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OVERLAPPING LOCALIZED EXPONENTIAL TIME DIFFERENCING
METHODS FOR DIFFUSION PROBLEMS∗

THI-THAO-PHUONG HOANG† , LILI JU‡ , AND ZHU WANG§

Abstract. The localized exponential time differencing (ETD) based on overlapping domain decom-
position has been recently introduced for extreme-scale phase field simulations of coarsening dynamics,
which displays excellent parallel scalability in supercomputers. This paper serves as the first step to-
ward building a solid mathematical foundation for this approach. We study the overlapping localized
ETD schemes for a model time-dependent diffusion equation discretized in space by the standard cen-
tral difference. Two methods are proposed and analyzed for solving the fully discrete localized ETD
systems: the first one is based on Schwarz iteration applied at each time step and involves solving
stationary problems in the subdomains at each iteration, while the second one is based on the Schwarz
waveform relaxation algorithm in which time-dependent subdomain problems are solved at each itera-
tion. The convergences of the associated iterative solutions to the corresponding fully discrete localized
ETD solution and to the exact semidiscrete solution are rigorously proved. Numerical experiments are
also carried out to confirm theoretical results and to compare the performance of the two methods.
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localization; parallel Schwarz iteration; waveform relaxation.
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1. Introduction
Exponential time differencing (ETD) methods are numerical methods for the time

integration of systems of evolutionary partial differential equations based on exponential
integrators and the variation-of-constants formula. The methods have been studied by
many researchers for various classes of problems, for instance, see [3,5,13,15,16,24,25,27]
and the references therein. A sound review in this direction and additional references
are given in [14]. Except for preservation of the system’s exponential behavior in the
discrete sense, one of the most important properties of these methods is that large time
steps can be used for stiff problems without affecting the stability of the solution, while
explicit methods often require tiny time step sizes, which is often very expensive in terms
of computational cost. Some fast ETD algorithms, which are based on compact repre-
sentation of the spatial operators and the use of linear splitting techniques to achieve
further numerical stabilization, have been successfully applied to numerical simulation
of grain coarsening phenomena in material science in [18,19].

The major computational efforts in the use of ETD methods are spent in evaluating
multiplications of matrix exponentials and vectors. To speed up the ETD simulations,
a localized compact ETD algorithm based on overlapping domain decomposition (DD)
was first introduced in [29] for extreme-scale phase field simulations of three-dimensional
coarsening dynamics on supercomputers. In this approach, the ETD is performed locally
in each subdomain in parallel and then the data of overlapping regions is passed to the
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respective neighboring subdomains for time stepping. The numerical results showed that
the method possesses great computational efficiency and excellent parallel scalability.
Note that the parallelism of this approach is domain-based, which is completely different
from the parallel adaptive-Krylov exponential solver proposed in [22]. To our knowledge,
neither convergence analysis nor error estimate has been theoretically studied for DD-
based localized ETD methods. As the first step to establish a mathematical foundation
for localized ETD methods, we consider a model time-dependent diffusion equation in
this paper and perform numerical analyses on the methods, for the first time, together
with the central difference for spatial discretization. However, we emphasize that this
equation only servers as a prototype problem, other spatial discretization methods,
possibly of higher orders, and different types of semilinear parabolic problems will be
considered in our future studies.

In particular, we study localized ETD methods with parallel Schwarz DD on over-
lapping subdomains. The parallel Schwarz algorithm and its sequential version, namely
the alternating Schwarz algorithm, were first proposed by Lions [20, 21] for stationary
problems and can be extended to evolution problems straightfowardly by first applying
time discretization to the problem and then performing Schwarz iteration at each time
step level (consequently, the same time step size is used on the whole domain). A dis-
crete version of the parallel Schwarz algorithm is called the additive Schwarz algorithm,
which has been studied for parabolic problems in [1,17]. It is well known that the con-
vergence of this type of algorithm is linear and directly dependent on the overlap sizes.
Based on the idea of waveform relaxation, a new class of DD methods for parabolic prob-
lems, namely the space-time DD or overlapping Schwarz waveform relaxation method,
has been introduced and studied in [6, 9, 10, 12]. Unlike the traditional approach, one
decomposes the domain in both space and time and solves time-dependent problems
in each subdomain at each iteration. This approach, also called the “global-in-time”
method, enables the use of different time steps in different subdomains, which can be
very important in some applications where the time scales in various subdomains are
significantly different. Moreover, for short time intervals, it is shown that the algorithm
converges at a super-linear rate. Hence, one could take advantage of this property by
using time windows for long-term computations.

It is noteworthy that the multidomain localized ETD system is not algebraically
equivalent to the corresponding monodomain ETD system, unlike most existing nu-
merical DD methods for time-dependent problems. By using either first order ETD
(ETD1) or second order ETD Runge-Kutta (ETD2) approximations, we formulate a
fully discrete multidomain system whose solution is proved to converge to the exact
semidiscrete solution. In order to solve such a system in practice, we propose two itera-
tive DD methods: the first one is based on Schwarz iteration applied at each time step
and involves solving stationary problems in the subdomains at each iteration, while the
second method is based on the Schwarz waveform relaxation algorithm in which time-
dependent problems are solved in the subdomains at each iteration. We then rigorously
show that the iterative solutions converge to the fully discrete multidomain localized
ETD solution at the same linear rate as the parallel Schwarz algorithm. The analysis
is for one-dimensional problems and mainly based on the maximum principle. Note
that explicit representations of convergence rates can only be determined for such a low
dimensional case. By using the techniques in [10] (see Remark 4.3), similar convergence
results can be obtained for higher dimensional problems.

The rest of the paper is organized as follows: in Section 2, the model problem and
the parallel Schwarz method for a decomposition into two overlapping subdomains are
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introduced. For completeness, we recall linear and super-linear convergence results of
the Schwarz waveform relaxation methods presented in [6,9,10,12]. In Section 3, we first
derive fully discrete multidomain problems using the central difference approximation
in space and the localized ETD approximation in time, then present formulations of
different DD-based Schwarz iterative algorithms for solving the multidomain problem.
Convergence analysis is given in Section 4 to show that the iterative solutions converge to
the multidomain localized ETD solutions and further converge to the exact semidiscrete
solution along the time step size refinement. Numerical experiments in 1D and 2D
are carried out to investigate convergence behavior of the proposed algorithms and to
compare their performance in Section 5. Some conclusions are finally drawn in Section 6.

2. The model problem and parallel Schwarz waveform relaxation method
Due to the development of supercomputers and parallel computing technologies,

domain decomposition methods have attracted great attention from many researchers
in the past decades (see [4,23,26,28] and the proceedings of annual conferences on DD
methods). The main idea is to decompose the domain of calculation into (overlapping
or non-overlapping) subdomains with smaller sizes and then solve the subdomain prob-
lems in parallel with some transmission conditions enforced on the interfaces between
the subdomains. In this section, we present the overlapping domain decomposition for-
mulation for a model diffusion problem and recall the theoretical results on the Schwarz
waveform relaxation algorithm.

Consider the following time-dependent one-dimensional (in space) diffusion equation
with Dirichlet boundary conditions:

∂u

∂t
=ν

∂2u

∂x2 +f(x,t), 0<x<L, 0<t<T,

u(0,t) =ψ1(t), u(L,t) =ψ2(t), 0<t<T,
u(x,0) =u0(x), 0<x<L,

(2.1)

where ν is a positive constant diffusion coefficient. Assume that the data is sufficiently
smooth so that there exists a classical solution u∈C1(0,T ;C2(0,L)).

Let us decompose the domain Ω = (0,L) into two overlapping subdomains:
Ω1 = (0,βL) and Ω2 = (αL,L) with 0<α<β<1. Extensions to many more subdo-
mains can be done straightforwardly (see [10] and Section 5).

Figure 2.1. A decomposition into two overlapping subdomains.

