
COMMUN. MATH. SCI. c© 2018 Logan F. Stokols and Alexis F. Vasseur

Vol. 16, No. 6, pp. 1465–1487

DE GIORGI TECHNIQUES APPLIED TO HAMILTON–JACOBI
EQUATIONS WITH UNBOUNDED RIGHT-HAND SIDE∗

LOGAN F. STOKOLS† AND ALEXIS F. VASSEUR‡

Abstract. In this article we obtain Holder estimates for solutions to second-order Hamilton–Jacobi
equations with super-quadratic growth in the gradient and unbounded source term. The estimates are
uniform with respect to the smallness of the diffusion and the smoothness of the Hamiltonian. Our
work is in the spirit of a result by P. Cardaliaguet and L. Silvestre [P. Cardaliaguet and L. Silvestre,
Comm. Partial Differential Equations, 37(9):1668–1688, 2012]. We utilize De Giorgi’s method, which
was introduced to this class of equations in [C.-H. Chan and A.F. Vasseur, ArXiv e-prints, November
2014].
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1. Introduction
In the present paper, we study Cγ regularization in solutions to a Hamilton–Jacobi

evolution equation with viscosity:

∂tu+H(x,u,∇u)−ε∆u= 0, (t,x)∈ (0,T )×Ω,

where Λ>0, ε∈ [0,Λ], Ω⊆Rn, and the Hamiltonian has superquadratic growth in the
gradient variable, uniform in x and t:

1

Λ
|v|p−f(x,t)≤H(t,x,z,v)≤Λ |v|p+Λ, p>2,f ∈Lm,m>1+

max(n,2)

p
.

We will show that solutions are uniformly Hölder continuous away from the bound-
ary of Ω and after a positive time has elapsed.

Because p>2, it is the first order term that will dominate at small scales. The
second order term acts merely as a perturbation. In fact, although our motivation is
a first-order Hamilton–Jacobi equation with viscosity, our techniques can handle much
more general second order terms. Specifically, we will show the following theorem.

Theorem 1.1 (Main Theorem). Let constants Λ>0, Λ0≥0, p>2, m>1+ max(n,2)
p be

given, and let Ω⊆Rn open and T >0 be given, and let f ∈Lm([0,T ]×Ω) with ‖f‖m≤Λ
and a matrix A∈L∞([0,T ]×Ω;Rn×n) with ‖A‖∞≤Λ be given, and let Ω̄⊂Ω compact
and 0<s<T be given.

There exists 0<γ<1, depending on p, Λ, Λ0, m, and n, such that any u∈
L∞((0,T )×Ω), ∇u∈Lp, satisfying

∂tu+Λ−1|∇u|p−div(A∇u)≤f (1.1)

in the sense of distributions, and satisfying

∂tu+Λ|∇u|p−Λ0m
−(D2u)≥−Λ (1.2)
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in the sense of viscosity, will have

u∈Cγ((s,T )× Ω̄)

with norm depending on ‖u‖∞, p, Λ, Λ0, m, n, s, and the distance between Ω̄ and
Rn \Ω.

Here m− is a function that returns the lowest eigenvalue of a symmetric matrix, or 0
if all of the eigenvalues are positive. For a function to solve Inequality (1.2) in the sense
of viscosity means, following the definition of Barles [2], that the lower-semicontinuous
envelope of that function is a viscosity supersolution of

∂tu+Λ |∇u|p−Λ0m
−(D2u) =−Λ.

Hamilton–Jacobi equations of this general form, with a viscosity term and polyno-
mial growth in the gradient, were studied by Lasry and Lions [11] in 1989, in connection
with stochastic control problems. For the case p<2, this first-order-term can be viewed
as a perturbation of a simple heat equation, and indeed solutions will be regular so long
as the viscosity term is uniformly parabolic. However, in the superquadratic case p>2,
it is the first order term which dominates at small scales, so standard parabolic theory
does not apply.

Schwab [13] studied homogenization problems for Hamilton–Jacobi equations with
superquadratic growth, which required him to prove that the regularity of solutions
to these equations is independent of the regularity of the Hamiltonian. His result still
required, however, that the Hamiltonian be convex in Du. It was Barles [1] and Dol-
cetta, Leoni, and Porretta [9] who noticed that convexity was unnecessary in the time-
independent case, and Cardaliaguet ( [3–5]) for the time-dependent case.

In the case that f is bounded, Cardaliaguet and Silvestre ( [5], Theorem 1.2) showed
Hölder continuity, using a second order term m+(D2u) instead of div(A∇u) in (1.1).
In the case that f is not assumed bounded, they could only show Hölder regularity
with second order term tr(AD2u), A∈C1. Our result requires no regularity on A,
at the expense of requiring that ∇u∈Lp and u solve Inequality (1.1) in the sense of
distribution. The motivation for considering f unbounded is from Lasry and Lions [12].

Most of the aforementioned results are proven by constructing super- and subsolu-
tions. In [6], Hölder estimates are obtained, with f bounded and no second order term,
using a variation of De Giorgi’s method. The present work is a continuation of that
project.

The proof will proceed mostly along the same lines as De Giorgi [8] and [6]. In the
classical De Giorgi proof, in order to prove Hölder continuity one merely shows that if the
function u is “mostly negative” in some range of time, then the upper bound is improved
in a later range of time. If, alternatively, the function is not “mostly negative,” it must
be “mostly positive” and hence one can apply the original argument to −u, improving
the lower bound on u in the same later range of time. Either way, the L∞-bound of u
is improved in the later time range.

In the sequel, the function −u does not satisfy the same Inequality (1.1) as u.
However, time-reversed −u does satisfy Inequality (1.1) with A replaced by −A, since
time reversal creates an extra minus sign on the ∂t term. Thus unlike the classical De
Giorgi proof, while the upper bound is improved in a later time range, the lower bound
on u is improved in an earlier time range, because time was reversed. Note that while
replacing A by −A should ostensibly cause great difficulty, the second order term is
here a perturbation, and the first order term is the driver of regularization, so we can
handle negative viscosities so long as the solution is known to exist and to be bounded.
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Next we must use the comparison principle in a small but crucial argument. Based
on Inequality (1.2), a subsolution is constructed to show that a lower bound improve-
ment in the early time range implies a smaller-but-still-positive improvement in the
later time range. This is referred to as “flowing the improvement forward in time”.

The key ingredient in improving the upper bound is an energy inequality. Because
of the second order term, we must multiply (1.1) by u+ to obtain the energy inequality
(then we integrate by parts, and turn the second order term into a |∇u|2 term). But
the viscosity is a perturbation, and the true driver of the proof is the first order term.
Multiplying the first order term by u+ yields u+|∇u+|p, which is difficult because u+

acts like a coefficient which is not bounded below. Luckily, our goal is to bound u, and
the difficulties only occur when u+ is small.

Section 2 derives an energy inequality, which quantifies the ellipticity of our equa-
tion. Sections 3 and 4 use the energy inequalities to prove De Giorgi’s two lemmas.
Section 5 demonstrates how to flow the improvement forward in time, correcting for the
necessary time reversal. Finally, in Section 6 we combine these lemmas to prove Hölder
continuity. A reader unfamiliar with De Giorgi-style proofs might want to begin with
Section 6, lest the former sections seem unmotivated.

