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VARIANT OF OPTIMALITY CRITERIA METHOD FOR MULTIPLE
STATE OPTIMAL DESIGN PROBLEMS∗

KREŠIMIR BURAZIN† , IVANA CRNJAC‡ , AND MARKO VRDOLJAK§

Abstract. We consider multiple state optimal design problems, aiming to find the best arrange-
ment of two given isotropic materials, such that the obtained body has some optimal properties re-
garding m different right-hand sides. Using the homogenization method as the relaxation tool, the
standard variational techniques lead to necessary conditions of optimality. These conditions are the
basis for the optimality criteria method, a commonly used numerical (iterative) method for optimal
design problems. In Vrdoljak (2010), one variant of this method is presented, which is suitable for
the energy maximization problems. We study another variant of the method, which works well for
energy minimization problems. The explicit calculation of the design update is presented, which makes
the implementation simple and similar to the case of single state equation. The method is tested on
examples, showing that exact solutions are well approximated with the obtained numerical solutions.
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1. Introduction
In optimal design problems the goal is to find the best arrangement of given ma-

terials within the body which optimizes its properties with respect to some optimality
criteria. We consider such problems in the context of the stationary diffusion equation{

−div(A∇u) =f
u∈H1

0(Ω)
. (1.1)

In this case, function u represents the temperature (or the potential in electrostatics)
uniquely determined by external heat (or electric charge) density f ∈H−1(Ω), while
A∈L∞(Ω;Md(R)) represents thermal (or electrical) conductivity of a material. We
are dealing with multiple state optimal design problems, where one can have several
different regimes effecting on the observed body, which leads to several state equations.

Here, the body is represented by a bounded and open set Ω⊂Rd and we assume
that it is filled by two isotropic materials with conductivities α and β (0<α<β).

The conductivity matrix is then given by

A=χαI+(1−χ)βI,

where χ∈L∞(Ω;{0,1}) is a characteristic function of the part of the domain Ω occupied
by the first material. If we assume that the volume of the first material is prescribed:∫

Ω
χ(x)dx= qα, where 0<qα< |Ω| is given, then the classical multiple state optimal

design problem consists of minimizing the functional∫
Ω

(χ(x)gα(x,u)+(1−χ(x))gβ(x,u)) dx, (1.2)
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over the set of all measurable characteristic functions on Ω satisfying the volume con-
straint. Here, gα and gβ are given, while u= (u1,. ..,um) denotes the state function: for
each i∈{1,. ..,m}, temperature ui is the solution of (1.1) with given right-hand side
fi and A=χαI+(1−χ)βI. The volume constraint of the first material is handled by
introducing Lagrange multiplier l, leading to an unconstrained minimization problemJ(χ) =

∫
Ω

(χ(x)gα(x,u)+(1−χ(x))gβ(x,u)) dx+ l

∫
Ω

χ(x)dx−→min

χ∈L∞(Ω;{0,1}).
(1.3)

The proposed optimal design problem usually does not admit a solution, thus it is
natural to consider an appropriate relaxation of the original problem. Murat and Tar-
tar’s relaxation by the homogenization method [13] uses a couple (θ,A), called a gen-
eralized design referring to a fine mixture of original materials, where θ∈L∞(Ω;[0,1])
represents a local fraction of the first material in a mixture, while A is a homogenized
conductivity matrix containing information on how materials are mixed. G-closure
problem deals with the question of characterizing the set K(θ) of all possible homoge-
nized conductivities which can be obtained with the prescribed local fraction θ. It is
solved in case of mixing two isotropic materials [12,16]: for given θ∈ [0,1], the set K(θ)
consists of all symmetric matrices with eigenvalues λ1,. ..,λd satisfying the inequalities

λ−θ ≤λj≤λ
+
θ , j= 1,. ..,d, (1.4)

d∑
j=1

1

λj−α
≤ 1

λ−θ −α
+

d−1

λ+
θ −α

, (1.5)

d∑
j=1

1

β−λj
≤ 1

β−λ−θ
+

d−1

β−λ+
θ

, (1.6)

where λ−θ =
(
θ
α + 1−θ

β

)−1

and λ+
θ =θα+(1−θ)β. Inequalities λ−θ ≤λj can be omitted

from the above description of the set K(θ), as they follow from other inequalities. The
set of all such d-tuples (λ1,. ..,λd) is denoted by Λ(α,β;θ).

