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THE 3D NONLINEAR DISSIPATIVE SYSTEM MODELING
ELECTRO-DIFFUSION WITH BLOW-UP IN ONE DIRECTION∗

QIAO LIU†

Abstract. This paper establishes a sufficient condition for the breakdown of local smooth so-
lutions, to the Cauchy problem of the 3D Navier–Stokes/Poisson–Nernst–Planck system modeling
electro-diffusion, via one directional derivative of the horizontal component of the velocity field (i.e.,
(∂iu1,∂ju2,0) where i,j∈{1,2,3}) in the framework of the anisotropic Lebesgue spaces. More precisely,
let T∗>0 be the finite and maximum existence time of local smooth solution. Then∫ T∗

0

(∥∥∥‖∂iu1(t)‖Lαxi

∥∥∥q
L
β
x
î
x
ĩ

+
∥∥∥‖∂ju2(t)‖Lαxj

∥∥∥q
L
β
x
ĵ
x
j̃

)
dt= +∞,

with 2
q

+ 1
α

+ 2
β

=m∈ [1, 3
2

) and 3
m
<α≤β≤ 1

m−1
, where (i, î, ĩ) and (j, ĵ, j̃) belong to the permutation

group on the set S3 :={1,2,3}. This reveals that the horizontal component of the velocity field plays a
more dominant role than the density functions of charged particles in the blow-up theory of the system.
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1. Introduction
In this paper, we consider sufficient conditions for the breakdown of local smooth

solutions to the Cauchy problem of the following 3D Navier–Stokes/Poisson–Nernst–
Planck system modeling electro-diffusion, which is governed by nonlinear coupling be-
tween the conventional Navier–Stokes equations of an incompressible fluid and the trans-
ported Poisson–Nernst–Planck equations of a binary diffuse charge densities:

∂tu+(u ·∇)u−µ∆u+∇P =ε∇·σ, (x,t)∈R3×R+,

∇·u= 0, (x,t)∈R3×R+,

∂tv+(u ·∇)v=∇·(D1∇v−ν1v∇Ψ), (x,t)∈R3×R+,

∂tw+(u ·∇)w=∇·(D2∇w+ν2w∇Ψ), (x,t)∈R3×R+,

∆Ψ =v−w, (x,t)∈R3×R+,

(u,v,w)|t=0 = (u0,v0,w0), x∈R3.

(1.1)

Here, u= (u1,u2,u3) is the velocity field, P is the pressure, Ψ is the electric poten-
tial, v and w are the densities of binary diffuse negative and positive charges (e.g.,
ions), respectively. The electric stress σ stems from the balance of kinetic energy with
electrostatic energy via the least action principle (cf. [30]), and is given by

[σ]ij =
(
∇Ψ⊗∇Ψ− 1

2
|∇Ψ|2I

)
ij

=∂iΨ∂jΨ−
1

2
|∇Ψ|2δij for i,j= 1,2,3, (1.2)

where ⊗ denotes the tensor product, I is 3×3 identity matrix and δij is the Kronecker
symbol. µ is the kinematic viscosity, ε is the dielectric constant of the fluid, known as
the Debye length, related to vacuum permittivity, the relative permittivity and charac-
teristic charge density. D1 = kT0ν1

e , D2 = kT0ν2
e , ν1 and ν2 are the diffusion and mobility
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coefficients of the charges1. Since the concrete values of the constants µ,ε,D1,D2,ν1
and ν2 play no roles in our discussion, for simplicity, we shall assume them to be all
equal to one throughout the paper.