Instead of proving continuity directly for u, it is preferable to consider

ū :=u+Λt, f̄ :=f+Λ

which satisfies the inequality

∂tū+Λ|∇ū|p−Λ0m
−(D2ū)≥0. (1.3)

Note also that, by scaling our solution appropriately, we can assume that Λ0 is
arbitrarily small.

Throughout this article, C will indicate a constant which varies from line to line.
No two instances of the symbol should be assumed related to each other.

2. The energy inequalities
We begin by deriving the Energy Inequalities, which play an analogous role to the

Cacciopoli inequality in De Giorgi’s original paper. These inequalities serve to quantify
the coercivity of the PDE in question. We actually consider an infinite family of Energy
Inequalities, corresponding to different entropies, indexed by the parameter b. These
inequalities must be valid even for non-positive matrices A.

The lemma below claims three different forms for the Energy Inequality. The first
form will be used to compare distinct truncations of a solution in Section 3. The second
and third forms are only valid for large values of b, the former being used in Section 3
and the latter being used in Section 4. Notice that the gradient of u appears in the
right-hand side of the first form, but not of the second or third forms.

Lemma 2.1 (Energy Inequality). Given u verifying Inequality (1.1), with
‖A‖∞ ,‖f‖m≤Λ, on some domain [S,0]×Ω, given constants b, c and S<T <0, and
given φ a smooth non-negative function constant in time and compactly supported in Ω,
and defining u∗= (u−c)+, then u∗ satisfies the inequality

sup
t∈[T,0]

∫
φ2ub+1

∗ (t)+

∫∫ 0

T

φ2ub∗ |∇u∗|
p

≤CS,T,φ

[∫∫ 0

S

(ub+1
∗ +ub−1

∗ |∇u∗|2)χ{φ}+

(∫∫ 0

S

ubm
∗

∗ χ{φ}

) 1
m∗
]
. (2.1)
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Moreover, if b>σ :=
(

1− 2
p

)−1

, then

sup
t∈[T,0]

∫
φ2ub+1

∗ (t)+

∫∫ 0

T

φ2ub∗ |∇u∗|
p

≤CS,T,φ

[∫∫ 0

S

(ub+1
∗ +ub−σ∗ )χ{φ}+

(∫∫ 0

S

ubm
∗

∗ χ{φ}

) 1
m∗
]
. (2.2)

If b>σ but φ is not necessarily constant in time, then still we have

〈∂t(ub+1
∗ ),φ2〉[S,0]×Ω +

∫∫ 0

S

φ2ub∗ |∇u∗|
p

≤C(Λ,b)

(∫∫ 0

S

φ2ub∗f+

∫∫ 0

S

ub+1
∗ |∇φ|2 +

∫∫ 0

S

φ2ub−σ∗

)
. (2.3)

The integrals without limits are over all of Ω, χ{φ} means the indicator function of
the support of φ, m∗ means the Hölder conjugate of m, and

CS,T,φ :=C(Λ,b)

(
1+

1

T −S

)(
‖φ‖2∞+‖∇φ‖2∞

)
.

Proof. Formally, we want to integrate Inequality (1.1) against the test function
φ2ub∗. Because our solution u is by assumption in Lp(W 1,p), the distributions |∇u|p and
div(A∇u) both have enough regularity for this integration to make sense. To justify
our calculations on ∂tu, one can simply use the test function τ ∗(φ2(τ ∗u∗)b) for τ some
approximation to the identity and ∗ meaning convolution in time and space, though for
reasons of clarity we drop the mollifiers in the formal calculations below.

Multiply Inequality (1.1) by φ2ub∗, then integrate over all of space Ω:∫
φ2ub∗∂tu+Λ−1

∫
φ2ub∗ |∇u|

p
+

∫
(∇(φ2ub∗))A(∇u)≤

∫
φ2ub∗f.

Notice that Du∗=χ{u∗>0}Du for any first order differential operator D, so in the above
expression we may replace every instance of u with u∗. By the product rule, (b+
1)ub∗∂tu∗=∂t(u

b+1
∗ ). Also, we can use the product rule and Young’s Inequality to bound

the A-term:

∇
(
φ2ub∗

)
A∇u∗= bφ2ub−1

∗ (∇u∗A∇u∗)+2φub∗(∇u∗A∇φ)

≤ bΛφ2ub−1
∗ |∇u∗|2 +2Λ

(
φu

b−1
2
∗ |∇u∗|

)(
u
b+1
2
∗ |∇φ|

)
≤ bΛφ2ub−1

∗ |∇u∗|2 +Λ
(
φu

b−1
2
∗ ∇u∗

)2

+Λ
(
u
b+1
2
∗ ∇φ

)2

= (b+1)Λφ2ub−1
∗ |∇u∗|2 +Λub+1

∗ |∇φ|2.

Putting all of these together, we arrive at

1

b+1

∫
φ2∂t(u

b+1
∗ )+Λ−1

∫
φ2ub∗ |∇u∗|

p

≤
∫
φ2ub∗f+Λ

∫
ub+1
∗ |∇φ|2 +(b+1)Λ

∫
φ2ub−1

∗ |∇u∗|2.
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If b>σ, then using Young’s Inequality with exponents p/2 and σ, and a small
constant η, we can break up the final term of the above inequality:

ub−1
∗ |∇u∗|2≤C(p)

((
ηu

2b
p
∗ |∇u∗|2

)p/2
+

(
1

η
u
b(1− 2

p )−1
∗

)σ)
≤C(p)

(
η
p
2 ub∗|∇u∗|p+η−σub−σ∗

)
.

By taking η sufficiently small (depending on p, b, Λ), the ub∗|∇u∗|p term on the right can
be absorbed by the same term with larger constant on the left. We use the shorthand

T (u∗,b) :=

{
ub−1
∗ |∇u∗|2 if b≤σ
ub−σ∗ if b>σ

and write∫
φ2∂t(u

b+1
∗ )+

∫
φ2ub∗ |∇u∗|

p≤C(Λ,b)

(∫
φ2ub∗f+

∫
ub+1
∗ |∇φ|2 +

∫
φ2T (u∗,b)

)
.

In the case that φ is time dependent, we can integrate the above in time to obtain
(2.3). From now on, we assume that ∂tφ= 0, and hence

∫
φ2∂t(u

b+1
∗ ) = d

dt

∫
φ2ub+1

∗ .
For any times s,t satisfying S≤s≤T ≤ t≤0, we can integrate the above inequality

over [s,t] (and apply Hölder’s to remove dependence on f):∫
φ2ub+1

∗ (t)+

∫∫ t

s

φ2ub∗ |∇u∗|
p

≤C(Λ,b)

(∫
φ2ub+1

∗ (s)+

(∫∫ t

s

(φ2ub∗)
m∗
) 1
m∗

+

∫∫ t

s

ub+1
∗ |∇φ|2 +

∫∫ t

s

φ2T (u∗,b)

)
.

Due to our choice of s,t, the above inequality implies that∫
φ2ub+1

∗ (t)+

∫∫ t

T

φ2ub∗ |∇u∗|
p

≤C(Λ,b)

(∫
φ2ub+1

∗ (s)+

(∫∫ 0

S

(φ2ub∗)
m∗
) 1
m∗

+

∫∫ 0

S

ub+1
∗ |∇φ|2 +

∫∫ 0

S

φ2T (u∗,b)

)
.

