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THE ASYMPTOTIC BEHAVIOR OF
PRIMITIVE EQUATIONS WITH MULTIPLICATIVE NOISE∗

RANGRANG ZHANG† , GUOLI ZHOU‡ , AND BOLING GUO§

Abstract. This article is concerned with the existence of random attractor and the existence
of the invariant measure for 3D stochastic primitive equations driven by linear multiplicative noise
under non-periodic boundary conditions. To achieve these goals, the crucial step is to establish the
uniform a priori estimates in a functional space which is more regular than the solution space. But, it
is very difficult because of the high nonlinearity and non-periodic boundary conditions of the stochastic
primitive equations. To overcome the difficulties, we firstly obtain the existence of the absorbing ball
in the solution space. Then, we use Aubin-Lions lemma and the regularity of the solution to prove that
the solution operator is compact. Finally, by operating the absorbing ball with the compact solution
operator, we obtain a compact absorbing ball in the solution space, which ensures the existence of the
random attractor. Since the solution is Markov, the asymptotic compactness of the solution operator
implies the existence of an invariant measure.
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1. Introduction
The paper is concerned with the stochastic primitive equations (PEs) in a cylindrical

domain

O=M×(−h,0)⊂R
3,

where M is a smooth bounded domain in R
2:

∂tυ+(υ ·∇)υ+w∂zυ+fυ⊥+∇p+L1υ=

n∑

k=1

αkυ◦dw1
k, (1.1)

∂zp+T =0, (1.2)

∇·υ+∂zw=0, (1.3)

∂tT +υ ·∇T +w∂zT +L2T =Q+

n∑

k=1

βkT ◦dw2
k. (1.4)

The unknowns for the 3D stochastic PEs are the fluid velocity field (υ,w)=(υ1,υ2,w)∈
R

3 with υ=(υ1,υ2) and υ⊥=(−υ2,υ1) being horizontal, the temperature T and the
pressure p. f =f0(β+y) is the given Coriolis parameter, Q is a given heat source.
∇=(∂x,∂y) is the horizontal gradient operator and Δ=∂2

x+∂2
y is the horizontal Lapla-

cian. Let αi,βi∈R,i=1,2, · · ·,n, {w1
i ,w

2
i ,i=1,2, · · ·,n} be a sequence of one-dimensional,

independent, identically distributed Brownian motions. Here, we take
∑n

k=1αkυ◦dw1
k

and
∑n

k=1βkT ◦dw2
k to be Stratonovich multiplicative noise.
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The viscosity and the heat diffusion operators L1 and L2 are given by

Li=−νi∆−µi∂zz, i= 1,2,

where ν1 and µ1 are the horizontal and vertical Reynolds numbers and ν2 and µ2 are
the horizontal and vertical heat diffusivity. Without loss of generality, we assume that

ν1 =µ1 =ν2 =µ2 = 1.

The boundary of O is partitioned into three parts: Γu∪Γb∪Γs, where

Γu={(x,y,z)∈O :z= 0},
Γb={(x,y,z)∈O :z=−h},
Γs={(x,y,z)∈O : (x,y)∈∂M,−h≤z≤0}.

Here h is a sufficiently smooth function. Without loss of generality, we assume h= 1.
We impose the following boundary conditions on the 3D stochastic PEs.

∂zυ=η, w= 0, ∂zT =−γ(T −τ) on Γu, (1.5)

∂zυ= 0, w= 0, ∂zT = 0 on Γb, (1.6)

υ ·~n= 0, ∂~nυ×~n= 0, ∂~nT = 0 on Γs, (1.7)

where η(x,y) is the wind stress on the surface of the ocean, γ is a positive constant, τ is
the typical temperature distribution on the top surface of the ocean and ~n is the norm
vector to Γs. For the sake of simplicity, we assume that Q is independent of time and
η= τ = 0. It is worth pointing out that all results obtained in this paper are still valid
for the general case by making some simple modifications.

Integrating (1.3) from −1 to z and using (1.5) and (1.6), we have

w(t,x,y,z)
def
= Φ(υ)(t,x,y,z) =−

∫ z

−1

∇·υ(t,x,y,z′)dz′, (1.8)

moreover, ∫ 0

−1

∇·υdz= 0.

Integrating (1.2) from −1 to z, set ps to be a certain unknown function at Γb satisfying

p(x,y,z,t) =ps(x,y,t)−
∫ z

−1

T (x,y,z′,t)dz′.

Then (1.1)-(1.4) can be rewritten as

∂tυ+L1υ+(υ ·∇)υ+Φ(v)∂zυ+∇ps−
∫ z

−1

∇Tdz′+fυ⊥=

n∑
k=1

αkυ◦dw1
k, (1.9)

∂tT +L2T +υ ·∇T +Φ(v)∂zT =Q+

n∑
k=1

βkT ◦dw2
k, (1.10)

∫ 0

−1

∇·υdz= 0. (1.11)
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The boundary value and initial conditions for (1.9)-(1.11) are given by

∂zυ|Γu
=∂zυ|Γb

= 0, υ ·~n|Γs
= 0, ∂~nυ×~n|Γs

= 0, (1.12)(
∂zT +γT

)
|Γu =∂zT |Γb

= 0, ∂~nT |Γs = 0; (1.13)

υ(x,y,z,t0) =υ0(x,y,z), T (x,y,z,t0) =T0(x,y,z). (1.14)

The primitive equations are the basic model used in the study of climate and weather
prediction, which can be used to describe the motion of the atmosphere when the
hydrostatic assumption is enforced (see [16, 23, 24] and the references therein). This
model has been intensively investigated because of the interests stemmed from physics
and mathematics. As far as we know, their mathematical study was initiated by Lions,
Temam and Wang (see e.g. [28–31]). For example, the existence of global weak solutions
for the primitive equations was established in [29]. Guillén-González et al. [19] obtained
the global existence of strong solutions to the primitive equations with small initial
data. The local existence of strong solutions to the primitive equations under the small-
depth hypothesis was established by Hu et al. in [25]. Cao and Titi [9] developed
a beautiful approach to dealing with the L6-norm of the fluctuation ṽ of horizontal
velocity and obtained the global well-posedness for the 3D viscous primitive equations.
Subsequently, Kukavica and Ziane [26] developed a different method to handle non-
rectangular domains and boundary conditions with physical reality. For the global
well-posedness of 3D primitive equations with partial dissipation, we refer the reader to
some papers, see e.g. [5–8,10].

Along with the great successful developments of deterministic primitive equations,
the random case has also been developed rapidly. Guo and Huang [17] obtained some
kind of weak-type compactness properties of the strong solution under the condition
that the momentum equation is driven by an additive stochastic forcing and the ther-
modynamical equation is driven by a deterministic heat source. When the noise is
multiplicative, Gao and Sun [20] proved the global existence and uniqueness for the
strong solution. Moreover, when the noise tends to zero, Gao and Sun [21] established
the large deviation principle for this stochastic system. In [22], Gao and Sun studied
the long-time behavior of stochastic PEs when the velocity is perturbed by an addi-
tive noise. Debussche et al. [12] concerned the global well-posedness of strong solution
when the primitive equations are driven by multiplicative stochastic forcing. Under
the periodic conditions, Glatt-Holtz et al. [18] constructed an invariant measure for the
3D PEs. The uniqueness of the invariant measures and large deviations for the 3D
stochastic primitive equations were obtained by Dong, Zhai and Zhang in [14,15] under
the periodic conditions. Some analytical properties of weak solutions of 3D stochastic
primitive equations with periodic boundary conditions were obtained in [13]. When
the noise is an additive fractional noise, the long-time behavior of stochastic primitive
equations is studied by one of the authors of this article in [34].

In this article, we aim to prove the existence of random attractor and the invariant
measures for 3D stochastic PEs driven by linear multiplicative noise under non-periodic
boundary conditions. The common method is to apply Sobolev compact theorem and
Krylov-Bogoliubov lemma (see [11]), which requires uniform estimates with respect to
the initial data in a functional space (H2(O))4 that is more regular than the strong
solution space (H1(O))4. However, it is quite difficult because of highly nonlinear
drift terms and non-periodic boundary conditions. Instead of using that method, we
provide a new method to find a compact absorbing set in the strong solution space,
which guarantees the existence of random attractor. The main idea is that we firstly
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prove that the solution operator of 3D stochastic PEs is compact in (H1(O))4, P-a.s..
Then using the compact property of solution operator and continuous dependence on
initial data of the strong solution in a good space, we construct a compact absorbing
ball. The random attractor we obtained is stronger than that in [17]. Specifically, the
random attractor we obtain is compact in the strong solution space (H1(O))4, P-a.s.
and attracts any orbit starting from −∞ in the strong topology of (H1(O))4 while the
random attractor in [17] is not necessarily a compact subset in the strong solution space.

Taking into account the asymptotical compact property of the solution operator,
we can prove the existence of invariant measures by showing that the one-point motions
associated with the flow generated by 3D PEs define a family of Markov processes. Up
to now, there are no works on the existence of invariant measures for the stochastic
PEs subject to non-periodic boundary conditions. It may be an attempt to solve this
problem by proving the asymptotic compact property of the solution operator.

The remainder of this paper is organized as follows. In Section 2, some preliminaries
of 3D stochastic primitive equations are stated. In Section 3, the global well-posedness
of 3D stochastic primitive equations is proved. In Section 4, we establish the existence
of random attractor. Finally, in Section 5, the existence of invariant measures for 3D
stochastic primitive equations is obtained. As usual, constants C may change from one
line to the next, unless we give a special declaration. Denote by C(a), a constant which
depends on some parameter a.