System (1.1), first proposed by Rubinstein [28], is capable of describing electro-
chemical and fluid-mechanical transport throughout the cellular environment, we also
refer the readers to [1, 12, 20, 30, 33] and the related references therein for more de-
tails of physical background and applied aspects about this model. For mathematical
analysis, based on Kato’s semigroup framework, Jerome [19] established the local ex-
istence of smooth solutions to (1.1). The global existence of weak solutions of the
initial/boundary-value problem to (1.1) has been established by Jerome–Sacco [21], Ry-
ham [29] and Schmuck [33]. Recently, Bothe–Fischer–Saal [5] proved the existence of
unique local strong solutions in bounded domains Ω⊂Rn for any n≥2, as well as the
existence of unique global strong solutions and exponential convergence to uniquely
determined steady states in two dimensions; moreover, based on the intrinsic energy
structure, Aubin–Simon’s compactness arguments, and maximal Lp-regularity, Fischer–
Saal [16] further established global existence of weak solutions in a three-dimensional
bounded domain. For the Cauchy problem, the small data global existence and large
data local existence of strong solutions in various scaling invariant spaces have been
studied by [11,35,38–40]. Notice that the Navier–Stokes (N-S) equations is a subsystem
of (1.1) (i.e., v=w= Ψ = 0), one can not expect better results than for the N-S equa-
tions. Hence, in the case of three dimensional space, the regularity and uniqueness of
global weak solutions or global existence of smooth solutions to system (1.1) are still
challenging open problems. Some regularity and uniqueness issues have been studied
by [13,15] even for more general system for the electro–kinetic fluid model.

In the present paper, we are interested in the blow-up issue for the short time
smooth solution of system (1.1). It is well-known that if the divergence-free initial
velocity u0∈H3(R3), initial charged densities v0,w0∈L1(R3)∩H2(R3) and v0,w0≥0,
then there exists a time T∗=T∗(u0,v0,w0)>0 such that system (1.1) admits a unique
local solution (u,v,w)∈R3× [0,T∗) satisfying (cf. [37])

u∈C([0,T ];H3(R3))∩L∞(0,T ;H3(R3))∩L2(0,T ;H4(R3)), (1.3)

and

v,w∈C([0,T ];H2(R3))∩L∞(0,T ;H2(R3))∩L2(0,T ;H3(R3)), (1.4)

for all 0<T <T∗. Moreover, it holds that v≥0 and w≥0 a.e. in R3× [0,T∗). Here we
emphasize that such an existence theorem gives no indication as to whether solutions
actually lose their regularity or the manner in which they may do so. Assume that T∗
is the maximum value such that (1.3) and (1.4) hold, the purpose of this paper is to
characterize such a T∗.

To illuminate the motivations of our paper in detail, let us recall the well-known
results for the 3D N-S equations, after the celebrated works of Leray [24] and Hopf
[18] on the global existence of weak solutions, the global regularity issue has been
extensively investigated and many important regularity criteria have been established
(e.g., [3, 4, 6, 7, 10, 14, 17, 22, 23, 25–27, 31, 32, 34, 41] and the references therein). The
well-known Prodi–Serrin’s conditions (see [10,26,34]) state that if 0<T∗<∞ is the first

1Here T0 is the ambient temperature, k is the Boltzmann constant, and e is the charge mobility.
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finite singular time of local smooth solution u, then∫ T∗

0

‖u(t)‖qLpdt= +∞ for all
2

q
+

3

p
≤1,2<q≤∞ and 3≤p<∞. (1.5)

Beirão da Veiga [3] established another Prodi–Serrin-type criterion by replacing (1.5)
as ∫ T∗

0

‖∇u(t)‖qLpdt= +∞ for all
2

q
+

3

p
≤2,1≤ q<∞ and

3

2
<p≤∞. (1.6)

Beale–Kato–Majda in [2] proved that the vorticity ω=∇×u will break down at the
first finite singular time T∗, i.e.,∫ T∗

0

‖ω(t)‖L∞dt= +∞. (1.7)

Further regularity criteria via only one velocity component or one of the entries of the
velocity gradient tensor or the pressure can be found in [6–9,14,27,41] and the references
therein. Here we would like to mention that Zhou–Pokorný [41] established that the
local smooth solution u to the 3D N-S equations can be continued past any time T >0
provided that there holds∫ T