Since the right side is independent of t, we can take a supremum of the left side over
T ≤ t≤0. Add to this the inequality with t= 0 to obtain

sup
t∈[T,0]

∫
φ2ub+1

∗ (t)+

∫∫ 0

T

φ2ub∗ |∇u∗|
p

≤C(Λ,b)

(∫
φ2ub+1

∗ (s)+

(∫∫ 0

S

(φ2ub∗)
m∗
) 1
m∗

+

∫∫ 0

S

ub+1
∗ |∇φ|2 +

∫∫ 0

S

φ2T (u∗,b)

)
.

Lastly, since this inequality holds for all S≤s≤T , it also holds if we average the right-
hand side over all values of s in that range,

sup
t∈[T,0]

∫
φ2ub+1

∗ (t)+

∫∫ 0

T

φ2ub∗ |∇u∗|
p

≤C(Λ,b)

[
1

T−S

∫∫ T

S

φ2ub+1
∗ +

(∫∫ 0

S

(φ2ub∗)
m∗
) 1
m∗

+

∫∫ 0

S

ub+1
∗ |∇φ|2 +

∫∫ 0

S

φ2T (u∗,b)

]
.

From here the result follows naturally.
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3. De Giorgi’s first lemma
Now we present De Giorgi’s first lemma. If we define

Q2 := [−2,0]×B2, Q1 := [−1,0]×B1,

this lemma tells us that the supremum in Q1 of solutions to (1.1) can be controlled by
the measure of {u>0} in Q2.

Proposition 3.1 (De Giorgi’s First Lemma). There exists a constant δ0>0 depending
only on Λ, p, m, and the dimension such that, for any u satisfying Inequality (1.1) on
Q2 in the sense of distributions, the following implication holds:

If

u(t,x)≤1 ∀(t,x)∈Q2

and ∣∣{u>0}∩Q2

∣∣≤ δ0,
then

u(t,x)≤ 1

2
∀(t,x)∈Q1.

De Giorgi’s first lemma is proved by cutting off u at larger and larger values, and
showing that as the cutoff value tends to 1/2, some Lebesgue norm of the remainder
tends to zero.

Proof. (Proof of Theorem 3.1.) Let us specify the sequence of cutoffs. We’ll
consider

• heights Ck = 1
2−2−k−1 from C0 = 0 to C∞= 1

2 with Ck−Ck−1 = 2−k−1;

• functions uk = max(u−Ck,0) from u0 =u+ to u∞= (u− 1
2 )+;

• balls Bk of radius 1+2−k from B0 =B2 ={x : |x|<2} to B∞=B1 ={x : |x|<1};
• times Tk =−1−2−k from T0 =−2 to T∞=−1 with Tk−Tk−1 = 2−k;

• and smooth functions φk such that supp(φk) =Bk and φk�Bk+1≡1, with 0≤
φk≤1 and |∇φk|≤2k+2.

Define the “energy” of the kth level to be

Ek := sup
t∈[Tk+1,0]

∫
(φkuk)2(t)+

∫∫
k+1

φ2
kuk |∇uk|

p
,

where
∫∫
k

means
∫ 0

Tk

∫
Rn . First we will show via Sobolev’s inequality that this energy

term controls some L(1+β)q norm of φkuk. Then we will show via the Energy Inequality
that the same L(1+β)q norm controls this energy term.

Step 1: Controlling L(1+β)q using Ek
Before we can apply Sobolev’s inequality, we have to deal with the inhomogeneity

of the gradient term. We do this by “going up a level” from uk to uk+1.

Ek≥
∫∫

k+1

φ2
kuk |∇uk|

p
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≥
∫∫

k+1

φ2
k

[
2−(k+2)χ{uk≥2−k−2}

]
|∇uk|p

= 2−k−2

∫∫
k+1

φ2
kχ{uk+1≥0} |∇uk|

p

= 2−k−2

∫∫
k+1

φ2
k |∇uk+1|p

≥2−k−2

∫∫
k+1

χ{Bk+1} |∇uk+1|p

=C−k
∫ 0

Tk+1

‖∇uk+1‖pLp(Bk+1)

=C−k ‖∇uk+1‖pLp([Tk+1,0];Lp(Bk+1))

We introduce now a parameter β∈ (0,1], satisfying

0<
1

n
− β

2
<

1

p
, n≥2

or β= 1 if n= 1. We are going to apply Sobolev’s Inequality to bound the Lp
′

norm of
u1+β
k by some Lebesgue norm of ∇u1+β

k .
Since ∥∥∥uβk+1

∥∥∥2/β

L∞([Tk+1,0];L
2
β (Bk+1))

= sup
t∈[Tk+1,0]

‖uk+1(t)‖2L2(Bk+1)

≤ sup
t∈[Tk+1,0]

‖φkuk(t)‖2L2(Bk+1)

≤Ek,

we know by elementary properties of Lebesgue spaces that∫ 0

Tk+1

∥∥∥∇uβ+1
k+1

∥∥∥p
L

2p
2+pβ (Bk+1)

=
∥∥∥uβk+1∇uk+1

∥∥∥p
Lp([Tk+1,0];L

2p
2+pβ (Bk+1))

≤
∥∥∥uβk+1

∥∥∥p
L∞([Tk+1,0];L2/β(Bk+1))

‖∇uk+1‖pLp([Tk+1,0];Lp(Bk+1))

≤
(
Eβ/2k

)p
CkEk =CkE1+ pβ

2

k .

(3.1)

2p
2+pβ . If n>1, then let 1

p′ = 2+pβ
2p −

1
n = β

2 + 1
p−

1
n . If n= 1, then take p′=p (which

renders some of the following calculations trivial). Sobolev Embedding yields∥∥∥u1+β
k+1

∥∥∥
Lp′ (Bk+1)

≤
∥∥∥∥u1+β

k+1−
∫
−
Bk+1

u1+β
k+1

∥∥∥∥
Lp′ (Bk+1)

+ |Bk+1|
1
p′−1

∫
Bk+1

u1+β
k+1

≤C
(∥∥∥∇u1+β

k+1

∥∥∥
L

2p
2+pβ (Bk+1)

+‖uk+1‖1+β
L2(Bk+1)

)
.

Remember that
∫
−
E

:= 1
|E|
∫
E

, and 1+β≤2 so L1+β⊆L2.

With the above calculation and (3.1), we can estimate∫ 0

Tk+1

∥∥∥u1+β
k+1

∥∥∥p
Lp′(Bk+1)

≤C
∫ 0

Tk+1

(∥∥∥∇u1+β
k+1

∥∥∥
L

2p
2+pβ (Bk+1)

+‖uk+1‖1+β
L2(Bk+1)

)p
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≤C

(∫ 0

Tk+1

∥∥∥∇u1+β
k+1

∥∥∥p
L

2p
2+pβ (Bk+1)

+Tk+1 sup
t∈[Tk+1,0]

‖uk+1(t)‖p(1+β)

L2(Bk+1)

)

≤C
(
CkE1+ pβ

2

k +Ep
1+β
2

k

)
≤CkE1+ pβ

2

k .

