundaries,
the universal covering space of S, Ŝ, is obtained. As a result, we get the covering map
ψ : Ŝ→S. See Figure 4.1 for an illustration of the idea.

Now, let ψ−1(S) =
⋃
α∈I D̃α, where I is the index set. The fundamental polygon, Ω,

belongs to one of the pieces, D̃α⊂ Ŝ. Two adjacent D̃α and D̃β intersect at the edges
if α 6=β. Furthermore, we can find the generator {ϕ1,φ1,ϕ2,φ2,...,ϕg,φg} of the Deck
transformation group of S1 such that ϕi(ai) =a−1

i and φi(bi) = b−1
i (1≤ i≤g). Here,

we identify ai and bi with the boundaries of the fundamental polygon, which are the
projected images of ai and bi in the universal covering space. {ϕ1,φ1,ϕ2,φ2,...,ϕg,φg}
are called the Fuchsian group generators. When g= 1, ϕi and φi are just translations
in R2. When g>1, ϕi and φi are Möbius transformations of the unit disk, which can
be computed explicitly. We will describe the computation of ϕ1. The other Fuchsian
group generators can be obtained in the same way. Suppose the starting point and
ending points of c1 are r and s, and the starting point and ending points of c−1

1 are
s′ and r′. We need to look for a Möbius transformation ϕ1 such that ϕ1(r) = r′ and
ϕ1(s) =s′. We first compute a Möbius transformation to map r to the origin, which is
given by: ρ1(z) = (z−r)/(1− r̄z). Then, ρ1 maps rs to a radial Euclidean line. Let the
angle between ρ1(rs) and the real axis be θ, and let ρ2(z) =e−iθz. Then, ρ2 ◦ρ1 maps
r to the origin and rs to the real axis. Similarly, we can find Möbius transformation
ρ′1 and ρ′2 such that ρ′2 ◦ρ′1 maps r′ to the origin and r′s′ to the real axis. The deck
transformation ϕ1 is then given by: ϕ1 =ρ′−1

1 ◦ρ′−1
2 ◦ρ2 ◦ρ1.

In this work, we apply the Ricci flow method introduced by Gu et al. in [12,32] to

compute the conformal embedding of S into its universal covering space Ŝ. To obtain
the optimized quasiconformal parameterization, we proceed to adjust the conformal
embedding on the universal covering space. More specifically, we look for a map f̃ : Ŝ→ Ŝ
such that ψ◦ f̃−1 is a covering map of S. This can be done by computing a map f on one
fundamental polygon D̃α that satisfies the periodic boundary constraints. The overall
map f̃ can be obtained by the periodic extension of f . More specifically, to obtain the
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optimized quasiconformal map that follows the prescribed area distribution, we propose
to compute f : D̃α→ Ŝ that optimizes Model 4.12 subject to the boundary constraints
that

ϕi(f(ai)) =f(a−1
i ) and φi(f(bi)) =f(b−1

i ). (4.28)

The above optimization problem can be solved similarly as described in the last
subsection with the addition of the periodic boundary constraints.

5. Numerical implementation

In this section, we discuss the numerical implementation of our proposed algorithm
in detail.

5.1. Assignment of λi. In our model (4.12), the area distribution function λi
associated to the subdomains Ω̃i=φ(Ωi) are prescribed by users, where φ is a conformal
parameterization of S. In practice, the subdomains are prescribed according to users’
preference on which regions to be enlarged, squeezed or area preserving. In the discrete
case, Ω̃i can be considered as a union of triangular faces.

Now, the area distribution function λi is a scalar function defined on each triangular
faces of Ω̃i, which is prescribed by users according to their applications. For the purpose
of illustration, we consider a simple case. The more complicated case can be handled
similarly. Suppose we aim to obtain an optimal parameterization ϕ of the surface S onto
the parameter domain D, which minimizes conformality and area distortions. In this
case, we set Ω̃i=D. Without loss of generality, we may assume that D is rescaled such
that the area of S and D are equal. Our goal is to find a homeomorphism f :D→D such
that ϕ=f ◦φ is our desired optimal parameterization. Note that the discrete Jacobian
of the mapping f on each triangular face T of D is simply the ratio between the area
of T and f(T ).

