TIME PERIODIC SOLUTIONS FOR A THREE-DIMENSIONAL NON-CONSERVATIVE COMPRESSIBLE TWO-FLUID MODEL*

YINGHUI WANG[†] AND LEI YAO[‡]

Abstract. In this paper, we consider the existence of time periodic solution to a non-conservative compressible two-fluid model with constant viscosity coefficients and unequal pressure functions $P^+ \neq P^-$ in periodic domains of \mathbb{R}^3 . Based on the topological degree theory, we obtain the existence of the time periodic solution under some smallness assumptions.

Keywords. Time periodic solution; Non-conservative compressible two-fluid model; Topological degree method.

AMS subject classifications. 76T10; 76N10; 35B10.

1. Introduction

1.1. Background. In this paper, we consider the following generic two-phase compressible system in periodic domains $\Omega_L = (-L, L)^3 \subset \mathbb{R}^3 (L > 0$ is an arbitrary positive constant):

$$\begin{cases} \alpha^{+} + \alpha^{-} = 1, \\ \partial_{t}(\alpha^{\pm}\rho^{\pm}) + \operatorname{div}(\alpha^{\pm}\rho^{\pm}u^{\pm}) = 0, \\ \partial_{t}(\alpha^{\pm}\rho^{\pm}u^{\pm}) + \operatorname{div}(\alpha^{\pm}\rho^{\pm}u^{\pm} \otimes u^{\pm}) + \alpha^{\pm}\nabla P^{\pm}(\rho^{\pm}) = \operatorname{div}(\alpha^{\pm}\tau^{\pm}) + \alpha^{\pm}\rho^{\pm}r^{\pm}, \\ P^{+}(\rho^{+}) - P^{-}(\rho^{-}) = f(\alpha^{-}\rho^{-}), \end{cases}$$
(1.1)

where $x \in \Omega_L$ is the spatial variable, t is the time variable. $0 \le \alpha^+(x,t) \le 1$ is the volume fraction of fluid +, and $0 \le \alpha^-(x,t) \le 1$ is that of fluid -, which satisfies $\alpha^{\pm}(-x,t) = \alpha^{\pm}(x,t)$. Moreover $\rho^{\pm}(x,t) \ge 0, u^{\pm}(x,t)$ and $P^{\pm}(\rho^{\pm}) = A^{\pm}(\rho^{\pm})^{\bar{\gamma}^{\pm}}$ are the densities, velocities and pressures of each phase. It is assumed that $\bar{\gamma}^{\pm} \ge 1$, and $A^{\pm} > 0$ are constants. Without loss of generality, we set $A^+ = A^- = 1$ in the sequel. In addition, the function $f(\cdot) \in C^3([0, +\infty))$ is strictly decreasing near the equilibriums. Also, τ^{\pm} are the viscous stress tensors:

$$\tau^{\pm} := \mu^{\pm} (\nabla u^{\pm} + \nabla^{t} u^{\pm}) + \lambda^{\pm} \operatorname{div} u^{\pm} \operatorname{Id},$$

where the constants μ^{\pm} and λ^{\pm} are shear and bulk viscosity coefficients satisfying $\mu^{\pm} > 0$, and $2\mu^{\pm} + 3\lambda^{\pm} \ge 0$, which deduces $\mu^{\pm} + \lambda^{\pm} > 0$; $r^{\pm} = (r_1^{\pm}, r_2^{\pm}, r_3^{\pm})(x, t)$ are the given external forces, which are periodic in time with periodicity T, and satisfy $r^{\pm}(x,t) = -r^{\pm}(-x,t)$. This system is known as a two-fluid flow model. In model (1.1), we describe the capillary pressure effects in terms of f in $(1.1)_4$, which is a natural way to explain the capillary effects; see [12] for details. It is worth noting that the two-fluid model is related to many other important fluid models, for instance, the compressible Navier-Stokes equations $(\alpha^+ \equiv 0 \text{ or } \alpha^- \equiv 0)$, and other models related to the Navier-Stokes equations. See for instance [2,4,12,17,23] and references therein for more background information about this model.

^{*}Received: November 24, 2017; Accepted (in revised form): April 21, 2018. Communicated by Mikhail Feldman.

[†]School of Mathematics, Northwest University, Xi'an 710127, China (yhwangmath@163.com).

[‡]Corresponding author, School of Mathematics, Northwest University, Xi'an 710127, China (yaolei1056@hotmail.com).

In recent years, some efforts were made on this two-fluid model and related models. Bresch et al. [4] considered the existence of global weak solutions in the periodic domain when $1 < \bar{\gamma}^{\pm} < 6$, where the two pressure functions are equal and the capillary effects are considered. Precisely, they assumed a common pressure $P^+ = P^-$, and included a third order derivative of $\alpha^{\pm} \rho^{\pm}$ to account for the capillary effects. Later, Bresch, Huang and Li [5] showed the existence of global weak solutions in one-dimensional case with two equal pressures, when $\bar{\gamma}^{\pm} > 1$; Cui et al. [10] established the decay rate estimates of classical solutions for the same model in [4] (with two equal pressures and capillary effects). Recently, Evje et al. [12] studied the decay rates of strong solutions to (1.1). We can also refer to [20] for the result of the vanishing capillary limit of model (1.1) with capillary effect.

Since there are a lot of time periodic or almost periodic processes in the hydrodynamic applications, abundant researches have been made about time periodic solutions of evolutionary differential equations. See [6, 13, 15, 21, 22, 24, 28] for the time periodic solutions of Navier-Stokes equations. In [15], Galdi et al. got a special physically time periodic solution of the incompressible Navier-Stokes equations. The work of Ma et al. [21] was based on the spectral analysis for the optimal decay estimates on the linearized solution operator and they got the global existence of time periodic solution in \mathbb{R}^N for $N \geq 5$. Farwig and Okabe [13] considered the time periodic solution of the incompressible Navier-Stokes equations in bounded domains of \mathbb{R}^3 with inhomogeneous boundary conditions. About the time periodic solution, there are also some researches about other related models, such as the magnetohydrodynamic equations, Navier-Stokes-Fourier systems, Euler equations etc., we refer to [7, 14, 27]. Recently, Geissert et al. [16] developed a general approach to time periodic incompressible fluid flow problems and semilinear evolution equations, which is based on a combination of interpolation and topological arguments. For more results about the time periodic solutions of the Navier-Stokes equations, we refer to [3, 29].

Our work is based on the results of Jin and Yang [18, 19] about the compressible Navier-Stokes equations, in which the topological degree method was used. In [18], they proved the existence of time periodic solutions in periodic domain $\Omega_L = (-L, L)^3$, and then obtained the solutions in the whole space \mathbb{R}^3 as the limit of solutions in Ω_L , when $L \to \infty$. Thus, they needed the estimates of solutions independent of L. In [19], they got the existence of time periodic solutions in periodic domain $\Omega_L = (-L, L)^3$, and they didn't need the regularity assumption of $(\sigma_t, u_t)(\sigma$ and u denote the density and velocity respectively), which was necessary in [18]; but this conclusion can not be extended to \mathbb{R}^3 . In this paper, we prove the existence of time periodic solutions of (1.1) by the topological degree method. Since the model (1.1) is more complicated than the compressible Navier-Stokes equations, we can just get the existence result in periodic domain. More precisely, as the coefficient of $\nabla \sigma$ is the pressure function $P(\sigma) = \sigma^{\gamma}$, Jin and Yang [18] can get the L^2 estimates of ∇u , which is independent of L by the good structure property of power function. In our framework, we can not obtain the L^2 estimates of $(\nabla u^+, \nabla u^-)$ independent of L, see Lemma 3.5 and Remark 3.2 for details.

1.2. Reformulations. In this subsection, we introduce some new variables and reformulate the model (1.1). The following reformulations are similar to that in [4,12]. To begin with, we make some formal calculations. By the pressure equation $(1.1)_4$, we can deduce the differential identity

$$\mathrm{d}P^+ - \mathrm{d}P^- = \mathrm{d}f(\alpha^- \rho^-),\tag{1.2}$$

where $P^{\pm} := P^{\pm}(\rho^{\pm})$. It is obvious that

$$dP^{+} = s_{+}^{2} d\rho^{+}, \ dP^{-} = s_{-}^{2} d\rho^{-}, \ \text{where} \ s_{\pm}^{2} := \frac{dP^{\pm}}{d\rho^{\pm}} (\rho^{\pm}) = \bar{\gamma}^{\pm} \frac{P^{\pm}(\rho^{\pm})}{\rho^{\pm}}.$$

Here s_\pm denote the sound speed of each phase respectively. Let us introduce two variables

$$n^{\pm} := \alpha^{\pm} \rho^{\pm}, \tag{1.3}$$

which, together with $(1.1)_1$ and the above calculations allow one to write

$$d\rho^{+} = \frac{1}{\alpha^{+}} (dn^{+} - \rho^{+} d\alpha^{+}), \ d\rho^{-} = \frac{1}{\alpha^{-}} (dn^{-} + \rho^{-} d\alpha^{+}).$$
(1.4)

From (1.2) and (1.4), we obtain

$$d\alpha^{+} = \frac{\alpha^{-}s_{+}^{2}}{\alpha^{-}\rho^{+}s_{+}^{2} + \alpha^{+}\rho^{-}s_{-}^{2}}dn^{+} - \frac{\alpha^{+}\alpha^{-}}{\alpha^{-}\rho^{+}s_{+}^{2} + \alpha^{+}\rho^{-}s_{-}^{2}}\left(\frac{s_{-}^{2}}{\alpha^{-}} + f'\right)dn^{-}.$$
 (1.5)

Putting (1.5) into (1.4), we get the following expressions:

$$\mathrm{d}\rho^{+} = \frac{\rho^{+}\rho^{-}s_{-}^{2}}{n^{-}(\rho^{+})^{2}s_{+}^{2} + n^{+}(\rho^{-})^{2}s_{-}^{2}} \left(\rho^{-}\mathrm{d}n^{+} + \left(\rho^{+} + \rho^{+}\frac{\alpha^{-}f'}{s_{-}^{2}}\right)\mathrm{d}n^{-}\right),$$

and

$$\mathrm{d}\rho^{-} = \frac{\rho^{+}\rho^{-}s_{+}^{2}}{n^{-}(\rho^{+})^{2}s_{+}^{2} + n^{+}(\rho^{-})^{2}s_{-}^{2}} \left(\rho^{-}\mathrm{d}n^{+} + \left(\rho^{+} - \rho^{-}\frac{\alpha^{+}f'}{s_{+}^{2}}\right)\mathrm{d}n^{-}\right),$$

then we can get the expression of dP^{\pm} :

$$dP^{+} = C^{2} \left(\rho^{-} dn^{+} + \left(\rho^{+} + \rho^{+} \frac{\alpha^{-} f'}{s_{-}^{2}} \right) dn^{-} \right),$$

and

$$\mathrm{d}P^{-} = \mathcal{C}^{2}\left(\rho^{-}\mathrm{d}n^{+} + \left(\rho^{+} - \rho^{-}\frac{\alpha^{+}f'}{s_{+}^{2}}\right)\mathrm{d}n^{-}\right),$$

where we denote

$$\mathcal{C}^2 := \frac{s_-^2 s_+^2}{\alpha^- \rho^+ s_+^2 + \alpha^+ \rho^- s_-^2}.$$

As in [12], we focus on the case that $\inf n^{\pm} > 0$, $\inf \rho^{\pm} > 0$ and $\inf \alpha^{\pm} > 0$ in our framework. Next, we can define ρ^+ in terms of n^{\pm} . More precisely, from $(1.1)_1$, we get the following identity:

$$\frac{n^+}{\rho^+} + \frac{n^-}{\rho^-} = 1, \tag{1.6}$$

therefore

$$\rho^{-} = \frac{n^{-}\rho^{+}}{\rho^{+} - n^{+}}$$

From $(1.1)_4$, we have

$$\psi(\rho^+) := P^+(\rho^+) - P^-\left(\frac{n^- \rho^+}{\rho^+ - n^+}\right) - f(n^-) = 0.$$
(1.7)

Differentiating $\psi(\rho^+)$ with respect to ρ^+ for given n^+ and n^- , we have

$$\psi'(\rho^+) = s_+^2 + s_-^2 \frac{n^- n^+}{(\rho^+ - n^+)^2} > 0.$$

Since for given \tilde{n}^+ and \tilde{n}^- , there exists $\tilde{\rho}^+ > \tilde{n}^+$ such that (1.7) holds; it follows from the implicit function theorem that in a small neighborhood of the point $(\tilde{n}^+, \tilde{n}^-, \tilde{\rho}^+)$, ρ^+ is a C^1 function of n^+ and n^- , that is $\rho^+ = \rho^+(n^+, n^-)$. We can also assume that this neighborhood is closed, which implies the compactness of the neighborhood. Thus we can get the supremum of ρ^+ . Then we are able to define ρ^- and α^{\pm} as follows:

$$\begin{split} \rho^{-}(n^{+},n^{-}) &= \frac{n^{-}\rho^{+}(n^{+},n^{-})}{\rho^{+}(n^{+},n^{-}) - n^{+}}, \\ \alpha^{+}(n^{+},n^{-}) &= \frac{n^{+}}{\rho^{+}(n^{+},n^{-})}, \\ \alpha^{-}(n^{+},n^{-}) &= 1 - \frac{n^{+}}{\rho^{+}(n^{+},n^{-})}. \end{split}$$

Based on the above analysis, system (1.1) can be rewritten as follows:

$$\begin{cases} \partial_t n^{\pm} + \operatorname{div}(n^{\pm}u^{\pm}) = 0, \\ \partial_t (n^+u^+) + \operatorname{div}(n^+u^+ \otimes u^+) + \alpha^+ \mathcal{C}^2 \left[\rho^- \nabla n^+ + \left(\rho^+ + \rho^+ \frac{\alpha^- f'}{s_-^2} \right) \nabla n^- \right] \\ = \operatorname{div}\{\alpha^+ [\mu^+ (\nabla u^+ + \nabla^t u^+) + \lambda^+ \operatorname{div} u^+ \operatorname{Id}]\} + n^+ r^+, \\ \partial_t (n^-u^-) + \operatorname{div}(n^-u^- \otimes u^-) + \alpha^- \mathcal{C}^2 \left[\rho^- \nabla n^+ + \left(\rho^+ - \rho^- \frac{\alpha^+ f'}{s_+^2} \right) \nabla n^- \right] \\ = \operatorname{div}\{\alpha^- [\mu^- (\nabla u^- + \nabla^t u^-) + \lambda^- \operatorname{div} u^- \operatorname{Id}]\} + n^- r^-. \end{cases}$$
(1.8)

In this paper, we study the existence of time periodic solutions of (1.8) around a constant state $(\bar{n}^+, \bar{n}^-, \mathbf{0}, \mathbf{0})$. Let $m^{\pm} = n^{\pm} - \bar{n}^{\pm}$, we can reformulate (1.8) as

$$\begin{cases} \partial_{t}m^{+} + \bar{n}^{+} \operatorname{div} u^{+} = G_{1}, \\ \partial_{t}m^{-} + \bar{n}^{-} \operatorname{div} u^{-} = G_{2}, \\ \partial_{t}u^{+} + \beta_{1}\nabla m^{+} + \beta_{2}\nabla m^{-} - (\tilde{\xi} + \xi^{+}(m^{+}, m^{-}))(\mu^{+}\Delta u^{+} + (\mu^{+} + \lambda^{+})\nabla \operatorname{div} u^{+}) \\ = G_{3} + r^{+}, \\ \partial_{t}u^{-} + \beta_{3}\nabla m^{+} + \beta_{4}\nabla m^{-} - (\tilde{\xi} + \xi^{-}(m^{+}, m^{-}))(\mu^{-}\Delta u^{-} + (\mu^{-} + \lambda^{-})\nabla \operatorname{div} u^{-}) \\ \zeta = G_{4} + r^{-}, \end{cases}$$
(1.9)

where

$$\begin{split} \beta_1 &= \left(\frac{\mathcal{C}^2 \rho^-}{\rho^+}\right) (\bar{n}^+, \bar{n}^-), \beta_2 = \mathcal{C}^2(\bar{n}^+, \bar{n}^-) + \frac{(\mathcal{C}^2 \alpha^-)(\bar{n}^+, \bar{n}^-)f'(\bar{n}^-)}{s_-^2(\bar{n}^+, \bar{n}^-)}, \\ \beta_3 &= \mathcal{C}^2(\bar{n}^+, \bar{n}^-), \beta_4 = \left(\frac{\mathcal{C}^2 \rho^+}{\rho^-}\right)(\bar{n}^+, \bar{n}^-) - \frac{(\mathcal{C}^2 \alpha^+)(\bar{n}^+, \bar{n}^-)f'(\bar{n}^-)}{s_+^2(\bar{n}^+, \bar{n}^-)}, \\ \tilde{\xi} &= \min \left\{ \inf \frac{1}{\rho^+(m^+ + \bar{n}^+, m^- + \bar{n}^-)}, \inf \frac{1}{\rho^-(m^+ + \bar{n}^+, m^- + \bar{n}^-)} \right\}, \\ \xi^{\pm}(m^+, m^-) &= \frac{1}{\rho^{\pm}(m^+ + \bar{n}^+, m^- + \bar{n}^-)} - \tilde{\xi}. \end{split}$$

We will assume that $-\frac{s_{-}^{2}(\bar{n}^{+},\bar{n}^{-})}{\alpha^{-}(\bar{n}^{+},\bar{n}^{-})} < f'(\bar{n}^{-})$ to make sure $\beta_{2} > 0$. Actually, by the hypotheses, the infimum can be achieved. We also have $\tilde{\xi} > 0$. The right hand side terms of the system are

$$\begin{split} G_1 &= -\mathrm{div}(m^+u^+), \ G_2 &= -\mathrm{div}(m^-u^-), \\ G_3^i &= -g_1^+(m^+,m^-)\partial_i m^+ - g_2^+(m^+,m^-)\partial_i m^- - (u^+\cdot\nabla)u_i^+ \\ &+ \mu^+ h_1^+(m^+,m^-)\partial_j m^+ \partial_j u_i^+ + \mu^+ h_2^+(m^+,m^-)\partial_j m^- \partial_j u_i^+ \\ &+ \mu^+ h_1^+(m^+,m^-)\partial_j m^+ \partial_i u_j^+ + \mu^+ h_2^+(m^+,m^-)\partial_i m^- \partial_j u_j^+ , \\ G_4^i &= -g_1^-(m^+,m^-)\partial_i m^+ - g_2^-(m^+,m^-)\partial_i m^- - (u^-\cdot\nabla)u_i^- \\ &+ \mu^- h_1^-(m^+,m^-)\partial_j m^+ \partial_j u_i^- + \mu^- h_2^+(m^+,m^-)\partial_j m^- \partial_j u_i^- \\ &+ \mu^- h_1^+(m^+,m^-)\partial_j m^+ \partial_j u_j^- + \lambda^- h_2^+(m^+,m^-)\partial_i m^- \partial_j u_j^- , \end{split}$$

where the summation convention is used for $1 \le i, j \le 3$, and $g_1^{\pm}, g_2^{\pm}, h_1^{\pm}, h_2^{\pm}$ are defined by

$$\begin{cases} g_1^+(m^+,m^-) &= \left(\frac{\mathcal{C}^2\rho^-}{\rho^+}\right)(m^+ + \bar{n}^+,m^- + \bar{n}^-) - \beta_1, \\ g_1^-(m^+,m^-) &= \mathcal{C}^2(m^+ + \bar{n}^+,m^- + \bar{n}^-) - \beta_3, \end{cases}$$

$$\begin{cases} g_2^+(m^+,m^-) = & \mathcal{C}^2(m^+ + \bar{n}^+,m^- + \bar{n}^-) \\ & + \frac{(\mathcal{C}^2 \alpha^-)(m^+ + \bar{n}^+,m^- + \bar{n}^-)f'(m^- \bar{n}^-)}{s_-^2(m^+ + \bar{n}^+,m^- + \bar{n}^-)} - \beta_2, \\ g_2^-(m^+,m^-) = & \left(\frac{\mathcal{C}^2 \rho^+}{\rho^-}\right)(m^+ + \bar{n}^+,m^- + \bar{n}^-) \\ & - \frac{(\mathcal{C}^2 \alpha^+)(m^+ + \bar{n}^+,m^- + \bar{n}^-)f'(m^- + \bar{n}^-)}{s_+^2(m^+ + \bar{n}^+,m^- + \bar{n}^-)} - \beta_4, \end{cases}$$

$$\begin{cases} h_1^+(m^+,m^-) = & \frac{1}{m^+ + \bar{n}^+} \left(\frac{\mathcal{C}^2 \alpha^-}{s_-^2}\right) (m^+ + \bar{n}^+,m^- + \bar{n}^-), \\ h_1^-(m^+,m^-) = & -\left(\frac{\mathcal{C}^2}{\rho^- s_-^2}\right) (m^+ + \bar{n}^+,m^- + \bar{n}^-), \end{cases}$$

$$\begin{cases} h_2^+(m^+,m^-) = & -\left(\frac{\mathcal{C}^2}{\rho^+ s_+^2}\right) (m^+ + \bar{n}^+,m^- + \bar{n}^-) \\ & -\frac{(\mathcal{C}^2 \alpha^-)(m^+ + \bar{n}^+,m^- + \bar{n}^-)f'(m^- \bar{n}^-)}{(s_+^2 s_-^2 \rho^+)(m^+ + \bar{n}^+,m^- + \bar{n}^-)}, \\ h_2^-(m^+,m^-) = & \frac{1}{m^- + \bar{n}^-} \left(\frac{\mathcal{C}^2 \alpha^+}{s_+^2}\right) (m^+ + \bar{n}^+,m^- + \bar{n}^-) \\ & -\frac{(\mathcal{C}^2 \alpha^+)(m^+ + \bar{n}^+,m^- + \bar{n}^-)f'(m^- \bar{n}^-)}{(s_+^2 s_-^2 \rho^-)(m^+ + \bar{n}^+,m^- + \bar{n}^-)}. \end{cases}$$

Notice that

$$\zeta := \beta_1 \beta_4 - \beta_2 \beta_3 = -\frac{\mathcal{C}^2(\bar{n}^+, \bar{n}^-) f'(\bar{n}^-)}{\rho^+(\bar{n}^+, \bar{n}^-)} > 0,$$

since $f \not\equiv 0$ and f is a strictly decreasing function near \bar{n}^- .

1.3. Main theorem.

THEOREM 1.1. Assume that $r^{\pm} \in L^2((0,T); H^3(\Omega_L))$ with $r^{\pm}(-x,t) = -r^{\pm}(x,t)$, and $-\frac{s_-^2(\bar{n}^+, \bar{n}^-)}{\alpha^-(\bar{n}^+, \bar{n}^-)} < f'(\bar{n}^-)$. If

$$\int_0^T \|(r^+, r^-)\|_{H^3}^2 \mathrm{d}t \le \eta$$

for some appropriately small constant $\eta > 0$, then the problem (1.9) has a time periodic solution $(m^+, m^-, u^+, u^-) \in \mathcal{X}_{\eta_0}^L$, where $\Omega_L = (-L, L)^3$ and $\mathcal{X}_{\eta_0}^L$ is defined as below.

Define

$$\begin{aligned} \mathcal{X}^{L} := & \Big\{ (m^{+}, m^{-}, u^{+}, u^{-}) \in L^{\infty}((0, T); H^{3}(\Omega_{L})) \cap L^{2}((0, T); H^{4}(\Omega_{L})); \\ & (m^{+}, m^{-}, u^{+}, u^{-}) \text{ satisfies (a),(b),(c)} \Big\}; \end{aligned}$$

$$\begin{split} \|(m^+, m^-, u^+, u^-)\|_{\mathcal{X}^L}^2 \\ &:= \sup_{0 \le t \le T} \left(\|m^+\|_{H^3(\Omega_L)}^2 + \|m^-\|_{H^3(\Omega_L)}^2 + \|u^+\|_{H^3(\Omega_L)}^2 + \|u^-\|_{H^3(\Omega_L)}^2 \right) \\ &+ \int_0^T \left(\|m^+\|_{H^4(\Omega_L)}^2 + \|m^-\|_{H^4(\Omega_L)}^2 + \|u^+\|_{H^4(\Omega_L)}^2 + \|u^-\|_{H^4(\Omega_L)}^2 \right) \mathrm{d}t; \\ &\mathcal{X}^L_\eta := \Big\{ (m^+, m^-, u^+, u^-) \in \mathcal{X}^L; \|(m^+, m^-, u^+, u^-)\|_{\mathcal{X}^L} < \eta \Big\}. \end{split}$$

REMARK 1.1. Similar to the last section of [19], by the standard energy method, we can prove that the time periodic solution in Theorem 1.1 is unique, provided that $\sup_{0 \le t \le T} \|(m^+, m^-, u^+, u^-)(t)\|_{H^4(\Omega_L)}$ is sufficiently small.

