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INTERACTION OF THE ELEMENTARY WAVES OF ISENTROPIC

FLOW IN A VARIABLE CROSS-SECTION DUCT∗

WANCHENG SHENG† AND QINGLONG ZHANG‡

Abstract. The equations of fluid in a variable cross-section duct are nonconservative because of
the source term. Recently, the Riemann solutions of the equations for the compressible duct flow have
been obtained. The authors also obtained the elementary waves including rarefaction waves, shock
waves and stationary wave. In this paper, we mainly discuss the interactions of rarefaction wave and
shock wave with the stationary wave, for the cases in which the cross-section area is either decreasing
or increasing. The large-time behavior is shown in each case.
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1. Introduction

When the cross-section area a(x) does not change rapidly, a duct flow of an isother-
mal fluid in a nozzle can be seen as one dimensional flow. The equations are described
as





(aρ)t+(aρu)x=0,

(aρu)t+(aρu2+ap)x=pax,

at=0.

(1.1)

where ρ,u, and p represent the density, the velocity and the pressure of the fluid, re-
spectively. The state equation is given by p=κργ, where κ is a constant and 1<γ< 3
for isentropic flow. Generally, a(x) is given a priori, here we view it as a variant which
is independent of time [11, 17].

We know that system (1.1) is not conservative because there is a source term which
can be seen as a nonconservative product [4, 13]. The source term plays an important
role in the numerical approximations both in a nozzle with variable cross-section model
and the multiphase flow models [2, 8, 9, 18, 19]. The usual definition of weak solutions
cannot be applied to the system. For earlier works on nonconservative systems, see
also [5–7].

In 2003, LeFloch et al. [12] solved the Riemann problem of system (1.1). The
Riemann problem of nonisentropic fluid was also studied by Andrianov etal. [1] and
Thanh [20]. LeFloch and Thanh divided the (u,ρ) plane by the coinciding characteristic
curves. In each area, system (1.1) can be viewed as strictly hyperbolic. LeFloch and
Thanh select an admissible stationary wave relying on the monotone criterion. While
Andrianov et al. give the evolutionary criterion.

In this paper, we study the interaction of the elementary waves including stationary
wave, i.e., the interaction of rarefaction wave or shock wave with the stationary wave.
The interactions of the elementary waves apart from the stationary wave are obtained
by Chang et al. [3]. By using characteristic analysis methods from [3], we study the
interactions case by case, based on the solutions of the Riemann problem [1, 12, 20].
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2. Preliminaries

2.1. Characteristic analysis and elementary waves. Denoting U =(u,ρ,a),
the system (1.1) can be rewritten, when considering a smooth solution, as

∂tU+A(U)∂xU =0, (2.1)

where

A=




u κγργ−2 0
ρ u ρu/a
0 0 0


 .

The matrix A has three eigenvalues

λ1=u−c , λ2=0, λ3=u+c , (2.2)

where c=
√
p′(ρ). The corresponding right eigenvectors are

~r1=(−c,ρ,0)T , ~r2=
(
−c2,ρu,au

(
1− c2

u2

))T

, ~r3=(c,ρ,0)
T
.

The second characteristic family is linearly degenerate, while the first and the third
characteristic families are genuinely nonlinear

−▽λ1(u) ·r1(u)=▽λ3(u) ·r3(u)=
1

2
√
p′(ρ)

(ρp′′(ρ)+2p′(ρ))> 0.

The first and the third characteristics may coincide with the second one, so the system
is not strictly hyperbolic. More precisely, setting

Γ± :u=±c,

we see that

λ2=λ1 on Γ+, λ2=λ3 on Γ−.

In the (u,ρ) plane, the curves Γ± separate the half-plane ρ> 0 into three parts. For
convenience, we will view them as D1 (supersonic), D2 (subsonic) and D3 (supersonic):

D1=
{
(u,ρ)

∣∣u<−c
}
, D2=

{
(u,ρ)

∣∣|u|<c
}
, D3=

{
(u,ρ)

∣∣u>c
}
.

In each of the region, the system is strictly hyperbolic and we have

λ1<λ3<λ2, in D1, λ1<λ2<λ3, in D2, λ2<λ1<λ3, in D3.

For the unsteady flow, we have the Bernoulli’s law

u2+
2c2

γ−1
=k0, (2.3)

where k0 is constant along a streamline. Furthermore, we have the following result.

Lemma 2.1. For unsteady flow, the Bernoulli constant k0 is constant in the region of
flow adjacent to a domain of constant state.

It follows that the Bernoulli constant k0 is constant in a simple wave, because a
flow in a region adjacent to a region of constant state is always a simple wave.
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2.2. The rarefaction waves. First, we look for self-similar solutions. We cal-
culate the Riemann invariants of each characteristic





λ1=u−c :
{
a,u+ 2c

γ−1

}
,

λ2=0 :
{
aρu, u

2

2
+ c2

γ−1

}
,

λ3=u+c :
{
a,u− 2c

γ−1

}
.

(2.4)

We see that, for the rarefaction waves, the cross-section a(x) remains constant, so system
(1.1) degenerates to the gas dynamic equations

{
ρt+(ρu)x=0,

(ρu)t+(ρu2+p)x=0.
(2.5)

For a given left state (u0,ρ0,a0), we determine the 1-wave and 3-wave rarefaction curves
that can be connected on the right by






←−
R 1(U,U0) : u=u0−

∫ ρ

ρ0

c

ρ
dρ=u0−

2
√
κγ

γ−1

(
ρ

γ−1
2 −ρ

γ−1
2

0

)
, ρ<ρ0,

−→
R 3(U,U0) : u=u0+

∫ ρ

ρ0

c

ρ
dρ=u0+

2
√
κγ

γ−1

(
ρ

γ−1
2 −ρ

γ−1
2

0

)
, ρ>ρ0.

(2.6)

2.3. The stationary waves. The Rankine-Hugoniot relation associated with
the third equation of (1.1) is that

−σ[a]=0, (2.7)

where [a] : =a1−a0 is the jump of the cross-section a. We can derive the conclusions:

1) σ=0 : the shock speed vanishes, here we assume [a] 6=0 and the wave is called
stationary contact discontinuity;

2) [a]=0 : the cross-section a remains constant across the non-zero speed shocks.

Across the stationary contact discontinuity, the Riemann invariants remain con-
stant; from the second equation of (2.4), the right states (u,ρ,a) satisfy





a0ρ0u0=aρu,

u2
0

2
+

c20
γ−1

=
u2

2
+

c2

γ−1
,

(2.8)

where (u0,ρ0,a0) is the left state. It follows that across the stationary contact discon-
tinuity, the Bernoulli’s law is satisfied. We have the following results (see also [12]).

Lemma 2.2. Given the left-hand state U0=(u0,ρ0,a0) and denote

amin(U0)=
a0ρ0|u0|
√
κγ ρ̄

γ+1
2

0

and ρ̄0=

(
2(γ−1)

κγ(γ+1)

(
u2
0

2
+

c20
γ−1

)) 1
γ−1

,

we have that (2.8) has at most two solutions U∗=(u∗,ρ∗,a) and U∗=(u∗,ρ∗,a) for any
a>0, more precisely,

1) if a<amin(U0), (2.8) has no solution, so there is no stationary wave.

2) if a>amin(U0), there are two points U∗,U
∗ satisfying (2.8), which can connect

with U0 by stationary waves.
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3) if a=amin(U0), U∗ and U∗ coincide.

Proof. We substitute the first equation of (2.8) into the second equation and get

− 2κγ

γ−1
ργ+1+

(
u2
0+

2κγ

γ−1
ργ−1

0

)
ρ2−

(a0ρ0u0

a

)2
=0. (2.9)

Let

Φ(ρ;a,U0)=−
2κγ

γ−1
ργ+1+

(
u2
0+

2κγ

γ−1
ργ−1

0

)
ρ2−

(a0ρ0u0

a

)2
.

From

dΦ(ρ;a,U0)

dρ
=−2κγγ+1

γ−1
ργ+2

(
u2
0+

2κγ

γ−1
ργ−1

0

)
ρ=0, (2.10)

we get the maximum value of Φ at

ρ̄0(U0)=

(
γ−1

κγ(γ+1)
u2
0+

2

γ+1
ργ−1

0

) 1
γ−1

=

(
2(γ−1)

κγ(γ+1)

(
u2
0

2
+

c20
γ−1

)) 1
γ−1

.