Finally, the relaxation of problem (1.3) readsJ(θ,A) =

∫
Ω

(θ(x)gα(x,u)+(1−θ(x))gβ(x,u)) dx+ l

∫
Ω

θ(x)dx−→min

(θ,A)∈A={(θ,A)∈L∞(Ω;[0,1]×Md(R)) :A(x)∈K(θ(x)) a.e.x∈Ω}
(1.7)

and it is a true relaxation of the original problem, under suitable conditions on gα and
gβ . More information about homogenization theory and applications in optimal design
can be found in [1, 13,14,18,19].

Recently, problem (1.7) was solved analytically [5, 6, 21] for some simple domains
like ball or annulus and a functional corresponding to a conic sum of energies obtained
for each state equation where gα=gβ =

∑m
i=1µifiui (for single state problems, see also

[7, 13]). For more complicated domains (or functionals), it is quite unlikely to find an
analytic solution [10], which imposes a need for various numerical methods. One of
them is optimality criteria method, an iterative method based on optimality conditions
of the relaxed formulation, which produces good results in shape optimization [4, 15].
For the case of a single state equation, the method is described in [1]. Actually, two
variants of the method are introduced: already in [13] it was noticed that in the case
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of energy functional, two different approaches to optimality conditions are needed; one
for the minimization and the other for the maximization of energy.

Regarding multiple state problems, in [20], an optimality criteria method is intro-
duced, based on the optimality conditions derived in [1]. It appears that this method
works properly for maximization of a conic sum of energies, but fails for the minimiza-
tion of the same functional. In this work, we present another variant of the optimality
criteria method which is suitable for minimization of a conic sum of energies.

The paper is organized as follows: in the second section we derive the necessary
condition of optimality for the relaxed minimization problem and present calculations
essential for the implementation of the optimality criteria method for the two and three-
dimensional cases. In the last section, an implementation of the optimality criteria
method is described and some numerical results are presented.

2. Optimality criteria method
Let us denote by (θ∗,A∗) a local minimum of the relaxed problem (1.7) and consider

an admissible smooth path ε 7→ (θε,Aε)∈A given by

(θε,Aε) = (θ∗,A∗)+ε(δθ,δA)+o(ε), lim
ε↘0

‖o(ε)‖L∞
ε

= 0.

Then, for any admissible variation (δθ,δA) = d
dε (θ

ε,Aε) �ε=0+ , the first order variation
of J is given by ( [1, Sect. 3.2.3])

δJ =

∫
Ω

(gα(x,u(x))−gβ(x,u(x))+ l)δθ(x)dx−
∫

Ω

m∑
i=1

δA(x)∇ui(x) ·∇pi(x)dx, (2.1)

where the adjoint states p1,. ..,pm are unique solutions of adjoint boundary value prob-
lems −div(A∇pi) =θ

∂gα
∂ui

(·,u)+(1−θ)∂gβ
∂ui

(·,u)

pi∈H1
0(Ω)

i= 1,. ..,m. (2.2)

The necessary condition of optimality states that δJ ≥0, for any admissible variation
(δθ,δA) of the optimal design (θ∗,A∗). The main difficulty in analysing this optimality
condition is that variations in θ and A are not independent. Therefore, we use an
analogous technique to that presented in [1, 13, 17, 18]. As the first step let us consider
variations only in A, taking δθ to be 0. As noticed in [1, Remark 2.2.16], the condition
A∈K(θ) can be equivalently expressed as A−1∈K̃(θ), where K̃(θ) is the set of all
matrices with eigenvalues νj = 1

λj
(λj being the eigenvalues of A) satisfying

ν+
θ ≤νj≤ν

−
θ , j= 1,. ..,d, (2.3)

d∑
j=1

1

α−1−νj
≤ 1

α−1−ν−θ
+

d−1

α−1−ν+
θ

, (2.4)

d∑
j=1

1

νj−β−1
≤ 1

ν−θ −β−1
+

d−1

ν+
θ −β−1

, (2.5)

for ν+
θ = 1

λ+
θ

and ν−θ = 1
λ−θ

. The set of all (ν1,. ..,νd) satisfying (2.3)-(2.5) is denoted

by V(α,β;θ). As before, inequalities νj≤ν−θ can be omitted. Due to the convexity
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of K(θ∗), it is natural to take a segment in K(θ∗) as the admissible path, which leads
to the variant of optimality criteria method that appears suitable for maximization
problems [1, 20]. Here, we choose another path: since K̃(θ∗) is also convex, we can
take the admissible smooth path Aε= (εA−1 +(1−ε)A∗−1)−1, for some A∈K(θ∗),
which represents a segment in K̃(θ∗). Then the admissible variation δA is of the form
A∗(A∗−1−A−1)A∗, and by (2.1), the necessary condition of optimality reads

m∑
i=1

A−1σ∗i ·τ∗i ≥
m∑
i=1

A∗−1σ∗i ·τ∗i ,

almost everywhere on Ω, where σ∗i =A∗∇u∗i and τ∗i =A∗∇p∗i . Therefore, A∗ is a solu-
tion of the minimization problem

m∑
i=1

A−1σ∗i ·τ∗i →min

A∈K(θ∗),

(2.6)

which is a constrained minimization of a linear function. By introducing a matrix
function N∗= Sym

