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WAVE PROPAGATION IN RANDOM WAVEGUIDES WITH
LONG-RANGE CORRELATIONS∗

CHRISTOPHE GOMEZ† AND KNUT SøLNA‡

Abstract. The paper presents an analysis of acoustic wave propagation in a waveguide with
random fluctuations of its sound speed profile. These random perturbations are assumed to have
long-range correlation properties. In the waveguide, a monochromatic wave can be decomposed in
propagating modes and evanescent modes, and the random perturbation couples all these modes. The
paper presents an asymptotic analysis of the mode-coupling mechanism and uses this to characterize
the transmitted wave. The paper presents the first fully rigorous characterization of wave propagation
in long-range non-layered media.
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1. Introduction
Analysis of physical measurements shows that, for waves, the propagation medium

may exhibit perturbations with long-range dependencies and this has stimulated interest
in a mathematical understanding of how waves propagate through multiscale media [6,
18,21,22]. Multiscale random media with long-range correlations are used to model, for
instance, the heterogenous earth crust, the turbulent atmosphere and also for biological
tissue. There is a large literature about propagation in heterogeneous media which
vary on a well-defined microscale [10], but for multiscale random media there are many
open questions. In order to be efficient, imaging and communication algorithms require
insight about how the wave is affected by the rough medium fluctuations. In view of its
potential for applications, mathematical description of wave propagation in multiscale
random media with long-range correlations has attracted a lot of interest over the last
decade [3, 12,15,16,19,20,23].

Multiscale random media with long-range correlations affect the wave in a way
which is very different from the corruption caused by media fluctuating on a well-
defined microscale and with mixing properties [10]. Wave propagation in random media
with long-range correlations has already been considered in one-dimensional propagation
media [12, 20] or open media under the paraxial approximation [3, 7, 8, 15, 16]. More
recently, the paraxial approximation has been derived in this context from the full wave
equation [17]. These works show in particular that for wave propagation in long-range
media the stochastic effects appear at different propagation scales, all the stochastic
effects do not appear at the same time, which is in contrast with the situation in media
with mixing properties. Perturbations with long-range correlations induce first a phase
modulation on the waves, a modulation that is driven by a single standard fractional
Brownian motion, which does not depend on the frequency band [3, 20]. For larger
propagation distances, the random phase modulation starts to oscillate very fast to
produce anomalous diffusion phenomena and affects the energy propagation [12,15,16].
Here, we follow this line of research by considering the full wave equation in a waveguide
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with a continuous multiscale medium modeled through a stochastic process with long-
range correlations.

In this paper, we consider acoustic wave propagation in a planar waveguide with a
bounded cross-section D= (0,d), and given by the linearized conservation equations of
mass and momentum (see [10])

1
K(z,x)∂tp+∇.u= 0,

ρ(z,x)∂tu+∇p=F.
(1.1)

Here, p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the medium,
and K is the bulk modulus. The coordinate z represents the propagation axis along the
waveguide, and the coordinate x represents the bounded transverse section D= (0,d) of
the waveguide. The forcing term F(t,z,x) is given by

F(t,z,x) =f(t)Ψ(x)δ(z−LS)ez, (1.2)

where ez is the unit vector pointing in the z-direction. Therefore, this term models
a source located in the plan z=LS<0, emitting a wave f(t) in the z-direction, with
a transverse profile Ψ(x) (see Figure 1.1). In this paper, we assume that the medium
parameters are given by:

1
K(z,x) =

{ 1
K (1+

√
εV (z,x)) if z∈ [0,L/εs]
1
K if z∈ (−∞,0)∪(L/εs,+∞)

ρ(z,x) =ρ, z∈ (−∞,+∞) and x∈ (0,d),

where V (z,x) models the fluctuations of the propagation medium and the parameter
s describes the order of magnitude with respect to ε of the propagation distance in
the random section. This last parameter will be chosen so that we observe nontrivial
stochastic effects. The medium perturbations V (z,x) are assumed to be given by

V (z,x) := Θ
(
Bh(z,x)

)
, (1.3)

where Bh is a mean-zero continuous Gaussian random field with covariance function

E[Bh(z+z′,x)Bh(z′,y)] = rh(z)R(x,y).

Here, R is assumed to be a continuous symmetric function bounded by R(x,x) = 1, and
rh is a continuous even function so that |rh(z)|≤ rh(0) = 1, and

rh(z) ∼
z→+∞

ch
zh

with h∈ (0,1). (1.4)

This last relation is the so-called long-range property. The function Θ is a bounded
smooth and odd function on R so that the bulk modulus K takes only positive values
and E[V (z,x)] = 0. Moreover, we assume that for all l∈N,

sup
u∈R
|Θ(l)(u)|≤ClΘ, (1.5)

where Θ(l) stands for the l-th derivative of Θ. This assumption is of course not optimal,
but it has the advantage to provide a simple presentation. The long-range property for
V then follows (see Proposition 6.1 Section 6):

E[V (z+z′,x)V (z′,y)] ∼
z→+∞

Ch

zh
R(x,y) with Ch = ch

2π

(∫ +∞

−∞
xΘ(x)e−x

2/2dx
)2
.



C. GOMEZ AND K. SØLNA 1559

Figure 1.1. Illustration of the waveguide model. The source fε generates a wave that is propa-
gating in the positive z direction. The section z ∈ [0,L/εs] is randomly heterogeneous with long range
correlations. Our objective is to characterize the pulse as it emerges at the termination of the random
section, at z = L/εs.

The main consequence of the long-range property for the medium perturbations is that
its autocorrelation function is not integrable,∫ +∞

0

∣∣E[V (z+z′,x)V (z′,y)]
∣∣dz= +∞,

and this is the reason why the cumulative stochastic effects for the wave propagation
are very different from the ones obtained in the classical mixing case (see [10, Chapter
20] and [12,16,20]).

The goal of this paper is to prove that waves propagating in the random waveg-
uide, when we let s= 1/(2−h), exhibit a mode- and frequency-dependent random phase
modulations. However, for all the frequencies generated by the source and all the prop-
agating modes of the wave decomposition, the randomness of the phase modulations
is defined in terms of the same standard fractional Brownian motion. This result is
consistent with the ones already obtained in [3, 20] for perturbations with long-range
correlations, and in contrast with the ones obtained for perturbations with mixing prop-
erties. In fact, if mixing properties are considered for the random fluctuations, the phase
modulations are obtained for s= 1 (in addition to a deterministic wave deformation af-
fecting its energy) and are given by a vector of Brownian motions. The size of this vector
depends on the number of propagating modes, and its correlation matrix depends on
the frequency band of the source [10, Chapter 20]. In this paper, to prove the main
result of this paper, we use a moment technique [3] which is very convenient in the case
of long-range correlations with Gaussian underlying fluctuations.

The organization of this paper is as follows. In Section 2, we describe the wave
propagation in the waveguide through a modal decomposition, moreover, the mode-
coupling mechanism induced by the medium perturbations. In Section 3, we state the
main result of this paper, which is used in Section 4 and Section 5 to study pulse
propagation. In Section 6 we give technical results needed to deal with the long-range
dependencies of the medium perturbations. These are used in Section 7 to prove the
main result of this paper (Theorem 3.1). Finally, in Section 8 and Section 9, we prove
respectively Theorem 4.1 and Theorem 4.2 stated in Section 4.
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2. Wave propagation
In this section we describe the general strategy we use to study wave propagation

in waveguides. From (1.1) we obtain the standard wave equation for the pressure wave:

∆p− 1
c2

(1+
√
εV (z,x)1[0,L/εs](z))∂2

t p=∇·F, (2.1)

where ∆ =∂2
z +∂2

x and c=
√
K/ρ is the sound speed. In this paper we consider mainly

Dirichlet boundary conditions (Neumann boundary conditions are considered in Section
5)

p(t,0,z) =p(t,d,z) = 0, ∀(t,z)∈R×R.

In (2.1) the random fluctuations of the velocity profile are modeled as a slab for z∈
[0,L/εs] with the z-direction being the propagation axis of the waveguide. The depth z=
L/εs is the position of the receivers recording the incoming signal that has propagated
through the unknown medium. Assuming that no wave is incoming from the right side
of the receivers, this setup provides a energy conservation relation which will be useful
for the forthcoming analysis.

The wave Equation (2.1) is a linear equation so that the pressure wave can be
decomposed as a superposition of monochromatic wave with the Fourier transform

p̂(ω,x,z) =
∫
p(t,x,z)eiωtdt and p(t,x,z) = 1

2π

∫
p̂(ω,x,z)e−iωtdω.

Therefore, the pressure field p̂(ω,x,z) satisfies the following Helmholtz equation (time-
harmonic wave equation) in z∈ (LS ,+∞) (resp. z∈ (−∞,LS))

∂2
z p̂(ω,x,z)+∂2

xp̂(ω,x,z)+k2(ω)(1+
√
εV (z,x)1[0,L/εs](z))p̂(ω,x,z) = 0, (2.2)

where k(ω) =ω/c is the wavenumber, and with Dirichlet boundary conditions,

p̂(ω,0,z) = p̂(ω,d,z) = 0, ∀z∈R.

Moreover, according to the form of the source term (1.2) the pressure field satisfies the
following jump conditions and longitudinal velocity continuity across the plane z=LS

p̂(ω,x,L+
S )− p̂(ω,x,L−S ) = f̂(ω)Ψ(x) and ∂z p̂(ω,x,L+

S ) =∂z p̂(ω,x,L−S ). (2.3)

The transverse Laplacian −∂2
x with Dirichlet boundary conditions on ∂D is a positive

self-adjoint operator in L2(D), and then its spectrum is composed of a countably infinite
number of positive eigenvalues (λj)j≥1 since D= (0,d) is a bounded domain. Therefore,
let us introduce for all j≥1

−∂2
xφj(x) =λjφj(x) ∀x∈D, and φj(0) =φj(d) = 0,

where 0<λ1<λ2< ·· · and the eigenvectors (φj)j≥1 form an orthonormal basis of L2(D),∫ d

0
φj(x)φl(x)dx= δjl.

Here, δjl denotes the Kronecker symbol. In the planar case D= (0,d), we have explicit
expressions for the eigenvectors and eigenvalues:

φj(x) =
√

2
d

sin(jπx/d) and λj = j2π2

d2 ∀j≥1.
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As a result, we have the following decomposition of the wave field

p̂(ω,x,z) =
∑
j≥1

p̂j(ω,z)φj(x). (2.4)

The two next sections present the modal decomposition of p̂(ω,x,z), first in a homoge-
neous waveguide (V ≡0) and then for the randomly perturbed waveguide.

2.1. Modal decomposition in homogeneous waveguides (V ≡0). This
section is devoted to the modal decomposition (2.4) for a homogeneous waveguide.
This describes the wave propagation from the source location z=LS to the beginning
of the random section z= 0 (see Figure 1.1). According to (2.2) and (2.4), we have for
all z 6=LS and j≥1

d2

dz2 p̂j(ω,z)+β2
j (ω)p̂j(ω,z) = 0, (2.5)

with

βj(ω) =
√
k2(ω)−λj , for j∈{1,. ..,N(ω)},

and

βj(ω) =
√
λj−k2(ω), for j≥N(ω)+1.

Here, N(ω) is the integer such that λN(ω)≤k2(ω)<λN(ω)+1, that is for our planar
waveguide

N(ω) =
[ωd
πc

]
,

where [·] stands for the integer part. As a result, according to (2.5) the pressure field
can be expanded as follows

p̂(ω,x,z) =
[N(ω)∑
j=1

âj,0(ω)√
βj(ω)

eiβj(ω)zφj(x)+
∑

j≥N(ω)+1

p̂j,0(ω)e−βj(ω)zφj(x)
]
1(LS ,+∞)(z)

+
[N(ω)∑
j=1

b̂j,0(ω)√
βj(ω)

e−iβj(ω)zφj(x)︸ ︷︷ ︸
propagating modes

+
∑

j≥N(ω)+1

q̂j,0(ω)eβj(ω)zφj(x)
]

︸ ︷︷ ︸
evanescent modes

1(−∞,LS)(z),

(2.6)

and using (2.3) we find

âj,0(ω) =− b̂j,0(ω)e−2iβj(ω)LS

=
√
βj(ω)
2 f̂(ω)e−iβj(ω)LS

〈
φj ,Ψ

〉
L2(0,d), for j∈{1,. ..,N(ω)}, (2.7)

and

p̂j,0(ω)e−βj(ω)LS =−q̂j,0(ω)eβj(ω)LS =
√
βj(ω)
2 f̂(ω)

〈
φj ,Ψ

〉
L2(0,d), for j≥N(ω)+1.
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Figure 2.1. Illustration of the right-going and left-going propagating mode amplitudes â(ω,z) and
b̂(ω,z). The source generates the probing wave â0(ω), the reflected wave is b̂(ω,0) and the transmitted
wave, which is our interest, is â(ω,L/εs). Note that there is no energy coming from z > L/εs.