A multidomain problem equivalent to (2.1) consists of solving in the subdomains
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the following coupled problems:
∂u1

∂t
=ν

∂2u1

∂x2 +f(x,t), 0<x<βL, 0<t<T,

u1(0,t) =ψ1(t), 0<t<T,
u1(x,0) =u0(x), 0<x<βL,

(2.2)

and 
∂u2

∂t
=ν

∂2u2

∂x2 +f(x,t), αL<x<L, 0<t<T,

u2(L,t) =ψ2(t), 0<t<T,
u2(x,0) =u0(x), αL<x<L,

(2.3)

together with the transmission conditions on the interfaces of the subdomains:{
u1(αL,t) =u2(αL,t),
u1(βL,t) =u2(βL,t),

0<t<T. (2.4)

This multidomain problem can be solved iteratively using a Schwarz-type iteration as in
the elliptic case [20], namely the parallel Schwarz waveform relaxation algorithm, which
involves at each iteration k= 0,1,. .., the solution of

∂u
(k+1)
1
∂t

=ν
∂2u

(k+1)
1
∂x2 +f(x,t), 0<x<βL, 0<t<T,

u
(k+1)
1 (0,t) =ψ1(t), 0<t<T,
u

(k+1)
1 (x,0) =u0(x), 0<x<βL,
u

(k+1)
1 (βL,t) =u

(k)
2 (βL,t), 0<t<T,

(2.5)

and 

∂u
(k+1)
2
∂t

=ν
∂2u

(k+1)
2
∂x2 +f(x,t), αL<x<L, 0<t<T,

u
(k+1)
2 (L,t) =ψ2(t), 0<t<T,
u

(k+1)
2 (x,0) =u0(x), αL<x<L,

u
(k+1)
2 (αL,t) =u

(k)
1 (αL,t), 0<t<T,

(2.6)

where u
(0)
1 (αL,t) and u

(0)
2 (βL,t) are given initial guesses. The convergence of the

Schwarz algorithm (2.5)-(2.6) is guaranteed by the following theorem [9].

Theorem 2.1. The Schwarz iteration (2.5)-(2.6) converges in L∞(0,T ;L∞(0,L)) to
the solution (u1,u2) of (2.2)-(2.4) at a linear rate:

‖u(2k+1)
1 −u1‖∞,T ≤ (κ(α,β))k |u(0)

2 (βL,·)−u2(βL,·)|T ,

‖u(2k+1)
2 −u2‖∞,T ≤ (κ(α,β))k |u(0)

1 (αL,·)−u1(αL,·)|T ,

where |u|T = sup
0<t<T

|u(x,t)|, ‖u‖∞,T = sup
0<x<L
0<t<T

|u(x,t)| and 0<κ(α,β) := α(1−β)
β(1−α) <1.

The convergence rate is similar to that of the stationary case [20] and depends on
the size of the overlap between the two subdomains. Moreover, for short time intervals,
the convergence rate could be super-linear (see [6, 10,11]):
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Theorem 2.2. For bounded time intervals, the sequence of iterates (u(k)
1 ,u

(k)
2 ) in

(2.5)-(2.6) converges super-linearly:

max
i=1,2

‖u(k)
i −ui‖∞,t

≤ erfc
(
k(β−α)

2
√
νt

)
max

{
|u(0)

1 (αL,·)−u1(αL,·)|t,|u(0)
2 (βL,·)−u2(βL,·)|t

}
,

for any 0<t<T <∞.

Here erfc(x) is the complementary error function satisfying

lim
x→∞

erfc(x) = lim
x→∞

2√
π

∫ ∞
x

e−t
2
dt= 0.

Thus the smaller the time t, the faster the convergence.

3. Localized ETD algorithms based on overlapping domain decomposi-
tion

Let us consider a discretization in space using the standard second-order central
difference with a uniform grid of size h=L/(N+1). Denote by

uuu(·,t) = (uuu(j,t))1≤j≤N ,

the vector function representing the approximate values of u at the spatial grid points
{jh}1≤j≤N . We obtain the following linear system of ordinary differential equations
(ODEs) for the corresponding semidiscrete monodomain problem of the model equation
(2.1): 

duuuuuuuuu

dt
=AAAuuu+FFF (f(t),ψ1(t),ψ2(t)), 0<t<T,

uuu(·,0) =uuu0(·),
(3.1)

where uuu0 = (uuu0(j))1≤j≤N = (u0(h),u0(2h),·· · ,u0(Nh))>, the matrix AAA :=AAA(N) is a sym-
metric, tridiagonal matrix of size N defined as

AAA(N) = ν

h2



−2 1 0 ·· · 0
1 −2 1 ·· · 0

0 1 −2
. . .

...
...

...
. . . . . . 1

0 ·· · 0 1 −2

, and FFF (f(t),ψ1(t),ψ2(t)) =



f(h,t)+ ν

h2ψ1(t)

f(2h,t)
...

f((N−1)h,t)
f(Nh,t)+ ν

h2ψ2(t)


.

Unless otherwise specified, we write FFF (t) :=FFF (f(t),ψ1(t),ψ2(t)) for simplicity.

3.1. Monodomain ETD schemes. For the time discretization, consider a
partition of the time interval [0,T ]: 0 = t0<t1<...< tM =T , with a step size ∆t = T/M.
The exact (in time) solution to (3.1) at each time level is given by the variation-of-
constants formula:

uuu(·,tm+1) = e∆tAAAuuu(·,tm)+
∫ ∆t

0
e(∆t−s)AAAFFF (tm+s) ds,

for m= 0,. ..,M−1.
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The first-order (monodomain) ETD scheme (also known as the exponential Euler
method) based on (3.1) for solving the model problem (2.1), denoted by ETD1, is
obtained by assuming that FFF (t) is constant over (tm,tm+1]:

UUU(·,m+1) =e∆tAAAUUU(·,m)+
∫ ∆t

0
e(∆t−s)AAAFFF (tm+1) ds

=e∆tAAAUUU(·,m)+AAA−1(e∆tAAA−III
)
FFF (tm+1) , (3.2)

in which UUU(·,m) denotes the approximation of uuu(·,t) at tm by ETD methods.
The second-order (monodomain) ETD Runge-Kutta scheme, ETD2, is obtained by

approximating FFF (t) on each time interval (tm,tm+1] by its linear interpolation polyno-
mial:

UUU(·,m+1) =e∆tAAAUUU(·,m)+
∫ ∆t

0
e(∆t−s)AAA

[
FFF (tm)+FFF (tm+1)−FFF (tm)

∆t s

]
ds

=e∆tAAAUUU(·,m)+AAA−1(e∆tAAA−III
)
FFF (tm)

+(∆t)−1AAA−2(e∆tAAA−III−∆tAAA
)
(FFF (tm+1)−FFF (tm)). (3.3)

For higher order exponential quadrature (for linear problems) and exponential Runge-
Kutta (for semilinear problems) as well as the exponential multistep methods, we refer
to [3,14,27] and the references therein. In this paper, we shall use either the ETD1 (3.2)
or the ETD2 (3.3).

3.2. Semidiscrete multidomain problem and fully discrete solutions by
localized ETD schemes. For the overlapping domain decomposition approach,
assume that αL=Nαh and βL=Nβh for some integers 1<Nα<Nβ<N . Set N1 :=
Nβ−1, N2 :=N−Nα and Nβ,α :=Nβ−Nα. The semidiscrete multidomain problem
corresponding to the continuous problem (2.2)-(2.4) consists of solving the following
two coupled subdomain problems (which is equivalent to the semidiscrete monodomain
problem (3.1)): 

duuuuuuuuu1

dt
=AAA1uuu1 +FFF 1(f(t),ψ1(t),uuu2(Nβ,α,t)), 0<t<T,

uuu1(j,0) =uuu0(j), 1≤ j≤N1,
(3.4)

and 
duuuuuuuuu2

dt
=AAA2uuu2 +FFF 2(f(t),uuu1(Nα,t),ψ2(t)), 0<t<T,

uuu2(j,0) =uuu0(j+Nα), 1≤ j≤N2,
(3.5)

where AAA1 :=AAA(N1), AAA2 :=AAA(N2) and

FFF 1(f(t),ψ1(t),uuu2(Nβ,α,t))

=
(
f(h,t)+ ν

h2ψ1(t), f(2h,t),. ..,f((Nβ−1)h,t)+ ν

h2uuu2(Nβ,α,t)
)>

,

FFF 2(f(t),uuu1(Nα,t),ψ2(t))

=
(
f((Nα+1)h,t)+ ν

h2uuu1(Nα,t), f((Nα+2)h,t),. ..,f(Nh,t)+ ν

h2ψ2(t)
)>

.
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As in the monodomain problem, ETD time-stepping methods are applied. One can
use ETD1 to obtain a fully discrete solution for the semidiscrete multidomain prob-
lem (3.4)-(3.5) by solving the following coupled local equations defined in Ω1 and Ω2
respectively:

UUU1(·,m+1) = e∆tAAA1UUU1(·,m)+AAA−1
1
(
e∆tAAA1−III

)
FFF 1,m+1, (3.6)

and

UUU2(·,m+1) = e∆tAAA2UUU2(·,m)+AAA−1
2
(
e∆tAAA2−III

)
FFF 2,m+1, (3.7)

for m= 0,. ..,M−1, where UUU i(·,m), i= 1,2, are the approximations of uuui(·,t) at tm and

FFF 1,m=FFF 1 (f(tm),ψ1(tm),UUU2(Nβ,α,m)) ,
FFF 2,m=FFF 2 (f(tm),UUU1(Nα,m),ψ2(tm)).