This last estimate holds as long as Ek is less than one.
Riesz–Thorin interpolation. Since ∞> 2

1+β but p≤p′, there must be some number

q such that Riesz–Thorin would allow us to control the Lq(Lq) norm. Specifically,
We wish to apply the Riesz–Thorin theorem to interpolate between the Lp(Lp

′
) and

L∞(L
2

1+β ) norms of u1+β
k+1 . First define

q=p+

(
1− p

p′

)
2

1+β
. (3.2)

Because p′≥p and hence q≥p, we can let θ= p
q ∈ [0,1] and interpolate to obtain

(1−θ) 1

∞
+θ

1

p
= 0+

1

q
=

1

q

and

(1−θ) 1+β

2
+θ

1

p′
=

(
q−p
q

)
1+β

2
+

1

q

(
p

p′

)
=

1

q

(
1− p

p′

)(
2

1+β

)
1+β

2
+

(
p

p′

)
1

q
.

=
1

q
.

Therefore the Riesz–Thorin interpolation theorem yields

∥∥∥u1+β
k+1

∥∥∥
Lq([Tk+1,0]×Bk+1)

≤C

[∥∥∥u1+β
k+1

∥∥∥
L∞

(
[Tk+1,0];L

2
1+β (Bk+1)

)
]1−θ

×
[∥∥∥u1+β

k+1

∥∥∥
Lp([Tk+1,0];Lp′ (Bk+1))

]θ

≤C

[
sup

t∈[Tk+1,0]

‖φkuk‖1+β
L2(Bk)

]1− pq [(
CkE1+ pβ

2

k

)1/p
] p
q

≤Ck
[
E

1
2 + β

2

k

]1− pq
E

1
q+ β

2 ·
p
q

k

=CkE
1
q+ 1

2 (1+β− pq )
k .

Thus finally,∫∫
k+1

|φk+1uk+1|(1+β)q≤
∫∫

k+1

χ{Bk+1}(u
1+β
k+1)q≤CkE1+

(1+β)q−p
2

k . (3.3)

Step 2: A recursive relation for the sequence Ek
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Recall from the definition (3.2) of q that (1+β)q= 2+(1+β)p−2 p
p′ . If n>1, then

by the definition of p′ we have that 2 p
p′ = 2+pβ−2 pn . If n= 1, then p′=p and β= 1.

Therefore,

(1+β)q=p+2
p

n
, n>1

(1+β)q= 2p, n= 1.
(3.4)

The Energy Inequality (2.1), applied to uk with b= 1, φk, and times Tk+1 and Tk,
tells us that

Ek≤C2k+2

(∫∫
k

(u2
k+ |∇uk|2)χ{Bk}+

(∫∫
k

um
∗

k χ{Bk}

)1/m∗
)
. (3.5)

Now that we have (3.3), we are ready to bound the three terms on this inequality’s
right-hand side.

For the first and third terms on the right-hand side, we can use a well known trick
of De Giorgi [8]. For any j≤ (1+β)q we can apply Hölder’s inequality followed by
Chebyshev’s inequality to obtain∫∫

k

ujkχ{Bk}=

∫∫
k

(φk−1uk)jχ{Bk∩{uk−1>2−(k+1)}}

≤
(∫∫

k

(φk−1uk)(1+β)q

)j/[(1+β)q] ∣∣∣{φk−1uk−1>2−(k+1)}
∣∣∣1−j/[(1+β)q]

≤
(∫∫

k−1

(φk−1uk−1)(1+β)q

)j/[(1+β)q]

×
∣∣∣{(φk−1uk−1)(1+β)q>2−(k+1)(1+β)q}

∣∣∣1−j/[(1+β)q]

≤
(∫∫

k−1

(φk−1uk−1)(1+β)q

)j/[(1+β)q]

×
(

2(k+1)(1+β)q

∫∫
k−1

(φk−1uk−1)(1+β)q

)1−j/[(1+β)q]

≤2(k+1)((1+β)q−j)
∫∫

k−1

(φk−1uk−1)(1+β)q

≤CkE1+
(1+β)q−p

2

k−2 .

We know from (3.4) that 2< (1+β)q and m∗≤1+ p
n ≤ (1+β)q, so setting j= 2 and

j=m∗ gives us bounds on the first and third terms of (3.5), respectively.
For the second term of (3.5), calculate∫∫

k

|∇uk|2χ{Bk}≤
∫∫

k

φ
4/p
k−1χ{uk>0}|∇uk−1|2χ{φkuk>0}

≤
(∫∫

k

φ2
k−1χ{uk−1>2−(k+1)}|∇uk−1|p

)2/p ∣∣∣{φk−1uk−1>2−(k+1)}
∣∣∣1−2/p

≤
(

2k+1

∫∫
k

φ2
k−1uk−1|∇uk−1|p

)2/p
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×
∣∣∣{(φk−1uk−1)(1+β)q>2−(k+1)(1+β)q}

∣∣∣1−2/p

≤
(
2k+1Ek−1

)2/p(
2(k+1)(1+β)q

∫∫
k−1

(φk−1uk−1)(1+β)q

)1−2/p

≤
(
2k+1Ek−2

)2/p(
2(k+1)(1+β)qCk−2E1+

(1+β)q−p
2

k−2

)1−2/p

≤CkE1+(1− 2
p ) (1+β)q−p

2

k−2 .

The second-to-last inequality used (3.3), and the fact that Ek−1≤Ek−2.

Finally we have the recursive relation

Ek≤Ck
(
E1+

(1+β)q−p
2

k−2 +E1+(1− 2
p ) (1+β)q−p

2

k−2 +E(1+
(1+β)q−p

2 )( 1
m∗ )

k−2

)
. (3.6)

From (3.4) and p>2, one sees that the first two of these exponents are strictly greater
than 1. From (3.4) and m∗<1+ p

n , one sees that the third exponent is strictly greater
than 1.

Because we can assume wlog that all Ek are small, this simplifies for our purposes
to

Ek≤CkE1+ε
k−2.

Therefore the sequence E2n+1 is bounded by a sequence an+1 = cna1+ε
n , a0 =E1.

Because the exponent is greater than one, the bounding sequence will tend to zero as
long as a0 is sufficiently small.

But since u≤1 by assumption, we can calculate, for any b>σ,

E1 = sup
[T1,0]

∫
φ2

1u
2
1 +

∫∫
1

φ2
1u1 |∇u1|p

= 22(b−1)

(
sup
[T1,0]

∫
φ2

1u
2
1

(
2−2χ{u0>2−2}

)b−1
+

∫∫
1

φ2
1u1

(
2−2χ{u0>2−2}

)b−1 |∇u1|p
)

≤22(b−1)

(
sup
[T1,0]

∫
φ2

1u
2
1u
b−1
0 +

∫∫
1

φ2
1u1u

b−1
0 |∇u1|p

)

≤22(b−1)

(
sup
[T1,0]

∫
φ2

0u
b+1
0 +

∫∫
1

φ2
0u
b
0 |∇u1|p

)

≤C

(∫∫
0

(ub+1
0 +ub−σ0 )χ{B0}+

(∫∫
0

ubm
∗

0 χ{B0}

) 1
m∗
)

≤C
(
|{u>0}∩Q2|+ |{u>0}∩Q2|+ |{u>0}∩Q2|1/m

∗
)
.

Therefore there exists a δ0>0 sufficiently small that, if
∣∣{u>0}∩Q2

∣∣≤ δ0, then E1 will
be small enough that Ek→0 as k→∞.

If Ek→0, then

‖uk‖Lq([−1,0]×B1)≤‖φkuk‖Lq([Tk,0]×Bk)≤C
kE

1
q+ q−p

2q

k →0.
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By the monotone convergence theorem, we conclude that ‖(u−1/2)+‖Lq([−1,0]×B1) = 0
and so

|{u> 1

2
}∩ [−1,0]×B1|= 0.