To prove Theorem 1.1, we first consider the following regularized problem

$$\begin{cases} \partial_{t}m^{+} + \bar{n}^{+} \operatorname{div} u^{+} - \epsilon \Delta m^{+} = G_{1}, \\ \partial_{t}m^{-} + \bar{n}^{-} \operatorname{div} u^{-} - \epsilon \Delta m^{-} = G_{2}, \\ \partial_{t}u^{+} + \beta_{1} \nabla m^{+} + \beta_{2} \nabla m^{-} - (\tilde{\xi} + \xi^{+}(m^{+}, m^{-}))(\mu^{+} \Delta u^{+} + (\mu^{+} + \lambda^{+}) \nabla \operatorname{div} u^{+}) \\ = G_{3} + r^{+}, \\ \partial_{t}u^{-} + \beta_{3} \nabla m^{+} + \beta_{4} \nabla m^{-} - (\tilde{\xi} + \xi^{-}(m^{+}, m^{-}))(\mu^{-} \Delta u^{-} + (\mu^{-} + \lambda^{-}) \nabla \operatorname{div} u^{-}) \\ = G_{4} + r^{-}, \\ \int_{\Omega_{L}} m^{\pm} dx = 0, \end{cases}$$
(1.10)

where $\Omega_L = (-L, L)^3 \subset \mathbb{R}^3$, r^{\pm} are time periodic functions with periodic boundaries, and odd functions on the space variable x. We have the following proposition.

PROPOSITION 1.1. Assume that $r^{\pm} \in L^{2}((0,T); H^{3}(\Omega_{L}))$ with $r^{\pm}(-x,t) = -r^{\pm}(x,t)$, and $-\frac{s_{-}^{2}(\bar{n}^{+},\bar{n}^{-})}{\alpha^{-}(\bar{n}^{+},\bar{n}^{-})} < f'(\bar{n}^{-})$. If $\int_{0}^{T} \|(r^{+},r^{-})\|_{H^{3}}^{2} \mathrm{d}t \leq \eta$, for some appropriately small constant $\eta > 0$, then the regularized problem (1.10) admits a solution $(m^+, m^-, u^+, u^-) \in \mathcal{X}_{\eta_0}^L$, that satisfies

- (a) m^+, m^-, u^+, u^- are time periodic functions with the space period 2L and time period T;
- (b) $\int_{\Omega_L} m^{\pm} dx \equiv 0;$

(c)
$$m^{\pm}(-x,t) = m^{\pm}(x,t), u^{\pm}(-x,t) = -u^{\pm}(x,t).$$

Finally, we get the existence of the time periodic solution of (1.9), by a limit procedure, $\epsilon \rightarrow 0$, i.e., Theorem 1.1.

2. Preliminaries

Throughout this paper, C denotes a generic positive constant which may vary in different estimates and $\eta_i(i=1,2,3\cdots)$ are suitable small positive constants which will be identified in the proof of Theorem 1.1. We denote $H^k(\Omega)$, the Sobolev spaces $W^{k,2}(\Omega)$, with norm $\|\cdot\|_{H^k(\Omega)}$, and denote $L^p(\Omega)(1 \le p \le \infty)$, the L^p spaces, with norm $\|\cdot\|_{L^p(\Omega)}$. When there is no ambiguity, we will write $\|\cdot\|_{H^k(\Omega)}, \|\cdot\|_{L^p(\Omega)}$ as $\|\cdot\|_{H^k}, \|\cdot\|_{L^p}$ respectively. The notation " $\langle\cdot,\cdot\rangle$ " means the inner product in $L^2(\Omega)$. We also write $\|u\|_{H^p} + \|v\|_{H^p}$ as $\|(u,v)\|_{H^p}$ for short. For the readers' convenience, we list some useful lemmas as follows.

LEMMA 2.1 ([1,18]). Assume that $\Omega \subset \mathbb{R}^3$ is a bounded domain, and $\partial \Omega$ is locally Lipschitz continuous. If $u|_{\partial \Omega} = 0$ (or $\int_{\Omega} u dx = 0$), then for any $1 \leq p < N, 1 \leq q \leq p^* = \frac{Np}{N-p}$,

$$\left(\int_{\Omega} |u|^q \mathrm{d}x\right)^{1/q} \leq C(N, p, q) |\mathbf{meas}\Omega|^{1/q - 1/p^*} \left(\int_{\Omega} |\nabla u|^p \mathrm{d}x\right)^{1/p}.$$

In particular, if $q = p^* = \frac{Np}{N-p}$, then

$$\left(\int_{\Omega} |u|^{p^*} \mathrm{d}x\right)^{p^*} \leq C(N, p, p^*) \left(\int_{\Omega} |\nabla u|^p \mathrm{d}x\right)^{1/p}$$

LEMMA 2.2 ([1,18]). Assume that $\Omega \subset \mathbb{R}^3$ is a bounded domain, and $\partial \Omega$ is locally Lipschitz continuous. If $u|_{\partial\Omega} = 0$ (or $\int_{\Omega} u dx = 0$), then

$$\begin{split} \|u\|_{L^{3}} \leq & C \|u\|_{L^{2}}^{1/2} \|\nabla u\|_{L^{2}}^{1/2}, \\ \|u\|_{L^{4}} \leq & C \|u\|_{L^{2}}^{1/4} \|\nabla u\|_{L^{2}}^{3/4}, \\ \|u\|_{L^{\infty}} \leq & C \|\nabla u\|_{H^{1}}, \end{split}$$

where C is independent of Ω . Moreover, the above inequalities also hold in \mathbb{R}^3 if $u(x) \to 0$ as $|x| \to \infty$.

LEMMA 2.3 ([11,26]). Let $k \ge 1$ be an integer and Ω be a domain as above, then we have

$$\|\nabla^k(fg)\|_{L^p} \le C \|f\|_{L^{p_1}} \|\nabla^k g\|_{L^{p_2}} + C \|\nabla^k f\|_{L^{p_3}} \|\nabla^k g\|_{L^{p_4}},$$

where $p, p_1, p_2, p_3, p_4 \in [1, \infty]$ and

$$\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3} + \frac{1}{p_4}.$$

LEMMA 2.4 ([25]). Assume $X \subset E \subset Y$ are Banach spaces and $X \hookrightarrow \hookrightarrow E$. Then the following embeddings are compact:

$$\left\{ \phi \colon \phi \in L^q(0,T;X), \frac{\partial \phi}{\partial t} \in L^1(0,T;Y) \right\} \hookrightarrow \hookrightarrow L^q(0,T;E), \text{ if } 1 \le q \le \infty; \\ \left\{ \phi \colon \phi \in L^\infty(0,T;X), \frac{\partial \phi}{\partial t} \in L^r(0,T;Y) \right\} \hookrightarrow \hookrightarrow C([0,T];E), \text{ if } 1 < r \le \infty.$$

LEMMA 2.5 ([9]). Let E be a real Banach space, $\Omega \subset E$ be an open bounded set and the operator $T: \overline{\Omega} \to E$ be a completely continuous. The Leray-Schauder degree has the following properties:

- (1) (Normality) deg $(I, \Omega, 0) = 1$ if and only if $0 \in \Omega$;
- (2) (Solvability) If deg $(I T, \Omega, 0) \neq 0$, then Tx = x has a solution in Ω ;
- (3) (Homotopy) Let $T_t: [0,1] \times \overline{\Omega} \to E$ be completely compact and $T_t x \neq x$ for all $(t,x) \in [0,1] \times \partial \Omega$. Then $\deg(I T_t, \Omega, 0)$ doesn't depend on $t \in [0,1]$.

For more details about topological degree theory, please refer to [8,9].

3. Existence of the time periodic solutions

3.1. Introduction of an operator S**.** To prove the existence of time periodic solutions, we define an operator

$$\begin{split} \mathcal{S}\colon \mathcal{X}^L_\eta \times [0,1] \to \mathcal{X}^L, \\ ((n^+,\,n^-,\,w^+,\,w^-),\tau) \mapsto (m^+,\,m^-,\,u^+,\,u^-), \end{split}$$

with η appropriately small, where (m^+, m^-, u^+, u^-) is the solution of the following linear problem with periodic boundary

$$\begin{cases} \partial_t m^+ + \bar{n}^+ \operatorname{div} u^+ - \epsilon \Delta m^+ = \tilde{G}_1(n^+, w^+, \tau), \\ \partial_t m^- + \bar{n}^- \operatorname{div} u^- - \epsilon \Delta m^- = \tilde{G}_2(n^-, w^-, \tau), \\ \partial_t u^+ + \beta_1 \nabla m^+ + \beta_2 \nabla m^- - (\tilde{\xi} + \tau \xi^+(n^+, n^-))(\mu^+ \Delta u^+ + (\mu^+ + \lambda^+) \nabla \operatorname{div} u^+) \\ = \tilde{G}_3(n^+, n^-, w^+, \tau) + \tau r^+, \\ \partial_t u^- + \beta_3 \nabla m^+ + \beta_4 \nabla m^- - (\tilde{\xi} + \tau \xi^-(n^+, n^-))(\mu^- \Delta u^- + (\mu^- + \lambda^-) \nabla \operatorname{div} u^-) \\ = \tilde{G}_4(n^+, n^-, w^-, \tau) + \tau r^-, \\ \int_{\Omega_L} m^\pm dx = 0, \end{cases}$$
(3.1)

where

$$\begin{split} \tilde{G}_{1} &= -\tau \operatorname{div}(n^{+}w^{+}), \ \tilde{G}_{2} = -\tau \operatorname{div}(n^{-}w^{-}), \\ \tilde{G}_{3}^{i} &= -\tau g_{1}^{+}(n^{+}, n^{-})\partial_{i}n^{+} - \tau g_{2}^{+}(n^{+}, n^{-})\partial_{i}n^{-} - \tau (w^{+} \cdot \nabla)w_{i}^{+} \\ &+ \mu^{+}\tau h_{1}^{+}(n^{+}, n^{-})\partial_{j}n^{+}\partial_{j}w_{i}^{+} + \mu^{+}\tau h_{2}^{+}(n^{+}, n^{-})\partial_{j}n^{-}\partial_{j}w_{i}^{+} \\ &+ \mu^{+}\tau h_{1}^{+}(n^{+}, n^{-})\partial_{j}n^{+}\partial_{i}w_{j}^{+} + \mu^{+}\tau h_{2}^{+}(n^{+}, n^{-})\partial_{j}n^{-}\partial_{i}w_{j}^{+} \\ &+ \lambda^{+}\tau h_{1}^{+}(n^{+}, n^{-})\partial_{i}n^{+}\partial_{j}w_{j}^{+} + \lambda^{+}\tau h_{2}^{+}(n^{+}, n^{-})\partial_{i}n^{-}\partial_{j}w_{j}^{+}, \end{split}$$

and

$$\begin{split} \tilde{G}_{4}^{i} &= -\tau g_{1}^{-}(n^{+},n^{-})\partial_{i}n^{+} - \tau g_{2}^{-}(n^{+},n^{-})\partial_{i}n^{-} - \tau (w^{-}\cdot\nabla)w_{i}^{-} \\ &+ \mu^{-}\tau h_{1}^{-}(n^{+},n^{-})\partial_{j}n^{+}\partial_{j}w_{i}^{-} + \mu^{-}\tau h_{2}^{+}(n^{+},n^{-})\partial_{j}n^{-}\partial_{j}w_{i}^{-} \\ &+ \mu^{-}\tau h_{1}^{+}(n^{+},n^{-})\partial_{j}n^{+}\partial_{i}w_{j}^{-} + \mu^{-}\tau h_{2}^{+}(n^{+},n^{-})\partial_{j}n^{-}\partial_{i}w_{j}^{-} \\ &+ \lambda^{-}\tau h_{1}^{+}(n^{+},n^{-})\partial_{i}n^{+}\partial_{j}w_{j}^{-} + \lambda^{-}\tau h_{2}^{+}(n^{+},n^{-})\partial_{i}n^{-}\partial_{j}w_{j}^{-}. \end{split}$$

We impose the condition $\int_{\Omega_L} m^{\pm} dx = 0$ to ensure the uniqueness of the solution. Since $\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_L} m^{\pm} \mathrm{d}x = 0$, and when (m^+, m^-, u^+, u^-) is a solution of (3.1), then $(m^+ + C, m^- + C, u^+, u^-)$ is also a solution for any constant C. We should also note that when $\sup_{0 \le t \le T} \|m^{\pm}\|_{H^3} < \eta$, and η is suitably small, we have

$$\frac{1}{2}\bar{n}^+ \le m^+ + \bar{n}^+ \le \frac{3}{2}\bar{n}^+, \ \frac{1}{2}\bar{n}^- \le m^+ + \bar{n}^- \le \frac{3}{2}\bar{n}^-,$$

and for some positive constant C, we have

$$|(g_i^{\pm}, h_i^{\pm})(m^+, m^-)| \le C |(m^+, m^-), \ |\partial_{m^{\pm}}^k (g_i^{\pm}, h_i^{\pm})(m^+, m^-)| \le C$$

for i=1,2 and $k\geq 1$.

And then, we show that the operator \mathcal{S} is well-defined by the following lemmas.

LEMMA 3.1. Assume that η is sufficiently small, then for any $(n^+, n^-, w^+, w^-) \in \mathcal{X}^L_{\eta}, \tau \in [0,1]$, the problem (3.1) admits a unique time periodic solution $(m^+, m^-, u^+, u^-) \in \mathcal{X}^L$.

Proof. Let

$$\begin{split} &U \!=\! (m^+,m^-,u^+,u^-)^t, W \!=\! (n^+,n^-,w^+,w^-)^t, \\ &\tilde{G}(W) \!=\! (\tilde{G}_1,\tilde{G}_2,\tilde{G}_3,\tilde{G}_4)^t, R \!=\! (0,0,\tau r^+,\tau r^-)^t \end{split}$$

and \mathcal{A} denote the matrix operator

$$\mathcal{A} = \begin{pmatrix} \epsilon \Delta & 0 & -\bar{n}^{+} \mathrm{div} & 0 \\ 0 & \epsilon \Delta & 0 & -\bar{n}^{-} \mathrm{div} \\ -\beta_{1} \nabla & -\beta_{2} \nabla & \xi_{1} & 0 \\ -\beta_{3} \nabla & -\beta_{4} \nabla & 0 & \xi_{2} \end{pmatrix},$$

where $\xi_1 = (\tilde{\xi} + \tau \xi^+(n^+, n^-))(\mu^+ \Delta + (\mu^+ + \lambda^+) \nabla \operatorname{div}), \xi_2 = (\tilde{\xi} + \tau \xi^-(n^+, n^-))(\mu^- \Delta + (\mu^- + \lambda^-) \nabla \operatorname{div}).$ Then the system (3.1) can be written as

$$U_t = \mathcal{A}U + \tilde{G}(W) + R.$$

Now, consider the initial value problem of the linear system $U_t = \mathcal{A}U$ in Ω_L with periodic boundary

$$\begin{cases} \partial_t m^+ + \bar{n}^+ \operatorname{div} u^+ - \epsilon \Delta m^+ = 0, \\ \partial_t m^- + \bar{n}^- \operatorname{div} u^- - \epsilon \Delta m^- = 0, \\ \partial_t u^+ + \beta_1 \nabla m^+ + \beta_2 \nabla m^- - (\tilde{\xi} + \tau \xi^+ (n^+, n^-))(\mu^+ \Delta u^+ + (\mu^+ + \lambda^+) \nabla \operatorname{div} u^+) = 0, \\ \partial_t u^- + \beta_3 \nabla m^+ + \beta_4 \nabla m^- - (\tilde{\xi} + \tau \xi^- (n^+, n^-))(\mu^- \Delta u^- + (\mu^- + \lambda^-) \nabla \operatorname{div} u^-) = 0, \\ (m^+, m^-, u^+, u^-)(x, 0) = (m_0^+, m_0^-, u_0^+, u_0^-)(x), \end{cases}$$
(3.2)

where $m_0^{\pm}(x)$ are even functions with $\int_{\Omega_L} m_0^{\pm}(x) dx = 0$, and $u_0^{\pm}(x)$ are odd functions. It is not difficult to see that the solution (m^+, m^-, u^+, u^-) has the same properties as the initial data $(m_0^+, m_0^-, u_0^+, u_0^-)$.

Multiplying $(3.2)_1$, $(3.2)_2$, $(3.2)_3$, $(3.2)_4$ by $\beta_1\beta_3m^+$, $\beta_2\beta_4m^-$, $\beta_3\bar{n}^+u^+$, $\beta_2\bar{n}^-u^-$ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions, we obtain

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{L}} \left(\beta_{1} \beta_{3} |m^{+}|^{2} + \beta_{2} \beta_{4} |m^{-}|^{2} + \beta_{3} \bar{n} |u^{+}|^{2} + \beta_{2} \bar{n}^{-} |u^{-}|^{2} \right) \mathrm{d}x \\
+ \beta_{3} \bar{n}^{+} \int_{\Omega_{L}} \left(\tilde{\xi} + \tau \xi^{+} (n^{+}, n^{-}) \right) \left(\mu^{+} |\nabla u^{+}|^{2} + (\mu^{+} + \lambda^{+}) |\mathrm{div}u^{+}|^{2} \right) \mathrm{d}x \\
+ \beta_{2} \bar{n}^{-} \int_{\Omega_{L}} \left(\tilde{\xi} + \tau \xi^{-} (n^{+}, n^{-}) \right) \left(\mu^{-} |\nabla u^{-}|^{2} + (\mu^{-} + \lambda^{-}) |\mathrm{div}u^{-}|^{2} \right) \mathrm{d}x \\
+ \epsilon \int_{\Omega_{L}} \left(\beta_{1} \beta_{3} |\nabla m^{+}|^{2} + \beta_{2} \beta_{4} |\nabla m^{-}|^{2} \right) \mathrm{d}x + \beta_{2} \beta_{3} \int_{\Omega_{L}} \left(\bar{n}^{-} \nabla m^{+} u^{-} + \bar{n}^{+} \nabla m^{-} u^{+} \right) \mathrm{d}x \\
= -\beta_{3} \bar{n}^{+} \tau \int_{\Omega_{L}} \left(\partial_{n^{+}} \xi^{+} \nabla n^{+} + \partial_{n^{-}} \xi^{+} \nabla n^{-} \right) \left(\mu^{+} u^{+} \nabla u^{+} + (\mu^{+} + \lambda^{+}) u^{+} \mathrm{div}u^{+} \right) \mathrm{d}x \\
- \beta_{2} \bar{n}^{-} \tau \int_{\Omega_{L}} \left(\partial_{n^{+}} \xi^{-} \nabla n^{+} + \partial_{n^{-}} \xi^{-} \nabla n^{-} \right) \left(\mu^{-} u^{-} \nabla u^{-} + (\mu^{-} + \lambda^{-}) u^{-} \mathrm{div}u^{-} \right) \mathrm{d}x.$$
(3.3)

Multiplying $(3.2)_1, (3.2)_2$ by m^-, m^+ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions, we obtain

$$\int_{\Omega_L} \left(\bar{n}^- \nabla m^+ u^- + \bar{n}^+ \nabla m^- u^+ \right) \mathrm{d}x$$
$$= \int_{\Omega_L} \left(m^- \partial_t m^+ + m^+ \partial_t m^- \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \nabla m^+ \nabla m^- \mathrm{d}x. \tag{3.4}$$

Note that $\zeta := \beta_1 \beta_4 - \beta_2 \beta_3 > 0$ and $\tilde{\xi} + \xi^{\pm} \ge \tilde{\xi} > 0$ (cf. Section 1.2), then combining the above two equalities, we obtain

$$\begin{split} &\frac{1}{4}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_{L}}\left(\zeta\frac{\beta_{3}}{\beta_{4}}|m^{+}|^{2}+\zeta\frac{\beta_{2}}{\beta_{1}}|m^{-}|^{2}+2\beta_{3}\bar{n}|u^{+}|^{2}+2\beta_{2}\bar{n}^{-}|u^{-}|^{2}\right)\mathrm{d}x\\ &+\frac{1}{4}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_{L}}\left(\beta_{2}\beta_{4}|m^{-}+\frac{\beta_{3}}{\beta_{4}}m^{+}|^{2}+\beta_{1}\beta_{3}|m^{+}+\frac{\beta_{2}}{\beta_{1}}m^{-}|^{2}\right)\mathrm{d}x\\ &+\frac{1}{2}\epsilon\int_{\Omega_{L}}\left(\zeta\frac{\beta_{3}}{\beta_{4}}|\nabla m^{+}|^{2}+\zeta\frac{\beta_{2}}{\beta_{1}}|\nabla m^{-}|^{2}\right)\mathrm{d}x\\ &+\frac{1}{2}\epsilon\int_{\Omega_{L}}\left(\beta_{2}\beta_{4}|\nabla m^{-}+\frac{\beta_{3}}{\beta_{4}}\nabla m^{+}|^{2}+\beta_{1}\beta_{3}|\nabla m^{+}+\frac{\beta_{2}}{\beta_{1}}\nabla m^{-}|^{2}\right)\mathrm{d}x\\ &+\tilde{\xi}\int_{\Omega_{L}}\left(\beta_{3}\bar{n}^{+}\mu^{+}|\nabla u^{+}|^{2}+\beta_{2}\bar{n}^{-}\mu^{-}|\nabla u^{-}|^{2}\right)\mathrm{d}x\\ \leq &-\beta_{3}\bar{n}^{+}\tau\int_{\Omega_{L}}\left(\partial_{n^{+}}\xi^{+}\nabla n^{+}+\partial_{n^{-}}\xi^{+}\nabla n^{-})(\mu^{+}u^{+}\nabla u^{+}+(\mu^{+}+\lambda^{+})u^{+}\mathrm{div}u^{+}\right)\mathrm{d}x\\ &-\beta_{2}\bar{n}^{-}\tau\int_{\Omega_{L}}\left(\partial_{n^{+}}\xi^{-}\nabla n^{+}+\partial_{n^{-}}\xi^{-}\nabla n^{-})(\mu^{-}u^{-}\nabla u^{-}+(\mu^{-}+\lambda^{-})u^{-}\mathrm{div}u^{-}\right)\mathrm{d}x\\ \leq &C\tau\Big(\|\nabla n^{+}\|_{L^{3}}+\|\nabla n^{-}\|_{L^{3}}\Big)\Big(\|u^{+}\|_{L^{6}}\|\nabla u^{+}\|_{L^{2}}+\|u^{-}\|_{L^{6}}\|\nabla u^{-}\|_{L^{2}}\Big) \end{split}$$

$$\leq C\tau \eta \Big(\|\nabla u^+\|_{L^2}^2 + \|\nabla u^-\|_{L^2}^2 \Big), \tag{3.5}$$

then, when η is appropriately small, we have

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{L}} \left(\zeta \frac{\beta_{3}}{\beta_{4}} |m^{+}|^{2} + \zeta \frac{\beta_{2}}{\beta_{1}} |m^{-}|^{2} + 2\beta_{3}\bar{n}|u^{+}|^{2} + 2\beta_{2}\bar{n}^{-}|u^{-}|^{2} \right) \mathrm{d}x \\
+ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{L}} \left(\beta_{2}\beta_{4} |m^{-} + \frac{\beta_{3}}{\beta_{4}}m^{+}|^{2} + \beta_{1}\beta_{3}|m^{+} + \frac{\beta_{2}}{\beta_{1}}m^{-}|^{2} \right) \mathrm{d}x + \epsilon \int_{\Omega_{L}} \left(\zeta \frac{\beta_{3}}{\beta_{4}} |\nabla m^{+}|^{2} \\
+ \zeta \frac{\beta_{2}}{\beta_{1}} |\nabla m^{-}|^{2} \right) \mathrm{d}x + \epsilon \int_{\Omega_{L}} \left(\beta_{2}\beta_{4} |\nabla m^{-} + \frac{\beta_{3}}{\beta_{4}} \nabla m^{+}|^{2} + \beta_{1}\beta_{3}|\nabla m^{+} + \frac{\beta_{2}}{\beta_{1}} \nabla m^{-}|^{2} \right) \mathrm{d}x \\
+ \tilde{\xi} \int_{\Omega_{L}} \left(\beta_{3}\bar{n}^{+}\mu^{+} |\nabla u^{+}|^{2} + \beta_{2}\bar{n}^{-}\mu^{-} |\nabla u^{-}|^{2} \right) \mathrm{d}x \leq 0.$$
(3.6)