2. Preliminaries
For 1≤p≤∞, let Lp(O) and Lp(M) be the usual Lebesgue spaces with the norm

|φ|p=

{(∫
O |φ(x,y,z)|pdxdydz

) 1
p , φ∈Lp(O),(∫

M
|φ(x,y)|pdxdy

) 1
p , φ∈Lp(M).

In particular, | · | and (·,·) represent norm and inner product of L2(O) (or L2(M)),
respectively. For m∈N+, (Wm,p(O),‖·‖m,p) stands for the classical Sobolev space, see
[1]. When p= 2, we denote by Hm(O) =Wm,2(O) with norm ‖·‖m. Without confusion,
we shall sometimes abuse notation and denote by ‖·‖m, the norm in Hm(M). Let

V1 =
{
υ∈ (C∞(O))2 :∂zυ|z=0 = 0, ∂zυ|z=−1 = 0, υ ·~n|Γs

= 0,

∂~nυ×~n|Γs = 0,

∫ 0

−1

∇·υdz= 0
}
,

V2 =
{
T ∈C∞(O) :∂zT |z=−1 = 0, (∂zT +γT )|z=0 = 0, ∂~nT |Γs

= 0
}
.

We denote by V1 and V2, the closure space of V1 in (H1(O))2 and the closure space of
V2 in H1(O), respectively. Let H1 be the closure space of V1 with respect to the norm
| · |2. Define H2 =L2(O). Set

V =V1×V2, H=H1×H2.

Let U = (υ,T ), Ũ = (υ̃,T̃ ), V is equipped with the inner product

〈U,Ũ〉V
def
= 〈υ,υ̃〉V1

+〈T,T̃ 〉V2
,

〈υ,υ̃〉V1

def
=

∫
O

(
∇v ·∇ṽ+

∂v

∂z
· ∂ṽ
∂z

)
dxdydz,
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〈T,T̃ 〉V2

def
=

∫
O

(
∇T ·∇T̃ +

∂T

∂z

∂T̃

∂z

)
dxdydz+γ

∫
Γu

T1T2dxdy.

Subsequently, the norm of V is defined by ‖U‖= 〈U,U〉
1
2

V . The inner product of H is
defined by

〈U,Ũ〉H
def
= 〈υ,υ̃〉+〈T,T̃ 〉,

〈υ,υ̃〉 def
=

∫
O
υ · υ̃dxdydz,

〈T,T̃ 〉 def
=

∫
O
T T̃dxdydz.

Denote V ′i the dual space of Vi, i= 1,2. Furthermore, we have the compact embedding
relationship

D(Ai)⊂Vi⊂Hi⊂V ′i ⊂D(Ai)
′,

and

〈·, ·〉Vi
= 〈Ai·,·〉= 〈A

1
2
i ·,A

1
2
i ·〉, i= 1,2.

For the sake of simplicity, in the following, we denote∫
O
· dxdydz=

∫
O
· ,

∫
M

· dxdy=

∫
M

· .

3. Global well-posedness of stochastic primitive equations
In this section, we aim to prove the global well-posedness of (1.9)-(1.14). Firstly,

we introduce the following definition. Given T >0, fix a single stochastic basis
(Ω,F ,{Ft0,t}t∈[t0,T ],P), where

Ft0,t
def
= σ(W j

k (s)−W j
k (t0),s∈ [t0,t],j= 1,2). (3.1)

Definition 3.1. Fix T >0, a continuous V -valued Ft0,t-adapted random field
(U(.,t))t∈[t0,T ] = (υ(.,t),T (.,t))t∈[t0,T ] defined on (Ω,F ,P) is said to be a strong (weak)
solution to (1.9)-(1.14) if

U ∈C([t0,T ];V )∩L2([t0,T ];(H2(O))3) (U ∈C([t0,T ];H)∩L2([t0,T ];(H1(O))3) P−a.s..

and the following∫
O
υ(t)·φ1−

∫ t

t0

ds

∫
O
{[(υ ·∇)φ1 +Φ(υ)∂zφ1]υ− [(fk×υ) ·φ1 +(

∫ z

−1

Tdz′)∇·φ1]}

+

∫ t

t0

ds

∫
O
υ ·L1φ1

=

∫
O
υ0 ·φ1 +

∫ t

t0

∫
O

n∑
k=1

αkυ◦dw1
k(s,w) ·φ1,∫

O
T (t)φ2−

∫ t

t0

ds

∫
O

[(υ ·∇)φ2 +Φ(υ)∂zφ2]T +

∫ t

t0

ds

∫
O
TL2φ2 =

∫
O
T0φ2
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+

∫ t

t0

ds

∫
O
Qφ2 +

∫ t

t0

∫
O

n∑
k=1

βkT ◦dw2
k(s,w) ·φ2,

hold P-a.s., for all t∈ [t0,T ] and φ= (φ1,φ2)∈D(A1)×D(A2).

Consider

α(t) = exp(−
n∑
k=1

αkw
1
k), β(t) = exp(−

n∑
k=1

βkw
2
k).

Then α(t) and β(t) satisfy the following Stratonovich equations

dα(t) =−
n∑
k=1

αkα(t)◦dw1
k(t), dβ(t) =−

n∑
k=1

βkβ(t)◦dw2
k(t).

Define

(u(t),θ(t)) = (α(t)v(t), β(t)T (t)).

Then, (u(t),θ(t)) satisfies

∂tu−∆u−∂zzu+α−1u ·∇u+α−1Φ(u)∂zu+fu⊥+α∇ps−αβ−1

∫ z

−1

∇θdz′= 0, (3.2)

∂tθ−∆θ−∂zzθ+α−1u ·∇θ+α−1Φ(u)∂zθ=βQ, (3.3)∫ 0

−1

∇·udz= 0. (3.4)

The boundary and initial conditions for (3.2)-(3.4) are

∂zu|Γu
=∂zu|Γb

= 0,u ·~n|Γs
= 0,∂~nu×~n|Γs

= 0, (3.5)(
∂zθ+γθ

)
|Γu =∂zθ|Γb

= 0, ∂~nθ|Γs = 0, (3.6)

(u
∣∣
t0
,θ
∣∣
t0

) = (υ0,T0). (3.7)

Definition 3.2. Let T be a fixed positive time and (v0,T0)∈V . (u,θ) is called a strong
solution of the system (3.2)-(3.7) on the time interval [t0,T ] if it satisfies (3.2)-(3.7) in
the weak sense such that P-a.s.

u∈C([t0,T ];V1)∩L2([t0,T ];(H2(O))2),

θ∈C([t0,T ];V2)∩L2([t0,T ];H2(O)).

Theorem 3.1 (Existence of local solutions to (3.2)-(3.7)). If Q∈L2(O),v0∈V1,
T0∈V2. Then, for P-a.s., ω∈Ω, there exists a stopping time T ∗>0 such that (u,θ) is
a strong solution of the system (3.2)-(3.7) on the interval [t0,T

∗].

The proof of the existence of local solutions to (3.2)-(3.7) is similar to [19] and hence
we omit it. Before showing the global well-posedness of the strong solution, we recall
the following Lemma, a special case of a general result of Lions and Magenes [27], which
will help us to show the continuity of the solution with respect to time in (H1(O))3.
We refer the readers to [32] for its proof.
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Lemma 3.1. Let V,H,V ′ be three Hilbert spaces such that V ⊂H=H ′⊂V ′, where
H ′ and V ′ are the dual spaces of H and V , respectively. Suppose u∈L2(0,T ;V ) and
du
dt ∈L

2(0,T ;V ′). Then u is almost everywhere equal to a continuous function from [0,T ]
into H.

Theorem 3.2 (Existence of global solution to (3.2)-(3.7)). If Q∈L2(O),v0∈V1,
T0∈V2, and T >0. Then, for P-a.s., ω∈Ω, there exists a unique strong solution (u,θ)
of the system (3.2)-(3.7) or equivalently (v,T ) to the system (1.9)-(1.14) on the interval
[t0,T ].

Proof. Let [t0,τ∗) be the maximal interval of existence of the strong solution. For
fixed ω∈Ω, we will establish various norms of this solution in the interval [t0,τ∗). In
particular, we will show that if τ∗<∞, then H1-norm of the strong solution is bounded
over the interval [t0,τ∗).

A priori estimates: Referring to [9], define

φ̄(x,y) =

∫ 0

−1

φ(x,y,ξ)dξ, ∀ (x,y)∈M.

In particular,

ū(x,y) =

∫ 0

−1

u(x,y,ξ)dξ, in M.

Let

ũ=u− ū.

Notice that

¯̃u= 0, ∇· ū= 0 in M.

