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CONVERGENCE ANALYSIS OF ADAPTIVE
BIASING POTENTIAL METHODS FOR DIFFUSION PROCESSES∗

MICHEL BENAÏM† AND CHARLES-EDOUARD BRÉHIER‡

Abstract. This article is concerned with the mathematical analysis of a family of adaptive im-
portance sampling algorithms applied to diffusion processes. These methods, referred to as Adaptive
Biasing Potential methods, are designed to efficiently sample the invariant distribution of the diffusion
process, thanks to the approximation of the associated free energy function (relative to a reaction coor-
dinate). The bias which is introduced in the dynamics is computed adaptively; it depends on the past
of the trajectory of the process through some time-averages.

We give a detailed and general construction of such methods. We prove the consistency of the
approach (almost sure convergence of well-chosen weighted empirical probability distribution). We
justify the efficiency thanks to several qualitative and quantitative additional arguments. To prove
these results, we revisit and extend tools from stochastic approximation applied to self-interacting
diffusions, in an original context.
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1. Introduction
In many applications in physics, biology, chemistry, etc. there is a huge interest

in the two following problems. First, in sampling probability distributions (denoted by
µ), i.e. in constructing families of independent random variables with distribution µ.
Second, in computing averages

∫
ϕdµ of real-valued functions ϕ. These questions lead

to challenging computational issues, when the support of µ has large (possibly infinite)
dimension – for instance, when µ is the equilibrium distribution of a large system of
particles, which is the typical situation in the field of molecular dynamics. The scientific
literature contains many examples, as well as many approaches to construct efficient
approximation procedures. We do not intend to provide an extensive review, but some
relevant examples, which are connected to the methodology studied in this article, will
be provided.

Many methods are based on stochastic simulation, also called MCMC methods.
The idea is to run an ergodic Markov process having µ as invariant distribution, and
to use empirical averages as estimators. A standard example (but there are others) of
such a process is given by the overdamped Langevin dynamics on Rd,

dxt=−∇V (xt)dt+
√

2β−1dWt,

whose invariant measure (under appropriate growth and regularity assumptions on the
function V ) is the Boltzmann-Gibbs probability distribution

µ(dx) =µ?(dx) =
e−βV (x)

Z(β)
dx.

One of the main limitations of standard MCMC approaches comes from the fact
that the ergodic dynamics are metastable whenever µ is multimodal. In the example
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above, this happens when V has several local minima. A direct simulation is not able
to efficiently and accurately sample the rare transitions between the metastable states,
hence the need for advanced Monte-Carlo methods.

Many strategies have been proposed, analyzed and applied, to overcome this issue.
The associated variance reduction approaches may be divided into two main families.
On the one hand, importance sampling strategies are based on changing the reference
probability measure. The realization of the rare events is enhanced by appropriate
reweighting of µ. In our context, such strategies require to simulate modified processes,
which are constructed by biasing the dynamics. On the other hand, splitting strategies
use interacting replicas, with mutation and selection procedures, without modifying the
process dynamics.

The methods studied in this article are an example of adaptive biasing methods.
They are based on the importance sampling strategy and the use of the so-called free
energy function (which will be introduced below). When going into the details of the
schemes and of the applications, there are many different versions; they all aim at flat-
tening the free energy landscape, and to make free energy barriers disappear. We refer
to the monograph [36] for an extensive review of such methods, and to [37, Section 4]
for a survey on mathematical techniques. To name a few of the versions, we mention the
following examples of adaptive biasing methods: the adaptive biasing force [15, 18, 27];
the Wang-Landau algorithm [40, 41]; metadynamics [1, 32]; the self-healing umbrella
sampling method [39]. For related mathematical results, see for instance [14,29,33,35]
(adaptive biasing force); [23, 24] (Wang-Landau), [25] (self-healing umbrella sampling).
This list is not exhaustive. We also refer to the recent survey paper [20] (and to refer-
ences therein) for discussions and a comparison of these methods.

Our aim in this article is to give a mathematical analysis of a family of methods,
independently of a comparison with the other methods mentioned above: the Adaptive
Biasing Potential methods, related to [19]. In such methods, one constructs adaptive
approximation of a potential energy function, instead of a mean force (see [34] for a
discussion), hence the name. One of the key aspects of this work is that the dynamics
is biased using quantities computed as time-averages over a single realization of the
dynamics.

Let us mention the type of mathematical properties such algorithms are required to
satisfy (exactly or in an approximate sense) for the estimation of averages

∫
ϕdµ. On

the one hand, the consistency is the long-time convergence to this quantity, in a strong
(almost sure or Lp) sense, or in a weak sense (convergence of the expected value). On
the other hand, the efficiency is generally studied in terms of the asymptotic mean-
square error. It may also be considered from the point of view of the long-time behavior
of occupation measures of the process.

A preliminary analysis of the Adaptive Biasing Potential methods considered in this
article, has been performed in [3], in a simplified framework, without proofs. The aim of
the present article is to provide the missing arguments, in a more abstract framework,
and to study substantial generalizations. Below we first present the methods in the
simplified framework from [3], see Section 1.1: the strategy and the results are exposed.
We then present the general framework of the article, and the associated results, in
Sections 1.2 and 1.3.

1.1. Adaptive Biasing Potential method in a simplified framework. This
section is pedagogical: the ideas are introduced independently of the abstract notation
which will allow us to consider many examples of diffusion processes. We are interested

in sampling probability distributions on the flat d-dimensional torus Td=
(
R/Z

)d
, of
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the following form:

µ(dx) =µ?(dx) =
exp
(
−βV (x)

)
Z(β)

dx,

where V :Td→R is a smooth potential energy function, and β∈ (0,∞) is referred to
as the inverse temperature. Finally, dx is the Lebesgue measure on Td, and Z(β) =∫
Td e
−βV (x)dx is the normalization constant.

A natural choice of associated ergodic process is given by the overdamped Langevin
dynamics (or Brownian dynamics)

dX0
t =−∇V (X0

t )dt+
√

2β−1dWt, X0
0 =x0, (1.1)

where
(
Wt

)
t≥0

is a standard Wiener process on Td.

By ergodicity, the empirical distribution µ0
t = 1

t

∫ t
0
δX0

r
dr converges (in distribution),

almost surely, towards µ?, when time t goes to infinity. As already mentioned, the
convergence may be slow when V has several local minima.

To accelerate convergence to equilibrium, other stochastic processes need to be
used. In this article, the dynamics is modified with an adaptive change of the potential
energy function: the function V is replaced with a time-dependent function Vt – hence
the terminology Adaptive Biasing Potential (ABP) method,

dXt=−∇Vt(Xt)dt+
√

2β−1dWt.

Compared with other methods mentioned above, one of the specificities of the method
considered in this article is the structure of the time-dependent potential energy function
Vt. It is constructed as Vt=V −At ◦ξ, where ξ : (x1,. ..,xd)∈Td 7→ (x1,. ..,xm)∈Tm,
with m∈{1,. ..,d−1}, is an auxiliary function, referred to as the reaction coordinate,
and At :Tm→R is an approximation (in the regime t→∞) of the so-called free energy
function. In applications, the dimension m is chosen much smaller than d, and typically
m∈{1,2,3}. It thus remains to explain how the function At is constructed adaptively.
This is done in terms of the values

(
Xr

)
0≤r<t of the process X up to time t.

Precisely, the dynamics of the ABP method, in the simplified framework considered
in the current section (for the generalized version, see Equation (3.2)), is given by the
following system:

dXt=−∇
(
V −At ◦ξ

)
(Xt)dt+

√
2β−1dW (t)

µt=
µ0+

∫ t
0

exp
(
−βAr◦ξ(Xr)

)
δXrdr

1+
∫ t
0

exp
(
−βAr◦ξ(Xr)

)
dr

exp
(
−βAt(z)

)
=
∫
TdK

(
z,ξ(x)

)
µt(dx), ∀z∈Tm,

(1.2)

where a smooth kernel function K :Tm×Tm→ (0,+∞), such that
∫
TmK(z,ζ)dz=

1,∀ζ ∈Tm, is introduced. The diffusion equation (first line of (1.2)) depends on the
gradient ∇At of the real-valued function At, whereas the probability distribution µt on
Td does not have a density (second line of (1.2)), hence the need for a smooth kernel.

For a practical implementation of the method, an additional time discretization of
the continous-time dynamics is required. However, in this article, we do not discuss this
question, and we only perform the analysis at the continuous-time level.



84 CONVERGENCE ANALYSIS OF ABP METHODS FOR DIFFUSION PROCESSES

The expression in the third line in (1.2) is motivated by the definition of the free
energy function:

exp
(
−βA?(z)

)
=

∫
Td−m

exp
(
−βV (z,xm+1,. ..,xd)

)
Z(β)

dxm+1 .. .dxd. (1.3)

To simplify notation, we omit the dependence of A? with respect to the parameter β.
The unknows in (1.2) are the stochastic processes t 7→Xt∈Td, t 7→µt∈P(Td) (the

set of Borel probability distributions on Td, endowed with the usual topology of weak
convergence of probability distributions), and t 7→At∈C∞(Tm) (the set of infinitely dif-
ferentiable functions on Tm). Initial conditions Xt=0 =x0 and µt=0 =µ0 are prescribed.

An important observation is that the third equation in (1.2) introduces a coupling
between the evolutions of the diffusion process Xt and of the probability distribution
µt. Thus the system defines a type of self-interacting diffusion process. However, a
comparison with [4] and subsequent articles [5, 6] and [7], reveals a different form of
coupling. One of the aims of this article is to study the new arguments which are
required for the study of the system (1.2).

The most important quantity in (1.2) is the random, time-dependent, probability
distribution µt. Observe that its construction requires two successive operations to be

performed. First, a weighted occupation measure µt=µ0 +
∫ t

0
exp
(
−βAr ◦ξ(Xr)

)
δXrdr

is computed. Second, this measure is normalized to define a probability distribution,
µt= µt∫

x∈Td µt(dx)
. The weights exp

(
−βAr ◦ξ(Xr)

)
in the definition of µt are chosen so

as to obtain the following consistency result for the estimation of µ?.

Theorem 1.1. Almost surely, µt converges to µ?, in P(Td).
Moreover, define the function A∞, such that exp

(
−βA∞(·)

)
=
∫
K(·,ξ(x))µ?(dx).

Then, almost surely, At converges to A∞, in Ck(Tm), ∀ k∈N.

The strategy of proof of this result is described in our previous work [3]. The present
article, provides the technical details in a more general context.

Let us explain the role that the weights play in this result. On the one hand, they
are fundamental for the consistency of the method. This observation is not surprising,
indeed it is a standard feature of importance sampling approaches. Indeed, Theorem 1.1
is easily seen to be valid for non-adaptive versions of (1.2) (see (2.2) and the convergence
result (2.7)), where a bias is initially given and not modified (At=A for all t≥0 in the
definitions of Xt and µt in (1.2)). On the other hand, the convergence of At to A∞
comes from the way the evolutions of Xt and µt are coupled, in the third equation
of (1.2). The convergence of At to A∞ reveals the efficiency of the method: indeed,
A∞ is an approximation of the free energy function A?, defined by (1.3). Note that, by
construction, exp

(
−βA?(z)

)
dz is a probability distribution on Tm, which is the image of

µ? by the reaction coordinate ξ. As will be explained below (see Section 2.4), biasing the
dynamics (in a non-adaptive way) using the function A? (which is not known in practice)
is a natural choice. The adaptive method can thus naturally be seen as a stochastic
approximation algorithm, with a parameter being learnt on-the-fly, see e.g. [2,8,21,31].

1.2. General framework. The observations made in Section 1.1, concerning
the system (1.2) and the consistency result, Theorem 1.1, can be generalized as follows.

First, contrary to (1.1), the state space of the dynamics may not be compact. It
may also be of infinite dimension.

The most important generalization concerns the type of diffusion processes which
are considered: our general framework also encompasses the following examples (this
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list is not exhaustive): (hypoelliptic) Langevin dynamics with position and momenta
variables, extended dynamics – where an auxiliary variable is associated with the map-
ping ξ, see [38]) – and Stochastic Partial Differential Equations (SPDEs) – which are
infinite dimensional diffusion processes. It may also be possible to study diffusions on
smooth manifolds, however to simplify the presentation this situation is not treated.

Abstract notation and analysis allow us to treat simultaneously these examples in
a general framework. However note that the SPDE example is studied separately, in
Section 7 to simplify the exposition.

The reaction coordinate ξ can be an arbitrary, smooth function, with values in a
m-dimensional compact manifold. The associated free energy is then defined in terms
of a Radon-Nikodym derivative of the image of the invariant distribution µ? by ξ, with
respect to a reference measure.

Note that the general framework and the associated abstract notation are con-
structed to emphasize the most important assumptions, made on the models and on
the algorithm, which are required for the well-posedness and the consistency of the
approach.

1.3. Organization of the paper. In Section 2, the abstract framework is in-
troduced, with emphasis on the following objects: the diffusion process dynamics (Sec-
tion 2.1), the main examples (Section 2.2), the invariant probability distribution µ
(Section 2.3), and the free energy function (Section 2.4).

The construction of generalized versions of the Adaptive Biasing Potential method,
given by (1.2), is provided in Section 3. In particular, well-posedness results and im-
portant estimates are stated precisely there.

Section 4 contains the main results of this article, in finite dimensional cases, con-
cerning the long-time behavior of the method. On the one hand, the consistency of the
approach, i.e. the almost sure convergence (in distribution) of µt to µ, is given in Theo-
rem 4.1 and Corollary 4.1. On the other hand, the efficiency is analyzed first in terms of
the convergence of the approximation At of the free energy function, Corollary 4.2, and
of occupation measures, Corollary 4.3; second, in terms of the asymptotic mean-square
error, Proposition 4.1.

Section 5 is devoted to the proof of the consistency. We first describe (see Sec-
tion 5.1) how to eliminate the weights in the definition of µt, thanks to a random
change of time variable. As explained in [3], the new system may then be treated using
the ODE method from stochastic approximation (see [2,8,21,31]), thanks to an asymp-
totic time scale separation into slow (occupation measure) and fast (diffusion process)
evolutions, like in [4]. Section 5.2 then contains all the technical details for a direct
proof of the consistency result. Auxiliary properties for solutions of Poisson equations
are provided.

Section 6 is devoted to the analysis of the asymptotic mean-square error. As ex-
pected, the behavior of the variance for the adaptive system is asymptotically the same
as for a non-adaptive system where the bias is chosen as the limit A∞ of the adaptive
bias At.

Finally, in Section 7 we consider infinite dimensional diffusion processes, which are
solutions of SPDEs. This formally fits in the general framework, but a rigorous analysis
needs to be performed separately.

2. Framework

2.1. Dynamics and abstract notation. To simplify notation, without loss of
generality, from now on the parameter β is set equal to 1.
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2.1.1. Unbiased dynamics. The unbiased (or original) dynamics is a diffusion
process

(
X0
t

)
t≥0

, with values on a state space denoted by S. The process is solution

of a stochastic differential equation (SDE), when the dimension of S is finite; or of a
stochastic partial differential equation (SPDE), when the dimension of S is infinite. The
SDE or the SPDE is written in the following form

dX0
t =D(V )(X0

t )dt+
√

2ΣdWt, X0
0 =x0, (2.1)

where
(
Wt

)
t∈R+ is a standard Wiener process on S, and Σ is a linear mapping which is

specified in each example below.
In (2.1), the initial condition x0∈S is arbitrary, and is assumed to be deterministic

for simplicity. The convergence results may be extended to a random initial condition
(independent of the Wiener noise) by a standard conditioning argument. The value of
x0 plays no role in the analysis below.

The drift coefficient D(V ) in (2.1) depends on the potential energy function V :
Ed→R, defined on a set Ed, where Ed=Td (periodic, compact case) or Ed=Rd (non
compact case). Note that in general S 6=Ed. The functions V and D(V ) are assumed of
class C∞, also the results can be adapted to deal with the situation when V and D(V )
are merely of class Cn for sufficiently large n∈N. In the non compact case Ed=Rd,
growth conditions, that will be described for each example, are required.

2.1.2. Non-adaptively biased dynamics. Having introduced the unbiased
dynamics (2.1), we now describe the family of biased dynamics which we consider in this
article, first in a non-adaptive context. The drift coefficient D(V ) in (2.1) is modified,
being replaced by D(V,A), where the function A depends only on a small number of
degrees of freedom of the system. In the current section, the bias is non-adaptive: the
function A is deterministic and does not depend on time.

We now make precise how D(V,A) is defined. It depends on the mapping A◦ξ,
where

• ξ :Ed→Mm is a fixed smooth function, where Mm is a m-dimensional smooth,
compact, manifold, and m∈{1,. ..,d−1}.

• A :Mm→R is a smooth function.

The mapping ξ is called the reaction coordinate (following the terminology from
molecular dynamics applications) and the variables z= ξ(x) are often called collective
variables. The functions ξ and A◦ξ are defined on Ed, like the potential energy function
V .

Finally, an extension

ξS :S→Mm

of the reaction coordinate ξ, is also defined on the state space S, with a procedure
depending on the example of diffusion process.

In the non-compact case Ed=Rd, all the derivatives of ξ are assumed to be bounded.
As explained in the introduction, in practice one chooses m much smaller than d,

and typically for concrete applications m∈{1,2,3}.
Note that the compactness assumption on Mm is crucial in this article. In particular,

it allows us to establish some stability estimates and the well-posedness of the ABP
system. In some cases, it might be possible to remove this restriction (and consider for
instance Mm=Rm), proving appropriate estimates. We leave this non trivial technical
issue for future works. The assumption that Mm is a smooth manifold is required to
define potential energy functions V −A◦ξ with nice regularity properties.
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To simplify the discussion, from now on Mm=Tm is the flat m-dimensional torus.
However, we use the abstract notation and conditions to suggest possible straightforward
generalizations.