4. De Giorgi’s second lemma
The second De Giorgi lemma is a quantitative version of the statement “solutions

to our PDE cannot have jump discontinuities”.
Define the sets

Q3 = [−4,0]×B3, Q2 = [−4,0]×B2,

and remember that

Q2 = [−2,0]×B2.

According to the next theorem, if a solution to (1.1) is negative in Q2 on a set of large
measure, and ≥1 in Q2 on a set of large measure, and it is bounded on all of Q3, then
that solution must be strictly between 0 and 1 on a set of large measure in Q2.

The proof is by compactness. Because the solution is bounded on Q3, we can use
the Energy nequality to bound its derivatives on Q2. By a theorem of Aubin and Lions,
which is an instance of the general principle “bounded derivatives imply compactness,”
we can conclude that the family of bounded solutions is precompact. Therefore, if the
interstitial measure is not bounded below, there must be a limit function which would
have both bounded derivatives and a jump discontinuity, a contradiction.

Because of the coefficient on |∇u| in the Energy Inequality, the derivatives are not
well controlled when u is near zero. This is solved by considering instead u raised to
some power, whose derivatives are trivially controlled when u is near zero, and whose
convergence implies the convergence of u.

Proposition 4.1 (De Giorgi’s Second Lemma). There exists a positive constant µ0

depending on Λ, p, m, δ0, and the dimension, such that for any u satisfying Inequal-
ity (1.1) in the sense of distributions, with

u(t,x)≤2 ∀(t,x)∈Q3

and

|{u≤0}∩Q2|≥
|Q2|

2
,

and, for δ0 the quantity divined in Proposition 3.1,∣∣{u≥1}∩Q2

∣∣≥ δ0,
it must be the case that

|{0<u<1}∩Q2|≥µ0.

Proof. Suppose the proposition is false. Then we can consider a sequence ui of
functions which satisfy all the hypotheses of this proposition but for which

|{0<ui<1}∩Q2|≤
1

i
.
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Rather than seek a limit of the sequence ui, we will actually seek a limit of (ui)
σ+2
+ ,

where 1
σ + 2

p = 1 consistent with the notation in Lemma 2.1. First we need to bound the

space and time derivatives of (ui)
σ+2
+ uniformly in i.

Step 1: Bounding the derivatives
To bound the spatial derivatives, we use the Energy Inequality (2.2) with b= (σ+

1)p, and choose a smooth cutoff function φ satisfying

φ :B3→ [0,1], φ≥0, supp(φ) compact, ψ(x) = 1 ∀x∈B2.

By the Energy Inequality, we have∫∫
B2×[−4,0]

|∇(ui)
σ+2
+ |p≤ (σ+2)p

∫∫ 0

−4

ψ(ui)
p(σ+1)
+ |∇(ui)+|p

≤C
∫∫ 0

−4

(
(ui)

p(σ+1)−σ
+ +(ui)

p(σ+1)+1
+

)
χ{B3}

+C

(∫∫ 0

−4

(ui)
m∗p(σ+1)
+ χ{B3}

)1/m∗

≤C(Λ,p,n,m).

Therefore the sequence ∇(ui)
σ+2
+ is bounded in Lp([−4,0];Lp(B2)) uniformly in i.

Bounding the time derivative is much more involved. We will show that ∂t(ui)
σ+2
+

are uniformly bounded in M([−4,0];W−1,∞), where M means the dual space to L∞

and W−1,∞ is the dual of C∞0 (B2)∩W 1,∞(B2).
Using the Energy Inequality (2.3) with b=σ+1 and any test function ϕ :Q3→R

which is smooth and compactly supported in space (but not necessarily compactly
supported in time), together with the fact that ‖f‖1≤‖f‖m≤Λ and ui≤2, gives us the
bound

〈∂t(ui)σ+2
+ ,ϕ2〉[−4,0]×B3

≤C(p,Λ)

(∫∫
ϕ2(ui)

σ+1
+ f+

∫∫
ϕ2(ui)+ +

∫∫
(ui)

σ+2
+ |∇ϕ|2

)
≤C(p,Λ)

(
‖ϕ‖2L∞(Q3) +‖∇ϕ‖2L∞(Q3)

)
.

We must find a similar bound on 〈∂t(ui)σ+1
+ ,ψ〉 when ψ is not necessarily the square

of a smooth function. Our strategy is to decompose ψ as a sum of a perfect square and
a function independent of time. To this end, define

√
φ a specific smooth function (of

space only) supported in B3 and identically 1 on B2. Then φ :=
√
φ

2
will also be smooth,

supported on B3, and identically 1 on B2.
Consider any ψ∈C∞0 (Q3), and set K=‖ψ‖∞+‖∇ψ‖∞. Here and in the sequel,

‖·‖∞ means ‖·‖L∞(Q3). Note that ψ+Kφ is non-negative, so we can define ϕ by the
relation

ψ=ϕ2−Kφ.

Estimate∫∫
Q2

ψ∂t(ui)
σ+2
+ =−K

∫∫
Q3

φ∂t(ui)
σ+2
+ +

∫∫
Q3

ϕ2∂t(ui)
σ+2
+

≤K
∣∣∣∣∫ 0

−4

d

dt

∫
φ(ui)

σ+2
+

∣∣∣∣+C
(
‖ϕ‖2∞+‖∇ϕ‖2∞

)
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≤K
[∫

φ(ui)
σ+2
+ (0,·)+

∫
φ(ui)

σ+2
+ (−4, ·)

]
+C

(
‖ψ+Kφ‖∞+

∥∥∥∥(∇√ψ+Kφ
)2
∥∥∥∥
∞

)
.

By the chain rule, this last term becomes

2
∥∥∥(∇

√
ψ+Kφ)2

∥∥∥
∞

=

∥∥∥∥ |∇ψ+K∇φ|2

ψ+Kφ

∥∥∥∥
∞

= sup

(∥∥∥∥ |∇ψ+K∇φ|2

ψ+Kφ

∥∥∥∥
L∞(Q2)

,

∥∥∥∥ |∇ψ+K∇φ|2

ψ+Kφ

∥∥∥∥
L∞(Q3\Q2)

)

= sup

(∥∥∥∥ |∇ψ|2ψ+K

∥∥∥∥
L∞(Q2)

,

∥∥∥∥ |K∇φ|2Kφ

∥∥∥∥
L∞(Q3\Q2)

)

≤ sup

(
1

‖∇ψ‖∞

∥∥|∇ψ|2∥∥∞ , K2

K

∥∥∥∇√φ∥∥∥2

∞

)
≤CφK.

In the above calculation, remember that φ is constant on Q2 and ψ= 0 outside Q2, that
ψ+K≥‖∇ψ‖∞ by the definition of K, and that

√
φ is smooth by assumption.

We see now that

〈ψ,∂t(ui)σ+2
+ 〉≤C(Λ,p,n,φ)(‖ψ‖∞+‖∇ψ‖∞)

and, by duality, ∂t(ui)
σ+2
+ is bounded in M([−4,0];W−1,∞(B2)).

In order to apply our compactness lemma, we need (ui)
σ+2
+ to be absolutely con-

tinuous in time (i.e. we want L1, not M). Therefore consider a family of mollifiers
ηδ tending to a dirac measure as δ→0. Convolving with respect to time, we obtain
smooth-in-time functions.