Alternatively, one can also use ETD2 to obtain a fully discrete solution for the
semidiscrete multidomain problem (3.4)-(3.5) by solving the following coupled local
equations defined in Ω1 and Ω2 respectively:

ŨUU1(·,m+1) = e∆tAAA1UUU1(·,m)+AAA−1
1
(
e∆tAAA1−III

)
FFF 1,m,

UUU1(·,m+1) = ŨUU1(·,m+1)+(∆t)−1AAA−2
1
(
e∆tAAA1−III−∆tAAA1

)
(FFF 1,m+1−FFF 1,m) ,

(3.8)

and

ŨUU2(·,m+1) = e∆tAAA2UUU2(·,m)+AAA−1
2
(
e∆tAAA2−III

)
FFF 2,m,

UUU2(·,m+1) = ŨUU2(·,m+1)+(∆t)−1AAA−2
2
(
e∆tAAA2−III−∆tAAA2

)
(FFF 2,m+1−FFF 2,m) ,

(3.9)

for m= 0,. ..,M−1. We specially remark that the multidomain localized ETD schemes
do not give exactly the same fully discrete solutions as those obtained by the corre-
sponding monodomain ETD schemes. Convergence of the localized ETD1 (3.6)-(3.7) or
the localized ETD2 (3.8)-(3.9) solutions to the exact semidiscrete solution produced by
(3.4)-(3.5) will be proved in Section 4.

3.3. Schwarz iteration-based overlapping domain decomposition algo-
rithms. In order to compute the solution of the fully discrete multidomain system
produced by the localized ETD schemes (3.6)-(3.7) or (3.8)-(3.9), one needs to decouple
the systems in subdomains by using iterative algorithms. A straightforward extension
from the classical parallel Schwarz method for elliptic problems is to perform Schwarz
iteration at each time step tm and enforce the transmission conditions on the interfaces
{x=αL} and {x=βL} at tm. Another approach is to use global-in-time domain de-
composition as presented in Section 2 for continuous problems, in which time-dependent
problems are solved in the subdomains and information is exchanged over the space-
time interfaces {x=αL∪x=βL}×(0,T ). For each method, we derive formulations
using either ETD1 or ETD2 as the time marching scheme.

3.3.1. Method 1: Iterative, localized ETD algorithms. For each 0≤
m≤M−1, assume that UUU1(·,m) and UUU2(·,m) are given, we shall find the solutions at
time tm+1 by applying (parallel) Schwarz iteration. Next, we construct two algorithms
corresponding to the use of the ETD1 and the ETD2 schemes for the time integration.
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Iterative, localized ETD1 algorithm. With a given initial guess
of UUU

(0)
1 (Nα,m+1) and UUU

(0)
2 (Nβ,α,m+1), we compute the subdomain solutions

UUU
(k+1)
1 (·,m+1) and UUU (k+1)

2 (·,m+1) by: for k= 0,1,·· · ,

UUU
(k+1)
1 (·,m+1) = e∆tAAA1UUU1(·,m)+AAA−1

1
(
e∆tAAA1−III

)
·FFF 1

(
f(tm+1),ψ1(tm+1),UUU (k)

2 (Nβ,α,m+1)
)
,

(3.10)

and

UUU
(k+1)
2 (·,m+1) = e∆tAAA2UUU2(·,m)+AAA−1

2
(
e∆tAAA2−III

)
·FFF 2

(
f(tm+1),UUU (k)

1 (Nα,m+1),ψ2(tm+1)
)
.

(3.11)

The iteration is stopped when

|UUU (k+1)
1 (Nα,m+1)−UUU (k)

1 (Nα,m+1)|
|UUU (0)

1 (Nα,m+1)|
<ε,

|UUU (k+1)
2 (Nβ,α,m+1)−UUU (k)

2 (Nβ,α,m+1)|
|UUU (0)

2 (Nβ,α,m+1)|
<ε,

(3.12)

for a given tolerance ε, then it moves to the next time step.
Iterative, localized ETD2 algorithm. To find the solution at tm+1, we first

compute ŨUU1(·,m+1) and ŨUU2(·,m+1) from the known values of UUU1(·,m) and UUU2(·,m)
as follows:

ŨUU1(·,m+1) = e∆tAAA1UUU1(·,m)+AAA−1
1
(
e∆tAAA1−III

)
FFF 1 (f(tm),ψ1(tm),UUU2(Nβ,α,m)),

ŨUU2(·,m+1) = e∆tAAA2UUU2(·,m)+AAA−1
2
(
e∆tAAA2−III

)
FFF 2 (f(tm),UUU1(Nα,m),ψ2(tm)).

Then we set UUU (0)
1 (Nα,m+1) =ŨUU1(Nα,m+1) and UUU (0)

2 (Nβ,α,m+1) =ŨUU2(Nβ,α,m+1).
With this initial guess, we can start the iteration as: for k= 0,1, ·· · ,

UUU
(k+1)
1 (·,m+1) =ŨUU1(·,m+1)+(∆t)−1AAA−2

1
(
e∆tAAA1−III−∆tAAA1

)
·
[
FFF 1

(
f(tm+1),ψ1(tm+1),UUU (k)

2 (Nβ,α,m+1)
)
−FFF 1 (f(tm),ψ1(tm),UUU2(Nβ,α,m))

]
,
(3.13)

and

UUU
(k+1)
2 (·,m+1) =ŨUU2(·,m+1)+(∆t)−1AAA−2

2
(
e∆tAAA2−III−∆tAAA2

)
·
[
FFF 2

(
f(tm+1),UUU (k)

1 (Nα,m+1),ψ2(tm+1)
)
−FFF 2 (f(tm),UUU1(Nα,m),ψ2(tm))

]
.

(3.14)

When it converges (i.e., the stopping criterion (3.12) is satisfied), we move to the next
time step.

3.3.2. Method 2: Global-in-time, iterative, localized ETD algorithms.
Differently from Method 1, we can solve time-dependent problems at each iteration as
a more general approach. For a given initial guess of UUU (0)

1 (Nα,·) and UUU (0)
2 (Nβ,α, ·) over

all time steps, we shall compute, at the (k+1)-iteration, the solution UUU (k+1)
1 (·,·) and

UUU
(k+1)
2 (·, ·) globally in time.
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Global-in-time, iterative, localized ETD1 algorithm. Using the ETD1
scheme, we compute the approximate solution in each subdomain over all time steps in
parallel: for k= 0,1,·· · ,

UUU
(k+1)
1 (·,m+1) = e∆tAAA1UUU

(k+1)
1 (·,m)+AAA−1

1
(
e∆tAAA1−III

)
·FFF 1

(
f(tm+1),ψ1(tm+1),UUU (k)

2 (Nβ,α,m+1)
)
, m= 0,. ..,M−1,

(3.15)

and

UUU
(k+1)
2 (·,m+1) = e∆tAAA2UUU

(k+1)
2 (·,m)+AAA−1

2
(
e∆tAAA2−III

)
·FFF 2

(
f(tm+1),UUU (k)

1 (Nα,m+1),ψ2(tm+1)
)
, m= 0,. ..,M−1.

(3.16)

Here each iteration involves the solution of the subdomain problems over the whole time
interval (0,T ) and the information is exchanged through a space-time interface globally
instead of sequentially at each time step as in Method 1. We stop the iteration when
the following conditions are satisfied:

max
1≤m≤M

|UUU (k+1)
1 (Nα,m)−UUU (k)

1 (Nα,m)|

max
1≤m≤M

|UUU (0)
1 (Nα,m)|

<ε,

max
1≤m≤M

|UUU (k+1)
2 (Nβ,α,m)−UUU (k)

2 (Nβ,α,m)|

max
1≤m≤M

|UUU (0)
2 (Nβ,α,m)|

<ε.