In (2.6), we refer to the modes with j∈{1,. ..,N(ω)} as propagating modes, these are
modes which can propagate over large distances. The evanescent mode are the modes
with j≥N(ω)+1, and correspond to modes which cannot propagate over large dis-
tances. Here, N(ω) corresponds to the number of propagating modes, âj,0(ω) (resp.
b̂j,0(ω)) is the amplitude of the jth right-going (resp. left-going) propagating mode
and p̂j,0(ω) (resp. q̂j,0(ω)) is the amplitude of the jth right-going (resp. left-going)
evanescent mode. Note that with relatively high-frequency waves, that is with short
wave-lengths compared to the cross-section d, there are relatively many propagating
modes.

2.2. Mode coupling for randomly perturbed waveguides. In this section
we are interested in the modal decomposition of the pressure field over the randomly
perturbed section of the waveguide (0,L/εs). In this case, the perturbations of the
propagation medium induce a mode coupling. To describe this coupling mechanism,
let us define the right-going and left-going propagating mode amplitudes âj(ω,z) and
b̂j(ω,z) (j∈{1,. ..,N(ω)}) such that

p̂j(z) = âj(z)eiβjz+ b̂j(z)e−iβjz√
βj

and ∂z p̂j(z) = i
√
βj(âj(z)eiβjz− b̂j(z)e−iβjz),

(see Figure 2.1) which give

âj(z) = iβj p̂j(z)+∂z p̂j(z)
2i
√
βj

e−iβjz and b̂j(z) = iβj p̂j(z)−∂z p̂j(z)
2i
√
βj

eiβjz.

Therefore, according to (2.2) and (2.4), we have the following coupled differential equa-
tions for the mode amplitudes

d

dz
âj(ω,z) =

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cjl(ω,z)
(
âl(ω,z)ei(βl(ω)−βj(ω))z+ b̂l(ω,z)e−i(βl(ω)+βj(ω))z)

+
√
ε
ik2(ω)

2
∑

l≥N(ω)+1

Cjl(ω,z)
√
βl(ω)p̂l(ω,z)e−iβj(ω)z, (2.8)
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d

dz
b̂j(ω,z) =−

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cjl(ω,z)
(
âl(ω,z)ei(βl(ω)+βj(ω))z+ b̂l(ω,z)e−i(βl(ω)−βj(ω))z)

−
√
ε
ik2(ω)

2
∑

l≥N(ω)+1

Cjl(ω,z)
√
βl(ω)p̂l(ω,z)eiβj(ω)z, (2.9)

for j∈{1,. ..,N(ω)}, and

d2

dz2 p̂j(ω,z)−β
2
j (ω)p̂j(ω,z)+2

√
εgj(ω,z) = 0, (2.10)

for j≥N(ω)+1, where

gj(z) =k2
∑

l≥N+1
Cjl(z)

√
βjβl p̂l(z)+k2

N∑
l=1

Cjl(z)
√
βj
(
âl(z)eiβlz+ b̂l(z)e−iβlz

)
.

In these equations the coupling coefficients are defined by

Cjl(z) = 1√
βjβl

∫
D
V (z,x)φj(x)φl(x)dx. (2.11)

We complement the systems (2.8), (2.9) and (2.10) for z∈ (0,L/εs) with the boundary
conditions (for every ε):

âj(ω,0) = âj,0(ω) and b̂j(ω,L/εs) = 0, (2.12)

(see Figure 2.1) where âj,0(ω) is defined by (2.7)). The second condition in (2.12) means
that no propagating wave is incoming from the right hand side of the perturbed section
(0,L/εs). We also introduce the following radiation condition

lim
z→+∞

∑
l≥N(ω)+1

|p̂j(ω,z)|2 = 0, (2.13)

Using these conditions, one can show following [11, Section 3.2] the global conservation
relation

‖â(ω,L/εs)‖2CN(ω) +‖b̂(ω,0)‖2CN(ω) =‖â0(ω)‖2CN(ω) , (2.14)

where ‖·‖CN(ω) stands for the Euclidian norm on CN(ω). This energy conservation can
be easily derived if we neglect the coupling between the propagating and the evanescent
modes since in that case the mode coupling mechanism for the propagating modes is
skew Hermitian.

2.3. Propagating mode amplitude equations and propagator. The cou-
pled mode Equations (2.8) and (2.9) for the propagating mode amplitudes are not
closed, they involve also the evanescent mode amplitudes. However, it is possible to
derive a closed system (2.15) for the propagating mode amplitudes taking into account
the influence of the evanescent modes on the propagating modes up to an error lead-
ing to negligible effects compared to the ones discussed in the remaining of the paper
(see [10, 11, 13, 14]). This process gives the following system of coupled differential
equations for the mode amplitudes

d

dz

[
â(ω,z)
b̂(ω,z)

]
=
[√

εH(ω,z)+εG(ω,z)
][â(ω,z)
b̂(ω,z)

]
(2.15)
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with boundary conditions given by (2.12), and where

H(ω,z) =
[
Ha(ω,z) Hb(ω,z)
Hb(ω,z) Ha(ω,z)

]
and G(ω,z) =

[
Ga(ω,z) Gb(ω,z)
Gb(ω,z) Ga(ω,z)

]
with

Ha
jl(z) = ik2

2 Cjl(z)ei(βl−βj)z, Hb
jl(z) =− ik

2

2 Cjl(z)ei(βl+βj)z

Ga
jl(z) = ik4

4
∑

l′≥N+1

∫ +∞

−∞
Cjl′(z)Cl′l(z+u)eiβl(z+u)−iβjz−βl′ |u|du,

Gb
jl(z) =− ik

4

4
∑

l′≥N+1

∫ +∞

−∞
Cjl′(z)Cl′l(z+u)eiβl(z+u)+iβjz−βl′ |u|du,

(2.16)

and Cjl(z) defined by (2.11). Here, the matrices Ha and Hb describe the coupling
between the propagating modes, while the matrices Ga and Gb describe the coupling
between the evanescent modes with the propagating modes. Rescaling the propagating
mode amplitudes according to the order of magnitude of the propagation distance, we
consider

âε(ω,z) = â(ω,z/εs) and b̂ε(ω,z) = b̂(ω,z/εs),

for z∈ [0,L], satisfying the scaled coupled mode equations

d

dz

[
âε(ω,z)
b̂ε(ω,z)

]
=
[ 1
εs−1/2H

(
ω,

z

εs

)
+ε1−sG

(
ω,

z

εs

)][âε(ω,z)
b̂ε(ω,z)

]
(2.17)

with boundary conditions

âε(ω,0) = â0(ω) and b̂ε(ω,L) = 0. (2.18)

The two-point boundary value problem (2.17) and (2.18) can be solved using the prop-
agator matrix defined as the unique solution of

d

dz
Pε(ω,z) =

[ 1
εs−1/2H

(
ω,

z

εs

)
+ε1−sG

(
ω,

z

εs

)]
Pε(ω,z) with Pε(ω,0) = Id2N(ω),

(2.19)
so that for all z∈ [0,L][

âε(ω,z)
b̂ε(ω,z)

]
=Pε(ω,z)

[
âε(ω,0)
b̂ε(ω,0)

]
and

[
âε(ω,L)

0

]
=Pε(ω,L)

[
â0(ω,0)
b̂ε(ω,0)

]
, (2.20)

according to (2.12). Because of the form of H(ω,z) and G(ω,z), the propagator can be
expressed as

Pε(ω,z) =
[
Pa,ε(ω,z) Pb,ε(ω,z)
Pb,ε(ω,z) Pa,ε(ω,z)

]
, (2.21)

where Pa,ε(ω,z) describes the coupling mechanisms of the right-going modes (resp.
left-going modes) with themselves, while Pb,ε(ω,z) describes the coupling mechanisms
between the right-going and left-going modes.

In the next section we study the asymptotic distribution as ε→0 of the propagator
and we specify the propagation parameter s leading to a nontrivial asymptotic behavior.
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3. Phase modulation for the propagator
This section is devoted to the main results of this paper, which are used to describe

the pulse propagation in the two next sections. Note that according to (2.21) one can
restrict the study of the asymptotic distribution of the propagator to the one of the two
blocks

Pε(ω,z) =
[
Pa,ε(ω,z)
Pb,ε(ω,z)

]
∈MN(ω)(C)×MN(ω)(C),

whereMN(ω)(C) stands for the set of N(ω)×N(ω) matrices with complex coefficients.
This analysis is done in the following theorem.

Theorem 3.1. For s= 1/(2−h) and for all z∈ [0,L], the family (Pε(ω,z))ε converges
in distribution inMN (C)×MN (C) to[

D(ω,z)
0

]
,

with

D(ω,z) =diag(eiσ1,H(ω)BH(z),. ..,eiσN,H(ω)BH(z)), (3.1)

where BH is a standard fractional Brownian motion with Hurst index H= (2−h)/2∈
(1/2,1),

σj,H(ω) = k2(ω)
2βj(ω)

√
ChRjjjj
H(2H−1) , (3.2)

and

Rmnpq =
∫∫
D×D

R(x,x′)φm(x)φn(x)φp(x′)φq(x′)dxdx′. (3.3)

The proof of Theorem 3.1 is given in Section 7. Next, we present some remarks
regarding this result. First, Theorem 3.1 implies that the first significant stochastic
effects affecting the wave take place for s= 1/(2H)<1. This is in contrast to the classical
mixing case (see [10, Chapter 20]) for which all the stochastic effects appear for s= 1.
The second one concerns the convergence of Pb,ε(ω,z) in probability to the zero matrix
meaning that the coupling mechanisms between the right-going and left-going modes are
negligible for ε small. In other words, the backscattering is negligible for ε small. The
third one concerns the convergence in distribution of Pa,ε(ω,z) to a diagonal matrix,
which means that the coupling mechanisms between two different right-going modes is
also negligible for ε small. Finally, the propagating modes are only affected by mode- and
frequency-dependent phase modulations, but driven by the same fractional Brownian
motion, which does not depend on the frequency. The fact that the modes depend on
a common Brownian motion reflects the situation that the modes propagate through
the same medium with fluctuations that are “smoother” than in the mixing case due to
the long-range correlations. This effect of mode-dependent phase modulation driven by
a single fractional Brownian motion has already been observed in [3, Theorem 1.2] for
the random Schrödinger equation with long-range correlations.

We finish this section with two multifrequency versions of Theorem 3.1 which will
be useful for the study of the pulse propagation in the next section. The proofs of the
following requires only simple modifications of the one of Theorem 3.1.

Theorem 3.2. Let s= 1/(2−h), γ∈N∗, and z∈ [0,L].
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• For all (ω1,. ..,ωγ) such that

N(ωj) =N ∀j∈{1,. ..,γ},

the family (Pε(ω1,z),. ..,Pε(ωγ ,z))ε converges in distribution in (MN (C)×
MN (C))γ to D(ω1,z) D(ωγ ,z)

·· ·
0 0

,
• For all M>0, and (h1,. ..,hγ)∈ [−M,M ]γ , the family (Pε(ω+
εqh1,z),. ..,Pε(ω+εqhγ ,z))ε, with q∈ (0,s], converges in distribution in
(MN(ω)(C)×MN(ω)(C))γ toD(ω,z) D(ω,z)

·· ·
0 0

,
where D(ω,z) is defined by (3.1).

This theorem characterizes the behavior of the propagator at different and nearby
frequencies. It turns out that the energy and the asymptotic statistical behavior of the
propagator for different frequencies are not affected on the propagation scale L/εs, with
s= 1/(2−h). On this scale the wave does not propagate enough and accumulate enough
scattering events to affect neither the frequency coherence nor the energy. This type of
phenomenon has already been observed in [12] for one-dimensional propagation media
and in [16] for the random Schrödinger equation with long-range correlations.

4. Pulse propagation for s= 1/(2−h)
In this section we describe the asymptotic behavior of a pulse at the end of the ran-

dom section z=L/εs with s= 1/(2−h). We assume that the pulse has been generated
by the source (1.2) with

fε(t) =f(εqt)e−iω0t, so that f̂ε(ω) = 1
εq
f̂
(ω−ω0

εq
)
.

This profile models a source with carrier frequency ω0 and bandwidth of order εq.
However, for the sake of simplicity we assume that f̂(ω) is a compactly supported smooth
function, and we model the carrier frequency oscillations by a complex exponential
e−iω0t for more convenient mathematical manipulations. This later consideration leads
of course to complex valued pulse profiles, but to get back to real valued pulses one
only needs to add its complex conjugate which would then correspond to a source of
the form 2f(εqt)cos(ω0t).