ηδ ∗(ui)
σ+2
+ ∈Lp([−4,0];W 1,p(B2)), ∂t

[
ηδ ∗(ui)

σ+2
+

]
∈L1([−4,0];W−1,∞(B2))

are uniformly bounded independent of δ<1.
The Aubin–Lions Lemma indicates that the family ηδ ∗(ui)

σ+2
+ is compact in

L1([−4,0]×B2). Choose a sequence δi→0 such that∥∥(ui)
σ+2
+ −ηδi ∗(ui)

σ+2
+

∥∥
L1 ≤

1

i
.

By compactness, the sequence ηδi ∗(ui)
σ+2
+ has a subsequential limit v, and∥∥(ui)

σ+2
+ −v

∥∥
1
≤
∥∥(ui)

σ+2
+ −ηδi ∗(ui)

σ+2
+

∥∥
1

+
∥∥ηδi ∗(ui)

σ+2
+ −v

∥∥
1
→0.

That is to say, (ui)
σ+2
+ →v in L1(Q2).

Step 2: Showing that the limit engenders a contradiction
By a measure-theoretic argument,

|{v≤0}∩Q2|≥
|Q2|

2
, (4.1)

|{v≥1}∩Q2|≥ δ0, and (4.2)
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|{0<v<1}∩Q2|= 0.

The map f 7→‖∇f‖Lp(Q2) is lower-semi-continuous on L1(Q2), and hence∫ 0

−4

‖∇v‖pLp(B2) dt<∞.

This implies that for almost every t∈ [−4,0], ‖∇v‖p is finite; and for such t, v must
have no spatial jump discontinuities. In other words, there are three kinds of t∈ [−4,0]:
those at which v is identically 0, those at which v(t,x)≥1 ∀x∈B2, and the exceptions
which have measure zero in [−4,0].

If we define a new smooth cutoff φ on B2, and set

H(t) =
∥∥φ2(·)v(t, ·)

∥∥
L1(B2)

,

then for a.e. t, either H(t) = 0 or H(t)≥
∥∥φ2

∥∥
1
.

On the other hand, we know that H cannot have (certain kinds of) jump disconti-
nuities. Because (ui)

σ+2
+ →v in L1(Q2), we know that

Hi≡
∥∥φ2(ui)

σ+2
+

∥∥
1
−→H in L1([−4,0]).

And by the Energy Inequality (2.3), with cutoff φ and b=σ+1, the derivative of each
Hi is bounded uniformly in i: notice that ∂tφ= 0 and so for any time interval [s,t] we
have

Hi(t)−Hi(s) =

∫ t

s

d

dt

∫
φ2(ui)

σ+2
+

≤C(p,Λ,φ)

∫∫ t

s

(
(ui)

σ+1
+ +(ui)

σ+2
+ +(ui)

1
+

)
χ{supp(φ)}

≤ [s− t]C(p,Λ,φ).

Therefore (again by lower-semi-continuity), d
dtH is bounded above.

This means in particular that if H(s) = 0, then H(t) = 0 ∀t≥s. And we know by
(4.1) that v= 0 on a set of large measure. In fact, necessarily H(t) = 0 ∀t∈ (−2,0]. This
contradicts (4.2), and so the proposition is proven.

5. Transporting improvement forwards in time
Using the propositions proven thus far, one can show, under the appropriate hy-

potheses, that if a solution to Inequality (1.1) is ≥−2 in Q3, then it is in fact ≥−2+ε in
[−4,−3]×Bε. This is not quite what we set out to prove; we want solutions to become
regular after some time elapses, and hence the lower bound must be somewhere in the
region [−1,0]×B1.

To bridge the gap, we use a barrier function to “flow” the improvement forward in
time. Our solution will still be ≥−2+ε′ on a ball of radius ε′ at the end of the time
interval, and though ε′ becomes smaller as time elapses, it never vanishes entirely.

This is the first time we use (1.3). This inequality is true only in a viscosity sense,
so instead of energy methods, we must construct a barrier function which constitutes a
subsolution to

∂tu+Λ|∇u|p−Λ0m
−(D2u) = 0.
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Proposition 5.1. There exists a constant 0<K0<1 depending only on p, Λ, and n
such that the following holds: Let 0<λ≤K0 be a constant and u a viscosity supersolution
to Inequality (1.3) on the interior of [0,T ]×B2 with T <4 and Λ0≤λ2K0. Suppose that

u≥−2 on [0,T ]×B2,

u≥−2+λ2 on 0×Bλ.

Then

u≥−2+
λ2

2
on [0,T ]×Bλ/2.

Proof.

We define the barrier function

σ(t,x) :=−2+λ2β

(
|x|
λ

)
− λ

2

8
t,

where β :R+→R is a smooth function supported on [0,1] and identically 1 on [0,1/2].
If we can show that σ is a subsolution to (1.3), and that it is less than u on the

parabolic boundary 0×B2∪ [0,T ]×∂B2, then the standard theory of comparison princi-
ples tells us that u≥σ on the whole interior of [0,T ]×B2. See [7] for the elliptic version
of the comparison principle, and [10] for a treatment more specific to the parabolic case.

In particular, for (t,x)∈ [0,T ]×Bλ/2 we have

σ(t,x) =−2+λ2(1− t/8)≥−2+λ2(1−T/8)≥−2+λ2/2.

Thus showing u≥σ will prove the proposition.

Step 1: Barrier is below u on the boundary
At t= 0,

σ(0,x)≤−2+λ2≤u ∀x∈Bλ,

σ(0,x)≤−2≤u ∀x∈B2 \Bλ;

and on the spatial boundary |x|= 2,

σ(t,x) =−2− λ
2

8
t≤−2≤u ∀t∈ [0,T ].

Thus on the parabolic boundary of [0,T ]×B2, we have σ≤u.

Step 2: Barrier is a subsolution
By construction

∂tσ(t,x) =−λ2/8

and

|∇σ|(t,x) =λβ′
(
|x|
λ

)
.
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To compute D2σ, notice that σ is radially symmetric in space, and so it suffices to
compute the Hessian at the point x= (|x|,0,. ..,0). At this point, one can compute
directly that

∂11σ(t,x) =
d2

dh2

∣∣∣∣
h=0

λ2β

(
|x|+h

λ

)
=β′′

(
|x|
λ

)
and for i 6= 0

∂iiσ(t,x) =
d2

dh2

∣∣∣∣
h=0

λ2β

(√
|x|2 +h2

λ

)

=
λ

|x|
β′
(
|x|
λ

)
.

For any i 6= j, assume without loss of generality that i 6= 1. Then [∂iσ](x) = 0 for any x
in the hyperplane xi= 0, by radial symmetry. Therefore ∂j [∂iσ] = 0 at (|x|,0,. ..,0).

We conclude that the matrix D2σ(t,x) is a diagonal matrix with eigenvalues

λ

|x|
β′
(
|x|
λ

)
and β′′

(
|x|
λ

)
,

and by symmetry it should have the same eigenvalues at generic x.