So Φ has a zero solution at least, as Φ(ρ̄0;a,U0)> 0. It follows that when

a>
a0ρ0|u0|
√
κγ ρ̄

γ+1
2

0

=:amin(U0),

Φ(ρ;a,u0)=0 has a solution at least. If a>amim(U0), then there exist two values
ρ∗(U0)≤ ρ̄0(U0)≤ρ∗(U0) which satisfy

Φ(ρ∗(U0);a,U0)=Φ(ρ∗(U0);a,U0)=0. (2.11)

We complete the proof of Lemma 2.2.

Moreover, across the stationary contact discontinuity (2.8) denoted by S0(U ;U0),
the states U∗=(u∗,ρ∗,a) and U∗=(u∗,ρ∗,a) have the following properties





S0(U∗;U0), |u∗|>c∗, i.e., (u∗,ρ∗)∈
{
D1, u0< 0,
D3, u0> 0,

S0(U
∗;U0), |u∗|<c∗, i.e., (u∗,ρ∗)∈D2.

As shown in [12], the Riemann problem for (1.1) may admit up to a one-parameter
family of solutions. To ensure the uniqueness of the solution, the Riemann solutions
should be required to satisfy an Admissibility Criterion: a monotone condition on the
component a. Motivated by [1, 12] and [20], we impose the following global entropy
condition on stationary wave of (1.1).

Global entropy condition. Along the stationary curve S0(U ;U0) in the (u,ρ)-
plane, the cross-section area a obtained from (2.8) is a monotone function of ρ.

Under the global entropy condition, we call the stationary contact discontinuity as
stationary wave in duct flow. Lefloch and Thanh proved the following results in [12].

Lemma 2.3. Global entropy condition is equivalent to the statement that any stationary
wave has to remain in the closure of only one domain Di,i=1,2,3.
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From the lemma, we get some properties of the stationary curve in (u,ρ)-plane in
the following.

Lemma 2.4. The stationary wave can be viewed as parameter curves S0(U(a);U0)
depending only on a in (u,ρ) plane, and they have the following properties

1) S0(U(a);U0) is strictly increasing (decreasing) in u if u< 0 (> 0).

2) S0(U(a);U0) is concave with respect to u if |u|≤ c, or |u|>c,2≤γ< 3.

3) The increasing (decreasing) velocity and density in U0 leads to the increasing
(decreasing) velocity and density in U .

Proof. Differentiating the two equations of (2.8), we get






da

a
+

dρ

ρ
+

du

u
=0,

udu+κγργ−2dρ=0.
(2.12)

Then we get

dρ

du
=− u

κγργ−2
,

du

da
=

uc2

a(u2−c2)
,

dρ

da
=− ρu2

a(u2−c2)
.

The first statement is hence proved. For the proof of the second statement, we calculate

d2ρ

du2
=− ρ

c4
((γ−2)u2+c2).

From (2.8), we get

u=
a0ρ0
a1ρ

u0, ρ=
a0u0

a1u
ρ0.

Taking derivatives with respect to u0,ρ0 respectively, when we fix the other variables,
we get

∂u

∂u0

=
a0ρ

a1ρ
> 0,

∂ρ

∂ρ0
=

a0u0

a1u
> 0.

Thus the last statement is proved.

From Lemma 2.2 and 2.3, S0(U(a);U0) are in the same domain with U0, see Figure
2.1.

2.4. The shock waves. From (2.7), a(x) remains constant across the shock with
non-zero speed, the Rankine-Hugoniot relation for (2.5) is

{
−σ[ρ]+[ρu]=0,

−σ[ρu]+[ρu2+p(ρ)]=0,
(2.13)

which is equivalent to

σi(U,U0)=u0∓
(

ρ

ρ0

[p]

[ρ]

)1/2

, i=1,3.

The 1-and 3-families of shock waves with non-zero speed connecting a given left-hand
state U0 to the right-hand state U are constrained by the Hugoniot set:

(u−u0)
2=κ

(
1

ρ0
− 1

ρ

)
(ργ−ργ0 ). (2.14)
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✲

✻
u= cu=−c

u

ρ

U0

a<a0

r

Fig. 2.1. S0(U(a),U0) in (u,ρ)-plane.
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a<a0

S0(U,U0)

S0(U,U0)

r
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r

a<a0

a>a0

U0

S0(U,U0)

❜

❜

❜

❜

A shock wave should satisfy the Lax shock conditions [10]

λi(U)<σi(U,U0)<λi(U0), i=1,3. (2.15)

Using the Lax shock conditions, we get the 1- and 3-shock waves
←−
S 1(U,U0) and−→

S 3(U,U0) consisting of all right-hand states U by






←−
S 1(U,U0) :u=u0−

(
κ

(
1

ρ0
− 1

ρ

)
(ργ−ργ0)

) 1
2

ρ>ρ0,

−→
S 3(U,U0) :u=u0−

(
κ

(
1

ρ0
− 1

ρ

)
(ργ−ργ0)

) 1
2

ρ<ρ0.

(2.16)

The 1- and 3-shock wave speeds σi(U,U0)(i=1,3) may change their signs along the
shock curves in the (u,ρ)-plane, more precisely,

σ1(U,U0)






< 0, U0∈D1∪D2,
< 0, ρ̃0<ρ,
=0, ρ= ρ̃0,
> 0, ρ0<ρ< ρ̃0,




 U0∈D3,
(2.17)

and

σ3(U,U0)





> 0, U0∈D2∪D3,
> 0, ρ̄0<ρ,
=0, ρ= ρ̄0,
< 0, ρ0<ρ< ρ̄0,



 U0∈D1,

(2.18)

where Ũ0=(ũ0, ρ̃0)∈D2∩{u> 0},Ū0=(ū0, ρ̄0)∈D2∩{u< 0}.
Let us define the backward and forward wave curves

W1(ρ;U0)=

{←−
R1(ρ;U0), ρ<ρ0,←−
S1(ρ;U0), ρ>ρ0,

W3(ρ;U0)=

{−→
R3(ρ;U0), ρ>ρ0,−→
S3(ρ;U0), ρ<ρ0,
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and stationary wave

W2(ρ;U0)=S0(ρ;U0), ρ=ρ∗ or ρ∗.

We conclude that the wave curve W1(ρ;U0) is strictly decreasing and convex in the
(u,ρ)-plane, while the wave curve W3(ρ;U0) is strictly increasing and convex.

The elementary waves of system (1.1) consists of rarefaction waves, shock waves,
and stationary wave, which are denoted by Wi(ρ;U0) (i=1,2,3) briefly.

According to the Riemann solutions [12] of (1.1) inD1,D2, and D3 , we will consider
the interaction results of the elementary waves based on the division of the (u,ρ)-plane.
We only consider the interactions of rarefaction waves or shock waves with the station-
ary waves. The other kinds of wave interactions (rarefaction-rarefaction, shock-shock,
shock-rarefaction) can be obtained by the isentropic gas dynamics equations (2.5) [3],
using the fact that [a]=0 in these cases.

3. The interactions of rarefaction wave or shock wave with the stationary

wave

To study the interactions of rarefaction wave or shock wave with the stationary
wave, we consider the initial value problem of (1.1) with the initial data

(u,ρ,a)
∣∣∣
t=0

=






U−=(u−,ρ−,a0), x<x1,
Um=(um,ρm,a0), x1<x<x2,
U+=(u+,ρ+,a1), x>x2.

(3.1)

3.1. Rarefaction wave interacts with a stationary wave. In this case, it
satisfies that

Um∈
−→
R 3(U,U−), U+∈S0(U,Um), a1>amin(Um).

By Lemma 2.1, a1≥amin(U0) (ρ−≤ρ0≤ρm),U0∈
−→
R 3(U,U−), which means the station-

ary wave will always exist in the interaction process. We have that





−→
R 3(U,U−)=

−→
R 3(Um,U) : u=u−+

2
√
κγ

γ−1
(ρ

γ−1
2 −ρ

γ−1
2

− ), ρ−≤ρ≤ρm,

S0(U1,U0) :





a0ρ0u0=a1ρ1u1, U0=(u0,ρ0,a0)∈
−→
R 3(U,U−),

u2
0+

2κγργ−1

0

γ−1
=u2

1+
2κγργ−1

1

γ−1
, a1≥amin.

(3.2)

Fig. 3.1. The curves Γ+,Γ∗ and Γ∗.