Global-in-time, iterative, localized ETD2 algorithm. The second order
scheme can be derived similarly, in particular, we solve in parallel the following subdo-
main problems: for k= 0,1, ·· · ,

• In subdomain Ω1: first compute

ŨUU
(k+1)
1 (·,m+1) = e∆tAAA1UUU

(k+1)
1 (·,m)+AAA−1

1
(
e∆tAAA1−III

)
FFF 1

(
f(tm),ψ1(tm),UUU (k)

2 (Nβ,α,m)
)
,

then update

UUU
(k+1)
1 (·,m+1) = ŨUU

(k+1)
1 (·,m+1)+(∆t)−1AAA−2

1
(
e∆tAAA1−III−∆tAAA1

)
·
[
FFF 1

(
f(tm+1),ψ1(tm+1),UUU (k)

2 (Nβ,α,m+1)
)
−FFF 1

(
f(tm),ψ1(tm),UUU (k)

2 (Nβ,α,m)
)]
,

0≤m≤M−1.
(3.17)

• In subdomain Ω2: first compute

ŨUU
(k+1)
2 (·,m+1) = e∆tAAA2UUU

(k+1)
2 (·,m)+AAA−1

2
(
e∆tAAA2−III

)
FFF 2

(
f(tm),UUU (k)

1 (Nα,m),ψ2(tm)
)
,

then update

UUU
(k+1)
2 (·,m+1) = ŨUU

(k+1)
2 (·,m+1)+(∆t)−1AAA−2

2
(
e∆tAAA2−III−∆tAAA2

)
·
[
FFF 2

(
f(tm+1),UUU (k)

1 (Nα,m+1),ψ2(tm+1)
)
−FFF 2

(
f(tm),UUU (k)

1 (Nα,m),ψ2(tm)
)]
,

0≤m≤M−1.
(3.18)



1540 OVERLAPPING LOCALIZED ETD METHODS

Note that, for any k, UUU (k)
1 (Nα,0) =uuu0(Nα) and UUU (k)

2 (Nβ,α,0) =uuu0(Nβ).

Remark 3.1. As time-dependent problems are solved in the subdomains, one may use
different time step sizes in the subdomains and enforce the transmission conditions over
nonconforming time grids by using L2 projections [7, 8]. This possibility can be very
important and useful for applications in which the time scales vary by several orders of
magnitude between the subdomains.

4. Convergence analysis
We will demonstrate the convergence of the localized ETD1 or ETD2 solution

(UUU1(·,m),UUU2(·,m)) to the exact semidiscrete solution (uuu1(tm),uuu2(tm)) as ∆t→0, and
the convergence of the iterative solution

(
UUU

(k)
1 (·, ·),UUU (k)

2 (·, ·)
)
to the corresponding local-

ized ETD solution as k→∞. These results guarantee that the iterative solution of both
methods converges to the exact solution of the model problem. The proofs are mainly
based on the maximum principle of the ETD schemes and some techniques similar to
those used in [9]. We shall define the following discrete infinity norms:

‖UUU(·,m)‖∞= max
1≤j≤N

|UUU(j,m)|, |UUU(j,·)|T = max
1≤m≤M

|UUU(j,m)|,

‖UUU(·, ·)‖∞,T = max
1≤j≤N

max
1≤m≤M

|UUU(j,m)|,

for any UUU = (UUU(j,m))1≤j≤N,1≤m≤M .

4.1. Preliminary results. We first present some useful results. In particular,
Lemmas 4.1 and 4.2 are fully discrete counterparts (with ETD1 discretization in time)
of Theorem 2.5 and Corollary 2.6 of [9]. Extension of Lemma 4.2 to ETD2 discretization
in time is given in Corollary 4.1.

Lemma 4.1 (Discrete nonnegativity property). Assume that UUU(·,m), 1≤m≤M, is
the solution to the following problem:

UUU(·,m+1) = e∆tAAAUUU(·,m)+
∫ ∆t

0
e(∆t−s)AAAFFF (tm+s)ds, 0≤m≤M−1, (4.1)

with UUU(·,0) =uuu0 and FFF (tm) = (ψ1(tm),0,. ..,0,ψ2(tm))>. If ψ1(t) and ψ2(t) are non-
negative on [0,T ] and uuu0(j)≥0,∀1≤ j≤N , then

UUU(·,m)≥000, 1≤m≤M.

Proof. At the first time level t1 = ∆t, we have:

UUU(·,1) = e∆tAAAuuu0 +
∫ ∆t

0
e(∆t−s)AAAFFF (s)ds. (4.2)

The matrix etAAA, t≥0 has nonnegative entries since AAA=−2 ν
h2III+MMM (III is the identity

matrix and MMM contains only nonnegative entries) and

etAAA= e−2t ν
h2 IIIetMMM = e−2t ν

h2

∞∑
j=0

tjM j

j! ≥0.

Using this and (4.2), we conclude that UUU(·,1)≥0 given that uuu0≥0 and FFF (s)≥ 0 for
0≤s≤∆t. By induction, the proof is completed.
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Lemma 4.2 (Discrete maximum principle). Assume that UUU(·,m), 1≤m≤M, solves

the discrete diffusion equation (4.1) with FFF (tm) =
( ν
h2ψ1(tm),0,. ..,0, ν

h2ψ2(tm)
)>

and
UUU(·,0) =000. Then UUU satisfies the following inequality:

|UUU(j,m)|≤ N+1−j
N+1 |ψ1|T + j

N+1 |ψ2|T , 1≤ j≤N, 1≤m≤M. (4.3)

Proof. Consider ŨUU satisfying

ŨUU(·,m+1) = e∆tAAAŨUU(·,m)+
∫ ∆t

0
e(∆t−s)AAAF̃FFds, m= 0,. ..,M−1, (4.4)

with

ŨUU(·,0) =ŨUU0 =
(
N+1−j
N+1 |ψ1|T + j

N+1 |ψ2|T
)

1≤j≤N
, F̃FF =

( ν
h2 |ψ1|T ,0,. ..,0,

ν

h2 |ψ2|T
)>

.

We recall the following properties of the matrix AAA of the central difference scheme: let
vvv= (1,2,. ..,j,... ,N)> and v̂vv= (N,N−1,. ..,N+1−j,...,1)>, then

AAAvvv=
(

0,0,. ..,0,−ν (N+1)
h2

)>
, and AAAv̂vv=

(
−ν (N+1)

h2 ,0,. ..,0
)>

.

Using these equations, we find that

AAAŨUU0 +F̃FF =000.

Substituting this into (4.4) at t1 = ∆t yields

ŨUU(·,1) = e∆tAAAŨUU0 +AAA−1(e∆tAAA−III
)(
−AAAŨUU0

)
=ŨUU0. (4.5)

By induction, we see that the solution ŨUU does not depend on time:

ŨUU(j,m) = N+1−j
N+1 |ψ1|T + j

N+1 |ψ2|T , 0≤m≤M, j= 1,2,. ..,N.

Define UUU(j,m) =ŨUU(j,m)−UUU(j,m). Then by the discrete nonnegativity property we
have that UUU(j,m)≥0 for all 1≤ j≤N and 1≤m≤M . This gives

UUU(j,m)≤ N+1−j
N+1 |ψ1|T + j

N+1 |ψ2|T , 1≤m≤M, j= 1,2,. ..,N.

Similarly, defining UUU(j,m) =ŨUU(j,m)+UUU(j,m), we have that

UUU(j,m)≥−
(
N+1−j
N+1 |ψ1|T + j

N+1 |ψ2|T
)
, 1≤m≤M, j= 1,2,. ..,N.

Remark 4.1. The results in Lemmas 4.1 and 4.2 obviously hold if UUU(·,m) in (4.1)
is approximated by either ETD1 (3.2) or ETD2 (3.3). We further present a useful
corollary of Lemma 4.2.
Corollary 4.1. Assume that UUU(·,m) satisfies

|UUU(j,m+1)| ≤

∣∣∣∣∣
(
e∆tAAAUUU(·,m)+

∫ ∆t

0
e(∆t−s)AAAFFF (tm+s)ds

)
(j)

∣∣∣∣∣+C,

∀ j= 1,. ..,N, m= 0,. ..,M−1,
(4.6)
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with UUU(·,0) =000, FFF (tm) =
( ν
h2ψ1(tm),0,. ..,0, ν

h2ψ2(tm)
)>

and C a positive constant.
Then

|UUU(j,m)|≤ N+1−j
N+1 |ψ1|T + j

N+1 |ψ2|T +mC, m= 1,. ..,M. (4.7)

Proof. The bound (4.7) is proved by induction. For m= 1, (4.7) holds as a
consequence of Lemma 4.2. Now assume that (4.7) holds for some fixed m. Define an
auxiliary solution

ŨUU(j,m) = N+1−j
N+1 (|ψ1|T +mC)+ j

N+1 (|ψ2|T +mC) , j= 1,. ..,N,

which satisfies ŨUU(·,m)−UUU(·,m)≥0 and

AAAŨUU(·,m)+F̃FFm=000, (4.8)

where F̃FFm=
( ν
h2 (|ψ1|T +mC) ,0,. ..,0, ν

h2 (|ψ2|T +mC)
)>

. Similarly to (4.5), we deduce
from (4.8) that

ŨUU(·,m) = e∆tAAAŨUU(·,m)+AAA−1(e∆tAAA−III
)(
−AAAŨUU(·,m)

)
= e∆tAAAŨUU(·,m)+

∫ ∆t

0
e(∆t−s)AAAF̃FFm.