By Poincaré's inequality and Gronwall's inequality, we obtain

$$\|(m^+, m^-, u^+, u^-)(t)\|_{L^2} \le \|(m_0^+, m_0^-, u_0^+, u_0^-)\|_{L^2} e^{-C\epsilon t}.$$

Similarly, applying ∇^k , $(1 \le k \le 4)$ to $(3.2)_1$, $(3.2)_2$, $(3.2)_3$, $(3.2)_4$, multiplying the results by $\beta_1\beta_3\nabla^k m^+$, $\beta_2\beta_4\nabla^k m^-$, $\beta_3\bar{n}^+\nabla^k u^+$, $\beta_2\bar{n}^-\nabla^k u^-$ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions and the Equations $(3.2)_1$, $(3.2)_2$, we obtain

$$\begin{split} &\frac{1}{4}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_{L}}\left(\zeta\frac{\beta_{3}}{\beta_{4}}|\nabla^{k}m^{+}|^{2}+\zeta\frac{\beta_{2}}{\beta_{1}}|\nabla^{k}m^{-}|^{2}+2\beta_{3}\bar{n}|\nabla^{k}u^{+}|^{2}+2\beta_{2}\bar{n}^{-}|\nabla^{k}u^{-}|^{2}\right)\mathrm{d}x\\ &+\frac{1}{4}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_{L}}\left(\beta_{2}\beta_{4}|\nabla^{k}m^{-}+\frac{\beta_{3}}{\beta_{4}}\nabla^{k}m^{+}|^{2}+\beta_{1}\beta_{3}|\nabla^{k}m^{+}+\frac{\beta_{2}}{\beta_{1}}\nabla^{k}m^{-}|^{2}\right)\mathrm{d}x\\ &+\frac{1}{2}\epsilon\int_{\Omega_{L}}\left(\zeta\frac{\beta_{3}}{\beta_{4}}|\nabla^{k}\nabla m^{+}|^{2}+\zeta\frac{\beta_{2}}{\beta_{1}}|\nabla^{k}\nabla m^{-}|^{2}\right)\mathrm{d}x\\ &+\frac{1}{2}\epsilon\int_{\Omega_{L}}\left(\beta_{2}\beta_{4}|\nabla^{k}\nabla m^{-}+\frac{\beta_{3}}{\beta_{4}}\nabla^{k}\nabla m^{+}|^{2}+\beta_{1}\beta_{3}|\nabla^{k}\nabla m^{+}+\frac{\beta_{2}}{\beta_{1}}\nabla^{k}\nabla m^{-}|^{2}\right)\mathrm{d}x\\ &+\beta_{3}\bar{n}^{+}\int_{\Omega_{L}}\left((\tilde{\xi}+\tau\xi^{+}(n^{+},n^{-}))(\mu^{+}|\nabla^{k}\nabla u^{+}|^{2}+(\mu^{+}+\lambda^{+})|\nabla^{k}\mathrm{div}u^{+}|^{2})\right)\mathrm{d}x\\ &+\beta_{2}\bar{n}^{-}\int_{\Omega_{L}}\left((\tilde{\xi}+\tau\xi^{-}(n^{+},n^{-}))(\mu^{-}|\nabla^{k}\nabla u^{-}|^{2}+(\mu^{-}+\lambda^{-})|\nabla^{k}\mathrm{div}u^{-}|^{2})\right)\mathrm{d}x\\ &=-\beta_{3}\bar{n}^{+}\tau\int_{\Omega_{L}}\left(\partial_{n}+\xi^{-}\nabla n^{+}+\partial_{n}-\xi^{-}\nabla n^{-}\right)\left(\mu^{-}\nabla^{k}\nabla u^{-}+(\mu^{-}+\lambda^{-})\nabla^{k}\mathrm{div}u^{-}\right)\nabla^{k}u^{-}\mathrm{d}x\\ &+\beta_{3}\bar{n}^{+}\tau\int_{\Omega_{L}}\sum_{1\leq l\leq k}\binom{k}{l}\nabla^{l}\xi^{+}\nabla^{k-l}\left(\mu^{+}\Delta u^{+}+(\mu^{+}+\lambda^{+})\nabla\mathrm{div}u^{+}\right)\nabla^{k}u^{+}\mathrm{d}x\\ &+\beta_{2}\bar{n}^{-}\tau\int_{\Omega_{L}}\sum_{1\leq l\leq k}\binom{k}{l}\nabla^{l}\xi^{-}\nabla^{k-l}\left(\mu^{-}\Delta u^{-}+(\mu^{-}+\lambda^{-})\nabla\mathrm{div}u^{-}\right)\nabla^{k}u^{-}\mathrm{d}x\\ :=E, \end{split}$$

and E can be estimated as follows:

$$E \leq C\tau \Big(\|\nabla n^+\|_{L^3} + \|\nabla n^-\|_{L^3} \Big) \Big(\|\nabla^{k+1}u^+\|_{L^2} \|\nabla^k u^+\|_{L^6} + \|\nabla^{k+1}u^-\|_{L^2} \|\nabla^k u^-\|_{L^6} \Big)$$

$$+C\tau \Big(\|\nabla^{k}n^{+}\|_{L^{2}} + \|\nabla^{k}n^{-}\|_{L^{2}} \Big) \Big(\|\nabla^{2}u^{+}\|_{L^{3}} \|\nabla^{k}u^{+}\|_{L^{6}} + \|\nabla^{2}u^{-}\|_{L^{3}} \|\nabla^{k}u^{-}\|_{L^{6}} \Big)$$

$$\leq C\tau \eta \Big(\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2} + \|\nabla^{k+1}u^{-}\|_{L^{2}}^{2} \Big), \text{ for } 2 \leq k \leq 4,$$

$$E \leq C\tau \Big(\|\nabla n^{+}\|_{L^{3}} + \|\nabla n^{-}\|_{L^{3}} \Big) \Big(\|\nabla^{2}u^{+}\|_{L^{2}} \|\nabla u^{+}\|_{L^{6}} + \|\nabla^{2}u^{-}\|_{L^{2}} \|\nabla u^{-}\|_{L^{6}} \Big)$$

$$\leq C\tau \eta \Big(\|\nabla^{2}u^{+}\|_{L^{2}}^{2} + \|\nabla^{2}u^{-}\|_{L^{2}}^{2} \Big), \text{ for } k = 1.$$

Then, when η is appropriately small, we have

$$\begin{aligned} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_{L}}\left(\zeta\frac{\beta_{3}}{\beta_{4}}|\nabla^{k}m^{+}|^{2}+\zeta\frac{\beta_{2}}{\beta_{1}}|\nabla^{k}m^{-}|^{2}+2\beta_{3}\bar{n}|\nabla^{k}u^{+}|^{2}+2\beta_{2}\bar{n}^{-}|\nabla^{k}u^{-}|^{2}\right)\mathrm{d}x\\ &+\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_{L}}\left(\beta_{2}\beta_{4}|\nabla^{k}m^{-}+\frac{\beta_{3}}{\beta_{4}}\nabla^{k}m^{+}|^{2}+\beta_{1}\beta_{3}|\nabla^{k}m^{+}+\frac{\beta_{2}}{\beta_{1}}\nabla^{k}m^{-}|^{2}\right)\mathrm{d}x\\ &+\epsilon\int_{\Omega_{L}}\left(\zeta\frac{\beta_{3}}{\beta_{4}}|\nabla^{k+1}m^{+}|^{2}+\zeta\frac{\beta_{2}}{\beta_{1}}|\nabla^{k+1}m^{-}|^{2}\right)\mathrm{d}x\\ &+\epsilon\int_{\Omega_{L}}\left(\beta_{2}\beta_{4}|\nabla^{k}\nabla m^{-}+\frac{\beta_{3}}{\beta_{4}}\nabla^{k}\nabla m^{+}|^{2}+\beta_{1}\beta_{3}|\nabla^{k}\nabla m^{+}+\frac{\beta_{2}}{\beta_{1}}\nabla^{k}\nabla m^{-}|^{2}\right)\mathrm{d}x\\ &+\tilde{\xi}\int_{\Omega_{L}}\left(\beta_{3}\bar{n}^{+}\mu^{+}|\nabla^{k+1}u^{+}|^{2}+\beta_{2}\bar{n}^{-}\mu^{-}|\nabla^{k+1}u^{-}|^{2}\right)\mathrm{d}x\leq0. \end{aligned}$$

$$(3.8)$$

By Poincaré's inequality and Gronwall's inequality, we obtain

$$\|\nabla^k(m^+, m^-, u^+, u^-)(t)\|_{L^2} \le \|\nabla^k(m_0^+, m_0^-, u_0^+, u_0^-)\|_{L^2} e^{-C\epsilon t}, \text{ for } 1 \le k \le 4.$$

Therefore, we have

$$||e^{t\mathcal{A}}U_0||_{H^k} \le ||U_0||_{H^k}e^{-C\epsilon t}.$$

Then by Duhamel's principle, the solution to the system (3.1) can be written as

$$U(t) = \int_{-\infty}^{t} e^{(t-\tau)\mathcal{A}} (G(W(\tau)) + R(\tau)) d\tau,$$

and then

$$\begin{split} \|U(t)\|_{H^{k}} &\leq \int_{-\infty}^{t} \|e^{(t-\tau)A}(G(W(\tau)) + R(\tau))\|_{H^{k}} \mathrm{d}\tau \\ &\leq \int_{-\infty}^{t} e^{-C\epsilon(t-\tau)} \|(G(W(\tau)) + R(\tau))\|_{H^{k}} \mathrm{d}\tau \\ &= \sum_{i=0}^{\infty} \int_{t-(i+1)T}^{t-iT} e^{-C\epsilon(t-\tau)} \|(G(W(\tau)) + R(\tau))\|_{H^{k}} \mathrm{d}\tau \\ &= \sum_{i=0}^{\infty} \int_{0}^{T} e^{-C\epsilon((i+1)T-\tau)} \|(G(W(t+\tau)) + R(t+\tau))\|_{H^{k}} \mathrm{d}\tau \\ &\leq \sum_{i=0}^{\infty} \left(\int_{0}^{T} e^{-2C\epsilon((i+1)T-\tau)} \mathrm{d}\tau \right)^{1/2} \left(\int_{0}^{T} \|(G(W(\tau)) + R(\tau))\|_{H^{k}}^{2} \mathrm{d}\tau \right)^{1/2} \\ &\leq C(\epsilon) \left(\int_{0}^{T} \|(G(W(t)) + R(t))\|_{H^{k}}^{2} \mathrm{d}t \right)^{1/2}, \text{ for } k \leq 3, \end{split}$$

where we have used the time periodic property of W and R. By the time periodic property, we also have

$$\begin{split} U(t+T) &= \int_{-\infty}^{t+T} e^{(t+T-\tau)\mathcal{A}} \left(G(W(\tau)) + R(\tau) \right) \mathrm{d}\tau \\ &= \int_{-\infty}^{t+T} e^{(t-(\tau-T))\mathcal{A}} \left(G(W(\tau-T)) + R(\tau-T) \right) \mathrm{d}\tau \\ &= \int_{-\infty}^{t} e^{(t-\tau)\mathcal{A}} \left(G(W(\tau)) + R(\tau) \right) \mathrm{d}\tau = U(t). \end{split}$$

That is, $U(t) \in L^{\infty}((0,T); H^3)$ is a time periodic solution of (3.1) with time period T. Similar to the proof of Theorem 1.1 in Section 3, we have for any $(n^+, n^-, w^+, w^-) \in \mathcal{X}^L_{\eta}, \tau \in [0,1]$, the system (3.1) admits a time periodic solution $(m^+, m^-, u^+, u^-) \in \mathcal{X}^L$.

For the uniqueness, assume that there exist two solutions of system (3.1), $u_1 = (m_1^+, m_1^-, u_1^+, u_1^-)$, $u_2 = (m_2^+, m_2^-, u_2^+, u_2^-)$ for $(n^+, n^-, w^+, w^-) \in \mathcal{X}_{\eta}^L$, $\tau \in [0, 1]$, then we have

$$\partial_t (U_1 - U_2) = \mathcal{A} (U_1 - U_2).$$

Similar to the above proof, let $(\bar{m}^+, \bar{m}^-, \bar{u}^+, \bar{u}^-) = (m_1^+ - m_2^+, m_1^- - m_2^-, u_1^+ - u_2^+, u_1^- - u_2^-)$, we have

$$\begin{split} &\epsilon \int_0^T \int_{\Omega_L} \left(\frac{\beta_3}{\beta_4} |\nabla \bar{m}^+|^2 + \frac{\beta_2}{\beta_1} |\nabla \bar{m}^-|^2 \right) \mathrm{d}x \mathrm{d}t \\ &+ \tilde{\xi} \int_0^T \int_{\Omega_L} \left(\beta_3 \bar{n}^+ \mu^+ |\nabla \bar{u}^+|^2 + \beta_2 \bar{n}^- \mu^- |\nabla \bar{u}^-|^2 \right) \mathrm{d}x \mathrm{d}t \leq 0 \end{split}$$

Using Poincaré's inequality, we have $(\bar{m}^+, \bar{m}^-, \bar{u}^+, \bar{u}^-) = 0$, which implies the uniqueness.

Finally, we see that if $(m^+, m^-, u^+, u^-)(x,t)$ is the periodic solution of (3.1), then $(m^+, m^-, -u^+, -u^-)(-x,t)$ is also the solution of (3.1), by the uniqueness of the periodic solution, we obtain $(m^+, m^-, u^+, u^-)(x,t) = (m^+, m^-, -u^+, -u^-)(-x,t)$. The proof is completed.

REMARK 3.1. It is worth noting that the operator \mathcal{A} defined above generates an exponentially bounded semigroup on H^1 . One can also get the same result of Lemma 3.1 by using methods from evolution equations.

Next, we show that the operator \mathcal{S} is completely continuous.

LEMMA 3.2. If η is sufficiently small, then the operator S is compact.

Proof. Assume that (m^+, m^-, u^+, u^-) is the solution of system (3.1). Similar to the proof of Lemma 3.1, applying $\nabla^k (1 \le k \le 4)$ to $(3.1)_1, (3.1)_2, (3.1)_3, (3.1)_4$ multiplying the results by $\beta_1\beta_3\nabla^k m^+, \beta_2\beta_4\nabla^k m^-, \beta_3\bar{n}^+\nabla^k u^+, \beta_2\bar{n}^-\nabla^k u^-$ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions and the Equations $(3.1)_1, (3.1)_2$, we obtain

$$\frac{1}{4}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_L} \left(\zeta\frac{\beta_3}{\beta_4}|\nabla^k m^+|^2 + \zeta\frac{\beta_2}{\beta_1}|\nabla^k m^-|^2 + 2\beta_3\bar{n}|\nabla^k u^+|^2 + 2\beta_2\bar{n}^-|\nabla^k u^-|^2\right)\mathrm{d}x$$
$$+ \frac{1}{4}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_L} \left(\beta_2\beta_4|\nabla^k m^- + \frac{\beta_3}{\beta_4}\nabla^k m^+|^2 + \beta_1\beta_3|\nabla^k m^+ + \frac{\beta_2}{\beta_1}\nabla^k m^-|^2\right)\mathrm{d}x$$

$$\begin{split} &+ \frac{1}{2}\epsilon \int_{\Omega_L} \left(\zeta \frac{\beta_3}{\beta_4} |\nabla^k \nabla m^+|^2 + \zeta \frac{\beta_2}{\beta_1} |\nabla^k \nabla m^-|^2 \right) \mathrm{d}x \\ &+ \frac{1}{2}\epsilon \int_{\Omega_L} \left(\beta_2 \beta_4 |\nabla^k \nabla m^- + \frac{\beta_3}{\beta_4} \nabla^k \nabla m^+|^2 + \beta_1 \beta_3 |\nabla^k \nabla m^+ + \frac{\beta_2}{\beta_1} \nabla^k \nabla m^-|^2 \right) \mathrm{d}x \\ &+ \beta_3 \bar{n}^+ \int_{\Omega_L} \left((\tilde{\xi} + \tau \xi^+ (n^+, n^-)) (\mu^+ |\nabla^k \nabla u^+|^2 + (\mu^+ + \lambda^+) |\nabla^k \mathrm{div} u^+|^2) \right) \mathrm{d}x \\ &+ \beta_2 \bar{n}^- \int_{\Omega_L} \left((\tilde{\xi} + \tau \xi^- (n^+, n^-)) (\mu^- |\nabla^k \nabla u^-|^2 + (\mu^- + \lambda^-) |\nabla^k \mathrm{div} u^-|^2) \right) \mathrm{d}x \\ &= \left[-\beta_3 \bar{n}^+ \tau \int_{\Omega_L} \left(\partial_{n^+} \xi^+ \nabla n^+ + \partial_{n^-} \xi^+ \nabla n^- \right) \left(\mu^+ \nabla^k \nabla u^+ + (\mu^+ + \lambda^+) \nabla^k \mathrm{div} u^+ \right) \nabla^k u^+ \mathrm{d}x \\ &- \beta_2 \bar{n}^- \tau \int_{\Omega_L} \left(\partial_{n^+} \xi^- \nabla n^+ + \partial_{n^-} \xi^- \nabla n^- \right) \left(\mu^- \nabla^k \nabla u^- + (\mu^- + \lambda^-) \nabla^k \mathrm{div} u^- \right) \nabla^k u^- \mathrm{d}x \\ &+ \beta_3 \bar{n}^+ \tau \int_{\Omega_L} \sum_{1 \le l \le k} \binom{k}{l} \nabla^l \xi^+ \nabla^{k-l} \left(\mu^+ \Delta u^+ + (\mu^+ + \lambda^+) \nabla \mathrm{div} u^+ \right) \nabla^k u^- \mathrm{d}x \\ &+ \beta_2 \bar{n}^- \tau \int_{\Omega_L} \sum_{1 \le l \le k} \binom{k}{l} \nabla^l \xi^- \nabla^{k-l} \left(\mu^- \Delta u^- + (\mu^- + \lambda^-) \nabla \mathrm{div} u^- \right) \nabla^k u^- \mathrm{d}x \right] \\ &- \left[\beta_3 \bar{n}^+ \langle \nabla^{k-1} \tilde{G}_1, \beta_1 \nabla^{k+1} m^+ + \beta_2 \nabla^{k+1} m^- \rangle + \beta_2 \langle \nabla^{k-1} \tilde{G}_2, \beta_3 \nabla^{k+1} m^+ + \beta_4 \nabla^{k+1} m^- \rangle \right] \\ &- \left[\beta_3 \bar{n}^+ \langle \nabla^{k-1} \tilde{G}_3, \nabla^{k+1} u^+ \rangle + \beta_2 \bar{n}^- \langle \nabla^{k-1} \tilde{G}_4, \nabla^{k+1} u^- \rangle \right] \\ &= \left[H_1 + H_2 + H_3 + H_4. \end{split}$$

Then, we have

$$\begin{split} |H_{1}| \leq & C\tau \Big(\|\nabla n^{+}\|_{L^{3}} + \|\nabla n^{-}\|_{L^{3}} \Big) \Big(\|\nabla^{k+1}u^{+}\|_{L^{2}} \|\nabla^{k}u^{+}\|_{L^{6}} + \|\nabla^{k+1}u^{-}\|_{L^{2}} \|\nabla^{k}u^{-}\|_{L^{6}} \Big) \\ & + C\tau \Big(\|\nabla^{k}n^{+}\|_{L^{2}} + \|\nabla^{k}n^{-}\|_{L^{2}} \Big) \Big(\|\nabla^{2}u^{+}\|_{L^{3}} \|\nabla^{k}u^{+}\|_{L^{6}} + \|\nabla^{2}u^{-}\|_{L^{3}} \|\nabla^{k}u^{-}\|_{L^{6}} \Big) \\ \leq & C\tau \eta \Big(\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2} + \|\nabla^{k+1}u^{-}\|_{L^{2}}^{2} \Big), \\ |H_{2}| \leq & C\tau \Big(\|\nabla^{k}(n^{+}w^{+})\|_{L^{2}} + \|\nabla^{k}(n^{-}w^{-})\|_{L^{2}} \Big) \Big(\|\nabla^{k+1}m^{+}\|_{L^{2}} + \|\nabla^{k+1}m^{-}\|_{L^{2}} \Big) \\ \leq & C\tau \Big(\|\nabla^{k}(n^{+},n^{-})\|_{L^{2}} \|(w^{+},w^{-})\|_{L^{\infty}} + \|\nabla^{k}(w^{+},w^{-})\|_{L^{2}} \|(n^{+},n^{-})\|_{L^{\infty}} \Big) \\ \times & \left(\|\nabla^{k+1}m^{+}\|_{L^{2}} + \|\nabla^{k+1}m^{+}\|_{L^{2}} \right) \\ \leq & C\tau \Big(\|\nabla^{k}(n^{+},n^{-})\|_{L^{2}}^{2} \|\nabla(w^{+},w^{-})\|_{H^{1}}^{2} + \|\nabla^{k}(w^{+},w^{-})\|_{L^{2}}^{2} \|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} \Big) \\ & + \frac{\zeta\epsilon}{4} \Big(\frac{\beta_{3}}{\beta_{4}} \|\nabla^{k+1}m^{+}\|_{L^{2}}^{2} + \frac{\beta_{2}}{\beta_{1}} \|\nabla^{k+1}m^{-}\|_{L^{2}}^{2} \Big). \end{split}$$

Note that

$$H_3 = -\beta_3 \bar{n}^+ \langle \nabla^{k-1} \tilde{G}_3, \nabla^{k+1} u^+ \rangle - \beta_2 \bar{n}^- \langle \nabla^{k-1} \tilde{G}_4, \nabla^{k+1} u^- \rangle := H_3^1 + H_3^2,$$

then for H_3^1 we have

$$|H_3^1| \le C\tau \Big(|\langle \nabla^{k-1}(g_1^+(n^+, n^-) \nabla n^+ + g_2^+(n^+, n^-) \nabla n^-), \nabla^{k+1}u^+ \rangle|$$

$$\begin{split} &+|\langle \nabla^{k-1}[h_{1}^{+}(n^{+},n^{-})(\nabla n^{+}\cdot\nabla)w^{+}+h_{2}^{+}(n^{+},n^{-})(\nabla n^{-}\cdot\nabla)w^{+}],\nabla^{k+1}u^{+}\rangle|\\ &+|\langle \nabla^{k-1}[h_{1}^{+}(n^{+},n^{-})\nabla n^{+}\nabla^{t}w^{+}+h_{2}^{+}(n^{+},n^{-})\nabla n^{-}\nabla^{t}w^{+}],\nabla^{k+1}u^{+}\rangle|\\ &+|\langle \nabla^{k-1}[h_{1}^{+}(n^{+},n^{-})\nabla n^{+}\operatorname{div}w^{+}+h_{2}^{+}(n^{+},n^{-})\nabla n^{-}\operatorname{div}w^{+}],\nabla^{k+1}u^{+}\rangle|\\ &+|\langle \nabla^{k-1}[(w^{+}\cdot\nabla)w^{+}],\nabla^{k+1}u^{+}\rangle|\Big), \end{split}$$

that is

$$\begin{split} |H_{3}^{1}| &\leq C\tau \Big(\|\nabla^{k-1}g_{1}^{+}(n^{+},n^{-})\|_{L^{6}} \|\nabla n^{+}\|_{L^{3}} + \|g_{1}^{+}(n^{+},n^{-})\|_{L^{\infty}} \|\nabla^{k}n^{+}\|_{L^{2}} \Big) \|\nabla^{k+1}u^{+}\|_{L^{2}} \\ &+ C\tau \Big(\|\nabla^{k-1}g_{2}^{+}(n^{+},n^{-})\|_{L^{6}} \|\nabla n^{-}\|_{L^{3}} + \|g_{2}^{+}(n^{+},n^{-})\|_{L^{\infty}} \|\nabla^{k}n^{-}\|_{L^{2}} \Big) \|\nabla^{k+1}u^{+}\|_{L^{2}} \\ &+ C\tau \Big(\|\nabla^{k-1}[h_{1}^{+}(n^{+},n^{-})\nabla w^{+}]\|_{L^{2}} \|\nabla n^{+}\|_{L^{\infty}} + \|h_{1}^{+}(n^{+},n^{-})\nabla w^{+}\|_{L^{\infty}} \|\nabla^{k}n^{+}\|_{L^{2}} \\ &+ \|\nabla^{k-1}[h_{2}^{+}(n^{+},n^{-})\nabla w^{+}]\|_{L^{2}} \|\nabla n^{-}\|_{L^{\infty}} + \|h_{2}^{+}(n^{+},n^{-})\nabla w^{+}\|_{L^{\infty}} \|\nabla^{k}n^{-}\|_{L^{2}} \\ &+ \|\nabla^{k-1}w^{+}\|_{L^{6}} \|\nabla w^{+}\|_{L^{3}} + \|w^{+}\|_{L^{\infty}} \|\nabla^{k}w^{+}\|_{L^{2}} \Big) \|\nabla^{k+1}u^{+}\|_{L^{2}} \\ \leq C\tau \Big(\|\nabla^{k}(n^{+},n^{-})\|_{L^{2}}^{2} \|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} + (\|\nabla^{k}(n^{+},n^{-})\|_{L^{2}}^{2} \|\nabla^{k}(n^{+},n^{-})\|_{L^{2}}^{2} \\ &+ \|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} \|\nabla^{k}w^{+}\|_{L^{2}}^{2} \Big) \|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} + \|\nabla w^{+}\|_{H^{2}}^{2} \\ \leq C\tau \Big(\|\nabla^{k}(n^{+},n^{-})\|_{L^{2}}^{2} + \|\nabla^{k}w^{+}\|_{L^{2}}^{2} \Big) \Big(\|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} + \|\nabla w^{+}\|_{H^{2}}^{2} \\ &+ \|\nabla(n^{+},n^{-})\|_{H^{1}}^{4} + \|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} \|\nabla w^{+}\|_{H^{1}}^{2} \Big) + \frac{\beta_{3}\bar{n}^{+}\tilde{\xi}}{4} \|\nabla^{k+1}u^{+}\|_{L^{2}}^{2}. \end{split}$$