✲

✻
ρ

u

Γ+ Γ∗Γ∗

U0

U0∗

U∗
0

Fig. 3.2. The four curves and the five regions.
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−→
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Define two curves Γ∗ and Γ∗ in the (u,ρ)-plane. Γ∗ and Γ∗ are made of states
reached by S0(U,U0) using U0∗ and U∗

0 respectively when U0∈Γ+, see Figure 3.1. Then
we use the four curves below to divide the (u,ρ)-plane into five parts I, II, III, IV and
V, see Figure 3.2,

Γ+ : u= c, Γ∗ : u=k0c, Γ1 : u=k1c, Γ2 : u=k2c,

where k0 is a constant and will be given below, k1=
(

2

γ−1

) 1
2
(

a1

a0

) γ−1
3−γ

, k2=
2

γ−1
. Γ1 will

be explained in the following. Γ2 is the rarefaction curve
−→
R 3(U,(0,0)), which is below

Γ+. Let a1 6=
(

2

γ−1

) 3−γ
2(γ−1)

a0, then the four curves do not coincide with each other.

Without loss of generality, we assume that a1<
(

2

γ−1

) 3−γ
2(γ−1)

a0. We have the following

results.

Lemma 3.1. 1<k0<k1<k2, i.e., Γ+,Γ∗,Γ1 and Γ2 lie from left to right.

Proof. The fact that 1<k1<k2 is obvious. We only need to prove k0<k1.
Let U0∈Γ+, we have u0= c0. Substituting it into (2.9), we get

− 2

γ−1

(
ρ

ρ0

)γ+1

+
γ+1

γ−1

(
ρ

ρ0

)2

−
(
a0
a1

)2

=0,

denote x= ρ
ρ0

and f(x)=− 2

γ−1
xγ+1+ γ+1

γ−1
x2−(a0

a1
)2, we have 0<x< 1 and

f(0)< 0, f(1)=1−
(
a0
a1

)2

> 0, f ′(x)=
2(γ+1)

γ−1
(x−xγ)> 0,

so f(x)=0 admits a unique solution x0. We substitute ρ=x0ρ0 into the second equation
of (3.2) and get

u=
a0
a1

x
− γ+1

2
0 c.

Denote k0=
a0

a1
x
− γ+1

2
0 . We know that k0<k1 if and only if

f
(
((γ−1)/2)

1
γ+1 (a0/a1)

4
(γ+1)(3−γ)

)
< 0.

The latter follows from the condition a1<
(
2
/
(γ−1)

) 3−γ
2(γ−1) a0. The required conclusion

follows immediately.

The first quadrant of (u,ρ)-plane can be divided into five parts, namely (see Figure
3.2)

I=
{
(u,ρ)

∣∣u>k2c
}
, II=

{
(u,ρ)

∣∣k1c<u<k2c
}
,

III=
{
(u,ρ)

∣∣k0c<u<k1c
}
, IV=

{
(u,ρ)

∣∣c<u<k0c
}
, V=

{
(u,ρ)

∣∣0<u<c
}
.

Lemma 3.2. They have the following properties (see Figure 3.2):
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1) If U+ is above Γ2, then
−→
R 3(Um,U0) has a unique intersection point U =(0, ρ̄)

with ρ-axis. And S0(U1,U0)∩
−→
R 3(Um,U0)= {U}.

2) If U+ is below Γ2,
−→
R 3(Um,U0) intersects with u-axis at a unique point U =(ū,0).

And S0(U1,U0)∩
−→
R 3(Um,U0)= {U}.

Lemma 3.3. The relative position of the curves S0(U1,U0) and
−→
R 3(U+,U1), when

U0=Um, U1=U+, is shown as follows

1) when U+∈ I,
−→
R 3(U+,U) is below (or on the right of) S0(U1,U0) (see Figure

3.3-3.4);

2) when U+∈ II, S0(U1,U0) penetrates
−→
R 3(U+,U1) from above in the supersonic

area, and is above
−→
R 3(U+,U1) in the subsonic area (see Figure 3.5);

3) when U+∈ III, S0(U1,U0) lies below
−→
R 3(U+,U1) in the supersonic area, and above−→

R 3(U+,U1) in the subsonic area (see Figure 3.6);

4) when U+∈ IV, Φ(U+,Um)=0 has no solution.

5) when U+∈V, S0(U1,U0) is below
−→
R 3(U+,U1) (see Figure 3.7).

Proof. From the above discussion, we have






U0=(u0(ρ0),ρ0,a0)∈
−→
R 3(Um,U) :u=um+

2
√
κγ

γ−1
(ρ

γ−1
2 −ρ

γ−1
2

m ), 0≤ρ≤ρm,

U1=(u1(ρ1),ρ1,a1)∈S0(U,U0) :






a0ρ0u0=a1ρu,

u2
0+

2κγργ−1

0

γ−1
=u2+

2κγργ−1

γ−1
,
0≤ρ≤ρ+,

(3.3)

Fig. 3.3. U+∈ I and Um is below Γ2.

✲

ρ

u

Um

U+

⑥

ū û

✻ Γ+ Γ∗ Γ1 Γ2

IIIIIIIVV

U0

U1 S0(U1,U0)

−→
R3(Um)

−→
R3(U+)

Fig. 3.4. U+∈ I and Um is above Γ2.

✲ u
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Um

U+
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S0(U1,U0)

−→
R3(Um)

Us
m
q

✻
ρ

û

ρ̄

Γ1 Γ2Γ∗

I

II

IIIIVV

U∗

U
∗
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Fig. 3.5. U+∈ II.

✲

✻

u

ρ
Γ+ Γ∗ Γ1 Γ2

Um

U+

ρ̄

ρ̂

Us
m

q

U
∗

U∗

S0(U1,U0)

III

IIIIV

V

Fig. 3.6. U+∈ III.

✻
ρ Γ+ Γ∗

Um

U+

Γ1 Γ2

Us
m

q

U0

✲ u

ρ̄

ρ̂ S0(U1,U0)

U
∗

U∗

I

II

IIIIV

V

Fig. 3.7. U+∈V.

✲

✻
ρ

u

U+

Um

ρ̄ S0

−→
R3(Um)

−→
R3(U+)

❑

ρ̂

Γ+ Γ∗ Γ1 Γ2

V

IV III II

I

and

−→
R 3(U+,U) : u=u(ρ)=u++

2
√
κγ

γ−1
(ρ

γ−1
2 −ρ

γ−1
2

+ ), 0≤ρ≤ρ+. (3.4)

Denote f(ρ1)=u1(ρ1)−u(ρ1), when U+ is located below Γ+. Then we have f(ρ+)=0.
From (3.3), we have






du0=
√
κγρ

γ−3
2

0 dρ0,

a0ρ0du0+a0u0dρ0=a1ρ1du1+a1u1dρ1,

u0du0+κγργ−2

0 dρ0=u1du1+κγργ−2

1 dρ1.

(3.5)

It follows that

du1

dρ1
=

a1u1

√
κγ−a0κγρ

−γ−3
2

0 ργ−2

1

a0ρ
− γ−3

2
0 u1−a1ρ1

√
κγ

. (3.6)

Therefore, we get that

df

dρ1
=

du1

dρ1
− du

dρ1
=

a1u1

√
κγ−a0κγρ

−γ−3
2

0 ργ−2

1

a0ρ
−γ−3

2
0 u1−a1ρ1

√
κγ

−√κγρ
γ−3
2

1

=−u1+c1
ρ1

· u1c1−u0c0
u2
1−u0c0

. (3.7)
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Similarly, denote g(u1)=ρ1(u1)−ρ(u1), we have g(u+)=0 and

dg

du1

=
ρ1(u1+c1)(u1c1−u0c0)

u1c1(u0c0−c21)
.

Firstly, we have

u2
1−u0c0

{
> 0 U1∈ I∪II∪III,
< 0 U1∈V,

and u0c0−c21

{
> 0 U1∈ I∪II∪III,
< 0 U1∈V.

Secondly, we know that

u1c1−u0c0=u0c0

(
u1c1
u0c0

−1

)
=u0c0

(
u1

u0

·
(
ρ1
ρ0

) γ−1
2

−1

)
=u0c0

(
a0
a1
·
(
ρ0
ρ1

) 3−γ
2

−1

)
.

Thus from u1c1=u0c0, we have

a0
a1

=

(
ρ0
ρ1

) γ−3
2

. (3.8)

and substitute (3.8) into (2.9) :

u2
1=

2

γ−1

(
a1
a0

) 2(γ−1)
3−γ

c21.