Denote by UUU(·,m) the solution to

UUU(·,m) = e∆tAAAUUU(·,m)+
∫ ∆t

0
e(∆t−s)AAAFFF (tm+s)ds.

As in the proof of Lemma 4.2, we use the discrete nonnegativity property to obtain

ŨUU(·,m)−UUU(·,m)≥0, and ŨUU(·,m)+UUU(·,m)≥0.

This implies

|UUU(j,m)|≤ N+1−j
N+1 (|ψ1|T +mC)+ j

N+1 (|ψ2|T +mC) .

Inserting the above inequality into (4.6), we obtain

|UUU(j,m+1)|≤ N+1−j
N+1 |ψ1|T + j

N+1 |ψ2|T +(m+1)C.

By the principle of induction, (4.7) holds for all m.
4.2. Convergence of the localized ETD solutions to the exact semidis-

crete solution. We next present a detailed proof for the case that the first-order
ETD method is used with a nonzero source term and nonhomogeneous Dirichlet bound-
ary conditions (see Theorem 4.1). The result is then extended to the second-order case
(see Theorem 4.2).

Our proof relies on the representation of the exact (in time) solution of the semidis-
crete multidomain problem (3.4)-(3.5) by the variation-of-constants formula:

uuu1(·,tm+1) = e∆tAAA1uuu1(·,tm)

+
∫ ∆t

0
e(∆t−s)AAA1FFF 1(f(tm+s),ψ1(tm+s),uuu2(Nβ,α,tm+s))ds,

uuu2(·,tm+1) = e∆tAAA2uuu2(·,tm)

+
∫ ∆t

0
e(∆t−s)AAA2FFF 2(f(tm+s),uuu1(Nα,tm+s),ψ2(tm+s))ds,
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for m= 0,. ..,M−1 with initial conditions as in (3.4)-(3.5).
Denote by eeei(·,m) =uuui(·,tm)−UUU i(·,m), the error between the exact solution of the

semidiscrete multidomain problem and the fully discrete localized ETD1 solution (3.6)-
(3.7), which satisfies:

eee1(·,m+1) = e∆tAAA1eee1(·,m)+
∫ ∆t

0
e(∆t−s)AAA1FFF 1 (0,0,uuu2(Nβ,α,tm+s)−UUU2(Nβ,α,m+1))ds

+
∫ ∆t

0
e(∆t−s)AAA1FFF 1 (f(tm+s)−f(tm+1),ψ1(tm+s)−ψ1(tm+1),0)ds, (4.9)

and

eee2(·,m+1) = e∆tAAA2eee2(·,m)+
∫ ∆t

0
e(∆t−s)AAA2FFF 2 (0,uuu1(Nα,tm+s)−UUU1(Nα,m+1),0)ds

+
∫ ∆t

0
e(∆t−s)AAA2FFF 2 (f(tm+s)−f(tm+1),0,ψ2(tm+s)−ψ2(tm+1))ds, (4.10)

for m= 0,. ..,M−1 with eee1(·,0) =eee2(·,0) =000. We have the following convergence result.

Theorem 4.1. For sufficiently smooth data, the localized ETD1 method converges as
∆t tends to 0. More precisely, the following error bound holds:

‖eee1(·, ·)‖∞,T +‖eee2(·, ·)‖∞,T ≤C∆t, (4.11)

where C is a constant depending on ν, T , the size of overlap, the mesh size h, uuu′1(Nα,t),
uuu′2(Nβ,α,t), the source term f and the boundary data.

Proof. From (4.9), we have that for any 0≤m≤M−1:

|eee1(j,m+1)|

≤

∣∣∣∣∣
(
e∆tAAA1eee1(·,m)+

∫ ∆t

0
e(∆t−s)AAA1FFF 1 (0,0,uuu2(Nβ,α,tm+s)−UUU2(Nβ,α,m+1))ds

)
(j)

∣∣∣∣∣
+

∣∣∣∣∣
(∫ ∆t

0
e(∆t−s)AAA1

∫ ∆t

s

FFF 1 (f ′(tm+τ),ψ′1(tm+τ),0)dτ ds
)

(j)

∣∣∣∣∣ . (4.12)

In addition, for any vector UUU1∈RN1 and any t∈ [0,T ]:

|(etAAA1UUU1)(j)| ≤ ‖etAAA1UUU1‖∞≤‖etAAA1‖∞‖UUU1‖∞
≤
√
N1‖etAAA1‖2‖UUU1‖∞≤

√
L/h‖UUU1‖∞,

(4.13)

for all j= 1,. ..,N1, since ‖etAAA1‖2≤1. This is obtained by the fact that all eigenvalues
of the symmetric matrix AAA1 are negative. Using (4.13), we can bound the last term of
(4.12) by ∣∣∣∣∣

(∫ ∆t

0
e(∆t−s)AAA1

∫ ∆t

s

FFF 1 (f ′(tm+τ),ψ′1(tm+τ),0)dτ ds
)

(j)

∣∣∣∣∣
≤(∆t)2

√
L/h

 sup
x∈(0,βL)
t∈(0,T )

|f ′(x,t)|+ ν

h2 sup
t∈(0,T )

|ψ′1(t)|


︸ ︷︷ ︸

C1

≤C1(∆t)2.
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This, together with (4.12) and Corollary 4.1, yields

|eee1(j,m+1)|

≤ j

N1 +1

(
max

0≤l≤M−1
sup

s∈[0,∆t]
|uuu2(Nβ,α,tl+s)−UUU2(Nβ,α,l+1)|

)
+(m+1)C1(∆t)2.

(4.14)

Moreover, we have that for 0≤ l≤M−1,

sup
s∈[0,∆t]

|uuu2(Nβ,α,tl+s)−UUU2(Nβ,α,l+1)|

= sup
s∈[0,∆t]

∣∣∣∣∣uuu2(Nβ,α,tl+1)−UUU2(Nβ,α,l+1)−
∫ ∆t

s

uuu′2(Nβ,α,tl+τ)dτ

∣∣∣∣∣
≤|eee2(Nβ,α,l+1)|+∆t sup

s∈[0,∆t]
|uuu′2(Nβ,α,tl+s)|.

Inserting this into (4.14), we deduce that

|eee1(j,m+1)|≤ j

N1 +1

[
max

0≤l≤M−1
|eee2(Nβ,α,l+1)|+∆t sup

t∈[0,T ]
|uuu′2(Nβ,α,t)|

]
+C1T∆t.

(4.15)
Following the same argument, one can obtain a bound for eee2,m+1:

|eee2(j,m+1)|≤ N2 +1−j
N2 +1

[
max

0≤l≤M−1
|eee1(Nα,l+1)|+∆t sup

t∈[0,T ]
|uuu′1(Nα,t)|

]
+C2T∆t,

(4.16)

where C2 =
√
L/h

 sup
x∈(αL,L)
t∈(0,T )

|f ′(x,t)|+ ν

h2 sup
t∈(0,T )

|ψ′2(t)|

.

Evaluate (4.15) with j=Nα and (4.16) with j=Nβ,α, then combine the two re-
sulting inequalities (note that their right-hand sides do not depend on m) to obtain:


|eee1(Nα,m+1)| ≤ κ(α,β) max

0≤l≤M−1
|eee1(Nα,l+1)|+ C̃∆t,

|eee2(Nβ,α,m+1)| ≤ κ(α,β) max
0≤l≤M−1

|eee2(Nβ,α,l+1)|+ C̃∆t,
(4.17)

where

C̃= sup
t∈[0,T ]

|uuu′1(Nα,t)|+ sup
t∈[0,T ]

|uuu′2(Nβ,α,t)|+(C1 +C2)T.