Throughout this section, we refer to a broadband pulse if q<s (the order of the
pulse width is small compared to the propagation distance ε−q�ε−s) and narrowband
if q=s (the order of the pulse width is comparable to the order of the propagation
distance ε−q =ε−s). According to the boundary conditions (2.18) (no wave is incoming
from the right) the pulse can be decomposed into two parts

p
(
t,x,

L

εs

)
=pa

(
t,x,

L

εs

)
+pe

(
t,x,

L

εs

)
,
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where

pa

(
t,x,

L

εs

)
= 1

2π

∫
dωe−iωt

N(ω)∑
j=1

âεj(ω,L)√
βj(ω)

eiβj(ω)L/εsφj(x),

is the propagating part of the pulse, and

pe

(
t,x,

L

εs

)
= 1

2π

∫
dωe−iωt

∑
j≥N(ω)+1

p̂j(ω,L/εs)φj(x),

is the evanescent part of the pulse, which is small in the limit ε→0. Therefore, in
what follows, we focus our attention on the propagating component of the pressure
wave pa. In order to use Theorem 3.1 we need to express the forward-propagating mode
amplitudes âε(ω,L) in terms of Pε(ω,L). This can be done according to the right-hand
side of (2.20), but note though that the backward-propagating mode amplitudes b̂ε(ω,0)
are not specified. However, by introducing

ppr

(
t,x,

L

εs

)
= 1

4πεq

∫
dωe−iωtf̂

(ω−ω0

εq
)N(ω)∑
j,l=1

√
βl(ω)
βj(ω)Pa,ε

jl (ω,L)

×eiβj(ω)L/εse−iβl(ω)LSφj(x)
〈
φl,Ψ

〉
L2(0,d), (4.1)

we get

sup
t,x
|pa(t,x,L/εs)−ppr(t,x,L/εs)|≤C

∫
|f̂(h)|‖Pb,ε(ω0 +εqh,L)‖MN(ω0)dh,

using (2.14) and the change of variable

ω→ω0 +εqh,

and where C>0 is a deterministic constant. Then, with simple modifications of the
proof of Proposition 7.1, we obtain

lim
ε→0

∫
|f̂(h)|E

[
‖Pb,ε(ω0 +εqh,L)‖MN(ω0)

]
dh= 0,

so that

lim
ε→0

P
(

sup
t,x
|pa(t,x,L/εs)−ppr(t,x,L/εs)|>η

)
= 0.

As a result, the asymptotic behavior of the pulse p(t,x,L/εs) is equivalent to the
one of ppr(t,x,L/εs) according to [4, Theorem 3.1 pp. 27]. This is the reason why, in the
next section, we only study the asymptotic behavior of ppr(t,x,L/εs). Before starting,
we also remark that the nature of the source affects strongly the asymptotic shape of
the transmitted pulse. Let us investigate the cases of a broadband source (q<s) and a
narrowband source (q=s) in the contexts of a homogeneous medium, and then with a
random medium in order to understand the effects the random perturbations have on
the pulse.
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4.1. Broadband (q<s) and Narrowband (q=s) Pulse in the homogenous
case. This section is devoted to the study of the pulse (4.1) in a homogeneous medium.
The results presented in this section will be compared to the ones obtained in Section
4.2 and Section 4.3.

In the homogeneous case we have Pa,ε(ω,L) = IdN(ω), and after the change of vari-
able ω=ω0 +εqh the pulse (4.1) becomes, to leading order

ppr

( t
εs
,x,

L

εs

)
'
ε→0

e−iω0t/ε
s

4π

N(ω0)∑
j=1

φj(x)
〈
φj ,Ψ

〉
L2(0,d)

×
∫
e−ih(t−β′j(ω0)L)/εs−q f̂(h)eiβj(ω0)L/εseiΦ

ε
j(h)L/εs−2q

e−iβj(ω0)LSdh,

where

Φεj(h) =
nq∑
n=2

β
(n)
j (ω0)εq(n−2)h

n

n! , (4.2)

with Φε(h) = 0 if s<2q, and nq = [s/q]+1. Here, we made the identification N(ω0) =
N(ω0 +εqh) since we assumed that f̂(h) has a compact support and ε is small. In the
broadband case the source pulsewidth, which is of order 1/εq, is small compared to the
order of propagation distance 1/εs, so that a modal dispersion can be observed. In
this context, we observe the pulse for a time window of order the pulse width 1/εq and
centered at tobs/εs which is of order of the total travel time from z=LS to z=L/εs:

t

εs
= tobs

εs
+ u

εq
with u∈ [−T,T ].

Proposition 4.1. For all j∈{1,. ..,N(ω0)}, let us consider

pεj,pr(u,x,L) =e−iβj(ω0)(L/εs−LS)eiω0tj/ε
s

eiω0u/ε
q

ppr

( tj
εs

+ u

εq
,x,

L

εs

)
,

where s= 1/(2−h) and

tj =β′j(ω0)L. (4.3)

• If q∈ [s/2,s), we have

lim
ε→0

pεj,pr(u,x,L) = 1
2Kj,L ∗f(u)φj(x)

〈
φj ,Ψ

〉
L2(0,d),

where

K̂j,L(h) =eih
2β

(2)
j

(ω0)L/2, if q= s

2 , and Kj,L(t) = δ(t), if q>
s

2 .
(4.4)

• If q∈ (0,s/2), we have

lim
ε→0

pεj,pr(u,x,L) = 0.

Consequently, in the broadband case, we can observe a train of coherent transmit-
ted pulses at several well-separated observation times tj . At these times, the pulse is
a single mode traveling with the group velocity 1/β′j(ω0) and dispersed through the
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kernel Kj,L. Note that for the case 0<q<s/2, that is for a source with a very small
pulsewidth compared to the propagation distance, the generated wave is not able to
propagate. This can be understood through the stationary phase theorem and that
such a pulse is carrying highly oscillating frequencies which cancel out during the prop-
agation. However, we will see in Section 5, considering Neumann boundary conditions,
that such a pulse with q= 0 can propagate in that case.

Next we consider the narrowband case. In this case the orders of the source
pulsewidth and the propagation distance are the same (∼1/εs) so that the propagating
modes overlap, there is no modal dispersion. In this case, to describe the asymptotic
behavior of the pulse, we need to compensate the rapid phase eiβj(ω)L/εs . However,
note that (4.1) is a superposition of N(ω0) eigenvector φj , so that one can study the
finite-dimensional vectors corresponding to the modal decomposition compensated by
the fast phase as described in the following result.

Proposition 4.2. For all j∈{1,. ..,N(ω0)}, let us consider the projection

pεj,pr(t,L) =e−iβj(ω0)(L/εs−LS)eiω0t/ε
s〈
ppr

( t
εs
, ·, L
εs

)
,φj
〉
L2(0,d).

We have for s= 1/(2−h)

lim
ε→0

pεj,pr(t,L) = 1
2f(t−β′j(ω0)L)

〈
φj ,Ψ

〉
L2(0,d). (4.5)

Roughly speaking, we can then write

ppr

( t
εs
,x,

L

εs

)
'
ε→0

e−iω0t/ε
s

2

N(ω0)∑
j=1

f(t−β′j(ω0)L)eiβj(ω0)(L/εs−LS)φj(x)
〈
φj ,Ψ

〉
L2(0,d).

The transmitted pulse is therefore a superposition of modes and each of them is centered
around its travel time tj defined by (4.3).

In the two following sections we describe how the pulse is affected by the random
perturbations of the propagation medium. We consider first, the case of a pulse gener-
ated by a broadband source and second by a narrowband source.

4.2. Broadband pulse (q<s= 1/(2−h)) in the random case. Following
the lines of Section 4.1, making the change of variable ω=ω0 +εqh in (4.1) we have

ppr

( tobs
εs

+ u

εq
,x,

L

εs

)
=e−iω0tobs/ε

s

e−iω0u/ε
q

4π

N(ω0)∑
j,l=1

√
βl(ω0)
βj(ω0)e

βj(ω0)L/εse−iβl(ω0)LSφj(x)
〈
φl,Ψ

〉
L2(0,d)

×
∫
e−ihuf̂(h)eih(β′j(ω0)L−tobs)/εs−qeiΦ

ε
j(h)L/εs−2q

×Pa,ε
jl (ω0 +εqh,L)dh, (4.6)

where Φε is given by (4.2). As in the homogeneous case, we can observe a train of
coherent transmitted pulses, described in the following result, at several well-separated
observation times tobs= tj defined by (4.3).

Theorem 4.1. For all j∈{1,. ..,N(ω0)}, let us consider

pεj,pr(u,x,L) =e−iβj(ω0)(L/εs−LS)eiω0tj/ε
s

eiω0u/ε
q

ppr

( tj
εs

+ u

εq
,x,

L

εs

)
, (4.7)

where s= 1/(2−h).
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• If q∈ [s/2,s), the family (pε1,pr(·, ·,L),. ..,pεN(ω0),pr(·,·,L))ε converges
in distribution on C([−T,T ]×(0,d),CN(ω0)) as ε goes to 0 to
(p0

1,pr(·,·,L),. ..,p0
N(ω0),pr(·, ·,L))ε, where

p0
j,pr(u,x,L) = eiσj,H(ω0)BH(L)

2 Kj,L ∗f(u)φj(x)
〈
φj ,Ψ

〉
L2(0,d). (4.8)

Here Kj,L is defined by (4.4), BH is a standard fractional Brownian motion
with Hurst index H= (2−h)/2∈ (1/2,1), and σj,H(ω0) is defined by (3.2).

• If q∈ (0,s/2), the family (pε1,pr(·,·,L),. ..,pεN(ω0),pr(·, ·,L))ε converges in proba-
bility on C([−T,T ]×(0,d),CN(ω0)) to 0 as ε goes to 0.

This result shows that the random perturbations of the propagation medium induce
on the pulse, a mode-dependent and frequency-dependent phase modulation driven by
a single standard fractional Brownian motion, and spread dispersively through the ker-
nel Kj,L. This result is in contrast with the case of random perturbations with mixing
properties (see [10, Section 20.4.3]) and s= 1 in three respects. First, the random modu-
lation is driven by a fractional Brownian motion and not by a standard Brownian motion.
Second, in our case, the fractional Brownian motion is the same for all the transmitted
waves and not a family of standard Brownian motion with some frequency-dependent
correlation matrix. Finally, as already discussed in Section 3, on this propagation scale
(L/εs with s= 1/(2H)) the pulse does not accumulate enough scattering events to affect
its energy [12,16]: we have

N(ω0)∑
j=1

∫
‖p0
j,pr(u,·,L)‖2L2(0,d)du= 1

2

∫
|f(u)|2du‖Ψ‖2L2(0,d)

where the right-hand side is the total energy produced by the source and entering the
random medium.

4.3. Narrowband pulse (q=s= 1/(2−h)) in the random case. As discussed
in Section 4.1, in the context of a narrowband pulse, the propagating modes overlap,
there is no modal dispersion, and we have from (4.1)

ppr

( t
εs
,x,

L

εs

)
=e−iω0t/ε

s

4π

N(ω0)∑
j,l=1

√
βl(ω0)
βj(ω0)e

βj(ω0)L/εse−iβl(ω0)LSφj(x)
〈
φl,Ψ

〉
L2(0,d)

×
∫
f̂(h)eih(β′j(ω0)L−t)×Pa,ε

jl (ω0 +εsh,L)dh. (4.9)

As in the homogeneous case, because of the mode overlapping, we study the finite-
dimensional vectors corresponding to the modal decomposition and compensated by
the fast phase. The precise result is given in the following theorem.

Theorem 4.2. For all j∈{1,. ..,N(ω0)}, let us consider the projection

pεj,pr(t,L) =e−iβj(ω0)(L/εs−LS)eiω0t/ε
s〈
ppr

( t
εs
, ·, L
εs

)
,φj
〉
L2(0,d).

The family (pε1,pr(·,L),. ..,pεN(ω0),pr(·,L))ε converges in distribution in C([−T,T ],CN(ω0))
as ε goes to 0 to (p0

1,pr(·,L),. ..,p0
N(ω0),pr(·,L))ε, where for j∈{1,. ..,N(ω0)}

p0
j,pr(t,L) = 1

2e
iσj,H(ω0)BH(L)f(t−β′j(ω0)L)

〈
φj ,Ψ

〉
L2(0,d).
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Here, BH is a standard fractional Brownian motion with Hurst index H ∈ (1/2,1), and
σj,H(ω0) is defined by (3.2).

Roughly speaking, the pulse can be described as

ppr

( t
εs
,x,

L

εs

)
'
ε→0

e−iω0t/ε
s

2

N(ω0)∑
j=1

eiσj,H(ω0)BH(L)f(t−β′j(ω0)L)eiβj(ω0)(L/εs−LS)φj(x)
〈
φj ,Ψ

〉
L2(0,d).

The transmitted pulse is therefore a superposition of modes, each of them is centered
around its travel time tj defined by (4.3), but also modulated by a mode-dependent and
frequency-dependent random phase. Once again the randomness comes from the same
fractional Brownian motion for all the propagating modes.

5. Pulse propagation for a single-mode waveguide with Neumann bound-
ary conditions

In this section we study, using Theorem 3.2, the particular case of a single-mode
waveguide with Neumann boundary conditions on ∂D to make the link with earlier
works in one-dimensional propagation media [19, 20] and make a distinction with the
above results. Considering Neumann conditions at the waveguide boundaries, signals
with pulsewidth of order 1 (q= 0) can propagate through the waveguide. The reason
is that, compared to the context of Dirichlet boundary conditions, the Laplacian now
has a null eigenvalue. Moreover, as described below, in the Neumann case the random
medium fluctuations produce a random travel time correction for the pulse. In this
context, the spectral analysis of the transverse Laplacian ∂2

x in (2.2) is slightly different:
−∂2

x with Neumann boundary conditions on ∂D is a nonnegative self-adjoint operator in
L2(0,d). Its spectrum consists of a countably infinite number of nonnegative eigenvalues
(λj)j≥0 since (0,d) is a bounded domain. Therefore, we have for all j≥0

−∂2
xφj(x) =λjφj(x) ∀x∈ (0,d), and φ′j(0) =φ′j(d) = 0,

where 0 =λ0<λ1< ·· · and the eigenvectors (φj)j≥0 form an orthonormal basis of
L2(0,d). In our context, we have explicit expressions for the eigenvectors and eigen-
values

λ0 = 0 and φ0 = 1√
d
,

and

λj = j2π2

d2 and φj(x) =
√

2
d

cos(jπx/d), for j≥1.

