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SOME MATHEMATICAL PROPERTIES OF
THE WEERTMAN EQUATION∗
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Abstract. We derive here some mathematical properties of the Weertman equation and show
that it is the limit of an evolution equation. The Weertman equation is a semilinear integrodifferential
equation involving a fractional Laplacian. In addition to this purely theoretical interest, the results
proven here give a solid ground to a numerical approach that we have implemented elsewhere.
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1. Introduction

1.1. Motivation. We derive here some mathematical properties of the Weert-
man equation and show that it is the limit of an evolution equation. Our motivation
comes from our interest in materials science. The problem we consider, however clas-
sical, enjoys the following specificity that it involves the dissipative integrodifferential
operator −|∂x| (also denoted as −(−∆)1/2), which has −|k| as Fourier symbol. In ad-
dition to this purely theoretical interest, the results proven here give a solid ground to
a numerical approach that we have implemented in [13].

Our starting point is the so-called Weertman equation (see [18]):

−|∂x|η(x)+cη′(x) =F ′(η(x)) for x∈R, (1.1)

with boundary conditions

lim
x→−∞

η(x) =ηl and lim
x→+∞

η(x) =ηr, (1.2)

where both the scalar c∈R (called velocity) and the function η∈C2(R) are the un-
knowns, and where ηl<ηr. The function F ∈C3(R) is a bistable potential; namely, it
satisfies

F ′(ηl) =F ′(ηr) = 0, F ′′(ηl)>0, and F ′′(ηr)>0. (1.3)

From a physical point of view, equation (1.1) can be seen as a nondimensionalized
form of the Weertman equation for steadily-moving dislocations in materials science
(see [18]). The latter equation is a generalization of the classical Peierls-Nabarro equa-
tion [16], which is (1.1) with the assumption that the speed c vanishes (in the case of
a balanced potential, which satisfies F (ηl) =F (ηr)). Dislocations are linear defects in
crystals, the motion of which is responsible for the plasticity of metals. From a physical
standpoint, the function η represents a discontinuity between the local relative material
displacement u(x,y) in the upper and in the lower half-spaces surrounding the glide
plane on which moves the dislocation line (see figure 1.1); see, e.g., [11] for a classical
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reference on dislocations. In (1.1), the term |∂x|η accounts for the long-range elastic
self-interactions that tend to spread the core. This repulsive interaction is counterbal-
anced by the nonlinear pull-back force F ′(η), which binds together the upper and lower
half-spaces. Moreover, the moving dislocation is subjected to various drag mechanisms
encoded into the term cη′.

η(x) = u(x, 0+)− u(x, 0−)

x

ηr

ηl

core width

x

y

u(x, 0+)

u(x, 0−)
ηr − ηl

Fig. 1.1. Typical shape of η(x), solution to (1.1); here, u(x,y) is the material displacement.

From a broader perspective, the function η can be understood as a moving phase-
transformation front between the states ηl and ηr (see Figure 1.1), which are local
minimizers of the potential F . In this regard, equation (1.1) can also be found in other
fields of physics. For example, it can be used to model complex media such as living
cells, in which the operator |∂x| accounts for an anomalous diffusion. See, e.g., [15],
where the more general operator |∂x|α is considered (the latter operator has |k|α as
Fourier symbol).

1.2. Traveling wave of reaction-diffusion equation. Equation (1.1) is a
special case of the general equation{

A[η](x)+cη′(x) = 0 for x∈R,
η(−∞) =ηl and η(+∞) =ηr,

(1.4)

where A[η] =Lη−F ′(η) is a nonlinear operator, in which L is a diffusive operator and F
is a bistable potential. As is easily seen, equation (1.4) describes the traveling waves of
the following reaction-diffusion equation:{

∂tu(t,x) =A[u(t,·)](x) for x∈R,
u(0,x) =u0(x) for x∈R, (1.5)

in the sense that, if u(t,x) =η(x−ct) is a traveling wave satisfying (1.5), then (η,c)
solves (1.4). Ipso facto, finding a solution to (1.4) amounts to finding traveling wave
solutions to (1.5). Natural questions thus arise:

(i) Does equation (1.4) have one and only one solution (η,c)?

(ii) Which properties does the solution to equation (1.4) enjoy?

(iii) Is the traveling wave η(x−ct), for (η,c) solution to (1.4), an attractor of the
dynamical system (1.5)?

These questions have been addressed by many authors for various operators L and for
bistable potential F satisfying (most of the times) the extra condition that F does
not admit any local minimum between ηl and ηr. Other types of nonlinearities, not
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considered here, have attracted much attention. See [20] for the classification of traveling
waves and an overview of reaction-diffusion equations.

In the seminal article [19], Sattinger remarked that if (η,c) is a solution to (1.4),
then (η(·+ξ),c) is also a solution to (1.4), for arbitrary ξ∈R. Therefore, solutions
to (1.4) can at most be unique up to a translation. In this regard, he introduced the no-
tion of asymptotic stability of traveling waves and proved that the solution (η,c) to (1.4),
if it exists, is asymptotically stable under general assumptions about the spectrum of A.

In the celebrated article [9], Fife and McLeod answered the questions (i) and (iii)
for the case where L is the Laplacian. They proved indeed that if F satisfies (1.3) and
has no local minimum between ηl and ηr, then there exists a solution (η,c) to (1.4),
which is unique up to a translation, and that this solution is globally asymptotically
stable. Namely, for all initial conditions u0 taking values in [ηl,ηr] such that u0(−∞) =ηl
and u0(+∞) =ηr, there exist ξ∈R, K>0 and κ>0 such that the solution u of (1.5)
satisfies

‖u(t, ·)−η(·−ξ−ct)‖L∞(R)≤Ke−κt, (1.6)

for all t∈R+. Among other important concepts, all amenable to a wide class of dis-
sipative operators, it is observed in [9] that A satisfies a comparison principle. Thus,
any solution u(t,x) of (1.5) can be squeezed between a super-solution w+1(t,x) and a
sub-solution w−1(t,x), both at a controlled distance from η(x−ξ−ct).

In a more recent article [7], Chen combined this squeezing approach with an it-
erative technique. Under technical assumptions about the operator A, he proved the
global asymptotic stability of the traveling waves of (1.5), provided that there exists
a monotonic solution η to (1.4). In this context, a positive answer to question (i) and
technical assumptions imply, using Chen’s squeezing technique, a positive answer to
question (iii). We use Chen’s approach in the present article.