Denote k1=
(

2

γ−1

) 1
2
(

a1

a0

) γ−1
3−γ

, a∗=
(

2

γ−1

) 3−γ
2(γ−1)

a0, thus we obtain the curve Γ1.

When a1<a∗, Γ1 lies between Γ+ and Γ2. While a1>a∗, Γ+ lies between Γ1 and
Γ2. We only consider the case a1<a∗. The other case is similar.

Combining the above discussion, we have

u1c1−u0c0





< 0, U1∈ I∪II,
> 0, U1∈ III,
< 0, U1∈V.

Therefore,

df

dρ1

{
> 0, U1∈ I∪II,
< 0, U1∈ III∪V,

and
dg

du1

{
< 0, U1∈ I∪II,
> 0, U1∈ III∪V.

(3.9)

(1) U+∈ I, the location of Um has two subcases:

1) Um is below Γ2, S0(U1,U0) interacts with u-axis at (ū,0), since f ′(ρ1)> 0,
and f(ρ+)=0, so f(ρ1)< 0 when 0≤ρ1≤ρ+, thus S0(U1,U0) is on the left of−→
R 3(U+,U1). See Figure 3.3.

2) Um is above Γ2. Denote Us
m=(us

m,ρsm)=
−→
R 3(Um,U)∩Γ+, S0(U,Um) jumps from

U∗=(u∗,ρ∗) below Γ+ to U
∗
=(ū∗, ρ̄∗) above Γ+. This case indicates that S0(U1,U0)

will penetrate through Γ2 and stay above Γ2 since the sign of dg
du1

changes only

once when U+∈ I∪II∪III. Therefore, S0(U1,U0) lies above
−→
R 3(U+,U1) both in the

supersonic and subsonic areas. See Figure 3.4.
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(2) U+∈ II, Um in II∪III, since dg
du1

< 0 (U1∈ II) and dg
du1

> 0 (U1∈ III). In the supersonic

area, S0(U1,U0) is above
−→
R 3(U+,U1) at first, intersects with

−→
R 3(U+,U1) and then

reaches U∗ below
−→
R 3(U+,U1). See Figure 3.5.

(3) U+∈ III, then Um∈ III∪IV. In this case dg
du1

> 0. g(u+)=0, so g(u1)< 0 when u∗≤
u1≤u+. S0(U1,U0) is below

−→
R 3(U+,U1) in the supersonic area. See Figure 3.6.

(4) U+∈ IV. Obviously.

(5) U+∈V. Similarly, g(u1)< 0 when 0≤u1≤u+. S0(U1,U0) is below
−→
R 3(U+,U1). See

Figure 3.7.

Fig. 3.8. Case 1. U+=(u+,ρ+)∈ I.

✲

ρ

u

q

q

S0

Um

U+

U− q

U−∗
q

←−
R1(Û )

−→
R3(Um)

−→
R3(U+)

U−
q

ū û

✻

U−∗q

←−
R1(U2)

U2
q

Γ+ Γ∗ Γ1 Γ2

V IV III II I

Fig. 3.9. The solutions for case 1.1.

✲ x
x1 x2

t= t1

U−

q

t1

t2

−→
R3

S0✻t ←−
R1

Um U+

U−∗ U3

or vacuum

q

Next, we will discuss the interactions case by case.

Case 1. U+=(u+,ρ+)∈ I, Um is below Γ2. See Figure 3.8.

In this case, from the result 1) in Lemma 3.3, we draw curves
−→
R 3(U+,U),−→

R 3(Um,U), S0(U1,U0) starting from U+, and
←−
R 1(Û ,U) passing through Û =(û,0)∈−→

R 3(U+,U). Denote the intersection point of S0(U1,U0) and
←−
R 1(Û) (Û is the right-

hand state) as U−∗, which is obtained by U0=U−∈
−→
R 3(Um,U).

Case 1.1. U− is between Um and U− on the curve
−→
R 3(Um,U).

We solve the initial boundary value problem (2.5) with

(u,ρ)=





(u+,ρ+), t= t1,x>x2,
(u1,ρ1), t1<t<t2,x=x2,
(u−∗,ρ−∗), t≥ t2,x=x2,

(3.10)

in the domain {(x,t)
∣∣x≥x2,t≥ t1}, where (u1,ρ1)∈S0(U1,U0), U0∈

−→
R 3(Um,U).

Because on the boundary S0 : t> t1,x=x2+0,λ1,3=u1±c1> 0, there exists a
unique solution in the domain from the theory of the isentropic gas dynamical system.
Finally, the large-time behavior of the solution is

U−⊕S0(U−∗,U−)⊕
←−
R 1(U2,U−∗)⊕

−→
R 3(U+,U2)⊕U+,

where “⊕” means “follows”. The result is shown as in Figure 3.9.

Case 1.2. U− is below U− on the curve
−→
R 3(Um,U). In this case, U2 turns to vacuum.

See Figure 3.9.
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Case 2. U+=(u+,ρ+)∈ I, Um is above Γ2. See Figure 3.10.

Subcase 2.1. As U− /∈V, which is on
−→
R 3(Um,U) and in the supersonic area, it is

similar to the Case 1.1. We omit it. See Figure 3.9-3.10.

Subcase 2.2. As U−∈V, which is in the subsonic area and below Us
m both on

−→
R 3(Um,U). S0(U1,U0) touches Γ∗ at U∗ and coincides with ÔU∗ on Γ∗ in the su-
personic area. The interaction starts at time t= t1. The process of interaction includes

two parts. In the first part from t1 to t2,U0∈
−→
R 3(U,U−) (U0 is between Um and Us

m),
U1∈S0(U1,U0) (U1 is between U+ and U∗). This process is the same as the above case.

In the second part from t2 to t3, U0∈Γ+∩
←−
R 1(U,Um) (Um∈

−→
R 3(Um,U) is between Us

m

and U− ), U1∈S0(U1,U0) (U1 is between U∗ and U2∗). We need to solve the initial
boundary value problems of (2.5) on the left-side of x=x2 with

(u,ρ)=





(
γ−1
γ+1

(
u−−

2c−
γ−1 +

2ξ

γ−1

)
,

(
(ξ−u)2

κγ

) 1
γ−1

)
, (x,t)∈C−,u−−c−<ξ<um−cm,

u= c, t2<t<t3,x=x2,
(u2,ρ2), t> t3,x=x2,

(3.11)
and on the right-side of x=x2 with

(u,ρ)=





(u+,ρ+), t= t1,x>x2,

(u1,ρ1), t1<t<t2,x=x2,

u=k0c, t2<t<t3,x=x2,

x=x2,

(3.12)

respectively, where ξ is the given slope of the characteristic lines of
←−
R 1(Um,U−), C−

is denoted as the penetrating backward characteristic, see Figure 3.11, k0 is given in
Lemma 3.1. The existence and uniqueness of the two problems can be obtained by the
classical theory from Li et al. [14] and Wang et al. [21]. The solutions are shown in
Figure 3.11.
Furthermore, we get the large-time behavior of the solution from the theory of isentropic
gas dynamical system (2.5) as

U−⊕
←−
R 1(U2,U−)⊕S0(U2∗,U2)⊕

←−
R 1(U3,U2∗)⊕

−→
R 3(U+,U3)⊕U+.

Fig. 3.10. Case 2. U− is below U−.

✲u

Um

U+

−→
R3(U+,U)

−→
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mq

✻ρ

ûO
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Γ∗ Γ1 Γ2Γ+

U∗
q

U−
q

U2
q

U3
q

←−
R 1(U−)

←−
R1(U2∗)

U2∗
q

Fig. 3.11. The solutions for subcase 2.2.

✲
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x

✻
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Um U+
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U3
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U2 U2∗

←−
R1

t2

t1

q

q

q

t3✲C−
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Fig. 3.12. Case 3. (u+,ρ+)∈ II.
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r

r

r

r

r

r

r

r
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U2
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r

r

r

r

U−

U5
U6

U5∗

r

r
r

r
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−→
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−→
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U−Us
m

U−∗

U
−∗

O

U∗

r

r

U4
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U∗C1

Case 3. U+=(u+,ρ+)∈ II. See Figure 3.12.