0

‖u3(t)‖qLpdt<+∞ with
2

q
+

3

p
≤ 3

4
+

1

2p
and

10

3
<p<∞, (1.8)

or ∫ T

0

‖∇u3(t)‖qLpdt<+∞ with
2

q
+

3

p
≤

{
19
12 + 1

2p , p∈ ( 30
19 ,3],

3
2 + 3

4p , p∈ (3,∞].
(1.9)

Notice that the property of scaling invariance plays an important role in studying the
regularity theory of the solution, namely, if u solves the 3D N-S equations, then so does
uλ for all real numbers λ>0, where uλ(x,t) =λu(λx,λ2t). Considering from this view of
point, we can find that criteria (1.8) and (1.9) obtained by Zhou–Pokorný are away from
the critical scale. Later, Chemin–Zhang [8] and Chemin–Zhang–Zhang [9] established

that for u0∈ Ḣ
1
2 (R3) with ∇×u0∈L

3
2 (R3)∩L2(R3), if the Leray–Hopf weak solution u

to the 3D N-S equations satisfies∫ T

0

‖u3(t)‖q
Ḣ

1
2
− 2
q

dt<∞ with 4<q<∞, (1.10)

then u is regular on R3×(0,T ). Since the Sobolev embedding theorem yields that if∫ T

0

‖∇u3(t)‖qLpdt<∞ with
2

q
+

3

p
= 2,4<q<∞ and

3

2
<p<2, (1.11)

then (1.10) holds. Hence, criterion (1.10) implies that the Leray–Hopf weak solution u
of the 3D N-S equations satisfying (1.11) is regular on R3×(0,T ). In a recent paper [27],
Qian proved the regularity criteria in terms of only one of the nine components of the
gradient of velocity field in the framework of anisotropic Lebesgue spaces, precisely, by
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using the method introduced in Cao–Titi [6,7]. The author established that if the local
smooth solution u of the 3D N-S equations satisfies∫ T

0

∥∥∥‖∂iuj(t)‖Lαxi∥∥∥qLβxjxk dt<+∞ with i,j= 1,2,3 and i 6= j, (1.12)

where 2
q + 1

α + 2
β ≤

2αβ+5β+α
4αβ , 1≤α≤β and 7α

2α+1 <β<∞, or∫ T

0

∥∥∥‖∂juj(t)‖Lαxi∥∥∥qLβxjxk dt<+∞ with j= 1,2,3, (1.13)

where 2
q + 1

α + 2
β ≤

3αβ+4β+2α
4αβ , 1≤α≤β and 2<β≤∞, then u is smooth up to time T .

As for system (1.1), Zhao–Bai [37] established that the Prodi–Serrin’s criteria (1.5),
(1.6) and the Beale–Kato–Majda’s criterion (1.7) still hold for the local smooth solutions
to (1.1). Moreover, the authors also showed that if 0<T∗<∞ is the first finite singular
time of the smooth solution (u,v,w), then it holds that∫ T∗

0

‖∇huh(t)‖Ḃ0
∞,∞

dt= +∞, (1.14)

where ∇h, (∂1,∂2), uh, (u1,u2,0) is the horizontal component of the velocity field
u, and Ḃ0

∞,∞ is the homogeneous Besov space. Recently, Zhao [36] established the
following logarithmic Beale–Kato–Majda-type criterion, i.e.,

∫ T∗

0

‖ω(t)‖
2

2−α

Ḃ−α∞,∞

1+ln(e+‖ω(t)‖Ḃ−α∞,∞)
dt= +∞ for all 0<α<2.