The article [7] also provides tools for establishing the existence and the uniqueness
of a solution to (1.4). They have been used in [8] to positively answer question (i) in the
case where L is the fractional Laplacian −|∂x|α, for α∈ (0,2). Also, in [1], the authors
have adapted Chen’s squeezing technique to prove that the solution (η,c) to (1.4) is
globally asymptotically stable in the sense of (1.6), in a general framework including
the case L=−|∂x|α, for α∈ (1,2). However, they underlined the fact that the case α≤1
(and in particular α= 1), is still an open question. This motivates our study.

With an approach different from [7], the existence and the uniqueness of a solution
to (1.4), for L=−|∂x|α and α∈ (0,2), has been proved in [4, 5] in the special case
where c= 0 (the so-called balanced case). These results have been generalized by [10].
Assuming that F ∈C3(R) satisfies (1.3) and the following extra conditions:{

F (u)>F (ηl), ∀u∈ (ηl,ηr),

F ′(u)>0 or F (u)>F (ηr), ∀u∈ (ηl,ηr),
(1.7)

it is shown in [10, Th. 1.1] that there exist a unique c∈R and an increasing function η∈
C2(R), which is unique up to a translation, that solve (1.1). Conditions (1.3) and (1.7)
mean that the potential F (u) has two major wells in u=ηl and u=ηr (the states ηl
and ηr are therefore stable), and that its behavior is controlled between these wells; for
example, the potential can have minor wells (see figure 1.2). The proof of [10] relies
on special solutions to (1.4) built in [4,5], which, by homotopy techniques, are used to
find the solutions to the general case. The result of [10] will be our starting point for
proving the global asymptotic stability of the traveling waves of (1.5) for L=−|∂x|.
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Additionally, the authors of [4, 5, 10] have also studied some properties of the so-
lutions to (1.4). In particular, when L=−|∂x|, they have shown that η′>0 and that
there exist constants B>A>0 such that, for all |x|≥1,

A|x|−2≤η′(x)≤B|x|−2. (1.8)

See [5, Th. 2.7] for the special case where c= 0 and [10, Prop. 3.2] for the general case.
Moreover, the following identity is proved (see [10, Prop. 4.1]):

c= [F (ηr)−F (ηl)]

(ˆ
R
|η′|2

)−1
. (1.9)

Formula (1.9) is useful because it provides the sign of c just by considering the values
F (ηl) and F (ηr). As remarked in [4], if c= 0, then (1.1) can be interpreted as the

F (η)

η

•
ηl

•ηr

Fig. 1.2. A double-well “camel-hump” potential F , ηl =−1, ηr = 1.

restriction to the boundary of an elliptic problem with Neumann boundary condition.
If indeed u solves the following problem:{

∆u(x,y)+c∂xu(x,y) = 0 in R×R+,

∂yu(x,0) =F ′(u(x,0)) on R×{0}, (1.10)

for c= 0, then η(x) :=u(x,0) is a solution to (1.1). However, we stress that, when c 6= 0,
equation (1.10) describes a diffusive traveling wave in the half-space. In this case, (1.1)
is not the restriction to the boundary of the problem (1.10), which instead reads

(−∆−c∂x)
1/2

η(x) =−F ′(η(x)). (1.11)

We refer to [3] for a mathematical study of (1.11).
But, we mention for completeness that (1.1) is in fact the restriction to the boundary

of the following elliptic equation{
∆u(x,y) = 0 in R×R+,

∂yu(x,0)+c∂xu(x,0) =F ′(u(x,0)) on R×{0}. (1.12)

In a physical context, the latter is envisioned as an elastic equation in the half-plane
with a nonlinear boundary condition. We briefly justify it. If indeed we take the Fourier
transform with respect to x, denoted as Fx, of the first equation of (1.12), and if we
restrict on bounded solutions, we obtain

Fx{u(·,y)}(k) = e−|k|yFx{u(·,0)}(k).

Injecting the above information in the second equation of (1.12) then yields (1.1) if we
denote η(x) =u(x,0) (recall that |∂x| is an operator which has |k| as Fourier symbol).
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1.3. Main results. Our first result concerns the asymptotic expansion of the
solution η to (1.1). The following proposition is a refinement of results of [4, 5, 10]:

Proposition 1.1. Let ηl<ηr and F ∈C3(R) satisfy (1.3). Assume that (η,c) is a
solution to (1.1) and (1.2) such that η∈C2(R) is an increasing function satisfying η′>0
and (1.8). Then η has the following asymptotes:

η(x)−ηr ∼
x→+∞

ηl−ηr
πF ′′(ηr)

x−1, and η(x)−ηl ∼
x→−∞

ηl−ηr
πF ′′(ηl)

x−1. (1.13)

In addition to their theoretical interest, these asymptotes also allow for getting more
accurate numerical approximations of η, as shown in [13].

Our second result is:

Proposition 1.2. Under the hypotheses of Proposition 1.1, (c,η) satisfies the follow-
ing identity:

c=
1

ηr−ηl
lim

R→+∞

ˆ R

−R
F ′(η). (1.14)

The above identity is formally obtained by integrating Equation (1.1) over R; we
rigorously prove it. Notice that, by Proposition 1.1 and using a Taylor expansion,
F ′(η) /∈L1(R).

As mentioned above in the concise form (1.5), we consider the following dynamical
system: {

∂tu(t,x)+ |∂x|u(t,x) =−F ′(u(t,x)) for x∈R,
u(0,x) =u0(x) for x∈R, (1.15)

for an initial condition u0∈L∞(R). We say that u∈L∞loc (R+,L
∞(R)) is a weak solution

to (1.15) if, for all T >0, for all φ∈C1
c ([0,T ),C∞c (R)), there holds

ˆ T

0

ˆ
R
u(t,x)(−∂t+ |∂x|)φ(t,x)dxdt

=

ˆ
R
u0(x)φ(0,x)dx−

ˆ T

0

ˆ
R
F ′(u(t,x))φ(t,x)dxdt. (1.16)

Our third and final result is that (1.1) is the long-time limit of (1.15), for general initial
conditions u0 with suitable behavior at infinity (see figure 1.3 for an example). We
prove the following:

Theorem 1.1. Let ηl<ηr, F ∈C3(R) satisfy (1.3) and ∆0>0 be such that

F ′′>0 on [ηl−∆0,ηl +∆0]∪ [ηr−∆0,ηr +∆0]. (1.17)

Assume that u0∈L∞(R) takes values in [ηl−∆0,ηr +∆0] and satisfies

limsup
x→−∞

u0(x)<ηl +∆0 and liminf
x→+∞

u0(x)>ηr−∆0. (1.18)

Then:

(i) Equation (1.15) has a unique weak solution u∈L∞loc (R+,L
∞(R)). Moreover, for

all T0>0,

u∈C
(
(T0,+∞),C2(R)

)
∩C1 ((T0,+∞),C(R)). (1.19)
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(ii) In addition, for all t>0 and x∈R, u(t,x)∈ [ηl−∆0,ηr +∆0].