∑m
i=1σ

∗
i ⊗τ∗i , we have

∑m
i=1A

−1σ∗i ·τ∗i =A−1 :N∗. Here, the symbol
⊗ denotes the tensor product of two vectors, while : stands for the matrix inner product.
By the classical von Neumann result [11], the optimal A for the above minimization
problem is simultaneously diagonalizable with N∗ and thus the problem (2.6) reduces
to 

d∑
j=1

νjη
∗
j −→min

νj ∈V(α,β;θ∗), j= 1,. ..,d,

(2.7)

where η∗1 ≥η∗2 ≥ .. .≥η∗d are eigenvalues of the symmetric matrix N∗.
Now we take into account variations in θ and consider an admissible smooth path

ε 7→ (θε,Aε) such that almost everywhere on Ω

(Aε)−1 :N∗=g(θε,N∗),

where function g : [0,1]×Symd→R is defined by

g(θ,N) = min
A∈K(θ)

(A−1 :N).

Since θ 7→g(θ,N) is differentiable, as we shall see later, using variations (δθ,δA) gener-
ated by this smooth path, the necessary condition of optimality leads us to the following
result.

Theorem 2.1. Let (θ∗,A∗) be a local minimizer for the relaxation problem (1.7) with
corresponding states u∗i and adjoint states p∗i . We introduce symmetric matrix

N∗= Sym

m∑
i=1

σ∗i ⊗τ∗i ,

for σ∗i =A∗∇u∗i , τ∗i =A∗∇p∗i , and function

R∗(x) :=gα(x,u∗(x))−gβ(x,u∗(x))+ l+
∂g

∂θ
(θ∗(x),N∗(x)), a.e. x∈Ω.
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Then the optimal θ∗ satisfies (almost everywhere on Ω)

θ∗(x) = 0 =⇒ R∗(x)≥0,

θ∗(x) = 1 =⇒ R∗(x)≤0,

0<θ∗(x)<1 =⇒ R∗(x) = 0,

or equivalently

R∗(x)>0 =⇒ θ∗(x) = 0,

R∗(x)<0 =⇒ θ∗(x) = 1.

Proof. The theorem can be proved analogously as Theorem 3.2.14. in [1].

For single state optimal design problems, function g attains a minimum in a simple
laminate which is easily expressed in terms of σ∗ and τ∗. This fact makes a calculation
of the partial derivative ∂g

∂θ straightforward. Furthermore, this calculation enables an
explicit update of the design variables (θk,Ak) in the optimality criteria method. Let
us describe a strict analogue of this method applied to multiple state problems.

Algorithm 2.1. Take some initial θ0 and A0. For k from 0 to N:
(1) Calculate uki , i= 1,. ..,m, the solution of{

−div(Ak∇ui) =fi
ui∈H1

0(Ω)
.

(2) Calculate pki , i= 1,. ..,m, the solution of−div(Ak∇pi) =θk
∂gα
∂ui

(·,uk)+(1−θk)
∂gβ
∂ui

(·,uk)

pi∈H1
0(Ω), uk = (uk1 ,. ..,u

k
m)

and define σki :=Ak∇uki , τki :=Ak∇uki and Nk := Sym

m∑
i=1

(σki ⊗τki ).

(3) For x∈Ω let θk+1(x)∈ [0,1] be a zero of the function

θ 7→Rk(θ,x) :=gα(x,uk(x))−gβ(x,uk(x))+ l+
∂g

∂θ
(θ,Nk(x)), (2.8)

and if a zero doesn’t exist, take 0 (or 1) if the function is positive (or negative) on
[0,1].

(4) Let Ak+1(x) be the minimizer in the definition of g(θk+1(x),Nk(x)).

In the rest of the paper, we shall present explicit formulae for the partial derivative
∂g
∂θ for the general (multi-state) case. As mentioned in the Introduction, the first variant
of the optimality criteria method is presented in [20], but it does not converge for
examples presented in Section 3. On the other hand, that variant behaves well for the
question of maximization of the same functionals instead of minimization. This kind of
behaviour is expected for a class of self-adjoint problems, since already, the single state
self-adjoint problems exhibit a similar effect [1, 13].