Moreover, in this context the number of propagating modes is now given by

N(ω) = 1+
[ωd
πc

]
,

so that in order to have only one propagating mode (N(ω) = 1), we have to take

ω∈ (−ωc,ωc) with ωc= c
√
λ1.
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Let us assume that the temporal profile of the source (1.2) is given by fε(t) =f(t), for
which the support of f̂(ω) is included in (−ωc,ωc). According to the remarks at the
beginning of Section 4, to study the asymptotic behavior of the pulse, we consider the
following propagating part with only one mode:

pa
(
t,
L

εs
)

=
∫ d

0 Ψ(x)dx
4πd

∫
f̂(ω)e−iω(t−L/(cεs))

[
Pa,ε

11 (ω,L)
]−1

dω.

Here, the coefficient [Pa,ε
11 (ω,L)]−1 is called the transmission coefficient, and is derived

from the right hand side of (2.20) and that |Pa,ε
11 (ω,L)|2−|Pb,ε

11 (ω,L)|2 = 1. Conse-
quently, we observe the transmitted pulse in a time window of order 1 (comparable to
the pulse width) and centered at L/(cεs) (of order the total travel time)

pεa(u,L) =pa
( L
cεs

+u,
L

εs
)

=
∫ d

0 Ψ(x)dx
4πd

∫
f̂(ω)e−iωu[Pa,ε

11 (ω,L)]−1dω,

and we have the following result.

Theorem 5.1. For s= 1/(2−h) the family (pεa(·,L))ε converges in distribution on
C([−T,T ]) as ε goes to 0 to

p0
a(t,L) =

∫ d
0 Ψ(x)dx

2d f
(
t−σHBH(L)

)
.

Here, BH is a standard fractional Brownian motion with Hurst index H= (2−h)/2∈
(1/2,1), and

σ2
H = Ch

4H(2H−1)d2c2

∫
(0,d)2

R(x,x′)dxdx′.

The proof of this result follows closely the one of Theorem 4.1 and Theorem 4.2 using
the first point of Theorem 3.2. The result obtained in Theorem 5.1 is similar to the
ones obtained in [19,20] for one-dimensional propagation media. The transmitted pulse
is the original pulse with a random time shift given by a fractional Brownian motion.
In contrast to the result obtained in the same context (single-mode random waveguide),
but with random perturbations having mixing properties [11, Proposition 3], the ran-
dom shift is here a fractional Brownian motion, and not a standard Brownian motion.
Moreover there is here no determinist deformation of the pulse and the energy is not
affected because the pulse does not accumulate enough scattering events to affect it.

In the remaining part of the paper we first derive some properties on the stochastic
process V (z,x) which we then use in the proof of Theorem 3.1, Theorem 4.1, and
Theorem 4.2.

6. The random fluctuations model
This section is devoted to some properties of the random field V (z,x) (defined by

(1.3)) modeling the medium fluctuations. The long-range property (1.4) is the key to
observe stochastic effects driven by a fractional Brownian motion and not a standard
one as in the mixing case [10, Chapter 20]. The following proposition shows that V
exhibits the long-range property as well.

Proposition 6.1. For all s∈R and (x,y)∈ (0,d)2, we have

E[V (z+s,x)V (s,y)] ∼
z→+∞

Ch

zh
R(x,y) with Ch = ch

2π

(∫ +∞

−∞
Θ(x)xe−x

2/2dx
)2
.
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The proof of this proposition follows exactly along the lines of [19, Lemma 1], but we
present it in this section as preliminaries for the proof of Proposition 6.2.

Proof. (Proof of Proposition 6.1.) The following proof is based on decomposi-
tions over the Hermite polynomials which are defined by:

Hl(u) := (−1)l g
(l)(u)
g(u) , with g(u) := e−u

2/2
√

2π
, (6.1)

which form an orthogonal basis of L2(R,g(u)du) satisfying〈
Hl,Hm

〉
L2(R,g(u)du) = l!δlm. (6.2)

Let us recall the Mehler formula, which is

E[Hl(X1)Hm(X2)] = l!E[X1X2]lδlm,

for two centered Gaussian random variables such that E[X2
1 ] =E[X2

2 ] = 1.
Now, decomposing Θ in this basis

Θ(x) =
∑
l≥1

Θl

l! Hl(x), where Θl=
〈
Hl,Θ

〉
L2(R,w(x)dx),

and using the Mehler formula, we have

E[Θ
(
Bh(z+s,x)

)
Θ
(
Bh(s,y)

)
] =

∑
l,m≥1

ΘlΘm

l!m! E[Hl(Bh(z+s,x))Hm(Bh(s,y))]

=
∑
l≥1

Θ2
l

l! r
l
h(z)Rl(x,y)

= Θ2
1rh(z)R(x,y)+

∑
l≥2

Θ2
l

l! r
l
h(z)Rl(x,y).

Now, let us remark that for l≥2 we have zhrlh(z)→0 as z→+∞, and for z large enough

∑
l≥2

∣∣∣Θ2
l

l! r
l
h(z)Rl(x,y)

∣∣∣≤C∑
l≥2

Θ2
l

l! <+∞,

since for all l≥1 we have assumed (1.5). Therefore, we finally have

zhE[V (z+s,x)V (s,y)] ∼
z→+∞

chΘ2
1R(x,y),

which concludes the proof of Proposition 6.1.

The proof of Theorem 3.1 is based on a moment technique, and we then have to
evaluate moments of the form

1
εn(s−1/2)

∫
∆n(z)

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
,xp
))]

ϕε(z,z1,. ..,zn)dz1 .. .dzn,

where n is an even number (otherwise this moment is 0 by symmetry), and

∆n(z) =
{

(z1,. ..,zn)∈ [0,z]n, s.t. 0≤zj≤zj−1 ∀j∈{2,. ..,n}
}
.
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The following proposition gives the leading order term of these moments.

Proposition 6.2. For all even numbers n≥2, and s= 1/(2−h), there exists a positive
constant C such that

sup
ε∈(0,1)

sup
(x1,...,xn)∈[0,d]n

1
εn(s−1/2)

∫
[0,z]n

∣∣∣E[ n∏
p=1

Θ
(
Bh
(zp
εs
,xp

))]∣∣∣dz1 .. .dzn≤Cnnn/2,

and

lim
ε→0

1
εn(s−1/2)

∫
∆n(z)

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
,xp

))]
ϕε(z,z1,. ..,zn)dz1 .. .dzn

= lim
ε→0

C
n/2
h

∫
∆n(z)

∑
F

∏
(p,q)∈F

R(xp,xq)
|zp−zq|h

ϕε(z,z1,. ..,zn)dz1 .. .dzn,

where ϕε is a bounded function for all ε. Here, the sum is over over all the pairings F
of {1,. ..,n}, and the limit ε→0 is uniform with respect to (x1,. ..,xn).

We recall that a pairing formed over vertices of S={1,. ..,2l} is a partition of S
into l pairs of couple (p,q) such that all the elements of S appear only in one of the
pairs and with p<q. A corresponding proposition has been proved in [17], but for the
sake of completeness we provide here a version of the proof adapted to our notations.

Proof. (Proof of Proposition 6.2.) The proof of this proposition is inspired by
some ideas developed in [24]. For the first part of the result, we decompose the function
x 7→Θ(λ−1

n x) over the Hermite polynomials with resulting coefficients Θn,l. We then
have

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
,xp

))]
=E
[ n∏
p=1

Θ
( 1
λn
λnBh

(zp
εs
,xp

))]
=

∑
l1,...,ln≥1

(
n∏
p=1

Θn,lp

lp!

)
E
[ n∏
p=1

Hlp

(
λnBh

(zp
εs
,xp

))]
.

Here, we introduce λn := (n−2)−1/2 for technical reason. As we will see below, this
parameter allows us to enforce the convergence of a series. Now, we would like to
use [24, Lemma 3.2] stating that for n≥2 and a (X1,. ..,Xn) standard Gaussian vector,
that is a mean zero Gaussian vector satisfying

E[X2
j ] = 1 and |E[XjXl]|≤1 ∀(j,l)∈{1,. ..,n}2 with j 6= l,

we have

E
[ n∏
p=1

Hlp(Xp)
]

=


l1! ·· ·ln!
2q(q!)

∑
I(l1,...,ln)

ri1j1ri2j2 ·· ·riqjq

if l1 + ·· ·+ ln= 2q and 0≤ l1,. ..,ln≤ q
0 otherwise

(6.3)

with rij =E[XiXj ], and

I(l1,. ..,ln) =
{

(i1,j1,. ..,iq,jq)∈{1,. ..,n}2q, s.t. iβ 6= jβ ∀β∈{1,. ..,q}
and all index r∈{1,. ..,n} appears lr times

}
.
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However, we cannot apply (6.3) directly because of the parameter λn. To handle this
term, we first make use of the following multiplication theorem [9]:

Hl(λnu) =λln

[l/2]∑
k=0

(1−λ−2
n )k l!

2k(l−2k)!k!Hl−2k(u).

Rewriting (6.3) to our case, we have

E
[ n∏
p=1

Hlp−2kp

(
Bh
(zp
εs
,xp

))]

=


l̃1!·· · l̃n!

2qq!
∑

I(l̃1,...,l̃n)

q∏
β=1

rh

(ziβ −zjβ
εs

)
R(xiβ ,xjβ )

if l̃1 + ·· ·+ l̃n= 2q and 0≤ l̃1,. .., l̃n≤ q with l̃p := lp−2kp,
0 otherwise.

Now, let us remark that all the indices l are odd since Θ is assumed to be odd (Θn,l= 0
for l even). Hence, l̃p= lp−2kp≥1 for all p= 1,. ..,n, so that q≥n/2. Let us consider

Aq,n :=
∫

[0,z]n

∣∣∣∣∣
q∏

m=1
rh

(zim−zjm
εs

)
R(xim ,xjm)

∣∣∣∣∣dz1 .. .dzn.

From the definition of I(l̃1,. .., l̃n) one can deduce that each of the z1,. ..,zn appear at
least once in the above product. Then, by keeping n/2 of them to integrate rh, and
bounding rh by supu |rh(u)|= 1 for the others, we obtain

Aq,n≤ (2z)n/2
(

sup
z
|rh(z)|

)q−n/2(
sup
x1,x2

|R(x1,x2)|︸ ︷︷ ︸
≤1

)q(∫ z

0

∣∣∣rh( u
εs

)∣∣∣du)n/2 , (6.4)

using the fact that the function rh is even.
Now, we want to estimate the cardinal of I(l̃1,. .., l̃n). For this, we apply again (6.3)

with X1 = ·· ·=Xn=X, where X∼N (0,1), and with now rimjm = 1. Hence, combining
(6.3) and (6.4),

∫
[0,z]n

∣∣∣E[ n∏
p=1

Hlp−2kp

(
Bh
(zp
εs
,xp

))]∣∣∣dz1 .. .dzn

≤Cn
(∫ z

0

∣∣∣rh( u
εs

)∣∣∣du)n/2E[∣∣∣ n∏
p=1

Hlp−2kp(X)
∣∣∣].

Moreover, according to [24, Lemma 3.1], we have

E
[∣∣∣ n∏
j=1

Hrj (X)
∣∣∣]≤ n∏

j=1
(n−1)rj/2

√
rj !, (6.5)
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so that ∫
[0,z]n

E
[ n∏
p=1

Hlp

(
λnBh

(zp
εs
,xp

))]
dz1 .. .dzn

≤Cn
(∫ z

0

∣∣∣rh( u
εs

)∣∣∣du)n/2 n∏
p=1

λ
lp
n lp!

[lp/2]!

×
∑

p=1,...,n
kp=0,...,[lp/2]

n∏
p=1

(n−1)lp/2−kp(λ−2
n −1)kp [lp/2]!

2kpkp!
√

(lp−2kp)!
.

After standard computations, we find for lp odd,√
(lp−2kp)!≥2[lp/2]−kp([lp/2]−kp)!, and (n−1)lp/2−kp ≤n1/2(n−1)[lp/2]−kp ,

and then, with the binomial theorem,

[lp/2]∑
kp=0

(n−1)lp/2−kp(λ−2
n −1)kp [lp/2]!

2kpkp!
√

(lp−2kp)!

≤ n1/2

2[lp/2]

[lp/2]∑
kp=0

(n−1)[lp/2]−kp(λ−2
n −1)kp [lp/2]!

kp!([lp/2]−kp)!

≤ n1/2

2[lp/2] (n+λ−2
n −2)[lp/2].

Hence, using again that all the indices lp are odd numbers, we obtain∫
[0,z]n

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
,xp

))]
dz1 .. .dzn

≤nn/2Cn
(∫ z

0

∣∣∣rh( u
εs

)∣∣∣du)n/2 ∑
lβ≥1

β∈{1,...,n}

n∏
p=1

λ
lp
n |Θn,lp |

2[lp/2][lp/2]!
(n+λ−2

n −2)[lp/2]

≤(λnn1/2)nCn
(∫ z

0

∣∣∣rh( u
εs

)∣∣∣du)n/2
∑
l≥0

|Θn,2l+1|
l!

n

.