We are now in a position to define the biased dynamics
(
XA
t

)
t≥0

, for any given

A :Mm→R of class C∞:

dXA
t =D(V,A)(XA

t )dt+
√

2ΣdWt, XA
0 =x0. (2.2)

Consistently, we will have D(V,0) =D(V ): in the absence of bias, the biased dy-
namics (2.2) is simply the unbiased dynamics (2.1).

2.2. Examples of diffusions processes. In this section, we present the three
main examples of diffusion processes to be studied. We postpone the study of a fourth
example, given by infinite dimensional diffusion processes (SPDE), to Section 7.

From now on, except in Section 7, the state space S is finite dimensional.

2.2.1. Brownian dynamics.
• State space: S=Ed.

• Reaction coordinate: ξS = ξ.

• Drift coefficient: D(V,A) =D(V −A◦ξ) =−∇
(
V −A◦ξ

)
. Diffusion oper-

ator: Σ = I, where I denotes the identity matrix.

In the Brownian case, the dynamics (2.2) is written as

dxAt =−∇
(
V −A◦ξ

)
(xAt )dt+

√
2dWt.

In the non compact case, Ed=Rd, the potential energy function V is assumed to
satisfy the conditions below.

Assumption 2.1. When Ed=Rd, there exist αV ∈ (0,∞) and CV ∈R, such that for all
x∈Ed,

〈x,∇V (x)〉≥αV |x|2−CV .

Moreover, V is semi-convex: V =V1 +V2 where V1 is a smooth bounded function, with
bounded derivatives, and V2 is a smooth convex function.

For all k∈N,
∫
Rd |x|

ke−V (x)dx<∞.

Finally, there exists cV ∈ (0,∞), $∈N, such that for all x∈Rd,

|V (x)|≤ cV (1+ |x|$).

Assumption 2.1 is satisfied for instance for smooth potential functions V which
behave like | · |$ at infinity.

Remark 2.1. Assume Ed=Rd. The Brownian dynamics defined above is reversible,
but the framework also encompasses non-reversible situations. For instance, let J 6= 0
be a d×d skew-symmetric matrix. Then one may also define the drift coefficient as
D(V,A) =−(I+J)∇

(
V −A◦ξ

)
.

2.2.2. Langevin dynamics.
• State space: S=Ed×Rd (which is not compact). Elements of S are denoted

by (q,p).

• Reaction coordinate: ξS(q,p) = ξ(q).
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• Drift coefficient: D(V,A)(q,p) =

(
p

−∇
(
V −A◦ξ

)
(q)−γp

)
. Diffusion oper-

ator: Σ =
√
γ

(
0 0
0 I

)
, for γ∈ (0,∞) a damping parameter.

In the Langevin case, the dynamics (2.2) is written{
dqAt =pAt dt, qA0 = q0,

dpAt =−∇
(
V −A◦ξ

)
(qAt )dt−γpAt dt+

√
2γdW̃t, pA0 =p0,

where
(
W̃t

)
t≥0

is a standard Wiener process on Rd. In applications, the variable q

represents positions of particles, whereas the variable p represents their momenta.
The value of the damping parameter γ plays no role in the analysis below. We

recall that in the limit γ→∞, one recovers (up to a rescaling of the time variable) the
Brownian dynamics of Section 2.2.1, which is thus often referred to as the overdamped
Langevin dynamics. Recall also that the analysis of these two cases is different, since
the Langevin diffusion is hypoelliptic, whereas the Brownian dynamics is elliptic.

In the non-compact case, Ed=Rd, the potential energy function V is assumed to
satisfy the conditions below.

Assumption 2.2. When Ed=Rd, there exists κV ∈ (0,∞) and V−∈R such that
V (q)≥κV |q|2 +V− for all q∈Rd.

There exist AV ,BV ,κV ∈ (0,∞) and CV ∈R, such that for all q∈Rd,

〈q,∇V (q)〉≥AV V (q)+BV |q|2 +CV .

Moreover, V is semi-convex: V =V1 +V2 where V1 is a smooth bounded function,
with bounded derivatives, and V2 is a smooth convex function.

Finally, there exists cV ∈ (0,∞), $∈N, such that for all q∈Rd,

|V (q)|≤ cV (1+ |q|$).

2.2.3. Extended dynamics. This example is a modification of the Brownian
dynamics from Section 2.2.1. It is straightforward to build a similar modification of the
Langevin dynamics of Section 2.2.2, the details are left to the reader.

• State space: S=Ed×Mm. Elements of S are denoted by (x,z).

• Reaction coordinate: ξS(x,z) =z.

• Drift coefficient: D(V,A)(x,z) =

(
−∇xUA(x,z)
−∇zUA(x,z)

)
where UA(x,z) =U(x,z)−

A(z), U(x,z) =V (x)+ 1
2εVext

(
ξ(x),z

)
is the extended potential energy function.

It depends on a smooth function Vext :Mm×Mm→R, and on ε∈ (0,∞). Dif-
fusion operator: Σ is the identity.

In the case Mm=Tm considered here, one may choose Vext

(
ξ(x),z

)
=
(
ξ(x)−z

)2
.

Then, in the (Brownian) extended case, the dynamics (2.2) is written as{
dXA

t =−∇V (XA
t )dt− 1

ε 〈∇ξ(X
A
t ),ξ(XA

t )−ZAt 〉dt+
√

2dW x
t , XA

0 =x0,

dZAt =− 1
ε

(
ZAt −ξ(XA

t )
)
dt+∇A(ZAt )dt+

√
2dW z

t , ZA0 =z0,

for some arbitrary initial condition z0∈Mm, and where
(
W x
t

)
t≥0

and
(
W z
t

)
t≥0

are

independent standard Wiener processes, on Ed and on Mm respectively. The dynamics
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is thus obtained by considering the Brownian dynamics on Ed×Mm, with potential
energy function U .

As a consequence, one could directly write the extended dynamics in the frame-
work of Section 2.2.1. Our choice emphasizes the role of the extended dynamics as an
algorithmic tool, which is available for the practitioners.

We will explain below why the extended dynamics is relevant, in the limit ε→0, for
the problem of sampling the initial distribution, and thus why it may be sufficient to
deal with the extended dynamics case. Then, since ξS(x,z) =z in this example, it would
not be restrictive to consider reaction coordinates of the form ξ(x1,. ..,xd) = (x1,. ..,xm).

In the non compact case, Ed=Rd, it is assumed that V satisfies Assumption 2.1 (or
Assumption 2.2 if one starts from the Langevin dynamics). Then the extended potential
energy function U also satisfies a similar condition (recall that Mm is compact) on the
extended state space Ed×Mm.

2.3. Invariant probability distributions of the diffusion processes. In
all the examples presented above in Section 2.2, the diffusion processes,

(
X0
t

)
t≥0

and(
XA
t

)
t≥0

, given by (2.1) and (2.2), are ergodic. The associated unique invariant dis-

tributions, defined on S (equipped with the Borel σ-field), are denoted by µ0
? and µA? .

Since the notation is consistent when A= 0, we only deal with µA? , with arbitrary A, in
the remainder of this section.

The ergodicity in our context is understood in the following sense:

• there exists a unique invariant probability distribution for the Markov process
XA defined by (2.2), which is equal to µA? ;

• for any initial condition x0∈S, almost surely,

1

t

∫ t

0

δXAτ dτ =⇒
t→∞

µA? ,

where the notation =⇒ stands for the convergence of probability distributions
on S. Recall that, if

(
µn
)
n∈N and µ are probability distributions on S, then

µn =⇒
n→∞

µ

if µn(ϕ) →
n→∞

µ(ϕ) for every bounded continuous function ϕ :S→R.

The invariant distribution µA? is expressed explicitly in terms of the following data:

• a reference Borel, σ-finite, measure λ on S, which does not depend on V and
A;

• a total energy function E(V,A) :S→R.

The expression of µA? is then given by:

µA? (dx) =
exp
(
−E(V,A)(x)

)
ZA

λ(dx), (2.3)

where ZA=
∫
S exp

(
−E(V,A)(x)

)
λ(dx) is a normalizing constant.

Computing averages µA? (ϕ) =
∫
Sϕdµ

A
? , for instance with A= 0, is typically a chal-

lenging computational task. This may be due to the large dimension of the state space,
or to the multimodality of the measure. Importance sampling techniques, as considered
in this article, consist in proposing choices of functions A such that it is cheaper to
sample µA? than µ?.
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Let us make precise the reference measure λ and the mapping (V,A) 7→E(V,A)
for the diffusion processes of Section 2.2. First, the total energy function satisfies the
identity

E(V,A) =E(V,0)−A◦ξS . (2.4)

It thus remains to specify the mapping E(V ) =E(V,0) and the measure λ for each
example.

• Brownian dynamics. The reference measure λ is the Lebesgue measure on S.
The total energy function is E(V ) =V .

• Langevin dynamics. The reference measure λ is the Lebesgue measure on S.
The total energy function is the Hamiltonian function, E(V )(q,p) =H(q,p) =

V (q)+ |p|
2

2 . The total energy is thus the sum of potential and kinetic energies.

• Extended dynamics. The reference measure λ is the Lebesgue measure on S=

Ed×Mm. The total energy function is E(V )(x,z) =U(x,z) =V (x)+ 1
2ε

(
ξ(x)−

z
)2

.

The ergodicity of the dynamics (2.1), resp. (2.2), with unique invariant probabil-
ity distribution µ0

?, resp. µA? , is well-known. We refer to Appendix 8.1. In addition
(see Proposition 8.1), the convergence is exponentially fast, with a rate which can be
controlled, uniformly with respect to A, thanks to the following auxiliary result.

Proposition 2.1. Let m,M,M (1),M (2),. ..∈R denote real numbers, and

A⊂
{
A∈C∞(Mm,R) ; minA≥m,maxA≤M,max|∂kA|≤M (k),∀k≥1

}
,

where ∂k denotes the derivative of order k.
Then

• if V satisfies Assumption 2.1, there exists αV,A∈ (0,∞) and CV,A∈ (0,∞) such
that for every A∈A and every x∈Ed=Rd,

〈x,∇
(
V −A◦ξ

)
(x)〉≥αV,A|x|2−CV,A.

• if V satisfies Assumption 2.2, there exists AV,A,BV,A∈ (0,∞) and CV,A∈ (0,∞)
such that for every A∈A and every q∈Ed=Rd,

〈q,∇
(
V −A◦ξ

)
(q)〉≥AV,AV (q)+BV,A|q|2 +CV,A.

• For every k≥1,

sup
A∈A

∫
S
|x|kµA? (dx)<∞. (2.5)

The distribution of interest, in practice, is µ?=µ0
?. However, sampling the process

XA provides an approximation of µA? . The following expression provides a way to
compute an average µ?(ϕ) =

∫
Sϕ(x)µ?(dx) in terms of averages with respect to µA? : for

bounded and continuous functions ϕ :S→R,

µ?(ϕ) =
µA?
(
ϕexp(−A◦ξS)

)
µA?
(
exp(−A◦ξS)

) . (2.6)
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Using (2.4), averages with respect to µ? may therefore be approximated by temporal
averages along the biased dynamics (2.2): indeed, the quantity µAt defined by the left-
hand side below satisfies

µAt (ϕ) :=
1+
∫ t

0
e−A(ξS(XAr ))ϕ(XA

r )dr

1+
∫ t

0
e−A(ξS(XAr ))dr

→
t→+∞

µA?
(
ϕexp(−A◦ξS)

)
µA?
(
exp(−A◦ξS)

) =µ?(ϕ). (2.7)

This expression serves as the guideline for the construction of the Adaptive Biasing
Potential methods (1.2), and (3.2) in the general case: the empirical distributions µt
are weighted, to ensure consistency. For well chosen functions A, the convergence is
expected to be faster than when A= 0. In Section 2.4 below, we identify such a function
A, the so-called free energy function.

2.4. The Free Energy function. In this section, we introduce one of the
key quantities in our study: the free energy function A? :Mm→R. We explain why this
function is a quantity of interest for the computational problem we are interested in, and
why it is expected that choosing A=A? in the biased dynamics (2.2) leads to efficient
sampling. This property is indeed the guideline of the Adaptive Biasing Potential
approach of this article: we construct an adaptive version which is both consistent and
designed such that At converges to an approximation A∞ of A? when t→∞.

The definition of the free energy function depends on the choice of a reference
probability distribution π on Mm. In this article, since Mm=Tm, it is natural to
choose the Lebesgue measure, but abstract notation suggests other possible choices, see
Remark 2.2 below.

For every smooth A :Mm→R, let πA? denote the image by ξS :S→Mm of the prob-
ability distribution µA? on S. Recall that this means that for any bounded, continuous
function φ :Mm→R, ∫

Mm
φ(z)πA? (dz) =

∫
S
φ
(
ξS(x)

)
µA? (dx).

The following assumption is required.

Assumption 2.3. The measures π0
? and π are equivalent: π0

? (resp. π) is absolutely
continuous with respect to π (resp. π0

?).

When Assumption 2.3 holds true, then πA? is equivalent to π, for all smooth functions
A :Mm→R. Thanks to the smoothness conditions on ξ, and to growth conditions on V ,
Assumption 2.3 is satisfied in all the examples presented above, when π is the Lebesgue
measure on Mm=Tm.

Remark 2.2. Another natural choice, in the periodic case Ed=Td, for finite dimen-
sional dynamics, is as follows: π is defined as the image by ξ :Ed→Mm of the Lebesgue
measure on Ed. With this definition, π depends on ξ. In the non-compact case, for
instance one may define (for instance) π as the image by ξ of the standard Gaussian
distribution on Rd.

With these examples, Assumption 2.3 is satisfied by construction of π.

We are now in a position to define the free energy function A?.

Definition 2.1. The free energy function A? :Mm→R is defined by the following
property: exp

(
−A?(·)

)
is the Radon-Nikodym derivative of π0

? with respect to π.
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This means that for every bounded measurable function φ :Mm→R,∫
Mm

φ(z)e−A?(z)π(dz) =

∫
S
φ
(
ξS(x)

)
µ?(dx).

Observe that, thanks to Assumption 2.3, A? takes values in (−∞,∞). Moreover,
e−A?(z)π(dz) is by construction a probability distribution on Mm, thus no normalizing
constant appears on the left-hand side.

It is then straightforward to check that the Radon-Nikodym derivative of πA? with
respect to π is equal to exp

(
−A?+A

)
, thanks to the condition (2.4).

The function A? may be interpreted as an effective potential energy function, for
the unbiased dynamics, depending on the variable z= ξS(x) only. Indeed, note that for
any sufficiently smooth, bounded, function φ :Mm→R, by ergodicity of the unbiased
dynamics (2.1), with respect to µ?, almost surely

1

t

∫ t

0

φ
(
ξS(X0

r )
)
dr →

t→∞

∫
S
φ◦ξSdµ0

?=

∫
Mm

φdπ0
? =

∫
Mm

φ(z)e−A?(z)dπ(z).

Similarly, when considering the biased dynamics,

1

t

∫ t

0

φ
(
ξS(XA

r )
)
dr →

t→∞

∫
Mm

φ(z)e−A?(z)+A(z)dπ(z).

We now give an interpretation of the qualitative properties of the free energy func-
tion A?. Assume that π is the Lebesgue measure on Mm, and that A? admits several
local minima: then the distribution π0

? is multimodal, and the convergence to equilib-
rium, when using the unbiased dynamics, is slow. Indeed, the process must visit regions
near all the local minima of A?, and transitions between these metastable states are
rare events. Thus A? encodes the metastability of the dynamics along the variable
z= ξ(z)∈Mm.

On the contrary, if the biased dynamics with A=A? is used, the associated ergodic-
ity result indicates that convergence is expected to be faster – at least if the convergence
in the other variables is not slow due to metastability. Indeed, the repartition of the
values of ξS(XA

t ) tends to be uniform when t→∞; this is the flat-histogram property
which is the guideline of the strategies mentioned in Section 1.

Note also that, in many applications (for instance in molecular dynamics), com-
puting free energy differences, i.e. A?(z1)−A?(z2), may be the ultimate goal of the
simulation, instead of computing averages

∫
ϕdµ?. The Adaptive Biasing Potential

methods of this article can also be seen as efficient free energy computation algorithms.
Since in general the free energy function is not known, the associated biased dynam-

ics with A=A? cannot be simulated in practice; the guideline of the adaptive version
proposed and analyzed below is to (approximately) reproduce the nice flat-histogram
property for variable z= ξ(x) in the asymptotic regime t→∞, without a priori knowing
the free energy function A?; moreover an estimation A? is also computed.

3. ABP: construction and well-posedness
In this section, the construction of the Adaptive Biasing Potential (ABP) system

is performed in the general framework of Section 2. The rigorous construction of the
process, and the statement of appropriate assumptions, is one of the contributions of
this paper. The ABP system is built starting from the unbiased dynamics (2.1), with
an adaptive bias A=At (random and depending on time t) introduced in the biased
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dynamics (2.2). The construction is a generalization of (1.2), considered in Section 1.1
in a simplified setting.

In an abstract framework, the coupling of the evolutions of the diffusion process
Xt and of the bias At requires the introduction of several auxiliary tools, with details
provided below.

• A kernel function K :Mm×Mm→ (0,∞), see Assumption 3.1. Then, a mapping
K : P(S)→C∞(Mm) is defined by

K(µ)(z) =

∫
S
K
(
z,ξS(x)

)
µ(dx). (3.1)

• A normalization operator N :C0(Mm,(0,∞))→C0(Mm,(0,∞)), on the set of
continuous functions on Mm with values in (0,∞).

• The notation F is defined by

F (z) =
F (z)∫

MmFdπ
.