(iii) Assume that (η,c) is a solution to (1.1) and (1.2) such that η∈C2(R) is an
increasing function satisfying η′>0 and

lim
|x|→+∞

η′(x) = 0. (1.20)

Then, there exist constants κ>0, K>0 and ξ such that

‖u(t, ·)−η(·−ct+ξ)‖L∞(R)≤Ke−κt, (1.21)

for all t∈R+. In the above estimate, κ only depends on F , η and ∆0, whereas K
and ξ depend also on u0.

Theorem 1.1 suggests that simulating (1.15) is sufficient to obtain, in the long time,
a numerical approximation of the solution (η,c) to (1.1). In this regard, it is significant
that c, which is an unknown of (1.1), does not appear in (1.15). This in particular allows
for constructing an approximation of the traveling wave velocity, which is unknown
before the end of the simulation. We refer the reader to our study [13], where we
explain the details of the numerical strategy, and to a forthcoming article [17] for the
multi-dimensional case. In this regard, we shall stress that Theorem 1.1 stated above
unfortunately only holds in the case where η is scalar-valued, because its proof relies on
a comparison principle. However, it empirically appears that such a convergence is also
achieved in many cases where η is vector-valued.

2∆0

2∆0

ηl+

ηr+

x

u0(x)

Fig. 1.3. A possible initial condition u0 in Theorem 1.1.

1.4. Outline. Our contribution is organized as follows. In Section 2, we in-
troduce notations and give essential properties of the operator |∂x|. In Section 3, we
prove Propositions 1.1 and 1.2. In Section 4, we justify the existence and the unique-
ness of a weak solution to equation (1.15), which satisfies (1.19), thus establishing (i) of
Theorem 1.1. In Section 5, we use Chen’s approach for proving (ii) and (iii) of Theo-
rem 1.1. The key ingredients are a comparison principle and specific sub-solutions and
super-solutions. Although we could check the technical assumptions and apply Chen’s
theorem, we prefer to restrict Chen’s proof to our special case for self-consistency and
simplicity.

2. Notations and definitions

2.1. Notations. We denote by C∞c (R) the space of smooth functions with
compact supports in R and by D′ the space of distributions over R. For u∈C∞c (R), we
denote the Fourier transform by F {u}(k) :=

´
R e−ikxu(x)dx. For two functions u and v,

we denote by ∗ the convolution. Henceforth, the Fourier transform and the convolution
are only taken with respect to the space variable x (and never with respect to the time
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variable t). We make use of the principal value of 1
x , denoted by p.v.

(
1
x

)
, which is the

distribution defined by〈
p.v.

(
1

x

)
,u

〉
= lim
ε→0+

{ˆ +∞

ε

u(y)

y
dy+

ˆ −ε
−∞

u(y)

y
dy

}
,

for u∈C∞c (R).

2.2. Definition and properties of the operator |∂x|. For convenience,
we recall some elementary properties of the operator |∂x|. The Hilbert transform H
of u∈L2(R) is defined by

H{u} :=F−1{−i sign(k)F {u}(k)} . (2.1)

It is immediate that, if u∈L2(R), then H2{u}=−u. Next, the operator |∂x| is defined
as

|∂x|u(x) :=H{u′}(x) =F−1{|k|F {u}(k)}(x), (2.2)

for u∈C∞c (R). As F {p.v.(1/x)}(k) =−iπsign(k), the operator |∂x| can be rewritten as

|∂x|u(x) =− 1

π

ˆ +∞

0

u′(x+y)−u′(x−y)

y
dy (2.3)

=− 1

π

ˆ +∞

0

u(x+y)−2u(x)+u(x−y)

y2
dy, (2.4)

the last expression being obtained from the previous one by integrating by parts. We
see from (2.2) that the operator |∂x| is symmetric and positive, like the Laplacian. But,
unlike the Laplacian, it is clear from (2.4) that |∂x|u(x) does not only depend on u
in the neighborhood of x but also on each value u(y), for y∈R; put differently, |∂x| is
non-local.

A straightforward computation yields that |∂x|φ∈L1(R) whenever φ∈C∞c (R).
Hence, one can extend |∂x| over L∞(R) by duality, defining |∂x|u as the following
distribution:

|∂x|u :φ∈C∞c (R) 7→
ˆ
R
u(y) |∂x|φ(y)dy. (2.5)

When u is sufficiently regular, explicit expressions for |∂x|u are available. Namely, if
u∈L∞(R)∩C2(R), then expression (2.4) is valid. In particular, |∂x|u∈C(R)∩L∞(R).
The proof can be done by density of C∞c (R) in C2

loc(R), using the fact that (2.4) is true
for smooth functions. If we assume furthermore that u′∈L1(R), then expression (2.3)
is also valid; this is deduced from (2.4) by integration by parts.

3. Asymptotes and an identity about velocity
The proof of Proposition 1.1 relies on the asymptotic behavior of Cauchy integrals

(see [14, p. 267]) and involves the following technical lemma:

Lemma 3.1. Under the hypotheses of Proposition 1.1, there holds

η′′∈L∞(R). (3.1)

Remark 3.1. Note that it is also possible to establish by technical arguments that
there exists a constant C>0 such that, for all |x|>1,

|η′′(x)|≤C|x|−2 (1+ln(|x|)). (3.2)
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(We refer the reader to [12] for the proof of (3.2)). However, (3.1) is sufficient to prove
Proposition 1.1. Yet, if F is sinusoidal, one can derive analytical solutions η to (1.1),
as is shown in [18], which are of the form

η(x) =ηl +
ηr−ηl
π

(π
2

+arctan(ax)
)
,

for a>0. Whence

η′′(x) =−ηr−ηl
π

2a3x

(a2x2 +1)
2 ∼
x→+∞

−2(ηr−ηl)
πax3

.

Thus (3.2) is probably not optimal.

We postpone the proof of Lemma 3.1 until the end of the proof of Proposition 1.1
and temporarily admit Lemma 3.1.