Let us first consider the two-dimensional case. As commented, the minimization
over K(θ) in the definition of function g can be expressed equivalently by minimization
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over eigenvalues:

g(θ,N) = min
ν∈V(α,β;θ)

d∑
j=1

νjηj ,

where ηj are the eigenvalues of the symmetric matrix N.
In the two-dimensional case one can easily show that the set V(α,β;θ) equals to

the set Λ
(

1
β ,

1
α ;1−θ

)
. This remark can be used to calculate g and its partial derivative

over θ on the basis of [1, Lemma 3.2.17], as presented in the next theorem.

Theorem 2.2.
For the case d= 2, for given θ∈ [0,1] and a symmetric matrix N with eigenvalues

η1≥η2, we have

A. If η2>0 and θA :=

(
α

√
η1√
η2
−β
)

1

α−β
, then

∂g

∂θ
(θ,N) =


1

β

(
β2−α2

)( √
η1 +
√
η2

θ(α−β)+β+α

)2

, θ<θA

(β−α)η1

(θ(α−β)+β)
2 +η2

(
1

α
− 1

β

)
, θ≥θA

.

B. If η1<0 and θB :=

(√
−η1√
−η2
−1

)
β

α−β
, then

∂g

∂θ
(θ,N) =


− 1

α

(
β2−α2

)(√−η1 +
√
−η2

θ(α−β)+2β

)2

, θ>θB

(β−α)η1

(θ(α−β)+β)
2 +η2

(
1

α
− 1

β

)
, θ≤θB

.

C. If η1≥0 and η2≤0, then

∂g

∂θ
(θ,N) =

(β−α)η1

(θ(α−β)+β)
2 +η2

(
1

α
− 1

β

)
.

Proof. In the proof we emphasize parameters α and β in the set K(θ) by denoting
it by K(α,β; θ), for given θ∈ [0, 1]. For dimension d= 2, condition A∈K(α,β; θ) can be

equivalently expressed as A−1∈K
(

1
β ,

1
α ; 1−θ

)
. Now it follows

g(θ,N) = min
A∈K(α,β;θ)

A−1 :N=− max
A−1∈K( 1

β ,
1
α ;1−θ)

A−1 : (−N) =−f1/α
1/β (1−θ,−N),

where, for 0<γ<δ, function fδγ : [0, 1]×Symd−→R is defined as in [1, Theorem 3.2.14],
i. e.

fδγ (θ,M) = max
A∈K(γ,δ;θ)

A :M.

Furthermore,

∂g

∂θ
(θ,N) =

∂f
1/α
1/β

∂θ
(1−θ,−N).
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Therefore, one can use the formula for fβα given in [1, Lemma 3.2.17] to obtain ∂g
∂θ .

In this case (d= 2), the function θ 7→Rk(θ,x) introduced in (2.8) is monotone for
almost every x∈Ω, so its zero point (if it exists) is unique. Moreover, by formulae
presented in Theorem 2.2, the zero point can be calculated explicitly, as a zero of a
quadratic equation. For example, if the eigenvalues of matrix Nk fits the case A above,
then the function θ 7→Rk(θ,x) is strictly increasing. Therefore, one should simply check
signs of Rk(θ,x) for θ∈{0,1} (and θ=θA, if 0<θA<1) to locate the zero point (if it
exists), and solve the corresponding quadratic equation for θ.

In the three-dimensional case, the situation is more tedious, and we shall begin by
solving the minimization problem (2.7).

Theorem 2.3 (d= 3). Let 0<θ<1 and η1≥η2≥η3 be given. Then the minimization
problem  ν1η1 +ν2η2 +ν3η3−→min

(ν1,ν2,ν3)∈V(α,β;θ),
(2.9)

has a solution ν∗ as follows:

I. If

(
η3<0 and η2≥η3

(
1−αν−θ
1−αν+

θ

)2
)

or

(
η3≥0 and η2≥η3

(
βν−θ −1

βν+
θ −1

)2
)

, then

ν∗=
(
ν+
θ , ν

+
θ , ν

−
θ

)
is optimal.

II. Let η2<η3

(
1−αν−θ
1−αν+

θ

)2

(this is possible only if η2<0).

(1) If η1≥0 or else if
√
−η2 +

√
−η3≥

√
−η1

(
1+

1−αν+
θ

1−αν−θ

)
then ν∗=(

ν+
θ , ν2, ν3

)
is optimal, where

νi=
1

α
− 1√
−ηi

√
−η2 +

√
−η3

c1(θ)
, i= 2,3; (2.10)

with c1(θ) = 1
α−1−ν−θ

+ 1
α−1−ν+

θ

.