The ABP system in its general formulation is written as follows:
dXt=D

(
V,At

)
(Xt)dt+

√
2ΣdWt,

µt=
µ0+

∫ t
0
Fτ (ξS(Xτ ))δXτ dτ

1+
∫ t
0
Fτ (ξS(Xτ ))dτ

,

Ft=N
(
K(µt)

)
=N

(∫
SK

(
·,ξS(x)

)
µt(dx)

)
,

At=−log
(
F t
)
,

(3.2)

where there are four unknown processes:
(
Xt

)
t≥0

(with values in S),
(
µt
)
t≥0

(with

values in P(S) the set of probability distributions on S),
(
Ft
)
t≥0

(with values in

C0(Mm,(0,∞))), and
(
At
)
t≥0

(with values in C∞(Mm)). Note that the initial con-

ditions F0 =N
(
K(µ0)

)
and A0 =−log(F 0) are prescribed by the initial condition µ0;

we also set X0 =x0.

Observe that it is not necessary to consider the four unknowns in (3.2). Indeed, as
will be explained below, Ft and F t= exp(−At) only differ by a multiplicative constant
(depending on t), which is determined only by the choice of the normalization operator
N . Moreover, it would be possible to consider only the processes

(
Xt

)
t≥0

and
(
At
)
t≥0

to define the dynamics of the ABP system; however, we wish to emphasize the role of
the probability distribution µt, this is why it is included explicitly in (3.2).

Important observations concerning the system (3.2) are in order.
The diffusion process is biased, following (2.2), and the bias At at time t is defined in

terms of the values
(
Xr

)
0≤r≤t of the diffusion process up to time t. As a consequence,

the diffusion process in (3.2) can be considered as a self-interacting diffusion on S.
However, the standard framework of self-interacting processes does not encompass the
system (3.2), and we thus need to adapt and generalize the arguments concerning well-
posedness and convergence in our setting.

The function At is constructed in order to be an approximation, in the regime t→∞,
of the free energy function A?, introduced in Section 2.4; indeed, knowing A? would
lead to an optimal non-adaptive biased dynamics. The adaptive system is designed to
approximate A? both adaptively and efficiently.

As already mentioned in the introduction (see Theorem 1.1), the central object in
the analysis is the probability distribution µt. Indeed, we will prove that it converges
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almost surely to µ?, see Theorem 4.1. Note that µt is defined as a weighted empirical
distribution, with weights Fτ

(
ξS(Xτ )

)
; this choice is motivated by (2.6) (in the non-

adaptive setting).
Below, we state assumptions on the kernel and on the normalization operator, which

play a key role first for the well-posedness of the algorithms, second for the analysis of its
asymptotic behavior. In the sequel, the assumptions on the model, stated in Section 2,
are satisfied.

3.1. Kernel. The kernel function K : (z,ζ)∈Mm×Mm 7→K(z,ζ)∈ (0,+∞) is a
continuous, positive, smooth function. In the following, this function is often referred
to as the regularization kernel, and it is assumed to satisfy the conditions below.

Assumption 3.1. The function K is positive, of class C∞ on Mm×Mm. Moreover,
for all ζ ∈Mm, the normalization condition

∫
MmK(z,ζ)π(dz) = 1 is satisfied.

Since Mm is compact, one has m(K) = minz,ζ∈MmK(z,ζ)>0, and, for
all integers r∈{0,1,. ..}, M (r)(K) = supz,ζ∈Mm |∂

r
zK(z,ζ)|<+∞. Moreover,

supz∈Mm supζ1,ζ2
K(z,ζ1)−K(z,ζ2)

d(ζ1,ζ2) <+∞ (Lipschitz continuity in the second variable,

uniformly in the first variable).
The mapping K :µ∈P(S) 7→K(µ)∈C∞(Mm), is then defined by (3.1) above. Note

that
∫
SK(µ)(z)π(dz) = 1, and that the mapping K(µ) is of class C∞, thanks to As-

sumption 3.1. Note also that (3.1) also makes sense if the probability distribution µ is
replaced with a positive, finite, measure µ.

One may consider the following example of kernel K, in the case Mm=Tm. Let
k :Rm→ (0,∞) be an even function of class C∞, with bounded derivatives, such that∫
Mm k(z)π(dz) = 1. For ε∈ (0,1), let K(z,ζ) = 1

εk
(
z−ζ
ε

)
. In the regime ε→0, such kernels

K=Kε are smooth mollifiers. If the function k is chosen with compact support, the
positivity condition on K is satisfied by choosing K(z,ζ) = α

ε k
(
z−ζ
ε

)
+1−α, with α∈

(0,1).
It may also be useful to consider kernel functions which are not homogeneous, i.e.

K(z,ζ) does not depend only on z−ζ. For instance, set K(z,ζ) =
∑N
n=1Kn(z,ζ)θn(ζ),

where N ∈N, K1,. ..,KN are kernel functions satisfying Assumption 3.1, and θ1,. ..,θN
are smooth functions Mm→ (0,∞), such that

∑N
n=1θn(ζ) = 1 for all ζ ∈Mm. Such

examples are useful to build a bias which takes into account local properties.
Note that a symmetry assumption for the kernel – K(z,ζ) =K(ζ,z) – is not required

to prove the consistency of the approach. For instance, assume that K(z,ζ) = K̃(z) does
not depend on ζ; in this case, one checks that K(µt) =K(µ0) = K̃(·) does not depend
on t, and thus At=A0: the adaptive system (3.2) reduces for this choice of kernel to
the non-adaptive biased dynamics (2.2). Based on this observation, it is clear that the
kernel K is the object which governs the coupling of the evolutions of X and A in
the adaptive dynamics (3.2), and that its choice may be crucial in practice to define
an efficient algorithm. In the sequel, we consider that a kernel function K, satisfying
Assumption 3.1, is given, and do not study quantitatively the dependence with respect
to K of the asymptotic results.

3.2. Normalization. The aim of this section is to introduce normalization oper-
ators, denoted byN :C0(Mm,(0,∞))→C0(Mm,(0,∞)) on the set of continuous functions
from Mm to (0,∞). The compactness of Mm plays a crucial role again. We provide
below several natural families of normalization operators. However, the presentation
remains abstract to emphasize the key assumptions which will lead to the stability
estimates provided below.
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We will use the following convention: f denotes an arbitrary element in
C0(Mm,(0,∞)), whereas F =N (f) (capital letter) denotes its normalized version.

The most important example, for which a specific notation is introduced, is when
normalization is meant to construct probability distributions fdπ which are equivalent
to the reference measure π on Mm:

f(z) =
f(z)∫

Mm f(ζ)π(dζ)
.

In the ABP system (3.2), exp
(
−At

)
is thus the density (with respect to π) of a proba-

bility distribution on Mm, for every t≥0.

More generally, the normalization operator N is defined by

N (f) =
f

n(f)
,

where n :C0(Mm,(0,∞))→ (0,∞) is a function which satisfies the technical (but easy to
check in practice) conditions presented below.

Assumption 3.2. The operator n :C0(Mm,(0,∞))→ (0,∞) satisfies the following
conditions.

• There exists a sequence
(
n(k)

)
k∈N, such that, for every k∈N, n(k) :

C0(Mm,(0,∞))→ (0,∞) is continuously differentiable, and for every f ∈
C0(Mm,(0,∞)),

n(k)(f) →
k→∞

n(f);

moreover the convergence is assumed to be uniform on sets of the form{
f ∈C0(Mm,(0,∞)) ; minf ≥m, maxf ≤M

}
,

for every 0<m≤M<∞.
• There exists γn∈ (0,∞) such that for all f ∈C0(Mm,(0,∞)) and k∈N∗

1

γn
minf ≤n(k)(f)≤γn maxf.

• For all f ∈C0(Mm,(0,∞)), α∈ (0,∞) and k∈N∗

n(k)(αf) =αn(k)(f).

• There exists Cn∈ (0,∞) such that for all f1,f2∈C0(Mm,(0,∞)) and k∈N∗∣∣n(k)(f1)−n(k)(f2)
∣∣≤Cn max |f1−f2|.

Only the continuous differentiability condition is relaxed when considering the limit
k→∞: n is not required to satisfy this condition. The three other conditions are
satisfied when n(k) is replaced with n.

Let us provide some important consequences of the definition of N in terms of an
operator n satisfying Assumption 3.2. First, note that N ◦N =N : the normalization
operator is a projection. Moreover, F =N (f) and f are equal up to a multiplicative
constant; more generally, for two different normalization operators N1 and N2, and
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any function f , the normalized versions F1 =N1(f) and F2 =N2(f) are equal up to a
multiplicative constant. In particular, F =N (F ), and thus in the ABP system (3.2), the
weights Fτ

(
ξS(Xτ )

)
are not necessarily equal to exp

(
−Aτ (ξS(Xτ ))

)
like in (1.2) from

the introduction; however it is important to have a fixed normalization operator, since
by the second condition in Assumption 3.2 the ratio between these quantities remains
bounded from below and from above by positive constants.

We conclude this section with additional examples of normalization operators.

• Let q∈ [1,∞), and define

nq(f) =
(∫

Mm
f(z)qπ(dz)

) 1
q .

In the case q= 1, we recover the example introduced above: N1(f) = f
n1(f) =f .

• Let z0∈Mm, then define

nz0(f) =f(z0) =

∫
Mm

f(z)δz0(dz).

• Let also

nmin(f) = min
z∈Mm

f(z), nmax(f) = max
z∈Mm

f(z).

For these examples, the relaxation of the continuous differentiability condition
in Assumption 3.2 is essential: continuously differentiable approximations are
given by

nmin(f) = lim
q→+∞

1

nq(1/f)
, nmax(f) = lim

q→+∞
nq(f).

3.3. Well-posedness. This section is devoted to the analysis of the well-
posedness of the ABP system (3.2). First, Lemma 3.1 below, is stated and proved.
Second, this result is combined with a Picard iteration scheme to establish global well-
posedness of the self-interacting diffusion process (3.2), under stronger global Lipschitz
continuity conditions for the drift coefficient. Finally, a localization argument implies
global well-posedness under the assumptions on V stated in Section 2.

Lemma 3.1. Let m=
min
(

minh0,m(K)
)

γnmax
(

maxh0,M(0)(K)
) and M (k) =

max
(

maxh0,m
(k)(K)

)
γn

max
(

minh0,m(K)
) , for

k∈{0,1,. ..}, where h0 =K(µ0), m(K), M (k)(K) are given by Assumption 3.1, and γn

is given by Assumption 3.2
Let τ 7→xτ ∈S and τ 7→Fτ ∈C0(Mm,(0,∞)) be continuous mappings, such that

n(Fτ ) = 1 for all τ ∈R+. Define

µt=µ0 +

∫ t

0

Fτ
(
ξS(xτ )

)
δxτ dτ, ht=K(µt), Ht=N

(
ht
)
.

Then, for all t∈R+, k∈N, z∈Mm,

m≤Ht(z)≤M (0), |∂kHt(z)|≤M (k).

Observe that the parameters m and M (k), for k∈{0,1,. ..} only depend on the
algorithmic objects (the kernel function K and the normalization operator n) introduced
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in Section 3. On the contrary, they do not depend on the assumptions on the model
from Section 2.

Proof. We only prove the estimates on minHt and maxHt, since the proof of the
estimates on the derivatives is similar. Note that

ht(z) =h0(z)+

∫ t

0

K
(
z,ξS(xτ )

)
Fτ
(
ξ(xτ )

)
dτ,

where h0 =K(µ0), resp. K, are positive and continuous on Mm, resp. Mm×Mm. Thus
for all t∈R+

min
z∈Mm

ht(z)≥min
(
minh0,m(K)

)(
1+

∫ t

0

Fτ
(
ξS(xτ )

)
dτ
)

max
z∈Mm

ht(z)≤max
(
maxh0,M

(0)(K)
)(

1+

∫ t

0

Fτ
(
ξS(xτ )

)
dτ
)
.

Then the claim follows since Ht= ht
n(ht)

, and using the second condition in Assump-
tion 3.2.

Define sets of functions F and A as follows:{
F =

{
F ∈C∞(Mm);minF ≥m>0,max |∂kF |≤M (k),k≥0

}
,

A=
{
A=−log(F ); F ∈F

}
.

(3.3)

Note that Lemma 3.1 may be combined with Property 2.1.

We are now in a position to state the main result of this section.

Theorem 3.1 (Well-posedness of (3.2)). Grant assumptions of Section 2 concerning
the model, and assumptions of Section 3 concerning the algorithm.

• There exists a unique continuous process t∈ [0,∞) 7→ (Xt,µt,Ft,At), with values
in S×P(S)×C0(Mm,(0,∞))2, which is solution of the ABP system (3.2).

• For all k≥1, sup
t≥0

E|Xt|k<+∞.

• For all t∈R+, Ft∈F and At∈A, almost surely, where F and A are given
by (3.3).

We provide a sketch of proof of Theorem 3.1. In the arguments presented below,
we emphasize the key role played by Lemma 3.1 combined with Property 2.1.

Proof. Let T ∈ (0,∞), and define the mapping ΨT as follows. For all (X,F )∈
L2
(
Ω,C([0,T ],S)

)
×L2

(
Ω,C([0,T ],C1(Mm,(0,∞)))

)
, set ΨT (X,F ) = (Z,H) with

Zt=x+
√

2Wt+

∫ t

0

D
(
V,Aτ

)
(Xτ )dτ, Aτ =−log(F τ ),

µt=µ0 +

∫ t

0

Fτ
(
ξS(Xτ )

)
δXτ dτ, Ht=N

(
K(µt)

)
,

where the mapping K defined by (3.1) is extended to positive measures. Thanks to
Lemma 3.1, the process H takes values in F . Thus any fixed point (X,F ) of the
mapping ΨT satisfies Ft∈F for all t≥0, and in the sequel we may assume that F ∈
L2
(
Ω,C([0,T ],F ∩C1(Mm,(0,∞)))

)
.
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First, assume that V has a bounded second order derivative: then ∇V is globally
Lipschitz continuous. More precisely, D(V,A) is globally Lipschitz continuous, uniformly
with respect to A∈A:

sup
A∈A

sup
x1 6=x2

|D(V,A)(x2)−D(V,A)(x1)|
|x2−x1|

<∞.

We claim that there exists C ∈ (0,∞) such that for all T ∈ (0,∞), for all (X1,F 1) and
(X2,F 2), such that F 1

t ,F
2
t ∈F for all t≥0, then(

E sup
0≤t≤T

|Z2
t −Z1

t |2
) 1

2 ≤CT
((

E sup
0≤t≤T

|X2
t −X1

t |2
) 1

2 +E sup
0≤t≤T

‖∂A2
t −∂A1

t‖2∞
) 1

2

)
where A2

t =−log(F
2

t ), A
1
t =−log(F

1

t ). The structure of the mapping A 7→D(V,A) for
each example of diffusion processes is exploited to obtain this estimate.

Since F 1
t ∈F and F 2

t ∈F , note that there exists C ′∈ (0,∞) such that for all t≥0,

‖∂A2
t −∂A1

t‖≤C ′(‖F 2
t −F 1

t ‖∞+‖∂F 2
t −∂F 1

t ‖∞).

Moreover, let h1
t =K(µ1

t ) and h2
t =K(µ2

t ). Then

‖h2
t −h1

t‖∞≤M (0)(K)T‖F 2
t −F 1

t ‖∞+M (0)M (1)(K)T sup
s∈[0,t]

‖X2
s −X1

s‖,

more generally, for all k∈{0,1,. ..},

‖∂kh2
t −∂kh1

t‖∞≤M (k)(K)T‖F 2
t −F 1

t ‖∞+M (0)M (k+1)(K)T sup
s∈[0,t]

‖X2
s −X1

s‖.

From the proof of Lemma 3.1 and thanks to Assumption 3.2,

min
(
n(h1

t ),n(h2
t )
)
≥γ−1

n min
(
minh0,m(K)

)
.

Then, writing

H2
t −H1

t =
h2
t −h1

t

n(h2
t )

+h1
t

n(h1
t )−n(h2

t )

n(h1
t )n(h2

t )
,

and thanks to Assumption 3.2,

sup
0≤t≤T

‖H2
t −H1

t ‖∞+ sup
0≤t≤T

‖∂H2
t −∂H1

t ‖∞≤CT
(

sup
0≤t≤T

‖F 2
t −F 1

t ‖∞+ sup
0≤t≤T

‖X2
t −X1

t ‖
)
.

Note that the parameter C ∈ (0,∞) does not depend on the time T . If CT <1, ΨT is a
contraction mapping, and thus admits a unique fixed point, which yields a unique local
solution for the ABP sytem (3.2).

In fact, a proof that the solution is in fact global, with no restriction on T , can
be obtained by introducing a family of equivalent metrics dα on L2

(
Ω,C([0,T ],S)

)
×

L2
(
Ω,C([0,T ],C1(Mm,(0,∞)))

)
:

dα,T
(
(X1,F 1),(X2,F 2)

)
=
∥∥ sup

0≤t≤T
e−αt‖X2

t −X1
t ‖
∥∥
L2(Ω)

+
∥∥ sup

0≤t≤T
e−αt‖F 2

t −F 1
t ‖
∥∥
L2(Ω)

+
∥∥ sup

0≤t≤T
e−αt‖∂F 2

t −∂F 1
t ‖
∥∥
L2(Ω)

.
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For any fixed T , for large enough α, the mapping ΨT is a contraction when the distance
dα,T is used. The computations are left to the reader.

This argument concludes the treatment of the simpler case where ∇V is globally
Lipschitz continuous (and in particular the case where the state space is compact).

The general case, when the state space is not compact, may be treated by a local-
ization procedure. Precisely, this consists in replacing the drift coefficient D(V,A) with
DR(V,A), where R∈ (0,∞), such that DR(V,A) is globally Lipschitz continuous and co-
incides with D(V,A) on a ball B(0,R) of radius R. Let (XR

t ,F
R
t )t≥0 denote the unique

solution of the system 3.2 where D(V,A) is replaced with DR(V,A). This solution is
global.

In each of the examples treated in this article (see Section 2.2), the modified coef-
ficients are constructed with applying a truncation operator to ∇V only. The result of
Lemma 3.1 is not modified by this procedure.