Taking the average of Equations (3.2) in the z direction over the interval (−1,0), and
using boundary conditions (3.5), we have

∂tū+α−1u ·∇u+Φ(u)∂zu+fū⊥+α∇ps−αβ−1

∫ 0

−1

∫ z

−1

∇θdz′dz−∆ū= 0. (3.8)

By the integration by parts, we get∫ 0

−1

Φ(u)∂zudz=

∫ 0

−1

u∇·udz=

∫ 0

−1

(∇· ũ)ũdz, (3.9)∫ 0

−1

u ·∇udz=

∫ 0

−1

ũ ·∇ũdz+ ū ·∇ū. (3.10)

Substituting (3.9) and (3.10) into (3.8), ū satisfies

∂tū−∆ū+α−1(ũ ·∇ũ+ ũ∇· ũ+ ū ·∇ū)+fū⊥+α∇ps

−αβ−1∇
∫ 0

−1

∫ z

−1

θ(x,y,λ,t)dλdz= 0, (3.11)

∇· ū= 0 in M, (3.12)
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ū ·~n= 0, ∂~nū×~n= 0 on M. (3.13)

By subtracting (3.11) from (3.2) and using (3.5) and (3.13), we conclude that ũ satisfies

∂tũ−∆ũ−∂zzũ+α−1ũ ·∇ũ+α−1Φ(ũ)∂zũ+α−1ũ ·∇ū+α−1ū ·∇ũ

−α−1ũ ·∇ũ−α−1ũ∇· ũ+fũ⊥−αβ−1

∫ z

−1

∇θdz′+αβ−1

∫ 0

−1

∫ z

−1

∇θdz′dz= 0, (3.14)

∂zũ|z=0 = 0, ∂zũ|z=−1 = 0, ũ ·~n|Γs
= 0, ∂~nũ×~n|Γs

= 0. (3.15)

In the following, we will study the properties of ū and ũ.

(1) Estimates of |θ|2 and |u|2. Taking the inner product of equation (3.3) with θ in
H2, we get

1

2
∂t|θ|2 + |∇θ|2 + |θz|2 +γ|θ(z= 0)|2 =β

∫
O
Qθ−α−1

∫
O

(
u ·∇θ+Φ(u)∂zθ

)
θ.

By integration by parts,

α−1

∫
O

(
u ·∇θ+Φ(u)∂zθ

)
θ= 0.

Using the Hölder’s inequality, we deduce that

1

2
∂t|θ|2 + |∇θ|2 + |θz|2 +γ|θ(z= 0)|2≤β

∫
O
Qθ≤ε|θ|2 +Cβ2|Q|2.

Referring to equation (48) in [9], we obtain

|θ|2≤2|∂zθ|2 +2|θ(z= 0)|2.

Then, we arrive at

∂t|θ|2 +2|∇θ|2 +(2−4ε)|θz|2 +(2γ−4ε)|θ(z= 0)|2≤Cβ2|Q|2. (3.16)

Hence, there exists a positive λ such that

∂t|θ|2 +λ|θ|2≤Cβ2|Q|2.

Applying the Gronwall’s inequality, it follows that

|θ(t)|2≤|θt0 |2e−λ(t−t0) +C

∫ t

t0

β2eλ(s−t)|Q|2ds. (3.17)

In view of (3.16) and (3.17), we obtain

sup
t∈[t0,τ∗)

|θ(t)|2 +

∫ τ∗

t0

‖θ(t)‖2dt≤C. (3.18)

Taking inner product of (3.2) with u in H1, by integration by parts, we have

∂t|u|2 +(1−ε)|∇u|2 + |uz|2≤C|θ|2. (3.19)
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Utilizing (3.18), we get

sup
t∈[t0,τ∗)

|u(t)|2 +

∫ τ∗

t0

‖u(t)‖2dt≤C. (3.20)

(2) Estimates of |θ|44 and |ũ|44. Taking the inner product of the equation (3.3) with
θ3 in H2, we have

1

4
∂t|θ|44 +

3

4
|∇θ2|2 +

3

4
|(θ2)z|2 +γ

∫
M

|θ(z= 0)|4 =β

∫
O
Qθ3−α−1

∫
O

[u ·∇θ+Φ(u)∂zθ]θ
3.

By integration by parts, we deduce that

α−1

∫
O

[u ·∇θ+Φ(u)∂zθ]θ
3 = 0. (3.21)

Applying the interpolation inequality to |θ2|3, we obtain

|θ2|3≤C|θ2| 12 (|∇θ2| 12 + |∂zθ2| 12 +α|θ2(z= 0)| 12 ). (3.22)

Using (3.22) and the Hölder’s inequality, we get∫
O
βQθ3≤ε(|∇θ2|2 + |∂zθ2|2 +α|θ2(z= 0)|2)+Cβ|Q| 85 |θ|

12
5

4 . (3.23)

Combining (3.21) and (3.23), we arrive at

∂t|θ|44 + |∇θ2|2 + |(θ2)z|2 +α

∫
M

|θ(z= 0)|4≤Cβ|Q| 85 |θ|
12
5

4 . (3.24)

Since

θ4(x,y,z) =−
∫ 0

z

∂rθ
4(x,y,r)dr+θ4(z= 0),

by the Young’s inequality, we have

|θ|44 =−
∫
O

∫ 0

z

∂rθ
4dr+

∫
M

∫ 0

−1

θ4(z= 0)dz

≤ 1

2
|θ|44 +8|∂z(θ2)|2 +

∫
M

θ4(z= 0),

then

|θ|44≤16|∂z(θ2)|2 +2|θ(z= 0)|44.

From (3.24), we get

∂t|θ|44 + |θ|44≤Cβ|Q|
8
5 |θ|

12
5

4 ,

∂t|θ|24 + |θ|24≤Cβ|Q|
8
5 |θ|

2
5
4 .

Applying the Gronwall’s inequality, there exists a positive number which is still denoted
by λ such that

|θ(t)|24≤|θt0 |24e−λ(t−t0) +C

∫ t

t0

β(s)e−λ(t−s)|Q|2ds (3.25)
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for t∈ [t0,τ∗).
Taking the inner product of the equation (3.14) with |ũ|2ũ in H1, we obtain

1

4
∂t|ũ|44 +

1

2

∫
O

(
|∇(|ũ|2)|2 + |∂z(|ũ|2)|2

)
+

∫
O
|ũ|2(|∇ũ|2 + |∂zũ|2)

=−α−1

∫
O

((ũ ·∇)ũ+Φ(ũ)∂zũ) · |ũ|2ũ

−α−1

∫
O

(ũ ·∇ū) · |ũ|2ũ−α−1

∫
O

(ū ·∇ũ) · |ũ|2ũ

+α−1

∫
O
ũ∇· ũ+ ũ ·∇ũ · |ũ|2ũ

+αβ−1

∫
O

(

∫ z

−1

∇θdz′−
∫ 0

−1

∫ z

−1

∇θdz′dz) · |ũ|2ũ.

Using integration by parts and the boundary conditions (3.15), we have∫
O

((ũ ·∇)ũ+Φ(ũ)∂zũ)|ũ|2ũ= 0,∫
O

(ū ·∇ũ)|ũ|2ũ=−1

4

∫
O
|ũ|4∇· ū= 0,

and ∫
O

[(ũ ·∇)ū] · |ũ|2ũ=−
∫
O

[(ũ ·∇)|ũ|2ũ] · ū−
∫
O

(∇· ũ)|ũ|2ũ · ū,∫
O
ũ∇· ũ+ ũ ·∇ũ · |ũ|2ũ=−

∫
O
ũkũj∂xk

(|ũ|2ũj),

where ũk is the k-th coordinate of ũ, k= 1,2.
Based on the above equalities and by integration by parts, we obtain

1

4
∂t|ũ|44 +

1

2

∫
O

(
|∇(|ũ|2)|2 + |∂z(|ũ|2)|2

)
+

∫
O
|ũ|2(|∇ũ|2 + |∂zũ|2)

=α−1

∫
O
ū ·(ũ ·∇)|ũ|2ũ+α−1

∫
O

(∇· ũ)ū · |ũ|2ũ

−α−1

∫
O
ũkũj∂xk

(|ũ|2ũj)−αβ−1

∫
O

(∫ z

−1

θdλ−
∫ 0

−1

∫ z

−1

θdλdz
)
∇·|ũ|2ũ

def
= I1 +I2 +I3 +I4. (3.26)

Applying the Hölder’s inequality, the Minkowski’s inequality and the interpolation in-
equalities, we obtain

I1≤α−1

∫
M

|ū|
∫ 0

−1

|ũ||∇ũ||ũ|2dz

≤α−1

∫
M

|ū|
(∫ 0

−1

|ũ|2|∇ũ|2dz
) 1

2
(∫ 0

−1

|ũ|4dz
) 1

2

≤α−1|ū|L4(M)|∇(|ũ|2)|
(∫

M

(

∫ 0

−1

|ũ|4dz)2
) 1

4
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≤α−1|ū|L4(M)|∇(|ũ|2)|
(∫ 0

−1

(

∫
M

|ũ|8)
1
2 dz
) 1

2

≤α−1|ū|L4(M)|∇(|ũ|2)|
(∫ 0

−1

|(|ũ|2)|L2(M)‖(|ũ|2)‖H1(M)dz
) 1

2

≤α−1|ū|L4(M)|∇(|ũ|2)||(|ũ|2)| 12 [|(|ũ|2)| 12 + |∇(|ũ|2)| 12 + |∂z(|ũ|2)| 12 ].