Note that to derive (4.17), we have used the following equality:

Nα
N1 +1

(
N2 +1−(Nβ,α)

N2 +1

)
= Nα
Nβ

(
N+1−Nβ
N+1−Nα

)
= α(1−β)
β(1−α) =κ(α,β).
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Substituting (4.17) into (4.15) and (4.16), we find that

‖eee1(·,m+1)‖∞ ≤ max
0≤l≤M−1

|eee2(Nβ,α,l+1)|+∆t sup
t∈[0,T ]

|uuu′2(Nβ,α,t)|+C1T∆t

≤ κ(α,β) max
0≤l≤M−1

|eee2(Nβ,α,l+1)|+C1∆t,

‖eee2(·,m+1)‖∞ ≤ max
0≤l≤M−1

|eee1(Nα,l+1)|+∆t sup
t∈[0,T ]

|uuu′1(Nα,t)|+C2T∆t

≤ κ(α,β) max
0≤l≤M−1

|eee1(Nα,l+1)|+C2∆t,

(4.18)

where

C1 = C̃+ sup
t∈[0,T ]

|uuu′2(Nβ,α,t)|+C1T, C2 = C̃+ sup
t∈[0,T ]

|uuu′1(Nα,t)|+C2T.

Since the terms on the right-hand side of (4.18) do not depend on m, we can deduce
that

‖eee1(·,·)‖∞,T ≤κ(α,β)‖eee2(·, ·)‖∞,T +C1∆t,
‖eee2(·,·)‖∞,T ≤κ(α,β)‖eee1(·, ·)‖∞,T +C2∆t.

Thus we have

(1−κ(α,β))(‖eee1(·,·)‖∞,T +‖eee2(·, ·)‖∞,T )≤ (C1 +C2)∆t,

which gives us (4.11). If the data is sufficiently smooth, the error will tend to zero as
∆t approaches 0.

The convergence of the localized ETD2 method can be proved using similar tech-
niques. Denote by êeei,m the error between the exact semidiscrete solution produced
by (3.4)-(3.5) and the fully discrete localized ETD2 solution (3.8)-(3.9). We have the
following results.

Theorem 4.2. For sufficiently smooth data, the localized ETD2 method converges as
∆t tends to 0. More precisely, the following error bound holds:

‖êee1(·, ·)‖∞,T +‖êee2(·,·)‖∞,T ≤C(∆t)2, (4.19)

where C is a constant depending on ν, T , the size of overlap, the mesh size h, uuu′′1(Nα,t),
uuu′′2(Nβ,α,t), the source term f and the boundary data.

Proof. We follow similar arguments as in Theorem 4.1 but skip some details.
For simplicity, assume that f = 0 and ψ1 =ψ2 = 0; we use Taylor series twice with the
remainder in integral form and write the exact solution, for instance, in Ω1 as follows:

uuu1(·,tm+1) = e∆tAAA1uuu1(·,tm)+
∫ ∆t

0
e(∆t−s)AAA1FFF 1(0,0,uuu2(Nβ,α,tm))ds

+
∫ ∆t

0
e(∆t−s)AAA1

[
FFF 1(0,0,uuu2(Nβ,α,tm+1))−FFF 1(0,0,uuu2(Nβ,α,tm))

∆t

]
sds

+γ1,m+1,

for m= 0,. ..,M−1, where

γ1,m+1 =
∫ ∆t

0
e(∆t−s)AAA1

(
1

∆t

∫ ∆t

0
(∆t−τ)FFF 1(0,0,uuu′′2(Nβ,α,tm+τ))dτ

)
sds
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+
∫ ∆t

0
e(∆t−s)AAA1

∫ s

0
(s−τ)FFF 1(0,0,uuu′′2(Nβ,α,tm+τ))dτ ds.

The error between the exact solution and the localized, ETD2 solution (3.8)-(3.9) sat-
isfies:

êee1(·,m+1) = e∆tAAA1êee1(·,m)+
∫ ∆t

0
e(∆t−s)AAA1FFF 1(0,0,êee2(Nβ,α,m))

+
∫ ∆t

0
e(∆t−s)AAA1

[
FFF 1(0,0,êee2(Nβ,α,m+1))−FFF 1(0,0,êee2(Nβ,α,m))

∆t

]
sds

+γ1,m+1.

Note that γ1,m+1(j), 1≤ j≤N1, is bounded by C∗(∆t)3 where C∗ depends on the supre-
mum of uuu′′2(Nβ,α,t) for t∈ (0,T ). Using Remark 4.1 and Corollary 4.1, we can obtain a
bound for êee1,m as follows:

|̂eee1(j,m+1)|≤ j

N1 +1 max
0≤l≤M−1

|̂eee2(Nβ,α,l+1)|+C1T (∆t)2, 1≤ j≤N1,

for some constant C1. Similarly, one can derive a bound for êee2(·,m). Following same
arguments as in (4.17) and so on, we finally obtain

(1−κ(α,β))(‖êee1(·, ·)‖∞,T +‖êee2(·, ·)‖∞,T )≤CT (∆t)2,

for some constant C depending on the mesh size h, the supremums of uuu′′1(Nα,t) and
uuu′′2(Nβ,α,t) on (0,T ).

4.3. Convergence of the Schwarz iterative solutions to the corresponding
localized ETD solutions. We will show in Theorem 4.3 that Method 2 converges at
a similar linear rate as in the continuous problem (cf. Theorem 2.1). The rate depends
only on the size of overlap but neither on the mesh size nor the time step size. The
convergence of Method 1 is obtained as a consequence of Theorem 4.3 (see Remark 4.2).

Theorem 4.3. The sequence of iterates
(
UUU

(k)
1 (·, ·),UUU (k)

2 (·, ·)
)

given by Method 2
with the localized ETD1 algorithm (3.15)-(3.16) (or the localized ETD2 (3.17)-(3.18))
converges to the discrete solution (UUU1(·,·),UUU2(·, ·)) in (3.6)-(3.7) (or (3.8)-(3.9)) as k→
∞:

‖UUU (k)
1 (·, ·)−UUU1(·, ·)‖∞,T +‖UUU (k)

2 (·, ·)−UUU2(·, ·)‖∞,T→0, as k→∞.

In particular:

‖UUU (2k+1)
1 (·,·)−UUU1(·, ·)‖∞,T ≤ (κ(α,β))k |UUU (0)

2 (Nβ,α,·)−UUU2(Nβ,α, ·)|T ,

‖UUU (2k+1)
2 (·,·)−UUU2(·, ·)‖∞,T ≤ (κ(α,β))k |UUU (0)

1 (Nα,·)−UUU1(Nα, ·)|T .

Proof. Define the errors at each iteration:

www
(k+1)
1 (·, ·) =UUU (k+1)

1 (·, ·)−UUU1(·,·), www
(k+1)
2 (·, ·) =UUU (k+1)

2 (·, ·)−UUU2(·,·),

that satisfy the following equations: for m= 0,1,. ..,M−1,
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i) if ETD1 is used:

www
(k+1)
1 (·,m+1) = e∆tAAA1www

(k+1)
1 (·,m)+

∫ ∆t

0
e(∆t−s)AAA1FFF 1(0,0,www(k)

2 (Nβ,α,m+1)),

www
(k+1)
2 (·,m+1) = e∆tAAA2www

(k+1)
2 (·,m)+

∫ ∆t

0
e(∆t−s)AAA2FFF 2(0,www(k)

1 (Nα,m+1),0),

ii) if ETD2 is used:

www
(k+1)
1 (·,m+1) = e∆tAAA1www

(k+1)
1 (·,m)

+
∫ ∆t

0
e(∆t−s)AAA1

[
FFF 1(0,0,www(k)

2 (Nβ,α,m+1))−FFF 1(0,0,www(k)
2 (Nβ,α,m))

∆t s

+FFF 1(www(k)
2 (0,0,Nβ,α,m))

]
ds,

www
(k+1)
2 (·,m+1) = e∆tAAA2www

(k+1)
2 (·,m)

+
∫ ∆t

0
e(∆t−s)AAA2

[
FFF 2(0,www(k)

1 (Nα,m+1),0)−FFF 2(0,www(k)
1 (Nα,m),0)

∆t s

+FFF 2(0,www(k)
1 (Nα,m),0)

]
ds.

For both cases, the initial conditions are www(k+1)
1 (·,0) =www(k+1)

2 (·,0) =000. By Lemma 4.2
and Remark 4.1, we have that

|www(k+1)
1 (j,m)|≤ j

N1 +1 |w
ww

(k)
2 (Nβ,α, ·)|T , 1≤ j≤Nβ−1,

|www(k+1)
2 (j,m)|≤ N2 +1−j

N2 +1 |www(k)
1 (Nα,·)|T , 1≤ j≤N−Nα,

from which we deduce that (as in [9, Lemma 2.7] and (4.17))

|www(2k)
1 (Nα,·)|T ≤ (κ(α,β))k |www(0)

1 (Nα, ·)|T ,

|www(2k)
2 (Nβ,α,·)|T ≤ (κ(α,β))k |www(0)

2 (Nβ,α, ·)|T .