It remains to consider exit times τR= inf
{
t; XR

t /∈B(0,R)
}

, and to prove that, for

any T ∈ (0,∞), lim
R→∞

P
(
τR<T )→0. This result is proved thanks to moment estimates

of the type

sup
R∈(0,∞)

E
[

sup
0≤t≤T

|XR
t |2
]
<∞.

Such estimates are consequences of the assumptions on the potential energy function
V , see Assumption 2.1 and 2.2. Details are left to the reader (see also the proof of
Lemma 8.2).

Note also that for R≤R′, then (XR
t ,F

R
t ) = (XR′

t ,FR
′

t ) for t≤ τR. Thanks to this
property and the result above, it is straightforward to check that passing to the limit
R→∞ provides the unique solution of (3.2), on arbitrary T ∈ (0,∞).

This concludes the sketch of proof of Theorem 3.1.

4. Convergence results
This section contains the main results of this article, concerning the asymptotic

behavior, when t→∞, of the solution of the ABP system (3.2). We first study con-
sistency, then the efficiency, of the approach. The most important result dealing with
consistency is Theorem 4.1: it states almost sure convergence of averages µt(ϕ) to µ?(ϕ)
(where µ?=µ0

?, see (2.3)).
Section 4.1.3 is devoted to an interpretation of the ABP system (3.2) as an Adaptive

Biasing Force method, and to the interpretation of the consistency results presented here
in this context.

In the remainder of this section, all the assumptions from Section 2, on the model,
and of Section 3, on the algorithm, are considered to be satisfied. In particular, Theo-
rem 3.1 ensures that the ABP system (3.2) is well defined. Moreover, the state space S
is finite dimensional.

4.1. Consistency of ABP.

4.1.1. Convergence of weighted empirical averages. The main result of
this article concerns the consistency of the approach, for estimating averages µ?(ϕ) using
weighted empirical averages µt(ϕ) (defined by (3.2)).

Theorem 4.1. Let ϕ∈C∞(S,R) be a bounded function, with bounded derivatives of
any order. Then, almost surely,

µt(ϕ) →
t→∞

µ?(ϕ).
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This result is a generalization in the adaptive case of (2.7). The proof of The-
orem 4.1 requires the introduction of auxiliary tools, and is provided in Section 5.
Several straightforward consequences of Theorem 4.1 are stated and proved in the next
sections.

4.1.2. Consequences of Theorem 4.1.
Corollary 4.1. We have the almost sure convergence

µt =⇒
t→∞

µ?.

The notation =⇒ for convergence of probability distributions is introduced in Sec-
tion 2.3.

Proof. We first state an auxiliary result: for every ϕ :S→R, bounded and Lipschitz
continuous function, almost surely

µt(ϕ) →
t→∞

µ?(ϕ) , almost surely.

Indeed, apply Theorem 4.1 for an approximating sequence ϕε=ρε ?ϕ, defined by con-
volution with smooth functions ρε(·) = 1

ερ1

( ·
ε

)
, where ρ is of class C∞, with compact

support, and
∫
S ρdλ= 1.

Let BL(S,R) ={ϕ :S→R ; ϕ bounded and Lipschitz continuous}. Then there ex-
ists a sequence of functions

(
ϕn
)
n≥0

defined from S to R, bounded and Lipschitz con-

tinuous, such that

µt =⇒
t→∞

µ? ⇐⇒ d(µt,µ?) →
t→∞

0,

where

d(µ1,µ2) =

∞∑
n=0

1

2n
min

(
1,
∣∣∫
S
ϕndµ

1−
∫
S
ϕndµ

2
∣∣).

Thanks to the convergence result above, almost surely, for every n≥0, µt(ϕn) →
t→∞

µ?(ϕ), and thus d(µt,µ?) →
t→∞

0 almost surely.

This concludes the proof of Corollary 4.1.

The following result deals with the almost sure convergence of the functions F t
and At. Note that contrary to Theorem 4.1 and Corollary 4.1, the limits F∞ and A∞
depend on the parameters of the algorithm, precisely on the kernel function K. Note
that these almost sure limits are not random.

The convergence of At to A∞, which is close to the free energy function A? for well-
chosen kernel functions, is one of the nice features of the ABP method, in particular
when one is interested in computing free energy differences.

Corollary 4.2. Define, for all z∈Mm,{
F∞(z) =µ?

(
K(z,·)

)
,

A∞(z) =−log(F∞(z)).

Then, almost surely, for every `∈{0,1,. ..}, uniformly on Mm,∂
`F t →

t→∞
∂`F∞,

∂`At →
t→∞

∂`A∞.
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Proof. The result is a consequence of the regularity properties of the kernel
mapping K, of Ascoli’s theorem, and of Theorem 4.1.

Let K :P(S)→C∞(Mm) be the mapping defined by (3.1).
Let

(
zn
)
n∈N denote a dense sequence in Mm, and define, for all µ1,µ2∈P(S),

d∞(µ1,µ2) =

∞∑
`,n=0

1

2`+n
min

(
1,
∣∣∫
S
∂`zK(zn,ξS(·))dµ1−

∫
S
∂`zK(zn,ξS(·))dµ2

∣∣).
Then for any sequence

(
µk
)
k∈N and any µ in P(S),

• if µk =⇒
k→∞

µ, then d∞(µk,µ) →
k→∞

0;

• if d∞(µk,µ) →
k→∞

0, then for every `∈{0,1,. ..},

∂`K(µk) →
k→∞

∂`K(µ),

uniformly on Mm, thanks to Ascoli’s theorem and the bound ‖∂k+1
z K‖∞≤

M (k+1)(K).

Thanks to Theorem 4.1, it is straightforward to conclude that almost surely

d∞(µt,µ?) →
t→∞

0.

These arguments yield the convergence of F t. The convergence of At=−log(F t) is then
obtained thanks to the almost sure lower bound from Theorem 3.1,

min
Mm

F t≥m>0.

4.1.3. A remark concerning convergence of the gradient of At. To keep
notation simple, consider the framework of Section 1.1: the diffusion process is the
Brownian dynamics on Td, and ξ(x1,. ..,xd) =x1∈T, i.e. m= 1. Assume in addition
that the kernel K is symmetric, K(z,ζ) =K(ζ,z).

The main observation in this section is that, for the ABP method, one may write the
derivative ∂x1

At(x1) of At as a conditional expectation, up to introducing an additional
variable.

This observation is motivated by the following statement: the free energy function
A? satisfies the identity (expression of the equilibrium mean force)

A′?(x1) =

∫
Td−1

(∂x1
V (x))e−(V (x)−A?(x1))dx2 .. .dxd=EX∼µ? [∂x1

V (X)
∣∣X1 =x1],

where in the conditional expectation the random variable X is distributed according
to µ?. This identity is the starting point for constructions of Adaptive Biasing Force
(ABF) methods mentioned in Section 1.

Such a formula does not hold for At, when t<∞. However, the following general-
ization may be used. On the one hand, for all t≥0,

A′t(z) =−
∫
Td−1 ∂zK(z,x1)µt(dx)∫
Td−1K(z,x1)µt(dx)

=E(X,Z)∼ηt

[
−∂zK(Z,ξ(X))

K(Z,ξ(X))

∣∣∣Z=z
]
,

where ηt(dx,dz) =K
(
z,ξ(x)

)
µt(dx)dz is a probability distribution on Td×T, which de-

pends on the kernel function K. Observe that if (X,Z)∼ηt, in general Z 6= ξ(X), hence
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the need of the new notation instead of conditional expectations. On the other hand,
the expression above for the equilibrium mean force can be rewritten in the similar form

A′?(z) =E(X,Z)∼η? [∂x1V (X)
∣∣Z=z],

where η?(dx,dz) = 1z=x1
µ?(dx)dz. Note that if (X,Z)∼η?, then the equality Z= ξ(X)

is now satisfied.
Let us now check that these expressions are consistent with Corollary 4.2. Letting

t→∞, thanks to Corollary 4.1, it is straightforward to check that ηt converges almost
surely to η∞(dx,dz) =K

(
z,x1

)
µ?(dx)dz. We thus obtain different expressions of A′∞(z):

A′∞(z) =E(X,Z)∼ηt

[
−∂zK(Z,ξ(X))

K(Z,ξ(X))

∣∣∣Z=z
]

=−
∫
Td−1 ∂zK(z,x1)µ?(dx)∫
Td−1K(z,x1)µ?(dx)

=

∫
Td−1 ∂x1V (x)K(z,x1)µ?(dx)∫

Td−1K(z,x1)µ?(dx)

=E(X,Z)∼η∞ [∂x1V (X)
∣∣Z=z],

thanks to the use of an integration by parts formula. Due to the presence of the kernel
function K, η? 6=η∞, and thus A′?(z) 6=A′∞(z).

The observation above may be the starting point for other types of Adaptive Biasing
methods, based on a single realization of the stochastic process and a self-interaction
mechanism using an empirical distribution.

4.2. Applications to the diffusion processes of Section 2.2. The aim of
this section is to specify, for each of the examples of diffusion processes from Section 2.2:

• the convergence result of Theorem 4.1, for well chosen test functions ϕ;

• the expression of the limit F∞=e−A∞ , in terms of the kernel K and of the free
energy function A?.

We introduce the probability distribution µref
? (dx) = e−V (x)∫

Ed
e−V (y)dy

dx on Ed. Observe

that in all the examples µref
? is the marginal of the distribution µ? with respect to

its Ed-valued component (the equality µref
? =µ? holds true only in the Brownian case).

As a consequence, the practitioner may choose one of the three dynamics (Brownian,
Langevin or extended dynamics) of Section 2.2 to estimate averages µref

? (ϕ).
We also denote by Aref

? the free energy function associated with the reaction coordi-

nate ξ and the probability distribution µref
? : by definition, e−A

ref
? is the Radon-Nikodym

derivative of the image of µref
? by ξ, with respect to the probability distribution π on

Mm.
Assume that the kernel K=Kδ depends on δ>0, and is such that the probability

distribution Kδ(z,ζ)π(dz)π(dζ) converges when δ→0, to δz(dζ)π(dz). Then, when
δ→0 (and also ε→0, in the extended dynamics case), the expressions below prove that
A∞ is an approximation of Aref

? . We do not provide quantitative estimates.

4.2.1. Brownian dynamics (Section 2.2.1).

• Computation of averages: for every ϕ∈C∞(Ed,R), bounded and with bounded
derivatives, almost surely∫

ϕdµref
? = lim

t→∞

1+
∫ t

0
Fτ (ξ(Xτ ))ϕ(Xτ )dτ

1+
∫ t

0
Fτ (ξ(Xτ ))dτ

.
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• Free energy function:

e−A∞(·) =F∞(·) =

∫
Ed

Kδ(·,ξ(x))µref
? (dx) =

∫
Mm

Kδ(·,ζ)e−A
ref
? (ζ)π(dζ).

In particular, Theorem 1.1, stated in Section 1.1 and taken from [3], is a consequence
of Corollaries 4.1 and 4.2, in the simplified context.

4.2.2. Langevin dynamics (Section 2.2.2). We use the notation Xt= (qt,pt).

• Computation of averages: for every ϕ∈C∞(Ed,R), bounded and with bounded
derivatives, almost surely∫

ϕdµref
? = lim

t→∞

1+
∫ t

0
Fτ (ξ(qτ ))ϕ(qτ )dτ

1+
∫ t

0
Fτ (ξ(qτ ))dτ

.

• Free energy function:

e−A∞(·) =F∞(·) =

∫
Ed

Kδ(·,ξ(q))µref
? (dq) =

∫
Mm

Kδ(·,ζ)e−A
ref
? (ζ)π(dζ).

Observe that the free energy function A∞ is the same for the Brownian and the
Langevin dynamics. This identity is in fact obtained since ξS(q,p) = ξ(q) only depends
on q∈Ed.

4.2.3. Extended dynamics (Section 2.2.3). We use the notation (Xt,Zt).
Recall that ξS(x,z) =z in this case.

• Computation of averages: for every ϕ∈C∞(Ed,R), bounded and with bounded
derivatives, almost surely∫

ϕdµref
? = lim

t→∞

1+
∫ t

0
Fτ (Zτ )ϕ(Xτ )dτ

1+
∫ t

0
Fτ (Zτ )dτ

.

• Free energy function:

e−A∞(·) =F∞(·) =

∫
Ed×Mm

K(·,z)µ?(dxdz)

=

∫
Ed×Mm

K(·,z)Kext
ε (z,ξ(x))µref

? (dx)π(dz)

=

∫
Mm

(∫
Mm

K(·,z)Kext
ε (z,ζ)π(dz)

)
e−A

ref
? (ζ)π(dζ),

where we have introduced the auxiliary kernel Kext
ε :Mm×Mm→ (0,∞), such that

µ?(dxdz) =Kext
ε (z,ξ(x))µref

? (dx)π(dz): up to a multiplicative constant, Kext
ε (z,ζ) =

exp
(
− 1

2ε |z−ζ|
2
)
. Note that the expression of A∞ is not the same as in the previous

examples, due to the additional term in the definition of the extended potential energy
function on Ed×Mm. However, when ε→0, A∞ converges to Aref

? : this observation
justifies the use of the extended dynamics in the context of free energy computations.

4.3. Efficiency. We now state and prove a series of results concerning the ef-
ficiency of the approach, first in a qualitative way, second with a more quantitative
approach. Corollary 4.3 deals with the convergence of the non-weighted empirical dis-
tribution ρt, defined by (4.1); it is a straightforward consequence of Corollary 4.1.
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Proposition 4.1 deals with the mean-square error, and identifies an asymptotic vari-
ance. Since the proof of Proposition 4.1 requires tools introduced in Section 5, we
postpone its proof to Section 6.

In terms of the behavior of the occupation measure and of the asymptotic variance,
the results stated below may be interpreted as follows: in the asymptotic regime t→∞,
the Adaptive Biasing Potential method (3.2) performs in the same way as the non-
adaptive Biasing Potential method (2.2), with the bias A=A∞.

Note that these results are asymptotic, when t→∞; it would also be interesting to
study more quantitatively the convergence, for each of the results. This question is left
for future works.

4.3.1. Convergence of non-weighted empirical distributions. In this
section, we focus on the convergence of non-weighted empirical averages ρt(ϕ), where
ρt is the probability distribution on S defined by

ρt=
µ0 +

∫ t
0
δXτ dτ

1+ t
. (4.1)

We refer to ρt as the non-weighted empirical distribution, or as the occupation measure,
associated with the diffusion process

(
Xt

)
t≥0

defined by (3.2). We have the following

result.

Corollary 4.3. Let ϕ∈C∞(S,R) be a bounded function, with bounded derivatives of
any order. Then

ρt(ϕ) →
t→+∞

µA∞? (ϕ) , almost surely, (4.2)

where A∞= lim
t→∞

At (see Corollary 4.2), and µA∞? is given by (2.3).

Moreover, almost surely, ρt =⇒
t→∞

µA∞? .

The arguments below justify that Corollary 4.3 can be interpreted, qualitatively, as
an efficiency property of the ABP method.

First, observe that considering the biased dynamics
(
XA
t

)
t≥0

given by (2.2), and
setting

ρAt =
µ0 +

∫ t
0
δXAτ dτ

1+ t
,

then almost surely ρAt (ϕ) →
t→∞

µA? (ϕ). The limit in (4.2), when the adaptive dynamics

is used, is the same as when using the non-adaptive dynamics (2.2), with A=A∞.
Second, observe that the image by the mapping ξS :S→Mm of the probability

distribution µA? has density with respect to π proportional to

exp
(
−A?+A

)
.

This density is constant, equal to 1, when A=A?: this means that in the asymptotic
limit t→∞, the values of ξS(XA?

t ) are distributed according to the reference probability
distribution π. On the contrary, when A= 0, the values of ξS(X0

t ) are distributed
according to π0

? =e−A?dπ.
Assume that π is the uniform distribution on Mm=Tm; assume also that all the

metastability of the system is encoded by the reaction coordinate ξ. If A? has several



M. BENAÏM AND C.-E. BRÉHIER 105

local minima, then π0
? is a multimodal distribution, and the diffusion process

(
X0
t

)
t≥0

is metastable, and does not efficiently sample all the state space. Thus the convergence
of ρ0

t to µ0
? is expected to be slower than the convergence of ρA?t to µA?? . Indeed, the

exploration of the metastable states tends to be uniform, when t→∞, when observed
through the reaction coordinate mapping.

Since A∞ is an approximation of the free energy function A?, for well-chosen kernel
functions K, efficiency of the ABP method is justified by the observations above.

We now provide the proof of Corollary 4.3, with elementary arguments. The proof
of the almost sure convergence of the probability distributions is obtained as in the
proof of Corollary 4.1, therefore we only focus on the convergence of averages ρt(ϕ).

Proof. (Proof of Corollary 4.3.) Introduce the auxiliary measure

ρt=
µ0 +

∫ t
0
δXτ dτ

1+
∫ t

0
Fτ ◦ξS(Xτ )dτ

=
(1+ t)ρt

1+
∫ t

0
Fτ ◦ξS(Xτ )dτ

. (4.3)

Since the measures ρt and ρt only differ by a multiplicative (normalization) constant,
one has the identity ρt= ρt

ρt(1) . Then, note that

ρt(ϕ) =
µ0(ϕ)+

∫ t
0
Fτ ◦ξS(Xτ ) ϕ(Xτ )

Fτ◦ξS(Xτ )dτ

1+
∫ t

0
Fτ ◦ξS(Xτ )dτ

=
µ0(ϕ)+

∫ t
0
Fτ ◦ξS(Xτ ) ϕ(Xτ )

F∞◦ξS(Xτ )dτ

1+
∫ t

0
Fτ ◦ξS(Xτ )dτ

+
1

1+
∫ t

0
Fτ ◦ξS(Xτ )dτ

∫ t

0

Fτ ◦ξS(Xτ )ϕ(Xτ )
( 1

Fτ ◦ξS(Xτ )
− 1

F∞ ◦ξS(Xτ )

)
dτ

=µt
( ϕ

F∞ ◦ξS
)

+o(1),

using the following version of Cesaro’s Lemma: if a : [0,∞)→R is a continuous function

such that a(t) →
t→∞

0, then 1
t

∫ t
0
a(τ)dτ →

t→∞
0. This result may be applied, thanks to the

almost sure lower bound 1+
∫ t

0
Fτ ◦ξS(Xτ )dτ ≥1+mt; moreover thanks to Corollary 4.2,

Ft=N (F t) →
t→+∞

F∞=N (F∞), uniformly on Mm, almost surely.