Proof. (Proof of Proposition 1.1.) We focus on the case x→+∞. Provided
that

x |∂x|η(x) −→
x→+∞

1

π

ˆ +∞

−∞
η′(y)dy=

1

π
(ηr−ηl) , (3.3)

then, using (1.1), (1.2), (1.3) and (1.8), we get, by Taylor expansion

F ′′(ηr)(η(x)−ηr) ∼
x→+∞

− 1

π
x−1 (ηr−ηl),

which is (1.13).
Let us now prove (3.3). By assumption, η′∈C1(R), and by (1.8), we have η′∈L1(R).

As a consequence, there holds

x |∂x|η(x) =
x

π
lim
ε→0+

(ˆ x−ε

−∞
+

ˆ +∞

x+ε

)
η′(y)

x−ydy.

Let R>0 and x>2R. We split the integral into three parts

πx|∂x|η(x) =

ˆ R

−∞

η′(y)

1−y/xdy+x

(ˆ x−R

R

+

ˆ +∞

x+R

)
η′(y)

x−ydy

+x lim
ε→0+

(ˆ x−ε

x−R
+

ˆ x+R

x+ε

)
η′(y)

x−ydy. (3.4)

The first right-hand term in (3.4) is dealt with using the dominated convergence theo-
rem, the second one avoids the singularity of |x−y|−1 and is bounded thanks to (1.8),
and the third one is on the singularity of |x−y|−1 and is controlled thanks to (3.1) and
(1.8).

As η′∈L1(R) and since (recall that x>2R)∣∣∣∣ η′(y)

1−y/x

∣∣∣∣≤2|η′(y)| if y<R, and
η′(y)

1−y/x −→x→+∞
η′(y),

then, by the dominated convergence theorem

ˆ R

−∞

η′(y)

1−y/xdy −→
x→+∞

ˆ R

−∞
η′(y)dy. (3.5)
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Next, we split the second integral of (3.4) into three parts. Invoking (1.8), we deduce
that, as |x|>2R,∣∣∣∣∣

(ˆ x−R

R

+

ˆ +∞

x+R

)
η′(y)

x−ydy

∣∣∣∣∣
≤Cx−1

ˆ x/2

R

|η′(y)|dy+CR−1
(ˆ x−R

x/2

+

ˆ +∞

x+R

)
|η′(y)|dy

≤Cx−1
ˆ x/2

R

dy

y2
+CR−1

(ˆ x−R

x/2

+

ˆ +∞

x+R

)
dy

y2

≤CR−1x−1. (3.6)

Last, we split the last integral of (3.4) into two parts, namely:∣∣∣∣∣
(ˆ x−ε

x−R
+

ˆ x+R

x+ε

)
η′(y)

x−ydy

∣∣∣∣∣=
∣∣∣∣∣
(ˆ x−2

ε

+

ˆ R

x−2

)
η′(x−z)−η′(x+z)

z
dz

∣∣∣∣∣ .
The first part of the right-hand side of the above equation is dealt with by using (3.1),
and the second one by using (1.8). Whence, as x>2R and for x−2≥ ε,∣∣∣∣∣

(ˆ x−ε

x−R
+

ˆ x+R

x+ε

)
η′(y)

x−ydy

∣∣∣∣∣≤Cx−2
ˆ R

x−2

z−1dz+C

ˆ x−2

ε

dz

≤Cx−2
(
ln(Rx2)+1

)
.

Therefore ∣∣∣∣∣x lim
ε→0+

(ˆ x−ε

x−R
+

ˆ x+R

x+ε

)
η′(y)

x−ydy

∣∣∣∣∣≤Cx−1(ln(Rx2)+1
)
. (3.7)

Convergence (3.5) and estimates (3.6) and (3.7) finally yield

limsup
x→+∞

∣∣∣∣πx|∂x|η(x)−
ˆ +∞

−∞
η′(y)dy

∣∣∣∣≤ ∣∣∣∣ˆ +∞

R

η′(y)dy

∣∣∣∣+CR−1,

which, thanks to (1.8), implies (3.3) upon letting R→+∞.

We then proceed with the:

Proof. (Proof of Lemma 3.1.) We first remark that if g∈L2(R) and if

−|∂x|h(x)+ch′(x) =g(x), (3.8)

then h′∈L2(R). Indeed, the Fourier transform turns (3.8) into

(−|k|+cik)F{h}(k) =F{g}(k).

Therefore, kF{h}(k)∈L2(R), whence h′∈L2(R). We use this result to prove that η′′∈
L∞(R).

Upon differentiating (1.1), we obtain

−|∂x|η′(x)+cη′′(x) =F ′′(η(x))η′(x). (3.9)
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As η∈L∞(R), F ∈C3(R) and η′∈L2(R) (thanks to (1.8)), then the right-hand side
of (3.9) is in L2(R). Therefore η′′∈L2(R). Differentiating (3.9) yields

−|∂x|η′′(x)+cη′′′(x) =F ′′(η(x))η′′(x)+F ′′′(η(x))(η′(x))
2
. (3.10)

As η∈L∞(R), F ∈C3(R), η′′∈L2(R), and, thanks to (1.8), (η′)2∈L2(R), then the right-
hand side of (3.10) is in L2(R). Therefore η′′′∈L2(R). As a consequence, since η′′∈
L2(R), we deduce by Sobolev injection that η′′∈L∞(R), whence (3.1).

We now focus on Proposition 1.2. Both the Identities (1.9) and (1.14) are formally
obtained by testing (1.1) against a certain function g, namely g=η′ for (1.9), and g= 1
for (1.14). We justify below this formal integration.

Proof. (Proof of Proposition 1.2.) Let R>2. We integrate (1.1) over [−R,R]:

−
ˆ R

−R
|∂x|η(x)dx+c(η(R)−η(−R)) =

ˆ R

−R
F ′(η(x))dx. (3.11)

Thus, Identity (1.14) stems from (3.11), provided that

lim
R→+∞

ˆ R

−R
|∂x|η(x)dx= 0. (3.12)

We prove (3.12) using (1.8) and (3.1). As η′∈L1(R)∩C1(R), there holds

|∂x|η(x) =
1

π

ˆ +∞

0

η′(x−y)−η′(x+y)

y
dy

=
1

π

ˆ
|y|<R

(η′(x−y)−η′(x))

y
dy+

1

π

ˆ
|y|>R

η′(x−y)

y
dy. (3.13)

Remark that
ˆ
|y|>R

∣∣∣∣η′(x−y)

y

∣∣∣∣dy≤2R−1‖η′‖L1(R) ,

and that, using (3.1),

ˆ
|y|<R

∣∣∣∣ (η′(x−y)−η′(x))

y

∣∣∣∣dy≤2R‖η′′‖L∞(R)≤CR.