These results reveal an important fact that the velocity field u plays a more dominant
role than the charge densities v and w in the blow-up theory for local smooth solutions
to system (1.1). Motivated by the papers cited above for the N-S equations and for
system (1.1), the purpose of this paper is to establish a sufficient condition, which is in
terms of one directional derivative of the horizontal component of the velocity field (i.e.,
(∂iu1,∂ju2,0) with i,j∈{1,2,3}), to control the breakdown of local smooth solutions of
the system (1.1) in the framework of anisotropic Lebesgue spaces. Before stating our
main result, let us first recall the following definition of the anisotropic Lebesgue spaces:

Definition 1.1. Let 1≤p,q,r≤∞. We say that a function f belongs to
Lp(Rx1

;Lq(Rx2
; Lr(Rx3

))) if f is measurable on R3 and the following norm is finite:

∥∥∥∥∥∥∥‖f‖Lpx1∥∥∥Lqx2
∥∥∥∥
Lrx3

:=

∫
R

(∫
R

(∫
R
|f(x1,x2,x3)|pdx1

) q
p

dx2

) r
q

dx3

 1
r

with the usual change as p=∞ or q=∞ or r=∞.

Now, we state our main result as follows:

Theorem 1.1. For u0∈H3(R3) with ∇·u0 = 0, (v0,w0)∈L1(R3)∩H2(R3) and v0,w0≥
0, let T∗>0 be the finite and maximum value such that the 3D Navier–Stokes/Poisson–
Nernst–Planck system (1.1) has a unique local smooth solution (u,v,w) on (0,T∗). Then∫ T∗

0

(∥∥∥‖∂iu1(t)‖Lαxi
∥∥∥q
Lβx

î
x
ĩ

+
∥∥∥‖∂ju2(t)‖Lαxj

∥∥∥q
Lβx

ĵ
x
j̃

)
dt= +∞, (1.15)
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where

2

q
+

1

α
+

2

β
=m∈ [1,

3

2
) and

3

m
<α≤β≤ 1

m−1
. (1.16)

Here, (i, î, ĩ) and (j, ĵ, j̃) belong to the permutation group of S3 :={1,2,3}.

Remark 1.1. By Theorem 1.1, one obtains that if there exists a finite constant M>0
such that the corresponding velocity u satisfies∫ T∗

0

(∥∥∥‖∂iu1(t)‖Lαxi
∥∥∥q
Lβx

î
x
ĩ

+
∥∥∥‖∂ju2(t)‖Lαxj

∥∥∥q
Lβx

ĵ
x
j̃

)
dt≤M, (1.17)

with 2
q + 1

α + 2
β =m∈ [1, 32 ) and 3

m <α≤β≤ 1
m−1 , then the local smooth solution (u,v,w)

to system (1.1) can be extended beyond the time T∗.

Remark 1.2. We emphasize that if i= j= 3, the blow-up criterion (1.15) in Theorem
1.1 becomes ∫ T∗

0

∥∥∥‖∂3uh(t)‖Lαx3
∥∥∥q
Lβx1x2

dt= +∞,

with
2

q
+

1

α
+

2

β
=m∈ [1,

3

2
) and

3

m
<α≤β≤ 1

m−1
, (1.18)

where uh= (u1,u2,0) is the horizontal component of u. Furthermore, when we fix α=β,
then (1.18) becomes ∫ T∗

0

‖∂3uh(t)‖qLβ dt= +∞,

with
2

q
+

3

β
=m∈ [1,

3

2
) and

3

m
<β≤ 1

m−1
.

Hence, Theorem 1.1 can be viewed as a generalization of (1.14) obtained by Zhao–
Bai [37].

Remark 1.3. When v=w= Ψ = 0, system (1.1) becomes the 3D N-S equations.
From Theorem 1.1 (see also Remark 1.1), one finds that for u0∈H1(R3) with divu0 = 0,
assume that u is the corresponding local smooth solution to the 3D N-S equations on
[0,T∗) for some 0<T∗<∞, if u satisfies∫ T∗

0

(∥∥∥‖∂iu1(t)‖Lαxi
∥∥∥q
Lβx

î
x
ĩ

+
∥∥∥‖∂ju2(t)‖Lαxj

∥∥∥q
Lβx

ĵ
x
j̃

)
dt≤M,

for some M>0, with 2
q + 1

α + 2
β =m∈ [1, 32 ) and 3

m <α≤β≤ 1
m−1 , then u can be ex-

tended beyond time T∗. This result can be viewed as a generalization of [6, 25] on the
N-S equations.