Moreover, the function ϕ
F∞◦ξS is bounded and of class C∞, with bounded derivatives

(using minF∞≥m>0 thanks to Theorem 3.1). Applying Theorem 4.1, almost surely

ρt(ϕ) =
ρt(ϕ)

ρt(1)
→

t→+∞

µ?

(
ϕ/F∞

(
ξS(·)

))
µ?

(
1/F∞

(
ξS(·)

)) =
µ?

(
ϕ/F∞

(
ξS(·)

))
µ?

(
1/F∞

(
ξS(·)

))
=

∫
Sϕ(x)exp

(
−
(
E(V )(x)−A∞(ξS(x))

))
λ(dx)∫

S exp
(
−
(
E(V )(x)−A∞(ξS(x))

))
λ(dx)

=

∫
Sϕ(x)exp

(
−
(
E(V,A∞)(x)

))
λ(dx)∫

S exp
(
−
(
E(V,A∞)(x)

))
λ(dx)

=µA∞? (ϕ),

thanks to the identity (2.4), and to (2.3). This concludes the proof.
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4.3.2. Asymptotic mean-square error. This section is devoted to a more
quantitative approach, concerning the behavior when t→∞ of the mean-square error

E
∣∣µt(ϕ)−µ?(ϕ)

∣∣2,
for functions ϕ∈C∞(S,R), bounded and with bounded derivatives.

In order to compare the performance of the adaptive and non-adaptive versions of
the biasing potential approach, introduce the following quantity

V∞(ϕ,A) = limsup
t→∞

tE|µAt (ϕ)−µ?(ϕ)|2∈ [0,∞],

where A :Mm→R is fixed, µAt (ϕ) is the estimator of µ?(ϕ) defined by the left-hand side
of (2.7), for every t≥0, using the biased dynamics (2.2).

In Section 6, it will be proved that in fact

V∞(ϕ,A) = lim
t→∞

tE|µAt (ϕ)−µ?(ϕ)|2∈ (0,∞)

is a non-degenerate limit.
The following result, concerning the asymptotic mean-square error of the estimator

µt(ϕ) of µ?(ϕ), constructed using the adaptively biased dynamics (3.2).

Proposition 4.1. Let ϕ∈C∞(S,R) be a bounded function, with bounded derivatives
of any order. Then

tE|µt(ϕ)−µ?(ϕ)|2 →
t→∞

V∞(ϕ,A∞),

where A∞= lim
t→∞

At almost surely, see Corollary 4.2.

As already explained, the asymptotic mean-square error for the adaptive version
is the same as that for the non-adaptive version, where the bias is chosen as A=A∞.
Note that the dependence of V∞(ϕ,A) with respect to A depends a lot on the choice
of the function ϕ; therefore no optimality result is stated.

The proof of Proposition 4.1 is postponed to Section 6; explicit expressions for
V∞(ϕ,A), in terms of the solutions of Poisson equations, are given there.

5. Proof of Theorem 4.1
The aim of this section is to provide a detailed proof of Theorem 4.1.
First, in Sections 5.1.1 and 5.1.2, we present the strategy, and in particular we es-

tablish a connexion with the analysis of self-interacting diffusions from [4], and more
generally of stochastic algorithms, see [2,8,21,31]. More precisely, Section 5.1.1 presents
a (random) change of time variable, s=θ(t), which transforms the weighted empirical
distributions µt associated with the process Xt, into non-weighted empirical distribu-
tions νs associated with a process Ys, with modified dynamics. In Section 5.1.2, we
explain how the so-called ODE method can be exploited: the asymptotic behavior
of νs, when s→∞, is related to the behavior of a differential equation of the type
ν̇=−ν+Π(ν). A crucial result, Proposition 5.1, states that Π(ν) =µ? is a constant
mapping, and the dynamics of the differential equation above is extremely simple.

The analysis is thus expected to be much simpler than in [4]. Indeed, in Section 5.2,
we directly prove the almost sure convergence of µt(ϕ)−µ?(ϕ) to 0 when t→∞. Results
concerning Poisson equations are stated, their proofs being postponed to Section 8.1.

Even if it is not explictly used in the technical part of the proof of Theorem 4.1, the
description of the change of time variable strategy is included for pedagogical purpose.
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Moreover, in our opinion, it is an elegant way to justify the consistency of the approach.
Moreover, it may be a useful strategy in other similar situations. Readers only interested
in the proof of Theorem 4.1 may skip Sections 5.1.1 and 5.1.2 – except for Proposition 5.1
which is used in the sequel.

5.1. Approach from a stochastic approximation perspective.

5.1.1. Change of time variable. In this section, we introduce a random change
of time variable, and describe some of its nice properties. This is only a mathematical
tool, and does not need to be performed in practice when implementing the method. In
addition, as explained above, this change of variable has only a pedagogical role, and
will not be used in the technical details of the proof.

Consider the solution of the ABP system (3.2). Then the mapping t 7→µt∈P(S) is
the unique solution of the following ordinary differential equation (ODE)

dµt
dt

=
θ′(t)

1+θ(t)

(
δXt−µt

)
, θ(t) =

∫ t

0

Fτ
(
ξS(Xτ )

)
dτ. (5.1)

The ODE (5.1) is interpreted in the following weak sense: for every bounded con-
tinuous test function ϕ :S→R, the real-valued function t 7→µt(ϕ) =

∫
Sϕdµt∈R is the

unique solution of the differential equation

dµt(ϕ)

dt
=

θ′(t)

1+θ(t)

(
ϕ(Xt)−µt(ϕ)

)
,

with the initial condition µ0(ϕ).

Define the measure µt=µ0 +
∫ t

0
Fτ
(
ξS(Xτ )

)
δXτ dτ . Then observe that θ(t) =µt(1)

can be interpreted as a normalizing constant.
The presence of the random variable θ(t) in the ODE (5.1) suggests that the analysis

will be not trivial. However, we can remove this quantity thanks to a change of time
variable. Simultaneously, this procedure removes the weights in the definition of the
measure µt, and the dynamics of the stochastic process Xt is modified.

Thanks to Theorem 3.1, there exist two non-random real numbers 0<m≤M
such that almost surely θ′(t) =Ft

(
ξS(Xt)

)
∈ [m,M ] for all t≥0. Moreover, θ(0) =

0, and θ(t)≥mt →
t→∞

∞. As a consequence, almost surely, θ : [0,∞)→ [0,∞) is a

C1-diffeomorphism, with inverse denoted by θ−1. Define, for every s≥0, W̃ (s) =∫ θ−1(s)

0

√
θ(t)dW (t). Note that for every s≥0, θ−1(s) = inf {t≥0; θ(t)≥s} is a bounded

stopping time, associated with the filtration generated by the Wiener process W . Then,
it is straightforward to check that

(
W̃ (s)

)
s≥0

is a standard Wiener process on S.

We introduce the following system:
dYs=D

(
V,Bs

)
(Ys)

1
Gs(ξS(Ys))

ds+
√

2
Gs(ξS(Ys))

ΣdW̃s,

νs= 1
1+s

(
µ0 +

∫ s
0
δYσdσ

)
,

Gs=N
(
K(νs)

)
,

Bs=−log
(
Gs
)
.

(5.2)

Then the following identities are satisfied almost surely:{
Xt=Yθ(t), µt=νθ(t), Ft=Gθ(t), At=Bθ(t), ∀ t≥0

Ys=Xθ−1(s), νs=µθ−1(s), Gs=Fθ−1(s), Bs=Aθ−1(s), ∀ s≥0.
(5.3)
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The system (5.2) may thus be considered as the time-changed version of the original
ABP system (3.2), with the new time variable s=θ(t), and the new unknowns Ys, νs,
Gs and Bs, replacing Xt, µt, Ft and At.

Observe that, in (5.2), the weight Ft
(
ξS(Xt)

)
=Gs

(
ξS(Ys)

)
does not appear any-

more in the definition of the measure νs. Instead, the weight appears in the dynamics
of the diffusion process

(
Ys
)
s≥0

. In terms of new variables, the ODE (5.1) has a simpler

formulation:

dνs
ds

=
1

1+s

(
δYs−νs

)
. (5.4)

We are interested in the convergence of µt (or µt(ϕ)) when t→∞. Since µt=
νθ(t), and θ(t) →

t→∞
∞ almost surely, the asymptotic behavior (s→∞) of νs needs to be

analyzed. In the remainder of this section, we work only with the system (5.2), and
consider s as the natural (but fictive in practice) time variable. Observe that proving
Theorem 4.1 is equivalent to proving that

νs(ϕ) →
s→∞

µ?(ϕ) , almost surely,

which is done in Section 5.1.2 using the ODE method.

5.1.2. Consistency via the ODE method. Thanks to the change of time
variable s=θ(t) introduced above, the structure of the system (5.2) is closer to the
formulation of self-interacting diffusions (see [4] for instance), depending on the nor-
malized occupation measure, than for the initial system (3.2). However, in the specific
situation considered in the present article, arguments need to be modified, in particular
the coupling of the evolutions of the diffusion process and of the empirical distributions
does not have the same structure (here it depends on the kernel K).

Thanks to the ODE (5.4), observe that there is an asymptotic time scale separation
(in the limit s→∞) between slow variables νs, Gs and Bs, and fast variables Ys. It is
reasonable to focus on the asymptotic behavior of the diffusion process when the other
variables are frozen; when its unique invariant distribution (in general depending on
the frozen variables) is introduced in place of the Dirac mass in (5.4), a limit ODE is
obtained: the rationale behind the ODE method is that its asymptotic behavior provides
information on the asymptotic behavior of the solution of (5.4).

The ODE method allows us to make rigorous the discussion above, and to identify
the appropriate limit ODE. In this article, one of the main specific properties is that
the invariant distribution of the fast equation with frozen variables is equal to µ?, the
target probability distribution, and thus does not depend on the frozen variables.

Remark 5.1. The asymptotic time scale separation (when t→∞) between slow
variables µt, Ft and At, and the fast variable Xt, already appears in the original sys-
tem (1.2). The change of time variable s=θ(t) allows us to remove the random quantity
θ(t), and to identify the correct limit equation for the application of the ODE method.

Precisely, for every G∈C∞(Mm,R)∩C0(Mm,(0,∞)), let
(
Y Gs
)
s≥0

denote the diffu-

sion process which is the unique solution of

dY Gs =
D
(
V,B

)
(Y Gs )

G
(
ξS(Y Gs )

) ds+

√
2

G
(
ξS(Y Gs )

)ΣdW̃s, (5.5)

where B=−log(G).
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Proposition 5.1. For every G∈C∞(Mm,R)∩C0(Mm,(0,∞)), the unique invariant
probability distribution for (5.5) is equal to µ?.

Proof. First note that G= G
n(G)

= exp(−B)

n(G)
is equal to exp(−B) up to a multiplica-

tive constant, and thus a probability distribution µ is invariant for (5.5) if and only if
it is invariant for

dYBs =
D
(
V,B

)
(YBs )

e−B(ξS(YBs ))
ds+

√
2

e−B(ξS(YBs ))
ΣdW̃s. (5.6)

Let LBY denote the associated infinitesimal generator: then for every function ϕ∈
C∞(S,R),

LBYϕ(y) =
1

e−B(ξS(y))
LBXϕ(y), (5.7)

where LBX is the infinitesimal generator of the biased diffusion process XB defined
by (2.2), with A=B.

Since the unique invariant probability distribution of (2.2) with A=B is µB? , the
unique invariant probability distribution of (5.5) is proportional to

e−B(ξS(y))µB? (dy) =e−B(ξS(y)) exp
(
−E(V,B)(y)

)
ZB

λ(dy)

=
exp
(
−E(V )(y)

)
ZB

λ(dy) =
Z0

ZB
µ?(dy),

using (2.3) (expression of µB? ) and (2.4) (expression of E(V,B)). Identifying the nor-
malizing constants then concludes the proof of Proposition 5.1.

Following the ODE method leads to study the following equation:

dγs
ds

=
1

1+s

(
Π(γs)−γs

)
=

1

1+s

(
µ?−γs

)
. (5.8)

Indeed, thanks to Proposition 5.1, Π(γ) =µ? is the unique invariant distribution of (5.5),
where G=K(γ). This property justifies the consistency of the approach, i.e. the almost
sure convergence of νs to µ?. Indeed, it is straightforward to check that, for any initial
condition γ0∈P(S), one has

γs=
1

1+s

(
γ0 +sµ?) →

s→∞
µ?.

Moreover, a rigorous connexion between the asymptotic behaviors of νs and of γs may
be stated for instance using the notion of asymptotic pseudo-trajectories (see [2,4]); or
by proving direct estimates on the Lp norm of the random variable νs(ϕ)−µ?(ϕ).

In Section 5.2 below, instead, we prove directly estimates on the Lp norm of the
random variable µt(ϕ)−µ?(ϕ); indeed, thanks to Proposition 5.1, the situation is rather
simple and the error is analyzed using straightforward computations, combined with a
powerful auxiliary tool: the use of the solutions of associated Poisson equation.
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5.2. Analysis of the error and convergence.

5.2.1. The error in terms of the solutions of Poisson equations. In order
to prove that

µt(ϕ)−µ?(ϕ) =

∫ t
0
Fτ (ξS(Xτ ))

[
ϕ(Xτ )−µ?(ϕ)

]
dτ

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

converges to 0 when t→∞, it is convenient to introduce a family of Poisson equations
depending on the integrand on the numerator. Let Φ : (s,y)∈ [1,∞)×S 7→Φ(s,y)∈R be
a C1,2 function, i.e. of class C1 with respect to the variable s and of class C2 with respect
to the variable y, with bounded associated derivatives. The application of Itô’s formula
yields the equality

Φ(t,Xt)−Φ(0,X0) =

∫ t

0

LAτX (τ,Xτ )dτ+

∫ t

0

∂Φ

∂τ
(τ,Xτ )dτ

+

∫ t

0

√
2〈∇Φ(τ,Xτ ),ΣdW (τ)〉,

where LAX is the infinitesimal generator of the biased diffusion process XA,see (2.2).

Assume that the function Φ satisfies, for all t≥0, x∈S

LAtX Φ(t,Xt) =Ft(ξS(x))
[
ϕ(x)−µ?(ϕ)

]
; (5.9)

then one obtains

µt(ϕ)−µ?(ϕ) =
Φ(t,Xt)−Φ(0,X0)

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

−
∫ t

0

√
2〈∇Φ(τ,Xτ ),ΣdW (τ)〉

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

−
∫ t

0
∂Φ
∂τ (τ,Xτ )dτ

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

.

Recall that, 1+
∫ t

0
Fτ (ξS(Xτ ))dτ ≥mt, for all t≥0, almost surely, thanks to Theo-

rem 3.1, with m>0. Convergence of µt(ϕ)−µ?(ϕ) to 0, in a Lp sense, then follows
from appropriate estimates on the function Φ and its derivatives, which are stated be-
low.

5.2.2. Properties of solutions of Poisson equations. This section is devoted
to the statement of the properties concerning solutions of Poisson equations which are
used in the analysis. We emphasize that the estimates are uniform with respect to
A∈A, which is defined by (3.3).

The Equation (5.9) can be written as

Φ(t,x) =
1

n(F t)
Ψ(At,x) (5.10)

where, for any A∈A (see (3.3)), Ψ(A, ·) is solution of the Poisson equation{
LAXΨ(A, ·) =e−A(ξS(x))

[
ϕ−µ?(ϕ)

]
,∫

Ψ(A, ·)dµA? = 0.
(5.11)
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Introduce the set

C=C∞pol(S,R) =

{
ϕ∈C∞(S,R) ; ∀ k∈N,∃ pk ∈N,sup

x∈S

|Dkϕ(x)|
1+ |x|pk

<∞
}

(5.12)

of functions ϕ :S→R, of class C∞, with at most polynomial growth, and all derivatives
with at most polynomial growth. Note that the average µ?(ϕ) is well-defined, since the
probability distribution µ? admits finite moments of any order.

We first state the following well-posedness result.

Proposition 5.2. For every A∈A and every ϕ∈C, there exists a unique solution
Ψ(A, ·)∈C of the Poisson Equation (5.11).

We only provide a sketch of the proof. Define the auxiliary function ϕA=
e−A◦ξS

(
ϕ−µ?(ϕ)

)
, and note that ϕA∈C. Thanks to (2.6), the centering condition∫

ϕAdµA? =

∫ [
ϕ−µ?(ϕ)

]
dµ0

?= 0

is satisfied. It is then well-known that the unique solution of the Poisson Equation (5.11)
is given by

Ψ(A,x) =−
∫ ∞

0

Ex
[
ϕA(XA

t )
]
dt, (5.13)

where XA is the biased process given by (2.2).
In Section 5.2.3 below, bounds on Ψ(At, ·), and its derivatives are required. The

analysis is performed using the two following claims. On the one hand, thanks to
Proposition 2.1, almost surely At∈A, where A is defined by (3.3). On the other hand,
Proposition 5.3 states estimates which are uniform for A∈A. The proof is postponed
to Appendix 8.1.

Proposition 5.3. Let ϕ∈C, of class C∞, with at most polynomial growth.
There exist C ∈ (0,∞) and p∈N?, such that the following results hold true.