By the Young’s inequality and the interpolation inequalities, we get

I1≤ε(|∇(|ũ|2)|2 + |∂z(|ũ|2)|2)+C(α−2|ū|2L4(M) +α−4|ū|4L4(M))|ũ|
4
4

≤ε(|∇(|ũ|2)|2 + |∂z(|ũ|2)|2)+C(α−2‖u‖21 +α−4|u|2‖u‖21)|ũ|44. (3.27)

By the Hölder’s inequality, the Minkowski’s inequality, the interpolation inequality and
the Young’s inequality, we get

I2 =α−1

∫
M

ū ·
∫ 0

−1

|∇ũ||ũ|3dz

≤α−1

∫
M

|ū|
(∫ 0

−1

|∇ũ|2|ũ|2dz
) 1

2
(∫ 0

−1

|ũ|4dz
) 1

2

≤α−1||∇ũ||ũ|||ū|4
(∫

M

(∫ 0

−1

|ũ|4dz
)2) 1

4

≤α−1||∇ũ||ũ|||ū|4
(∫ 0

−1

(∫
M

|ũ|2×4
) 1

2

dz
) 1

2

≤Cα−1||∇ũ||ũ|||ū|4
(∫ 0

−1

||ũ|2|L2(M)(|∇|ũ|2|L2(M) + |∂z|ũ|2|L2(M) + ||ũ|2|L2(M))dz
) 1

2

≤ε(||∇ũ||ũ||2 + |∇|ũ|2|2 + |∂z|ũ|2|2)+C(α−2|ū|24 +α−4|ū|44)||ũ|2|2

≤ε(||∇ũ||ũ||2 + |∇|ũ|2|2 + |∂z|ũ|2|2)+C(α−2‖u‖21 +α−4|u|2‖u‖21)|ũ|44.

Applying the Hölder’s inequality, the Minkowski’s inequality, the interpolation inequal-
ity and the Young’s inequality, we have

I3 =−α−1

∫
O
ũkũj∂xk

(|ũ|2ũj)

≤α−1

∫
M

(∫ 0

−1

|ũ|2dz
)(∫ 0

−1

|∇ũ||ũ|2dz
)

≤α−1
(∫
O
|∇ũ|2|ũ|2

) 1
2
(∫

M

(∫ 0

−1

|ũ|2dz
)3) 1

2

≤α−1
(∫
O
|∇ũ|2|ũ|2

) 1
2
(∫ 0

−1

(∫
M

|ũ|6
) 1

3

dz
) 3

2

≤Cα−1
(∫
O
|∇ũ|2|ũ|2

) 1
2
(∫ 0

−1

|ũ|
4
3

L4(M) ·‖ũ‖
2
3

H1(M)dz
) 3

2

≤Cα−1
(∫
O
|∇ũ|2|ũ|2

) 1
2
(∫ 0

−1

|ũ|4L4(M)dz
) 1

2

∫ 0

−1

‖ũ‖H1(M)dz

≤ε
∫
O
|∇ũ|2|ũ|2 +Cα−2‖u‖21|ũ|44.
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Analogously, we have

I4≤αβ−1
(∫
O
|∇ũ|2|ũ|2

) 1
2
(∫
O
|ũ|4
) 1

4
(∫
O
|θ|4
) 1

4

≤ε
∫
O
|∇ũ|2|ũ|2 +Cα2β−2|ũ|24|θ|24.

Collecting all the above inequalities, we have

∂t|ũ|44 +

∫
O

(
|∇(|ũ|2)|2 + |∂z(|ũ|2)|2

)
+

∫
O
|ũ|2(|∇ũ|2 + |∂zũ|2)

≤Cα2β−2|θ|24|ũ|24 +C(α−2‖u‖21 +α−4|u|2‖u‖21)|ũ|44, (3.28)

and

∂t|ũ|24≤Cα2β−2|θ|24 +C(α−2‖u‖21 +α−4|u|2‖u‖21)|ũ|24. (3.29)

Applying the Gronwall’s inequality, we conclude that

sup
t∈[t0,τ∗)

|ũ(t)|44 +

∫ τ∗

t0

∫
O

(
|∇(|ũ|2)|2 + |∂z(|ũ|2)|2

)
ds+

∫ τ∗

t0

∫
O
|ũ|2(|∇ũ|2 + |∂zũ|2)ds≤C.

(3.30)

(3) Estimates of |∇ū|2 and |uz|2. Taking the inner product of equation (3.11) with
−∆ū in L2(M), we arrive at

1

2
∂t|∇ū|2 + |∆ū|2 =−α−1

∫
M

ū ·∇ū ·∆ū−α−1

∫
M

ũ ·∇ũ ·∆ū

−α−1

∫
M

ũ∇· ũ ·∆ū−
∫
M

(ū⊥+α∇ps) ·∆ū

+αβ−1

∫
M

∇
∫ 0

−1

∫ z

−1

θ(x,y,λ,t)dλdz ·∆ū.

By integration by parts and (3.12)-(3.13)(for more detail, see [9] ), we have∫
M

ū⊥ ·∆ū= 0,

∫
M

∇ps ·∆ū= 0,∫
M

∇
∫ 0

−1

∫ z

−1

θ(x,y,λ,t)dλdz ·∆ū= 0.

Applying the Hölder’s inequality and the interpolation inequalities, we obtain

α−1

∫
M

ū ·∇ū ·∆ū≤Cα−1|ū| 12 |∇ū||∆ū| 32

≤ε|∆ū|2 +Cα−4|ū|2|∇ū|4.

Using the Hölder’s inequality, the Minkowski’s inequality and the Sobolev embedding
theorem, we have

α−1

∫
M

ũ∇· ũ ·∆ū+α−1

∫
M

ũ ·∇ũ ·∆ū≤α−1|∆ū|
(∫
O
|ũ|2|∇ũ|2

) 1
2
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≤ε|∆ū|2 +Cα−2

∫
O
|ũ|2|∇ũ|2.

Collecting all the above inequalities, we conclude that

∂t|∇ū|2 + |∆ū|2≤Cα−4|u|2‖u‖21|∇ū|2 +Cα−2

∫
O
|ũ|2|∇ũ|2. (3.31)

Therefore, applying Gronwall’s inequality and (3.20)-(3.31), we arrive at

sup
t∈[t0,τ∗)

|∇ū(t)|2≤C. (3.32)

Denote uz = ∂u
∂z , from (3.2), we get

∂tuz−∆uz−∂zzuz+α−1u ·∇uz+α−1uz ·∇u−α−1uz∇·u+α−1Φ(u)uzz

+fk×uz−αβ−1∇θ= 0. (3.33)

Taking the inner product of the equation (3.33) with uz in H1, we obtain

1

2
∂t|uz|2 + |∇uz|2 + |uzz|2 =−α−1

∫
O

(
(u ·∇)uz+Φ(u)uzz

)
·uz−α−1

∫
O

[(uz ·∇)u] ·uz

+α−1

∫
O

(∇·u)uz ·uz−
∫
O
u⊥z ·uz+αβ−1

∫
O
∇θ ·uz.

By integration by parts, we deduce that

α−1

∫
O

(
(u ·∇)uz+Φ(u)uzz

)
·uz = 0.

Thanks to the Hölder’s inequality, the interpolation inequality and the Sobolev embed-
ding theorem, we reach

α−1

∫
O

[(uz ·∇)u] ·uz≤Cα−1

∫
O
|u||uz||∇uz|

≤Cα−1|∇uz||u|4|uz|4
≤Cα−1|∇uz||u|4|uz|

1
4 (|∇uz|

3
4 + |∂zuz|

3
4 + |uz|

3
4 )

≤ε(|∇uz|2 + |∂zuz|2)+C(α−8|∇ū|8 +1)|uz|2.

Similar to the above, we get∫
O

(∇·u)uz ·uz≤ε(|∇uz|2 + |uzz|2)+C(α−8|∇ū|8 +1)|uz|2.

Collecting the above inequalities, we have

∂t|uz|2 + |∇uz|2 + |uzz|2≤C(α−8|ū|84 +α−8|∇ū|8 +1)|uz|2. (3.34)

Applying Gronwall’s inequality to (3.34), and by (3.32), we reach

sup
t∈[t0,τ∗)

|uz(t)|2 +

∫ τ∗

t0

(|∇uz(s)|2 + |uzz(s)|2)ds≤C. (3.35)
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(4) Estimates of |∇u|2 and |∇θ|2. Taking the inner product of equation (3.2) with
−∆u in H1, we reach

1

2
∂t|∇u|2 + |∆u|2 + |∇∂zu|2

=α−1

∫
O

[(u ·∇)u+Φ(u)∂zu] ·∆u+

∫
O
fk×u ·∆u

+α

∫
O
∇ps ·∆u−αβ−1

∫
O

(

∫ z

−1

∇θdz′) ·∆u.

By the Hölder’s inequality, the interpolation inequality and the Sobolev’s inequality, we
have

α−1

∫
O

[(u ·∇)u] ·∆u

≤Cα−1|∆u||∇u|4|u|4

≤α−1|∆u||∇u| 14 (|∆u| 34 + |∇uz|
3
4
4 + |∇u| 34 )|u|4

≤ε(|∆u|2 + |∇uz|2)+C(α−2|u|24 +α−8|u|84)|∇u|2

≤ε(|∆u|2 + |∇uz|2)+C(α−2|ũ|24 +α−2|∇ū|2 +α−8|ũ|84 +α−8|∇ū|8)|∇u|2. (3.36)

Utilizing the Hölder’s inequality, the Minkowsky’s inequality, the interpolation inequal-
ity and the Sobolev embedding theorem, we get

α−1

∫
O

Φ(u)uz ·∆u≤α−1

∫
M

(∫ 0

−1

|∇·u|dz
∫ 0

−1

|uz| · |∆u|dz
)

≤α−1|∆u|
(∫

M

(

∫ 0

−1

|∇·u|dz)4
) 1

4
(∫

M

(

∫ 0

−1

|uz|2dz)2
) 1

4

≤Cα−1|∆u|
(∫ 0

−1

|∇u|
1
2

L2(M)(|∆u|
1
2

L2(M) + |∇u|
1
2

L2(M))dz
)

×
(∫ 0

−1

|uz|L2(M)(|∇uz|L2(M) + |uz|L2(M))dz
) 1

2

≤ε(|∆u|2 + |∇uz|2)+C|∇u|2(α−2|uz|2 +α−2|uz||∇uz|
+α−4|uz|4 +α−4|uz|2|∇uz|2). (3.37)

We also have ∫
O

(fk×u) ·∆u= 0,

∫
O
∇ps ·∆u= 0.