Our proposed model minimizes the area distortion by minimizing an area distortion
term

∫
Ω
|logJ(f)− logλi|2. In order to obtain a parameterization ϕ of S that preserves

area as good as possible, we set

λ(T ) =
A(φ−1(T ))

A(T )
,

where A(φ−1(T )) and A(T ) denotes the area of φ−1(T ) and T respectively.

On the other hand, if we need to enlarge or squeeze some subdomain Ω̃i⊂D by a

ratio of k∈R+, we can set λ(T ) = kA(φ−1(T ))
A(T ) for all T ⊂Ωi. The area of D should be

suitably rescaled such that equation (4.3) is satisfied.

5.2. Discrete differential operators. Consider a triangle T = [v1,v2,v3] where
vk =xk+ iyk for k= 1,2,3. Suppose we have a function f on the triangle. By the first
order approximation

f(z+p)≈f(p)+fz(p)z+fz̄(p)z̄, (5.1)

we have the following equality on each triangle in the triangulation mesh: f(v1)
f(v2)
f(v3)

=

 v1 v1 1
v2 v2 1
v3 v3 1

 fz(p)
fz̄(p)
f(p)

 , (5.2)
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where p is any interior point in the triangle. By solving this equation on each triangle,
we can define the discrete differential operator Dz and Dz̄ explicitly. With the discrete
differential operator Dz and Dz̄, we can obtain the discrete Beltrami coefficients directly.

Let T1 = [vi,vj ,vk] and T2 = [vi,vj ,vl]. The mesh Laplacian is defined as:

∆(f(vi)) =
∑
T∈Ni

cotαij+cotβij
2

(f(vj)−f(vi)), (5.3)

where αij and βij are the two interior angles of T1 and T2 which are opposite to the
edge [vi,vj ] [11].

5.3. Descent direction for the area mismatching term. Recall that the
descent direction of the area mismatching term in equation (4.15):

dfn=−

 ∂
∂x

(
4

J(fn) (logJ(fn)− logλ)
∂f2

n

∂y

)
− ∂
∂y

(
4

J(fn) (logJ(fn)− logλ)
∂f2

n

∂x

)
∂
∂y

(
4

J(fn) (logJ(fn)− logλ)
∂f1

n

∂x

)
− ∂
∂x

(
4

J(fn) (logJ(fn)− logλ)
∂f1

n

∂y

),
or in the complex form:

dfn=−
(
∂

∂z̄

)(
8

J(fn)
(logJ(fn)− logλ)

∂fn
∂z

)
+

(
∂

∂z

)(
8

J(fn)
(logJ(fn)− logλ)

∂fn
∂z̄

)
where fn=f1

n+ if2
n. By the discretization of the differential operator introduced in

section 5.1, we have the discrete version of the descent direction:

dfn=−D∗z (MDzfn)+D∗z̄ (MDz̄fn) , (5.4)

where M is a diagonal matrix with elements 8
J(fn) (logJ(fn)− logλ) defined on each

triangle of the mesh and D∗ is the conjugate transpose of a matrix D.

5.4. Choice of the parameter. After the decent direction df reducing the area
mismatching energy term is found, we also need to choose the step-size κ. Let vi= [xi,yi]
and df(vi) = [dxi,dyi], where vi∈ [v1,v2,v3]T =T are the vertices of a triangle T . κ is
chosen as follows: To solve the optimization problem in Algorithm 2, we first denote

Algorithm 2: Step-size κ

Input: Triangular mesh with vertex v; Descent direction df .

1 Initial κ= 1;
2 repeat
3 Find κ∗ such that κ∗=

max0<κ≤1

κ : det

x1 +κdx1 x2 +κdx2 x3 +κdx3

y1 +κdy1 y2 +κdy2 y3 +κdy3

1 1 1

>0, T = [v1,v2,v3]T

.
4 df←k∗df ;
5 κ←κ∗.

6 until κ<1;
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xij =xi−xj for simplicity. Then we can rewrite the determinant as

det

x1 x2 x3

y1 y2 y3

1 1 1

+κ

dx1 dx2 dx3

dy1 dy2 dy3

0 0 0

=Aκ2 +Bκ+C,

where

A=dx21dy31−dx31dy21,

B=dx21y31 +dy31x21−dx31y21−dy21x31,

C=x21y31−x31y21.