Using Lemma 4.2 again and these inequalities, we finally obtain

‖www(2k+1)
1 (·,·)‖∞,T ≤|www(2k)

2 (Nβ,α, ·)|T ≤
(
α(1−β)
β(1−α)

)k
|www(0)

2 (Nβ,α,·)|T .

A similar result can be proved for www2.

Remark 4.2. Method 1 can be regarded as Method 2 with only one time step T =
∆t. Consequently, the convergence of Method 1 is straightforward from Theorem 4.3.
Moreover, according to the super-linear convergence of the continuous Schwarz waveform
relaxation method for short time intervals (see Theorem 2.2), one expects that the
convergence rate of Method 1 would depend also on the time step size ∆t in that case.
We shall verify this numerically when we study the convergence of both methods versus
the time step size in the next section.

Remark 4.3. For ease of understanding, we consider the one dimensional case and
derive explicit formulas for the constant involved in the convergence of the fully discrete
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solutions and for the convergence rates of the iterative solutions. The analysis presented
above can be extended to higher dimensional problems using again the maximum prin-
ciple and with κ(α,β) being replaced by some K(δ)<1 depending on the size of overlap
δ (see [10] for the case of continuous problems). We shall present numerical results for
one and two dimensional examples in the following section.

5. Numerical experiments
In this section, we numerically study convergence behavior and accuracy of the

localized ETD algorithms presented in Section 3.3. In all experiments, we set the dif-
fusion coefficient ν= 1. In Subsection 5.1, the 1D error equation (with zero solution) is
considered to investigate the dependence of the convergence speed of Schwarz iteration
in Method 1 (the iterative, localized ETD) and Method 2 (the global-in-time, iterative,
localized ETD) on the size of overlap, on the time step size and on the length of the
time interval when the domain is decomposed into two overlapping subdomains. We
also show convergence for the case with many subdomains. In Subsection 5.2 we con-
sider a 1D example with an analytical solution and verify the temporal accuracy of the
localized ETD solutions. Finally, we present numerical results for a 2D test case in
Subsection 5.3.

5.1. The 1D error equation for testing the convergence of Schwarz iter-
ations. The spatial domain Ω = (0,2) is split into two non-overlapping subdomains
Ω̃1 = (0,1) and Ω̃2 = (1,2) with an interface Γ ={x = 1}. We enlarge each Ω̃i by a
distance δ∈ (0,1) to obtain overlapping subdomains Ω1 = (0,1+δ) and Ω2 = (1−δ,2).
The overlap size is equal to 2δ and will be chosen to be proportional to the mesh size.
In order to study the convergence behavior of the two methods, we consider the error
equation with a zero solution, i.e., we solve the model problem with a zero source term,
a zero initial condition and homogeneous Dirichlet boundary conditions. We start the
iteration with a random initial guess on the interfaces between subdomains. In partic-
ular, for Method 1 and at the time step tm (m≥1), the initial interface guess values are
UUU

(0)
1 (Nα,m) and UUU (0)

2 (Nβ,α,m), while for Method 2, the initial guess consists of two vec-
tors of size M , UUU (0)

1 (Nα,·) and UUU (0)
2 (Nβ,α, ·). All the components are chosen randomly

in the interval (0,1).
At each iteration we compute the errors in L∞(Ω)-norm and in L∞(0,T,L∞(Ω))-

norm for Method 1 and Method 2 respectively. Note that to show the error reduction,
we shall normalize the errors at each iteration by the error of the first iteration.

Convergence vs. different overlap sizes.
We fix the final time T = 1, the mesh size h= 1/128≈0.0078, and the time step size

∆t= 0.01, and take various δ∈{h,2h,4h,8h,16h}. To see the effect of the overlap size on
the convergence rate, we plot the normalized errors in logarithmic scale at each Schwarz
iteration for different sizes of the overlap. For Method 1, the errors for the first time
level t= ∆t are shown in Figure 5.1 (the numbers of iterations for the following time
levels are usually smaller than the first level, but their convergence behavior is similar).
Clearly, the larger the size of overlap, the faster the convergence. Moreover, the errors
decay quite faster if one uses the localized ETD2 instead of the localized ETD1 (by a
factor of nearly 2).

For Method 2, the errors over the whole time interval are presented in Figure 5.2.
The number of Schwarz iterations is for the whole time interval, not at each time level
as in Method 1. We observe that the size of overlap has a profound effect in this case.
However, we do not observe a significant difference between the localized ETD1 and
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Figure 5.1. Decay curves of the normalized L∞(Ω) errors of Method 1 at t = ∆t for different
sizes of overlap, with the localized ETD1 (left) or the localized ETD2 (right).

the localized ETD2 in terms of number of iterations required to obtain similar error
reduction.
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Figure 5.2. Decay curves of the normalized L∞(0,T,L∞(Ω)) errors of Method 2 over [0,T ] for
different sizes of overlap, with the localized ETD1 (left) or the localized ETD2 (right).

Method δ=h δ= 2h δ= 4h δ= 8h

Theoretical rate
α(1−β)
β(1−α)

0.97 0.94 0.88 0.78

Method 1 Localized ETD1 0.91 0.83 0.66 0.38
Localized ETD2 0.84 0.69 0.47 0.20

Method 2 Localized ETD1 0.97 0.96 0.92 0.80
Localized ETD2 0.98 0.96 0.92 0.76

Table 5.1. Theoretical and simulated decay rates of the normalized errors for the two methods.

In Table 5.1, we compare theoretical and simulated decay rates of the normalized
errors |www

(2k)
1 (Nα,1)|
|www(0)

1 (Nα,1)|
(at the first time level t= ∆t) for Method 1 and |www

(2k)
1 (Nα,·)|T
|www(0)

1 (Nα,·)|T
(over the

whole time interval) for Method 2 with respect to the number of iterations for different
sizes of overlap. We see that the numerical rates of Method 2 are quite consistent with
the theory, while for Method 1, the error decays at a linear rate but much faster than
the theoretical prediction. For evolution problems, the space domain decomposition
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behaves differently from the case of elliptic problems and one should take into account
also the effect of the time step sizes. The next results further confirm this effect.

Convergence vs. different time step sizes.
We fix h= 1/128, δ= 8h, T = 1 and take various time step sizes ∆t∈

{0.2,0.1,0.05,0.025,0.0125}. We show the error evolution curves for different time step
sizes in Figure 5.3 (Method 1 in which the normalized errors are computed at the first
time level) and Figure 5.4 (Method 2 where the normalized errors are computed in the
whole time interval). For Method 1, it is easy to find that the convergence is very
sensitive to the time step size - the smaller the time step, the faster the rate; again, the
error decays much faster in the case of the iterative localized ETD2 than the iterative
localized ETD1 (by a factor of 3 now). For Method 2, however, the results show that
it is quite independent of the time step, especially when the localized ETD2 is used.
Hence, one can use large time steps without increasing significantly the number of it-
erations. In addition, the localized ETD2 always gives much smaller errors than the
localized ETD1 using the same number of iterations.
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Figure 5.3. Decay curves of the normalized L∞(Ω) errors of Method 1 at the first time level
t = ∆t for different time step sizes, with the localized ETD1 (left) or the localized ETD2 (right).
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Figure 5.4. Decay curves of the normalized L∞(0,T,L∞(Ω)) errors of Method 2 over [0,T ] for
different time step sizes, with the localized ETD1 (left) or the localized ETD2 (right).

Convergence vs. different final times.
To see the super-linear convergence regime of Schwarz iteration of Method 2, we

fix h= 1/128, δ= 8h, ∆t= 0.01 and show the error evolution curves for different final
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times T ∈ {0.25,0.5,1,2,4} in Figure 5.5. As predicted by the theory, if the time
interval becomes larger, the convergence rate becomes linear. To take advantage of
the super-linear convergence when a long time interval [0,T ] is considered, one should
first partition [0,T ] into sub-intervals of smaller sizes, called time windows, and then
perform Schwarz iteration on each time window (successive time windows do not overlap
in time). In addition, for the global-in-time approach, it seems that the localized ETD1
and ETD2 have quite similar decay rates along the iterations.
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Figure 5.5. Decay curves of the normalized L∞(0,T,L∞(Ω)) errors of Method 2 over [0,T ] for
different T ∈ {0.25,0.5,1,2,4}, with the localized ETD1 (left) or the localized ETD2 (right).