Similarly, we have

$$\begin{aligned} |H_3^2| \leq & C\tau \Big(\|\nabla^k(n^+, n^-)\|_{L^2}^2 + \|\nabla^k w^-\|_{L^2} \Big) \Big(\|\nabla(n^+, n^-)\|_{H^1}^2 + \|\nabla w^-\|_{H^2}^2 \\ & + \|\nabla(n^+, n^-)\|_{H^1}^4 + \|\nabla(n^+, n^-)\|_{H^1}^2 \|\nabla w^-\|_{H^1}^2 \Big) + \frac{\beta_3 \bar{n}^+ \tilde{\xi}}{4} \|\nabla^{k+1} u^+\|_{L^2}^2, \end{aligned}$$

then

$$\begin{aligned} |H_3| \leq & C\tau \Big(\|\nabla^k(n^+, n^-)\|_{L^2}^2 + \|\nabla^k(w^+, w^-)\|_{L^2} \Big) \Big(\|\nabla(n^+, n^-)\|_{H^1}^2 + \|\nabla(w^+, w^-)\|_{H^2}^2 \\ & + \|\nabla(n^+, n^-)\|_{H^1}^4 + \|\nabla(n^+, n^-)\|_{H^1}^2 \|\nabla(w^+, w^-)\|_{H^1}^2 \Big) + \frac{\beta_3 \bar{n}^+ \tilde{\xi}}{4} \|\nabla^{k+1} u^+\|_{L^2}^2 \\ & + \frac{\beta_2 \bar{n}^- \tilde{\xi}}{4} \|\nabla^{k+1} u^-\|_{L^2}^2. \end{aligned}$$

For the last term, we have

$$|H_4| \le C\tau \left(\|\nabla^{k-1}r^+\|_{L^2}^2 + \|\nabla^{k-1}r^+\|_{L^2}^2 \right) + \frac{\tilde{\xi}}{4} \left(\beta_3 \bar{n}^+ \|\nabla^{k+1}u^+\|_{L^2}^2 + \beta_2 \bar{n}^- \|\nabla^{k+1}u^-\|_{L^2}^2 \right).$$

Let $k\!=\!4,$ note that $\tau\!\in\![0,1]$ for sufficiently small $\eta\!>\!0,$ combining the above estimates, we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_L} \left(\zeta \frac{\beta_3}{\beta_4} |\nabla^4 m^+|^2 + \zeta \frac{\beta_2}{\beta_1} |\nabla^4 m^-|^2 + 2\beta_3 \bar{n} |\nabla^4 u^+|^2 + 2\beta_2 \bar{n}^- |\nabla^4 u^-|^2 \right) \mathrm{d}x$$

$$+ \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{L}} \left(\beta_{2}\beta_{4} |\nabla^{4}m^{-} + \frac{\beta_{3}}{\beta_{4}} \nabla^{4}m^{+}|^{2} + \beta_{1}\beta_{3} |\nabla^{4}m^{+} + \frac{\beta_{2}}{\beta_{1}} \nabla^{4}m^{-}|^{2} \right) dx + \epsilon \int_{\Omega_{L}} \left(\zeta \frac{\beta_{3}}{\beta_{4}} \times |\nabla^{5}m^{+}|^{2} + \zeta \frac{\beta_{2}}{\beta_{1}} |\nabla^{5}m^{-}|^{2} \right) dx + \tilde{\xi} \int_{\Omega_{L}} \left(\beta_{3}\bar{n}^{+}\mu^{+} |\nabla^{5}u^{+}|^{2} + \beta_{2}\bar{n}^{-}\mu^{-} |\nabla^{5}u^{-}|^{2} \right) dx \\ \leq C\tau \Big(\|\nabla^{4}(n^{+},n^{-})\|_{L^{2}}^{2} + \|\nabla^{4}(w^{+},w^{-})\|_{L^{2}} \Big) \Big(\|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} + \|\nabla(w^{+},w^{-})\|_{H^{2}}^{2} \\ + \|\nabla(n^{+},n^{-})\|_{H^{1}}^{4} + \|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} \|\nabla(w^{+},w^{-})\|_{H^{1}}^{2} \Big) + C\tau \|\nabla^{3}(r^{+},r^{-})\|_{L^{2}}^{2}.$$
(3.9)

Integrating (3.9) from 0 to T, we have

$$\int_{0}^{T} \epsilon \left(\zeta \frac{\beta_{3}}{\beta_{4}} \| \nabla^{5} m^{+} \|_{L^{2}}^{2} + \zeta \frac{\beta_{2}}{\beta_{1}} \| \nabla^{5} m^{-} \|_{L^{2}}^{2} \right) dt + \int_{0}^{T} \tilde{\xi} \left(\beta_{3} \bar{n}^{+} \mu^{+} \| \nabla^{5} u^{+} \|_{L^{2}}^{2} + \beta_{2} \bar{n}^{-} \mu^{-} \| \nabla^{5} u^{-} \|_{L^{2}}^{2} \right) dt \\
\leq C \tau \sup_{0 \leq t \leq T} \left(\| \nabla (n^{+}, n^{-}) \|_{H^{1}}^{2} + \| \nabla (w^{+}, w^{-}) \|_{H^{2}}^{2} + \| \nabla (n^{+}, n^{-}) \|_{H^{1}}^{4} \\
+ \| \nabla (n^{+}, n^{-}) \|_{H^{1}}^{2} \| \nabla (w^{+}, w^{-}) \|_{H^{1}}^{2} \right) \int_{0}^{T} \left(\| \nabla (n^{+}, n^{-}) \|_{H^{3}}^{2} + \| \nabla (w^{+}, w^{-}) \|_{H^{3}}^{2} \right) dt \\
+ C \tau \int_{0}^{T} \| \nabla^{3} (r^{+}, r^{-}) \|_{L^{2}}^{2} dt \leq K^{*}.$$
(3.10)

Then, there exists a time $t^* \in (0,T)$ such that

$$\begin{aligned} \epsilon T \Big(\zeta \frac{\beta_3}{\beta_4} \| \nabla^5 m^+(\cdot,t^*) \|_{L^2}^2 + \zeta \frac{\beta_2}{\beta_1} \| \nabla^5 m^-(\cdot,t^*) \|_{L^2}^2 \Big) + \tilde{\xi} T \Big(\beta_3 \bar{n}^+ \mu^+ \| \nabla^5 u^+(\cdot,t^*) \|_{L^2}^2 \\ + \beta_2 \bar{n}^- \mu^- \| \nabla^5 u^-(\cdot,t^*) \|_{L^2}^2 \Big) &\leq K^*. \end{aligned}$$

Using Poincaré's inequality, we have

$$\|\nabla^4 m^+(\cdot,t^*)\|_{L^2}^2 + \|\nabla^4 m^-(\cdot,t^*)\|_{L^2}^2 + \|\nabla^4 u^+(\cdot,t^*)\|_{L^2}^2 + \|\nabla^4 u^-(\cdot,t^*)\|_{L^2}^2 \le CK^*.$$

Then, integrating (3.9) from t^* to t for any $t \in (t^*, T]$, we have

$$\|\nabla^4 m^+(\cdot,t)\|_{L^2}^2 + \|\nabla^4 m^-(\cdot,t)\|_{L^2}^2 + \|\nabla^4 u^+(\cdot,t)\|_{L^2}^2 + \|\nabla^4 u^-(\cdot,t)\|_{L^2}^2 \le CK^*.$$

Moreover, by the time periodic assumption, we have

$$\|\nabla^4 m^+(\cdot,0)\|_{L^2}^2 + \|\nabla^4 m^-(\cdot,0)\|_{L^2}^2 + \|\nabla^4 u^+(\cdot,0)\|_{L^2}^2 + \|\nabla^4 u^-(\cdot,0)\|_{L^2}^2 \le CK^*.$$

Repeating the above process for $t \in (0, t^*)$, we obtain

$$\sup_{0 \le t \le T} \left(\|m^+(\cdot,t)\|_{H^4}^2 + \|m^-(\cdot,t)\|_{H^4}^2 + \|u^+(\cdot,t)\|_{H^4}^2 + \|u^-(\cdot,t)\|_{H^4}^2 \right) \le CK^*.$$
(3.11)

Similarly, applying ∇^3 to $(3.1)_1, (3.1)_2, (3.1)_3, (3.1)_4$, multiplying the results by $\partial_t(\nabla^3 m^+)$, $\partial_t(\nabla^3 m^-)$, $\partial_t(\nabla^3 u^+)$, $\partial_t(\nabla^3 u^-)$ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions and the Equations $(3.1)_1, (3.1)_2$, finally integrating the result over [0,T] and combining with (3.10), we obtain

$$\int_0^T \left(\|\partial_t (\nabla^3 m^+)\|_{L^2}^2 + \|\partial_t (\nabla^3 m^-)\|_{L^2}^2 + \|\partial_t (\nabla^3 u^+)\|_{L^2}^2 + \|\partial_t (\nabla^3 u^-)\|_{L^2}^2 \right) \mathrm{d}t$$

$$\leq C \int_{0}^{T} \left(\|\nabla^{4}(u^{+},u^{-})\|_{L^{2}}^{2} + \epsilon \|\nabla^{4}(m^{+},m^{-})\|_{L^{2}}^{2} + \|\nabla^{4}(m^{+},m^{-})\|_{L^{2}}^{2} + \tau \|\nabla^{3}(n^{+},n^{-})\|_{L^{6}}^{2} \|\nabla^{2}u^{+}\|_{L^{3}}^{2} + \|\nabla^{5}(u^{+},u^{-})\|_{L^{2}}^{2} + \|\nabla^{3}\tilde{G}_{1}\|_{L^{2}}^{2} + \|\nabla^{3}\tilde{G}_{4}\|_{L^{2}}^{2} + \|\nabla^{3}r^{+}\|_{L^{2}}^{2} + \|\nabla^{3}r^{-}\|_{L^{2}}^{2} \right) dt$$

$$\leq C\tau \sup_{0 \leq t \leq T} \left(\|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} + \|\nabla(w^{+},w^{-})\|_{H^{2}}^{2} + \|\nabla(n^{+},n^{-})\|_{H^{1}}^{2} \|\nabla(w^{+},w^{-})\|_{H^{1}}^{2} + \|\nabla(n^{+},n^{-})\|_{H^{3}}^{2} \right) dt$$

$$+ \|\nabla(n^{+},n^{-})\|_{H^{1}}^{4} \int_{0}^{T} \left(\|\nabla(n^{+},n^{-})\|_{H^{3}}^{2} + \|\nabla(w^{+},w^{-})\|_{H^{3}}^{2} \right) dt$$

$$+ C\tau \int_{0}^{T} \|\nabla^{3}(r^{+},r^{-})\|_{L^{2}}^{2} dt.$$

$$(3.12)$$

From (3.10), (3.11) and (3.12), using the Lemma 2.4, we get the compactness of operator S. The proof is complete.

The next lemma shows the continuity of the operator \mathcal{S} .

LEMMA 3.3. If η is sufficiently small, then the operator S is continuous.

Proof. Assume that $(n_i^+, n_i^-, w_i^+, w_i^-) \in \mathcal{X}_{\eta}^L, \tau_i \in [0, 1], (n^+, n^-, w^+, w^-) \in \mathcal{X}_{\eta}^L, \tau \in [0, 1],$ and

$$\lim_{i \to \infty} \|(n_i^+ - n^+, n_i^- - n^-, w_i^+ - w^+, w_i^- - w^-)\|_{\mathcal{X}^L} = 0, \text{ as } \lim_{i \to \infty} \tau_i = \tau.$$

Let

$$\begin{split} & (m_i^+, m_i^-, u_i^+, u_i^-) \,{=}\, \mathcal{S}\left((n_i^+, n_i^-, w_i^+, w_i^-), \tau_i\right), \\ & (m^+, m^-, u^+, u^-) \,{=}\, \mathcal{S}\left((n^+, n^-, w^+, w^-), \tau\right). \end{split}$$

Then $(\tilde{m}_i^+, \tilde{m}_i^-, \tilde{u}_i^+, \tilde{u}_i^-) := (m_i^+ - m^+, m_i^- - m^-, u_i^+ - u^+, u_i^- - u^-)$ is a periodic solution of the following system

$$\begin{cases} \partial_{t}\tilde{m}^{+} + \bar{n}^{+} \operatorname{div}\tilde{u}^{+} - \epsilon \Delta \tilde{m}^{+} = I_{1}, \\ \partial_{t}\tilde{m}^{-} + \bar{n}^{-} \operatorname{div}\tilde{u}^{-} - \epsilon \Delta \tilde{m}^{-} = I_{2}, \\ \partial_{t}\tilde{u}^{+} + \beta_{1}\nabla \tilde{m}^{+} + \beta_{2}\nabla \tilde{m}^{-} - (\tilde{\xi} + \tau_{i}\xi^{+}(n_{i}^{+}, n_{i}^{-}))(\mu^{+}\Delta \tilde{u}^{+} + (\mu^{+} + \lambda^{+})\nabla \operatorname{div}\tilde{u}^{+}) \\ = I_{3} + (\tau_{i} - \tau)r^{+}, \\ \partial_{t}\tilde{u}^{-} + \beta_{3}\nabla \tilde{m}^{+} + \beta_{4}\nabla \tilde{m}^{-} - (\tilde{\xi} + \tau_{i}\xi^{-}(n_{i}^{+}, n_{i}^{-}))(\mu^{-}\Delta \tilde{u}^{-} + (\mu^{-} + \lambda^{-})\nabla \operatorname{div}\tilde{u}^{-}) \\ = I_{4} + (\tau_{i} - \tau)r^{-}, \end{cases}$$

$$(3.13)$$

where

$$\begin{split} I_1 = & (\tau - \tau_i) \operatorname{div}(n^+ w^+) - \tau_i \operatorname{div}((n_i^+ - n^+)w^+ + n_i^+(w_i^+ - w^+)), \\ I_2 = & (\tau - \tau_i) \operatorname{div}(n^- w^-) - \tau_i \operatorname{div}((n_i^- - n^-)w^- + n_i^-(w_i^- - w^-)), \\ I_3 = & (\tau_i - \tau)\xi^+(n^+, n^-)(\mu^+ \Delta u^+ + (\mu^+ + \lambda^+)\nabla \operatorname{div} u^+) \\ & + \tau_i (\xi^+(n_i^+, n_i^-) - \xi^+(n^+, n^-))(\mu^+ \Delta u^+ + (\mu^+ + \lambda^+)\nabla \operatorname{div} u^+) \\ & - & (\tau_i - \tau)g_1^+(n_i^+, n_i^-)\nabla n_i^+ - \tau (g_1^+(n_i^+, n_i^-) - g_1^+(n^+, n^-))\nabla n_i^+ \\ & - & \tau g_1^+(n^+, n^-)\nabla (n_i^+ - n^+) - (\tau_i - \tau)g_2^+(n_i^+, n_i^-)\nabla n_i^- \\ & - & \tau (g_2^+(n_i^+, n_i^-) - g_2^+(n^+, n^-))\nabla n_i^- - & \tau g_2^+(n^+, n^-)\nabla (n_i^- - n^-) \end{split}$$

$$\begin{split} &-(\tau_i-\tau)(w_i^+\cdot\nabla)w_i^+-\tau(((w_i^+-w^+)\cdot\nabla)w_i^++(w^+\cdot\nabla)(w_i^+-w^+))\\ &+\mu^+(\tau_i-\tau)h_1^+(n_i^+,n_i^-)(\nabla n_i^+\cdot\nabla)w_i^+\\ &+\mu^+\tau(h_1^+(n_i^+,n_i^-)-h_1^+(n^+,n^-))(\nabla n_i^+\cdot\nabla)w_i^+\\ &+\mu^+\tau(h_1^+(n^+,n_i^-)-h_2^+(n^+,n^-))(\nabla n_i^-\cdot\nabla)w_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)-h_2^+(n^+,n^-))(\nabla n_i^-\cdot\nabla)w_i^+\\ &+\mu^+\tau(h_2^+(n^+,n^-)((\nabla(n_i^--n^-)\cdot\nabla)w_i^++(\nabla n^-\cdot\nabla)(w_i^+-w^+)))\\ &+\mu^+(\tau_i-\tau)h_1^+(n_i^+,n_i^-)\nabla n_i^+\nabla^tw_i^+\\ &+\mu^+\tau(h_1^+(n_i^+,n_i^-)-h_1^+(n^+,n^-))\nabla n_i^+\nabla^tw_i^+\\ &+\mu^+\tau(h_1^+(n_i^+,n_i^-)-h_2^+(n^+,n^-))\nabla n_i^-\nabla^tw_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)-h_2^+(n^+,n^-))\nabla n_i^-\nabla^tw_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)-h_2^+(n^+,n^-))\nabla n_i^+\operatorname{div}w_i^+\\ &+\mu^+\tau(h_1^+(n_i^+,n_i^-)-h_1^+(n^+,n^-))\nabla n_i^+\operatorname{div}w_i^+\\ &+\mu^+\tau(h_1^+(n_i^+,n_i^-)-h_1^+(n^+,n^-))\nabla n_i^+\operatorname{div}w_i^+\\ &+\mu^+\tau(h_1^+(n_i^+,n_i^-)-h_2^+(n^+,n^-))\nabla n_i^-\operatorname{div}w_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)-h_2^+(n^+,n^-))\nabla n_i^-\operatorname{div}w_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)+h_2^+(n^+,n^-))\nabla n_i^-\operatorname{div}w_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)+h_2^+(n^+,n^-))\nabla n_i^-\operatorname{div}w_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)+h_2^+(n^+,n^-))\nabla n_i^-\operatorname{div}w_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)+h_2^+(n^+,n^-))\nabla n_i^-\operatorname{div}w_i^+\\ &+\mu^+\tau(h_2^+(n_i^+,n_i^-)+h_2^+(n^+,n^-))\nabla n_i^-\operatorname{div}w_i^+$$

and

$$\begin{split} I_4 = &(\tau_i - \tau)\xi^-(n^+, n^-)(\mu^- \Delta u^- + (\mu^- + \lambda^-)\nabla \operatorname{div} u^-) \\ &+ \tau_i (\xi^-(n_i^+, n_i^-) - \xi^-(n^+, n^-))(\mu^- \Delta u^- + (\mu^- + \lambda^-)\nabla \operatorname{div} u^-) \\ &- (\tau_i - \tau)g_1^+(n_i^+, n_i^-)\nabla n_i^+ - \tau (g_1^-(n_i^+, n_i^-) - g_1^-(n^+, n^-))\nabla n_i^+ \\ &- \tau g_1^-(n^+, n^-)\nabla (n_i^+ - n^+) - (\tau_i - \tau)g_2^-(n_i^+, n_i^-)\nabla n_i^- \\ &- \tau (g_2^-(n_i^+, n_i^-) - g_2^-(n^+, n^-))\nabla n_i^- - \tau g_2^-(n^+, n^-)\nabla (n_i^- - n^-) \\ &- (\tau_i - \tau)(w_i^- \cdot \nabla)w_i^- - \tau (((w_i^- - w^-) \cdot \nabla)w_i^- + (w^- \cdot \nabla)(w_i^- - w^-))) \\ &+ \mu^-(\tau_i - \tau)h_1^-(n_i^+, n_i^-)(\nabla n_i^+ \cdot \nabla)w_i^- \\ &+ \mu^- \tau (h_1^-(n_i^+, n_i^-) - h_1^-(n^+, n^-))(\nabla n_i^+ \cdot \nabla)w_i^- \\ &+ \mu^- \tau (h_2^-(n_i^+, n_i^-) - h_2^-(n^+, n^-))(\nabla n_i^- \cdot \nabla)w_i^- \\ &+ \mu^- \tau (h_2^-(n_i^+, n_i^-) - h_2^-(n^+, n^-))(\nabla n_i^- \cdot \nabla)w_i^- \\ &+ \mu^- \tau (h_1^-(n_i^+, n_i^-) - h_1^-(n^+, n^-))\nabla n_i^+ \nabla^t w_i^- \\ &+ \mu^- \tau (h_1^-(n_i^+, n_i^-) - h_1^-(n^+, n^-))\nabla n_i^+ \nabla^t w_i^- \\ &+ \mu^- \tau (h_1^-(n_i^+, n_i^-) - h_1^-(n^+, n^-))\nabla n_i^+ \nabla^t w_i^- \\ &+ \mu^- \tau (h_1^-(n_i^+, n_i^-) - h_1^-(n^+, n^-))\nabla n_i^- \nabla^t w_i^- \\ &+ \mu^- \tau (n_1^-(n_i^+, n_i^-) \nabla n_i^- \nabla^t w_i^- \\ &+ \mu^- \tau (n_1^-(n_i^+, n_i^-) \nabla n_i^- \nabla^t w_i^- \\ &+ \mu^- (\tau_i - \tau)h_2^-(n_i^+, n_i^-) \nabla n_i^- \nabla^t w_i^- \\ &+ \mu^- (\tau_i - \tau)h_2^-(n_i^+, n_i^-) \nabla n_i^- \nabla^t w_i^- \\ \end{split}$$

$$\begin{split} &+\mu^{-}\tau(h_{2}^{-}(n_{i}^{+},n_{i}^{-})-h_{2}^{-}(n^{+},n^{-}))\nabla n_{i}^{-}\nabla^{t}w_{i}^{-} \\ &+\mu^{-}\tau h_{2}^{-}(n^{+},n^{-})(\nabla(n_{i}^{-}-n^{-})\nabla^{t}w_{i}^{-}+\nabla n^{-}\nabla^{t}(w_{i}^{-}-w^{-})) \\ &+\mu^{-}(\tau_{i}-\tau)h_{1}^{-}(n_{i}^{+},n_{i}^{-})\nabla n_{i}^{+}\operatorname{div}w_{i}^{-} \\ &+\mu^{-}\tau(h_{1}^{-}(n_{i}^{+},n_{i}^{-})-h_{1}^{-}(n^{+},n^{-}))\nabla n_{i}^{+}\operatorname{div}w_{i}^{-} \\ &+\mu^{-}\tau h_{1}^{-}(n^{+},n^{-})(\nabla(n_{i}^{+}-n^{+})\operatorname{div}w_{i}^{-}+\nabla n^{+}\operatorname{div}(w_{i}^{-}-w^{-})) \\ &+\mu^{-}(\tau_{i}-\tau)h_{2}^{-}(n_{i}^{+},n_{i}^{-})\nabla n_{i}^{-}\operatorname{div}w_{i}^{-} \\ &+\mu^{-}\tau(h_{2}^{-}(n_{i}^{+},n_{i}^{-})-h_{2}^{-}(n^{+},n^{-}))\nabla n_{i}^{-}\operatorname{div}w_{i}^{-} \\ &+\mu^{-}\tau h_{2}^{-}(n^{+},n^{-})(\nabla(n_{i}^{-}-n^{-})\operatorname{div}w_{i}^{-}+\nabla n^{-}\operatorname{div}(w_{i}^{-}-w^{-}))). \end{split}$$

Similar to the proof of Lemma 3.2, we have

$$\lim_{n \to \infty} \|(m_i^+ - m^+, m_i^- - m^-, u_i^+ - u^+, u_i^- - u^-)\|_{\mathcal{X}^L} = 0.$$

Therefore, we get the continuity of the operator \mathcal{S} .