(2) Otherwise, if η1<0 and
√
−η2 +

√
−η3<

√
−η1

(
1+

1−αν+
θ

1−αν−θ

)
then ν∗=

(ν1, ν2, ν3) is optimal, where

νi=
1

α
− 1√
−ηi

√
−η1 +

√
−η2 +

√
−η3

c2(θ)
, i= 1,2,3; (2.11)

with c2(θ) = 1
α−1−ν−θ

+ 2
α−1−ν+

θ

.

III. Let η2<η3

(
βν−θ −1

βν+
θ −1

)2

(this is possible only if η3>0).

(1) If
√
η2 +
√
η3≤

√
η1

(
1+

βν+
θ −1

βν−θ −1

)
then ν∗=

(
ν+
θ , ν2, ν3

)
is optimal, where

νi=
1

β
+

1
√
ηi

√
η2 +
√
η3

d1(θ)
, i= 2,3; (2.12)

with d1(θ) = 1
ν−θ −β−1

+ 1
ν+
θ −β−1

.

(2) If
√
η2 +
√
η3>

√
η1

(
1+

βν+
θ −1

βν−θ −1

)
then ν∗= (ν1, ν2, ν3) is optimal, where

νi=
1

β
+

1
√
ηi

√
η1 +
√
η2 +
√
η3

d2(θ)
, i= 1,2,3; (2.13)
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with d2(θ) = 1
ν−θ −β−1

+ 2
ν+
θ −β−1

.

Proof. Note that due to the symmetry of the set V(α,β;θ) in ν1, ν2, ν3, we can
conclude that a minimum point satisfies ν+

θ ≤ν1≤ν2≤ν3. Moreover, by observing that
we are minimizing a linear function over a convex set, the optimal point belongs to
the boundary of the set V(α,β;θ) and conversely, every boundary point of V(α,β;θ)
can be obtained as a solution of (2.9) for some η1, η2 and η3. In addition, if η1≥0
and η2 =η3 = 0, the problem (2.9) has a non-unique solution, one of them being simple
laminate ν∗= (ν+

θ ,ν
+
θ ,ν

−
θ ). Otherwise, there is a unique minimizer which we find by

solving the Karush-Kuhn-Tucker (KKT) system. We already eliminated flat parts of
the boundary of the set V(α,β;θ) (non-uniqueness of the solution appears here), so
we have to analyze the rest of the boundary consisting precisely of: simple laminates,
second and third order sequential laminates with matrix material α, and second and
third order sequential laminates with matrix material β. These five cases correspond
exactly to cases I, II.1, II.2, III.1, and III.2 of Theorem 2.3.

Here we only prove part II.1 of the theorem, while others follow similarly. Sup-
pose that the minimizer ν∗= (ν1, ν2, ν3) belongs to the part of boundary of V(α,β;θ)
corresponding to second order sequential laminates with matrix material α, described
by

ν1 =ν+
θ , (2.14)

ν2, ν3>ν
+
θ , (2.15)

3∑
j=1

1

α−1−νj
=

1

α−1−ν−θ
+

2

α−1−ν+
θ

, (2.16)

3∑
j=1

1

νj−β−1
<

1

ν−θ −β−1
+

2

ν+
θ −β−1

. (2.17)

We shall derive conditions on η1 ,η2 and η3 which ensure that optimal ν∗ belongs to this
part of the boundary, and calculate the optimal ν∗ in terms of η1 ,η2 and η3. In this
case, the KKT system reads:

η1 =
−a1

(α−1−ν1)2
+a3

η2 =
−a1

(α−1−ν2)2

η3 =
−a1

(α−1−ν3)2
,

for some nonnegative multipliers a1 and a3. From the argument made at the beginning
of the proof, we conclude a1>0, implying that η2,η3<0 and

1

α−1−νi
=

√
−ηi
a1

, i= 2,3, (2.18)

which together with (2.16) gives

√
a1 =

√
−η2 +

√
−η3

c1(θ)
, where c1(θ) =

1

α−1−ν−θ
+

1

α−1−ν+
θ

. (2.19)

Inserting this into (2.18), one obtains formula (2.10). It remains to identify under which
conditions on η1,η2 and η3, the condition (2.15) is satisfied, with η1 = −a1

(α−1−ν1)2 +a3,
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for a1, a3≥0. A simple calculation gives that condition ν+
θ <ν2 is equivalent to

√
−η3<

√
−η2

1−αν+
θ

1−αν−θ
, (2.20)

while condition a3≥0 leads to

η1 +
a1

(α−1−ν1)2
≥0.