Therefore, integrating (3.13) thanks to Fubini’s theorem, yields

ˆ R

−R
|∂x|η(x)dx=

1

π

ˆ
|y|<R

(η(R−y)−η(R))−(η(−R−y)−η(−R))

y
dy

+
1

π

ˆ
|y|>R

η(R−y)−η(−R−y)

y
dy

= :T1 +T2. (3.14)

First, we bound T1. If |y|<R/2, thanks to (1.8), we obtain

|η(R−y)−η(R)|≤C|y|R−2 and |η(−R−y)−η(−R)|≤C|y|R−2.
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As a consequence,
ˆ
|y|<R/2

∣∣∣∣ (η(R−y)−η(R))−(η(−R−y)−η(−R))

y

∣∣∣∣dy≤CR−1. (3.15)

Note that, as underlined in [10], a consequence of (1.8) is that{
A|x|−1≤ηr−η(x)≤B|x|−1, if x>1,

A|x|−1≤η(x)−ηl≤B|x|−1, if x<−1.
(3.16)

Therefore, if |y|<R

|η(R−y)−η(R)|≤ C

R−|y|+1
and |η(−R−y)−η(−R)|≤ C

R−|y|+1
.

Whence ˆ
R/2<|y|<R

∣∣∣∣ (η(R−y)−η(R))−(η(−R−y)−η(−R))

y

∣∣∣∣dy
≤C
R

ˆ R

R/2

dy

R+1−y ≤CR
−1 ln(R). (3.17)

We deduce from (3.15) and (3.17) that

|T1(R)|≤CR−1(1+ln(R)). (3.18)

Thanks to (1.8) and since η∈L∞(R), if |y|>R, we have

|η(R−y)−η(−R−y)|≤Cmin
{
R(|y|−R)

−2
,1
}
.

Whence, splitting T2 into two parts,

|T2(R)|≤C
(ˆ R+

√
R

R

dy

y
+

ˆ +∞

R+
√
R

R

y(y−R)2
dy

)

≤C
√
R

R
+C

ˆ +∞

√
R

dz

z2
≤CR−1/2. (3.19)

Bearing (3.14) in mind, we observe that (3.18) and (3.19) imply (3.12).

4. Existence, uniqueness and regularity of the solution to the evolution
Equation (1.15)

We now justify the existence, the uniqueness and the regularity of a weak solution u
to (1.15). We proceed in the classical way; as the methods as well as the type of results
are well-known, we only give a few hints of the proofs. We refer the interested reader
to [12] for some technical details and extra materials about the proofs, and to [6] for a
reference on evolution equations involving m-dissipative operators.

Using the Fourier transform, the solution to the homogeneous linear equation

∂tu(t,x)+ |∂x|u(t,x) = 0 for x∈R, and u(0,x) =u0(x) (4.1)

is given by u(t,x) ={Kt ∗u0}(x), where the kernel Kt is defined by

Kt(x) =
t

π(t2 +x2)
if t>0 and K0 = δ0, (4.2)



1740 SOME MATHEMATICAL PROPERTIES OF THE WEERTMAN EQUATION

the Fourier transform of which is e−|k|t. Before getting to the inhomogeneous linear
equation, we underline some interesting properties of the kernel Kt. First, for all t≥0,
Kt is a probability measure. Moreover, for all t>0, Kt is a smooth function. In
particular, the space derivative of Kt satisfies∥∥∥∥ d

dx
Kt

∥∥∥∥
L1(R)

≤Ct−1, (4.3)

where C is a universal constant. In all these aspects, Kt is similar to the Gaussian

kernel Kt(x) = e−
x2

2t2 /(t
√

2π).
The semi-group generated by Kt allows for solving the inhomogeneous equation{

∂tu(t,x)+ |∂x|u(t,x) =g(t,x) for x∈R,
u(0,x) =u0(x) for x∈R. (4.4)

Indeed, let T >0, u0∈L∞(R) and g∈L∞([0,T ]×R). Then there exists a unique weak
solution u∈L∞([0,T ]×R) to (4.4) in the sense that, for all φ∈C1

c ([0,T ),C∞c (R)), the
following identity holds:

ˆ T

0

ˆ
R
u(t,x)(−∂t+ |∂x|)φ(t,x)dxdt−

ˆ
R
u0(x)φ(0,x)dx

=

ˆ T

0

ˆ
R
g(t,x)φ(t,x)dxdt. (4.5)

This solution can be written, thanks to the Duhamel formula, as

u(t,x) =Kt ∗u0(x)+

{ˆ t

0

Kt−s ∗g(s,·)ds
}

(x), (4.6)

with the convention that K0 ∗u0 =u0, even if u0 is not regular. The existence of a
solution u to (4.4) is a consequence of the fact that (4.6) is well-defined; its uniqueness
is shown using the adjoint problem of (4.4).

We now turn to the semi-linear equation (1.15). Let F ∈W2,∞(R) and u0∈L∞(R).
Then there exists a unique weak solution u∈L∞loc (R+,L

∞(R)) to (1.15). Moreover, u
can be expressed as

u(t,x) ={Kt ∗u0}(x)−
{ˆ t

0

Kt−s ∗F ′(u(s,·))ds
}

(x). (4.7)

The proof is done by a classical fixed-point argument on (4.7) (see for example [6, Sec.
4.3 p. 56]).

Finally, we justify that the evolution equation (1.15) has a regularizing effect; in
other words, the weak solution to (1.15) becomes instantly a classical solution. Assume
indeed that F ∈C3(R)∩W3,∞(R) and u0∈L∞(R), and let u∈L∞loc (R+,L

∞(R)) be the
weak solution to (1.15). Then, for all T0>0, we have (1.19). Therefore, for all t>0,
there holds

∂tu(t,x)+ |∂x|u(t,x) =−F ′(u(t,x)), (4.8)

in the strong sense. Finally

u∈C([0,+∞[ ,weak-∗-L∞(R)). (4.9)
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The proof of (1.19) relies on an iterative argument based on (4.7), using the fact that, for
all t>0, Kt is a smooth probability measure that satisfies (4.3). Last, a straightforward
adaptation of the proof of [2, Ex. 4.24 p. 126] yields (4.9).