Collecting all the above inequalities, we get

∂t|∇u|2 + |∆u|2 + |∇∂zu|2

≤C(α2β−2‖θ‖21 +α−2|ũ|24 +α−8|ũ|84 +α−2|∇ū|2 +α−8|∇ū|8

+α−2|uz|2 +α−4|uz|4 +α−2|∇uz|2 +α−4|uz|2|∇uz|2)|∇u|2. (3.38)

Applying the Gronwall’s inequality, and by (3.18), (3.30), (3.32) and (3.35), we obtain

sup
t∈[t0,τ∗)

|∇u(t)|2 +

∫ τ∗

t0

(|∆u(t)|2 + |∇∂zu|2)dt≤C. (3.39)
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Taking the inner product of the equation (3.3) with −∆θ−θzz in H2, similar to the
above, we get

1

2
∂t(|∇θ|2 + |θz|2 +γ|∇θ(z= 0)|2)+ |∆θ|2 +2(|∇θz|2 +γ|∇θ(z= 0)|2)+ |θzz|2

=

∫
O

(α−1u ·∇θ+α−1Φ(u)θz−βQ)(∆θ+θzz)

≤ε(|∆θ|2 + |θzz|2 + |∇θz|2)+Cβ2|Q|2 +Cα−4|∇u|2|∆u|2|θz|2

+C(α−2|ũ|24 +α−2|∇ū|2 +α−8|ũ|84 +α−8|∇ū|8)|∇θ|2.

Utilizing the Gronwall’s inequality, we get

|∇θ|2 + |θz|2 +γ|∇θ(z= 0)|2

+

∫ t

t0

[|∆θ|2 +2(|∇θz|2 +γ|∇θ(z= 0)|2)+ |θzz|2]ds≤C. (3.40)

In the following, we will divide the proof of the global well-posedness of stochastic
PEs into three steps. Concretely, firstly we prove the global existence of strong solution.
Then, we show that the solution is continuous in the space V with respect to t. At last,
we prove the continuity in V with respect to the initial data.

Step 1: The global existence of strong solution.

Previously, we have obtained a priori estimates in V. As we have indicated before,
that [t0,τ∗) is the maximal interval of existence of the solution of (3.2)-(3.7), we infer
that τ∗=∞, a.s.. Otherwise, if there exists A∈F such that P(A)>0 and for fixed
ω∈A,τ∗(ω)<∞, it is clear that

limsup
t→τ−∗ (ω)

(‖u(t)‖1 +‖θ(t)‖1) =∞, for any ω∈A,

which contradicts a priori estimates (3.35), (3.39) and (3.40). Therefore τ∗=∞, a.s.,
and the strong solution (u,θ) exists globally in time a.s..

Step 2: The continuity of strong solutions with respect to t.

Multiplying (3.2) by η∈V1, integrating with respect to the space variable, yields

〈∂tA
1
2
1 u,η〉= 〈∂tu,A

1
2
1 η〉=−〈A1u,A

1
2
1 η〉−α−1〈(u ·∇)u,A

1
2
1 η〉

−α−1〈Φ(u)∂zu,A
1
2
1 η〉−〈fu⊥,A

1
2
1 η〉

+αβ−1〈
∫ z

−1

∇θdz′,A
1
2
1 η〉,

where 〈∇ps,A
1
2
1 η〉= 0 is used. Taking a similar argument in (3.37), we get

〈Φ(u)∂zu,A
1
2
1 η〉≤‖u‖‖u‖2|A

1
2
1 η|.

By the Hölder’s inequality and the Sobolev embedding theorem, we have

‖∂t(A
1
2
1 u)‖V ′1 ≤C(‖u‖2 +‖u‖‖u‖2 + |u|+ |∇θ|).

Since

u∈L∞([t0,T ];V1)∩L2([t0,T ];(H2(O))2), ∀T >t0,
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we obtain

A
1
2
1 u∈L2([t0,T ];V1), ∂t(A

1
2
1 u)∈L2([t0,T ];V ′1).

Referring to Lemma 3.1, we deduce that

A
1
2
1 u∈C([t0,T ];H1) or u∈C([t0,T ];V1)P−a.s..

To study the regularity of θ, we choose ξ∈V2. By (3.3), we have

〈∂tA
1
2
2 θ,ξ〉=〈∂tθ,A

1
2
2 ξ〉= 〈A2θ,A

1
2
2 ξ〉−α−1〈u ·∇θ,A

1
2
2 ξ〉

+α−1〈Φ(u)∂zθ,A
1
2
2 ξ〉+β〈Q,A

1
2
2 ξ〉.

Taking a similar argument as above, we get

〈Φ(u)∂zθ,A
1
2
2 ξ〉≤C‖u‖

1
2 ‖u‖

1
2
2 ‖θ‖

1
2 ‖θ‖

1
2
2 |A

1
2
2 ξ|.

Then by the Hölder inequality’s and the Sobolev embedding theorem, we have

|∂tA
1
2
2 θ|V ′2 ≤C(|A2θ|+α−1‖u‖‖θ‖2 +α−1‖u‖ 1

2 ‖u‖
1
2
2 ‖θ‖

1
2 ‖θ‖

1
2
2 +β|Q|).

In view of step one, we have

θ∈L∞([t0,T ];V2)∩L2([t0,T ];H2(O)), ∀T >t0.

Therefore, by the same argument as above, we get

A
1
2
2 θ∈L2([t0,T ];V2), ∂t(A

1
2
2 θ)∈L2([t0,T ];V ′2).

We deduce from Lemma 3.1 that

A
1
2
2 θ∈C([t0,T ];H2) or θ∈C([t0,T ];V2), P−a.s..

Step 3: The continuity in V with respect to the initial data.
Let (υ1,T1) and (υ2,T2) be two solutions of the system (3.2)-(3.7) with corresponding
pressures pb

′ and pb
′′, and initial data ((υ0)1,(T0)1) and ((υ0)2,(T0)2), respectively.

Denote by v=υ1−υ2,pb=pb
′−pb′′ and T =T1−T2. Then we have

∂tv−∆v−∂zzv+α−1υ1 ·∇v+α−1(v ·∇)υ2 +α−1Φ(υ1)vz+α−1Φ(v)∂zυ2

+fk×v+α∇pb−αβ−1

∫ z

−1

∇Tdz′= 0, (3.41)

∂tT −∆T −∂zzT +α−1υ1 ·∇T +α−1(v ·∇)T2 +α−1Φ(υ1)Tz+α−1Φ(v)∂zT2 = 0, (3.42)∫ 0

−1

∇·vdz= 0, (3.43)

v(x,y,z,t0) = (υ0)1−(υ0)2, T (x,y,z,t0) = (T0)1−(T0)2, (3.44)

(v,T ) satisfies the boundary conditions (3.5)−(3.7). (3.45)

Multiplying L1v in equation (3.41) and integrating with respect to the spatial variable,
we have

1

2
∂t(|∇v|2 + |∂zv|2)+ |∆v|2 + |∂zv|2 + |∇vz|2
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=−α−1

∫
O

(υ1 ·∇v) ·L1v−α−1

∫
O

Φ(υ1)vz ·L1v

−α−1

∫
O

(Φ(v)∂zυ2) ·L1v−α−1

∫
O

[(v ·∇)υ2] ·L1v

−
∫
O

(fk×v) ·L1v+αβ−1

∫
O

(

∫ z

−1

∇Tdz′) ·L1v

def
=K1(t)+K2(t)+K3(t)+K4(t)+K5(t)+K6(t). (3.46)

Using the Agmon’s inequality and the Hölder’s inequality, we obtain

K1(t)≤α−1|v1|∞|∇v||L1v|

≤Cα−2‖v1‖
1
2 ‖v1‖

1
2
2 ‖v‖‖v‖2

≤Cα−2‖v1‖‖v1‖2‖v‖2 +ε‖v‖22.

Applying the Hölder’s inequality, the interpolation inequality and the Sobolev embed-
ding theorem, we get

K2(t)≤α−1

∫
O
|
∫ 0

−1

∇·v1dz| · |vz| · |L1v|

≤α−1|∇· v̄1|L4(M)

∫ 0

−1

|vz|L4(M)|L1v|L2(M)dz

≤Cα−1‖v1‖
1
2 ‖v1‖

1
2
2 ‖v‖

1
2 ‖v‖

1
2
2 ‖v‖2

≤ε‖v‖22 +Cα−2‖v1‖2‖v1‖22‖v‖2.