Therefore, to see if σ is a subsolution, calculate

∂tσ+Λ|∇σ|p−Λ0m
−(D2σ) =−λ

2

8
+Λλp(β′)p−Λ0 min

(
β′′,

λ

|x|
β′,0

)
≤ −λ

2

8
+Λλp‖β′‖p∞+Λ0‖β′′‖∞+Λ0

λ

1/2
‖β′‖∞

≤ −λ
2

8
+Λλp‖β′‖p∞+λ2K0‖β′′‖∞+2λ3K0‖β′‖∞

=λ2

(
Λλp−2‖β′‖p∞+K0‖β′′‖∞+2λK0‖β′‖∞−

1

8

)
≤λ2

(
ΛKp−2

0 ‖β′‖p∞+K0‖β′′‖∞+K2
0

n−1

1/2
‖β′‖∞−

1

8

)
.

This last quantity is negative provided K0 sufficiently small, depending on Λ, p, the
dimension, and the specific choice of β.

6. Proof of the main theorem

Having completed the core of the proof, we now come to the final section. The pieces
are all present, and we need only put them together. This section contains three lemmas
before the proof. The first two (Lemmas 6.1 and 6.2) tell us which scalings constitute
symmetries of our PDE. Lemma 6.3, the Oscillation Lemma, applies Propositions 3.1
and 4.1 iteratively in order to control the oscillation of solutions to our PDE. Finally
the proof of the Main Theorem will show how the Oscillation Lemma is equivalent to
interior Hölder continuity.
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The proof of the Oscillation Lemma is slightly non-standard. The rest is technical,
with no new ideas.
Lemma 6.1. If u satisfies the two equations (1.1) and (1.3) on a cylinder [T0,0]×Ω,
and α,β>0 are any two real numbers satisfying

β≤α−1 β≤α−
p−1
p−2 , β≤α−

p(m−1)+1
p(m−1)−n ,

then the modified function

v(t,x) :=αu(αp−1βpt,βx)

satisfies the equations

∂tv+Λ−1 |∇v|p−div(A′∇v)≤f ′

∂tv+Λ |∇v|p−Λ′0m
−(D2v)≥0

on
[

T0

αp−1βp ,0
]
× 1
βΩ, with Λ′0 =αp−1βp−2Λ0≤Λ0, ‖A′‖∞≤‖A‖∞ and ‖f ′‖m≤‖f‖m.

Proof. One must take

f ′(t,x) :=αpβpf(αp−1βpt,βx),

A′(t,x) :=αp−1βp−2A(αp−1βpt,βx).

Applying our differential operator to v, we obtain

∂tv+Λ−1 |∇v|p−div(A′∇v) = (αβ)p∂tu+(αβ)pΛ−1 |∇u|p−(αβ)pdiv(A∇u)

= (αβ)p
[
∂tu+Λ−1 |∇u|p−div(A∇u)

]
≤f ′

For the other inequality, similarly,

∂tv+Λ |∇v|p−Λ0m
−(D2v) = (αβ)p∂tu+(αβ)pΛ |∇u|p−αβ2Λ0m

−(D2u)

= (αβ)p
[
∂tu+Λ |∇u|p−Λm−(D2u)

]
≥0.

That Λ′0≤Λ0 and ‖A′‖∞≤‖A‖∞ follows immediately from our assumptions on α,
β. For ‖f ′‖m, we notice that p− p+n

m is necessarily positive, and calculate∥∥αpβpf(αp−1βpt,βx)
∥∥
m

=αpβp(αp−1βpβn)−1/m‖f‖m
=αp−

p−1
m βp−

p+n
m ‖f‖m

≤αp−
p−1
m

(
α−

p(m−1)+1
p(m−1)−n

)p− p+nm
‖f‖m=‖f‖m .

Lemma 6.2. If u satisfies Inequality (1.1) on a cylinder [T0,0]×Ω, there exist con-
stants e1∈ (2,p) and e2<0 dependent on n, m, p such that, for any two real numbers
0<β≤1 and 1≤α≤βe2 , the modified function

v(t,x) :=αu(βe1t,βx)

also satisfies Inequality (1.1) on [T0,0]×Ω with parameters ‖f ′‖m≤‖f‖m, ‖A′‖∞≤
‖A‖∞ and the same Λ.
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Proof. Since n
m−1 <p and p>2, we can choose a constant e1∈ ( n

m−1 ,p) such that
e1>2. Let

e2 := max

(
−p−e1

p−1
,
n

m
−e1

m−1

m

)
so that

αp−1βp−e1 =

(
α

(
1

β

)− p−e1p−1

)p−1

≤
(
α

(
1

β

)e2)p−1

≤1

and αβe1
m−1
m − n

m ≤1.
Define

A′(t,x) :=βe1−2A(βe1t,βx),

f ′(t,x) :=αβe1f(βe1t,βx).

Applying our differential operator to v, we obtain

∂tv+Λ−1 |∇v|p+div(A′∇v) =αβe1∂tu+(αβ)pΛ−1 |∇u|p+αβe1 div(A∇u)

=αβe1
[
∂tu+

(
αp−1βp−e1

)
Λ−1 |∇u|p+div(A∇u)

]
≤αβe1

[
∂tu+Λ−1 |∇u|p+div(A∇u)

]
≤αβe1f =f ′.

That ‖A′‖∞≤‖A‖∞ follows immediately from our assumption that e1>2. It re-
mains to calculate the norm of f ′:

‖f ′‖m=αβe1(βe1βn)−1/m‖f‖m
=αβe1(1− 1

m )− n
m ‖f‖m

≤‖f‖m .

A priori, v will satisfy this inequality on
[
T0

βe1 ,0
]
× 1
βΩ. Since we assume β≤1, this

in particular means it is satisfied on [T0,0]×Ω.

At last we can prove the Oscillation Lemma. The oscillation of a function is the
distance between its supremum and its infimum, and for solutions of (1.1) and (1.3), if
the oscillation is finite on a region it will be strictly less on a strictly smaller region.

Lemma 6.3 (Oscillation Lemma). There exist constants λ∗>0, r∗>0, T ∗<0 de-
pending on Λ, p, n, µ0 (from Proposition 4.1), δ0 (from Proposition 3.1), K0 (from
Proposition 5.1), and e1, e2 (from Lemma 6.2) such that, for any solution u to In-
equalities (1.1) and (1.3) on Q3, with Λ0< (λ∗)2K0, we have the following implication:
If

|u|≤2 ∀(t,x)∈Q3,

then either

sup
[T∗,0]×Br∗ (0)

u≤2− (λ∗)2

2
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or

inf
[T∗,0]×Br∗ (0)

u≥−2+
(λ∗)2

2
.

The idea of the proof is to apply De Giorgi’s First Lemma to some truncation of
u. Remember that De Giorgi’s First Lemma says that if the measure of {u+>0} is
sufficiently small, then u+ is L∞-bounded on some smaller domain. This L∞ bound is
precisely what we wish to prove. We attempt to apply the lemma to each of (u−Ck)+

for Ck an increasing series of constants. Obviously the measure shrinks as Ck increases;
De Giorgi’s Second Lemma allows us to quantify the decrease in measure, and find a
precise k for which De Giorgi’s First Lemma applies.

Proof. (Proof of Lemma 6.3.) Let k0 be the smallest integer greater than
|Q2|/µ0, where µ0 is the constant in Proposition 4.1, and define

Qsmall := [−4 ·2k0e1/e2 ,0]×B2·2k0/e2 .

There are two cases to consider: either we will upper-bound the supremum or we
will lower-bound the infimum of u in the region [T ∗,0]×Br∗(0). If

|{u≤0}∩Qsmall|≥
|Qsmall|

2
,

we are in the former case, so we call u “mostly negative” and define

v(t,x) :=u(2k0e1/e2t,2k0/e2x).