Therefore, by considering the above quadratic equation, we can determine the condition
on κ that guarantees the preservation of the orientation for each triangle, i.e. avoiding
flips of triangles on the mesh.

5.5. Initial parameterization. As we can see that the proposed energy model
(4.14) is non-convex, finding an appropriate initial parameterization is important. In
Algorithm 1, we choose the conformal parameterization as the initial parameterization
if there is no landmark constraint. However, if landmark constraints are enforced, we
set the initial parameterization to be a minimizer of the energy model (4.14) with α= 0.
This initialization gives us an optimized conformal parameterization, which satisfies the
prescribed landmark constraints.

6. Experimental results
We have tested our proposed algorithm on both synthetic and real data. In this

section, experimental results will be shown. We set the parameter γ= 1 in each example.

6.1. Synthetic examples.

Example 1. We first test our proposed model on a synthetic example, whose area
distribution is prescribed in such a way that the central region of the rectangular mesh
is expanded. In this example, the regularization terms in our model∫

D

|ν|2 + |∇ν|2

are removed. The aim is to check the effectiveness of the area mismatching term to
enforce the prescribed area distribution.

To prescribe the area distribution, we take an initial mesh and deform it to obtain
the area distortion under the deformation. Figure 6.1(a) shows the initial mesh of a
2D rectangular mesh. It is deformed in such a way that the central region is enlarged,
which is shown in (b). (c) shows the logarithm of the Jacobian determinant logλ of
the deformation, visualized by a colormap. logλ is used to define the area distribution
in this example. More specifically, we set the subdomain to be the whole rectangular
mesh and use logλ as our target area distribution. Our goal is to obtain a deformation
using our proposed algorithm, which follows the prescribed area distribution as good as
possible.

Figure 6.2(a) shows the result obtained by our proposed algorithm. The colormap
describes the area mismatching logJ(f)− logλ. The area distortion is close to 0 over
the whole domain, indicating that the area distribution perfectly matches with the
prescribed one. Although the area distribution can be matched accurately, conformality
distortion is large, especially on the region near the boundary of the ball. Figure 6.2(b)
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(a) (b) (c)

Fig. 6.1: Setup in Example 1. (a) shows the original mesh S, which is a 2D square domain. The
original mesh S is deformed, under which the central disk is enlarged, as shown in (b). (c) shows
the logarithm of the Jacobian determinant of the deformation, visualized by a colormap. It is used to
define the area distribution in Example 1.

(a) (b) (c)

Fig. 6.2: Result of Example 1 without considering the regularization terms. (a) shows the optimized
parameterization that matches the prescribed area distribution. (b) shows the plot of energy versus
iterations in the algorithm. (c) shows the histogram of magnitude of the Beltrami coefficient, which
describes the distribution of the conformality distortion under the optimized parameterization.

shows the energy versus iterations in the algorithm. Since regularization terms are not
considered, a zero energy means an exact matching of the area distribution. (c) shows
the distribution of the conformality distortion. Note that the regularization terms are
removed and hence the conformality distortion of the parameterization is not under
control. Some triangles have large Beltrami coefficients with |µ|>0.75 (on the boundary
of the expanding region), which indicate large conformality distortions.

Example 2. In the second example, we add the regularization term into the model.
The coefficient α associated to the area distortion term is set to be α= 0.3. Figure 6.3
shows the obtained deformation. As the regularization term is added, the area distri-
bution cannot match the prescribed one perfectly, which is as shown in Figure 6.3(a).
On the other hand, the regularization terms prevent the triangles on the boundary
of expanding region from being squeezed (compared with Example 1). As shown in
6.3(a), the area mismatching logJ(f)− logλ is relatively bigger near the boundary of
the expanding region. Furthermore, the minimization of the L2-norm of µ reduces the
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(a) (b) (c)

Fig. 6.3: Results of Example 2. (a) shows the optimized parameterization in Example 2, in which
the regularization terms are included in the model with α= 0.3. (b) shows the plot of energy versus
iterations in the algorithm. (c) shows the histogram of magnitude of the Beltrami coefficient, which
describes the distribution of the conformality distortion under the optimized parameterization.