By 2) in Lemma 3.3, S0(U1,U0) penetrates
−→
R 3(U+,U) from above, intersects with−→

R 3(U+,U) at U3∗, which is obtained by S0(U3,U3∗) (U3∈
−→
R 3(Um,U)), touches Γ∗ at

U∗, and coincides with ÔU ∗ on Γ∗ in the supersonic area.
By virtue of (2.17), from any point U ∈Γ∗, there exists a point Ũ ∈D2 such that

the 1-shock speed from U to Ũ vanishes, i.e., σ1(Ũ ,U)=0. Such states Ũ form a curve

in D2, denoted by Γ̃, see Figure 3.12. Γ̃ is determined by

{
ρu= ρ̃ũ,

ρu2+p(ρ)= ρ̃ũ2+p(ρ̃),
U =(u,ρ)∈Γ∗. (3.13)

We will show that Γ̃ and
−→
R 3(U+,U) have only one intersection point. On Γ∗,

u=k0c, where k0> 1 is given in Lemma 3.1. Substituting it into (3.13), we have

k20γρ
γ+1+ ρ̃γ+1−(k20γ+1)ργ ρ̃=0,

where ρ̃>ρ. By a similar calculation as in Lemma 3.1, we obtain that there exists

a constant k̃0, 0<k̃0< 1, such that ũ= k̃0c̃. Denote the two curves Γ̃ and
−→
R 3(U+,U)

as ρ̃= ρ̃(u) and ρ=ρ(u) respectively, and f̃(u)= ρ̃(u)−ρ(u). Firstly, from f̃(0)= ρ̃(0)−
ρ(0)=−ρ̂< 0, f̃(+∞)> 0, we conclude that the two curves have at least one intersection.
Secondly, a direct calculation shows that df̃ /du> 0. It follows that the intersection point

is unique, which is denoted by ŨC∗.

Denote U∗
C1

=
−→
R 3(U+,U)∩Γ∗, which is obtained by UC1 ∈Γ+. We find a point

U4∈
−→
R 3(Um,U), which is connected with UC1 by

←−
R 1(UC1 ,U4). Denote UC∗∈Γ∗, which

is obtained by a zero-speed shock
←−
S 1(ŨC∗,UC∗): σ1(ŨC∗,UC∗)=0. UC∗ connects with

UC ∈Γ+ by a stationary wave S0(UC∗,UC), denote U2=
←−
R 1(UC ,U)∩−→R 3(Um,U). By

(2.17), we know that U2 is a critical point. When U is above UC∗ on Γ∗, it gets to a

point U on
−→
R 3(U+,U) by a shock wave with positive speed σ1(U,U)> 0. When U is

below UC∗ on Γ∗, it gets to a point U on
−→
R 3(U+,U) by a shock wave with negative

speed σ1(U,U)< 0.

Subcase 3.1. U− is between Um and U3 on the curve
−→
R 3(Um,U) (Figure 3.12), it is

similar to Case 1.1. See Figure 3.9.
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Subcase 3.2. U− is between U3 and Us
m on the curve

−→
R 3(Um,U) (Figure 3.12). The

interaction includes two parts, the first part from time t1 to t2, U0∈
−→
R 3(U,U−) (U0

is between Um and U3), U1∈S0(U1,U0) (U1 is between U+ and U3∗). This process is
similar to the Case 1.1, we get the solution in Figure 3.13 (right). Figure 3.13 (left)
shows the critical case that U−=U3. In this case (u,ρ)=U3∗=(u3∗,ρ3∗)∈S0(U3∗,U3)
in the domain {x<x2+(u3∗+c3∗)(t− t2)

∣∣t> t2}.
In the second part from t2 to t3, where U0 is between U3 and U− on the curve−→

R 3(Um,U), U1∈S0(U1,U0) (U1 is between U3∗ and U−∗), we solve the free boundary
value problem









dx

dt
=ul−

(
ρr(p(ρr)−p(ρl))

ρl(ρr−ρl)

) 1
2

,

ur=ul−
(
κ

(
1

ρl
− 1

ρr

)
(ργr −ργl )

) 1
2

,

x(t2)=x2,

(the Rankine−Hugoniot condition of
←−
S 1)

dul=
√
κγρ

γ−3
2

l dρl, ρ−∗<ρl<ρ3∗, (Ul∈
−→
R 3(U,U−∗) on the left side of

←−
S 1)

dur=
√
κγρ

γ−3
2

r dρr, ρ−∗<ρr<ρ3∗, (Ur ∈
−→
R 3(U,U−∗) on the right side of

←−
S 1)

(u,ρ)=






(u3∗,ρ3∗),
x−x2

t−t2
=u3∗+c3∗,x>x2,

(u1,ρ1), t2<t<t3,x=x2,

(u−∗,ρ−∗), t> t3,x=x2.
(3.14)

where p(ρl)=κργl ,p(ρr)=κργr and x=x(t) is the shock wave supplemented by the Lax

entropy condition: 0<ur−cr<
dx

dt
<ul−cl. So the shock wave

←−
S 1 propagates with

positive speed in the domain, from [3], we know that the speed of
←−
S 1 will be decreasing

during the process of penetrating
−→
R 3, see Figure 3.13 (right). Furthermore, the large-

time behavior of the solution from the theory of isentropic gas dynamic system (2.5) is
given as

U−⊕S0(U−∗,U−)⊕
←−
S 1(U−∗,U−∗)⊕

−→
R 3(U+,U−∗)⊕U+.

Fig. 3.13. The solutions for subcase 3.2.

✟✟✟✟✟✟✟✟
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✻
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x1 x2
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t3

✲

t= t1q

q

q

←−
S 1

❄

Subcase 3.3. U− is between Us
m and U2 on the curve

−→
R 3(Um,U) (Figure 3.12). The

interaction includes three parts, the first part is from time t1 to t2, where U0∈
−→
R 3(U,U−)

(U0 is between Um and U3), and the second part is from time t2 to t3, where U0∈
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−→
R 3(U,U−) (U0 is between U3 and Us

m). Both the above parts are the same as subcase

3.2, which we have discussed. The third part is from t3 to t4, where U0∈Γ+∩
←−
R 1(U,Um)

(Um is between Us
m and U−), U1∈S0(U1,U0) (U1 is between U5∗ and U∗). A backward

rarefaction wave reflects in this part and coincides with S0, which is similar to the
subcase 2.2. At the critical case U−=U2, we have U0=UC , U1=UC∗, the speed equals
to zero in this case. Similarly, we get the solution by solving initial (free) boundary
value problems as (3.10), (3.11) and (3.14), see Figure 3.14. The large-time behavior of
the solution from the theory of isentropic gas dynamical system (2.5) is

U−⊕
←−
R 1(U5,U−)⊕S0(U5∗,U5)⊕

←−
S 1(U6,U5∗)⊕

−→
R 3(U+,U6)⊕U+.

Fig. 3.14. The solutions for subcase 3.3.

−→
R3

x1 x2

t1

U−

✲ x

✻
t ←−

S 1

←−
R1

x−x2
t−t2

=u3∗+c3∗

q

q

t2

t3

t4q

q

S0

Subcase 3.4. U− is between U2 and U4 on the curve
−→
R 3(Um,U) (Figure 3.12). The

interaction includes four parts. The first three parts from time t1 to t4 are the same

as subcase 3.3. A shock wave
←−
S 1 with positive speed transmits during the interaction

process, see Figure 3.15-2. When U0 goes down along Γ+ passing UC , the speed of
←−
S 1

decreases in
−→
R 3 as t≥ t2 by (2.17). At the critical case U0=UC , the speed of

←−
S 1 equals

to zero and becomes negative when U0 is below UC on the curve Γ+. It keeps a constant

negative speed after penetrating
−→
R 3.

The fourth part is from t4 to t5.
←−
S 1 penetrates

−→
R 3 and touches S0 at t= t5 during

this period. Figure 3.15-1 shows the transition between subcase 3.3 and 3.4. On the

one hand, U− connects with UA on Γ+ through
←−
R 1(UA,U−), UA jumps to UA∗ by

S0, and UA∗ gets to U8 on
−→
R 3(U+,U) by a backward shock wave with negative speed:

σ1(U8,UA∗)< 0. On the other hand, we solve a generalized Riemann problem at time

t= t5. The solution includes backward waves
←−
R 1 and

←−
S 1, which connects U− and U7.