3.2. Energy estimates. In this subsection, we deduce some energy estimates, and interpret why we can not get the existence of time periodic solutions in \mathbb{R}^3 , see Remark 3.2.

LEMMA 3.4. Assume that $\tau \in (0,1], |m^{\pm}| \leq \frac{\bar{n}^{\pm}}{2}$, and $(m^+, m^-, u^+, u^-) \in \mathcal{X}^L$ is the solution of the following problem

$$\begin{cases} \partial_t m^+ + \bar{n}^+ \operatorname{div} u^+ - \epsilon \Delta m^+ = \tilde{G}_1(m^+, u^+, \tau), \\ \partial_t m^- + \bar{n}^- \operatorname{div} u^- - \epsilon \Delta m^- = \tilde{G}_2(m^-, u^-, \tau), \\ \partial_t u^+ + \beta_1 \nabla m^+ + \beta_2 \nabla m^- - (\tilde{\xi} + \tau \xi^+(m^+, m^-))(\mu^+ \Delta u^+ + (\mu^+ + \lambda^+) \nabla \operatorname{div} u^+) \\ = \tilde{G}_3(m^+, m^-, u^+, \tau) + \tau r^+, \\ \partial_t u^- + \beta_3 \nabla m^+ + \beta_4 \nabla m^- - (\tilde{\xi} + \tau \xi^-(m^+, m^-))(\mu^- \Delta u^- + (\mu^- + \lambda^-) \nabla \operatorname{div} u^-) \\ = \tilde{G}_4(m^+, m^-, u^-, \tau) + \tau r^-, \\ \int_{\Omega_L} m^\pm dx = 0, \end{cases}$$
(3.14)

then we have

$$\begin{split} &\frac{1}{4} \int_{\Omega_L} \left(\zeta \frac{\beta_3}{\beta_4} |\nabla^k m^+|^2 + \zeta \frac{\beta_2}{\beta_1} |\nabla^k m^-|^2 \right) \mathrm{d}x + \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_L} \left(\nabla^k m^+ \nabla^{k-1} u^+ + \nabla^k m^- \nabla^{k-1} u^- \right) \mathrm{d}x \\ &\leq C \tau \Big(\|\nabla(m^+, m^-)\|_{H^3}^2 + \|\nabla(u^+, u^-)\|_{H^3}^2 \Big) \Big(\|\nabla(m^+, m^-)\|_{H^1} + \|\nabla(m^+, m^-)\|_{H^2}^2 \\ &\quad + \|\nabla(u^+, u^-)\|_{H^2}^2 + \|\nabla(u^+, u^-)\|_{H^2}^2 \|\nabla(m^+, m^-)\|_{H^1}^2 + \|\nabla(m^+, m^-)\|_{H^2}^4 \Big) \\ &\quad + C \tau \|\nabla^{k-1}(r^+, r^-)\|_{L^2}^2 + \eta_1 \epsilon \Big(\|\nabla^{k+1} m^+\|_{L^2}^2 + \|\nabla^{k+1} m^-\|_{L^2}^2 \Big) \\ &\quad + C_1 \Big(\|\nabla^k u^+\|_{L^2}^2 + \|\nabla^k u^-\|_{L^2}^2 \Big) + \eta_2 \Big(\|\nabla^{k+1} u^+\|_{L^2}^2 + \|\nabla^{k+1} u^-\|_{L^2}^2 \Big), \\ &\quad for \ k = 1, 2, 3, 4, \end{split}$$

where C, C_1, η_1, η_2 are constants independent of L and ϵ , and η_1, η_2 are sufficiently small.

Proof. Assume that (m^+, m^-, u^+, u^-) is the solution of system (3.14). Similar to Lemma 3.1, applying $\nabla^k, (k \ge 1)$ to $(3.14)_1, (3.14)_2$, and ∇^{k-1} to $(3.14)_3, (3.14)_4$

multiplying the results by $\beta_3 \nabla^{k-1} u^+$, $\beta_2 \nabla^{k-1} u^-$, $\beta_3 \nabla^k m^+$, $\beta_2 \nabla^k m^-$ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions and the Equations $(3.14)_1, (3.14)_2$, we obtain

$$\begin{split} &\frac{1}{2}\int_{\Omega_L} \left(\zeta \frac{\beta_3}{\beta_4} |\nabla^k m^+|^2 + \zeta \frac{\beta_2}{\beta_1} |\nabla^k m^-|^2 + \beta_2 \beta_4 |\nabla^k m^- + \frac{\beta_3}{\beta_4} \nabla^k m^+|^2 \\ &+ \beta_1 \beta_3 |\nabla^k m^+ + \frac{\beta_2}{\beta_1} \nabla^k m^-|^2 \right) \mathrm{d}x + \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_L} \left(\beta_3 \nabla^k m^+ \nabla^{k-1} u^+ + \beta_2 \nabla^k m^- \nabla^{k-1} u^- \right) \mathrm{d}x \\ &= \int_{\Omega_L} \left(\beta_3 \bar{n}^+ |\nabla^{k-1} \mathrm{div} u^+|^2 + \beta_2 \bar{n}^- |\nabla^{k-1} \mathrm{div} u^-|^2 \right) \mathrm{d}x \\ &- \epsilon \int_{\Omega_L} \left(\beta_3 \nabla^{k+1} m^+ \nabla^k u^+ + \beta_2 \nabla^{k+1} m^- \nabla^k u^- \right) \mathrm{d}x \\ &+ \int_{\Omega_L} \left[\beta_3 \nabla^{k-1} \left((\tilde{\xi} + \tau \xi^+ (m^+, m^-))(\mu^+ \Delta u^+ + (\mu^+ + \lambda^+) \nabla \mathrm{div} u^+)\right) \nabla^k m^+ \\ &+ \beta_2 \nabla^{k-1} \left((\tilde{\xi} + \tau \xi^- (m^+, m^-))(\mu^- \Delta u^- + (\mu^- + \lambda^-) \nabla \mathrm{div} u^-)\right) \nabla^k m^- \right] \mathrm{d}x \\ &+ \left[\beta_3 \tau \langle \nabla^k (m^+ u^+), \nabla^k u^+ \rangle + \beta_2 \tau \langle \nabla^k (m^- u^-), \nabla^k u^- \rangle \right] \\ &+ \left[\beta_3 \langle \nabla^{k-1} \tilde{G}_3, \nabla^k m^+ \rangle + \beta_2 \langle \nabla^{k-1} \tilde{G}_4, \nabla^k m^- \rangle \right] \\ &+ \left[\beta_3 \langle \nabla^{k-1} r^+, \nabla^k m^+ \rangle + \beta_2 \bar{n}^- \langle \nabla^{k-1} r^-, \nabla^k m^- \rangle \right] := J_1 + J_2 + J_3 + J_4 + J_5 + J_6. \end{split}$$

Next, we estimate the terms $J_i(i=1,2,\dots,6)$. Since we want the estimates independent of the periodic domain Ω_L , the following estimates will be more complicated compared to Lemma 3.1; precisely, we have

$$|J_1| \le \frac{1}{2}C_1 \|\nabla^k u^+\|_{L^2}^2 + \frac{1}{2}C_1 \|\nabla^k u^-\|_{L^2}^2.$$

Without loss of generality, assume $\epsilon \leq 1$, then

$$|J_2| \le \frac{1}{2} C_1 \|\nabla^k u^+\|_{L^2}^2 + \frac{1}{2} C_1 \|\nabla^k u^-\|_{L^2}^2 + \eta_1 \epsilon \Big(\|\nabla^{k+1} m^+\|_{L^2}^2 + \|\nabla^{k+1} m^-\|_{L^2}^2 \Big).$$

$$\begin{split} |J_{3}| &\leq C\tau \Big(\|(m^{+},m^{-})\|_{L^{\infty}} \|\nabla^{k+1}(u^{+},u^{-})\|_{L^{2}} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} \\ &+ \|\nabla(m^{+},m^{-})\|_{L^{3}} \|\nabla^{k}(u^{+},u^{-})\|_{L^{6}} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} \\ &+ \|\nabla^{2}(m^{+},m^{-})\|_{L^{3}} \|\nabla^{k-1}(u^{+},u^{-})\|_{L^{6}} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} \\ &+ \sum_{3 \leq l \leq k-1} \|\nabla^{l}(m^{+},m^{-})\|_{L^{3}} \|\nabla^{k+1-l}(u^{+},u^{-})\|_{L^{6}} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} \Big) \\ &\leq \frac{\eta_{2}}{2} \Big(\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2} + \|\nabla^{k+1}u^{-}\|_{L^{2}}^{2} \Big) + \frac{\zeta}{16} \Big(\frac{\beta_{3}}{\beta_{4}} \|\nabla^{k}m^{+}\|_{L^{2}}^{2} + \frac{\beta_{2}}{\beta_{1}} \|\nabla^{k}m^{-}\|_{L^{2}}^{2} \Big) \\ &+ C\tau \Big(\|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} + \|\nabla^{k}(u^{+},u^{-})\|_{L^{2}}^{2} \Big) \|\nabla(m^{+},m^{-})\|_{H^{2}}^{2} \\ &+ \|\nabla(u^{+},u^{-})\|_{H^{k-2}}^{2} \|\nabla(m^{+},m^{-})\|_{H^{k-1}}^{2}, \text{ for } k \geq 4, \end{split}$$

where the Leibniz's formula is used. And

 $|J_3| \le C\tau \|(m^+, m^-)\|_{L^{\infty}} \|\nabla^2(u^+, u^-)\|_{L^2} \|\nabla(m^+, m^-)\|_{L^2}$

$$\begin{split} &\leq \frac{\eta_2}{2} \Big(\|\nabla^2 u^+\|_{L^2}^2 + \|\nabla^2 u^-\|_{L^2}^2 \Big) + \frac{\zeta}{16} \Big(\frac{\beta_3}{\beta_4} \|\nabla m^+\|_{L^2}^2 + \frac{\beta_2}{\beta_1} \|\nabla m^-\|_{L^2}^2 \Big) \\ &\quad + C\tau \Big(\|\nabla (m^+, m^-)\|_{L^2}^2 \|\nabla (m^+, m^-)\|_{H^1}^2 + \|\nabla^2 (u^+, u^-)\|_{L^2}^2 \|\nabla (m^+, m^-)\|_{H^1}^2 \Big), \\ &\text{for } k = 1, \\ |J_3| &\leq C\tau \Big(\|(m^+, m^-)\|_{L^\infty} \|\nabla^3 (u^+, u^-)\|_{L^2} \|\nabla^2 (m^+, m^-)\|_{L^2} \\ &\quad + \|\nabla (m^+, m^-)\|_{L^3} \|\nabla^2 (u^+, u^-)\|_{L^6} \|\nabla^2 (m^+, m^-)\|_{L^2} \Big) \\ &\leq \frac{\eta_2}{2} \Big(\|\nabla^3 u^+\|_{L^2}^2 + \|\nabla^3 u^-\|_{L^2}^2 \Big) + \frac{\zeta}{16} \Big(\frac{\beta_3}{\beta_4} \|\nabla^2 m^+\|_{L^2}^2 + \frac{\beta_2}{\beta_1} \|\nabla^2 m^-\|_{L^2}^2 \Big) \\ &\quad + C\tau \|\nabla^2 (m^+, m^-)\|_{L^2}^2 \|\nabla (m^+, m^-)\|_{H^1}^2 + C\tau \|\nabla^3 (u^+, u^-)\|_{L^2}^2 \|\nabla (m^+, m^-)\|_{H^1}^2, \\ &\text{for } k = 2, \\ |J_3| &\leq C\tau \Big(\|(m^+, m^-)\|_{L^3} \|\nabla^3 (u^+, u^-)\|_{L^2} \|\nabla^3 (m^+, m^-)\|_{L^2} \\ &\quad + \|\nabla (m^+, m^-)\|_{L^3} \|\nabla^2 (u^+, u^-)\|_{L^6} \|\nabla^3 (m^+, m^-)\|_{L^2} \\ &\quad + \|\nabla^2 (m^+, m^-)\|_{L^3} \|\nabla^2 (u^+, u^-)\|_{L^6} \|\nabla^3 (m^+, m^-)\|_{L^2} \\ &\leq \frac{\eta_2}{2} \Big(\|\nabla^4 u^+\|_{L^2}^2 + \|\nabla^4 u^-\|_{L^2}^2 \Big) + \frac{\zeta}{16} \Big(\frac{\beta_3}{\beta_4} \|\nabla^3 m^+\|_{L^2}^2 + \frac{\beta_2}{\beta_1} \|\nabla^3 m^-\|_{L^2}^2 \Big) \\ &\quad + C\tau \|\nabla^3 (m^+, m^-)\|_{L^2}^2 \|\nabla (m^+, m^-)\|_{H^1}^2 + C\tau \|\nabla^3 (u^+, u^-)\|_{L^2}^2 \|\nabla (m^+, m^-)\|_{H^2}^2, \\ &\qquad + C\tau \|\nabla^3 (m^+, m^-)\|_{L^2}^2 \|\nabla (m^+, m^-)\|_{L^2}^2 + C\tau \|\nabla^3 (u^+, u^-)\|_{L^2}^2 \|\nabla (m^+, m^-)\|_{H^2}^2, \\ &\text{for } k = 3, \end{aligned}$$

Now, we have the estimate

$$\begin{split} |J_{3}| &\leq \frac{\eta_{2}}{2} \left(\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2} + \|\nabla^{k+1}u^{-}\|_{L^{2}}^{2} \right) + \frac{\zeta}{16} \left(\frac{\beta_{3}}{\beta_{4}} \|\nabla^{k}m^{+}\|_{L^{2}}^{2} + \frac{\beta_{2}}{\beta_{1}} \|\nabla^{k}m^{-}\|_{L^{2}}^{2} \right) \\ &+ C\tau \left(\|\nabla(m^{+},m^{-})\|_{H^{k-1}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{k-1}}^{2} \right) \left(|\nabla(m^{+},m^{-})\|_{H^{k-2}}^{2} \\ &+ \|\nabla(u^{+},u^{-})\|_{H^{k-2}}^{2} \right), \text{ for } k \geq 4, \\ |J_{3}| &\leq \frac{\eta_{2}}{2} \left(\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2} + \|\nabla^{k+1}u^{-}\|_{L^{2}}^{2} \right) + \frac{\zeta}{16} \left(\frac{\beta_{3}}{\beta_{4}} \|\nabla^{k}m^{+}\|_{L^{2}}^{2} + \frac{\beta_{2}}{\beta_{1}} \|\nabla^{k}m^{-}\|_{L^{2}}^{2} \right) \\ &+ C\tau \left(\|\nabla(m^{+},m^{-})\|_{H^{3}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{3}}^{2} \right) \left(\|\nabla(m^{+},m^{-})\|_{H^{2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} \right) \\ &\text{ for } k = 1, 2, 3, 4. \end{split}$$

Similarly, for the other terms, we have

$$\begin{split} |J_4| \leq & C\tau \|(m^+, m^-)\|_{L^{\infty}} \left(\|\nabla^k u^+\|_{L^2} \|\nabla^k u^+\|_{L^2} + \|\nabla^k u^-\|_{L^2} \|\nabla^k u^-\|_{L^2} \right) \\ &+ C\tau \sum_{1 \leq l \leq k-1} \|\nabla^l (m^+, m^-)\|_{L^2} \|\nabla^{k-l} (u^+, u^-)\|_{L^3} \|\nabla^k (u^+, u^-)\|_{L^6} \\ &+ C\tau \|\nabla^k (m^+, m^-)\|_{L^2} \|(u^+, u^-)\|_{L^{\infty}} \|\nabla^k (u^+, u^-)\|_{L^2} \\ &\leq & \frac{\eta_2}{2} \left(\|\nabla^{k+1} u^+\|_{L^2}^2 + \|\nabla^{k+1} u^-\|_{L^2}^2 \right) + \frac{\zeta}{16} \left(\frac{\beta_3}{\beta_4} \|\nabla^k m^+\|_{L^2}^2 + \frac{\beta_2}{\beta_1} \|\nabla^k m^-\|_{L^2}^2 \right) \\ &+ C\tau \left(\|\nabla (m^+, m^-)\|_{H^1} \|\nabla^k (u^+, u^-)\|_{L^2}^2 + \|\nabla (m^+, m^-)\|_{H^{k-2}}^2 \|\nabla^k (u^+, u^-)\|_{H^{k-1}}^2 \\ &+ \|\nabla (u^+, u^-)\|_{H^1}^2 \|\nabla^k (u^+, u^-)\|_{L^2}^2 \right), \text{ for } k \geq 4, \end{split}$$

$$\begin{split} |J_4| \leq & \frac{\eta_2}{2} \Big(\|\nabla^{k+1} u^+\|_{L^2}^2 + \|\nabla^{k+1} u^-\|_{L^2}^2 \Big) + \frac{\zeta}{16} \Big(\frac{\beta_3}{\beta_4} \|\nabla^k m^+\|_{L^2}^2 + \frac{\beta_2}{\beta_1} \|\nabla^k m^-\|_{L^2}^2 \Big) \\ & + C\tau \Big(\|\nabla(m^+, m^-)\|_{H^1} \|\nabla(u^+, u^-)\|_{H^3}^2 + \|\nabla(m^+, m^-)\|_{H^2}^2 \|\nabla^k(u^+, u^-)\|_{H^3}^2 \\ & + \|\nabla(u^+, u^-)\|_{H^1}^2 \|\nabla(u^+, u^-)\|_{H^3}^2 \Big), \text{ for } k = 1, 2, 3, 4. \end{split}$$

For J_5 ,

$$J_5 = \left[\beta_3 \langle \nabla^{k-1} \tilde{G}_3, \nabla^k m^+ \rangle + \beta_2 \langle \nabla^{k-1} \tilde{G}_4, \nabla^k m^- \rangle \right] := J_5^1 + J_5^2.$$

$$\begin{split} |J_{5}^{1}| \leq & C\tau \Big(|\langle \nabla^{k-1}(g_{1}^{+}(m^{+},m^{-})\nabla m^{+}), \nabla^{k}m^{+}\rangle| + |\langle \nabla^{k-1}(g_{2}^{+}(m^{+},m^{-})\nabla m^{-}), \nabla^{k}m^{+}\rangle| \\ & + |\langle \nabla^{k-1}[(u^{+}\cdot\nabla)u^{+}], \nabla^{k}m^{+}\rangle| + |\langle \nabla^{k-1}[h_{1}^{+}(m^{+},m^{-})(\nabla m^{-}\cdot\nabla)u^{+}], \nabla^{k}m^{+}\rangle| \\ & + |\langle \nabla^{k-1}[h_{2}^{+}(m^{+},m^{-})\nabla m^{+}\nabla^{t}u^{+}], \nabla^{k}m^{+}\rangle| \\ & + |\langle \nabla^{k-1}[h_{2}^{+}(m^{+},m^{-})\nabla m^{-}\nabla^{t}u^{+}], \nabla^{k}m^{+}\rangle| \\ & + |\langle \nabla^{k-1}[h_{1}^{+}(m^{+},m^{-})\nabla m^{+}\operatorname{div}u^{+}], \nabla^{k}m^{+}\rangle| \\ & + |\langle \nabla^{k-1}[h_{2}^{+}(m^{+},m^{-})\nabla m^{-}\operatorname{div}u^{+}], \nabla^{k}m^{+}\rangle| \Big). \end{split}$$

Consequently,

$$\begin{split} |J_{5}^{1}| &\leq C\tau \Big(\|(m^{+},m^{-})\|_{L^{\infty}} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} + \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{6}} \|\nabla(m^{+},m^{-})\|_{L^{3}} \\ &+ \sum_{1 \leq l \leq k-2} \|\nabla^{l}(m^{+},m^{-})\|_{L^{3}} \|\nabla^{k-l}(m^{+},m^{-})\|_{L^{6}} \Big) \|\nabla^{k}m^{+}\|_{L^{2}} \\ &+ C\tau \Big(\|u^{+}\|_{L^{\infty}} \|\nabla^{k}u^{+}\|_{L^{2}} + \sum_{1 \leq l \leq k-2} \|\nabla^{l}u^{+}\|_{L^{3}} \|\nabla^{k-l}u^{+}\|_{L^{6}} \\ &+ \|\nabla^{k-1}u^{+}\|_{L^{6}} \|\nabla u^{+}\|_{L^{3}} \Big) \|\nabla^{k}m^{+}\|_{L^{2}} + C\tau \Big[\Big(\|\nabla(m^{+},m^{-})\|_{L^{\infty}} \|\nabla^{k}u^{+}\|_{L^{2}} \\ &+ \sum_{1 \leq l \leq k-3} \|\nabla^{l+1}(m^{+},m^{-})\|_{L^{3}} \|\nabla^{k-l}u^{+}\|_{L^{6}} + \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{6}} \|\nabla^{2}u^{+}\|_{L^{3}} \\ &+ \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} \|\nabla u^{+}\|_{L^{\infty}} \Big) \|(m^{+},m^{-})\|_{L^{\infty}} \\ &+ C\tau \Big(\|\nabla(m^{+},m^{-})\|_{L^{6}} \|\nabla^{k-1}u^{+}\|_{L^{6}} + \sum_{1 \leq l \leq k-3} \|\nabla^{l+1}(m^{+},m^{-})\|_{L^{6}} \|\nabla^{k-l}u^{+}\|_{L^{6}} \\ &+ \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{6}} \|\nabla^{k-1-l}(\nabla(m^{+},m^{-})\|_{L^{6}} \\ &+ \sum_{2 \leq l \leq k-2} \|\nabla^{l}(m^{+},m^{-})\|_{L^{6}} \|\nabla^{k-1-l}(\nabla(m^{+},m^{-})\nabla^{u+})\|_{L^{3}} \\ &+ \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{6}} \|\nabla(m^{+},m^{-})\|_{L^{6}} \|\nabla^{u}^{+}\|_{L^{2}} \\ &\leq C\tau \Big(\|\nabla(m^{+},m^{-})\|_{H^{1}}^{2} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{k-2}}^{2} \|\nabla(m^{+},m^{-})\|_{H^{k-1}}^{2} \\ &+ \|\nabla^{u}^{+}\|_{H^{1}}^{2} \|\nabla^{k}u^{+}\|_{L^{2}}^{2} + \|\nabla^{u}^{+}\|_{H^{k-2}}^{2} \|\nabla^{u}^{+}\|_{H^{k-1}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{k-1}}^{4} \|\nabla^{k}u^{+}\|_{L^{2}}^{2} \\ &\leq C\tau \Big(\|\nabla(m^{+},m^{-})\|_{H^{1}}^{2} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} \|\nabla^{u}^{+}\|_{H^{k-1}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{k-1}}^{4} \|\nabla^{k}(m^{+},m^{-})\|_{L^{k-1}}^{2} \|\nabla^{k}u^{+}\|_{L^{2}}^{2} \\ &\leq C\tau \Big(\|\nabla(m^{+},m^{-})\|_{H^{1}}^{2} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} \|\nabla^{u}^{+}\|_{H^{k-1}}^{2} \|\nabla^{u}^{+}\|_{H^{k-1}}^{2} \|\nabla^{k}(m^{+},m^{-})\|_{H^{k-1}}^{2} \|\nabla^{k}(m^{+},m^$$

$$+ \|\nabla(m^+, m^-)\|_{H^{k-2}}^4 \|\nabla u^+\|_{H^{k-1}}^2 + \|\nabla^k(m^+, m^-)\|_{L^2}^2 \|\nabla u^+\|_{H^2}^2 \|\nabla(m^+, m^-)\|_{H^1}^2 + \|\nabla(m^+, m^-)\|_{H^{k-2}}^4 \|\nabla u^+\|_{H^{k-2}}^2 \Big) + \frac{\zeta}{16} \frac{\beta_3}{\beta_4} \|\nabla^k m^+\|_{L^2}^2, \text{ for } k \ge 4;$$

Similar to the estimate of J_3 , we can obtain the estimates of J_5^1 for k=1,2,3 and J_5^2 , thus we have

$$\begin{aligned} |J_{5}| \leq C\tau \Big(\|\nabla(m^{+},m^{-})\|_{H^{k-1}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{k-1}}^{2} \Big) \Big(\|\nabla(m^{+},m^{-})\|_{H^{k-2}}^{2} \\ &+ \|\nabla(u^{+},u^{-})\|_{H^{k-2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} \|\nabla(m^{+},m^{-})\|_{H^{1}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{k-2}}^{4} \Big) \\ &+ \frac{\zeta}{16} \Big(\frac{\beta_{3}}{\beta_{4}} \|\nabla^{k}m^{+}\|_{L^{2}}^{2} + \frac{\beta_{2}}{\beta_{1}} \|\nabla^{k}m^{-}\|_{L^{2}}^{2} \Big), \text{ for } k \geq 4. \end{aligned}$$

And

$$\begin{split} |J_{5}| \leq & C\tau \Big(\|\nabla(m^{+},m^{-})\|_{H^{3}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{3}}^{2} \Big) \Big(\|\nabla(m^{+},m^{-})\|_{H^{2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} \\ & + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} \|\nabla(m^{+},m^{-})\|_{H^{1}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{2}}^{4} \Big) + \frac{\zeta}{16} \Big(\frac{\beta_{3}}{\beta_{4}} \|\nabla^{k}m^{+}\|_{L^{2}}^{2} \\ & + \frac{\beta_{2}}{\beta_{1}} \|\nabla^{k}m^{-}\|_{L^{2}}^{2} \Big), \text{ for } k = 1,2,3,4. \end{split}$$

Finally,

$$|J_6| \leq \frac{\zeta}{16} \left(\frac{\beta_3}{\beta_4} \|\nabla^k m^+\|_{L^2}^2 + \frac{\beta_2}{\beta_1} \|\nabla^k m^-\|_{L^2}^2\right) + C\tau \|\nabla^{k-1}(r^+, r^-)\|_{L^2}^2$$

Combining these estimates, we get (3.15).