(a) (b) (c)

Fig. 6.4: Results of Example 3. (a) shows the optimized parameterization in Example 2, in which
the regularization terms are included in the model with α= 0.1. (b) shows the plot of energy versus
iterations in the algorithm. (c) shows the histogram of magnitude of the Beltrami coefficient, which
describes the distribution of the conformality distortion under the optimized parameterization.

conformality distortion of the deformation. As shown in Figure 6.3(c), the conformality
distortion |µ|, is smaller (with ‖µ‖∞= 0.4609), when comparing with Example 1. It
means the obtained deformation preserves more conformality.

Example 3. In this example, we test the same set-up as in Example 2 with α=
0.1. By reducing α, we tolerate for the area mismatching in order to preserve more
conformality. As shown in Figure 6.4(c), the overall conformality distortion of the
obtained deformation is less than those in Example 1 and Example 2. However, the
area mismatching is larger, when compared with Example 1 and 2. These examples
demonstrate that there is always a balance between the area distortion and conformality
distortion of a parameterization. The parameter α is therefore a convenient tool to
control the balance.

Example 4. In this example, we define the area distribution λ, which is compactly
supported and satisfies logλ= 2 in a small region Ω̃ (the red region in Figure 6.5(a)).
The colormap on Figure 6.5(a) is given by logλ. In other words, we aim to obtain a
transformation, which enlarges the area of the (red) interested region. We set α= 10/3
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(a) (b)

(c) (d)

Fig. 6.5: Results of Example 4. S is again chosen as the square mesh. (a) shows the prescribed
area distribution logλ, which is compactly supported in the red region. (b) shows the optimized pa-
rameterization obtained from our algorithm. The colormap is given by the logarithmic of the Jacobian
determinant of the parameterization. (c) shows the plot of energy versus iterations in the algorithm.
(d) shows the histogram of the magnitude of the Beltrami coefficient.

to balance between area and conformality distortions of the parameterization. (b) shows
the obtained transformation f , whose colormap is given by logJ(f). As expected, the
red region is enlarged under the transformation. Note that logJ(f) is not exactly equal
to the prescribed area distribution logλ, as a non-zero α is set to balance between the
conformality distortion and area mismatching. (c) shows the plot of the energy versus
iterations. Note that the energy is minimized iteratively. (d) shows the histogram of |µ|
asssociated to the obtained transformation, which measures the conformality distortion.

Example 5. In this example, we test our proposed model with landmark con-
straints. In Figure 6.6(a), two dots in red color show the initial positions {p1,p2} of two
landmark points. Their target positions {q1,q2} are given by two blue dots. We aim to
compute a landmark-aligned transformation that matches the prescribed area distribu-
tion, while minimizing the conformality distortion. In this example, we set Ω̃ to be the
whole domain and λ= 1 on Ω̃. In other words, we aim to compute a landmark-aligned
transformation of the 2D rectangle, which minimizes the local geometric distortion while
preserving the area as much as possible.

Figure 6.6 (b) shows the obtained transformation f with α= 0. In other words,
the area mismatching term is removed in our model. Here, the colormap is given by
logJ(f). From the colormap, it can be observed that triangular faces in the middle (deep
blue) region are squeezed drastically. It is expected since area mismatching term is not
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(a) (b) (c)

(d) (e)

Fig. 6.6: Results of Example 5. (a) shows the original domain S and the landmark points denoted
by blue dots. Their target positions are denoted by red dots. (b) shows the landmark-aligned optimized
parameterization with α= 0. The colormap is given by the logarithmic Jacobian determinant of the pa-
rameterization. (c) shows the landmark-aligned optimized parameterization with α= 1. The colormap
is given by the logarithmic Jacobian determinant of the parameterization. (d) shows the plot of energy
versus iterations and (e) shows the conformality distortion of the parameterization.

included in the model. (c) shows the obtained transformation when α= 1. As the area
mismatching term is included, the squeezing effect of triangular faces are eliminated. (d)
shows the energy plot versus iterations and (e) shows the histogram of |µ| asssociated
to the obtained transformation, which measures the conformality distortion.

Example 6. In this example, we test our proposed model on a curvilinear surface
S embedded in R3. Let Ω̃ be the whole domain D=φ(S), where φ is the conformal
parameterization of S. As discussed in Section 5.1, we set λ to be

λ(T ) =
A(φ−1(T ))

A(T )
,∀ T ⊂ Ω̃.