(i) For every A∈A and every x∈S∣∣Ψ(A,x)
∣∣≤C(1+ |x|p). (5.14)

(ii) For every A∈A and every x∈S∣∣∇xΨ(A,x)
∣∣≤C(1+ |x|p). (5.15)

(iii) The function (t,x)∈ [0,∞)×S 7→Ψ(At,x) is of class C1,2, and for every x∈S
and every t≥0, almost surely∣∣∂Ψ(At,x)

∂t

∣∣≤ C(1+ |x|p)
1+ t

, (5.16)

where
(
At
)
t≥0

is the A-valued process defined in (3.2).

5.2.3. Proof of convergence. An approximation procedure is required to deal
with the low regularity properties of the normalization operator n, see Assumption 3.2.
For k∈N, define

Φ(k)(t,x) =
1

n(k)(F t)
Ψ(At,x).
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Then observe that that

µt(ϕ)−µ?(ϕ) =

∫ t
0
Fτ (ξS(Xτ ))

[
ϕ(Xτ )−µ?(ϕ)

]
dτ

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

=

∫ t
0

1
n(F τ )

LAτX Ψ(Aτ , ·)(Xτ )dτ

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

= lim
k→∞

∫ t
0

1
n(k)(F τ )

LAτX Ψ(k)(Aτ ,Xτ )dτ

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

= lim
k→∞

∫ t
0
LAτX Φ(k)(τ,Xτ )dτ

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

=: lim
k→∞

ε
(k)
t (ϕ),

where the limit k→∞ is understood in an almost sure sense, thanks to Assumption 3.2,
and the fact that F t∈F for all t≥0, almost surely, thanks to Theorem 3.1.

Itô’s formula can be used, since (t,x) 7→Φ(k)(t,x) is of class C1,2 thanks to Proposi-
tion 5.3. Then

ε
(k)
t (ϕ) =

Φ(k)(t,Xt)−Φ(k)(0,X0)

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

−
∫ t

0

√
2〈∇Φ(k)(τ,Xτ ),ΣdW (τ)〉
1+
∫ t

0
Fτ (ξS(Xτ ))dτ

−
∫ t

0
∂Φ(k)

∂τ
(τ,Xτ )dτ

1+
∫ t

0
Fτ (ξS(Xτ ))dτ

=:ε
(k),1
t (ϕ)+ε

(k),2
t (ϕ)+ε

(k),3
t (ϕ).

We now prove the following result.

Lemma 5.1. Let ϕ∈C. There exists C(ϕ)∈ (0,∞) such that for every t≥0 and k∈N

E|ε(k)
t (ϕ)|2≤ C(ϕ)

t
.

Observe that Lemma 5.1 is valid for test functions ϕ in the set C defined by (5.12).
To prove Theorem 4.1, i.e. an almost sure convergence result, we will only use it with
test functions which are bounded and have bounded derivatives. However, to prove
Proposition 4.1, we will need this Lemma for test functions with polynomial growth.

Proof. (Proof of Lemma 5.1.) The proof of that result consists in using the
estimates of Proposition 5.3.

• Thanks to item (i) from Proposition 5.3, for every t≥0, Φ(k)(t,·) has at most
polynomial growth, and moments of the process X are bounded, see Theo-
rem 3.1. More precisely, the parameters C and p in the right-hand side of
the inequality (5.14) do not depend on A=Aτ . Moreover, thanks to Assump-
tion 3.2, for every k∈N and τ ≥0, one has n(k)(F τ )≥m>0 almost surely.
It is then straightforward to conclude that

E|ε(k),1
t (ϕ)|2≤ C(ϕ)

t2
.

• To have an estimate of the stochastic integral, we use Itô’s formula, and we
obtain

E|ε(k),2
t (ϕ)|2≤C

1+
∫ t

0
|Σ?∇xΦ(k)(τ,Xτ )|2dτ

1+ t2
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≤ C(ϕ)

t
,

thanks to (5.15), and arguments similar to the term above.

• Finally, using (5.16), and similar arguments, one obtains

E|ε(k),3
t (ϕ)|2≤

C(ϕ)
(∫ t

0
1

1+τ dτ
)2

t2
≤
C(ϕ)

(
1+log(t)

)2
t2

.

Gathering estimates then concludes the proof of Lemma 5.1.

We are now in a position to deduce Theorem 4.1 from Lemma 5.1. First, note that
it is straightforward to obtain

E|µt(ϕ)−µ?(ϕ)|2≤ C(ϕ)

t
.

Indeed, the right-hand side in the estimate of Lemma 5.1 does not depend on k, and
taking the limit k→∞ in the right-hand side gives the result, thanks to Assumption 3.2
which ensures the required uniform convergence properties for the application of the
bounded convergence theorem.

This estimate ensures the convergence in mean-square sense, and in probability, of
µt(ϕ) to µ?(ϕ). To go further, and obtain the almost sure convergence, we use the
following arguments. First, note that it is sufficient to prove that µexp(t) converges
almost surely to µ?(ϕ) when t→∞. Using the estimate

E|µexp(t)(ϕ)−µ?(ϕ)|2≤C(ϕ)e−t,

and Borel-Cantelli’s Lemma, then almost surely, for every δ∈Q∩(0,∞),

µexp(nδ)(ϕ) →
n→∞

µ?(ϕ).

Finally, thanks to the differential Equation (5.1) and boundedness of the function ϕ, the
mapping t 7→µexp(t)(ϕ) is Lipschitz continuous, with constant smaller than C(ϕ), almost
surely, for some C(ϕ)∈ (0,∞) depending only on ϕ, and on the parameters appearing
in the definition of the set F , see (3.3). It is then straightforward to obtain the almost
sure convergence

µexp(t)(ϕ) →
t→∞

µ?(ϕ).

This concludes the proof of Theorem 4.1.

6. Analysis of the mean-square error. Proof of Proposition 4.1
In this section, we give a proof of Proposition 4.1, concerning the asymptotic be-

havior of the mean-square error, which is decomposed as

E
∣∣µt(ϕ)−µ?(ϕ)

∣∣2 =
(
Eµt(ϕ)−µ?(ϕ)

)2
+Var

(
µt(ϕ)

)
, (6.1)

when t→∞, for functions ϕ∈C, of class C∞, with at most polynomial growth.
In Section 6.1, we prove that the bias satisfies

Eµt(ϕ)−µ?(ϕ) = O(
1+log(t)

t
). (6.2)
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In Section 6.2, we then prove that

tE
∣∣µt(ϕ)−µ?(ϕ)

∣∣2 →
t→∞

V∞(ϕ)∈ [0,∞). (6.3)

In particular, thanks to (6.2), we may interpret the limit as the asymptotic variance,
since

V∞(ϕ) = lim
t→∞

tVar
(
µt(ϕ)

)
.

The asymptotic variance is expressed in terms of the solution of a Poisson Equa-
tion (5.11), with A=A∞= lim

t→∞
At (defined in Corollary 4.2).

In Section 6.3, we check that V∞(ϕ) =V∞(ϕ,A∞), where V∞(ϕ,A)∈ [0,∞) is the
asymptotic variance associated with the non-adaptively biasing method, using (2.2)
and (2.7), with A=A∞.

6.1. Asymptotic behavior of the bias. Let us prove (6.2). Using the same
arguments as in Section 5.2.3, note that

Eµt(ϕ)−µ?(ϕ) =E
[

lim
k→∞

ε
(k)
t (ϕ)

]
= lim
k→∞

E
[
ε
(k)
t (ϕ)

]
= lim
k→∞

E
[
ε
(k),1
t (ϕ)+ε

(k),3
t (ϕ)

]
.

Indeed, using Assumption 3.2 and the property that F t∈F , for all t≥0, almost surely,

allows us to use the bounded convergence theorem. Moreover, note that E
[
ε
(k),2
t (ϕ)

]
= 0,

for all k∈N and t≥0. Then (6.2) is an immediate corollary of Lemma 5.1.

6.2. Asymptotic behavior of the mean-square error. Let us now
prove (6.3). Like in Sections 5.2.3 and 6.1 above, we use the decomposition of
µt(ϕ)−µ?(ϕ) in terms of the auxiliary function Φ(k); we prove error bounds which are
uniform with respect to k∈N, and pass to the limit k→∞, thanks to Assumption 3.2
and Theorem 3.1.

It is straightforward to check that, uniformly in k∈N,

tE
∣∣µt(ϕ)−µ?(ϕ)

∣∣2− tE∣∣∣∫ t0√2〈∇xΦ(k)(τ,Xτ ),ΣdW (τ)〉
1+
∫ t

0
Fτ
(
ξS(XA

τ )
)
dτ

∣∣∣2 = O
(1

t

)
,

thanks to Lemma 5.1, i.e. only the stochastic integral contributes to the asymptotic
variance. We can directly pass to the limit k→∞ at this stage.

Let R(t) =
1+

∫ t
0
Fτ

(
ξS(XAτ )

)
dτ

t . Then almost surely, thanks to Corollary 4.2 (uniform
convergence of Fτ to F∞ when τ→∞), Corollary 4.3, and the version of Cesaro’s Lemma
stated in the proof of Corollary 4.3,

R(t) →
t→∞

∫
S
F∞ ◦ξSdµA∞? =

µA∞?
(
e−?A∞◦ξS

)
n(F∞)

=
1

µ0
?

(
eA∞◦ξS

)
n(F∞)

,

using (2.6). We then obtain

tE
∣∣∣
∫ t

0

√
2

n(F τ )
〈∇xΨ(Aτ ,Xτ ),ΣdW (τ)〉

1+
∫ t

0
Fτ
(
ξS(XA

τ )
)
dτ

∣∣∣2 =E

∣∣∫ t
0

√
2

n(F τ )
〈∇xΨ(Aτ ,Xτ ),ΣdW (τ)〉

∣∣2
t|R(t)|2
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=E

∣∣∫ t
0

√
2

n(F τ )
〈∇xΨ(Aτ ,Xτ ),ΣdW (τ)〉

∣∣2
t

+o(1)

=
2
∫ t

0
E |Σ

?∇xΨ(Aτ ,Xτ )|2

n(F τ )2
dτ

t
+o(1)

=

2
n(F∞)2

∫ t
0
E|Σ?∇xΨ(A∞,Xτ )|2dτ

t
+o(1)

= 2Eµt
(
|Σ?∇xΨ(A∞, ·)|2

)
+o(1)

→
t→∞

2µ?
(
|Σ?∇xΨ(A∞,·)|2

)
,

thanks to Lemma 5.1, applied to the function |Σ?∇xΨ(A∞, ·)|2∈C, thanks to Proposi-
tion 5.2. Observe that the limit does not depend on the normalization operator n. We
thus obtain (6.3), more precisely,

tE
∣∣µt(ϕ)−µ?(ϕ)

∣∣2 →
t→∞

V∞(ϕ) = 2µ?
(
|Σ?∇xΨ(A∞, ·)|2

)
.

6.3. Comparison with the non-adaptive biasing method. We now check
that the expression obtained above for the asymptotic variance in the adaptive method,
coincides with the expression of the asymptotic variance in the non-adaptive method,
when choosing A=A∞.

Let A∈A (see (3.3)), and ϕ∈C. Using (2.7), and the solution of the Poisson
Equation (5.11),

µAt (ϕ)−µ?(ϕ) =
1+
∫ t

0
exp
(
−A◦ξS(XA

τ )
)[
ϕ(XA

τ )−µ?(ϕ)
]
dτ

1+
∫ t

0
exp
(
−A◦ξS(Xτ )

)
dτ

=
1+
∫ t

0
LAXΨ(A,XA

τ )dτ

1+
∫ t

0
exp
(
−A◦ξS(Xτ )

)
dτ

=
Ψ(A,XA

t )−Ψ(A,XA
0 )−

∫ t
0

√
2〈∇xΨ(A,XA

τ ),ΣdW (τ)〉
1+
∫ t

0
exp
(
−A◦ξS(Xτ )

)
dτ

Since A∈A, exp
(
−A◦ξS

)
≥m>0, for some m>0. Then

tE
∣∣µAt (ϕ)−µ?(ϕ)

∣∣2− tE∣∣∣∫ t0√2〈∇xΨ(A,XA
τ ),ΣdW (τ)〉

1+
∫ t

0
exp
(
−A◦ξS(XA

τ )
)
dτ

∣∣∣2 = O
(1

t

)
.

Let RA(t) =
1+

∫ t
0

exp
(
−A◦ξS(XAτ )

)
dτ

t . Then almost surely RA(t) →
t→∞

µA? (e−A◦ξS ) =

1
µ?(eA◦ξS )

.

With the same arguments as in Section 6.2 above,

tE
∣∣∣∫ t0√2〈∇xΨ(A,XA

τ ),ΣdW (τ)〉
1+
∫ t

0
exp
(
−A◦ξS(XA

τ )
)
dτ

∣∣∣2 =E
∣∣∫ t

0

√
2〈∇xΨ(A,XA

τ ),ΣdW (τ)〉
∣∣2

t|RA(t)|2

=E
∣∣∫ t

0

√
2〈∇xΨ(A,XA

τ ),ΣdW (τ)〉
∣∣2

t
+o(1)

=
2
∫ t

0
E|Σ?∇xΨ(A,XA

τ )|2dτ
t

+o(1)
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= 2EµAt
(
|Σ?∇xΨ(A,·)|2

)
+o(1)

→
t→∞

2µ?
(
|Σ?∇xΨ(A, ·)|2

)
.

We thus conclude that

tE
∣∣µAt (ϕ)−µ?(ϕ)

∣∣2 →
t→∞

V∞(ϕ,A) = 2µ?
(
|Σ?∇xΨ(A,·)|2

)
.

The asymptotic variance in the ABP method is thus equal to the asymptotic variance
in the non-adaptive method with A=A∞= lim

t→∞
At, as expected:

V∞(ϕ) = 2µ?
(
|Σ?∇xΨ(A∞,·)|2

)
=V∞(ϕ,A∞).

7. The SPDE case
The aim of this section is to generalize the approach developed in other sections

of this article, to deal with metastable stochastic processes in infinite dimension. More
precisely, we describe an ABP method designed to compute averages µ?(ϕ), where µ?
is a probability distribution defined on an infinite dimensional (Hilbert) space; the cor-
responding diffusion processes are given by some parabolic semilinear stochastic partial
differential equations (SPDEs).

In Section 7.1, we describe the model, and we explain how it fits in the framework
of Section 2. In particular, this description justifies the introduction of the abstract
objects in Section 2.

Some arguments and some statements need to be substantially modified, compared
with the finite dimensional situation, see Sections 7.2 and 7.3, and details in Section 8.2.

7.1. The model. In this section, we consider infinite dimensional diffusion pro-
cesses, which are solutions of parabolic, semilinear, SPDEs, driven by space-time white
noise, in space dimension 1, which may be written in the following form:

du0(t,x) =
∂2u0(t,x)

∂x2
dt−∇V(u0(t,x))dt+

√
2dW (t,x), (7.1)

for x∈ (0,1), with (for instance) homogeneous Dirichlet boundary conditions.

The function V :R→R is a smooth mapping. With the choice V(x) = x4

4 −
x2

2 , one
obtains the Allen-Cahn equation, which is the paradigmatic example of metastable
SPDE considered in the literature: see for instance [9–11, 22]. In particular, (non-
adaptive) importance sampling techniques are considered for this problem in [42].

In this article, V is assumed to have bounded derivatives, in order to simplify the
presentation and the functional setting. Metastable states are solutions of the stationary
PDE

∂2u(x)

∂x2
−∇V(u(x)) = 0.

Assume that the potential energy function V is even; then x 7→u0(x) = 0 is one solu-
tion. Moreover, if there exists another solution x 7→u+(x), x 7→u−(x) =−u+(x) is also
a solution. These solutions are critical points of the energy functional

u 7→
∫ 1

0

[1
2

∣∣∂u(x)

∂x

∣∣2 +V
(
u(x)

)]
dx,

and may be local minima, saddle points, etc...
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It is convenient and standard to write (7.1) as a stochastic evolution equation in
the Hilbert space H=L2(0,1), see for instance the monograph [17]:

du0
t =Lu0

tdt−DV (u0
t )dt+

√
2dW (t), (7.2)

where D denotes the Fréchet derivative, and

•
(
en
)
n∈N∗ is the complete orthonormal system of H given by en(x) =√

2sin(nπx);

• the unbounded linear operator L :H→H satisfies Lu=−
∑
n∈N∗ π

2n2〈u,en〉en;

• V (u) =
∫ 1

0
〈∇V(θu),u〉dθ for all u∈H;

•
(
W (t)

)
t≥0

is a cylindrical Wiener process on H, i.e. W (t) =
∑
n∈N∗ βn(t)en for

a family (βn)n∈N∗ of independent, one-dimensional, standard Wiener processes.

Equation (7.2) admits a unique mild solution (see [17]) with values in H, defined for
t≥0, i.e. u0 is the unique process solution satisfying the equation

u0
t =etLu0−

∫ t

0

e(t−s)LDV (u0
s)ds+

√
2

∫ t

0

e(t−s)LdW (s),

where
(
etL
)
t∈[0,+∞)

is the semi-group on H generated by

L:etLu=
∑
n∈N∗ e

−π2n2t〈u,en〉en.
In the context of this section, Assumption 2.1 is satisfied when the following condi-

tion is satisfied:

sup
x∈R
|V ′′(x)|<π2. (7.3)

In other words, the Lipschitz constant of the non-linear coefficient u∈H 7→DV (u)∈H is
bounded from above by all the eigenvalues of −L. Ergodicity of the SPDE (7.2) is then
obtained by the following arguments, see for instance [16, Section 6.3] for additional
details. Let u0,v0∈H denote two initial conditions, and define

(
u0
t

)
t≥0

and
(
v0
t

)
t≥0

the solutions of (7.2) driven by the same Wiener process
(
W (t)

)
t≥0

. Then rt=u0
t −v0

t

satisfies

drt
dt

=Lrt+DV (v0
t )−DV (u0

t ),

and thus

1

2

‖drt‖2H
dt

=−〈(−L)rt,rt〉+〈DV (v0
t )−DV (u0

t ),rt〉

≤−π2‖rt‖2H +sup
x∈R
|V ′′(x)|‖rt‖2H ≤−γ‖rt‖2H ,

with γ>0, thanks to the condition (7.3). By Grönwall’s Lemma, E‖v0
t −u0

t‖2H ≤
e−γt‖v0−u0‖2H , which yields uniqueness of an invariant distribution for the SPDE (7.2),
as well as exponential convergence to equilibrium. There are several general ways to
prove the existence of an invariant distribution, see [16, Chapter 6]. Alternatively, in
the situation treated in the present work, the SPDE has a gradient structure and an
explicit formula for the invariant distribution is available, see [16, Theorem 8.6.3]:

µ?(du) =
exp
(
−V (u)

)
Z

λ(du)
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for some Z ∈ (0,∞), where the reference measure λ is a Gaussian measure on H, defined
below in Section 7.1.2.