LEMMA 3.5. Assume that $\tau \in (0,1], |m^{\pm}| \leq \frac{\bar{n}^{\pm}}{2}$, and $(m^+, m^-, u^+, u^-) \in \mathcal{X}^L$ is the solution of (3.14), then we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{L}} \left(\zeta \frac{\beta_{3}}{\beta_{4}} |m^{+}|^{2} + \zeta \frac{\beta_{2}}{\beta_{1}} |m^{-}|^{2} + 2\beta_{3}\bar{n}|u^{+}|^{2} + 2\beta_{2}\bar{n}^{-}|u^{-}|^{2} \right) \mathrm{d}x \\
+ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{L}} \left(\beta_{2}\beta_{4} |m^{-} + \frac{\beta_{3}}{\beta_{4}} m^{+}|^{2} + \beta_{1}\beta_{3}|m^{+} + \frac{\beta_{2}}{\beta_{1}} m^{-}|^{2} \right) \mathrm{d}x \\
+ \epsilon \int_{\Omega_{L}} \left(\zeta \frac{\beta_{3}}{\beta_{4}} |\nabla m^{+}|^{2} + \zeta \frac{\beta_{2}}{\beta_{1}} |\nabla m^{-}|^{2} \right) \mathrm{d}x + \tilde{\xi} \int_{\Omega_{L}} \left(\beta_{3}\bar{n}^{+}\mu^{+} |\nabla u^{+}|^{2} + \beta_{2}\bar{n}^{-}\mu^{-} |\nabla u^{-}|^{2} \right) \mathrm{d}x \\
\leq C\tau \Big(\|\nabla (m^{+},m^{-})\|_{H^{1}} + \|\nabla (u^{+},u^{-})\|_{H^{1}} \Big) \Big(\|\nabla (u^{+},u^{-})\|_{L^{2}}^{2} + \|\nabla (m^{+},m^{-})\|_{L^{2}}^{2} \Big) \\
+ C\tau \|(r^{+},r^{-})\|_{L^{\frac{6}{5}}}^{2},$$
(3.16)

where C is a constant independent of ϵ , but dependent on L.

Proof. Assume that (m^+, m^-, u^+, u^-) is the solution of (3.14). Multiplying $(3.14)_1, (3.14)_2, (3.14)_3, (3.14)_4$ by $\beta_1\beta_3m^+, \beta_2\beta_4m^-, \beta_3\bar{n}^+u^+, \beta_2\bar{n}^-u^-$ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions and the Equations $(3.14)_1, (3.14)_2$, we obtain

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_L} \left(\zeta\frac{\beta_3}{\beta_4}|m^+|^2 + \zeta\frac{\beta_2}{\beta_1}|m^-|^2 + 2\beta_3\bar{n}|u^+|^2 + 2\beta_2\bar{n}^-|u^-|^2\right)\mathrm{d}x$$

$$\begin{split} &+ \frac{1}{4} \frac{d}{dt} \int_{\Omega_{L}} \left(\beta_{2}\beta_{4} |m^{-} + \frac{\beta_{3}}{\beta_{4}} m^{+}|^{2} + \beta_{1}\beta_{3} |m^{+} + \frac{\beta_{2}}{\beta_{1}} m^{-}|^{2} \right) dx \\ &+ \frac{1}{2} \epsilon \int_{\Omega_{L}} \left(\zeta_{\beta}^{2}\beta_{4} |\nabla m^{+}|^{2} + \zeta_{\beta}^{2}\beta_{1} |\nabla m^{-}|^{2} \right) dx \\ &+ \frac{1}{2} \epsilon \int_{\Omega_{L}} \left(\beta_{2}\beta_{4} |\nabla m^{-} + \frac{\beta_{3}}{\beta_{4}} \nabla m^{+}|^{2} + \beta_{1}\beta_{3} |\nabla m^{+} + \frac{\beta_{2}}{\beta_{1}} \nabla m^{-}|^{2} \right) dx \\ &+ \beta_{3}\bar{n}^{+} \int_{\Omega_{L}} \left((\tilde{\xi} + \tau \xi^{+} (m^{+}, m^{-}))(\mu^{+} |\nabla u^{+}|^{2} + (\mu^{+} + \lambda^{+})| \operatorname{div} u^{+}|^{2}) \right) dx \\ &+ \beta_{2}\bar{n}^{-} \int_{\Omega_{L}} \left((\tilde{\xi} + \tau \xi^{-} (m^{+}, m^{-}))(\mu^{-} |\nabla u^{-}|^{2} + (\mu^{-} + \lambda^{-})| \operatorname{div} u^{-}|^{2}) \right) dx \\ &= -\beta_{3}\bar{n}^{+} \tau \int_{\Omega_{L}} \left(\partial_{m} + \xi^{+} \nabla m^{+} + \partial_{m} - \xi^{+} \nabla m^{-})(\mu^{+} u^{+} \nabla u^{+} + (\mu^{+} + \lambda^{+})u^{+} \operatorname{div} u^{+}) dx \\ &- \beta_{2}\bar{n}^{-} \tau \int_{\Omega_{L}} \left(\partial_{m} + \xi^{-} \nabla m^{+} + \partial_{m} - \xi^{-} \nabla m^{-})(\mu^{-} u^{-} \nabla u^{-} + (\mu^{-} + \lambda^{-})u^{-} \operatorname{div} u^{-}) dx \\ &+ \left[\beta_{3} \langle m^{+} u^{+}, \beta_{1} \nabla m^{+} + \beta_{2} \nabla m^{-} \rangle + \beta_{2} \langle m^{-} u^{-}, \beta_{3} \nabla m^{+} + \beta_{4} \nabla m^{-} \rangle \right] \\ &+ \left[\beta_{3} \langle m^{+} u^{+}, \beta_{1} \nabla m^{+} + \beta_{2} \nabla m^{-} \rangle + \beta_{2} \langle m^{-} u^{-}, \beta_{3} \nabla m^{+} + \beta_{4} \nabla m^{-} \rangle \right] \\ &+ \left[\beta_{3} \langle m^{+} u^{+}, \beta_{1} \nabla m^{+} \|_{L^{3}} \right) \left(\|u^{+}\|_{L^{6}} \|\nabla u^{+}\|_{L^{2}} + \|u^{-}\|_{L^{6}} \|\nabla u^{-}\|_{L^{2}} \right) \\ &+ \left[\gamma \langle m^{+}\|_{L^{6}} \|u^{+}\|_{L^{6}} \|u^{-}\|_{L^{5}} \right) \left(\|\nabla m^{+}\|_{L^{2}} + \|u^{-}\|_{L^{6}} \|\nabla u^{-}\|_{L^{3}} \right) \\ &+ C\tau \left(\|m^{+}\|_{L^{6}} \|\nabla u^{+}\|_{L^{3}} \right) \left(\|u^{+}\|_{L^{6}} \|\nabla u^{-}\|_{L^{2}} \right) \left\| \nabla u^{+}\|_{L^{2}} + \|\nabla m^{-}\|_{L^{3}} \right) \\ &+ \left[r^{-}\|_{L^{6}} \|u^{-}\|_{L^{6}} \right] \\ &+ \left[r^{-}\|_{L^{6}} \|u^{-}\|_{L^{6}} \right] \\ &\leq C\tau \left(\|\nabla (m^{+}, m^{-})\|_{H^{1}}^{2} \|\nabla (u^{+}, u^{-})\|_{L^{2}} + \|\nabla u^{+}\|_{L^{2}} + \frac{\beta_{2}\bar{n}^{-}\mu^{-}}{2} \|\nabla u^{-}\|_{L^{2}}^{2} \right) \\ &+ \left[r^{-}\|_{L^{6}} \|u^{-}\|_{L^{6}} + \frac{\xi}{2} \left(\frac{\beta_{3}\bar{n}^{-}\mu^{+}}{2} \|\nabla u^{+}\|_{L^{2}}^{2} + \frac{\beta_{2}\bar{n}^{-}\mu^{-}}{2} \|\nabla u^{-}\|_{L^{2}}^{2} \right) \\ &+ \left[r^{-}\|_{L^{6}} \|u^{-}\|_{L^{6}} + \frac{\xi}{2} \left(\frac{\beta_{3}\bar{n}^{-}\mu^{+}}{2} \|\nabla u^{+}\|_{L^{2}}^{2} + \frac{\beta_{2}\bar{n}^{-}\mu^{-}}{2} \|\nabla u^{-}\|_{$$

which implies (3.16).

REMARK 3.2. We see that the constant C depends on L in (3.16). In the above proof, we need to estimate the term $\int_{\Omega_L} m^{\pm} u^{\pm} \nabla m^{\pm} dx$. Since there are no terms like $(m^{\pm})^p, (u^{\pm})^p$ in (3.14), we can not get the L^p estimates of m^{\pm} or u^{\pm} . If we want the estimate to be independent of L, we can just use the inequality $\|v\|_{L^6} \leq C \|\nabla v\|_{L^2}$, then we need to estimate $\|\nabla m^{\pm}\|_{L^{3/2}}$. What we use is the inequality $\|v\|_{L^p} \leq |\mathbf{meas}\Omega|^{1/p-1/q} \|v\|_{L^q}$, then the estimate depends on L.

LEMMA 3.6. Assume that $\tau \in (0,1], |m^{\pm}| \leq \frac{\bar{n}^{\pm}}{2}$, and $(m^+, m^-, u^+, u^-) \in \mathcal{X}^L$ is the solution of (3.14), then we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \bar{n}^- |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \bar{n}^- |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^+|^2 \right) \mathrm{d}x + 2\epsilon \int_{\Omega_L} \left($$

$$\times |\nabla^{k+1}m^{+}|^{2} + \beta_{4}|\nabla^{k+1}m^{-}|^{2} dx + \tilde{\xi} \int_{\Omega_{L}} \left(\bar{n}^{+}\mu^{+}|\nabla^{k+1}u^{+}|^{2} + \bar{n}^{-}\mu^{-}|\nabla^{k+1}u^{-}|^{2} \right) dx$$

$$\leq C\tau \left(\|\nabla(m^{+},m^{-})\|_{H^{3}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{3}}^{2} \right) \left(\|\nabla(m^{+},m^{-})\|_{H^{2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{1}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{2}}^{4} \right)$$

$$+ C\tau \|\nabla^{k-1}(r^{+},r^{-})\|_{L^{2}}^{2} + C_{2} \left(\|\nabla^{k}m^{+}\|_{L^{2}}^{2} + \|\nabla^{k}m^{-}\|_{L^{2}}^{2} \right), \text{ for } k = 1,2,3,4, \quad (3.17)$$

where C, C_2 are constants independent of L and ϵ .

Proof. Assume that (m^+, m^-, u^+, u^-) is the solution of (3.14). Similar to the proof of Lemma 3.1, applying $\nabla^k (k \ge 1)$ to $(3.14)_1, (3.14)_2, (3.14)_3, (3.14)_4$, multiplying the results by $\beta_1 \nabla^k m^+, \beta_4 \nabla^k m^-, \bar{n}^+ \nabla^k u^+, \bar{n}^- \nabla^k u^-$ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions and the Equations $(3.14)_1, (3.14)_2$, we obtain

$$\begin{split} &\frac{1}{2} \frac{d}{dt} \int_{\Omega_L} \left(\beta_1 |\nabla^k m^+|^2 + \beta_4 |\nabla^k m^-|^2 + \bar{n}^+ |\nabla^k u^+|^2 + \bar{n}^- |\nabla^k u^-|^2 \right) dx \\ &+ \epsilon \int_{\Omega_L} \left(\beta_1 |\nabla^k \nabla m^+|^2 + \beta_4 |\nabla^k \nabla m^-|^2 \right) dx \\ &+ \bar{n}^+ \int_{\Omega_L} \left(\tilde{\xi} + \tau \xi^+ (m^+, m^-) \right) \left(\mu^+ |\nabla^k \nabla u^+|^2 + (\mu^+ + \lambda^+) |\nabla^k \operatorname{div} u^+|^2 \right) dx \\ &+ \bar{n}^- \int_{\Omega_L} \left(\tilde{\xi} + \tau \xi^- (m^+, m^-) \right) \left(\mu^- |\nabla^k \nabla u^-|^2 + (\mu^- + \lambda^-) |\nabla^k \operatorname{div} u^-|^2 \right) dx \\ &= \int_{\Omega_L} \left[-\bar{n}^+ \tau (\partial_{m^+} \xi^+ \nabla m^+ + \partial_{m^-} \xi^+ \nabla m^-) (\mu^+ \nabla^k \nabla u^+ + (\mu^+ + \lambda^+) \nabla^k \operatorname{div} u^+) \nabla^k u^+ \\ &- \bar{n}^- \tau (\partial_{m^+} \xi^- \nabla m^+ + \partial_{m^-} \xi^- \nabla m^-) (\mu^- \nabla^k \nabla u^- + (\mu^- + \lambda^-) \nabla^k \operatorname{div} u^-) \nabla^k u^- \\ &+ \bar{n}^+ \tau \sum_{1 \le l \le k} \binom{k}{l} \nabla^l \xi^+ \nabla^{k-l} (\mu^+ \Delta u^+ + (\mu^+ + \lambda^+) \nabla \operatorname{div} u^+) \nabla^k u^+ \\ &+ \bar{n}^- \tau \sum_{1 \le l \le k} \binom{k}{l} \nabla^l \xi^- \nabla^{k-l} (\mu^- \Delta u^- + (\mu^- + \lambda^-) \nabla \operatorname{div} u^-) \nabla^k u^- \\ &+ \beta_2 \bar{n}^+ \nabla^k m^- \operatorname{div} \nabla^k u^+ + \beta_3 \bar{n}^+ \nabla^k m^+ \operatorname{div} \nabla^k u^- \right] dx + \left[\beta_1 \langle \nabla^k \tilde{G}_1, \nabla^k m^+ \rangle \\ &+ \beta_4 \langle \nabla^k \tilde{G}_2, \nabla^k m^- \rangle \right] - \left[\beta_3 \bar{n}^+ \langle \nabla^{k-1} \tilde{G}_3, \nabla^{k+1} u^+ \rangle + \beta_2 \bar{n}^- \langle \nabla^{k-1} \tilde{G}_4, \nabla^{k+1} u^- \rangle \right] \\ &- \left[\beta_3 \bar{n}^+ \langle \nabla^{k-1} r^+, \nabla^{k+1} u^+ \rangle - \beta_2 \bar{n}^- \langle \nabla^{k-1} r^-, \nabla^{k+1} u^- \rangle \right] := K_1 + K_2 + K_3 + K_4. \end{split}$$

Similar to the proof of Lemma 3.4, we have

$$\begin{split} |K_{1}| \leq & C\tau \Big(\|\nabla(m^{+},m^{-})\|_{L^{\infty}} \|\nabla^{k+1}(u^{+},u^{-})\|_{L^{2}} \|\nabla^{k}(u^{+},u^{-})\|_{L^{2}} \\ &+ \sum_{2 \leq l \leq k-2} \|\nabla^{l}(m^{+},m^{-})\|_{L^{3}} \|\nabla^{k-l+2}(u^{+},u^{-})\|_{L^{2}} \|\nabla^{k}(u^{+},u^{-})\|_{L^{6}} \\ &+ \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{2}} \|\nabla^{3}(u^{+},u^{-})\|_{L^{3}} \|\nabla^{k}(u^{+},u^{-})\|_{L^{6}} \\ &+ \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} \|\nabla^{2}(u^{+},u^{-})\|_{L^{3}} \|\nabla^{k}(u^{+},u^{-})\|_{L^{6}} \end{split}$$

$$\begin{split} &+ \|\nabla^{k}m^{-}\|_{L^{2}}\|\nabla^{k+1}u^{+}\|_{L^{2}} + \|\nabla^{k}m^{+}\|_{L^{2}}\|\nabla^{k+1}u^{-}\|_{L^{2}}\Big) \\ \leq & C\tau\Big(\|\nabla(m^{+},m^{-})\|_{H^{2}}^{2}\|\nabla^{k}(u^{+},u^{-})\|_{L^{2}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{k-2}}^{2}\|\nabla(u^{+},u^{-})\|_{H^{k-1}}^{2} \\ &+ \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{2}}^{2}\|\nabla^{3}(u^{+},u^{-})\|_{H^{1}}^{2} + \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2}\|\nabla^{2}(u^{+},u^{-})\|_{H^{1}}^{2}\Big) \\ &+ \frac{1}{4}C_{2}\|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} + \frac{\tilde{\xi}}{8}\Big(\bar{n}^{+}\mu^{+}\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2} + \bar{n}^{-}\mu^{-}\|\nabla^{k+1}u^{-}\|_{L^{2}}^{2}\Big) \\ \leq & C\tau\Big(\|\nabla(m^{+},m^{-})\|_{H^{k-2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{k-2}}^{2}\Big)\Big(\|\nabla(m^{+},m^{-})\|_{H^{k-1}}^{2} \\ &+ \|\nabla(u^{+},u^{-})\|_{H^{k-1}}^{2}\Big) + \frac{1}{4}C_{2}\|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} + \frac{\tilde{\xi}}{8}\Big(\bar{n}^{+}\mu^{+}\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2} \\ &+ \bar{n}^{-}\mu^{-}\|\nabla^{k+1}u^{-}\|_{L^{2}}^{2}\Big), \text{ for } k \geq 4; \\ & |K_{1}| \leq C\tau\Big(\|\nabla(m^{+},m^{-})\|_{H^{2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2}\Big)\Big(\|\nabla(m^{+},m^{-})\|_{H^{3}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{3}}^{2}\Big) \\ &+ \frac{1}{4}C_{2}\|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} + \frac{\tilde{\xi}}{8}\Big(\bar{n}^{+}\mu^{+}\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2} + \bar{n}^{-}\mu^{-}\|\nabla^{k+1}u^{-}\|_{L^{2}}^{2}\Big), \\ & \text{ for } k = 1, 2, 3, 4. \end{aligned}$$

And

$$K_2 = \beta_1 \langle \nabla^k \tilde{G}_1, \nabla^k m^+ \rangle + \beta_4 \langle \nabla^k \tilde{G}_2, + \nabla^k m^- \rangle := K_2^1 + K_2^2.$$

$$\begin{split} K_{2}^{1} &= -\beta_{1}\tau \langle \nabla^{k}(\operatorname{div}(m^{+}u^{+})), \nabla^{k}m^{+} \rangle \\ &= -\beta_{1}\tau \int_{\Omega_{L}} \left(u^{+}\nabla^{k+1}m^{+}\nabla^{k}m^{+} + \sum_{1 \leq l \leq k} \binom{k}{l} \nabla^{l}u^{+}\nabla^{k-l}\nabla m^{+}\nabla^{k}m^{+} \right. \\ &\quad + \operatorname{div}u^{+} |\nabla^{k}m^{+}|^{2} + \sum_{1 \leq l \leq k} \binom{k}{l} \nabla^{l}\operatorname{div}u^{+}\nabla^{k-l}m^{+}\nabla^{k}m^{+} \right) \mathrm{d}x \\ &= -\beta_{1}\tau \int_{\Omega_{L}} \left(\frac{1}{2}\operatorname{div}u^{+} |\nabla^{k}m^{+}|^{2} + \binom{k}{1} \nabla u^{+} |\nabla^{k}m^{+}|^{2} + \sum_{2 \leq l \leq k-2} \binom{k}{l} \nabla^{l}u^{+}\nabla^{k-l}\nabla m^{+}\nabla^{k}m^{+} \right. \\ &\quad + \binom{k}{k-1} \nabla^{k-1}u^{+}\nabla^{2}m^{+}\nabla^{k}m^{+} + \nabla^{k}u^{+}\nabla m^{+}\nabla^{k}m^{+} + \binom{k}{1} \nabla \operatorname{div}u^{+}\nabla^{k-1}m^{+}\nabla^{k}m^{+} \\ &\quad + \sum_{2 \leq l \leq k-2} \binom{k}{l} \nabla^{l}\operatorname{div}u^{+}\nabla^{k-l}m^{+}\nabla^{k}m^{+} + \binom{k}{k-1} \nabla^{k-1}\operatorname{div}u^{+}\nabla m^{+}\nabla^{k}m^{+} \\ &\quad + \nabla^{k}\operatorname{div}u^{+}m^{+}\nabla^{k}m^{+} \right) \mathrm{d}x, \end{split}$$

then

$$\begin{split} |K_{2}^{1}| \leq & C\tau \Big(\|\nabla u^{+}\|_{L^{\infty}} \|\nabla^{k}m^{+}\|_{L^{2}}^{2} + \sum_{2 \leq l \leq k-2} \|\nabla^{l}u^{+}\|_{L^{4}} \|\nabla^{k-l}\nabla m^{+}\|_{L^{4}} \|\nabla^{k}m^{+}\|_{L^{2}} \\ & + \|\nabla^{k-1}u^{+}\|_{L^{4}} \|\nabla^{2}m^{+}\|_{L^{4}} \|\nabla^{k}m^{+}\|_{L^{2}} + \|\nabla^{k}u^{+}\|_{L^{6}} \|\nabla m^{+}\|_{L^{3}} \|\nabla^{k}m^{+}\|_{L^{2}} \\ & + \|\nabla^{2}u^{+}\|_{L^{4}} \|\nabla^{k-1}m^{+}\|_{L^{4}} \|\nabla^{k}m^{+}\|_{L^{2}} + \sum_{2 \leq l \leq k-2} \|\nabla^{l}\operatorname{div}u^{+}\|_{L^{6}} \|\nabla^{k-l}m^{+}\|_{L^{3}} \\ & \times \|\nabla^{k}m^{+}\|_{L^{2}} + \|\nabla^{k}u^{+}\|_{L^{2}} \|\nabla m^{+}\|_{L^{\infty}} \|\nabla^{k}m^{+}\|_{L^{2}} \end{split}$$

$$+ \|\nabla^{k+1}u^{+}\|_{L^{2}}\|m^{+}\|_{L^{\infty}}\|\nabla^{k}m^{+}\|_{L^{2}}^{2} \Big)$$

$$\leq C\tau \Big(\|\nabla u^{+}\|_{H^{2}}\|\nabla^{k}m^{+}\|_{L^{2}}^{2} + \|\nabla u^{+}\|_{H^{k-2}}^{2}\|\nabla m^{+}\|_{H^{k-1}}^{2} \\
+ \|\nabla u^{+}\|_{H^{k-1}}^{2}\|\nabla m^{+}\|_{H^{k-2}}^{2} + \|\nabla m^{+}\|_{H^{1}}^{2}\|\nabla^{k}m^{+}\|_{L^{2}}^{2} \Big) \\
+ \frac{1}{4}C_{2}\Big(\|\nabla^{k}m^{+}\|_{L^{2}}^{2} + \|\nabla^{k}m^{-}\|_{L^{2}}^{2}\Big) + \frac{\tilde{\xi}}{8}\bar{n}^{+}\mu^{+}\|\nabla^{k+1}u^{+}\|_{L^{2}}^{2}, \text{ for } k \geq 4.$$

and the estimats of K_2^1 for $k\!=\!1,2,3$ and K_2^2 are similar, thus we have

$$\begin{split} |K_{2}| \leq & C\tau \Big(\|\nabla(u^{+}, u^{-})\|_{H^{2}} \|\nabla(m^{+}, m^{-})\|_{H^{3}}^{2} + \|\nabla(u^{+}, u^{-})\|_{H^{2}}^{2} \|\nabla(m^{+}, m^{-})\|_{H^{3}}^{2} \\ & + \|\nabla(m^{+}, m^{-})\|_{H^{1}}^{2} \|\nabla(m^{+}, m^{-})\|_{H^{3}}^{2} + \|\nabla(u^{+}, u^{-})\|_{H^{3}}^{2} \|\nabla(m^{+}, m^{-})\|_{H^{2}}^{2} \Big) \\ & + \frac{1}{4} C_{2} \Big(\|\nabla^{k} m^{+}\|_{L^{2}}^{2} + \|\nabla^{k} m^{-}\|_{L^{2}}^{2} \Big) + \frac{\tilde{\xi}}{8} \Big(\bar{n}^{+} \mu^{+} \|\nabla^{k+1} u^{+}\|_{L^{2}}^{2} \\ & + \bar{n}^{-} \mu^{-} \|\nabla^{k+1} u^{-}\|_{L^{2}}^{2} \Big), \text{ for } k = 1, 2, 3, 4. \end{split}$$