U7 jumps to U∗
7 by stationary wave, and U∗

7 connects with U8 by a forward shock wave.
Here, U7,U

∗
7 and U8 are determined by






dx

dt
=ul−

(
ρ7(p(ρ7)−p(ρl))

ρl(ρ7−ρl)

) 1
2

,

u7=ul−
(
κ

(
1

ρl
− 1

ρ7

)
(ργ7−ργl )

) 1
2

,

x(t5)=x2,

(the R−H condition of
←−
S 1(U7,Ul)) (3.15)
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and




dul=
√
κγρ

γ−3
2

l dρl, ρA<ρl<ρ7, (Ul∈
−→
R 3(U,U−) on the left side of

←−
S 1)




a0ρ7u7=a1ρ
∗
7u

∗
7,

u2
7

2
+

c27
γ−1

=
u∗2
7

2
+

c∗27
γ−1

,
(U7, U

∗
7 are connected by S0(U

∗
7 ,U7))





u∗
7=u8+

(
κ

(
1

ρ∗7
− 1

ρ8

)(
ργ8−ρ∗γ7

)) 1
2

,

ρ8<ρ∗7,

(the R−H condition of
−→
S 3(U8,U

∗
7 )).

(3.16)

Fig. 3.15-1. The transition between subcase 3.3-3.4.

✲

✻

u

ρ
Γ2Γ1Γ+ Γ∗

Um

U+

ρ̄

ρ̂

q

q

q

q

q

U2

UC

UC∗

ŨC∗

←−
S 1 UA

UA∗

U7
←−
S 1

U∗7

U4

U8

U
−

−→
S 3
q

q

q

q

q

q

Fig. 3.15-2. The solutions for subcase 3.4.

x2

✻
t S0

−→
R3

−→
S 3

←−
R1

←−
S 1

q

q

q

qt1

t2

t3

t4

t5

U
−

Um
U+

q

x1
✲x

UA∗

U8

U7 U∗7

Fig. 3.15-3. The critical case U−=U4.

x
x1 x2

t3

t2

t1
q

t5(t4)

←−
R1

U
−

=U4

x−x2
t−t2

=u3∗+c3∗

−→
R3

←−
S 1

q

S0✻
t

U7 =UA
U∗7

✲

q

✌

q

There exists a unique solution of (3.15) by using the phase plane analysis method,

see Figure 3.15-1. The shock wave
←−
S 1 interacts with

←−
R 1 and leaves

←−
R 1 on the left of

S0 when t→+∞. On the right of S0,
−→
S 3 will interact with

−→
R 3, a direct calculation

shows that
−→
S 3 does not cross

−→
R 3 completely, see Figure 3.15-2.

When U− is close to U4, the speed of both
←−
S 1 and

−→
S 3 will decrease. At the critical

case U−=U4, t4 and t5 coincide. We have U7=UA=UC1, U
∗
7 =U8=U∗

C1
; in this case,

so there are no shock waves emitted when t> t5. See Figure 3.15-3.

Subcase 3.5. U− is between U4 and Ū =(0, ρ̄) on the curve
−→
R 3(Um,U) (Figure 3.12).
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The interaction includes four parts, the first three parts from t1 to t4(t5) are the same
with subcase 3.5. The fourth part is from t5 to t6. At the time t= t5, we solve a

generalized Riemann problem. The solution includes a forward rarefaction wave
−→
R 3

connecting U9 and U∗
C1

on the right side of S0, see Figure 3.16 (left). On the left side
of S0, we solve the initial boundary value problem of isentropic gas dynamical system
with

(u,ρ)=





(
γ−1
γ+1

(
u−−

2c−
γ−1 +

2ξ

γ−1

)
,
(ξ−u) 2

γ−1

(κγ)
1

γ−1

)
, (x,t)∈C−,u−−c−<ξ<us

m−csm,

u= c, t3<t<t5,x=x2,

U =U0, t5<t<t6,x=x2,

(u9,ρ9), t> t6,x=x2,
(3.17)

where U0∈S0(U1,U0), U1∈
−→
R 3(U+,U), ρ∗9<ρ1<ρ∗C1

. There exists a unique solution
for (3.17) on the left side of S0. See Figure 3.16 (right). The large-time behavior of the
solution from the theory of isentropic gas dynamical system (2.5) is as follows

U−⊕
←−
R 1(U9,U−)⊕S0(U9∗,U9)⊕

−→
R 3(U+,U9∗)⊕U+.

✲

✻

u

ρ

U4

Um

U+

UC1

U∗
C1

U
−

U9

U∗9
U1

U0

Us
m
q

ρ̂

ρ̄

Γ2Γ1Γ+ Γ∗

q
q

q

q

q

q q

q

Fig. 3.16. The solutions for subcase 3.5.

x
x1 x2

t3

t2

t1
q

✟✟ t5(t4)

q
t6

←−
R1

U−
x−x2

t− t2
=u3∗+c3∗

−→
R3

←−
S 1

U9 U∗
9

q

S0✻
t

✲

q

q

✌

C−✲

Fig. 3.17. Case 4. (u+,ρ+)∈ III.

✻

✲

ρ

u

ρ̄

U+

Um

ρ̂

Γ+ Γ∗ Γ1 Γ2Γ̃Γ∗

r

r

U
−

U9

U∗9

−→
R3(Um,U)

−→
R3(U+,U)

S0(U1,U0)

U2

UC

UC∗

ŨC∗

U4

UC1

U∗
C1

Us
m

U∗

r

r

r

r

r

r

r

r

r

r

Case 4. U+=(u+,ρ+)∈ III. See Figure 3.17.

S0(U1,U0) is below
−→
R 3(U+,U) in the supersonic area, touches Γ∗ at U∗. As case

3, we denote ŨC∗=Γ̃∩−→R 3(U+,U), Γ̃ is denoted in (3.13). ŨC∗ and UC∗∈Γ∗ are con-
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nected by a zero-speed shock wave. UC∗ and UC ∈Γ+ are connected by a stationary

wave S0(UC∗,UC). Denote U2=
←−
R 1(UC ,U)∩−→R 3(Um,U). Then U2 is a critical point.

Denote U∗
C1

=
−→
R 3(U+,U)∩Γ∗, which is obtained by UC1 on Γ+ with S0(U

∗
C1

,UC1).

U4=
−→
R 3(Um,U)∩←−R 1(UC1).

Subcase 4.1. U− is between Um and Us
m on the curve

−→
R 3(Um,U). We solve a free

boundary value problem as (3.14) in the rectangular domain {(x,t)
∣∣x≥x2,t≥ t1}. There

exists a unique solution in the domain including a shock wave from the theory of the
isentropic gas dynamical system. The large-time behavior of the solution is the same
with subcase 3.2, see Figure 3.18.

Subcase 4.2. U− is between Us
m and U2 (Figure 3.17). The interaction includes two

parts. The first part from t1 to t2 is the same with subcase 4.1. In the second part
from t2 to t3, we solve the boundary value problems as (3.11) and (3.14). A backward
rarefaction wave reflects in this part and coincides with S0, see Figure 3.18. The large
time behavior of the solution is the same with subcase 3.3.

Fig. 3.18. The solutions for subcase 4.1.

✻
t

x1 x2

−→
R3U−

S0

Um U+

t1

t2q

q

←−
S 1

✲ x

t= t1

Fig. 3.19. The solutions for subcase 4.2.

✻

x1 x2

Um
U+

t1

t3

U−

t2

←−
S 1

t

✲ x

−→
R3

q

q

q

S0

←−
R1

Subcase 4.3. U− is between U2 and U4 (Figure 3.17). The interaction includes three
parts. The first two parts from time t1 to t3 are the same with subcase 4.2. When U0

goes down along Γ+ passing UC , a shock wave
←−
S 1 transmits during the interaction. The

speed of
←−
S 1 decreases in

−→
R 3 from time t1 to t3. At the critical point U0=UC ,U1=UC∗,

the speed equals to zero, and then become negative when U0 is below UC on the curve

Γ+, it keeps a constant negative speed after penetrating
−→
R 3.

The third part is from t3 to t4,
←−
S 1 penetrates

−→
R 3 and touches S0 during this period.

Figure 3.20-1 shows the transition between subcase 4.2 and 4.3. On the one hand, U−
connects with UA on Γ+ through

←−
R 1(UA,U−), UA jumps to UA∗ by S0, UA∗ connects

with U8 on
−→
R 3(U+,U)) by a backward shock wave with negative speed: σ1(U8,UA∗)< 0.