We are now in a position to explain how the SPDE dynamics fits into the general
framework presented in this article, in Section 2.

7.1.1. Setting. In the SPDE example, one has the following elements, see
Section 2.1.

• State space: S=H (infinite dimensional, separable, Hilbert space).

• Reaction coordinate: assume that Mm=T (with m= 1), E1 =R (with d= 1).

Then for instance ξ(u) = ξS(u) = 1
2 + 1

π arctan
(

1
2

∫ 1

0
u(x)dx

)
.

• Drift coefficient: D(V,A) =Lu−D
(
V −A◦ξS

)
. Diffusion operator: Σ is

the identity on S.

Since L is an unbounded linear operator on H, note that the drift is only defined on a
domain D(L)⊂H. This is one of the technical issues which are specific to the infinite
dimensional framework.

Remark 7.1. Note that, in general, there does not exist a function VA :R→R such
that the function V −A◦ξ :L2(0,1)→R satisfies D(V −A◦ξ)(u)(x) =∇VA(u(x)): the

bias is a nonlocal function of u, since it depends on the spatial average
∫ 1

0
u(y)dy, instead

of u(x) only.

The biased version (2.2) of the SPDE (7.1) is written as

duA(t) =LuA(t)dt−D
(
V −A◦ξS

)
(uA(t))dt+

√
2dW (t), (7.4)

with mild formulation

uA(t) =etLu0 +
√

2

∫ t

0

e(t−s)LdW (s)

−
∫ t

0

e(t−s)LDV (uA(s))ds+

∫ t

0

e(t−s)LD
(
A◦ξS

)
(uA(s))ds.

7.1.2. Invariant probability distribution. We now construct the total energy
function, and the reference measure λ on H.

First, the definition of the mapping V 7→E(V ) is straightforward: E(V ) =V . The
reference measure λ on S is defined as follows: it is the centered Gaussian probability
distribution on H with covariance operator L−1. This measure can be constructed
as follows: let

(
gn
)
n∈N? be a sequence of independent standard real-valued Gaussian

random variables (centered and with variance 1); then λ is the probability distribution
of the H-valued random variable

∑
n∈N?

1
nπ gnen.

Remark 7.2. One may check that λ defined as above is the distribution of the
Brownian Bridge on (0,1). This interpretation is specific to the choice of L and plays
no role in this article. On the contrary, the construction above, based on eigenvalues
and eigenvectors of L, is general.

It is straightforward to check that λ is the unique invariant distribution of (7.2)
when V = 0. More generally, for any function A :T→R of class C∞, the probability
distribution µA? on H, defined by

µA? (du) =
exp
(
−(V (u)−A(ξ(u)))

)
ZA

λ(du)
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where ZA∈ (0,∞) thanks to (7.3), is the unique invariant distribution of the biased
SPDE (7.4), see for instance [16].

7.1.3. Free Energy function. It remains to discuss how the free energy
function A? is defined: this is done using Definition 2.1, like in the finite dimensional
case. It is natural to choose π to be the Lebesgue measure on T. Indeed, the image

measure of the Gaussian distribution λ by the linear mapping u 7→
∫ 1

0
u(y)dy is a non-

degenerate Gaussian distribution on R; thus the image of λ by ξS is equivalent to the
Lebesgue measure on T. Then π0

? the image of µ0
? by ξ is equivalent to π.

7.2. ABP dynamics and convergence results. Let us first describe the dy-
namics of the ABP method, which generalizes (3.2) in the case where the diffusion
process is governed by a SPDE:

du(t) =Lu(t)dt−D
(
V −At ◦ξS

)
(u(t))dt+

√
2dW (t)

µt=
µ0+

∫ t
0

exp
(
−Ar◦ξS(u(r))

)
δu(r)dr

1+
∫ t
0

exp
(
−Ar◦ξS(u(r))

)
dr

exp
(
−At(z)

)
=
∫
TdK

(
z,ξS(u)

)
µt(du), ∀z∈Tm,

(7.5)

For simplicity, we have chosen the normalization operator N , with n(F ) =
∫
TF (z)dz.

The kernel function K :T×T→ (0,∞) satisfies Assumption 3.1.
As explained in Section 7.1 above, it is convenient to consider the mild formulation

for the SPDE dynamics: the first equation in (7.5) is understood as

u(t) =etLu0−
∫ t

0

e(t−s)LD
(
V −As ◦ξ

)
(u(s))ds+

√
2

∫ t

0

e(t−s)LdW (s).

Using Lemma 3.1 and standard techniques, the following generalization of Theorem 3.1
is obtained.

Theorem 7.1. Consider the framework of Section 7.1 (in particular assume that (7.3)
is satisfied), and assume that the kernel function K satisfies Assumption 3.1.

• There exists a unique continuous process t 7→ (u(t),µt,At), taking values in H×
P(H)×C0(Mm,(0,∞)), which is solution of the ABP system (7.5).

• For all k≥1, supt≥0E‖u(t)‖kH <+∞.

• There exist m∈ (0,∞) and
(
M (r)

)
r∈{0,1,···}∈ (0,∞) such that, almost surely,

At∈A, for all t∈R+, where{
F =

{
F ∈C∞(Mm);minF ≥m,max|∂kF |≤M (k),k≥0

}
,

A=
{
A=−log(F ); F ∈F

}
.

(7.6)

We are able to prove generalizations of Theorem 4.1 and of Corollary 4.2.

Theorem 7.2.
• Let ϕ∈C∞(H,R) be a bounded function, with bounded derivatives of any order.

Then, almost surely,

µt(ϕ) →
t→∞

µ?(ϕ).

• Define, for all z∈Mm,

A∞(z) =−log(µ?
(
K(z,·)

)
).
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Then, almost surely, for every `∈{0,1,. ..}, uniformly on Mm,

∂`At →
t→∞

∂`A∞.

The efficiency results from Section 4.3 may also be generalized: more precisely, the
convergence result (4.2), and Proposition 4.1 remain valid.

7.3. Some modifications for SPDEs. Compared with the finite dimensional
situation, observe that we only state the almost sure convergence of averages µt(ϕ) in
Theorem 7.2. The arguments used in the proof of Corollary 4.1 do not easily generalize
to the infinite dimensional setting, to prove almost sure convergence of µt.

There are also modifications when dealing with the solutions of the Poisson equa-
tions. To simplify the discussion, assume first that A= 0. Then the Poisson Equa-
tion (5.11) is written in the infinite dimensional setting, as

〈Lu−DV (u),DΨ(u)〉+ 1

2

∞∑
n=1

D2Ψ(u).(en,en) =ϕ(u)−µ?(ϕ), ∀u∈H, (7.7)

where the unknown is the function Ψ :H→R. In the Poisson equation above, the first
order derivative DΨ(u)∈H is interpreted as an element of H thanks to Riesz’s theorem.

For an arbitrary function Ψ of class C2 on H, it is not true in general that the
left-hand side is well-defined, for all u∈H, or even when u=u(t) is the diffusion process
evaluated at a time t≥0. Indeed, L is an unbounded operator, so Lu is not an element
of H in general. Moreover, the series may not be convergent.

In fact, the Poisson equation may be solved and all the terms make sense thanks
to regularity properties, which may be written in the form (7.8), where auxiliary norms
are introduced: for any α∈ (0,1), and any h∈H, let

‖h‖2α=

∞∑
n=1

λ2α
n |〈h,en〉|2∈ [0,∞] , ‖h‖2−α=

∞∑
n=1

λ−2α
n |〈h,en〉|2<∞.

We refer to [13, Chapters 4,5], for general results concerning the smoothing properties
of the transition semi-group in infinite dimension, and to [12, Proposition 6.1], and
[30, Chapter 4, Section 8], for their application to the analysis of Poisson equations.
Rigorous properties are often stated for spatial Galerkin approximations, with bounds
not depending on the dimension. We do not provide such details here, and directly
write the results in the Hilbert space H.

Using arguments from the references mentioned above, and taking care of the de-
pendence with respect to the function A to obtain uniform bounds on the set A, gener-
alizations of Propositions 5.2 and 5.3 are obtained.

Proposition 7.1. Let A∈A, and ϕ :H→R, of class C∞, bounded and with bounded
derivatives of any order.

There exists a unique solution Ψ(A, ·) of the Poisson Equation (5.11),

〈Lu−D
(
V −A◦ξ

)
(u),DΨ(u)〉+ 1

2

∞∑
n=1

D2Ψ(u).(en,en) =e−A(ξ(u))[ϕ(u)−µ?(ϕ)],

for all u∈H, with the condition
∫
H

Ψdµ?= 0.
This solution is given by

Ψ(A,u) =−
∫ ∞

0

Eu
[
ϕA
(
u(t)

)
]dt,
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for all u∈H, where ϕA(u) =e−A(ξ(u))[ϕ(u)−µ?(ϕ)].
Moreover, the following properties are satisfied.

• There exists C(ϕ)∈ (0,∞) such that, for all A∈A and u∈H,

|Ψ(A,u)|≤C(ϕ)(1+‖u‖2H).

• For every α∈ (0, 1
2 ), there exists C(α,ϕ)∈ (0,∞), such that, for all A∈A and

u∈H{
|〈DuΨ(A,u),h〉|≤C(α,ϕ)(1+‖u‖2H)‖h‖−2α, ∀ h∈H,
|D2

uΨ(A,u).(h,k)|≤C(α,ϕ)(1+‖u‖2H)‖h‖−α‖k‖−α, ∀ h,k∈H.
(7.8)

• For every α∈ (0, 1
4 ) and every n∈N, there exists C(α,n,ϕ)∈ (0,∞), such that

E‖u(t)‖nα≤C(α,n,ϕ)
(
1+ ‖u(0)‖H

tα

)n
.

• The function (t,u)∈ [0,∞)×H 7→Ψ(At,u) is of class C1,2, and for every u∈H
and every t≥0, almost surely

∣∣∂Ψ(At,u)

∂t

∣∣≤ C(1+‖u‖2)

1+ t
,

where
(
At
)
t≥0

is the A-valued process defined in (7.5).

A sketch of proof is postponed to Appendix 8.2. More precisely, we focus there on
the estimates (7.8), with A= 0 (to simplify the presentation), for α>0, since they are
the main novelty in the infinite dimensional framework.

The estimates (7.8) justify that all the terms in the left-hand side of (7.7) make
sense. First, if one assumes that ‖u‖ε<∞ for some ε>0, choosing 2α= 1−ε<1, gives
|〈Lu,DΨ(u)〉|<∞. Second,

∑∞
n=1‖en‖2−α=

∑∞
n=1λ

−2α
n <∞ for α> 1

4 .
Adapting the strategy of proof of Theorem 4.1, developed in Section 5.2, and using

Proposition 7.1 to control the terms, it is then straightforward to prove that

E
∣∣µt(ϕ)−µ?(ϕ)

∣∣2≤ C(ϕ)

t
→
t→∞

0.

The proof of the almost sure convergence result is obtained using the boundedness of
ϕ, and the same argument as in the finite dimensional case. This concludes the proof of
the first part of Theorem 7.2. The second part of Theorem 7.2, concerning the almost
sure convergence of At, is proved exactly as Corollary 4.2.

Thanks to the general framework developed in Section 2, the ABP method is also
applicable in the infinite dimensional setting, for metastable stochastic PDEs.
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Appendix. Results concerning Poisson equations.

8.1. The finite dimensional case. The aim of this section is to give a proof of
Proposition 5.3, stated in Section 5.2. More precisely, the key point is to prove that the
estimates are uniform with respect to A∈A, where A is defined by (3.3).



122 CONVERGENCE ANALYSIS OF ABP METHODS FOR DIFFUSION PROCESSES

To simplify the presentation, the analysis is restricted to functions ϕ which are
bounded and have bounded derivatives of any order. The general case ϕ∈C, having
polynomial growth (see (5.12)), may be treated using weight functions, using Assump-
tions 2.1 and 2.2. Thanks to Property 2.1, the weight functions may be chosen inde-
pendently of A∈A, hence estimates are uniform for A∈A.

Let ϕ be fixed, and recall the notation ϕA=e−A◦ξS
(
ϕ−µ?(ϕ)

)
. Moreover, Ψ(A,·)

is given by (5.13).

8.1.1. Auxiliary result: exponential convergence to equilibrium. Let
W :S→R+ be defined as follows. If the dynamics is given by the Brownian dynamics
(Section 2.2.1), set

W (x) =‖x‖.

If the dynamics is given by the Langevin dynamics (Section 2.2.2), set

W (q,p) =
√
V (q)+Q(q,p)

with Q(q,p) = γ2

4 ‖q‖
2 + γ

2 〈q,p〉+
1
2‖p‖

2. Here we assume without loss of generality that
V ≥0.

The case of the extended dynamics (Section 2.2.3) is treated like the Brownian
dynamics case.

Let
(
PAt
)
t≥0

denote the semi-group associated with the SDE (2.2), with A∈A.

Recall that µA? defined by (2.3) is the unique invariant distribution for this process.
The aim of this section is to prove that convergence to equilibrium is exponentially

fast, uniformly with respect to A∈A.

Proposition 8.1. There exists ϑ>0 and C ∈ (0,∞) such that for every measurable

function ϕ :S→R with ‖ϕ‖W := sup |ϕ(x)|
1+W (x) <∞,A∈A and t≥0,∣∣PAt ϕ(x)−µA? (ϕ)
∣∣≤Ce−ϑt(1+W (x))‖ϕ‖W , (8.1)

In addition, for functions ϕ :S→R such that ‖ϕ‖W <∞, almost surely

1

t

∫ t

0

ϕ(XA
r )dr →

t→∞

∫
ϕdµA? . (8.2)

We first state a version of Harris Theorem. Let E be a measurable set, and W :
E 7→R+ be a measurable map. Following [26], define for every 0≤β≤1 and f :E 7→R
measurable (possibly unbounded),

‖f‖β,W = sup
x,y

|f(x)−f(y)|
2+β(W (x)+W (y))

.

Lemma 8.1. Let P and Q be two Markov kernels over E . Assume there exist 0≤ρ<
1,κ≥0,R≥ 2κ

1−ρ ,ε>0,δ≥0 and ψ a probability distribution over E such that

(1) PW ≤ρW +κ,QW ≤ρW +κ;

(2) For all x∈WR :={y∈E : W (y)≤R} P (x,dy)≥ εψ(dy) and |δxP −δxQ|1,W ≤ δ.
Then, there exist 0≤β≤1 and 0≤θ<1 such that

‖P‖β,W ≤θ, and ‖Q‖β,W ≤θ+δ.
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Here ‖P‖β,W stands for sup{‖Pf‖β,W : ‖f‖β,W ≤1}.

The first statement (concerning P ) rephrases Theorem 3.1 in [26]. The proof of the
second one (concerning Q) easily follows from the proof of the first one.

Lemma 8.2. For each A∈A there exists TA>0,0≤βA≤1,0≤θA<1 and δA>0 such
that for all B∈A,

‖A−B‖C1 ≤ δ⇒‖PBT ‖β,W ≤θ,

where ‖A−B‖C1 = max|A−B|+max |∂A−∂B|.

Proof. Let VA(q) =V (q)−A(ξ(q)). Replacing V by V +c for some c>0 we can
assume without loss of generality that VA≥0 for all A∈A. Thanks to Property 2.1,
there exist positive constants α=αA,κ=κA such that for all A∈A

LAW 2
A≤−2αW 2

A+2ακ2,

where LA is the infinitesimal generator of the SDE (2.2) and WA is defined like W with
VA in place of V . Then, by standard Itô calculus,

PAt W
2
A≤e−2αtW 2

A+κ2. (8.3)

Replacing κ2 by κ2 +2(|m|∧|M |) and using the fact that ‖W 2−W 2
A‖≤‖A‖∞≤|m|∧

|M |, we then obtain

PAt W
2≤e−2αtW 2 +κ2. (8.4)

Also, by Hölder’s inequality,

PAt W ≤
√
e−2αtW 2 +κ2≤e−αtW +κ. (8.5)

By classical ellipticity (Brownian) or hypoellipticity (Langevin) results (see e.g [28]),
for any given A∈A:

(a) For all t>0 there exists a smooth function (x,y) 7→pAt (x,y) such that

PAt (x,dy) =pAt (x,y)dy

(b) (PAt )t≥0 is a strong Feller semi-group.