Note that, similarly to [1, Th. 2.9.], t 7→u(t, ·) may not be continuous at 0 in L∞(R).
If indeed u0 is discontinuous, then u(t,·) cannot tend to u0 in L∞(R) when t→0 because,
invoking (1.19), u(t,·) is a continuous function for all t>0.

5. Convergence of the evolution Equation (1.15) to the Weertman Equa-
tion (1.1)

In this section, we prove (ii) and (iii) of Theorem 1.1. The proof can be summarized
in two steps: first, we show that (1.15) satisfies a comparison principle, then we use
Chen’s method of squeezing, establishing respectively (ii) and (iii) of Theorem 1.1.
For the sake of self-consistency, simplicity and conciseness (Chen’s theory being quite
general), we prefer to restrict the whole proof of [7, Th. 3.1] to our specific case rather
than to check that the hypotheses of Chen’s theory are satisfied (precisely Hypotheses
(A1), (A2), (A3), (B1), (B2) and (B3) of [7], which are indeed satisfied in our case).

We henceforth assume that F ∈C3(R)∩W3,∞(R) satisfies (1.3) and (1.17). We
introduce the non-linear operator A[u] :=−|∂x|u−F ′(u), of which, we now discuss some
immediate properties. By the results of Section 4, A generates a semi-group on the
Banach space L∞(R). A is translation invariant; namely, for all h∈R, and for any
function u(x), there holds

A[u(h+ ·)](x) =A[u](x+h), ∀x∈R. (5.1)

Moreover, A maps constant functions to constant functions; namely

A[α ·1] =−F ′(α) ·1,

for all α∈R, where 1 above denotes the function identically equal to 1.
The operator A satisfies the following comparison principle:

Proposition 5.1. Let F ∈W2,∞(R). Let u and u∈L∞loc (R+,L
∞(R)) be such that{

∂tu(t,x)−A[u(t,·)](x) =g(t,x)≤0,

∂tu(t,x)−A[u(t,·)](x) =g(t,x)≥0,
(5.2)

where g and g∈L∞loc (R+,L
∞(R)), and u(0,·)≤u(0,·) with u(0,·) 6=u(0, ·) on a non-

negligible set. Then, for almost every t>0, x∈R, there holds

u(t,x)<u(t,x). (5.3)

Remark 5.1. Proposition 5.1 has an immediate corollary: Assume that u0∈L∞(R)
takes values in [ηl−∆0,ηr +∆0] and let u∈L∞loc (R+,L

∞(R)) be the unique solution
to (1.15) with the initial condition u0. By (1.3), u :=x 7→ηr +∆0 and u :x 7→ηl−∆0 are
respectively super-solutions and sub-solutions to (1.15). Therefore, Proposition 5.1 im-
plies that u(t,x)∈ [ηl−∆0,ηr +∆0], for almost every t∈R+ and x∈R, thus establishing
(ii) of Theorem 1.1.

Proposition 5.1 is shown thanks to the Duhamel’s Formula (4.6) and Grönwall’s
Lemma.

Proof. Let M>‖F ′′‖L∞(R). We set

v(t,x) := eMt (u(t,x)−u(t,x)), (5.4)
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and prove that v≥0. In view of (5.2), we have

∂tv(t,x)+ |∂x|v(t,x) =Mv(t,x)−eMt (F ′(u(t,x))−F ′(u(t,x))+g(t,x) ,

where g(t,x) :=eMt
(
g(t,x)−g(t,x)

)
≥0. Since the right-hand side of the latter equation

is in L∞loc (R+,L
∞(R)), then, using (4.6), one can express v(t,x) as

v(t,x) ={Kt ∗v(0, ·)}(x)+

{ˆ t

0

Kt−s ∗
[
Mv(s,·)

−eMs (F ′(u(s,·))−F ′(u(s,·))+g(s,·))
]
ds

}
(x). (5.5)

We introduce v−(t) :=−ess inf {min(0,v(t,x)),x∈R}. By Taylor expansion, for almost
every (s,y)∈ [0,t]×R, there holds

Mv(s,y)−eMs (F ′(u)−F ′(u))(s,y)≥Mv(s,y)−‖F ′′‖L∞(R)eMs |u(s,y)−u(s,y)|
≥Mv(s,y)−M |v(s,y)|
≥−2Mv−(s). (5.6)

Therefore, using (5.5), since Kt, g and v(0, ·) are nonnegative, and since Kt is a proba-
bility measure for all t≥0, we obtain, for almost every t∈R+ and x∈R,

−v(t,x))≤2M

ˆ t

0

v−(s)ds,

whence

v−(t)≤2M

ˆ t

0

v−(s)ds. (5.7)

Since u, u∈L∞loc (R+,L
∞(R)), then, v−∈L∞loc (R+). Hence, by Grönwall’s Lemma, we de-

duce from (5.7) that v−(t) = 0, for almost every t>0. Injecting this information in (5.6),
and next in (5.5), yields v(t,x)≥{Kt ∗v(0, ·)}(x). As a consequence, as Kt is positive
if t>0 and as v(0,·) =u(0, ·)−u(0, ·) is nonnegative and positive on a non-negligible set,
we deduce that v(t,x)>0, for almost every t>0 and x∈R. This implies (5.3).

Then, we establish a stronger version of the comparison principle, the proof of which
mimicks that of Proposition 5.1:

Corollary 5.1. Under the assumptions of Proposition 5.1, there exists a positive
decreasing function ρ such that, for all R>1,

ess infx∈[−R,R] (u(1,x)−u(1,x))≥ρ(R)

ˆ 1

0

(u(0,y)−u(0,y))dy. (5.8)

Proof. Introducing v defined by (5.4), and using (5.5) and (5.6), we obtain

v(t,x)≥{Kt ∗v(0,·)}(x),

since v is nonnegative. By definition of Kt and of v, it implies (5.8).
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The proof of (iii) of Theorem 1.1 follows [7, Th. 3.1], the proof of which we restrict
here to our particular case. By the previous steps, we already know that there exists
a unique weak solution u(t,x) to (1.15) (see Remark 5.1), and we aim at establish-
ing (1.21).