Furthermore, we set α= 1 in this example. We apply our algorithm to compute a
texture map for projecting a texture image onto the surface. Figure 6.7(a) shows the
curvilinear surface and texture image used in this example. Using our proposed method,
we compute an optimized parameterization of S onto the 2D texture image, which
minimizes the conformality distortion and area distortion.

We first conformally parameterize S onto the 2D domain and project the texture
image onto S. The result is shown in Figure 6.7(b). Under the conformal parame-
terization, the local geometry (conformality) is preserved, although the area can be
severely distorted. Observe that the characters “8” and “5” are enlarged and distorted
unnaturally at the bumps. Using our algorithm, we compute the optimized conformal
parameterization minimizing the area distortion, which is shown in Figure 6.7(c). The
colormap is given by the area mismatching. Note that the area mismatching are close to
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(d) (e) (f)

Fig. 6.7: (a) shows a surface mesh S and the texture image. (b) shows the textured surface using
the conformal parameterization. (c) shows the optimized conformal parameterization that minimizes
area and conformality distortions. (d) shows the textured surface using the optimized parameteriza-
tion. (e) shows the plot of energy versus iterations. (f) shows the conformality distortion of the
parameterization.

zero, meaning that the area distortion under the parameterization is small. (d) shows
the textured surface using the obtained optimized parameterization. Distortions of the
characters “8” and “5” at the bumps are avoided. (e) and (f) shows the energy versus it-
erations and the conformality distortion of the optimized parameterization respectively.

6.2. Real examples. In this subsection, we show experimental results of our
proposed model on real data.

Brain surface parameterization. The complicated structure of the brain hinders
the shape analysis of brain cortical surfaces. To alleviate this issue, parameterization
techniques are often used to flatten the cortical surface, so that the analysis and com-
putation can be carried out on the 2D domain. Conformal parameterizations have been
widely used since they preserve the local geometry well. Hence, local geometric struc-
tures of the brain cortical surface can be visualized and scientific computing can be
carried out on the 2D domain. However, the major drawback of conformal parameter-
izations is that they often introduce area distortion, such as a serious squeezing. This
causes difficulties for the visualization of the geometric structure of the brain as well
as the scientific computing on the parameter domain. Using our proposed algorithm,
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(a) (b) (c)

Fig. 6.8: (a) shows the brain cortical surface. The colormap is given by the mean curvature of the
brain surface. (b) shows the conformal parameterization. (c) shows the optimized parameterization,
which minimizes both the area and conformality distortions.

we can obtain an optimized parameterization that balances between conformality and
area distortions. In particular, we set Ω̃ to be the whole parameter domain and define
λ= 1 on Ω̃. In this example, we set γ= 0.1. Figure 6.8(a) shows a human brain cortical
surface. Its conformal parameterization is shown in (b). It can be observed that a
large portion of the surface are squeezed to the central region of the parameter domain
under the parameterization. (c) shows the optimized parameterization obtained by our
method. The squeezing effect on the parameter domain is avoided, while the geometric
pattern of the sulci can be well observed.

Optimized parameterization of real 3D scanned surface. We also test our
proposed algorithm on real 3D scanned surfaces embedded in R3. In this example,
we parameterize a lion head surface with the prescribed area distribution, so that the
interested part of the surface is enlarged on the parameter domain. The lion head surface
is shown in Figure 6.9(a). The area distribution is defined such that the mouth and
eyes of the lion head are enlarged on the parameter domain. (b) shows the conformal
parameterization of the lion head surface, whose colormap is given by the prescribed
area distribution logλ. (c) shows the conformal parameterization of the lion head,
whose colormap is given by the mean curvature of the surface. (d) shows the optimized
parameterization obtained using our algorithm. Using our proposed algorithm with
the prescribed area distribution, we successfully enlarge the mouth and eyes on the
parameter domain. The result is shown in Figure 6.9(d). The shapes of the mouth and
eyes are also well preserved on the parameter domain.