Similar to the above, we obtain

K3(t)≤α−1

∫
O
|
∫ 0

−1

∇·vdz| · |∂zv2| · |L1v|

≤α−1|∇· v̄|L4(M)

∫ 0

−1

|∂zv2|L4(M)|L1v|L2(M)dz

≤Cα−1‖v‖ 1
2 ‖v‖

1
2
2

∫ 0

−1

‖v2‖
1
2

H1(M)‖v2‖
1
2

H2(M)‖v‖2dz

≤ε‖v‖22 +Cα−4‖v‖2‖v2‖2‖v2‖22.

With the help of the Hölder’s inequality, we deduce that

K4(t)≤α−1|v|4|∇v2|4|L1v|2≤ε‖v‖22 +Cα−2‖v‖2‖v2‖22,

and

K5(t)+K6(t)≤ε‖v‖22 +C|v|22 +Cα2β−2‖T‖2.

From the boundary conditions, we know that |T |2 is smaller than |Tz|2 + |T (z= 0)|2L2(M),

then ‖T‖2 is equivalent to |∇T |2 + |Tz|2 + |T (z= 0)|2L2(M). Keeping this in mind and

taking an inner product of the equation (3.42) with L2T , we have

1

2
∂t(|∇T |2 + |Tz|2 +γ|T (z= 0)|2)+ |∆T |2 + |Tzz|2 + |∇Tz|2 +γ|∇T (z= 0)|2
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=−α−1

∫
O

(υ1 ·∇T )L2T −α−1

∫
O

(v ·∇T2)L2T

−α−1

∫
O

Φ(υ1)TzL2T +α−1Φ(v)∂zT2L2T

def
=J1(t)+J2(t)+J3(t)+J4(t).

By the Agmon’s inequality, we get that

J1(t)+J2(t)≤α−1|v1|∞|∇T ||L2T |+α−1|v|4|∇T2|4|L2T |

≤Cα−1‖v1‖
1
2 ‖v1‖

1
2
2 ‖T‖‖T‖2 +Cα−1‖v‖‖T2‖2‖T‖2

≤ε‖T‖22 +Cα−2‖v‖2‖T2‖22 +Cα−2‖v1‖‖v1‖2‖T‖2.

Taking a similar argument as K2(t), we obtain

J3(t)≤α−1

∫
O

(∫ 0

−1

|∇·v1|dz
)
· |Tz| · |L2T |

≤α−1
(∫ 0

−1

|L2T |L2(M)|Tz|L4(M)dz
)
|
∫ 0

−1

|∇·v1|dz|L4(M)

≤Cα−1

∫ 0

−1

‖T‖
3
2

H2(M)‖T‖
1
2

H1(M)dz

∫ 0

−1

|∇·v1|L4(M)dz

≤Cα−1‖T‖
3
2
2 ‖T‖

1
2

∫ 0

−1

‖v1‖
1
2

H1(M)‖v1‖
1
2

H2(M)dz

≤Cα−1‖T‖
3
2
2 ‖T‖

1
2 ‖v1‖

1
2 ‖v1‖

1
2
2

≤ε‖T‖22 +Cα−4‖T‖2‖v1‖2‖v1‖22.

Similarly, we can prove that

J4(t)≤α−1

∫
O

(

∫ 0

−1

|∇·v|)|∂zT2| · |L2T |

≤α−1
(∫ 0

−1

|L2T |L2(M)|∂zT2|L4(M)dz
)
|
∫ 0

−1

|∇·v|dz|L4(M)

≤α−1
(∫ 0

−1

‖T‖H2(M)‖T2‖
1
2

H1(M)‖T2‖
1
2

H2(M)dz
)∫ 0

−1

|∇·v|L4(M)dz

≤Cα−1‖T‖2‖T2‖
1
2 ‖T2‖

1
2
2 ‖v‖

1
2 ‖v‖

1
2
2

≤ε‖T‖22 +ε‖v‖22 +Cα−4‖T2‖2‖T2‖22‖v‖2.

Denote

η(t)
def
= ‖v(t)‖2 +‖T (t)‖2,

ξ(t)
def
= α−2‖v1‖‖v1‖2 +α−4‖v1‖2‖v1‖22

+α−4‖v2‖2‖v2‖22 +α2‖v2‖22 +α2‖T2‖22 +α−4‖T2‖2‖T2‖22 +1.

Notice that |∇v|2 + |∂zv|2 is equivalent to ‖v‖2 and |∇T |2 + |Tz|2 + |T (z= 0)|2L2(M) is

equivalent to ‖T‖2; letting ε be small enough, we deduce from the above estimates of
K1−K6 and J1−J4 that

dη(t)

dt
+‖v‖22 +‖T‖22≤η(t)ξ(t). (3.47)
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Since (vi(t),Ti(t)),i= 1,2, is the solution of stochastic PEs in the sense of Definition 3.2,
we have ∫ t

t0

ξ(s)ds<∞, a.s., for all t∈ (t0,∞),

which implies that

η(t)≤η(t0)e
C
∫ t
t0
ξ(s)ds

.

Therefore, we proved that for any t∈ (t0,∞),(u(t),θ(t)) is Lipschitz continuous in V1×V2

with respect to the initial data (u(t0),θ(t0)), which is equivalent to stating that the
strong solution (υ(t),T (t)) of (1.9)-(1.14) is Lipschitz continuous in V1×V2 with respect
to the initial data (vt0 ,Tt0), for any t∈ (t0,∞).

Remark 3.1.

(1) In the above theorem, we have obtained the continuity of the strong solution with
respect to the initial data in (H1(O))3. This is the key to prove the compact
property of the solution operator in V . Notice that the authors only proved that
the strong solution is Lipschitz continuous in the space (L2(O))3 with respect to
the initial data in [17], which is not enough to obtain the asymptotical behavior
in (H1(O))3.

(2) With the help of Lemma 3.1, we have established the continuity of the strong
solution with respect to time in V and a priori estimates to prove the compact
property of the solution operator in V .

(3) We release the regularity of Q from H1(O) to L2(O), which is more natural.

4. Existence of random attractor
In this section, we establish the existence of random attractor. Firstly, we recall

some preliminaries from [3]. Denote by C0(R;X) the space of continuous functions with
values in X and equal to 0 at t= 0. Let (X,d) be a Polish space and (Ω̃,F̃ ,P̃) be a
probability space, where Ω̃ is the two-sided Wiener space C0(R;X).

Definition 4.1. A family of maps S(t,s;ω) :X→X, −∞<s≤ t<∞, parametrized
by ω∈ Ω̃, is said to be a stochastic flow, if P̃-a.s.,

(i) S(t,r;ω)S(r,s;ω)x=S(t,s;ω)x for all s≤ r≤ t, x∈X,
(ii) S(t,s;ω) is continuous in X, for all s≤ t,
(iii) for all s<t and x∈X, the mapping

ω 7→S(t,s;ω)x

is measurable from (Ω̃,F̃) to (X,B(X)) where B(X) is the Borel σ-algebra of
X,

(iv) for all t,x∈X, the mapping s 7→S(t,s;ω) is right continuous at any point.

Definition 4.2. A set-valued map K : Ω̃→2X taking values in the closed subsets of X
is said to be measurable if for each x∈X the map ω 7→d(x,K(ω)) is measurable, where

d(A,B) = sup{inf{d(x,y) :y∈B} :x∈A} forA,B∈2X ,A,B 6=∅,

and d(x,B) =d({x},B). Since d(A,B) = 0 if and only if A⊂B, d is not a metric.
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Definition 4.3. A closed set-valued measurable map K : Ω̃→2X is called a random
closed set.

Definition 4.4. Given t∈R and ω∈ Ω̃,K(t,ω)⊂X is called an attracting set at time
t if for all bounded sets B⊂X,

d(S(t,s;ω)B,K(t,ω))→0, provided s→−∞.

Moreover, if for all bounded sets B⊂X, there exists tB(ω) such that for all s≤ tB(ω)

S(t,s;ω)B⊂K(t,ω),

we say K(t,ω) is an absorbing set at time t.

Let {ϑt : Ω̃→ Ω̃},t∈T =R, be a family of measure-preserving transformations of the
probability space (Ω̃,F̃ ,P̃) such that for all s<t andω∈ Ω̃, the following

(a) (t,ω)→ϑtω is measurable,

(b) ϑt(ω)(s) =ω(t+s)−ω(t),

(c) S(t,s;ω)x=S(t−s,0;ϑsω)x,

hold. Then, (ϑt)t∈T is a flow and ((Ω̃,F̃ ,P̃),(ϑt)t∈T ) is a measurable dynamical system.

Definition 4.5. Given a bounded set B⊂X, the set

Ω(B,t,ω) =
⋂
T≤t

⋃
s≤T

S(t,s,ω)B

is said to be the Ω-limit set of B at time t. Obviously, if we denote Ω(B,0,ω) = Ω(B,ω),
we have Ω(B,t,ω) = Ω(B,ϑtω).

It is easy to identify

Ω(B,t,ω) ={x∈X : there exists sn→−∞ and xn∈B such that lim
n→∞

S(t,sn,ω)xn=x}.

Furthermore, if there exists a compact attracting set K(t,ω) at time t, it is not
difficult to check that Ω(B,t,ω) is a nonempty compact subset of X and Ω(B,t,ω)⊂
K(t,ω).

Definition 4.6. For all t∈R and ω∈ Ω̃, a random closed set ω→A(t,ω) is called the
random attractor, if P̃−a.s.,

(1) A(t,ω) is a nonempty compact subset of X,

(2) A(t,ω) is the minimal closed attracting set, i.e., if Ã(t,ω) is another closed attract-
ing set, then A(t,ω)⊂Ã(t,ω),

(3) it is invariant, in the sense that, for all s≤ t, S(t,s;ω)A(s,ω) =A(t,ω).