Namely, we build special sub-solutions and super-solutions to (1.15) that are based
on the existing solution to (1.1) (see Lemma 5.1 below). Then, we prove that both
the vertical and the horizontal distances between these solutions are controlled (respec-
tively 2δj and 2lj on figure 5, see also Lemma 5.2 below). Using the fact that (1.15)
is an autonomous system, we use the established control to iteratively build successive
sub-solutions wj−1 and super-solutions wj+1 surrounding the actual solution u(tj ,x) to
(1.15). At each step j, the distance between these sub-solutions and super-solutions
is lowered. Thus, the solution u is squeezed between these sub-solutions and super-
solutions. As a consequence, when t goes to infinity, the solution u(t,·) tends, up to a
translation, to the solution to (1.1). Because of the iterative nature of the squeezing,
this convergence is achieved with exponential speed.

2δj

2lj

+

+

wj
+1(tj , ·)

wj
−1(tj , ·)

u(tj , ·)

2δj+1

2lj+1

+

+

wj+1
+1 (tj+1, ·)

wj+1
−1 (tj+1, ·)

u(tj+1, ·)

Fig. 5.1. Squeezing of u(t,x) solution to (1.5).

Lemma 5.1 (Lemma 2.2 of [7]). Under the hypotheses of Theorem 1.1, let ∆1<∆0.
Then, there exist positive constants σ and β such that, for all δ∈ (0,∆1) and l∈R, the
functions w−1(t,x) and w+1(t,x) defined by

wi(t,x) =η (ζi(t,x))+ iδe−βt for i∈{−1,+1}, (5.9)

where

ζi(t,x) =x−ct+ il+ iσδ
[
1−e−βt

]
for i∈{−1,+1}, (5.10)

are respectively a sub-solution and a super-solution to (1.15).

Proof. As A is invariant by translation, the variable l in the definition of ζ plays
no role. Hence, we take l= 0 in the proof below. We also impose for the moment σ≤1.

A straightforward computation yields

(∂t+ |∂x|)wi(t,x) =
(
iσβδe−βt/2−c

)
η′ (ζi(t,x))− iδβe−βt+ |∂x|η (ζi(t,x)),
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and, as η satisfies (1.1),

(∂t+ |∂x|)wi(t,x) = iσβδe−βtη′ (ζi(t,x))− iβδe−βt−F ′ (η (ζi(t,x))).

Thus

(∂t−A)wi(t,x) =iβδe−βt [ση′ (ζi(t,x))−1]+F ′ (wi(t,x))−F ′ (η (ζi (t,x))).

By Taylor-Lagrange expansion, there exists a convex combination θi(t,x) of η (ζi(t,x))
and wi(t,x) such that

(∂t−A)wi(t,x) =iδe−βt
[
βση′ (ζi(t,x))−β+F ′′

(
θi(t,x)

)]
. (5.11)

Recall that ∆0>∆1. Then, by (1.2), there exists R0>0 such that{
|η(y)−ηl|< (∆0−∆1)/2 if y<−R0,

|η(y)−ηr|< (∆0−∆1)/2 if y>R0.

Therefore, as σδ<∆1, we also have{
|wi(t,x)−ηl|≤ (∆0 +∆1)/2<∆0 if ζi(t,x)<−R0,

|wi(t,x)−ηr|≤ (∆0 +∆1)/2<∆0 if ζi(t,x)>R0.

Let

β := inf
{
F ′′(v), |v−ηr|≤∆0 or |v−ηl|≤∆0

}
(5.12)

Thus, if |ζi(t,x)|>R0, by definition of β and of θi(t,x), F ′′
(
θi(t,x)

)
−β≥0. Moreover,

η′>0. Therefore

βση′ (ζi(t,x))+F ′′
(
θi(t,x)

)
−β≥0. (5.13)

Now, we set

σ := min

{
β−1

(
inf
|y|<R0

η′(y)

)−1(
‖F ′′‖L∞(R) +β

)
,1

}
. (5.14)

Therefore, if |ζi(t,x)|≤R0, we also have (5.13). As a conclusion, in any case, (5.11)
and (5.13) yield

i(∂t−A)wi(t,x)≥0,

which implies that w+1 and w−1 are respectively a super-solution and a sub-solution
to (1.15).

Using Lemma 5.1, it is eventually possible to squeeze a solution u(t,x) of (1.15)
between a sub-solution and a super-solution. The following Lemma explains how this
squeezing is tightened:

Lemma 5.2 (Lemma 3.3 of [7]). Under the hypotheses of Theorem 1.1, let ∆1<∆0.
Assume that there exist ξ∈R, δ∈ (0,∆1) and l∈ [0,L] for fixed L such that, for all x∈R,

η(x− l)−δ≤u(0,x)≤η(x+ l)+δ. (5.15)
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Then, taking β and σ as in Lemma 5.1, there exist a positive constant ε∗ depending only
on η, F ′, and L, and parameters ξ̃, δ̃, l̃ satisfying∣∣∣ξ̃∣∣∣≤ l, δ̃= δ+ε∗min(1,l)eβ , and 0≤ l̃≤ l+σδ− σε∗min(1,l)

2
,

such that, for all t≥1 and x∈R,

η(x− ξ̃− l̃−ct)− δ̃e−βt≤u(t,x)≤η(x− ξ̃+ l̃−ct)+ δ̃e−βt. (5.16)

Proof. Thanks to Lemma 5.1, the functions w+1 and w−1 defined by (5.9),
for ζi defined by (5.10), are respectively a super-solution and a sub-solution to (1.15).
Using (5.15), it follows from Proposition 5.1 that, for all t≥0 and x∈R,

w−1(t,x)≤u(t,x)≤w+1(t,x). (5.17)

Let l̂ := min(1,l) and ε1 := infx∈[−1,2]η′(x). Since η is increasing, a Taylor expansion
yields

ˆ 1

0

(η(x+ l)−η(x− l))dx≥
ˆ 1

0

(
η
(
x+ l̂

)
−η
(
x− l̂

))
dx≥2ε1 l̂.

Therefore, at least one of the following estimates is true

ˆ 1

0

(u(0,x)−η(x− l))dx≥ ε1 l̂ or

ˆ 1

0

(η(x+ l)−u(0,x))dx≥ ε1 l̂.