We shall present the proof of Theorem 1.1 in the next section. Throughout the
paper, we denote by C a harmless positive constant, which may depend on the initial
data and T∗, and its value may change from line to line. The norms of the usual
Lebesgue spaces Lp(R3) (with 1≤p≤∞) are denoted by ‖·‖Lp , while the directional
derivatives of a function f are denoted by ∂if = ∂f

∂xi
with i= 1,2,3.
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2. Proof of Theorem 1.1
In this section, we shall give the proof of Theorem 1.1. Before doing it, let us

recall the following useful inequality, which can be viewed as a generalization of the
Sobolev-type embedding inequality.

Lemma 2.1. Let 1≤α,β,ξ,a,t≤+∞,1<r≤+∞, and 0≤θ≤1 such that

1

a
+

1

t
=
β−1

β
(2.1)

and

1

(2r−1)α
+
θ

α
=

1−θ
ξ(α−1)

. (2.2)

Then there exists a positive generic constant C such that for all f,g∈C∞0 (R3), it holds
that ∣∣∣∣∫

R3

|f |2|g|2dx

∣∣∣∣≤C∥∥∥‖∂if‖Lαxi∥∥∥ 1
r

Lβx
î
x
ĩ

∥∥∥‖∂if‖Lαxi∥∥∥
θ(2r−1)

r

L
θ(2r−1)t
x
î
x
ĩ

∥∥∥‖f‖Lξxi∥∥∥
(1−θ)(2r−1)

r

L
(1−θ)(2r−1)a
x
î
x
ĩ

×‖g‖
2(r−1)
r

L2 ‖(∂î,∂ĩ)g‖
2
r

L2 . (2.3)

Here (i, î, ĩ) belongs to the permutation group of S3 := span{1,2,3}.

Proof. The proof of (2.3) is standard, here we give a proof for the reader’s
convenience. Notice that direct calculus yields that

|f(x1,x2,x3)|2r≤C
∫ x1

−∞
|f(τ,x2,x3)|2r−1|∂1f(τ,x2,x3)|dτ

≤C
∫
R
|f(τ,x2,x3)|2r−1|∂1f(τ,x2,x3)|dτ,

|f(x1,x2,x3)|2r≤C
∫ x2

−∞
|f(x1,τ,x3)|2r−1|∂2f(x1,τ,x3)|dτ

≤C
∫
R
|f(x1,τ,x3)|2r−1|∂2f(x1,τ,x3)|dτ,

|f(x1,x2,x3)|2r≤C
∫ x3

−∞
|f(x1,x2,τ)|2r−1|∂3f(x1,x2,τ)|dτ

≤C
∫
R
|f(x1,x2,τ)|2r−1|∂3f(x1,x2,τ)|dτ.

By using these facts above together with Hölder’s inequality, one has∫
R3

|f |2|g|2dx≤
∫
R2

(
max
xi∈R
|f |2 ·

∫
R
|g|2dxi

)
dxîdxĩ

≤C
(∫

R2

max
xi∈R
|f |2rdxîdxĩ

) 1
r

(∫
R2

(∫
R
|g|2dxi

) r
r−1

dxîdxĩ

) r−1
r

≤C
(∫

R3

|f |2r−1|∂if |dx
) 1
r

(∫
R2

(∫
R
|g|2dxi

) r
r−1

dxîdxĩ

) r−1
r

. (2.4)
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By using Hölder’s inequality and interpolation inequality, one gets∫
R3