On the other hand, we solve a generalized Riemann problem as (3.15) at time t= t4.

The solution includes backward waves
←−
R 1 and

←−
S 1, which connect U− and UB. UB

jumps to U∗
B by stationary wave, and U∗

B connects with U8 by a forward shock wave.
Here UB, U∗

B and U8 are obtained by solving a similar problem as (3.15).

The shock wave
←−
S 1 interacts with

←−
R 1 and leaves

←−
R 1 on the left of S0 when t→+∞.

On the right of S0,
−→
S 3 will interact with

−→
R 3, a direct calculation shows that

−→
S 3 does

not cross
−→
R 3 completely, see Figure 3.20-2.

When U− is close to U4, the speed of both
←−
S 1 and

−→
S 3 will decrease. At the critical

case U−=U4, t3 and t4 coincide. We have UA=UB =UC1, U
∗
B =U8=U∗

C1
in this case,

so there are no shock waves emitted when t> t5. See Figure 3.21-1.
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Subcase 4.4. U− is between U4 and Ū =(0, ρ̄) (Figure 3.17). The interaction includes
three parts. The first two parts from t1 to t3(t4) are the same with subcase 4.3. The
third part is from t4 to t5. At the time t4, we solve a generalized Riemann solution

as (3.16). There exists a unique solution including a backward rarefaction wave
←−
R 1

connecting U− and U9, a stationary wave S0(U9∗,U9) and a forward rarefaction wave−→
R 3 connecting U9∗ and U+. See Figure 3.21-2. The large-time behavior of the solution
from the theory of isentropic gas dynamical system (2.5) is

U−⊕
←−
R 1(U9,U−)⊕S0(U9∗,U9)⊕

−→
R 3(U+,U9∗)⊕U+.

Fig. 3.20-1. The transition between
the subcase 4.2-4.3.

✲

✻

u

ρ

Um

U+

Γ2Γ+ Γ∗ Γ1

ρ̂

ρ̄
q

q

q

q

←−
S 1

U2

UC

UC∗

ŨC∗

U4

UA

UA∗

U
−

−→
S 3

←−
S 1

UB

U∗
B

U8

q

q

q

q

q

q

q

Fig. 3.20-2. The solutions for subcase 4.3.

U
−

Um U+

←−
R1

−→
S 3

−→
R3

U8

UA∗

←−
S 1

S0

UB U∗
B

←−
S 1

x1 x2

✻
t

♣

♣

♣

♣

t4

t3

t2

t1

✲ x

Fig. 3.21-1. The critical case U−=U4.

x
x1 x2

t1

✻t

UB =UA U∗
A

←−
R1

←−
S 1

Um U+

−→
R3

U
−

=U4

✲

q

q

q

t3

t2

✘✘✘

S0

Fig. 3.21-2. The solutions for subcase 4.4.

x1 x2

✲ x

−→
R3

✻t
S0

←−
R1

t5

U−

Um

U9
U9∗

U+

q

q

t3(t4)

t2

t1

q

q

Case 5. U+=(u+,ρ+)∈V. See Figure 3.22.

In the subsonic area, S0(U1,U0) is below
−→
R 3(U+,U), touches ρ-axis at Ū =(0, ρ̄).

The interaction process is from t1 to t2. U
s
0 ∈
←−
S 1(U,U−), denote U∗

2 =S0(U
s
1 ,U

s
0 )∩−→

R 3(U+,U), which is obtained by U2∈
←−
S 1(U,U−). We solve the initial boundary value

problem (2.5) with

(u,ρ)=






(
2

γ+1

(
ξ−c−+

γ−1

2
u−

)
,

(
(ξ−u)2

κγ

) 1
γ−1

)
, t= t1,x<x2,

U0=(u0,ρ0), t1<t<t2,x=x2,
U2, t> t2,x=x2,

(3.18)
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where U0∈S0(U1,U0) is obtained by U1∈
−→
R 3(U+,U) (U1 is the right-hand state). The

solution of (3.18) contains a reflecting shock wave. See Figure 3.23. The large-time
behavior of the solution from the isentropic gas dynamical system theory is

U−⊕
←−
S 1(U2,U−)⊕S0(U

∗
2 ,U2)⊕

−→
R 3(U+,U

∗
2 )⊕U+.

Fig. 3.22. Case 5. (u+,ρ+)∈V.

✲

✻ Γ+ Γ2Γ1Γ∗

u

ρ

ρ̄

ρ̂

q

q

q

❄

S0(U1,U0)

U∗2

U
−

U+

Um

U2

S1(U,U
−

)

Fig. 3.23. The solution for Case 5.

✻

−→
R3

U+

✲x

t S0

x1 x2

t1

t2

U−

Um

←−
S 1

q

q

U2
U2∗

t= t1

3.2. The interaction of shock wave with stationary wave. In this section,

we also consider the initial value problem of (1.1) with (3.1). Um∈
−→
S 3(U,U−), U+∈

S0(U,Um), we have

−→
S 3(Um,U−) :






u−=um+

(
κ

(
1

ρm
− 1

ρ−

)(
ργ−−ργm

))1/2

, ρ−>ρm,

σ3(Um,U−)=u−+

(
ρm
ρ−

pm−p−
ρm−ρ−

)1/2

> 0,

(3.19)

S0(U+,Um) :





a0ρmum=a1ρ+u+,

u2
m+

2κγργ−1
m

γ−1
=u2

++
2κγργ−1

+

γ−1
,

σ0=0.

(3.20)

The state U =(u,ρ)∈−→S 3(U+,U) (U+ is the right-hand state) is given by:

u(ρ)=u++

(
κ

(
1

ρ+
− 1

ρ

)
(ργ−ργ+)

) 1
2

, ρ>ρ+.

From (3.19) and (3.20), we have σ3(Um,U−)>σ0=0, which means
−→
S 3 will overtake S0.

Liu [15,16] has concluded that flows along an expanding duct are stable. Moreover,
he has proved that shock waves tend to decelerate along an expanding duct, which is
equivalent to σ3(Um,U−)>σ3(U+,U) here. We discuss the interactions case by case.

Case 1. Um,U+ are on the right of Γ+. So we have um>cm,u+>c+, and um<u+

when the cross section increases. When
−→
S 3(Um,U−) overtakes S0(U+,Um), we solve a

new Riemann problem of (1.1) with

(u,ρ,a)
∣∣∣
t=t1

=

{
U−=(u−,ρ−,a0), x<x2,
U+=(u+,ρ+,a1), x>x2.

(3.21)
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This case indicates that U− will jump to U−∗ by S0 first. According to relative position

of U−∗ and
−→
S 3(U+,U), we discuss as follows.

Case 1.1. U−∗ is on the left of
−→
S 3(U+,U) (Figure 3.24). Then U− jumps to

U−∗ by S0 first, then U−∗ connects with U1 by
←−
R 1(U,U−∗), finally U1 jumps to U+ by−→

S 3(U+,U1).

−→
S 3(Um,U−)⊕S0(U+,Um)→S0(U−∗,U−)⊕

←−
R 1(U1,U−∗)⊕

−→
S 3(U+,U1).

Which means that the forward shock wave will transmit a backward rarefaction wave
when it penetrates the stationary wave.

✲

✻

u

ρ
Γ+

Um

U+

U
−

U
−∗

U1
q

q

q

q

q

−→
S 3(Um,U)

−→
S 3(U+,U)

←−
R1

Fig. 3.24. U−∗ is on the left of S3(U+,U).

✲

S0✻t

t1

x1 x2

x

−→
S 3

←−
R1

−→
S 3

U−

U
−∗

U1

U+

Um

Case 1.2. U−∗ is on the right of
−→
S 3(U+,U) (Figure 3.25). Then U− jumps to U−∗ by

S0 first, U−∗ connects with U2 by
←−
S 1(U,U−∗), finally U2 jumps to U+ by

−→
S 3(U+,U2).

The solution for (3.21) in this case is

−→
S 3(Um,U−)⊕S0(U+,Um)→S0(U−∗,U−)⊕

←−
S 1(U2,U−∗)⊕

−→
S 3(U+,U2).

Which means that the forward shock wave will transmit a backward shock wave when
it penetrates the stationary wave.

✲

✻

u

ρ
Γ+

q

q

q

q
q

Um

U+

U
−

U
−∗

U2

−→
S 3(Um,U)

−→
S 3(U+,U)

←−
S 1

Fig. 3.25. U−∗ is on the right of S3(U+,U).