Vertebra bone registration. An important application of parameterizations is
to compute surface registrations. Once the landmark-aligned parameterizations of two
surfaces are obtained, a landmark-matching registration between the two surfaces can be
easily obtained through the composition map of the parameterizations. Our proposed
algorithm can also be applied to high-genus surfaces. In this example, we tested our
model to register genus-one surfaces with prescribed landmark constraints. Figure 6.10
(a) shows the surface mesh of vertebra bone A. Feature landmarks are labeled as blue
dots. Its conformal parameterization onto the universal covering space is shown in (b).
The corresponding locations of the feature landmarks on the parameter domain are also
labelled by the blue dots. In this example, we apply the algorithm in [12] to compute
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(a) (b) (c) (d)

Fig. 6.9: (a) shows the surface mesh of a lion head. (b) shows the prescribed area distribution logλ,
shown on the conformal parameter domain. (c) shows the comformal parameterization. (d) shows the
optimized parameterization obtained from our proposed model.

the conformal parameterization into the universal covering space. Periodic boundary
conditions are enforced. Figure 6.10(c) and (d) show the surface mesh of vertebra bone
B and its conformal parameterization respectively. The red dots in (c) and (d) are the
positions of the feature landmarks on the vertebra bone and its conformal parameter
domain respectively. To register bone A to bone B, we parameterize bone A such that
its feature landmarks are mapped to the landmark positions of bone B on its parameter
domain. Our goal is to obtain a landmark-aligned parameterization, which minimizes
area and conformality distortions. In this case, we set Ω̃ to be the whole parameterized
domain (which is the fundamental polygon in this example) and set λ= 1 on Ω̃. (e) shows
the optimized parameterization result of bone A. The boundaries of the fundamental
polygon is allowed to move freely, which satisfy the periodic boundary constraints. Using
the composition map of the parameterizations, we deform bone A to bone B, which is
shown in (f). This gives the surface registration f between the two surface meshes. (g)
shows the histogram of logJ(f). The distribution is accumulated at zero, indicating
that the obtained registration preserves the area well.

Visualization of surface-based protein. In this example, we apply our method
to parameterize protein surfaces for the visualization of protein structures. Studying the
surface of a protein is useful as the 3 dimensional structures of proteins can give useful
information to determine their functionalities, through the comparison with other well-
studied proteins. In particular, the electrostatic surface of a protein provides important
information to study the protein-protein interaction [28]. In this example, the protein
data are obtained from the RCSB Protein Data Bank(PDB). We have chosen proteins
with ID 4CS4 and 4D2I in our experiment. Figure 6.11(a) and (d) show the surface
representations of proteins 4CS4 and 4D2I respectively. The green regions denote the
particular regions we are interested in. (b) and (e) show the electrostatic surfaces of
proteins 4CS4 and 4D2I respectively. The electrostatic properties of the protein are
calculated by solving the Poisson–Boltzmann equation [2]. The zoom-in of the selected
regions with electrostatic information are shown in (c) and (f). These subregions are
extracted for the demonstration of our proposed parameterization methods.

To test our algorithm, we parameterize the selected subregion of each protein. The
selected subregions of the two protein surfaces are shown in Figure 6.11 (a) and (b),
which are marked in green. Denote the selcted green regions of the two protein surfaces
by S1 and S2 respectively. S1 and S2 are shown more clearly in Figure 6.11 (c) and (f).
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 6.10: (a) shows the surface mesh of Vertebra bone A. Feature landmark points are marked as
blue dots. (b) shows the conformal parameterization of bone A into its universal covering space. (c)
shows the surface mesh of Vertebra bone B. Corresponding feature landmark points are marked as
red dots. (d) shows the conformal paramterization of bone B into its universal covering space. (e)
shows the landmark-aligned optimized parameterization, which minimizes both the conformal and area
distortions. Using the composition map of the parameterizations, we deform bone A to bone B, which is
shown in (f). (g) shows the histogram of the logarithmic Jacobian determinant of the overall mapping.