|f |2r−1|∂if |dx=

∫
R2

(∫
R
|f |2r−1|∂if |dxi

)
dxîdxĩ≤C

∫
R2

‖∂if‖Lαxi ‖f‖
2r−1

L

(2r−1)α
α−1

xi

dxîdxĩ

≤C
∫
R2

‖∂if‖Lαxi ‖∂if‖
(2r−1)θ
Lαxi

‖f‖(2r−1)(1−θ)
L
ξ
xi

dxîdxĩ

≤C
∥∥∥‖∂if‖Lαxi∥∥∥Lβx

î
x
ĩ

∥∥∥∥‖∂if‖(2r−1)θ
Lαxi

‖f‖(2r−1)(1−θ)
L
ξ
xi

∥∥∥∥
L

β
β−1
x
î
x
ĩ

≤C
∥∥∥‖∂if‖Lαxi∥∥∥Lβx

î
x
ĩ

∥∥∥‖∂if‖Lαxi∥∥∥(2r−1)θ

L
(2r−1)θt
x
î
x
ĩ

∥∥∥‖f‖Lξxi∥∥∥(2r−1)(1−θ)

L
(2r−1)(1−θ)a
x
î
x
ĩ

, (2.5)

where α,β,ξ,a,t and θ satisfy (2.1) and (2.2). On the other hand, by using Minkowski’s
inequality, Hölder’s inequality and interpolation inequality, one obtains(∫

R2

(∫
R
|g|2dxi

) r
r−1

dxîdxĩ

) r−1
r

≤
∫
R

(∫
R2

|g|
2r
r−1 dxîdxĩ

) r−1
r

dxi

≤
∫
R
‖g‖

2(r−1)
r

L2
x
î
x
ĩ

‖(∂î,∂ĩ)g‖
2
r

L2
x
î
x
ĩ

dxi

≤‖g‖
2(r−1)
r

L2 ‖(∂î,∂ĩ)g‖
2
r

L2 . (2.6)

Inserting (2.5) and (2.6) into (2.4), one obtains (2.1), and this completes the proof of
Lemma 2.1.

By using Lemma 2.1 above, let us give the proof of Theorem 1.1.

Proof of Theorem 1.1. We shall prove Theorem 1.1 by contradiction. By [37], we
know that, under the assumptions of Theorem 1.1, there exists a local smooth solution
(u,v,w) to system (1.1) such that (1.3) and (1.4) hold. Assume that [0,T∗) is the
maximal existence interval of the local smooth solution (u,v,w), and (1.15) is not true,
i.e., there is a finite number M>0 such that∫ T∗

0

(∥∥∥‖∂iu1(τ)‖Lαxi
∥∥∥q
Lβx

î
x
ĩ

+
∥∥∥‖∂ju2(τ)‖Lαxj

∥∥∥q
Lβx

ĵ
x
j̃

)
dτ ≤M, (2.7)

where 2
q + 1

α + 2
β =m∈ [1, 32 ) and 3

m <α≤β≤ 1
m−1 . In what follows, we shall show that

sup
0≤t≤T∗

(‖u(t)‖H3 +‖(v,w)(t)‖H2)≤C, (2.8)

for some positive constant C depending only on u0,v0,w0,T∗ and M . The above estimate
(2.8) is enough to ensure that the local smooth solution (u,v,w) can be extended beyond
the time T∗, which leads to a contradiction as T∗ is the maximum existence time.

Before doing it, let us first notice that by the maximum principle, one can deduce
that if v0 and w0 are non-negative, then we have

v≥0 and w≥0 a.e. (x,t)∈R3×(0,T∗).

We refer the readers to [33] for more details.