The above inequality is trivially satisfied if η1≥0, while if η1<0, then from (2.19), using
(2.14), it is equivalent to the inequality

√
−η2 +

√
−η3≥

√
−η1

(
1+

1−αν+
θ

1−αν−θ

)
. (2.21)

Before providing the function g(θ,N) and its derivatives, let us rewrite the statement
of Theorem 2.3 in a more convenient way for implementation on a computer.

Corollary 2.1 (d= 3). Given η1≥η2≥η3 and 0<θ<1 one can calculate the mini-
mum point ν∗= (ν1, ν2, ν3) for (2.9) in the following way:

If η3 = 0, then the optimal point is ν∗= (ν+
θ , ν

+
θ , ν

−
θ ).

Else if η3>0, then calculate ν1 by formula (2.13).

If ν+
θ <ν1, then both ν2 and ν3 are given by (2.13).

Else, calculate ν2 by formula (2.12).
If ν+

θ <ν2, then ν1 =ν+
θ and ν3 is given by (2.12).

Else ν∗= (ν+
θ , ν

+
θ , ν

−
θ ).

Else (η3<0)

If η1≥0, then

if η2≥η3

(
1−αν−θ
1−αν+

θ

)2

then ν∗= (ν+
θ , ν

+
θ , ν

−
θ ).

Else ν∗= (ν+
θ , ν2, ν3), where ν2 and ν3 are given by (2.10).

Else (η1<0) calculate ν1 by formula (2.11).

If ν+
θ <ν1, then both ν2 and ν3 are given by (2.11).

Else, calculate ν2 by formula (2.10).

If ν+
θ <ν2,, then ν1 =ν+

θ and ν3 is given by (2.10).

Else ν∗= (ν+
θ , ν

+
θ , ν

−
θ ).

Once the optimal solution ν∗= (ν1, ν2, ν3) for (2.9) is determined, one can easily
calculate the function g(θ,N) =ν1η1 +ν2η2 +ν3η3, as well as its partial derivative over
θ. Partial derivatives of the function g are given below.

Theorem 2.4. For d= 3, given θ∈ [0,1] and matrix N with eigenvalues η1≥η2≥η3,
we have

A. If η3 = 0 then
∂g

∂θ
(θ,N) =

β−α
(θα+(1−θ)β)2

(η1 +η2).
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B. If η3>0 and additionally
√
η2 +
√
η3−
√
η1>0, it holds that

∂g

∂θ
(θ,N) =



(β−α)(α+2β)

β

( √
η1 +
√
η2 +
√
η3

2θ(α−β)+α+2β

)2

, θ<θB1 ,

β2−α2

β

( √
η2 +
√
η3

θ(α−β)+α+β

)2

+
(β−α)η1

(θα+(1−θ)β)2
, θB1 ≤θ<θB2 ,

(β−α)η3

αβ
+

β−α
(θα+(1−θ)β)2

(η1 +η2), θ≥θB2 ,

where θB1 = 1−
α(2
√
η1−
√
η2−
√
η3)

(β−α)(
√
η2 +
√
η3−
√
η1)

and θB2 = 1−
α(
√
η2−
√
η3)

(β−α)
√
η3

.

If
√
η2 +
√
η3−
√
η1≤0 then we omit the first case in the above formula.

C. If η3<0 then, if η2 and η1 are negative as well, we have

∂g

∂θ
(θ,N) =



− (β−α)(2α+β)

α

(√
−η1 +

√
−η2 +

√
−η3

2θ(α−β)+3β

)2

, θ>θC1 ,

−β
2−α2

α

(√
−η2 +

√
−η3

θ(α−β)+2β

)2

+
(β−α)η1

(θα+(1−θ)β)2
, θC2 <θ≤θC1 ,

(β−α)η3

αβ
+

β−α
(θα+(1−θ)β)2

(η1 +η2), θ≤θC2 ,

(2.22)

where θC1 =
β(
√
−η2 +

√
−η3−2

√
−η1)

(β−α)(
√
−η2 +

√
−η3−

√
−η1)

and θC2 =
β(
√
−η3−

√
−η2)

(β−α)
√
−η3

.

If η2<0 and η1≥0 then θC1 is not defined and we can express ∂g
∂θ (θ,N) by the

second and the third term in (2.22), omitting the assumption θ≤θC1 in the
second case.

If η2≥0 then both θC1 and θC2 are not defined and ∂g
∂θ is given by the formula in

the third case of (2.22), for any θ∈ [0,1].