We consider now the decomposition

∑
l≥0

|Θn,2l+1|
l! =

[nM ]−1∑
l=0

+
+∞∑

l=[nM ]

 |Θn,2l+1|
l!

:= I+II,

where M is independent of n and will be specified later. In what follows, we consider
only the case l≥1 since the bound is direct for l= 0 . For I, using definition (6.1), an
integration by parts in Θn,2l+1 gives

Θn,2l+1 =λ−1
n (−1)2l

∫
Θ(1)(λ−1

n u)g(2l)(u) =λ−1
n Θ(1)

n,2l,
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and using (6.2), we obtain

|Θn,2l+1|≤λ−1
n ‖Θ(1)(u)‖L2(R,g(u)du)‖H2l‖L2(R,g(u)du)≤λ−1

n sup
u
|Θ(1)(u)|

√
(2l)!.

As a result, using that (2l)!≤22l(l!)2 we have

I≤C1 +C2n
1/2

[nM ]−1∑
l=1

2l≤C1 +n1/2CnM .

For II, using again definition (6.1), we have after 2l integration by parts,

Θn,2l+1 =λ−2l
n (−1)1

∫
Θ(2l)(λ−1

n u)g(1)(u)du.

Then, using (1.5) and that l!≥e(l/e)l, we obtain

∑
l≥[nM ]

|Θn,2l+1|
l! ≤C

∑
l≥[nM ]

λ−2l
n

l! C2l
Θ ≤C

∑
l≥[nM ]

(n
l

)l
(eC2

Θ)l.

Setting M>eC2
Θ, we obtain II≤C, and then∫

[0,z]n
E
[ n∏
p=1

Θ
(
Bh
(zp
εs
,xp

))]
dz1 .. .dzn≤nn/2Cn

(∫ z

0

∣∣∣rh( u
εs

)∣∣∣du)n/2 .
To conclude, it remains to estimate the term involving rh. According to (1.4), there
exists z0>0 such that for all z>z0, we have |rh(z)|≤C|z|−h, and therefore, for all
z>z0, ∫ z

0

∣∣∣rh( u
εs

)∣∣∣du≤C(εs+εsh
∫ z

εsz0

|u|−hdu
)
≤Cε2s−1, (6.6)

with s= 1/(2−h).
To prove the second result of the proposition, we just need to decompose Θ itself

over the Hermite polynomials:

E
[ n∏
p=1

Θ
(
Bh
(zp
εs
,xp

))]
=

∑
l1,...,ln≥1

(
n∏
p=1

Θlp

lp!

)
E
[ n∏
p=1

Hlp

(
Bh
(zp
εs
,xp

))]
= Θn

1
∑
F

∏
(α,β)∈F

rh

(zα−zβ
εs

)
R(xα,xβ)+Rεn(z1,. ..,zn),

with

Rεn(z1,. ..,zn,x1,. ..,xn) =
n∑
p=1

∑
Sp(l1,...,ln)

 n∏
j=1

Θlj

lj !

E
[ n∏
j=1

Hlj

(
Bh
(zj
εs
,xj

))]
,

and

Sp(l1,. ..,ln) ={lk = 1 for k<p; lp∈{2,. ..,n}, lk ∈{1,. ..,n} for k>p}.
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According to (6.3), Rεn can be recast as

Rεn(z1,. ..,zn,x1,. ..,xn) =
n∑
p=1

∑
q≥n/2+1

∑
S̃p,q(l1,...,ln)

n∏
m=1

(
Θlm

lm!

)
E
[ n∏
m=1

Hlm

(
Bh
(zm
εs
,xm

))]
,

where S̃p,q(l1,. ..,ln) =Sp(l1,. ..,ln)∩{l1 + ·· ·+ ln= 2q}. An important point here is the
following. Since there is at least one index lj greater than 2, and that n is even, we
necessarily have q≥n/2+1. This is the reason why we obtain some extra powers of
ε, and then obtain the convergence to the leading term. Moreover, as before, we can
estimate Aq,n in the same way for q≥n/2+1. Using that rh and R are bounded by
one, we have for all (i1,j1,. ..,iq,jq)∈ I(l1,. ..,ln),

Aq,n≤
∫

[0,z]n

n/2+1∏
m=1

∣∣rh(zi′m−zj′m
εs

)∣∣dz1 .. .dzn,

where (i′1,j′1,. ..,i′n/2+1,j
′
n/2+1) repeats j twice. Moreover, since n/2+1 is odd, there

is only one other index, denoted by j′, which appears twice, and therefore two cases
are possible in the multiple integral. In the first case, we have a term of the form
r2
h((zj−zj′)/ε) (if any there is only one), and

∫ z

0
dzj

∫ z

0
dzj′r

2
h

(zj−zj′
εs

)
≤

 C1ε
2sh if h∈ (0,1/2),

C ′1ε
s log(1/εs) if h= 1/2,
C ′′1 ε

s if h∈ (1/2,1),

and then, using (6.6),

Aq,n≤
∫

[0,z]n

n/2+1∏
m=1

∣∣rh(zi′m−zj′m
εs

)∣∣dz1 .. .dzn

=
(∫ z

0
du

∫ z

0
dv
∣∣rh(u−v

εs
)∣∣dudv)n/2−1

×
∫ z

0
du

∫ z

0
dv r2

h

(u−v
εs

)
dudv

≤Cεshn/2εs(h∧(1−h)) log(1/εs).

Now, if we are not in the first case, we have a term of the form rh((zj−zj′)/εs)rh((zj−
zk)/εs), k 6= j′. Then, the Cauchy-Schwarz inequality with respect to zj , a change of
variable, the fact that rh is even, and again (6.6), lead to

Aq,n≤
∫

[0,z]n

n/2+1∏
m=1

∣∣rh(zi′m−zj′m
εs

)∣∣dz1 .. .dzn

≤C
(∫ z

0
du

∫ z

0
dv
∣∣rh(u−v

εs
)∣∣dudv)n/2−1

×
∫ 2z

0
r2
h

( u
εs

)
du

≤Cεshn/2εs(h∧(1−h)) log(1/εs).

As before, one can bound the cardinal of I(l1,. ..,ln), and then obtain∫
[0,z]n

sup
x1,...,xn

∣∣∣E[ n∏
m=1

Hlm

(
Bh
(zm
εs
,xm

))]∣∣∣dz1 .. .dzn

≤Cεshn/2εs(h∧(1−h)) log(1/εs)
∣∣∣E[ n∏

m=1
Hlm(X)

]∣∣∣
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so that using (6.5),

1
εn(s−1/2)

∫
[0,z]n

sup
x1,...,xn

∣∣∣E[Rεn(z1,. ..,zn,x1,. ..,xn)
]∣∣∣dz1 .. .dzn

≤Cεs(h∧(1−h)) log(1/εs)
n∑
j=1

∑
q≥n/2+1

∑
S̃j,q(l1,···,ln)

n∏
m=1

|Θlm |(n−1)lm√
lm!

≤εs(h∧(1−h)) log(1/εs)nCn
∑
l≥1

|Θl|(n−1)l√
l!

n

.

Moreover, according to (1.5), we have

|Θl|=
∣∣∣∫ Θ(l)(u)g(u)du

∣∣∣≤CClΘ̃,
so that the sum above is finite for n fixed, and then the error term Rεn converges to zero
as ε→0. As a result, it remains to treat the leading term. For this term, we have∑

F

1
εn(s−1/2)

∫
∆n(z)

∏
(α,β)∈F

∣∣∣rh(zα−zβ
εs

)
− εshch
|zα−zβ |h

∣∣∣dz1 .. .dzn

≤ (n−1)!!
n!

[ 1
ε2s−1

∫ z

0

∫ z

0

∣∣∣rh(u−v
εs

)
− εshch
|u−v|h

∣∣∣dudv]n/2,
where (n−1)!! =n!/(2n/2(n/2)!) is the number of pairings of {1,. ..,n}. According to
(1.4), for any η>0 and z0 such that for z>z0, we have |rh(z)−ch|z|−h|≤ηch|z|−h, and
then,

1
ε2s−1

∫ z

0

∫ z

0

∣∣∣rh(u−v
εs

)
− εshch
|u−v|h

∣∣∣dudv
≤ηch

∫
|u−v|>εsz0

|u−v|−hdudv+ε

∫
|u−v|≤z0

rh(u−v)dudv+ch

∫
|u−v|≤εz0

|u−v|−hdudv,

Finally, for all η>0, we have

lim
ε→0

1
ε2(s−2)

∫ z

0

∫ z

0

∣∣∣rh(u−v
ε

)
− εhch
|u−v|h

∣∣∣dudv≤ηch∫ z

0

∫ z

0
|u−v|−hdudv,

which concludes the proof.
7. Proof of Theorem 3.1
The proof of this theorem is based on the idea developed in [3] in which the authors

study the asymptotic behavior of the solution of the random Schrödinger equation with
long-range correlations. The technique is based on the characterization of the moments
of the limiting process. This technique is very convenient in our case. In fact, even if
the field V (z,x) in (1.3) is not Gaussian, the field Bh is Gaussian and the moments of
V can be managed as described in Proposition 6.2.

To apply the moment technique to Pε(ω,z), we iterate the integrated form of (2.19),

Pε(ω,z) =
[
Pa,ε(ω,z)
Pb,ε(ω,z)

]
=
[
IdN

0

]
+
∫ z

0

[ 1
εs−1/2H

(
ω,
u

εs

)
+ε1−sG

(
ω,
u

εs

)]
Pε(ω,u)du,

(7.1)
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so that the transfer operator is given in term of a series

Pε(ω,z) =
+∞∑
n=0
Pε,n(ω,z), (7.2)

where

Pε,n(ω,z) =
∫
·· ·
∫

∆n(z)

n∏
m=1

dum

n∏
m=1

[ 1
εs−1/2 F1,ε(ω,um)+ε1−sF2,ε(ω,um)

][IdN
0

]
,

and

∆n(z) =
{

(z1,. ..,zn)∈ [0,z]n, s.t. 0≤zj≤zj−1 ∀j∈{2,. ..,n}
}
.

Here, we use the notation

F1,ε
11 (ω,u) =F1,ε

22 (ω,u) =Ha
(
ω,
u

εs

)
, F1,ε

21 (ω,u) =F1,ε
12 (ω,u) =Hb

(
ω,
u

εs

)
,

F2,ε
11 (ω,u) =F2,ε

22 (ω,u) =Ga
(
ω,
u

εs

)
, F2,ε

21 (ω,u) =F2,ε
12 (ω,u) =Gb

(
ω,
u

εs

)
,

to make the distinction in the forthcoming computations between the terms produced by
the forward (resp. backward)-going propagating modes and forward (resp. backward)-
going evanescent modes. As a result, we can write Pε,n(ω,z) as follows

Pε,n(ω,z) =
∑

(i1,...,in)∈{1,2}n

∫
·· ·
∫

∆n(z)

n∏
m=1

dum

[ n∏
m=1

εim/2−sFim,ε(ω,um)
][IdN

0

]
(7.3)

and
n∏

m=1

εim/2−sFim,ε(ω,um)
[
IdN

0

]
=ε

1
2

∑n

m=1
im−ns

[∑
(p1,...,pn)∈{1,2}n

∏n

m=1 Fim,εpm−1,pm(ω,um)∑
(q1,...,qn)∈{1,2}n

∏n

m=1 Fim,εqm−1,qm(ω,um)

]
,

(7.4)
where p0 =pn= qn= 1 and q0 = 2. As we will see, only the component il= 1 and pl=

1 (l= 1,. ..,n) in (7.4) has a nontrivial limit. All the other terms converge to 0 in
probability.

Proposition 7.1. The series (7.2) is well defined and

lim
ε→0

E
[∥∥∥Pε(ω,z)−[Xε(ω,z)

0

]∥∥∥
MN (C)×MN (C)

]
= 0,

where Pε(ω,z) is defined by (7.1), and Xε(ω,z) is defined by

Xε(ω,z) =
+∞∑
n=0

Xε,n(ω,z), (7.5)

with

Xε,n(ω,z) = 1
εn(s−1/2)

∫
·· ·
∫

∆n(z)

n∏
m=1

Ha
(
ω,
um
εs
)
dum. (7.6)
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Let us remark that Xε(ω,z) corresponds to the terms il= 1 and pl= 1 (l= 1,. ..,n)
in (7.4). In view of (2.19) Xε(ω,z) would correspond to the dynamic of a forward-going
wave only, with no evanescent mode. Therefore, for this term we have

d

dz
Xε(ω,z) = 1

εs−1/2 Ha
(
ω,

z

εs
)
Xε(ω,z) with Xε(ω,0) = Id,

so that for all z∈ [0,L]

N(ω)∑
j,l=1
|Xε

jl(ω,z)|2 =N(ω), (7.7)

since Ha(ω,z) is skew Hermitian, meaning that Xε(ω,·) is uniformly bounded. The
following result deals with the asymptotic behavior of Xε(ω,·), and then concludes the
proof of Theorem 3.1 according to [4, Theorem 3.1 pp. 27].