Let A(ω) =A(0,ω), then the invariance property can be written as

S(t,s;ω)A(ϑsω) =A(ϑtω).

We will prove the existence of the random attractor by applying Theorem 2.2 in [3].
For the readers’ convenience, we state it here.

Theorem 4.1. Let (S(t,s;ω))t≥s,ω∈Ω̃ be a stochastic dynamical system satisfying
(i)-(iv) in Definition 4.1. Assume that there exists a family of measure-preserving
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mappings ϑt,t∈R such that(a)-(c) in Definition 4.4 hold and there exists a compact
attracting set K(ω) at time 0, for P̃-a.s.. Set

A(ω) =
⋃

B⊂X,B bounded

Ω(B,ω)

where the union is taken over all the bounded subsets of X. Then we have P̃-a.s.,

(1) A(ω) is a nonempty compact subset of X. If X is connected, it is a connected
subset of K(ω).

(2) The family A(ω), ω∈Ω, is measurable.

(3) A(ω) is invariant in the sense that S(t,s;ω)A(ϑsω) =A(ϑtω), s≤ t.
(4) It attracts all bounded sets from −∞: for bounded B⊂X and ω∈ Ω̃

d(S(t,s;ω)B,A(ϑtω))→0, when s→−∞.

Moreover, it is the minimal closed set with this property: if Ã(ϑtω) is a closed
attracting set, then A(ϑtω)⊂Ã(ϑtω).

(5) For any bounded set B⊂X, d(S(t,s;ω)B,A(ϑtω))→0 in probability when t→∞.

And if the time shift ϑt,t∈R is ergodic,

(6) There exists a bounded set B⊂X such that

A(ω) =A(B,ω),

(7) A(ω) is the largest compact measurable set which is invariant.

Before showing the existence of random attractor, we recall the Aubin-Lions lemma
from [33].

Lemma 4.1. Let B0,B,B1 be Banach spaces such that B0,B1 are reflexive and B0

c
⊂

B⊂B1. For 0<T <∞, set

X
def
=
{
h
∣∣∣h∈L2([0,T ];B0),

dh

dt
∈L2([0,T ];B1)

}
.

Then X is a Banach space equipped with the norm |h|L2([0,T ];B0) + |h′|L2([0,T ];B1). More-
over,

X
c
⊂L2([0,T ];B).

The main result in this paper reads as

Theorem 4.2. Let Q∈L2(O),υ0∈V1,T0∈V2. Then the solution operator
(S(t,s;ω))t≥s,ω∈Ω̃ of 3D stochastic PEs (1.9)-(1.14): S(t,s;ω)(υs,Ts) = (υ(t),T (t)) sat-
isfies (i)-(iv) in Definition 4.1 and possesses a compact absorbing ball B(0,ω) in V at
time 0. Furthermore, for P̃-a.s. ω∈Ω, set

A(ω) =
⋃
B⊂V

Ω(B,ω)

where the union is taken over all the bounded subsets of V . Then A(ω) is the random
attractor of stochastic PEs (1.9)-(1.14) and possesses the properties (1)-(7) of Theorem
4.1 with space X replaced by space V.



1706 ASYMPTOTIC BEHAVIOR OF PRIMITIVE EQUATIONS

Proof. Denote by w= (w1
def
=
∑n
k=1αkw

1
k,w2

def
=
∑n
k=1βkw

2
k) the R2−valued Brow-

nian motion, which has a version ω in C0(R,R2)
def
= Ω̃, the space of continuous functions

which are zero at t= 0. In the following, we consider a canonical version of w given by
the probability space (C0(R,R2),B(C0(R,R2)),P̃), where P̃ is the Wiener-measure gen-
erated by w and B(C0(R,R2)) is the family of Borel subsets of C0(R,R2). Now, define
the stochastic flow (S(t,s;ω))t≥s, ω∈Ω̃ by

S(t,s;ω)(υs,Ts) = (α−1(t)u(t,ω1),β−1(t)θ(t,ω2)), (4.1)

where (υ,T ) is the strong solution to (1.9)-(1.14) with (υs,Ts) = (α−1(s)us(s,ω1),
β−1(s)θs(s,ω2)) and (u,θ) is the strong solution to (3.2)-(3.7). It can be checked that
assumptions (i)-(iv) and (a)-(c) of stochastic dynamics are satisfied with X=V . In-
deed, properties (i), (ii), (iv) of the solution operator (S(t,s;ω))t≥s,ω∈Ω̃ follows by
Theorem 3.2 and property (iii) of the solution operator also holds with the help of the
global existence of strong solution to (1.9)-(1.14) resting upon Faedo-Galerkin method.
Furthermore, (Ω̃,B(C0(R,R2)),P̃,ϑ) is an ergodic metric dynamical system.

In the following, we will prove the existence of the random attractor. Let
(u(t,ω;t0,u0),θ(t,ω;t0,θ0)) be the solution to (3.2)-(3.7) with initial value u(t0) =u0

and θ(t0) =θ0. By the law of the iterated logarithm, we have

lim
t→−∞

∑n
k=1αkw

1
k

t
= lim
t→−∞

∑n
k=1βkw

2
k

t
= 0. (4.2)

Obviously, t→β2(t)eλt is pathwise integrable over (−∞,0], where λ is positive. And we
have

lim
t→−∞

β2(t)eλt= 0, P̃−a.e.. (4.3)

In view of (3.16), (3.17) and (4.3), for P̃-a.e. ω∈ Ω̃, there exists a random variable r1(ω),
depending only on λ, such that for arbitrary ρ>0, there exists t(ω)≤−4 such that for
all t0≤ t(ω) and (u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ, θ(t,ω;t0,θ0) satisfies

sup
t∈[−4,0]

|θ(t,ω;t0,θ0)|2 +

∫ 0

−4

‖θ(s)‖2ds≤ r1(ω). (4.4)

In view of (3.19) and (4.4), taking a similar argument as (4.4), for P̃-a.e. ω∈ Ω̃, we
deduce that there exists random variable r2(ω), depending only on λ, such that for
arbitrary ρ>0, there exists t(ω)≤−4 such that for all t0≤ t(ω) and (u0,θ0)∈V with
‖u0‖+‖θ0‖≤ρ, u(t,ω;t0,u0) satisfies

sup
t∈[−4,0]

|u(t,ω;t0,u0)|2 +

∫ 0

−4

‖u(s)‖2ds≤ r2(ω). (4.5)

By (3.25), repeating the argument as in (4.4), for P̃-a.e. ω∈ Ω̃, there exists random
variable r3(ω), depending only on λ, such that for arbitrary ρ>0, there exists t(ω)≤−4
such that for all t0≤ t(ω) and (u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ, θ(t,ω;t0,θ0) satisfies

sup
t∈[−4,0]

|θ(t,ω;t0,θ0)|24≤ r3(ω). (4.6)
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Integrating (3.29) with respect to time over [t,−3] yields,

|ũ(−3)|24≤
(
|ũ(t)|24 +C

∫ −3

t

α2(s)β−2(s)|θ(s)|24ds
)

×eC
∫−3
t

α−2(s)‖u(s)‖2(1+α−2(s)|u(s)|2)ds, (4.7)

Integrating (4.7) with respect to t over [−4,−3], we obtain

|ũ(−3)|24≤
(∫ −3

−4

|ũ(t)|24ds+C

∫ −3

−4

α2(s)β−2(s)|θ(s)|24ds
)

×eC
∫−3
−4

α−2(s)‖u(s)‖2(1+α−2(s)|u(s)|2)ds. (4.8)

Therefore, by virtue of (4.4)-(4.6), we conclude that for P̃-a.e. ω∈ Ω̃, there exists random
variable C1(ω), depending only on λ, such that for arbitrary ρ>0, there exists t(ω)≤−4
such that for all t0≤ t(ω) and (u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ, ũ(−3,ω;t0,u0) satisfies

|ũ(−3)|24≤C1(ω). (4.9)

Integrating (3.29) with respect to time over [−3,t], we get

|ũ(t)|24≤
(
|ũ(−3)|24 +C

∫ t

−3

α2(s)β−2(s)|θ(s)|24ds
)

×eC
∫ t
−3
α−2(s)‖u(s)‖2(1+α−2(s)|u(s)|2)ds.