Hereafter, we only consider the first case, as the second one is similar. First, using (1.20),
there exists R1 such that

2ση′(x)≤1 if |x|>R1 (5.18)

Let R2 :=R1 +L+ |c|+1+σ∆0. On the one hand, invoking Proposition 5.1, we com-
pare u and w−1 on [−R2,R2]

inf
x∈[−R2,R2]

{
u(1,x)−η (ζ−1(1,x))+δe−β

}
≥ρ(R2)

ˆ 1

0

[u(0,y)−η(y− l)+δ]dy

≥ρ(R2)ε1 l̂. (5.19)

We define

ε∗ := min

(
∆1

(
1−e−β

)
,

1

2σ
,
ρ(R2)ε1

2σ
‖η′‖−1L∞(R)

)
. (5.20)

As a consequence, if |x|<R2, (5.19) yields

u(1,x)−η
(
ζ−1(1,x)+2ε∗σl̂

)
+δe−β≥ρ(R2)ε1 l̂−2ε∗σl̂‖η′‖L∞(R)≥0. (5.21)

On the other hand, if |x|>R2, then |ζ−1(1,x)|≥R1 +1 whence, by definition of ε∗,∣∣∣ζ−1(1,x)+2ε∗σl̂
∣∣∣≥R1. Inequality (5.17) and Definition (5.18) then imply that

u(1,x)−η
(
ζ−1(1,x)+2ε∗σl̂

)
+δe−β≥u(1,x)−w−1(1,x)−ε∗ l̂ ≥−ε∗ l̂. (5.22)
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Therefore, from (5.21) and from (5.22), it appears that, for all x∈R, there holds

u(1,x)≥η
(
ζ−1(1,x)+2ε∗σl̂

)
−
(
ε∗ l̂+δe−β

)
.

We set

δ̃ :=
(
δe−β+ε∗ l̂

)
eβ ,

which, thanks to (5.20), satisfies δ̃e−β≤∆1. Applying once more Lemma 5.1 yields, for
all t≥1,

u(t,x)≥η
(
ζ−1(1,x)−c(t−1)+2ε∗σl̂−σδ̃e−β

[
1−e−β(t−1)

])
− δ̃e−βt. (5.23)

By definition of δ̃ and ζ−1, the argument of η in the above estimate is

x−ct− l−σδ
[
1−e−β

]
+2ε∗σl̂−σδ̃e−β

[
1−e−β(t−1)

]
≥x−ct−

[
l+σδ−σε∗ l̂

]
. (5.24)

Defining now

ξ̃ :=−σε∗ l̂
2
, and l̃ := l+σδ− σε∗ l̂

2
,

and bearing in mind that η is increasing, we deduce from (5.23) and (5.24) that

u(t,x)≥η
(
x−ct− ξ̃− l̃

)
− δ̃e−βt. (5.25)

Moreover, recalling (5.17), we have

u(t,x)≤η (x−ct+ l+σδ)+δe−βt≤η
(
x−ct+ l̃− ξ̃

)
+ δ̃e−βt. (5.26)

As a consequence, we obtain the desired result (5.16) from (5.25) and (5.26).

We are now in a position to finish the proof of Theorem 1.1. The proof is done
while iterating Lemma 5.2, which gradually tightens the squeezing around u(t,x).

Proof. (Proof of (iii) of Theorem 1.1 – restriction of the proof of Theorem
3.1 of [7].) We proceed in four steps, lowering iteratively in time the values δ and l
such that, for all x∈R, there holds

η (x−ct−ξ− l)−δ≤u(t,x)≤η (x−ct−ξ+ l)+δ. (5.27)

Step 1. By assumption (1.18) and since η is increasing from ηl to ηr, there
exist ∆1<∆0, and L>1 sufficiently large such that (5.27) holds with

t= t1 := 0, δ= δ1 := ∆1, ξ= ξ1 := 0, and l= l1 :=L−σ∆0.
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Step 2. We define

δ∗ := min(∆1,ε∗/4) and κ∗ :=σε∗/2−σδ∗≥σε∗/4>0. (5.28)

Also, we set t∗≥2 such that

e−βt∗ (1+ε∗/δ∗)eβ≤1−κ∗. (5.29)

Using Lemma 5.1, we deduce from the previous step that there exists t2 sufficiently high
such that (5.27) holds with t= t2, δ= δ2 = δ∗ and for a certain ξ∈R and l= l2≤L (as ε∗
implicitly depends on L, we further ensure that lj≤L, for all j).

If l2≤1, one directly goes to Step 3. Otherwise, as long as lj>1, one applies
Lemma 5.2 at time tj = t2 +(j−2)t∗ (recall that (1.15) is an autonomous evolution
equation), δj = δ∗ and get, by (5.28) and (5.29), that (5.27) holds for t= tj+1 with l≤
lj−κ∗ and δ≤ (1−κ∗)δ∗. Therefore, one can take δj+1 := δ∗, lj+1 := lj−κ∗ and iterate
until lj<1.

Step 3. By Step 2, we have an index j0 such that (5.27) holds for t= tj0 ,
δ= δj0 = δ∗, ξj0 ∈R and l= lj0 = 1. Using Lemma 5.2 and Definitions (5.28) and (5.29),
a straightforward computation inductively shows that, for all j≥0, Inequalities (5.27)
hold for t= tj+j0 , δ= δj+j0 , and l= lj+j0 being defined by

tj+j0 := tj0 +jt∗, δj0+j := (1−κ∗)jδ∗ and lj+j0 := (1−κ∗)j , (5.30)

and for ξ= ξj such that |ξj0+j+1−ξj0+j |≤ (1−κ∗)j .
Step 4. We have shown that (5.27) holds for (t,δ,l) = (tj ,δj ,lj), for all j≥

0. For t>0, we associate j implicitly defined by t∈ [tj ,tj+1). Thus, we deduce from
Lemma 5.1 that (5.27) also holds for t, δ= δj , ξ= ξj , and l= lj+σδj . Taking Step 3
into account yields, for all j >j0,

δ≤ δ∗(1−κ∗)j−j0 and l≤ (1+σδ∗)(1−κ∗)j−j0 .

Moreover, ξj converges to ξ∞ and, for all j >j0,

|ξj−ξ∞|≤κ−1∗ (1−κ∗)j−j0 .

Yet, a simple calculation shows

(1−κ∗)j−j0 = (1−κ∗)−j0−tj0/t∗ exp(t ln(1−κ∗)/t∗).

Setting κ :=−ln(1−κ∗)/t∗>0 and

K :=
[
δ∗+

(
1+σδ∗+κ−1∗

)
‖η′‖L∞(R)

]
(1−κ∗)−j0−tj0/t∗ ,

we obtain, for all t≥ tj0 , t∈ [tj ,tj+1),

sup
x∈R
|η(x−ct−ξ∞)−u(t,x)|≤δj+(|lj |+ |ξj−ξ∞|)‖η′‖L∞(R)≤Ke−κt.

This concludes the proof of Theorem 1.1.
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[4] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I, Ann. Inst. H. Poincaré
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