Proposition 7.2. For all z∈ [0,L], the family (Xε(ω,z))ε converges in distribution
onMN (C) to

D(ω,z) =diag(eiσ1,H(ω)BH(z),. ..,eiσN,H(ω)BH(z)), (7.8)

with σj,H(ω) defined by (3.2), and where BH is a standard fractional Brownian motion
with Hurst index H= (2−h)/2, and defined on a probability space (Ω̃, T̃ ,P̃).

The remainder of this section consists of proving Proposition 7.2 and Proposition
7.1. We start with the proof of Proposition 7.2, because it allows us to illustrate all the
important points arising in the proof of Proposition 7.1.

Let us note that we will prove in Proposition 7.1 (resp. Proposition 7.2) the con-
vergence in distribution onMN (C)×MN (C) (resp. MN (C)) equipped with the weak
topology. However, since the weak and the strong topology are the same on finite-
dimensional vector spaces, this strategy allows lighter notations without changing the
result.

7.1. Proof of Proposition 7.2. To prove the convergence of (Xε(ω,z))ε we
only have to focus on the convergence of its moments. In fact, (Xε(ω,z))ε being a
bounded family we directly have its tightness, that is

∀η>0, ∃µ>0 such that lim
ε→0

P
(
|
〈
Xε(ω,z),λ

〉
|2>µ

)
≤η.

Therefore, the computation of the moments allows us to characterize uniquely all the
accumulation points. To compute the moments, we focus first on the first-order moment
as illustration (Proposition 7.3)

E[
〈
Xε(ω,z),λ

〉
] =

N∑
j,l=1

E[Xε
jl(ω,z)]λjl,

where λ∈MN (C). Then, we investigate the arbitrary high order moments (Proposition
7.4)

E
[〈
Xε(ω,z),λ

〉M1〈
Xε(ω,z),λ

〉M2
]
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=
M1∑
p1=1

N∑
j1,p1 ,l1,p1 =1

M2∑
p2=1

N∑
j2,p2 ,l2,p2 =1

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω,z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω,z)
]

×
M1∏
p1=1

λj1,p1 l1,p1

M2∏
p2=1

λj2,p2 l2,p2
. (7.9)

7.1.1. Proof of Proposition 7.2: Moment of order one. In this section we
investigate the convergence of the expectation of Xε(ω,z). This step is also useful to
understand more easily the computations which are similar for the high-order moments.
Throughout this section let (j,l)∈{1,. ..,N}2 be two fixed indexes. According to (7.6),
we have

Xε,n
jl (ω,z)

= ink2n(ω)
2nεn(s−1/2)

N∑
j1,...,jn−1=1

∫
· ··
∫

∆n(z)

n∏
m=1

Cjm−1jm(ω,um/εs)ei(βjm (ω)−βjm−1 (ω))um/εsdum

(7.10)

where j0 = j and jn= l.

Proposition 7.3. For all (j,l)∈{1,. ..,N}2, we have

lim
ε→0

E[Xε
jl(ω,z)] = Ẽ

[
eiσj,H(ω)BH(z)δjl

]
,

where Ẽ is the expectation associated to the probability space on which the standard
fractional Brownian motion BH is defined.

Proof. (Proof of Proposition 7.3.) To compute the limit in ε of E[Xε
jl(ω,z)],

we have the two following lemmas.

Lemma 7.1. The series (7.5) is well defined, and we have for all (j,l)∈{1,. ..,N(ω)}2

E[Xε
jl(ω,z)] =E

[+∞∑
n=0

Xε,n
jl (ω,z)

]
=

+∞∑
n=0

E[Xε,n
jl (ω,z)],

and

lim
ε→0

E[Xε
jl(ω,z)] =

+∞∑
n=0

lim
ε→0

E[Xε,n
jl (ω,z)].

Proof. (Proof of Lemma 7.1.) This lemma follows from a simple adaptation of
the proof of the first point in Proposition 6.2. In fact, it suffices to show

∑
n≥0

sup
ε∈(0,1)

E[|Xε,n
jl (ω,z)|2]1/2<+∞,



C. GOMEZ AND K. SØLNA 1583

and we have

E[|Xε,n
jl (ω,z)|2]≤ k4n(ω)

22nε2n(s−1/2)

N∑
j1

1 ,...,j
1
n−1=1

j2
1 ,...,j

2
n−1=1

∫
·· ·
∫

∆n(z)

∫
·· ·
∫

∆n(z)

n∏
m=1

du1
mdu

2
m

×
∣∣∣E[ n∏

m=1
Cj1

m−1j
1
m

(ω,u1
m/ε

s)Cj2
m−1j

2
m

(ω,u2
m/ε

s)
]∣∣∣

≤C
2nnn

(n!)2 ,

where the Cjl are defined by (2.11), which concludes the proof of the lemma.

Lemma 7.1 concerns the inversion between the expectation and the sum with respect
to n, as well as the inversion between the limit in ε and the sum. As a result, we have

lim
ε→0

E[Xε
jl(ω,z)] =

+∞∑
n=0

ink2n(ω)
2n

N∑
j1,...,jn−1=1

lim
ε→0

In,εj0,...,jn
(z),

where

In,εj0,...,jn
(z)

= 1
εn(s−1/2)

∫
· ··
∫

∆n(z)

n∏
m=1

e
i(βjm (ω)−βjm−1 (ω))um/εs√

βjm−1 (ω)βjm(ω)
E
[ n∏
m=1

Cjm−1jm(ω,um/εs)
]
du1 . ..dun,

with j0 = j and jn= l. However, from the Gaussian property of Bh and because Θ is an
odd function, the product in the expectation needs to contain an even number of terms,
let say n= 2n′, otherwise the expectation is 0. Therefore, according to the second point
of Proposition 6.2, we have

E
[ 2n′∏
m=1

Cjm−1jm(ω,um/εs)
]
∼
ε→0

Cn
′

h ε
n′sh

∑
F2n′

∏
(α,γ)∈F2n′

Rjα−1jαjγ−1jγ

|uα−uγ |h

where the sum is over all the pairings of {1,. ..,2n′}. As a result, for s= 1/(2H) with
H= (2−h)/2, the limit in ε of the diagonal terms is

lim
ε→0

I2n′,ε
j,j,...,j(z) =

(ChRjjjj
β2
j (ω)

)n′ ∫
·· ·
∫

∆2n′ (z)

∑
F2n′

∏
(α,γ)∈F2n′

|uα−uγ |2H−2du1 .. .du2n′ .

However, we also have

∑
F2n′

∏
(α,γ)∈F2n′

|uα−uγ |2H−2 = cn
′

1,H Ẽ
[ 2n′∏
q=1

∫
eirquq

|rq|H−1/2w(drq)
]
,

where w(dr) is a Gaussian white noise defined on a probability space (Ω̃, T̃ ,P̃), and

c1,H = Γ(2H−1)sin(πH)/π. (7.11)
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Therefore, we obtain

lim
ε→0

I2n′,ε
j,j,...,j(z) =

(
Ch

Rjjjj
β2
j (ω)

)n′ cn′1,H

(2n′)! Ẽ
[ 2n′∏
q=1

∫
eirqz−1

irq|rq|H−1/2w(drq)
]

=
(
Ch

Rjjjj
β2
j (ω)

)n′ cn′1,Hc
n′

2,H

(2n′)! Ẽ[B2n′
H (z)],

with

c2,H =π/(H(2H−1)Γ(2H−1)sin(Hπ)), (7.12)

and

BH(z) = 1
c
1/2
2,H

∫
eirz−1

ir|r|H−1/2w(dr) (7.13)

is a standard fractional Brownian motion with Hurst index H= (2−h)/2. As a result,
we obtain

lim
ε→0

I2n′,ε
j,j,...,j(z) = Ẽ

[ (σ̃j,H(ω)BH(z))2n′

(2n′)!

]
where σ̃2

j,H(ω) = ChRjjjj
H(2H−1)β2

j (ω) ,

and Rjlmn is defined by (3.3). The following lemma deals with the offdiagonal terms,
and shows that these terms converge to 0 as ε→0 because of the fast oscillating phase
terms.

Lemma 7.2. If there exists n0∈{1,. ..,2n′} such that jn0−1 6= jn0 , then

lim
ε→0

In,εj0,...,j2n′
(z) = 0.

Proof. (Proof of Lemma 7.2.) According to the second point of Proposition 6.2
we have

In,εj0,...,j2n′
(z) ∼

ε→0

2n′∏
m=1

Ch√
βjm−1(ω)βjm(ω)

∑
F2n′

∫
·· ·
∫

∆2n′ (z)

2n′∏
m=1

dum

×
∏

(α,γ)∈F2n′

Rjα−1jαjγ−1jγ

|uα−uγ |h
ei(βjα (ω)−βjα−1 (ω))uα/εsei(βjγ (ω)−βjγ−1 (ω))uγ/εsduαduγ .

For a fixed pairing F2n′ let us consider the couple (α0,γ0) involving n0, let say α0 =n0.
Using the fact that

|u−v|−h = c1,H

∫
eir(u−v)

|r|1−h
dr,

we have

|uα0−uγ0 |−he
i(βjα0 (ω)−βjα0−1 (ω))uα0/ε

s

e
i(βjγ0 (ω)−βjγ0−1 (ω))uγ0/ε

s

=c1,h
∫ 1
|r|1−h

e
iuα0 (r+(βjα0 (ω)−βjα0−1 (ω))/εs)×e−iuγ0 (r−(βjγ0 (ω)−βjγ0−1 (ω))/εs)

dr.
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Using an integration by parts in the variables uα0 for

eiu(r+(βj̃(ω)−βl̃(ω))/εs) with primitive eiu(r+(βj̃(ω)−βl̃(ω))/εs)−1
i(r+(βj̃(ω)−βl̃(ω))/εs) ,

we obtain

lim
ε→0
|In,εj0,...,j2n′

(z)|≤ lim
ε→0

C1

∫
∆(1)

2n′ (z)

2n′∏
m=1
m6=α0
m 6=γ0

dum
∏

(α,γ)∈F2n′
(α,γ)6=(α0,γ0)

|uα−uγ |−h

×
∫ ∣∣∣eiuα0−1(r+(βjα0 (ω)−βjα0−1 (ω))/εs)−1

r+(βjα0
(ω)−βjα0−1(ω))/εs

∣∣∣ dr

|r|1−h

+lim
ε→0

C2

∫
∆(2)

2n′ (z)

2n′∏
m=1

m 6=α0+1
m 6=γ0

dum
∏

(α,γ)∈F2n′
(α,γ)6=(α0+1,γ0)

|uα−uγ |−h

×
∫ ∣∣∣eiuα0 (r+(βjα0 (ω)−βjα0−1 (ω))/εs)−1

r+(βjα0
(ω)−βjα0−1(ω))/εs

∣∣∣ dr

|r|1−h
,

where
∆(1)

2n′(z) ={(u1,. ..,uα0−1,uα0+1,. ..,u2n′)∈ [0,z]n−2,

s.t uj≤uj−1 ∀j∈{2,. ..,2n′}\{α0}
}

∆(2)
2n′(z) ={(u1,. ..,uα0 ,uα0+2,. ..,u2n′),

s.t uj≤uj−1 ∀j∈{2,. ..,2n′}\{α0 +1}
}
.

To conclude the proof of Lemma 7.2, we have the following lemma.

Lemma 7.3. For all a 6= 0 and u 6= 0, we have

lim
ε→0

∫
|eiu(r−a/εs)−1|2

|r−a/εs|2|r|1−h
dr= 0.

Proof. (Proof of Lemma 7.3.) Let µ>0 and η>0 be small parameters. We
decompose the integral into three parts as follows

|eiu(r−a/εs)−1|
|r−a/εs||r|1−h

dr

=
(∫
|r−a/εs|>µ/εs

+
∫
η<|r−a/εs|<µ/εs

+
∫
|r−a/εs|<η

) |eiu(r−a/εs)−1|
|r−a/εs||r|1−h

dr.

For the last integral, making the change of variable r→ r+a/εsr we have∫
|r−a/εs|<η

|eiu(r−a/εs)−1|
|r−a/εs||r|2H−1 dr=

∫
|r|<η

|eiur−1|2

|r||r+a/εs|1−h
dr

≤|u|
∫
|r|<η

dr

|r+a/εs|1−h

≤|u|εs(1−h)
∫
|r|<η

dr

||a|−εsη|1−h

≤Cεs(1−h).
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For the second one, making the change of variable r→ r/εs we have∫
η<|r−a/εs|<µ/εs

|eiu(r−a/εs)−1|2

|r−a/εs|2|r|2H−1 dr=εs
∫
εsη<|εsr−a|<µ

|eiu(εsr−a)/εs−1|
|εsr−a||r|1−h

dr

=εs(1−h)
∫
εsη<|r−a|<µ

dr

|r−a||r|1−h

≤ es(1−h)

(|a|−εsµ)1−h

∫
εsη<|u|<µ

dr

|u|

≤Cεs(1−h) log(1/ε).

Finally, making the change of variable r→ r/εs, we have∫
|r−a/εs|>µ/εs

|eiu(r−a/εs)−1|
|r−a/εs||r|1−h

dr=εs(1−h)
∫
|r−a|>µ

|eiu(r−a)εs−1|
|r−a||r|1−h

dr

≤εs(1−h)
∫
|r−a|>µ

dr

|r−a||r|1−h
.