In view of (4.4)-(4.6) and (4.9), for P̃-a.e. ω∈ Ω̃, we deduce that there exists random
variable r4(ω), such that for arbitrary ρ>0, there exists t(ω)≤−3 such that for all
t0≤ t(ω) and (u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ, u(t,ω;t0,u0) satisfies

sup
t∈[−3,0]

|ũ(t,ω;t0,ũ0)|24≤ r4(ω). (4.10)

Taking integration of (3.28) with respect to time over [−3,0] yields,∫ 0

−3

(|∇(|ũ|2)|2 + |∂z(|ũ|2)|2 + |ũ|∇ũ||2 + |ũ|∂zũ||2)dt

≤|ũ(−3)|24 +C

∫ 0

−3

α2β−2|θ|24|ũ|24 +C

∫ 0

−3

(α−2‖u‖2 +α−4|u|2‖u‖2)|ũ|24. (4.11)

By (4.5), (4.6) and (4.11), for P̃-a.e. ω∈ Ω̃, we infer that that there exists random
variable C2(ω), such that for ρ>0, there exists t(ω)≤−3 such that for all t0≤ t(ω) and
(u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ, ũ(t,ω;t0,u0) satisfies∫ 0

−3

(|∇(|ũ|2)|2 + |∂z(|ũ|2)|2 + |ũ|∇ũ||2 + |ũ|∂zũ||2)dt≤C2(ω). (4.12)

By (3.31), (4.6) and (4.12), proceeding as (4.10), for P̃-a.e. ω∈ Ω̃, there exists random
variable C3(ω), such that for arbitrary ρ>0, there exists t(ω)≤−2 such that for all
t0≤ t(ω) and (u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ, ū(t,ω;t0,ū0) satisfies

sup
t∈[−2,0]

|∇ū(t,ω;t0,ū0)|2≤C3(ω). (4.13)
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In view of (3.34) and (4.13), following the steps in (4.10), for P̃-a.e. ω∈ Ω̃, there exists
a random variable r5(ω), such that for arbitrary ρ>0, there exists t(ω)≤−1 such that
for all t0≤ t(ω) and (u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ, satisfies

sup
t∈[−1,0]

|∂zu(t,ω;t0,u0)|2 +

∫ 0

−1

|∇uz(s,ω;t0,u0)|2ds≤ r5(ω). (4.14)

Regarding (3.38), (4.4), (4.5) and (4.14), we repeat the procedures of deriving (4.10) and
(4.11). For P̃-a.e. ω∈ Ω̃, there exists a random variable r6(ω), such that for arbitrary ρ>
0, there exists t(ω)≤−1 such that for all t0≤ t(ω) and (u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ,
u(t,ω;t0,u0) satisfies

sup
t∈[−1,0]

|∇u(t,ω;t0,u0)|2 +

∫ 0

−1

|∆u(s,ω;t0,u0)|2ds≤ r6(ω). (4.15)

By (3.40), (4.4), (4.14) and (4.15), proceeding as above, for P̃-a.e. ω∈ Ω̃, there exists
a random variable r7(ω), such that for arbitrary ρ>0, there exists t(ω)≤−1 such that
for all t0≤ t(ω) and (u0,θ0)∈V with ‖u0‖+‖θ0‖≤ρ, θ(t,ω;t0,θ0) satisfies

sup
t∈[−1,0]

‖θ(t,ω;t0,θ0)‖2≤ r7(ω).

Now we are ready to prove the desired compact result. Let r(ω) = r5(ω)+r6(ω)+
r7(ω), then B(−1,r(ω)), the ball of center 0∈V and radius r(ω), is an absorbing set
at time −1 for (S(t,s;ω))t≥s,ω∈Ω̃. According to Theorem 4.1, in order to prove the
existence of the random attractor in the space V , we need to to construct a compact
absorbing set at time 0 in V . Let B be a bounded subset of V , set

CT
def
= {(A

1
2
1 υ,A

1
2
2 T )

∣∣∣(υ(−1),T (−1))∈B,(υ(t),T (t))=S(t,−1;ω)(υ(−1),T (−1)),t∈ [−1,0]}.
We claim that CT is compact in L2([−1,0];H). Indeed, the space V1×V2⊂H1×H2 is

compact as Vi⊂Hi is compact. Let (υ(−1),T (−1))∈B; by the argument of step 2 in
the proof of Theorem 4.1, we have

(A
1
2
1 u,A

1
2
2 θ)∈L2([−1,0];V1×V2), (∂tA

1
2
1 u,∂tA

1
2
2 θ)∈L2([−1,0];V ′1×V ′2).

Therefore, we deduce the result from Lemma 4.1 with

B0 =V1×V2, B=H1×H2, B1 =V ′1×V ′2 .

Now, we aim to show that for any fixed t∈ (−1,0],ω∈ Ω̃,S(t,−1;ω) is a compact operator
in V . Taking any bounded sequences {(ν0,n,τ0,n)}n∈N in B, for any fixed t∈ (−1,0],

ω∈ Ω̃, we devote to extracting a convergent subsequence from {S(t,−1;ω)(ν0,n,τ0,n)}.
Since {(A

1
2
1 υ,A

1
2
2 T )}⊂CT , by Lemma 4.1, there is a function (ν∗,θ∗)∈L2([−1,0];V ) and

a subsequence of {S(t,−1;ω)(ν0,n,τ0,n)}n∈N still denoted by {S(t,−1;ω)(ν0,n,τ0,n)}n∈N,
such that

lim
n→∞

∫ 0

−1

‖S(t,−1;ω)(ν0,n,τ0,n)−(ν∗(t),θ∗(t))‖2dt= 0. (4.16)

By the measure theory, we know that the convergence in mean square implies almost
sure convergence. Therefore, it follows from (4.16) that there exists a subsequence
{S(t,−1;ω)(ν0,n,τ0,n)}n∈N such that

lim
n→∞

‖S(t,−1;ω)(ν0,n,τ0,n)−(ν∗(t),θ∗(t))‖= 0, a.e. t∈ (−1,0]. (4.17)
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Fix any t∈ (−1,0]. By (4.17), we can select a t0∈ (−1,t) such that

lim
n→∞

‖S(t0,−1,ω)(ν0,n,τ0,n)−(ν∗(t0),θ∗(t0))‖= 0.

Then, by the continuity of S(t− t0,t0;ω) in V with respect to the initial value, we have

S(t,−1;ω)(ν0,n,τ0,n) =S(t− t0,t0;ω)S(t0,−1;ω)(ν0,n,τ0,n)

→S(t− t0,t0;ω)(ν∗(t0),θ∗(t0)), in V.

Hence, for any t∈ (−1,0], we can always find a convergent subsequence of
{S(t,−1;ω)(ν0,n,τ0,n)}n∈N in V, which implies that for any fixed t∈ (−1,0],ω∈
Ω̃,S(t,−1;ω) is a compact operator in V. Set

B(0,ω) =S(0,−1;ω)B(−1,r(ω)),

then, B(0,ω) is a closed set of S(0,−1;ω)B(−1,r(ω)) in V. Using the above argument,
we know that B(0,ω) is a random compact set in V. Precisely, B(0,ω) is a compact
absorbing set in V at time 0. Indeed, for (ν0,n,τ0,n)∈B, there exists s(B)∈R− such
that for any s≤s(B), we have

S(0,s;ω)(ν0,n,τ0,n) =S(0,−1;ω)S(−1,s;ω)(ν0,n,τ0,n)

⊂S(0,−1;ω)B(−1,r(ω))⊂B(0,ω).

Therefore, we conclude the result from Theorem 4.1.

5. Existence of invariant measure
Now, we are ready to prove the existence of invariant measure of the system (1.9)-

(1.14).

Let U0 = (v0,T0)∈V , U(t,ω;U0)
def
= (v(t,ω;t0,v0),T (t,ω;t0,T0)) is the solution to

(3.2)-(3.7) with the initial value U0. Following the standard argument, we can show
that U(t,ω;U0),t∈ [t0,T ] is a Markov process in the sense that, for every bounded,
B(V )-measurable F :V →R, and all s,t∈ [t0,T ], t0≤s≤ t≤T ,

E(F (U(t,ω;U0))|Fs)(ω) =E(F (U(t,s,U(s)))) for P̃−a.e. ω∈Ω,

where Fs=Ft0,s (see (3.1)), U(t,s,U(s)) is the solution to (1.9)-(1.14) at time t with
initial data U(s).

For B∈B(V ), define

P̃t(U0,B) = P̃((U(t,ω;U0)∈B).

For any probability measure ν defined on B(V ), denote the distribution at time t
of the solution to (1.9)-(1.14) with initial distribution ν by

(νP̃t)(·) =

∫
V

P̃t(x, ·)ν(dx).

For t≥ t0 and any continuous and bounded function f ∈Cb(V ;R), we have

P̃tf(U0) =E[f(U(t,ω;U0)] =

∫
V

f(x)P̃t(U0,dx).
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Definition 5.1. Let ρ be a probability measure on B(V ). ρ is called an invariant
measure for P̃t, if ∫

V

f(x)ρ(dx) =

∫
V

P̃tf(x)ρ(dx)

for all f ∈Cb(V ;R) and t≥0.

Let µ· be a transition probability from Ω̃ to V , i.e., µ· is a Borel probability measure
on V and ω→µ·(B) is measurable for every Borel set B⊂V. Denote by PΩ̃(V ) the set

of transition probabilities with µ· and ν· identified if P̃{ω :µω 6=νω}= 0.
In view of Proposition 4.5 in [4], the existence of random attractor obtained in

Theorem 4.2 implies the existence of invariant Markov measure µ·∈PΩ̃(V ) for S such

that µω(A(ω)) = 1, P̃-a.e.. Therefore, referring to [2], there exists an invariant measure
for the Markov semigroup P̃t and it is given by

ρ(B) =

∫
Ω̃

µω(B)P̃(dω),

where B⊆V is a Borel set. If the invariant measure ρ for P̃ is unique, the invariant
Markov measure µ· for S is unique and given by

µω = lim
t→∞

S(0,−t,ω)ρ.

Based on the above, we arrive at

Theorem 5.1. The Markov semigroup (P̃t)t≥0 induced by the solution (U(t,ω;U0))t≥0

to (1.9)-(1.14) has an invariant measure ρ with ρ(A(ω)) = 1 P̃−a.e..
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