Proof. Let us first remark that θB1 ≤θB2 ≤1 and 0≤θC2 ≤θC1 . We are going to
present only the proof of case C, as other cases can be proved analogously. If η1<0 and
the optimal (ν1,ν2,ν3) is given by the formula (2.11), from

g(θ,N) =η1ν1 +η2ν2 +η3ν3

an easy calculation gives us the formula which corresponds to the first term of the func-
tion ∂g

∂θ in the case C. Here, the condition ν+
θ <ν1 is equivalent to θ>θC1 . If ν1 =ν+

θ (or
equivalently, θ≤θC1 ) and ν2 and ν3 are given by (2.10), then one gets the second formula
in case C. This occurs if ν+

θ <ν2 or equivalently θ>θC2 . Finally, the last term in case
C is easily reconstructed since in this case (ν+

θ ,ν
+
θ ,ν

−
θ ) is optimal for the minimization

problem in definition of function g.

It is important to notice that function θ 7→gα(x,uk(x))−gβ(x,uk(x))+ l+
∂g
∂θ (θ,Nk(x)) is continuous in the three-dimensional case, due to the continuity of the

function θ 7→ ∂g
∂θ , but not necessarily monotone as it was in the two-dimensional case.

The possible lack of monotonicity can occur in case C, when η1≥0, η2<0, and for some
choices of α, β, η1, η2, η3. In this case, one can get two possible zeros of this function on
[0,1], and then we simply take the smaller one for the next iteration of θ. However, in all
examples that we considered, this situation never actually occurred. In all other cases,
the function (2.8) is monotone and its zero is explicitly calculated by solving quadratic
(or quartic) equation.
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3. Numerical examples
In this section, we apply Algorithm 2.1 on several problems of optimal design.

The state and adjoint equations are solved by the finite element method in deal.II
library [3] using Lagrange elements on a fine mesh, while a design (θ,A) is discretized
on a (possibly different) mesh [8], by piecewise constant elements. Lagrange multiplier
l is recalculated at each step in a way that θk+1 satisfies the volume constraint, which
is done quite effectively by the bisection method. All problems are treated for various
volume fractions η := qα

|Ω| of the first phase (with conductivity α). For the initial design

we take constant θ0 =η, while A0 is taken to be a simple laminate (A0 = diag(λ−θ ,λ
+
θ )

if d= 2 or A0 = diag(λ−θ ,λ
+
θ ,λ

+
θ ) if d= 3). In all examples we calculate 20 iterations of

Algorithm 2.1, but it appears that optimal design is well approximated already by the
first several iterations.

The first three examples deal with a self-adjoint case, which is addressed already
in [1,2,9,13]. For a numerical point of view and the question of convergence, in the case
of single state problems, see e.g. [1, Section 5.1.3]. Theorems 3.2.30 and 3.2.31 in [1]
(see also [2,9]) show that the relaxed problem (1.7) can be expressed as a minimization
problem in terms of complementary energy

inf
(θ,A)∈A

∫
Ω

(
m∑
i=1

fiui+ lθ

)
dx= inf

τ ∈L2(Ω;Rdm)
−divτi=fi

∫
Ω

QF (τ ),

where QF (τ ) = min0≤θ≤1(g(θ,τ ττ )+ lθ) is a quasiconvex integrand. More precisely, it
can be understood as a quasiconvex envelope of the integrand which appears in the
original (unrelaxed) problem, which gives another view to its relaxation.

3.1. Two-state problem on a ball. In the first example we consider two-
dimensional problem of weighted energy minimization

J(θ,A) = 2

∫
Ω

f1u1dx+

∫
Ω

f2u2dx−→min,

where Ω⊆R2 is a ball B(0,2), α= 1, β= 2, while u1 and u2 are state functions for{
−div(A∇ui) =fi
ui∈H1

0(Ω)
, i= 1,2, (3.1)

where we take f1 =χB(0,1) and f2≡1 for right-hand sides. This problem is explicitly
solved in [6] so we can compare our numerical solution to the exact one. The comparison
is done with respect to mesh refinement: the original triangulation of the domain is
refined up to 8 times, where each refinement introduces four times finer mesh [3].

The L1 error between the numerical and exact solutions is presented on Figure 3.1
for various choices of η, and, as it can be seen, the numerical solution aproximates well
the exact one.

For η= 0.25, the numerical solution is presented in Figure 3.2. Let us recall that
θ= 0 corresponds to the material with conductivity β, θ= 1 corresponds to the material
with conductivity α, while θ∈〈0,1〉 corresponds to a fine mixture of the original phases.
Convergence history is presented in Figure 3.3.

3.2. Single state problem on an annulus. Let us now consider energy mini-
mization problem

J(θ,A) =

∫
Ω

fudx−→min,
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Fig. 3.1: L1 norm E of difference between numerical and exact solution with respect to mesh refine-
ment (each refinement introduces four times finer mesh) for various choices of volume fractions η of
the first phase (Subsection 3.1).