For K_3 ,

$$\begin{split} K_{3} &= -\beta_{3}\bar{n}^{+}\langle\nabla^{k-1}\tilde{G}_{3},\nabla^{k+1}u^{+}\rangle + \beta_{2}\bar{n}^{-}\langle\nabla^{k-1}\tilde{G}_{4},\nabla^{k+1}u^{-}\rangle := K_{3}^{1} + K_{3}^{2}.\\ |K_{3}^{1}| \leq & C\tau \Big(|\langle\nabla^{k-1}(g_{1}^{+}(m^{+},m^{-})\nabla m^{+}+g_{2}^{+}(m^{+},m^{-})\nabla m^{-}),\nabla^{k+1}u^{+}\rangle| \\ & + |\langle\nabla^{k-1}[h_{1}^{+}(m^{+},m^{-})(\nabla m^{+}\cdot\nabla)u^{+}+h_{2}^{+}(m^{+},m^{-})(\nabla m^{-}\cdot\nabla)u^{+}],\nabla^{k+1}u^{+}\rangle| \\ & + |\langle\nabla^{k-1}[h_{1}^{+}(m^{+},m^{-})\nabla m^{+}\nabla^{t}u^{+}+h_{2}^{+}(m^{+},m^{-})\nabla m^{-}\nabla^{t}u^{+}],\nabla^{k+1}u^{+}\rangle| \\ & + |\langle\nabla^{k-1}[h_{1}^{+}(m^{+},m^{-})\nabla m^{+}\operatorname{div}u^{+}+h_{2}^{+}(m^{+},m^{-})\nabla m^{-}\operatorname{div}u^{+}],\nabla^{k+1}u^{+}\rangle| \\ & + |\langle\nabla^{k-1}[(u^{+}\cdot\nabla)u^{+}],\nabla^{k+1}u^{+}\rangle|\Big), \end{split}$$

that is

$$\begin{split} |K_{3}^{1}| \leq & C\tau \Big[\Big(\|(m^{+},m^{-})\|_{L^{\infty}} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} + \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{3}} \|\nabla(m^{+},m^{-})\|_{L^{6}} \\ &+ \sum_{1 \leq l \leq k-2} \|\nabla^{l}(m^{+},m^{-})\|_{L^{3}} \|\nabla^{k-l}(m^{+},m^{-})\|_{L^{6}} \Big) + \Big(\|u^{+}\|_{L^{\infty}} \|\nabla^{k}u^{+}\|_{L^{2}} \\ &+ \sum_{1 \leq l \leq k-2} \|\nabla^{l}u^{+}\|_{L^{3}} \|\nabla^{k-l}u^{+}\|_{L^{6}} + \|\nabla^{k-1}u^{+}\|_{L^{6}} \|\nabla u^{+}\|_{L^{3}} \Big) \\ &+ \Big(\|\nabla(m^{+},m^{-})\|_{L^{\infty}} \|\nabla^{k}u^{+}\|_{L^{2}} + \sum_{1 \leq l \leq k-3} \|\nabla^{l+1}(m^{+},m^{-})\|_{L^{3}} \|\nabla^{k-l}u^{+}\|_{L^{6}} \\ &+ \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{6}} \|\nabla^{2}u^{+}\|_{L^{3}} + \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}} \|\nabla u^{+}\|_{L^{\infty}} \Big) \|(m^{+},m^{-})\|_{L^{\infty}} \\ &+ \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{6}} \|\nabla^{k-1}u^{+}\|_{L^{6}} + \sum_{1 \leq l \leq k-3} \|\nabla^{l+1}(m^{+},m^{-})\|_{L^{6}} \|\nabla^{k-l-1}u^{+}\|_{L^{6}} \\ &+ \sum_{2 \leq l \leq k-2} \|\nabla^{l}(m^{+},m^{-})\|_{L^{6}} \|\nabla^{k-1-l}(\nabla(m^{+},m^{-})\nabla u^{+})\|_{L^{3}} \\ &+ \|\nabla^{k-1}(m^{+},m^{-})\|_{L^{6}} \|\nabla(m^{+},m^{-})\|_{L^{6}} \|\nabla u^{+}\|_{L^{6}} \Big] \|\nabla^{k+1}u^{+}\|_{L^{2}} \end{split}$$

$$\leq C\tau \Big(\|\nabla(m^{+},m^{-})\|_{H^{1}}^{2} \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{k-2}}^{2} \|\nabla(m^{+},m^{-})\|_{H^{k-1}}^{2} \\ + \|\nabla u^{+}\|_{H^{1}}^{2} \|\nabla^{k}u^{+}\|_{L^{2}}^{2} + \|\nabla u^{+}\|_{H^{k-2}}^{2} \|\nabla u^{+}\|_{H^{k-1}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{2}}^{4} \|\nabla^{k}u^{+}\|_{L^{2}}^{2} \\ + \|\nabla^{k}(m^{+},m^{-})\|_{H^{k-2}}^{4} \|\nabla u^{+}\|_{H^{k-1}}^{2} + \|\nabla^{k}(m^{+},m^{-})\|_{L^{2}}^{2} \|\nabla u^{+}\|_{H^{2}}^{2} \|\nabla(m^{+},m^{-})\|_{H^{1}}^{4} \\ + \|\nabla(m^{+},m^{-})\|_{H^{k-2}}^{4} \|\nabla u^{+}\|_{H^{k-2}}^{2} \Big) + \frac{\tilde{\xi}}{8} \bar{n}^{+} \mu^{+} \|\nabla^{k+1}u^{+}\|_{L^{2}}^{2}, \text{ for } k \geq 4;$$

Similarly, we can get the estimates of K_3^1 for k = 1, 2, 3, and K_3^2 , thus we have

$$\begin{split} |K_3| \leq & C\tau \left(\|\nabla(m^+,m^-)\|_{H^{k-1}}^2 + \|\nabla(u^+,u^-)\|_{H^{k-1}}^2 \right) \left(\|\nabla(m^+,m^-)\|_{H^{k-2}}^2 \\ &+ \|\nabla(u^+,u^-)\|_{H^{k-2}}^2 + \|\nabla(u^+,u^-)\|_{H^2}^2 \|\nabla(m^+,m^-)\|_{H^1}^2 \\ &+ \|\nabla(m^+,m^-)\|_{H^{k-2}}^4 \right) + \frac{\tilde{\xi}}{8} \left(\bar{n}^+ \mu^+ \|\nabla^{k+1}u^+\|_{L^2}^2 + \bar{n}^- \mu^- \|\nabla^{k+1}u^-\|_{L^2}^2 \right), \text{ for } k \geq 4, \\ |K_3| \leq & C\tau \left(\|\nabla(m^+,m^-)\|_{H^3}^2 + \|\nabla(u^+,u^-)\|_{H^3}^2 \right) \left(\|\nabla(m^+,m^-)\|_{H^2}^2 \\ &+ \|\nabla(u^+,u^-)\|_{H^2}^2 + \|\nabla(u^+,u^-)\|_{H^2}^2 \|\nabla(m^+,m^-)\|_{H^1}^2 \\ &+ \|\nabla(m^+,m^-)\|_{H^2}^4 \right) + \frac{\tilde{\xi}}{8} \left(\bar{n}^+ \mu^+ \|\nabla^{k+1}u^+\|_{L^2}^2 + \bar{n}^- \mu^- \|\nabla^{k+1}u^-\|_{L^2}^2 \right), \\ \text{ for } k = 1,2,3,4. \end{split}$$

And

$$\begin{aligned} |K_4| \leq & \frac{\tilde{\xi}}{8} \Big(\bar{n}^+ \mu^+ \| \nabla^{k+1} u^+ \|_{L^2}^2 + \bar{n}^- \mu^- \| \nabla^{k+1} u^- \|_{L^2}^2 \Big) + C\tau \| \nabla^{k-1} (r^+, r^-) \|_{L^2}^2, \\ & \text{for } k \geq 1. \end{aligned}$$

Combining these estimates, we get (3.17).

LEMMA 3.7. Assume that $\tau \in (0,1], |m^{\pm}| \leq \frac{\bar{n}^{\pm}}{2}$, and $(m^+, m^-, u^+, u^-) \in \mathcal{X}^L$ is the solution of (3.14), then we have

$$\begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{L}} \left(\zeta \frac{\beta_{3}}{\beta_{4}} |\nabla^{k-1}m^{+}|^{2} + \zeta \frac{\beta_{2}}{\beta_{1}} |\nabla^{k-1}m^{-}|^{2} + 2\beta_{3}\bar{n} + |\nabla^{k-1}u^{+}|^{2} + 2\beta_{2}\bar{n}^{-} |\nabla^{k-1}u^{-}|^{2} \right) \mathrm{d}x \\ &+ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{L}} \left(\beta_{2}\beta_{4} |\nabla^{k-1}m^{-} + \frac{\beta_{3}}{\beta_{4}} \nabla^{k-1}m^{+}|^{2} + \beta_{1}\beta_{3} |\nabla^{k-1}m^{+} + \frac{\beta_{2}}{\beta_{1}} |\nabla^{k-1}m^{-}|^{2} \right) \mathrm{d}x \\ &+ \epsilon \int_{\Omega_{L}} \left(\zeta \frac{\beta_{3}}{\beta_{4}} |\nabla^{k}m^{+}|^{2} + \zeta \frac{\beta_{2}}{\beta_{1}} |\nabla^{k}m^{-}|^{2} \right) \mathrm{d}x + \tilde{\xi} \int_{\Omega_{L}} \left(\beta_{3}\bar{n}^{+}\mu^{+} |\nabla^{k}u^{+}|^{2} \right) \\ &+ \beta_{2}\bar{n}^{-}\mu^{-} |\nabla^{k}u^{-}|^{2} \mathrm{d}x \\ \leq C\tau \left(\|\nabla(m^{+},m^{-})\|_{H^{2}}^{2} + \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} \right) \left(\|\nabla(m^{+},m^{-})\|_{H^{2}}^{2} + \|\nabla(m^{+},m^{-})\|_{H^{2}}^{4} \\ &+ \|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} \right) + C\tau \left(\|\nabla(u^{+},u^{-})\|_{H^{2}}^{2} \|\nabla(m^{+},m^{-})\|_{H^{3}}^{2} + \|\nabla^{k-2}(r^{+},r^{-})\|_{L^{2}}^{2} \right), \\ for \ k = 2,3,4, \end{split}$$

$$(3.19)$$

where C is a constant independent of L and ϵ .

Proof. Assume that (m^+, m^-, u^+, u^-) is the solution of (3.14). Similar to the proof of Lemma 3.1, applying $\nabla^k (k=1,2,3)$ to $(3.14)_1, (3.14)_2, (3.14)_3, (3.14)_4$ multiplying the results by $\beta_1\beta_3\nabla^k m^+$, $\beta_2\beta_4\nabla^k m^-$, $\beta_3\bar{n}^+\nabla^k u^+$, $\beta_2\bar{n}^-\nabla^k u^-$ respectively,

summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions and the Equations $(3.14)_1, (3.14)_2$, we obtain

$$\begin{split} &\frac{1}{4}\frac{d}{dt} \int_{\Omega_L} \left(\zeta \frac{\beta_3}{\beta_4} |\nabla^k m^+|^2 + \zeta \frac{\beta_2}{\beta_1} |\nabla^k m^-|^2 + 2\beta_3 \bar{n}^+ |\nabla^k u^+|^2 + 2\beta_2 \bar{n}^- |\nabla^k u^-|^2 \right) dx \\ &+ \frac{1}{4}\frac{d}{dt} \int_{\Omega_L} \left(\beta_2 \beta_4 |\nabla^k m^- + \frac{\beta_3}{\beta_4} \nabla^k m^+|^2 + \beta_1 \beta_3 |\nabla^k m^+ + \frac{\beta_2}{\beta_1} \nabla^k \nabla m^-|^2 \right) dx \\ &+ \frac{1}{2} \epsilon \int_{\Omega_L} \left(\zeta \frac{\beta_3}{\beta_4} |\nabla^k \nabla m^- + \frac{\beta_3}{\beta_4} \nabla^k \nabla m^+|^2 + \beta_1 \beta_3 |\nabla^k \nabla m^+ + \frac{\beta_2}{\beta_1} \nabla^k \nabla m^-|^2 \right) dx \\ &+ \beta_3 \bar{n}^+ \int_{\Omega_L} \left((\bar{\xi} + \tau \xi^+ (m^+, m^-)) (\mu^+ |\nabla^k \nabla u^+|^2 + (\mu^+ + \lambda^+) |\nabla^k \operatorname{div} u^+|^2) \right) dx \\ &+ \beta_2 \bar{n}^- \int_{\Omega_L} \left((\bar{\xi} + \tau \xi^- (m^+, m^-)) (\mu^- |\nabla^k \nabla u^-|^2 + (\mu^- + \lambda^-) |\nabla^k \operatorname{div} u^-|^2) \right) dx \\ &= \left[-\beta_3 \bar{n}^+ \tau \int_{\Omega_L} (\partial_{m^+} \xi^+ \nabla m^+ + \partial_{m^-} \xi^+ \nabla m^-) (\mu^+ \nabla^k \nabla u^- + (\mu^+ + \lambda^+) \nabla^k \operatorname{div} u^+) \nabla^k u^+ \right. \\ &- \beta_2 \bar{n}^- \tau \int_{\Omega_L} \sum_{1 \le l \le k} \binom{k}{l} \nabla^l \xi^+ \nabla^{k-l} (\mu^+ \Delta u^+ + (\mu^+ + \lambda^+) \nabla \operatorname{div} u^-) \nabla^k u^- \\ &+ \beta_3 \bar{n}^+ \tau \int_{\Omega_L} \sum_{1 \le l \le k} \binom{k}{l} \nabla^l \xi^- \nabla^{k-l} (\mu^- \Delta u^- + (\mu^- + \lambda^-) \nabla \operatorname{div} u^-) \nabla^k u^- \\ &+ \beta_3 \bar{n}^+ \langle \nabla^{k-1} \tilde{G}_1, \beta_1 \nabla^{k+1} m^+ + \beta_2 \nabla^{k+1} m^-) + \beta_2 \langle \nabla^{k-1} \tilde{G}_2, \beta_3 \nabla^{k+1} m^+ + \beta_4 \nabla^{k+1} m^- \rangle \right] \\ &- \left[\beta_3 \bar{n}^+ \langle \nabla^{k-1} \tilde{G}_3, \nabla^{k+1} u^+ \rangle + \beta_2 \bar{n}^- \langle \nabla^{k-1} \tilde{G}_4, \nabla^{k+1} u^- \rangle \right] := M_1 + M_2 + M_3 + M_4. \end{aligned} \tag{3.20}$$

Similar to the proof of Lemma 3.4, we have

$$\begin{split} |M_{1}| \leq & C\tau \|\nabla(m^{+},m^{-})\|_{L^{\infty}} \|\nabla^{4}(u^{+},u^{-})\|_{L^{2}} \|\nabla^{3}(u^{+},u^{-})\|_{L^{2}} \\ &+ C\tau \|\nabla^{2}(m^{+},m^{-})\|_{L^{3}} \|\nabla^{3}(u^{+},u^{-})\|_{L^{2}} \|\nabla^{3}(u^{+},u^{-})\|_{L^{6}} \\ &+ C\tau \|\nabla^{3}(m^{+},m^{-})\|_{L^{2}} \|\nabla^{2}(u^{+},u^{-})\|_{L^{3}} \|\nabla^{3}(u^{+},u^{-})\|_{L^{6}} \\ \leq & C\tau \Big(\|\nabla(m^{+},m^{-})\|_{H^{2}}^{2} \|\nabla^{3}(u^{+},u^{-})\|_{L^{2}}^{2} + \|\nabla^{2}(m^{+},m^{-})\|_{H^{1}}^{2} \|\nabla^{3}(u^{+},u^{-})\|_{L^{2}}^{2} \Big) \\ &+ \|\nabla^{3}(m^{+},m^{-})\|_{L^{2}}^{2} \|\nabla^{2}(u^{+},u^{-})\|_{H^{1}}^{2} \Big) + \frac{\tilde{\xi}}{6} \Big(\bar{n}^{+}\mu^{+} \|\nabla^{4}u^{+}\|_{L^{2}}^{2} + \bar{n}^{-}\mu^{-} \|\nabla^{4}u^{-}\|_{L^{2}}^{2} \Big) \\ & \text{for } k = 3. \end{split}$$

Similar estimates can be established for k = 1, 2, then we have

$$|M_1| \le C\tau \|\nabla(m^+, m^-)\|_{H^2}^2 \|\nabla(u^+, u^-)\|_{H^2}^2 + \frac{\tilde{\xi}}{6} \Big(\bar{n}^+ \beta_3 \mu^+ \|\nabla^{k+1} u^+\|_{L^2}^2 \Big)$$

$$+ \bar{n}^{-} \beta_{2} \mu^{-} \| \nabla^{k+1} u^{-} \|_{L^{2}}^{2} \Big), \text{ for } k = 1, 2, 3.$$

For M_2 ,

$$\begin{split} M_{2} &= -\beta_{3} \langle \nabla^{k-1} \tilde{G}_{1}, \beta_{1} \nabla^{k+1} m^{+} + \beta_{2} \nabla^{k+1} m^{-} \rangle - \beta_{2} \langle \nabla^{k-1} \tilde{G}_{2}, \beta_{3} \nabla^{k+1} m^{+} + \beta_{4} \nabla^{k+1} m^{-} \rangle \\ &:= M_{2}^{1} + M_{2}^{2}. \\ M_{2}^{1} &= \beta_{3} \tau \langle \nabla^{k-1} (\operatorname{div}(m^{+}u^{+})), \beta_{1} \nabla^{k+1} m^{+} + \beta_{2} \nabla^{k+1} m^{-} \rangle \\ &= \beta_{3} \tau \langle \nabla^{2} (\operatorname{div}(m^{+}u^{+})), \beta_{1} \nabla^{4} m^{+} + \beta_{2} \nabla^{4} m^{-} \rangle \\ &= -\beta_{3} \tau \int_{\Omega_{L}} \left(u^{+} \nabla^{3} m^{+} + 2 \nabla u^{+} \nabla^{2} m^{+} + \nabla^{2} u^{+} \nabla m^{+} + \operatorname{div} u^{+} \nabla^{2} m^{+} + 2 \nabla \operatorname{div} u^{+} \nabla m^{+} \right. \\ &\quad + \nabla^{2} \operatorname{div} u^{+} m^{+} \right) \left(\beta_{1} \nabla^{4} m^{+} + \beta_{2} \nabla^{4} m^{-} \right) \mathrm{d}x \\ &\leq C \tau \left(\| u^{+} \|_{L^{\infty}} \| \nabla^{3} m^{+} \|_{L^{2}} + \| \nabla u^{+} \|_{L^{6}} \| \nabla^{2} m^{+} \|_{L^{3}} + \| \nabla^{2} u^{+} \|_{L^{6}} \| \nabla m^{+} \|_{L^{3}} \\ &\quad + \| \nabla^{3} u^{+} \|_{L^{2}} \| m^{+} \|_{L^{\infty}} \right) \| \nabla^{4} (m^{+}, m^{-}) \|_{L^{2}} \\ &\leq C \tau \| \nabla u^{+} \|_{H^{2}} \| \nabla (m^{+}, m^{-}) \|_{H^{3}}^{2}, \text{ for } k = 3, \end{split}$$

then

$$M_2 \leq C \tau \|\nabla(u^+, u^-)\|_{H^2} \|\nabla(m^+, m^-)\|_{H^3}^2$$
, for $k = 1, 2, 3$.

For M_3 ,

$$\begin{split} M_{3} &= -\beta_{3}\bar{n}^{+}\langle\nabla^{k-1}\tilde{G}_{3},\nabla^{k+1}u^{+}\rangle - \beta_{2}\bar{n}^{-}\langle\nabla^{k-1}\tilde{G}_{4},\nabla^{k+1}u^{-}\rangle := M_{3}^{1} + M_{3}^{2}.\\ |M_{3}^{1}| &\leq C\tau \Big(|\langle\nabla^{k-1}(g_{1}^{+}(m^{+},m^{-})\nabla m^{+} + g_{2}^{+}(m^{+},m^{-})\nabla m^{-}),\nabla^{k+1}u^{+}\rangle| \\ &+ |\langle\nabla^{k-1}[h_{1}^{+}(m^{+},m^{-})(\nabla m^{+}\cdot\nabla)u^{+} + h_{2}^{+}(m^{+},m^{-})(\nabla m^{-}\cdot\nabla)u^{+}],\nabla^{k+1}u^{+}\rangle| \\ &+ |\langle\nabla^{k-1}[h_{1}^{+}(m^{+},m^{-})\nabla m^{+}\nabla^{t}u^{+} + h_{2}^{+}(m^{+},m^{-})\nabla m^{-}\nabla^{t}u^{+}],\nabla^{k+1}u^{+}\rangle| \\ &+ |\langle\nabla^{k-1}[h_{1}^{+}(m^{+},m^{-})\nabla m^{+}\operatorname{div}u^{+} + h_{2}^{+}(m^{+},m^{-})\nabla m^{-}\operatorname{div}u^{+}],\nabla^{k+1}u^{+}\rangle| \\ &+ |\langle\nabla^{k-1}[(u^{+}\cdot\nabla)u^{+}],\nabla^{k+1}u^{+}\rangle|\Big). \end{split}$$

Thus, we have

$$\begin{split} |M_3^1| \leq & C\tau \Big[\Big(\|(m^+,m^-)\|_{L^{\infty}} \|\nabla^3(m^+,m^-)\|_{L^2} + \|\nabla^2(m^+,m^-)\|_{L^3} \|\nabla(m^+,m^-)\|_{L^6} \Big) \\ & + \Big(\|u^+\|_{L^{\infty}} \|\nabla^3 u^+\|_{L^2} + \|\nabla u^+\|_{L^3} \|\nabla^2 u^+\|_{L^6} \Big) + \Big(\|\nabla(m^+,m^-)\|_{L^{\infty}} \|\nabla^3 u^+\|_{L^2} \\ & + \|\nabla^2(m^+,m^-)\|_{L^3} \|\nabla^2 u^+\|_{L^6} + \|\nabla^3(m^+,m^-)\|_{L^2} \|\nabla u^+\|_{L^{\infty}} \Big) + \|\nabla(m^+,m^-)\|_{L^{\infty}} \\ & \times \Big(\|\nabla(m^+,m^-)\|_{L^3} \|\nabla^2 u^+\|_{L^6} + \|\nabla^2(m^+,m^-)\|_{L^3} \|\nabla u^+\|_{L^6} \Big) \Big] \|\nabla^4 u^+\|_{L^2} \\ \leq & C\tau \Big(\|\nabla(m^+,m^-)\|_{H^1}^2 \|\nabla^3(m^+,m^-)\|_{L^2}^2 + \|\nabla^2(m^+,m^-)\|_{H^1}^2 \|\nabla^2(m^+,m^-)\|_{L^2}^2 \\ & + \|\nabla u^+\|_{H^1}^2 \|\nabla^3 u^+\|_{L^2}^2 + \|\nabla(m^+,m^-)\|_{H^2}^2 \|\nabla u^+\|_{L^2}^2 \\ & + \|\nabla(m^+,m^-)\|_{H^1}^2 \|\nabla^2(m^+,m^-)\|_{H^1}^2 \|\nabla^2 u^+\|_{L^2}^2 \\ & + \|\nabla(m^+,m^-)\|_{H^2}^2 \|\nabla^2(m^+,m^-)\|_{H^1}^2 \|\nabla^2 u^+\|_{L^2}^2 \Big) + \frac{\tilde{\xi}}{6} \bar{n}^+ \beta_3 \mu^+ \|\nabla^{k+1} u^+\|_{L^2}^2 \end{split}$$

$$\leq C\tau \Big[\|\nabla(m^+, m^-)\|_{H^1}^2 \|\nabla(m^+, m^-)\|_{H^2}^2 + \|\nabla u^+\|_{H^1}^2 \|\nabla u^+\|_{H^2}^2 \\ + \Big(\|\nabla(m^+, m^-)\|_{H^2}^2 + \|\nabla(m^+, m^-)\|_{H^2}^4 \Big) \|\nabla u^+\|_{H^2}^2 \Big] + \frac{\tilde{\xi}}{6} \bar{n}^+ \beta_3 \mu^+ \|\nabla^{k+1} u^+\|_{L^2}^2 \\ \text{for } k = 3.$$

Similarly, we can get the estimates of M_3^1 for k = 1, 2 and M_3^2 , thus we have

$$\begin{split} |M_3| &\leq \frac{\tilde{\xi}}{6} \Big(\bar{n}^+ \beta_3 \mu^+ \| \nabla^{k+1} u^+ \|_{L^2}^2 + \bar{n}^- \beta_2 \mu^- \| \nabla^{k+1} u^- \|_{L^2}^2 \Big) + C\tau \Big(\| \nabla(m^+, m^-) \|_{H^2}^2 \\ &+ \| \nabla(u^+, u^-) \|_{H^2}^2 \Big) \Big(\| \nabla(m^+, m^-) \|_{H^2}^2 + \| \nabla(m^+, m^-) \|_{H^2}^4 + \| \nabla(u^+, u^-) \|_{H^1}^2 \Big), \\ &\text{for } k = 1, 2, 3. \end{split}$$

And

$$|M_4| \leq \frac{\tilde{\xi}}{6} \left(\bar{n}^+ \beta_3 \mu^+ \|\nabla^{k+1} u^+\|_{L^2}^2 + \bar{n}^- \beta_2 \mu^- \|\nabla^{k+1} u^-\|_{L^2}^2 \right) + C\tau \|\nabla^{k-1} (r^+, r^-)\|_{L^2}^2,$$

for $k = 1, 2, 3$.