Given A∈A,x0∈S and t0>0 one can then find y0∈S such that

pAt0(x0,y0)>0 (8.6)

The strong Feller property combined with the existence of an invariant probability
having full support (here µA? ) makes (PAt ) positively recurrent (see e.g [28], Section 5).
In particular, the almost sure convergence property (8.2) is satisfied, and for all x∈S
and every neighborhood U of x, there exists τ >0 such that

PAτ (x,U)>0. (8.7)

Using (8.6) and (8.7), it is then proved that, for every compact set K⊂S, there exist
T >0, a bounded open set V and ε>0, such that

PT (x,dy)≥ ε1V (y)dy, ∀x∈K.
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Applying Lemma 8.1, with P =PAT and K=WR,

‖PAT ‖β,W <θ

for some 0≤β≤1 and 0≤θ<1.
We now claim that |δxPAT −δxPBT |1,W→0 uniformly in x∈WR when ‖A−B‖C1→0.
Let f be such that ‖f‖1,W ≤1. Replacing f by f−f(x0), without loss of generality

it is assumed that |f(x)|≤C+W (x), with C= 2+W (x0). By Girsanov’s theorem,

PAT f(x)−PBT f(x) =Ex(f(XA
T )−f(XB

T )) =Ex(f(XA
T )(1−MT ))

where (Mt) is the martingale defined as

Mt= exp(−
∫ t

0

〈us,dW̃s〉−
1

2

∫ t

0

‖us‖2ds)

and us=∇(A◦ξ−B ◦ξ)(XB
s ) (Brownian case), us= (2γ)−1/2(∇(A◦ξS−B ◦ξS)(XB

s ))
(Langevin case). Thus, for all x∈WR

|PAT f(x)−PBT f(x)|≤Ex((C+W (XA
T ))|1−MT |)≤ (C+

√
PAT W

2(x))
√

Ex(M2
T −1).

≤ (C+R+κ)
√

Ex(M2
T −1),

thanks to Hölder’s inequality and to (8.4). Observe that M2
t =M̃te

∫ t
0
‖us‖2ds where

(M̃t) is a nonnegative martingale. Therefore 1≤E(M2
T )≤ecT ‖A−B‖

2
C1 with cT =

Tmax(1,(2γ)−1)‖Dξ‖2.
This concludes the proof of the claim. The result then follows from applying

Lemma 8.1.

We are now in a position to conclude.

Proof. (Proof of Proposition 8.1.) By Ascoli’s theorem, A is relatively compact
for the C1 topology. Thus, thanks to Lemma 8.2, there exists a finite covering of
A by open sets (for the C1 topology) O1,. ..,ON (i.e A⊂∪Ni=1Oi), and parameters
0≤βi≤1,ti>0, and 0≤θi<1, such that for all A∈Oi

‖PAti ‖βi,W ≤θi.

Let θ= max
i=1,...,N

θi<1. Note that for all β>0

‖ϕ‖1,W ≤‖ϕ‖β,W ≤
1

β
‖ϕ‖1,W ≤

1

β
‖ϕ‖W ,

while, by (8.5), for all r≥0

‖PAr ϕ‖W ≤‖ϕ‖W (1+κ).

Thus, for A∈Oi,t=kti+r,k∈N and 0≤ r<ti,

‖PAt ϕ‖1,W ≤‖PAt ϕ‖βi,W ≤θk‖PAr ϕ‖βi,W ≤
θk

βi
‖ϕ‖W (1+κ).
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That is

‖PAt ϕ‖1,W ≤e−ϑtC‖ϕ‖W

with ϑ= mini
− log(θ)

ti
and C= maxi

1+κ
βiθ

. Equivalently, for all x,y,

|PAt ϕ(x)−PAt ϕ(y)|≤e−ϑtC‖ϕ‖W (2+W (x)+W (y)).

Hence, integrating in y,

|PAt ϕ(x)−µ∗A(ϕ)|≤e−ϑtC‖ϕ‖W (2+W (x)+µ∗AW )≤e−ϑtC‖ϕ‖W (2+W (x)+κ).

This concludes the proof.

8.1.2. Proof of Proposition 5.3. In the proof below, the values of C ∈ (0,∞)
and p∈N? may change from line to line. Note that if ϕ is bounded, then ‖ϕ‖W ≤
‖ϕ‖∞= supϕ(x).

The properties of V given by Assumptions 2.1 and 2.2 play a key role in the estimate.
Recall that Property 2.1 then allows to get estimates which are uniform with respect to
A∈A. As already explained, the technical computations are not reported here.

(i) Thanks to Property 2.1, and to Proposition 8.1, applied with ϕ=ϕA, there
exist ϑ∈ (0,∞), C(ϕ)∈ (0,∞) and p∈N?, such that for every A∈A, then for
all x∈S and t≥0, one has∣∣Ex[ϕA(XA

t )
]∣∣≤C‖ϕ‖∞e−ϑt(1+W (x)

)
. (8.8)

Integrating from t= 0 to t=∞, using (5.13) and the polynomial growth as-
sumption on V , gives (5.14).

(ii) The inequality (8.8) may be rewritten as follows: for all A∈A, x∈S and t≥0,

‖PAt ϕA‖W ≤C‖ϕ‖∞e−ϑt, (8.9)

where we recall that
(
PAt
)
t≥0

is the transition semi-group associated with XA.

The elliptic and hypoelliptic cases need to be treated separately.
Consider first the elliptic case (Brownian dynamics). The idea is to adapt the
arguments in [30, Chapter 2, Section 6], and to check that all estimates are
uniform with respect to A∈A. First, by direct estimates of the derivatives
(using in particular the semi-convexity property of V ), when t∈ [0,1],

|∇xPAt ϕA(x)|≤C(1+W (x))‖∇xϕA‖∞≤C(1+W (x))(‖ϕ‖∞+‖∇xϕ‖∞).

Second, for t≥1, let φAt =PAt−1ϕ
A. Using the semi-group property, and the

Bismut-Elworthy-Li formula, with constants which do not depend on A∈A,

|∇xPAt ϕA(x)|= |∇xP1φ
A
t (x)|≤C‖φAt ‖W (1+W (x)).

Using (8.9) to have an estimate of ‖φAt ‖W , then integrating separately from
t= 0 to t= 1 and from t= 1 to t=∞ gives (5.15).
Consider now the hypoelliptic case (Langevin dynamics). The idea is to adapt
the arguments in [30, Chapter 3, Section 6], and to check that all estimates
are uniform with respect to A∈A. Again (8.9) is a fundamental ingredient.
Estimates in Sobolev norms of PAt ϕ

A and of its derivatives are obtained. Then
pointwise estimates are obtained using a Sobolev imbedding theorem. All the
estimates are uniform with respect to A∈A. The long and technical calculations
are omitted.
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(iii) Since Ft∈F for all t≥0, almost surely, thanks to Theorem 3.1, then
min
z∈Mm

F t(z)≥m for all t≥0, almost surely, for some m∈ (0,∞).

Moreover, F t(z) =µt
(
K(z,·)

)
; thanks to Assumption 3.1 and to the ODE (5.1),

for every k∈{0,1,. ..}, there exists C(k)∈ (0,∞) such that

sup
z∈Mm

∣∣d(∂kAt(z))
dt

∣∣≤ C(k)

1+ t
. (8.10)

For every t>0, every ε∈ (−t,1), note that

LAt+εY Ψ(At+ε, ·)−LAtY Ψ(At, ·) = 0,

thanks to (5.7). Passing to the limit ε→0 yields

LAtY
∂Ψ(At, ·)

∂t
=−

(∂LAtY
∂t

)
Ψ(At, ·)

=
(dAt ◦ξS

dt
LAtY +

d

dt

(
eAt◦ξS 〈D(V,At),∇·〉

))(
Ψ(At,·)

)
.

Considering each example for the definition of the drift function D(V,Bs), it

is straightforward to check that −
(
dLAtY
ds

)
Ψ(At, ·)∈C is a function of class C∞

with polynomial growth; and, moreover, that for every k∈{0,1,. ..}, there exist
pk≥0 and C(k)∈ (0,∞) such that

sup
y∈S

∣∣Dk
(∂LAtY

∂t

)
Ψ(At,·)(x)

∣∣≤ C(k)(1+ |x|pk)

1+ t
,

thanks to the inequality (8.10), and the estimate (5.15) on the gradient
∇xΨ(At,x).
Thanks to Proposition 5.2, one then concludes the proof of (5.16).

8.2. The infinite dimensional case. The aim of this section is to provide a
proof of the estimates (7.8) which are specific to the infinite dimensional framework. As
explained above, we only focus on the case A= 0, and to simplify notation, ϕ=ϕ0 and
Ψ = Ψ(0, ·).

Introduce the semi-group
(
Pt
)
t≥0

, such that for all t≥0

Ptϕ(u) =Eu[ϕ0(u(t))].

8.2.1. First-order derivative. We claim that

|〈DPtϕ(u),h〉|≤e−γt sup
v∈H
‖Dϕ(v)‖‖h‖, ∀ t≥0

|〈DPtϕ(u),h〉|≤
Cα supv∈H ‖Dϕ(v)‖

t2α
‖h‖−2α, ∀ t∈ (0,1].

(8.11)

Then using the semi-group property Pt=P1Pt−1, for all t≥1,

|〈DPtϕ(u),h〉|≤Cα sup
v∈H
‖D(Pt−1ϕ)(v)‖‖h‖−2α

≤Cαe−γ(t−1) sup
v∈H
‖Dϕ(v)‖‖h‖−2α.
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By integrating, this yields the first estimate in (7.8).
It remains to prove the claim (8.11). Note that

〈DPtϕ(u),h〉=E[〈Dϕ0(u(t)),ηh(t,u)〉],

where ηh(0,u) =h and

dηh(t,u) =Lηh(t,u)dt−V ′′(u(t))ηh(t,u)dt.

The proof of the first inequality of (8.11) is straightforward:

1

2

d‖ηh(t,u)‖2

dt
= 〈Lηh(t,u),ηh(t,u)〉−〈V ′′(u(t))ηh(t,u),ηh(t,u)〉

≤−(λ1−sup
x∈R
|V ′′(x)|)‖ηh(t,u)‖2

≤e−γt‖h‖2,

with γ=λ1−supx∈R |V ′′(x)|>0 thanks to (7.3).
The second inequality of (8.11) is obtained using the mild formulation of the equa-

tion for ηh(t,u) and regularization properties of the semi-group
(
etL
)
t≥0

:

‖ηh(t,u)‖H ≤‖etLh‖H +

∫ t

0

‖e(t−s)L(V ′′(u(s))ηh(s,u)
)
‖Hds

≤C(α)t−2α‖(−L)−2αh‖H +C

∫ t

0

‖ηh(s,u)‖Hds,

and ‖(−L)−2αh‖H =‖h‖−2α. Thanks to Grönwall’s Lemma, there exists C(α)∈ (0,∞)
such that for all t∈ (0,1],

‖ηh(t,u)‖H ≤C(α)t−2α‖h‖−2α,

which yields the required estimate.

8.2.2. Second-order derivative. We claim that, for some γ̃∈ (0,γ),

|D2Ptϕ(u).(h,k)|≤C
(
sup
v∈H
‖Dϕ(v)‖+ sup

v∈H
‖D2ϕ(v)‖

)
e−γ̃t‖h‖‖k‖, ∀ t≥0

|D2Ptϕ(u).(h,k)|≤
Cα
(
supv∈H ‖Dϕ(v)‖+supv∈H ‖D2ϕ(v)‖

)
t2α

‖h‖−α‖k‖−α, ∀ t∈ (0,1].

(8.12)
The proof uses the following identity:

D2Ptϕ(u).(h,k) =E
[
〈Dϕ(u(t)),ζh,k(t,u)〉

]
+E
[
D2ϕ(u(t)).(ηh(t,u),ηk(t,u))

]
,

where ζh,k(0,u) = 0 and

dζh,k(t,u) =Lζh,k(t,u)dt−V ′′(u(t))ζh,k(t,u)dt−V(3)(u(t))ηh(t,u)ηh(t,u)dt.

The two following inequalities are used in the proof:

• the Gagliardo-Nirenberg inequality, for every v∈H1
0 (0,1)

‖v‖L∞(0,1)≤C‖v‖
1
2

L2(0,1)‖v‖
1
2

H1(0,1),

combined with ‖v‖H1(0,1)≤C‖(−L)
1
2 v‖L2(0,1) =C‖v‖ 1

2
,
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• the Sobolev inequality ‖·‖L4(0,1)≤C‖·‖ 1
8
, which implies

‖etL‖L(L2(0,1),L4(0,1))≤Ct−
1
8 .

To prove the first inequality in (8.12), an energy estimate and the use of the
Gagliardo-Nirenberg and Young’s inequalities, give

1

2

d‖ζh,k(t,u)‖2L2(0,1)

dt
+‖(−L)

1
2 ζh,k(t,u)‖2L2(0,1)

≤‖V ′′‖∞‖ζh,k(t,u)‖2L2(0,1)

+‖V(3)‖∞‖ζh,k(t,u)‖L∞(0,1)‖ηh(t,u)‖L2(0,1)‖ηk(t,u)‖L2(0,1)

≤(λ1−γ+ε)‖ζh,k(t,u)‖2L2(0,1) +ε‖(−L)
1
2 ζh,k(t,u)‖2L2(0,1)

+
C

ε
‖ηh(t,u)‖2L2(0,1)‖η

k(t,u)‖2L2(0,1),

for ε>0 sufficiently small.
Using the Poincaré inequality ‖(−A)

1
2 ·‖2L2(0,1)≥λ1‖·‖L2(0,1), then

1

2

d‖ζh,k(t,u)‖2L2(0,1)

dt
≤−

(
γ−(1+λ1)ε

)
‖ζh,k(t,u)‖2L2(0,1) +Cεe

−4γt‖h‖2L2(0,1)‖k‖
2
L2(0,1).

By Grönwall’s Lemma, since ζh,k(0,u) = 0,

‖ζh,k(t,u)‖2L2(0,1)≤
∫ t

0

e−2
(
γ−(1+λ1)ε

)
(t−s)e−4γsds‖h‖2L2(0,1)‖k‖

2
L2(0,1)

≤Cεe−2
(
γ−(1+λ1)ε

)
t‖h‖2L2(0,1)‖k‖

2
L2(0,1).

This concludes the proof of the first estimate in (8.12).
To obtain the second inequality in (8.12), it is sufficient to estimate (using the mild

formulation)

‖ζh,k(t,u)‖≤
∫ t

0

‖e(t−s)L(V ′′(u(s))ζh,k(s,u)
)
‖ds

+

∫ t

0

‖e(t−s)L(V(3)(u(s))ηh(s,u)ηk(s,u)
)
‖ds

≤C
∫ t

0

‖ζh,k(s,u)‖ds+

∫ t

0

‖e(t−s)L‖L(L1,L2)‖ηh(s,u)‖‖ηk(s,u)‖ds

≤C
∫ t

0

‖ζh,k(s,u)‖ds+

∫ t

0

Cα,ε

(t−s) 1
4 +εs2α

ds‖(−L)−αh‖‖(−L)−αk‖

≤C
∫ t

0

‖ζh,k(s,u)‖ds+
Cα
t2α
‖h‖−α‖k‖−α,

and the conclusion follows from Grönwall’s Lemma.
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[15] J. Comer, J. C. Gumbart, J. Hénin, T. Lelièvre, A. Pohorille, and C. Chipot, The adaptive biasing
force method: Everything you always wanted to know but were afraid to ask, J. Phys. Chem.
B, 119(3):1129–1151, 2014. 1

[16] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical
Society Lecture Note Series, Cambridge University Press, Cambridge, 229, 1996. 7.1, 7.1.2

[17] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Math-
ematics and its Applications, Cambridge University Press, Cambridge, Second Edition, 152,
2014. 7.1, 7.1

[18] E. Darve and A. Pohorille, Calculating free energies using average force, J. Chem. Phys.,
115(20):9169–9183, 2001. 1
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[30] M. Kopec, Quelques contributions à l’analyse numérique d’équations stochastiques, PhD Thesis,

https://doi.org/10.1016/j.crma.2016.05.011
https://link.springer.com/article/10.1007%2Fs004400100161
https://www.researchgate.net/publication/278435524_Self-interacting_diffusions_II_Convergence_in_law/amp
http://dx.doi.org/10.1214/009117905000000251
https://projecteuclid.org/euclid.ejp/1464820235
https://link.springer.com/book/10.1007%2F978-3-642-75894-2
https://projecteuclid.org/euclid.ejp/1465064249
https://link.springer.com/book/10.1007/978-3-319-24777-9
https://doi.org/10.1051/proc/201448017
https://doi.org/10.1093/imanum/drw030
https://doi.org/10.1093/imanum/drw030
https://link.springer.com/book/10.1007/b80743
https://doi.org/10.1137/10080600X
http://dx.doi.org/10.1021%2Fjp506633n
https://doi.org/10.1112/S0024609397243286
https://www.bookdepository.com/Stochastic-Equations-Infinite-Dimensions-Giuseppe-Da-Prato/9781107055841
https://www.bookdepository.com/Stochastic-Equations-Infinite-Dimensions-Giuseppe-Da-Prato/9781107055841
https://doi.org/10.1063/1.1410978
https://pubs.acs.org.ccindex.cn/doi/10.1021/jp100926h
https://doi.org/10.1016/j.sbi.2016.11.007
http://www.springerlink.com/content/978-3-662-12880-0
https://iopscience.iop.org/article/10.1088/0305-4470/15/10/011/meta
https://doi.org/10.1093/amrx/abu003
https://doi.org/10.1090/S0025-5718-2015-02952-4 
https://link.springer.com/article/10.1007%2Fs11222-015-9613-2
https://link.springer.com/chapter/10.1007%2F978-3-0348-0021-1_7
https://aip.scitation.org/doi/10.1063/1.1773132
https://link.springer.com/article/10.1007%2FBF00533476
https://link.springer.com/article/10.1007%2FBF00533476
https://doi.org/10.1051/m2an/2010044


130 CONVERGENCE ANALYSIS OF ABP METHODS FOR DIFFUSION PROCESSES

ENS Rennes., 2014. 7.3, 8.1.2
[31] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive Algorithms and Applica-

tions, Second Edition, Appl. Math., Stochastic Modelling and Applied Probability, Springer-
Verlag, New York, 35, 2003. 1.1, 1.3, 5

[32] A. Laio and M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA,
99(20):12562–12566, 2002. 1
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