Fig. 3.2: Optimal distribution of materials with volume fraction η= 0.25 of the first phase – Subsection
3.1.

within an annulus B(0;1,2)⊆R2, with inner radius 1 and outer radius 2 and the state
equation {

−div(A∇u) = 1
u∈H1

0(Ω).
(3.2)
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(a) Cost functional J in terms of the iteration
number k.
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Fig. 3.3: Convergence history with volume fraction η= 0.25 of the first phase – Subsection 3.1.
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Fig. 3.4: L1 norm E of difference between numerical and exact solution with respect to mesh refine-
ment (each refinement introduces four times finer mesh) for various choices of volume fraction η of
the first phase (Subsection 3.2).

Exact solution for this example is calculated in [5], which allows us to compare our
numerical solution to the exact one. The L1 error between the numerical and exact
solutions is given in Figure 3.4 for various 0<η<1 and it is again a decreasing function
with respect to mesh refinement.

Optimal distribution with 50% of the first material is shown in Figure 3.5, while
convergence histories of the cost functional and the approximation error are illustrated
in Figure 3.6.
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Fig. 3.5: Optimal distribution of materials with volume fraction η= 0.5 of the first phase – Subsection
3.2.
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(a) Cost functional J in terms of the iteration
number k.
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Fig. 3.6: Convergence history with volume fraction η= 0.5 of the first phase – Subsection 3.2.

We can conclude from both examples that the optimality criteria method proposed
in Section 2 gives a good approximation of the exact solution.

3.3. Two-state problem on a cube. The third example is the three-
dimensional energy minimization problem

J(θ,A) =

∫
Ω

(f1u1 +f2u2)dx−→min,

with α= 1, β= 2 and two state equations{
−div(A∇ui) =fi
ui∈H1

0(Ω)
, i= 1,2. (3.3)
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(a) Outer look. (b) Intersection of the cube with x= 0 plane.

Fig. 3.7: Numerical solution for Subsection 3.3 with volume fraction η= 0.5 of the first phase.
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Fig. 3.8: Convergence history with volume fraction η= 0.5 of the first phase - Subsection 3.3.

We take a cube Ω = [−1,1]3 as the domain and set function f1 to be zero on the
upper half (z>0) and 10 on the lower half of the cube, while function f2 to be zero on
the left half (y<0) and 10 on the right half of the cube. Optimal design of the 20-th
iteration of the Algorithm 2.1 with volume fraction η= 0.5 of the first material is shown
in Figure 3.7a. Material with greater conductivity is placed at the center of the cube
and on the sides, which can be seen in Figure 3.7b. Most of the upper left part of the
cube is occupied by the material with smaller conductivity, which is expected because
there is no external source on this part of the domain. Convergence history of the cost
functional and the residual are given in Figure 3.8.

3.4. Non self-adjoint problem on a cube. Let us now consider a non self-
adjoint two-state minimization problem, where the cost functional is given by

J(θ,A) =

∫
Ω

(u2
1 +u2

2)dx.
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(a) Outer look. (b) Intersection of the cube with x= 0 plane.

Fig. 3.9: Numerical solution for Subsection 3.4 with volume fraction η= 0.5 of the first phase.
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Fig. 3.10: Convergence history with volume fraction η= 0.5 of the first phase - Subsection 3.4.

We take state equations (3.3) and domain Ω= [−1,1]3, with f1 and f2 being similar as
in Subsection 3.3. In this case, the adjoint equations are given by{

−div(A∇pi) = 2ui
pi∈H1

0(Ω)
, i= 1,2. (3.4)

Optimal distribution of materials with conductivites α= 1 and β= 2 is presented in
Figure 3.9a, while intersection of the domain with the x= 0 plane is given in Figure
3.9b. Convergence history is given in Figure 3.10.

4. Conclusion
In this paper, we were dealing with multiple state optimal design problems for sta-

tionary diffusion equation. We derived another variant of the optimality criteria method
for (two- and three-dimensional) optimal design problems. Although the method relies
on complicated formulae, it can be implemented quite effectively with almost explicit
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update formulae for the design variables. As tested on many examples, this numerical
method shows good convergence properties revealing an optimal design in very few it-
erations. Moreover, the convergence seems indifferent to the initial design, and behaves
well on mesh refinement.

The method is written for general functionals, and it appears to suit well for prob-
lems of minimizing a conic sum of energies, contrary to the variant presented in [20].
In more complicated situations, it is expected that a combination of these two variants
would be the right choice.
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