As a result, we obtain

lim
ε
E[Xε

jl(ω,z)] =
+∞∑
n′=0

(ik2(ω)σ̃j,H/2)2n′

(2n′)! Ẽ[B2n′
H (z)]δjl

= Ẽ
[+∞∑
n=0

(iσj,HBH(z))n

n!

]
δjl

= Ẽ
[
eiσj,HBH(z)δjl

]
,

which concludes the proof of Proposition 7.3.

7.1.2. Proof of Proposition 7.2: Arbitrary order moments. To iden-
tify properly the limit in distribution of Xε(ω,z) as ε→0, we need to identify all the
moments

lim
ε→0

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω,z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω,z)
]
. (7.14)

However, as we will see, the computations follow the ones of the first-order moment. In
the previous expression and in the forthcoming computations, all the indexes with the
subscript 2 correspond to the complex conjugate terms.

Proposition 7.4. For all (j1,1,. ..,j1,M1 ,j2,1,. ..,j2,M2)∈{1,. ..,N}M1+M2 , we have

lim
ε→0

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω,z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω,z)
]

=Ẽ
[ M1∏
p1=1

eiσj1,p1 ,H
(ω)BH(z)δj1,p1 l1,p1

M2∏
p2=1

e−iσj2,p2 ,H
(ω)BH(z)δj2,p2 l2,p2

]
,

where BH is defined by (7.13).
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Proof. Using (7.10) we have

M1∏
p1=1

Xε
j1,p1 l1,p1

(ω,z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω,z)

=
M1∑
p1=1

M2∑
p2=1

+∞∑
n1,p1 =0

+∞∑
n2,p2 =0

N∑
j1,p1,1,...,j1,p1,n1,p1−1=1

N∑
j2,p2,q2,1,...,j2,p2,n2,p2−1=1

Xε
n,j

=
∑
Jn,j

Xε
n,j,

where

Xε
n,j = in1−n2k2n(ω)

2nεn(s−1/2)

M1∏
p1=1

∫
·· ·
∫

∆n1,p1
(z)

M2∏
p2=1

∫
·· ·
∫

∆n2,p2
(z)

×
M1∏
p1=1

n1,p1∏
m1,p1 =1

Cj1,p1,m1,p1−1j1,p1,m1,p1
(ω,u1,p1,m1,p1

/εs)

×ei(βj1,p1,m1,p1
(ω)−βj1,p1,m1,p1−1 (ω))u1,p1,m1,p1

/εs

du1,p1,m1,p1

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

Cj2,p2,m2,p2−1j2,p2,m2,p2
(ω,u2,p2,m2,p2

/εs)

×e−i(βj2,p2,m2,p2
(ω)−βj2,p2,m2,p2−1 (ω))u2,p2,m2,p2

/εs

du2,p2,m2,p2
,

with

n1 =
M1∑
p1=1

n1,p1 , n2 =
M2∑
p2=1

n2,p2 , and n=n1 +n2.

Moreover, we have j1,p1,0 = j1,p1 , j1,p1,n1,p1
= l1,p1 , j2,p2,0 = j2,p2 , and j2,p2,n2,p2

= l2,p2 .
To obtain the limit in ε of the expectation of the previous expression, we need first to
exchange the infinite sums with the expectation. To do so, we use an adapted version
of Lemma 7.1.

Lemma 7.4. We have

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω,z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω,z)
]

=
∑
Jn,j

E[Xε
n,j],

and

lim
ε→0

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω,z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω,z)
]

=
∑
Jn,j

lim
ε→0

E[Xε
n,j].

Proof. (Proof of Lemma 7.4.) To prove this lemma, it suffices to show,∑
Jn,j

sup
ε∈(0,1)

E[|Xε
n,j|2]1/2<+∞.
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Following the proof of Lemma 7.1, we have

E[|Xε
n,j|2]≤ k

4n(ω)
22n

M1∏
p1=1

1
(n1,p1 !)2

M2∏
p2=1

1
(n2,p2 !)2 |E

ε
n,j|,

where

Eε
n,j = 1

ε2n(s−1/2)

∫
[0,z]2n

E
[ M1∏
p1=1

n1,p1∏
m1,p1 =1

Cj1,p1,m1,p1−1j1,p1,m1,p1
(ω,u1

1,p1,m1,p1
/εs)

×Cj1,p1,m1,p1−1j1,p1,m1,p1
(ω,u2

1,p1,m1,p1
/εs)

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

Cj2,p2,m2,p2−1j2,p2,m2,p2
(ω,u1

2,p2,m2,p2
/εs)

×Cjp2,m2,p2−1jp2,m2,p2
(ω,u2

2,p2,m2,p2
/εs)

]
n1,p1∏

m1,p1 =1
du1

1,p1,m1,p1
du2

1,p1,m1,p1

n2,p2∏
m2,p2 =1

du1
2,p2,m2,p2

du2
2,p2,m2,p2

,

so that for s= 1/(2H) we obtain by following the proof of the first point in Proposition
6.2

|Eε
n,j|≤C2n.

Consequently, we have

sup
ε∈(0,1)

E[|Xε
n,j(ω,z)|2]≤

M1∏
p1=1

Cn1,p1n
n1,p1
1,p1

(n1,p1 !)2

M2∏
p2=1

Cn2,p2n
n2,p2
2,p2

(n2,p2 !)2 ,

which concludes the proof of Lemma 7.4.

According to Lemma 7.4, to compute (7.14), it suffices to compute termwise
limε→0E[Xε

n,j], which is done in the two following lemmas. The first one deals with
the “diagonal” terms while the second one deals with the “offdiagonal” terms. In the
first lemma, we need to have n= 2n′ to obtain a nontrivial limit.

Lemma 7.5. If for all (i,pi,mi,pi)∈{1,2}×{1,. ..,Mi}×{1,. ..,ni,pi},

ji,pi,mpi = ji,pi ,

then we have

lim
ε→0

E[Xε
n,j] = Ẽ

[ M1∏
p1=1

[
iσj1,p1 ,H

(ω)BH(z)
]n1,p1 1

n1,p1 !

M2∏
p2=1

[
− iσj2,p2 ,H

BH(z)
]n2,p2 1

n2,p2 !

]
,

with σj,H(ω) defined by (3.2).

Lemma 7.6. If there exists (i,pi,mi,pi)∈{1,2}×{1,. ..,Mi}×{1,. ..,ni,pi} such that,

ji,pi,mi,pi 6= ji,pi,mi,pi−1,
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then we have

lim
ε→0

E[Xε
n,j] = 0.

These two lemmas imply that

lim
ε→0

E
[ M1∏
p1=1

Xε
j1,p1 l1,p1

(ω,z)
M2∏
p2=1

Xε
j2,p2 l2,p2

(ω,z)
]

=
∑
Jn,j

lim
ε→0

E[Xε
n,j]

=Ẽ
[ M1∏
p1=1

eiσj1,p1 ,H
(ω)BH(z)δj1,p1 l1,p1

M2∏
p2=1

e−iσj2,p2 ,H
(ω)BH(z)δj2,p2 l2,p2

]
,

which concludes the proof of Proposition 7.4.

Proof. (Proof of Lemma 7.5.) Adapting the second point of Proposition 6.2, we
have for s= 1/(2H) and n= 2n′

lim
ε→0

E[Xε
n,j]

= in1−n2k4n′(ω)
22n′

M1∏
p1=1

[R1/2
j1,p1 j1,p1 j1,p1 j1,p1

βj1,p1
(ω)

]n1,p1 1
n1,p1 !

M2∏
p2=1

[R1/2
j2,p2 j2,p2 j2,p2 j2,p2

βj2,p2
(ω)

]n2,p2 1
n2,p2 !

×
∫

[0,z]2n′

M1∏
p1=1

n1,p1∏
m1,p1 =1

du1,p1,q1,m1,p1

M2∏
p2=1

n2,p2∏
m2,p2 =1

du2,p2,m2,p2

∑
Fn,j

∏
(α,γ)∈Fn,j

Ch

|uα−uγ |h
,

where the sum is over all the pairings of In,j defined by

In,j =
{

(i,pi,mi,pi)∈{1,2}×{1,. ..,Mi}×{1,. ..,ni,pi}
}
. (7.15)

Moreover, we have

∑
Fn,j

∏
(α,γ)∈Fn,j

|uα−uγ |−h =cn
′

1,H Ẽ
[ M1∏
p1=1

n1,p1∏
m1,p1 =1

∫
eir1,p1,m1,p1

u1,p1,m1,p1

|r1,p1,m1,p1
|H−1/2 w(dr1,p1,m1,p1

)

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

∫
eir2,p2,m2,p2

u2,p2,m2,p2

|r2,p2,m2,p2
|H−1/2 w(dr2,p2,m2,p2

)
]
,

where w(dr) is a Gaussian white noise on the probability space (Ω̃, T̃ ,P̃), c1,H is given
by (7.11). Then, we finally have

lim
ε→0

E[Xε
n,j] =Ẽ

[ M1∏
p1=1

[ ik2(ω)
2βj1,p1

(ω)

√
c1,Hc2,HChRj1,p1 j1,p1 j1,p1 j1,p1

BH(z)
]n1,p1 1

n1,p1 !

×
M2∏
p2=1

[ −ik2(ω)
2βj2,p2

(ω)

√
c1,Hc2,HChRj2,p2 j2,p2 j2,p2 j2,p2

BH(z)
]n2,p2 1

n2,p2 !

]
.

where c2,H is given by (7.12), and BH by (7.13).
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Proof. (Proof of Lemma 7.6.) First, we have

lim
ε→0

E[Xε
n,j]

=k2n(ω)
2n

M1∏
p1=1

∫
·· ·
∫

∆n1,p1
(z)

n1,p1∏
m1,p1 =1

du1,p1,m1,p1

M2∏
p2=1

∫
·· ·
∫

∆n1,p1
(z)

n2,p2∏
m2,p2 =1

du2,p2,m2,p2

×
M1∏
p1=1

n1,p1∏
m1,p1 =1

e
i(βj1,p1,m1,p1

(ω)−βj1,p1,m1,p1−1 (ω))u1,p1,m1,p1
/εs

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

e
−i(βj2,p2,m2,p2

(ω)−βj2,p2,m2,p2−1 (ω))u2,p2,m2,p2
/εs

×Ẽn,j,

with

Ẽn,j = lim
ε→0

1
εn(s−1/2)E

[ M1∏
p1=1

n1,p1∏
m1,p1 =1

Cj1,p1,m1,p1−1j1,p1,m1,p1
(ω,u1,p1,m1,p1

/εs)

×
M2∏
p2=1

n2,p2∏
m2,p2 =1

Cj2,p2,m2,p2−1j2,p2,m2,p2
(ω,u2,p2,m2,p2

/εs)
]

=
∑
Fn,j

∏
(α,γ)∈Fn,j

Ch

|uα−uγ |h
Rjα−(0,0,1)jαjγ−(0,0,1)jγ√

βjα−(0,0,1)(ω)βjα(ω)βjγ−(0,0,1)(ω)βjγ (ω)
,

by adapting the proof of the second point in Proposition 6.2, and where the sum is
over all the pairings of In,j defined by (7.15). Let us fix a pairing Fn,j and denote
i0 = (i,pi,mi,pi) given in the statement of the lemma such that

ji,pi,mi,pi 6= ji,pi,mpi−1.

Following the proof of Lemma 7.2 and using Lemma 7.3, we obtain

lim
ε→0

1
εn(s−1/2)

∫
·· ·
∫

∆i,pi
(z)

ni,pi∏
mi,pi=1

duα0

×
∏

(α,γ)∈Fn,j

|uα−uγ |−hei(βjα (ω)−βjα−1 (ω))uα/εsei(βjγ (ω)−βjγ−1 (ω))uγ/εs = 0,

and then

lim
ε→0

E[Xε
n,j] = 0,

since all the pairings Fn,j contain a term (α0,γ0) involving i0. That concludes the proof
of Lemma 7.6 and at the same time the one of Proposition 7.4.

7.2. Proof of Proposition 7.1. The first point of the proposition follows the
idea of Lemma 7.1, and for the second point (the convergence in probability) we only
need to prove that

lim
ε→0

E
[∣∣∣〈Pε(ω,z)−[Xε(ω,z)

0

]
,

[
λ1
λ2

]〉∣∣∣]= 0,
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thanks to the Markov’s inequality, where〈
Pε(ω,z)−

[
Xε(ω,z)

0

]
,

[
λ1
λ2

]〉
=

N∑
j,l=1

(Pa,ε
jl (ω,z)−Xε

jl(ω,z))λ1,jl+Pb,ε
jl (ω,z)λ2,jl.

However, both points need the following lemma.

Lemma 7.7. We have∑
n≥0

sup
ε∈(0,1)

E[|P1,ε,n
jl (ω,z)|2]1/2 +E[|P2,ε,n

jl (ω,z)|2]1/2<+∞.