Step 1. L2-bound of (u,v,w). Exactly as the same arguments of Zhao–Bai [37],
we have

‖v(t)‖2L2 +‖w(t)‖2L2 +2

∫ t

0

(
‖∇v(τ)‖2L2 +‖∇w(τ)‖2L2

)
dτ
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≤‖v0‖2L2 +‖w0‖2L2 :=C0 for all 0<t≤T∗, (2.9)

and

‖u(t)‖2L2 +‖∇Ψ(t)‖2L2 +2

∫ t

0

(
‖∇u(τ)‖2L2 +‖∆Ψ(τ)‖2L2

)
dτ ≤C1 (2.10)

for all 0<t≤T∗, where C1 is a constant depending only on ‖u0‖2L2 and ‖(v0,w0)‖L1∩L2 .

Step 2. H1-bound of (u,v,w). Due to (1.2), one can rewrite (1.1)1 as

∂tu+(u ·∇)u−∆u+∇P = ∆Ψ∇Ψ. (2.11)

Multiplying (2.11) by ∆u, and integrating over R3, after integration by parts, we deduce
that

1

2

d

dt
‖∇u(t)‖2L2 +‖∆u‖2L2 =−

∫
R3

u ·∇u ·∆udx+

∫
R3

∆Ψ∇Ψ ·∆udx

:=I1 +I2. (2.12)

By using Hölder’s inequality, interpolation inequality, Young’s inequality, (1.1)5, (2.9)
and (2.10), one can bound I2 as

I2≤C‖∇Ψ‖L4‖∆Ψ‖L4‖∆u‖L2 ≤ 1

8
‖∆u‖2L2 +C‖(v,w)‖2L4‖∇Ψ‖2L4

≤ 1

8
‖∆u‖2L2 +C‖(v,w)‖

1
2

L2‖(∇v,∇w)‖
3
2

L2‖∇Ψ‖
1
2

L2‖∆Ψ‖
3
2

L2

≤ 1

8
‖∆u‖2L2 +C‖(v,w)‖2L2‖(∇v,∇w)‖

3
2

L2‖∇Ψ‖
1
2

L2

≤ 1

8
‖∆u‖2L2 +C‖(v,w)‖2L2‖(∇v,∇w)‖2L2 +C‖(v,w)‖2L2‖∇Ψ‖2L2

≤ 1

8
‖∆u‖2L2 +C(‖(∇v,∇w)‖2L2 +1), (2.13)

while I1 can be rewritten as

I1 =

3∑
i,j,k=1

∫
R3

ui∂iuj∂
2
kujdx=

2∑
i=1

3∑
j,k=1

∫
R3

ui∂iuj∂
2
kujdx+

2∑
j,k=1

∫
R3

u3∂3uj∂
2
kujdx

+

2∑
k=1

∫
R3

u3∂3u3∂
2
ku3dx+

3∑
j=1

∫
R3

u3∂3uj∂
2
3ujdx

=

2∑
i=1

3∑
j,k=1

∫
R3

ui∂iuj∂
2
kujdx−

2∑
j,k=1

∫
R3

∂ku3∂3uj∂kujdx−
2∑

j,k=1

∫
R3

u3∂3∂kuj∂kujdx

−
2∑
k=1

∫
R3

∂ku3∂3u3∂ku3dx−
2∑
k=1

∫
R3

u3∂3∂ku3∂ku3dx+

3∑
j=1

∫
R3

u3∂3uj∂
2
3ujdx.

(2.14)

Notice that the divergence-free condition (1.1)2 yields that

∂1u1 +∂2u2 =−∂3u3,
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from which, one can deduce that

2∑
j,k=1

(∫
R3

∂ku3∂3uj∂kujdx+

∫
R3

u3∂3∂kuj∂kujdx

)