Otherwise, we are in the latter case, so we call u “mostly positive” and define

v(t,x) :=−u(2k0e1/e2(−4− t),2k0/e2x).

In either case,

|{v≤0}∩Q2|≥
Q2

2
.

For integers k∈ [0,k0] consider the functions

vk = 2k(v−2)+2.

Notice that for all k≤k0, vk≤2 on Q3. By Lemma 6.2 with α= 2k and β= 2k0/e2 and
domain Q3, combined with the fact that Inequality (1.1) is preserved by translations,
addition of constants, and the transformation f(t,x) 7→−f(−t,x), each vk satisfies In-
equality (1.1) on Q3.

We claim that |{vk0 ≥1}∩Q2|≤ δ0. If this were not the case, then in fact

|{vk≥1}∩Q2|>δ0,

for all k≤k0, because the quantity is non-increasing as k increases. Similarly,

|{vk≤0}∩Q2|≥
|Q2|

2

for all k≤k0, because the same holds for v0 and the quantity is non-decreasing.
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This is enough for us to apply De Giorgi’s Second Lemma to each vk. By construc-
tion, the Lemma tells us that

|{vk+1≥0}∩Q2|≤ |{vk≥0}∩Q2|−µ0.

This cannot possibly be true for all k between 0 and k0, since k0µ0> |Q2|. This is
a contradiction.

Therefore |{vk0 ≥1}∩Q2|≤ δ0. We can apply De Giorgi’s First Lemma to vk0−1,
and learn that vk0 ≤3/2 on Q1. In terms of v,

v(t,x)≤2−2−k0−1 ∀(t,x)∈Q1.

In the case that u is mostly negative, this means

u(t,x)≤2−2−k0−1 ∀(t,x)∈ [T,0]×Br(0), T =−2k0e1/e2 , r= 2k0/e2

and the proof is complete. So consider the case where u is mostly positive. We’ve shown
that

u≥−2+2−k0−1 ∀(t,x)∈ [−4 ·2k0e1/e2 ,−3 ·2k0e1/e2 ]×Br.

The problem here is the time interval; we want a lower bound on the infimum of u in a
parabolic neighborhood of (0,0). Define

λ∗= min(K0,
√

2−k0−1).

Proposition 5.1 applied to the lower-semicontinuous envelope of u tells us that, since we
assumed Λ0≤ (λ∗)2K0,

u≥−2+
(λ∗)2

2
on [4T,0]×Bλ∗/2.

Letting T ∗=T , r∗= min(r,λ∗/2), we see that either

sup
[T∗,0]×Br∗ (0)

u≤2− (λ∗)2

2

or

inf
[T∗,0]×Br∗ (0)

u≥−2+
(λ∗)2

2
.

Finally, we are ready to prove Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Instead of proving continuity directly for u, it
is preferable to consider

ū≡u+Λt,

which satisfies the Inequalities (1.1) and (1.3). Clearly ū and u will have the same
Hölder exponent.

Since Ω̄ is compact, there is a radius ρ such that Bρ(x)⊆Ω for each x∈ Ω̄.
Consider any two points (t0,x0),(t1,x1)∈ (s,T )× Ω̄, and assume wlog that t0≥ t1.

If these points are far away, then we can estimate the Hölder norm in a very rough way,
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using the L∞ norm of ū. If the points are very close together, then we must use the
Oscillation Lemma.

We want to rescale the function ū to obtain w centered at (t0,x0) but solving the
PDE on Q3, with ‖w‖∞≤2, and with Λ0≤ (λ∗)2K0. To that end, choose αw,βw small
enough that

αw≤
2

‖ū‖L∞([T,0]×Ω)

, 3βw≤ρ, 4αp−1
w βpw≤s, αp−1

w βp−2
w Λ0≤ (λ∗)2K0,

and

αwβw≤1, αp−1
w βp−2

w ≤1, αp(m−1)+1βp(m−1)−n≤1.

Note that αw and βw depend on ‖u‖L∞ .
Lemma 6.1 tells us that

w(t,x) :=αwū
(
t0 +αp−1

w βpwt,x0 +βwx
)

is a solution to Inequalities (1.1) and (1.3) on Q3, with Λ0≤ (λ∗)2K0. By construction
|w|≤2 on Q3. Lemma 6.3.

Now that w is formatted correctly, the plan is to apply Lemma 6.3 iteratively,
showing that the oscillation of w decreases as the distance to (0,0) decreases.

Set

α1 =
4

4−(λ∗)2/2
,

and take β1 small enough that 3β1≤ r∗, and 4αp−1
1 βp1 ≤−T ∗, and small enough to satisfy

the hypotheses of Lemma 6.1. Define w0 =w and iteratively define

wk+1(t,x) :=α1

[
wk(αp−1

1 βp1 t,β1x)± (λ∗)2

4

]
,

with ± chosen as whichever sign minimizes ‖wk+1‖L∞(Q3). By induction, |wk|≤2 on Q3

and wk solves Inequalities (1.1) and (1.3) on Q3 with Λ0≤ (λ∗)2K0, and hence satisfies
the hypotheses of Lemma 6.3.

Therefore, for all k≥0, we find that for Qk = [−(αp−1
1 βp1)k,0]×Bβk1 ,

sup
Qk

w(t,x)− inf
Qk
w(t,x)≤ 1

αk−1
1

(
4− (λ∗)2

2

)
.

Remember that we are trying to bound the Hölder norm, the quantity

(∗) =
|ū(t1,x1)− ū(t0,x0)|

|(t0− t1)2 + |x0−x1|2|γ/2
.

If
√

(t0− t1)2 + |x0−x1|2≥αp−1
w βpw, then we can bound

(∗)≤
2‖ū‖∞

(αp−1
w βpw)γ

.

Otherwise, we can use the control on the oscillation of w. Specifically, if√
(t0− t1)2 + |x0−x1|2≤αp−1

w βpw(αp−1
1 βp1)k
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for any integer k≥0, then, because αwβw≤1 and α1β1≤1,(
t1− t0
αp−1
w βpw

,
x1−x0

βw

)
∈Qk.

Therefore∣∣∣∣w( t1− t0
αp−1
w βpw

,
x1−x0

βw

)
−w(0,0)

∣∣∣∣=αw |ū(t1,x1)− ū(t0,x0)|≤
4− (λ∗)2

2

αk−1
1

.

This relationship implies that

|ū(t1,x1)− ū(t0,x0)|≤
(

4− (λ∗)2

2

)/αwα
log

(√
(t0−t1)2+|x0−x1|2

/
(α
p−1
w β

p
w)

)
log(α

p−1
1 β

p
1 )

−2

1


≤
(

4− (λ∗)2

2

)
α2

1

αw
α

log(α
p−1
w β

p
w)

log(α
p−1
1 β

p
1 )

1

√
(t0− t1)2 + |x0−x1|2

(
− log(α1)

log(α
p−1
1 β

p
1 )

)
.

Hence if

γ=
−log(α1)

log(αp−1
1 βp1)

,

then

(∗)≤
(

4− (λ∗)2

2

)
α1

αw
α

log(α
p−1
w β

p
w)

log(α
p−1
1 β

p
1 )

1 .

Note that the bound depends non-linearly on αw and βw, and hence on ‖u‖∞, but
γ depends only on n, p, m, Λ, and Λ0.

This completes the proof.
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