According to this result and the proof of Lemma 7.1, we have

lim
ε→0

E[|Pa,ε
jl (ω,z)−Xε

jl(ω,z))|]≤
+∞∑
n=0

lim
ε→0

E[|P1,ε,n
jl (ω,z)−Xε,n

jl (ω,z)|2]1/2. (7.16)

and

lim
ε→0

E[|Pb,ε
jl (ω,z)|]≤

+∞∑
n=0

lim
ε→0

E[|P2,ε,n
jl (ω,z)|2]1/2. (7.17)

Proof. (Proof of Lemma 7.7.) The proof of this result consists of adapting the
one of Lemma 7.1. In fact, according to (7.3) and following the proof of the first point
in Proposition 6.2, the terms

E[|P1,ε,n
jl (ω,z)|2] and E[|P2,ε,n

jl (ω,z)|2]

can be bounded by sums and products of terms of the form∫ z

0

∫ z

0
|u−v|−hdudv<+∞,

and

2
ε2s−3/2

∫ +∞

0
dwe−βl(ω)|w|

∫ z

0

∫ u

0

∣∣∣ u
εs

+w− v

εs

∣∣∣−hdudv
≤
√
εC

βl(ω)

∫ z

0

∫ z

0
|u−v|−hdudv<+∞, (7.18)

coming from Ha, Hb, Ga, and Gb defined by (2.16). Let us remark that we get rid of
the w in the right hand side of (7.18) using the fact w→|u−v+εsw|−h is a decreasing
function with respect to |w|. Moreover, we have to remark that the infinite sums in the
definition of Ga, and Gb give rise to finite terms in all these estimates. In fact, thanks
to (7.18), these infinite sums involve∑

l≥N(ω)+1

1
β2
l (ω) <+∞, (7.19)

since we consider a planar waveguide. Finally, with all these estimates we obtain∑
n≥0

sup
ε∈(0,ε0)

E[|P1,ε,n
jl (ω,z)|2]1/2 +E[|P2,ε,n

jl (ω,z)|2]1/2≤
∑
n≥0

Cnnn/2

n! <+∞,
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which concludes the proof of Lemma 7.7.

Now, to compute (7.16) and (7.17), we remark that according to (7.3) and Propo-
sition 6.2, the terms

E[|P1,ε,n
jl (ω,z)−Xε,n

jl (ω,z)|2] and E[|P2,ε,n
jl (ω,z)|2]

can be expressed by sums and products of terms of the form

|u−v|−hei(βl1 (ω)−νβj1 (ω))u/esei(βl2 (ω)+βj2 (ω))v/es ,

where ν ∈{−1,1} and

1
ε2s−3/2

∫
dweiβl1 (ω)we−βl′ (ω)|w|

×|u−v+εsw|−hei(βl1 (ω)−ν1βj1 (ω))u/esei(βl2 (ω)−ν2βj2 (ω))v/es ,

where (ν1,ν2)∈{−1,1}2. The contribution of these two terms is 0 in the limit ε→0.
It is easy to see according to (7.18) that the contribution of the second term is 0 in
the limit ε→0. For the first one, it suffices to follow exactly the proof of Lemma 7.2.
Consequently, we have

lim
ε→0

E[|P1,ε,n
jl (ω,z)−Xε,n

jl (ω,z)|2] = 0 and lim
ε→0

E[|P2,ε,n
jl (ω,z)|2] = 0,

which concludes the proof of Proposition 7.1.
8. Proof of Theorem 4.1
First of all, let us remark that according to Proposition 7.1, we have

lim
ε→0

P
(

sup
t,x
|ppr(t,x,L/εs)− p̃pr(t,x,L/εs)|>η

)
= 0, (8.1)

where ppr is defined by (4.1), and

p̃pr

(
t,x,

L

εs

)
:= 1

4πεq

∫
dωe−iωtf̂

(ω−ω0

εq
)N(ω)∑
j,l=1

√
βl(ω)
βj(ω)X

ε
jl(ω,L)

×eiβj(ω)L/εse−iβl(ω)LSφj(x)
〈
φl,Ψ

〉
L2(0,d).

Then, according to [4, Theorem 3.1 pp. 27] we just have to prove Theorem 4.1 by
replacing ppr with p̃pr. Second, let us remark that C([−T,T ]×(0,d),CN(ω0)) equipped
with the supremum norm on [−T,T ]×(0,d) is a separable Banach space, so that the
tightness and the relative compactness are the same (see [4, Theorem 5.2 pp. 60]). Con-
sequently, according to the Arzelà–Ascoli theorem, we only need to prove the following
result.

Lemma 8.1. We have

lim
M→+∞

lim
ε→0

P
(

sup
u,x

N(ω0)∑
j=1

∣∣∣p̃εj,pr(u,x,L)
∣∣∣>M)= 0,

and for all η>0

lim
τ→0

lim
ε→0

P
(

sup
|x1−x2|+|u1−u2|≤τ

N(ω0)∑
j=1

∣∣∣p̃εj,pr(u1,x1,L)− p̃εj,pr(u2,x2,L)
∣∣∣>η)= 0.
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Consequently, using that the family (p̃pr(·,·,L/εs))ε is uniformly bounded, we just
have to characterize all the possible limits through their moments as is done in the two
following lemmas.

Lemma 8.2. We have

lim
ε→0

E
[ γ1∏
m1=1

p̃ε
j̃1,m1 ,pr

(u1,m1 ,x1,m1 ,L)
γ2∏

m2=1
p̃ε
j̃2,m2 ,pr

(u2,m2 ,x2,m2 ,L)
]

=Ẽ
[ γ1∏
m1=1

p0
j̃2,m2 ,pr

(u1,m1 ,x1,m1 ,L)
γ2∏

m2=1
p0
j̃2,m2 ,pr

(u2,m2 ,x2,m2 ,L)
]
,

for all (γ1,γ2)∈ (N∗)2, (un,m)∈ [−T,T ]γ1+γ2 , (xn,m)∈ (0,d)γ1+γ2 , and (j̃n,m)∈
{1,. ..,N(ω0)}γ1+γ2 . Here, p0

j,pr is defined by (4.8) and Ẽ is the expectation associated
to the probability space on which the standard fractional Brownian motion is defined.

Proof. (Proof of Lemma 8.1.) This lemma is a direct consequence of (7.7). For
the first point we have

lim
ε→0

E
[

sup
j,u,x

∣∣pεj,pr(u,x,L)
∣∣]≤CN(ω0)

∫
|f̂(h)|dh<+∞,

in addition to the Markov’s inequality. For the second point, in the same way and using
the regularity of the eigenvectors φj we have for all τ >0

lim
ε→0

E
[

sup
j

sup
|x1−x2|+|u1−u2|≤τ

∣∣pεj,pr(u1,x1,L)−pεj,pr(u2,x2,L)
∣∣≤CN(ω0)τ

∫
|hf̂(h)|dh,

which concludes the proof of Lemma 8.1.

Proof. (Proof of Lemma 8.2.) Expanding the product

Mε=E
[ γ1∏
m1=1

p̃ε
j̃1,m1 ,pr

(u1,m1 ,x1,m1 ,L)
γ2∏

m2=1
p̃ε
j̃2,m2 ,pr

(u2,m2 ,x2,m2 ,L)
]
,

according to the definition (4.7) (with Xε(ω,L) instead of Pa,ε(ω,L)), gives

Mε= 1
(4π)γ1+γ2

∑
1≤m1≤γ1
1≤m2≤γ2

∑
1≤j1,m1 ,l1,m1≤N(ω0)
1≤j2,m2 ,l2,m2≤N(ω0)

∏
m1,m2

√
βl1,m1

(ω0)βl2,m2
(ω0)

βj1,m1
(ω0)βj2,m2

(ω0)

×ei(βj1,m1
(ω0)−βj̃1,m1

(ω0))L/εs
e
−i(βj2,m2

(ω0)−βj̃2,m2
(ω0))L/εs

×ei(βj̃1,m1
(ω0)−βl1,m1

(ω0))LSe
−i(βj̃2,m2

(ω0)−βl2,m2
(ω0))LS

×φj1,m1
(x1,m1)φl1,m1

(x0)φj2,m2
(x2,m2)φl2,m2

(x0)

×
∫
·· ·
∫ ∏

m1,m2

dh1,m1dh2,m2 f̂(h1,m1)f̂(h2,m2)e−i(h1,m1u1,m1−h2,m2u2,m2 )

×e
ih1,m1 (β′j1,m1

(ω0)−β′
j̃1,m1

(ω0))L/εs−q
e
−ih2,m2 (β′j2,m2

(ω0)−β′
j̃2,m2

(ω0))L/εs−q

×ei(Φ
ε
j1,m1

(h1,m1 )−Φεj2,m2
(h2,m2 ))L/εs−2q

×E
[ ∏
m1,m2

Xε
j1,m1 l1,m1

(ω0 +εqh1,m1 ,L)Xε
j2,m2 l2,m2

(ω0 +εqh2,m2 ,L)
]
.
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According to Proposition 7.4 (with slight adaptations regarding the frequency) we have

lim
ε→0

E
[ ∏
m1,m2

Xε
j1,m1 l1,m1

(ω0 +εqh1,m1 ,L)Xε
j2,m2 l2,m2

(ω0 +εqh2,m2 ,L)
]

=Ẽ
[ ∏
m1,m2

Dj1,m1 j1,m1
(ω0,L)Dj2,m2 j2,m2

(ω0,L)
] ∏
m1,m2

δj1,m1 l1,m1
δj2,m2 l2,m2

.

Moreover, using the Riemann-Lebesgue lemma and the terms of the form
eih(β′j(ω0)−β′

j̃
(ω0))L/εs−q in Mε, the only nontrivial term in the limit ε→0 is obtained for

j1,m1 = j̃1,m1 and j2,m2 = j̃2,m2 . Therefore, in the case q>s/2, we have

lim
ε→0

Mε=Ẽ
[ γ1∏
m1=1

Dj̃1,m1 j̃1,m1
(ω0,L)

2 f(u1,m1)φj̃1,m1
(x1,m1)φj̃1,m1

(x0)

×
γ2∏

m2=1

Dj̃2,m2 j̃2,m2
(ω0,L)

2 f(u2,m2)φj̃2,m2
(x2,m2)φj̃2,m2

(x0)
]
,

and in the case q=s/2

lim
ε→0

Mε= Ẽ
[ γ1∏
m1=1

Dj̃1,m1 j̃1,m1
(ω0,L)

2 Kj̃1,m1 ,L
∗f(u1,m1)φj̃1,m1

(x1,m1)φj̃1,m1
(x0)

×
γ2∏

m2=1

Dj̃2,m2 j̃2,m2
(ω0,L)

2 Kj̃2,m2 ,L
∗f(u2,m2)φj̃2,m2

(x2,m2)φj̃2,m2
(x0)

]
.

Finally, the case q∈ (0,s/2) is a consequence of the stationary phase method, which
therefore concludes the proof of Lemma 8.2.

9. Proof of Theorem 4.2
The proof of this theorem follows closely the one of Theorem 4.1. Using (8.1) we

just need to prove Theorem 4.2 for p̃pr instead of ppr. The tightness of the family
(p̃εj,pr(·,L))j,ε follows along the same lines, and for the identification of the moments we
also have using Proposition 7.4 (with a slight adaptations regarding the frequency) for
all (γ1,γ2)∈ (N∗)2, (tn,m)∈ [−T,T ]γ1+γ2 , and (j̃n,m)∈ (0,d)γ1+γ2

lim
ε→0

E
[ γ1∏
m1=1

p̃ε
j̃1,m1 ,pr

(t1,m1 ,L)
γ2∏

m2=1
p̃ε
j̃2,m2 ,pr

(t2,m2 ,L)
]

=Ẽ
[ γ1∏
m1=1

p0
j̃1,m1 ,pr

(t1,m1 ,L)
γ2∏

m2=1
p0
j̃2,m2 ,pr

(t2,m2 ,L)
]
.

Conclusion. We have considered wave propagation in a random medium that ex-
hibits long-range correlations. The waves propagate in a waveguide with a random speed
of propagation. In Theorem 3.1 and Theorem 3.2 we described the case of monochro-
matic waves, while in Theorem 4.1 and Theorem 4.2 we investigated the cases of broad-
band and narrowband pulses. In all these cases the propagating wave is affected by
a random mode-dependent and frequency-dependent phase modulation driven by the
same fractional Brownian motion for all the propagating modes, and without affecting
its energy. Moreover, the shapes of the modes are not affected by the ramdomness.
Finally, in Theorem 5.1 we have investigated the case of a single-mode waveguide. In
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this case, the wave propagation is affected by a random time shift given by a fractional
Brownian motion without affecting the pulse shape nor its energy. In the notation of
Theorem 3.1 the phase modulation appears at depths L/εs with s= 1/(2H) for H the
Hurst exponent characterizing the random medium. We assume here that H>1/2 so
that the medium fluctuations are persistent and then the phase shift appears before the
shape of the pulse starts to be modified due to scattering. The smoother the medium
fluctuations are (the larger the Hurst index H is), the earlier the onset of the random
phase correction. As also observed for one-dimensional propagation media and the ran-
dom Schrödinger equation [12, 16], the wave has not experienced enough scattering to
affect its energy at the depth regime of the onset of the random phase. To observe
significant effects on the energy propagation, the waves need to go deeper in the ran-
dom medium, with the depth depending on the Hurst coefficient. These aspects will
be addressed in future works. Note however also that in such a context the forward
scattering regime is not necessarily valid and some significant back scattering can oc-
cur. Note finally that the results presented in this paper are in contrast with the case of
mixing random fluctuations when the pulse transformation and travel time correction
appear simultaneously and for larger propagation distance (L/εs with s= 1).
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