✲ x

S0 ←−
S 1

−→
S 3U−∗

U2

−→
S 3

U−

Um

U+

x1 x2

t1

✻
t

Case 2. um<cm,u+<c+ and u−<c− (Figure 3.26). Here we choose the subsonic
solution when using the stationary wave. We discuss the results as follows.

Case 2.1. U∗
− is below

−→
S 3(U+,U). U− connects with U3 by

←−
S 1(U3,U−), U3 jumps to
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U∗
3 by S0(U

∗
3 ,U3), finally U∗

3 jumps to U+ by
−→
S 3(U+,U

∗
3 ). See Figure 3.26. The states

U3 and U∗
3 are determined by

✲

✻

u

ρ Γ+

−→
S 3(Um,U)

−→
S 3(U+,U)

←−
S 1

U+

Um

U3

U∗3

U∗
−

U
−

q

q
q

q

q

q

Fig. 3.26. U∗
− is below

−→
S 3(U+,U).

✲

✻ S0

Um

U+

x1 x2

t1

x

t

U−

−→
S 3

U3
U∗
3

←−
S 1 −→

S 3





dx

dt
=u−−

(
ρ3(p(ρ3)−p(ρ−))

ρ−(ρ3−ρ−)

) 1
2

,

u3=u−−
(
κ

(
1

ρ−
− 1

ρ3

)(
ργ3−ργ−

)) 1
2

,

(the R−H condition of
←−
S 1(U3,U−))





a0ρ3u3=a1ρ
∗
3u

∗
3,

u2
3

2
+

c23
γ−1

=
u∗2
3

2
+

c∗23
γ−1

,
(U3,U

∗
3 ∈S0(U

∗
3 ,U3))





u∗
3=u++

(
κ

(
1

ρ∗3
− 1

ρ+

)(
ργ+−ρ∗γ3

)) 1
2

,

ρ∗3>ρ+,

(the R−H condition of
−→
S 3(U+,U

∗
3 )).

The solution of (3.21) in this case is

−→
S 3(Um,U−)⊕S0(U+,Um)→←−S 1(U3,U−)⊕S0(U

∗
3 ,U3)⊕

−→
S 3(U+,U

∗
3 ),

which means that the forward shock wave will reflect a backward shock wave when it
penetrates the stationary wave.

Case 2.2. U∗
− is above

−→
S 3(U+,U). We denote Uc=

←−
R 1(U,U−)∩Γ+, see Figure 3.27.

If U∗
c is below

−→
S 3(U+,U), then U− connects with U4 by

←−
R 1(U4,U−), U4 jumps to

U∗
4 by S0(U

∗
4 ,U4), finally U∗

4 jumps to U+ by
−→
S 3(U+,U

∗
4 ). The states U4 and U∗

4 are
determined by




u4+
2c4
γ−1

=u−+
2c−
γ−1

, (the Riemann invariant of
←−
R 1(U4,U−)).





a0ρ4u4=a1ρ
∗
4u

∗
4,

u2
4

2
+

c24
γ−1

=
u∗2
4

2
+

c∗24
γ−1

,
(U4,U

∗
4 are connected by S0(U

∗
4 ,U4))





u∗
4=u++

(
κ

(
1

ρ∗4
− 1

ρ+

)(
ργ+−ρ∗γ4

)) 1
2

,

ρ∗4>ρ+,

(the R−H condition of
−→
S 3(U+,U

∗
3 )).

(3.22)
The solution of (3.21) is

−→
S 3(Um,U−)⊕S0(U+,Um)→←−R 1(U4,U−)⊕S0(U

∗
4 ,U4)⊕

−→
S 3(U+,U

∗
4 ),
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which means that the forward shock wave will reflect a backward rarefaction wave when
it penetrates the stationary wave.

✲

✻

u

ρ
Γ+

U+

Um

q

q

U−

Uc

q

q

q

q

U4

U∗
4

qU∗
c

−→
S 3(U+,U)

−→
S 3(Um,U)

←−
R1(U,U

−
)

Fig. 3.27. U∗
− is above

−→
S 3(U+,U), U∗

c is below
−→
S 3(U+,U).

✲

✻ S0←−
R1

−→
S 3

U4 U∗
4

−→
S 3

U−

Um

U+

x
x1 x2

t1

t

If U∗
c is above

−→
S 3(U+,U) (Figure 3.28), U− connects with Uc by

←−
R 1(Uc,U−), Uc

jumps to Uc∗ by S0(Uc∗,Uc), and Uc∗ jumps to U5 by
−→
S 1(U5,Uc∗) with σ1(U5,Uc∗)> 0,

finally U5 connects with U+ by
−→
S 3(U+,U5). Uc∗ and U5 can be determined as (3.22).

−→
S 3(Um,U−)⊕S0(U+,Um)→←−R 1(Uc,U−)⊕S0(Uc∗,Uc)⊕

−→
S 1(U5,Uc∗)⊕

−→
S 3(U+,U5).

This case means that the forward shock wave will reflect a backward rarefaction wave,
it will coincide with the stationary wave and transmit a backward shock wave.

Γ+
✻ρ

✲ u

−→
S 3(Um,U)

−→
S 3(U+,U)

←−
S 1

U
−

Uc

Uc∗

U5
U+

Um

q

q

q

q

q

q

Fig. 3.28. U∗
− is above

−→
S 3(U+,U), U∗

c is above
−→
S 3(U+,U)

✲

U−

Um

U+

x

−→
S 3

←−
S 1

−→
S 3

U5

S0✻t

Uc∗

←−
R1

x1 x2

t1

Case 3. um<cm,u+<c+ and u−>c−. See Figure 3.29-30. We discuss the results as
follows.

Case 3.1. Denote Ũ−∈
←−
S 1(U,U−) which satisfies σ1(Ũ−,U−)=0, Ũ− jumps to Ũ∗

−
by S0(Ũ

∗
−,Ũ−). If Ũ∗

− is below
−→
S 3(U+,U), then U− will first jump to U6 above Ũ−

by
←−
S 1(U6,U−) with σ1(U6,U−)< 0, U6 jumps to U∗

6 by S0(U
∗
6 ,U6), finally U∗

6 connects

with U+ by
−→
S 3(U+,U

∗
6 ). See Figure 3.29.

−→
S 3(Um,U−)⊕S0(U+,Um)→←−S 1(U6,U−)⊕S0(U

∗
6 ,U6)⊕

−→
S 3(U+,U

∗
6 ).

The interaction result is the same as in Figure 3.26.
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Case 3.2. U− jumps to U−∗ by S0(U−∗,U−). Denote Ũ−∗∈
←−
S 1(U,U−∗) which satisfies

σ1(Ũ−∗,U−∗)=0. If Ũ−∗ is above
−→
S 3(U+,U), then U−∗ jumps to U7 by

←−
S 1(U7,U−∗)

with σ1(U7,U−∗)> 0, U7 connects with U+ by
−→
S 3(U+,U7).

−→
S 3(Um,U−)⊕S0(U+,Um)→S0(U−∗,U−)⊕

←−
S 1(U7,U−∗)⊕

−→
S 3(U+,U7).

The interaction result is the same as in Figure 3.25.

Fig. 3.29. Ũ∗
− is below

−→
S 3(U+,U).

Γ+
✻

ρ

✲ u

−→
S 3(Um,U)

−→
S 3(U+,U)

U+

Um

U
−

U6

Ũ
−

Ũ∗
−

←−
S 1

U∗6

q

q

q

q

q

q

q

Fig. 3.29. Ũ∗
− is below

−→
S 3(U+,U).

Γ+
✻

ρ

✲ u

−→
S 3(Um,U)

−→
S 3(U+,U)

U+

Um

U
−

U
−∗

U7

Ũ
−∗

←−
S 1

q

q

q

q

q

q

Fig. 3.30. Ũ−∗ is above
−→
S 3(U+,U).

In summary, we have obtained the results of rarefaction wave as well as shock wave
interactions with the stationary wave in a variable cross-section duct. When a forward
rarefaction wave interacts with a stationary wave, it will transmit a forward rarefaction
wave. During the process, a backward wave will transmit or reflect as well. When the
transmitted wave is a backward compressible shock wave, we further discuss the shock
intensity by solving free boundary problems. When a forward shock wave interacts with
a stationary wave, it will penetrate the stationary wave, and either transmit or reflect
a backward rarefaction wave or shock wave.
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