Our goal is to look for an optimized parameterization of Si (i= 1,2) such that the area
of a selected subdomain Ωi is preserved under the parameterization, while minimizing
the conformality distortion. The subdomains Ωi’s of Si’s are shown in Figure 6.12 (a)
and (c), which are regions colored in red on the surfaces. Corresponding landmarks
are delineated on each surfaces, which are labeled as green dots. In this example,
we aim to align landmarks onto consistent locations on the parameter domain, while
preserving the area of the selected subdomains under the parameterization as good as
possible. Denote the conformal parameterization of Si by φi (i= 1,2). As before, we set

λ= A(Ωi)
A(φi(Ωi))

on Ωi. The conformal parameterizations of Ω1 and Ω2 are shown in Figure

6.12 (b) and (d) respectively. The green dots denote the locations of landmarks on
the conformal parameter domain. The purple and the blue colors indicate the positive
and negative potential respectively. The distribution of the potential plays a significant
role on the binding between proteins, defining mechanisms of protein-protein complex
formation as well as the study of protein movements [29]. Note that the red regions
Ωi are squeezed on the conformal parameter domains in both cases. This hinders the
visualization and shape comparison of protein structures on the 2D parameter domain.
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(d) (e) (f)

Fig. 6.11: (a) and (d) show the surface representation of the proteins with ID 4CS4 and 4D2I
respectively. The selected regions of interest are labeled in green. (b) and (e) show the electrostatic
information of the proteins in (a) and (d). (c) and (f) show the zoom-in of the selected region of
together with the corresponding electrostatic information in (b) and (e) respectively.

Using our proposed algorithm, we aim to obtain protein surface parameterization, which
minimizes area and conformality distortions.

In order to compare the two selected areas of the protein surfaces, we fix the pa-
rameter domain as a 2D rectangle of certain dimensions. Furthermore, we set α= 1
and γ= 0.1 in this example. For S1, we apply our proposed algorithm to compute an
optimized conformal parameterization, which minimizes the area distortion of Ωi as well
as the conformality distortion under the parameterization. The parameterization result
is shown in Figure 6.12(e) and (f). For S2, we compute an optimized landmark-aligned
conformal parameterization preserving the area of the selected subdomain Ω2, such that
corresponding landmarks are aligned to consistent locations as those in Figure 6.12(e)
and (f). The parameterization result is shown in Figure 6.12(g) and (h). Note that
corresponding landmarks are indeed aligned consistently. Also, unlike the conformal
parameterizations, the selected (red) subdomains Ω1 and Ω2 are not squeezed on the
parameter domain under the parameterizations. It demonstrates that our algorithm can
produce optimized parameterizations, which gives a good balance between area and con-
formality distortions while aligning the prescribed landmarks consistently. This allows
us to visualize the electrostatic information in the interested (red) regions on the 2D
parameter domain more effectively. Figure 6.12(f) and (h) give a clearer visualization of
the parameterized meshes, whose colormaps are given by their electrostatic information.
The energies versus iterations of our algorithm to compute the parameterizations are
shown in Figure 6.12(i) and (j) respectively.



2052 OPTIMIZED PARAMETRIZATION WITH CONTROLLABLE AREA DISTORTIONS

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 6.12: (a) and (c) show the surfaces of selected green regions (See Figure 6.11(a) and (d))
on the upper left corner and also their corresponding conformal parameterization. The sub-regions
colored in red, are denoted as ΩS1 and ΩS2 respectively (We suppress the notation simply to Ω in the
diagram for cleanliness). Two pairs of landmarks A and B are marked in green dots. (b) and (d)
indicate the positive and negative potential by using purple and the blue colors respectively. (e) and
(g) show the parameterization results. Note that due to the landmark criteria, the pairs of landmarks
A and B are indeed aligned consistently. Also, unlike the conformal parameterizations, the red regions
are not squeezed on the parameter domain under the parameterizations. (f) and (h) give a clearer
visualization of the parameterized meshes. The energies versus iterations of our algorithm to compute
the parameterizations are shown in (i) and (j) respectively.

7. Conclusion

This paper presents a new approach to obtain a landmark-free or landmark-aligned
surface parameterization which balances between the conformal and area distortions.
Furthermore, the area distribution of the surface parameterization can be prescribed
by users to fit into their applications. The main strategy is to minimize an energy
functional consisting of the area mismatching term and the regularization term involving
the Beltrami coefficient. The Beltrami coefficient measures the conformality distortion
of the quasiconformal map. It also helps controlling the bijectivity and smoothness of the
parameterization. Experiments have been carried out on both synthetic and real data.
Results show that our proposed method can effectively control the area distribution as
well as the conformality distortion of the parameterization. In the future, we plan to
extend our proposed algorithm to 3D volumetric data and apply our proposed algorithm
to medical imaging for diseases analysis.
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