Combining these estimates and taking k as k-1, we get the (3.19).

3.3. Existence in bounded domain. In this subsection, we deduce the existence of the time periodic solution in periodic domain. To begin with, we discuss the case $\tau = 0$, then we prove Proposition 1.1 and Theorem 1.1.

LEMMA 3.8. When $\tau = 0$, we have $S((n^+, n^-, w^+, w^-), 0) \equiv 0$.

Proof. Applying $\nabla^k, (k \ge 1)$ to $(3.1)_1, (3.1)_2, (3.1)_3, (3.1)_4$, multiplying the results by $\beta_1\beta_3\nabla^k m^+$, $\beta_2\beta_4\nabla^k m^-$, $\beta_3\bar{n}^+\nabla^k u^+$, $\beta_2\bar{n}^-\nabla^k u^-$ respectively, summing up, then integrating the result over Ω_L by parts and combining with the periodic boundary conditions and the Equations $(3.1)_1, (3.1)_2$, we obtain

$$\begin{split} &\frac{1}{4}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_L} \left(\zeta\frac{\beta_3}{\beta_4}|\nabla^k m^+|^2 + \zeta\frac{\beta_2}{\beta_1}|\nabla^k m^-|^2 + 2\beta_3\bar{n}|\nabla^k u^+|^2 + 2\beta_2\bar{n}^-|\nabla^k u^-|^2\right)\mathrm{d}x \\ &+ \frac{1}{4}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_L} \left(\beta_2\beta_4|\nabla^k m^- + \frac{\beta_3}{\beta_4}\nabla^k m^+|^2 + \beta_1\beta_3|\nabla^k m^+ + \frac{\beta_2}{\beta_1}\nabla^k m^-|^2\right)\mathrm{d}x \\ &+ \frac{1}{2}\epsilon\int_{\Omega_L} \left(\zeta\frac{\beta_3}{\beta_4}|\nabla^k \nabla m^+|^2 + \zeta\frac{\beta_2}{\beta_1}|\nabla^k \nabla m^-|^2\right)\mathrm{d}x \\ &+ \frac{1}{2}\epsilon\int_{\Omega_L} \left(\beta_2\beta_4|\nabla^k \nabla m^- + \frac{\beta_3}{\beta_4}\nabla^k \nabla m^+|^2 + \beta_1\beta_3|\nabla^k \nabla m^+ + \frac{\beta_2}{\beta_1}\nabla^k \nabla m^-|^2\right)\mathrm{d}x \\ &+ \beta_3\bar{n}^+\int_{\Omega_L} \left(\tilde{\xi}(\mu^+|\nabla^k \nabla u^+|^2 + (\mu^+ + \lambda^+)|\nabla^k\mathrm{div}u^+|^2)\right)\mathrm{d}x \\ &+ \beta_2\bar{n}^-\int_{\Omega_L} \left(\tilde{\xi}(\mu^-|\nabla^k \nabla u^-|^2 + (\mu^- + \lambda^-)|\nabla^k\mathrm{div}u^-|^2)\right)\mathrm{d}x = 0. \end{split}$$

Integrating from 0 to T, we have

$$\begin{split} &\frac{1}{2}\epsilon\int_0^T\int_{\Omega_L} \Big(\zeta\frac{\beta_3}{\beta_4}|\nabla^k\nabla m^+|^2 + \zeta\frac{\beta_2}{\beta_1}|\nabla^k\nabla m^-|^2\Big)\mathrm{d}x + \int_0^T\int_{\Omega_L} \Big(\tilde{\xi}(\beta_3\bar{n}^+\mu^+|\nabla^k\nabla u^+|^2 \\ &+\beta_2\bar{n}^-\mu^-|\nabla^k\nabla u^-|^2\Big)\mathrm{d}x \le 0. \end{split}$$

Then, by the Poincaré's inequality, we obtain $(m^+, m^-, u^+, u^-) \equiv 0$. The proof is complete.

Proof. (**Proof of Proposition 1.1.**) Note that, to solve the problem (1.9) is equivalent to solving the equation

$$U - S(U,1) = 0, \ U = (m^+, m^-, u^+, u^-) \in \mathcal{X}^L.$$

In what follows, we apply the topological degree theory to solve this problem. To begin with, we show that there exists $\eta_0 > 0$, such that

$$(I - \mathcal{S}(\cdot, \tau))(\partial B_{\eta_0}(0)) \neq 0, \text{ for any } \tau \in [0, 1],$$
(3.21)

where $B_{\eta_0}(0)$ is the ball of radius η_0 centered at 0 in \mathcal{X}^L . Then, if (3.21) holds, to prove the existence of the solution, we just need to show

$$\deg(I - S(\cdot, 1), B_{\eta_0}, 0) \neq 0. \tag{3.22}$$

Notice that when η_0 is suitably small, we have, $\|m^{\pm}\|_{L^{\infty}} \leq \sup_{0 \leq t \leq T} \|\nabla m^{\pm}\|_{H^1} \leq \eta_0 \leq \frac{n^{\pm}}{2}$. Let $M_1 \times (3.15) + (3.17) + M_2 \times ((3.16) + (3.19))$, for appropriate M_1, M_2 , and integrating from 0 to T, then suming up the result for k(k=1,2,3,4). Since η_1, η_2 are suitable small, we can take

$$\begin{split} C_2 &\leq \frac{M_1 \zeta}{8} \min(\frac{\beta_3}{\beta_4}, \frac{\beta_2}{\beta_1}), \ \eta_1 M_1 \leq \min(\beta_1, \beta_4), \eta_2 M_1 \leq \frac{\tilde{\xi}}{2} \min(\bar{n}^+ \mu^+, \bar{n}^- \mu^-), \\ M_1 C_1 &\leq \frac{M_2 \tilde{\xi}}{2} \min(\beta_3 \bar{n}^+ \mu^+, \beta_2 \bar{n}^- \mu^-). \end{split}$$

We have

$$\begin{split} &\frac{M_1}{8} \int_0^T \int_{\Omega_L} \sum_{1 \le k \le 4} \left(\zeta \frac{\beta_3}{\beta_4} |\nabla^k m^+|^2 + \zeta \frac{\beta_2}{\beta_1} |\nabla^k m^-|^2 \right) \mathrm{d}x \mathrm{d}t + \frac{M_2 \tilde{\xi}}{2} \int_0^T \int_{\Omega_L} \left(\beta_3 \bar{n}^+ \mu^+ |\nabla u^+|^2 + \beta_2 \bar{n}^- \mu^- |\nabla u^-|^2 \right) \mathrm{d}x \mathrm{d}t + \frac{\tilde{\xi}}{2} \int_0^T \int_{\Omega_L} \sum_{1 \le k \le 4} \left(\bar{n}^+ \mu^+ |\nabla^{k+1} u^+|^2 + \bar{n}^- \mu^- |\nabla^{k+1} u^-|^2 \right) \mathrm{d}x \mathrm{d}t \\ &\leq C \tau \sup_{0 \le t \le T} \left(\|\nabla (m^+, m^-)\|_{H^1} + \|\nabla (m^+, m^-)\|_{H^2}^2 + \|\nabla (u^+, u^-)\|_{H^2}^2 + \|\nabla (m^+, m^-)\|_{H^2}^4 + \|\nabla (u^+, u^-)\|_{H^2}^2 + \|\nabla (u^+, u^-)\|_{H^2}^2 \right) \int_0^T \left(\|\nabla (m^+, m^-)\|_{H^3}^2 + \|\nabla (u^+, u^-)\|_{H^3}^2 \right) \mathrm{d}t \\ &+ \|\nabla (u^+, u^-)\|_{H^3}^2 \right) \mathrm{d}t + C \tau \int_0^T \left(\|(r^+, r^-)\|_{L^{6/5}}^2 + \|\nabla (r^+, r^-)\|_{H^2}^2 \right) \mathrm{d}t \\ &\leq C \tau (\eta_0^3 + \eta_0^4 + \eta_0^6) + C \tau \int_0^T \|(r^+, r^-)\|_{H^3}^2 \mathrm{d}t. \end{split}$$

Then, by the Poincaré's inequality, we have

$$\int_0^T \left(\|m^+\|_{H^4}^2 + \|m^-\|_{H^4}^2 + \|u^+\|_{H^5}^2 + \|u^-\|_{H^5}^2 \right) \mathrm{d}t$$

$$\leq C\tau \left(\eta_0^3 + \eta_0^4 + \eta_0^6\right) + C\tau \int_0^T \|(r^+, r^-)\|_{H^3}^2 \mathrm{d}t.$$
(3.23)

By the Mean Value Theorem, there exists a $t^* \in (0,T)$, such that

$$\left(\|m^{+}\|_{H^{4}}^{2} + \|m^{-}\|_{H^{4}}^{2} + \|u^{+}\|_{H^{5}}^{2} + \|u^{-}\|_{H^{5}}^{2} \right)(x, t^{*})$$

$$\leq C\tau \left(\eta_{0}^{3} + \eta_{0}^{4} + \eta_{0}^{6} \right) + C\tau \int_{0}^{T} \|(r^{+}, r^{-})\|_{H^{3}}^{2} \mathrm{d}t.$$

$$(3.24)$$

Integrating (3.17) from t^* to $t(t \in (t^*, T])$, summing up the results for k, using the Poincaré's inequality and (3.24), we have

$$\left(\|m^+\|_{H^4}^2 + \|m^-\|_{H^4}^2 + \|u^+\|_{H^4}^2 + \|u^-\|_{H^4}^2 \right)(\cdot, t)$$

 $\leq C\tau \left(\eta_0^3 + \eta_0^4 + \eta_0^6\right) + C\tau \int_0^T \|(r^+, r^-)\|_{H^3}^2 \mathrm{d}t.$

Using the time periodicity, we have

$$\left(\|m^+\|_{H^4}^2 + \|m^-\|_{H^4}^2 + \|u^+\|_{H^4}^2 + \|u^-\|_{H^4}^2 \right)(\cdot, 0)$$

 $\leq C \tau \left(\eta_0^3 + \eta_0^4 + \eta_0^6\right) + C \tau \int_0^T \|(r^+, r^-)\|_{H^3}^2 \mathrm{d}t.$

Repeating the above process yields

$$\sup_{0 \le t \le T} \left(\|m^+\|_{H^4}^2 + \|m^-\|_{H^4}^2 + \|u^+\|_{H^4}^2 + \|u^-\|_{H^4}^2 \right)$$

$$\le C\tau \left(\eta_0^3 + \eta_0^4 + \eta_0^6 \right) + C\tau \int_0^T \|(r^+, r^-)\|_{H^3}^2 \mathrm{d}t.$$
(3.25)

Suming up (3.23) and (3.25), when $\int_0^T ||(r^+, r^-)||_{H^3}^2 dt$ and η_0 are appropriately small, we have

$$\|(m^+, m^-, u^+, u^-)\|_{X^L}^2 \le C\tau \left(\eta_0^3 + \eta_0^4 + \eta_0^6\right) + C\tau \int_0^T \|(r^+, r^-)\|_{H^3}^2 \mathrm{d}t \le \frac{1}{2}\eta_0^2.$$
(3.26)

Therefore, (3.21) holds. By Lemma 3.8, we have $S(\cdot, 0) \equiv 0$, then using Lemma 2.5, we have

$$\deg(I - S(\cdot, 1), B_{\eta_0}, 0) = \deg(I - S(\cdot, 0), B_{\eta_0}, 0) = \deg(I, B_{\eta_0}, 0) = 1,$$

which implies that problem (1.10) has a solution $U = (m^+, m^-, u^+, u^-)$ with $||U||_{\mathcal{X}^L} \leq \eta_0$. The proof is complete.

Finally, we give the proof of Theorem 1.1 by taking limit of the regularized problem (1.10).

Proof. (Proof of Theorem 1.1.) Assume $U_{\epsilon} = (m_{\epsilon}^+, m_{\epsilon}^-, u_{\epsilon}^+, u_{\epsilon}^-)$ is the solution of the regularized problem (1.10). From the proof of Proposition 1.1, we have

$$\sup_{0 \le t \le T} \|U_{\epsilon}(\cdot, t)\|_{H^4}^2 + \int_0^T \|U_{\epsilon}(\cdot, t)\|_{H^4}^2 \mathrm{d}t \le C\eta_0,$$
(3.27)

where η_0 is independent of ϵ . Then integrating (3.17) from t to t+h, then integrating the result from 0 to T, we have

$$\int_{0}^{T} \left[\left(\beta_{1} \| \nabla^{k} m_{\epsilon}^{+} \|_{L^{2}}^{2} + \beta_{4} \| \nabla^{k} m_{\epsilon}^{-} \|_{L^{2}}^{2} + \bar{n}^{+} \| \nabla^{k} u_{\epsilon}^{+} \|_{L^{2}}^{2} + \bar{n}^{-} \| \nabla^{k} u_{\epsilon}^{-} \|_{L^{2}}^{2} \right) (\cdot, t+h) - \left(\beta_{1} \| \nabla^{k} m_{\epsilon}^{+} \|_{L^{2}}^{2} + \beta_{4} \| \nabla^{k} m_{\epsilon}^{-} \|_{L^{2}}^{2} + \bar{n}^{+} \| \nabla^{k} u_{\epsilon}^{+} \|_{L^{2}}^{2} + \bar{n}^{-} \| \nabla^{k} u_{\epsilon}^{-} \|_{L^{2}}^{2} \right) (\cdot, t) \right] \mathrm{d}t \leq Ch,$$
for $k = 4,$

$$(3.28)$$

where C is independent of ϵ . Therefore, there exists a subsequence of U_{ϵ} , denoted by U_{ϵ_i} , such that

$$\begin{split} (m_{\epsilon_i}^+, m_{\epsilon_i}^-, u_{\epsilon_i}^+, u_{\epsilon_i}^-) &\stackrel{*}{\rightharpoonup} (m^+, m^-, u^+, u^-) \text{ in } L^{\infty}((0, T); H^4(\Omega_L)); \\ (m_{\epsilon_i}^+, m_{\epsilon_i}^-, u_{\epsilon_i}^+, u_{\epsilon_i}^-) &\to (m^+, m^-, u^+, u^-) \text{ in } L^2((0, T); H^4(\Omega_L)). \end{split}$$

Using the Sobolev imbedding theorem to $m_{\epsilon}^+(x,t) \in L^{\infty}((0,T); H^4(\Omega_L))$, we have $m_{\epsilon}^+(x,t) \in C^{\alpha}(\Omega_L)$ for $\alpha \in (0,1)$ and any t. Next we show that there exists $\beta \in (0,1)$ such that $m_{\epsilon}^+(x,t) \in C^{\beta}(0,T)$, precisely

$$|m_{\epsilon}^{+}(x,t_{1}) - m_{\epsilon}^{+}(x,t_{2})| \leq C|t_{1} - t_{2}|^{\beta},$$

holds for any $t_1, t_2 \in (0,T), x \in \Omega_L$. Take a ball B_r of radius r centered at x, with $r = |t_1 - t_2|^{\eta}, \eta = \frac{1}{2\alpha + 3}$. Recalling (3.12), by Poincaré's inequality, we have

$$\begin{split} \int_{B_r} |m_{\epsilon}^+(y,t_1) - m_{\epsilon}^+(y,t_2)| \mathrm{d}y &= \int_{B_r} \Big| \int_{t_1}^{t_2} \frac{\partial m_{\epsilon}^+(y,t)}{\partial t} \mathrm{d}t \Big| \mathrm{d}y \\ &\leq C \Big(\int_{t_1}^{t_2} \int_{B_r} \Big| \frac{\partial m_{\epsilon}^+(y,t)}{\partial t} \Big|^2 \mathrm{d}y \mathrm{d}t \Big)^{1/2} |t_1 - t_2|^{1/2} r^{3/2} \\ &\leq C |t_1 - t_2|^{1/2} r^{3/2} = C |t_1 - t_2|^{(1+3\eta)/2}. \end{split}$$

Then, there exists $x^* \in B_r$ such that

$$|m_{\epsilon}^{+}(x^{*},t_{1}) - m_{\epsilon}^{+}(x^{*},t_{2})| \leq C|t_{1} - t_{2}|^{(1-3\eta)/2}.$$

Moreover, we have

$$\begin{aligned} &|m_{\epsilon}^{+}(x,t_{1}) - m_{\epsilon}^{+}(x,t_{2})| \\ \leq &|m_{\epsilon}^{+}(x,t_{1}) - m_{\epsilon}^{+}(x^{*},t_{1})| + |m_{\epsilon}^{+}(x^{*},t_{1}) - m_{\epsilon}^{+}(x^{*},t_{2})| + |m_{\epsilon}^{+}(x^{*},t_{2}) - m_{\epsilon}^{+}(x,t_{2})| \\ \leq &C(|t_{1} - t_{2}|^{\eta\alpha} + |t_{1} - t_{2}|^{(1-3\eta)/2}) \leq C|t_{1} - t_{2}|^{\alpha/(2\alpha+3)}. \end{aligned}$$

Taking $\beta = \frac{\alpha}{2\alpha+3} \in (0,1)$, we have $m_{\epsilon}^+(x,t) \in C^{\beta}(0,T)$. In the same way, we have

$$\begin{split} |m_{\epsilon}^{-}(x_{1},t_{1}) - m_{\epsilon}^{-}(x_{2},t_{2})| &\leq C(|x_{1} - x_{2}|^{\alpha} + |t_{1} - t_{2}|^{\beta}), \\ |u_{\epsilon}^{+}(x_{1},t_{1}) - u_{\epsilon}^{+}(x_{2},t_{2})| &\leq C(|x_{1} - x_{2}|^{\alpha} + |t_{1} - t_{2}|^{\beta}), \\ |u_{\epsilon}^{-}(x_{1},t_{1}) - u_{\epsilon}^{-}(x_{2},t_{2})| &\leq C(|x_{1} - x_{2}|^{\alpha} + |t_{1} - t_{2}|^{\beta}). \end{split}$$

for $\alpha, \beta \in (0,1)$, where C is independent of ϵ . Thus $U_{\epsilon} \in C^{\alpha,\beta}(\Omega_L \times (0,T))$. Using the Arzela-Ascoli Theorem, we have

$$(m_{\epsilon_i}^+,m_{\epsilon_i}^-,u_{\epsilon_i}^+,u_{\epsilon_i}^-) \to (m^+,m^-,u^+,u^-), \text{ uniformly as } \epsilon \to 0.$$

We deduce that (m^+, m^-, u^+, u^-) is a time periodic solution of (1.9). This completes the proof.

Acknowledgement. The authors are supported by the National Natural Science Foundation of China #11571280, 11331005 and FANEDD #201315.

REFERENCES

- R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Pure and Applied Mathematics Series, Academic Press, 2nd Edition, 140, 2003.
- [2] J. Bear, Dynamics of Fluids in Porous Media, Dover Civil and Mechanical Engineering Series. Dover, 1972.
- [3] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Appl. Math. Sci., Springer New York, 2012.
- [4] D. Bresch, B. Desjardins, J.M. Ghidaglia, and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Ration. Mech. Anal., 196(2):599–629, 2010.
- [5] D. Bresch, X.D. Huang, and J. Li, Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system, Comm. Math. Phys., 309(3):737-755, 2012.
- [6] J. Březina and Y. Kagei, Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow, J. Diff. Eqs., 255(6):1132–1195, 2013.
- [7] H. Cai and Z. Tan, Time periodic solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Discrete Contin. Dyn. Syst., 36(4):1847–1868, 2016.
- [8] K.C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer Berlin Heidelberg, 2005.
- Y.J. Cho and Y.Q. Chen, Topological Degree Theory and Applications, Math. Anal. Appl., CRC Press, 10, 2006.
- [10] H.B. Cui, W.J. Wang, L. Yao, and C.J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48(1):470–512, 2016.
- [11] R.J. Duan, L.Z. Ruan, and C.J. Zhu, Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss, Math. Models Meth. Appl. Sci., 22(7):1–39, 2012.
- [12] S. Evje, W.J. Wang, and H.Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Ration. Mech. Anal., 221(3):1285– 1316, 2016.
- [13] R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56(2):249–281, 2010.
- [14] E. Feireisl, P.B. Mucha, A. Novotný, and M. Pokorný, *Time-periodic solutions to the full Navier-Stokes-Fourier system*, Arch. Ration. Mech. Anal., 204(3):745–786, 2012.
- [15] G.P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal., 172(3):363–406, 2004.
- [16] M. Geissert, M. Hieber, and T.H. Nguyen, A general approach to time periodic incompressible viscous fluid flow problems, Arch. Ration. Mech. Anal., 220(3):1095–1118, 2016.
- [17] M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, SpringerLink: Bücher, Springer New York, 2010.
- [18] C.H. Jin and T. Yang, Time periodic solution for a 3-D compressible Navier-Stokes system with an external force in R³, J. Diff. Eqs., 259(7):2576–2601, 2015.
- [19] C.H. Jin and T. Yang, Time periodic solution to the compressible Navier-Stokes equations in a periodic domain, Ser. B Engl. Ed., Acta Math. Sci., 36(4):1015–1029, 2016.
- [20] J. Lai, H.Y. Wen, and L. Yao, Vanishing capillarity limit of the non-conservative compressible two-fluid model, Discrete Contin. Dyn. Syst. Ser. B, 22(4):1361–1392, 2017.
- H.F. Ma, S. Ukai, and T. Yang, *Time periodic solutions of compressible Navier-Stokes equations*, J. Diff. Eqs., 248(9):2275–2293, 2010.
- [22] P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4(2):503–529, 1991.
- [23] A. Prosperetti and G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge University Press, 2009.
- [24] J. Serrin, A note on the exstencie of periodic solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 3(1):120–122, 1959.
- [25] J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146(1):65–96, 1986.
- [26] M.E. Taylor, Partial Differential Equations III: Nonlinear Equations, Appl. Math. Sci., Springer-Verlag New York, 2nd Edition, 117, 2011.
- [27] B. Temple and R. Young, Time-periodic linearized solutions of the compressible Euler equations and a problem of small divisors, SIAM J. Math. Anal., 43(1):1–49, 2011.
- [28] K. Tsuda, On the existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space, Arch. Ration. Mech. Anal., 219(2):637–678, 2016.

1302 $\,$ time periodic solutions for non-conservative two-fluid model

[29] O. Vejvoda, Partial Differential Equations: Time-periodic Solutions, Martinus Nijhoff Publishers, The Hague, 1981.