Convergence vs different number of subdomains.
The spatial domain Ω = (0,2) is split into P non-overlapping uniform subdomains

Ω̃i. Then each boundary point of Ω̃i interior to the domain Ω is enlarged by a distance
δ∈ (0,1) to form overlapping subdomains Ωi with a uniform size of overlap equal to
2δ. We fix T = 0.25, ∆t= 0.01, δ= 4h with h= 1/256≈0.0039 in this test. We increase
the number of subdomains and see its effects on the convergence speed of the Schwarz
iteration. The results of error decay curves for Method 1 and Method 2 are shown in
Figures 5.6 and 5.7 respectively for P ∈{2,4,8,16}. We see that the convergence dete-
riorates as the number of subdomains increases, and the use of ETD2 helps reduce this
deterioration. Note that this is a well-known behavior of domain decomposition meth-
ods and a coarse mesh then often can be additionally used to help obtain convergence
independent of the number of subdomains [2].
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Figure 5.6. Decay curves of the normalized L∞(Ω) errors of Method 1 at t = ∆t for different
numbers (P ) of subdomains, with the localized ETD1 (left) or the localized ETD2 (right).
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Figure 5.7. Decay curves of the normalized L∞(0,T,L∞(Ω)) errors of Method 2 over [0,T ] for
different numbers (P ) of subdomains, with the localized ETD1 (left) or the localized ETD2 (right).

5.2. A 1D example with an analytical solution for testing the accuracy in
time of localized ETD solutions. Consider the spatial domain Ω = (−1,1), which
is split into two overlapping subdomains Ω1 = (−1,δ) and Ω2 = (−δ,1) for 0<δ<1. We
set T = 0.25 and solve the problem

∂u

∂t
= ∂2u

∂x2 +2π2eπ
2t sin

(
π
(
x− 1

4
))
,

with the exact solution given by

u(x,t) = eπ
2t sin

(
π(x− 1

4)
)
.

The nonhomogemeous Dirichlet boundary conditions and the initial condition are then
determined correspondingly from the exact solution. We fix the mesh size h= 2/512≈
0.0039, and vary ∆t∈{1/40,1/80,1/160,1/320} and δ∈{h,2h,4h,8h,16h}. We would
like to verify the temporal accuracy of the two localized ETD methods. For both cases,
the converged localized ETD solution is defined whenever the relative residual is smaller
than a given tolerance ε: ε= 10−4 if the localized ETD1 is used and ε= 10−6 if the local-
ized ETD2 is used. The relative errors in L∞(0,T,L∞(Ω))-norm between the localized
ETD solutions (by (3.6)-(3.7) or (3.8)-(3.9)) and the exact solution are computed and
presented in Tables 5.2 and 5.3 for the localized ETD1 and the localized ETD2 re-
spectively, where the numbers in brackets are the convergence rate of the errors at two
successive time step refinement levels. We note that once completely converged, the lo-
calized ETD solutions computed by the two iterative domain decomposition algorithms,
Method 1 and Method 2, are the same.

It is easy to see that the errors produced by the monodomain (global) ETD method
and by the multidomain localized ETD methods are different, which is consistent with
the discussions in Section 4. Also the localized ETD solutions corresponding to different
sizes of overlap are not exactly the same. We observe that the orders of accuracy in time
of the localized ETD schemes are well preserved if the overlap size is large enough. In
addition, the errors given by the multidomain localized ETD solutions are usually larger
than those by the monodomain ETD methods, except when sufficiently large overlaps
and small time step sizes are used.
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Method Time step size ∆t
1/40 1/80 1/160 1/320

Global ETD1 1.22E−01 6.21E−02 (0.93) 3.09E−02 (0.97) 1.54E−02 (1.00)
δ=h 3.83E−01 2.46E−01 (0.64) 1.60E−01 (0.62) 1.04E−01 (0.61)

Localized δ= 2h 3.73E−01 2.36E−01 (0.66) 1.51E−01 (0.65) 9.62E−02 (0.65)
ETD1 δ= 4h 3.53E−01 2.18E−01 (0.70) 1.34E−01 (0.70) 8.18E−02 (0.71)

δ= 8h 3.17E−01 1.87E−01 (0.77) 1.08E−01 (0.79) 6.05E−02 (0.84)
δ= 16h 2.61E−01 1.43E−01 (0.86) 7.62E−02 (0.91) 3.93E−02 (0.96)

Table 5.2. Relative errors and convergence rates of the localized ETD1 solutions with two sub-
domains.

Method Time step size ∆t
1/40 1/80 1/160 1/320

Global ETD2 5.17E−03 1.28E−03 (2.01) 3.21E−04 (2.00) 8.46E−05 (1.93)
δ=h 1.81E−02 6.40E−03 (1.50) 2.22E−03 (1.53) 7.58E−04 (1.55)

Localized δ= 2h 1.74E−02 6.03E−03 (1.53) 2.03E−03 (1.57) 6.67E−04 (1.61)
ETD2 δ= 4h 1.62E−02 5.37E−03 (1.59) 1.71E−03 (1.65) 5.21E−04 (1.72)

δ= 8h 1.41E−02 4.34E−03 (1.70) 1.26E−03 (1.79) 3.44E−04 (1.97)
δ= 16h 1.11E−02 3.11E−03 (1.84) 8.20E−04 (1.92) 2.14E−04 (1.94)

Table 5.3. Relative errors and convergence rates of the localized ETD2 solutions with two sub-
domains.

5.3. A 2D example. The spatial domain is Ω = (0,π)2, T = 0.5 and the exact
solution is chosen to be

u(x,y,t) = e−4t sin(x− 1
4 )sin(2(y− 1

8 )).

The nonhomogemeous Dirichlet boundary conditions and the initial condition are again
determined correspondingly from the exact solution. In space, we use a Cartesian grid
with h=π/128; in time, we use a uniform time step size ∆t=T/128. We consider a
decomposition of Ω into overlapping squares of equal size with a fixed overlap size equal
to 9h. We vary the number of subdomains, and apply Method 1 and Method 2 with
the localized ETD2. The “converged” localized ETD solutions are computed after some
fixed number of Schwarz iterations and compared with the exact solution. Table 5.4
reports the errors between the localized ETD solutions and the exact solution in L∞(Ω)-
norm at time t=T under different numbers of subdomains (a total of P ×P subdomains
with uniform partition in each direction). The corresponding numbers of iterations are
listed in brackets.

# of Subdomains 1×1 2×2 3×3 4×4

Method 1
2.7910E−03

2.7910E−03 [2] 2.7912E−03 [3] 2.7906E−03 [4]

Method 2 2.4073E−01 [2] 3.4382E−01 [3] 3.2665E−01 [4]
2.7913E−03 [14] 2.7931E−03 [19] 2.7911E−03 [23]

Table 5.4. L∞(Ω) errors at time t = T between the localized ETD solutions (using the localized
ETD2) with different number of subdomains and the exact solution; the numbers of Schwarz iterations
used are shown in brackets.

It can be seen that for a sufficiently large size of overlap, Method 1 converges after
a few iterations (just P , the numbers of subdomains in one direction) irrespective of
the number of subdomains and reaches the accuracy of the monodomain ETD solution.
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However, for Method 2, the convergence is slower. It takes more iterations to achieve the
desired accuracy. In particular, if the number of iterations is fixed to be P , the numerical
errors are much larger than the error given by the monodomain ETD solution. At least
for this example with conforming time step sizes, Method 1 seems more efficient than
Method 2.

6. Conclusions
In this paper, we have introduced two iterative, localized ETD methods based on

overlapping domain decomposition for the time-dependent diffusion equation: Method
1 with iterations at each time step and Method 2 in which time-dependent problems
are solved at each iteration. Convergence analysis is rigorously studied for the one-
dimensional (in space) case with discussions of extensions to higher-dimensional prob-
lems. Numerical experiments in 1D and 2D spaces confirm that both iterative domain
decomposition algorithms converge linearly (at each time step or the whole time window)
and the convergence rate depends on the size of overlap. For Method 1, the convergence
rate is dependent on the time step size as well. For Method 2 with short time windows,
it could converge super-linearly. The results obtained in this work shall be useful for
future studies of localized ETD methods for more complex, stiff problems with other
discretizations, in which the cost of computation of matrix exponential vector products
is significantly reduced because of the smaller-sized subdomain problems.
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