=−
2∑

j,k=1

∫
R3

uj∂3∂ku3∂kujdx−
2∑

j,k=1

∫
R3

uj∂ku3∂3∂kujdx−
1

2

2∑
j,k=1

∫
R3

∂3u3∂kuj∂kujdx

=−
2∑

j,k=1

∫
R3

uj∂3∂ku3∂kujdx−
2∑

j,k=1

∫
R3

uj∂ku3∂3∂kujdx+
1

2

2∑
i,j,k=1

∫
R3

∂iui∂kuj∂kujdx

=−
2∑

j,k=1

∫
R3

uj∂3∂ku3∂kujdx−
2∑

j,k=1

∫
R3

uj∂ku3∂3∂kujdx−
2∑

i,j,k=1

∫
R3

ui∂i∂kuj∂kujdx

≤C(

∫
R3

|u1||∇u||∇2u|dx+

∫
R3

|u2||∇u||∇2u|dx) (2.15)

and
2∑
k=1

(∫
R3

∂ku3∂3u3∂ku3dx−
∫
R3

u3∂3∂ku3∂ku3dx

)
+

3∑
j=1

∫
R3

u3∂3uj∂
2
3ujdx

=
1

2

2∑
k=1

∫
R3

∂ku3∂3u3∂ku3dx+
1

2

3∑
j=1

∫
R3

∂3u3∂3uj∂3ujdx

=− 1

2

2∑
i,k=1

∫
R3

∂ku3∂iui∂ku3dx− 1

2

2∑
i=1

3∑
j=1

∫
R3

∂iui∂3uj∂3ujdx

=

2∑
i,k=1

∫
R3

ui∂i∂ku3∂ku3dx+

2∑
i=1

3∑
j=1

∫
R3

ui∂3uj∂3∂iujdx

≤C(

∫
R3

|u1||∇u||∇2u|dx+

∫
R3

|u2||∇u||∇2u|dx). (2.16)

Combining (2.14)–(2.16) together, it follows that

I1≤C(

∫
R3

|u1||∇u||∇2u|dx+

∫
R3

|u2||∇u||∇2u|dx) := I11 +I12. (2.17)

In what follows, we shall estimate the two terms I11 and I12 on the right-hand side of
(2.17). By using Young’s inequality and Lemma 2.1, one can estimate I11 as follows

I11=
1

16

∫
R3

|∇2u|2dx+C

∫
R3

|u1|2|∇u|2dx

≤ 1

16
‖∇2u‖2L2 +C

∥∥∥‖∂iu1‖Lαxi∥∥∥ 1
r

Lβx
î
x
ĩ

∥∥∥‖∂iu1‖Lαxi∥∥∥ (2r−1)θ
r

L
(2r−1)θt
x
î
x
ĩ

·
∥∥∥‖u1‖Lξxi∥∥∥

(2r−1)(1−θ)
r

L
(2r−1)(1−θ)a
x
î
x
ĩ

‖∇u‖
2(r−1)
r

L2 ‖∇2u‖
2
r

L2 ,

where 1<α≤β≤+∞, ξ,a,t∈ [1,+∞], θ∈ [0,1] and 1<r≤+∞ satisfy (2.1) and (2.2).
By selecting

a=
ξ

(2r−1)(1−θ)
and t=

β

(2r−1)θ
, (2.18)
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then one obtains that

I11≤
1

16
‖∇2u‖2L2+C

∥∥∥‖∂iu1‖Lαxi∥∥∥ 1
r

Lβx
î
x
ĩ

∥∥∥‖∂iu1‖Lαxi∥∥∥ (2r−1)θ
r

L
(2r−1)θt
x
î
x
ĩ

·
∥∥∥‖u1‖Lξxi∥∥∥

(2r−1)(1−θ)
r

L
(2r−1)(1−θ)a
x
î
x
ĩ

‖∇u‖
2(r−1)
r

L2 ‖∇2u‖
2
r

L2

=
1

16
‖∇2u‖2L2+C

∥∥∥‖∂iui‖Lαxi∥∥∥ 1+(2r−1)θ
r

Lβx
î
x
ĩ

‖u‖
(2r−1)(1−θ)

r

Lξ
‖∇u‖

2(r−1)
r

L2 ‖∇2u‖
2
r

L2

≤1

8
‖∇2u‖2L2 +C

∥∥∥‖∂iu1‖Lαxi∥∥∥ 1+(2r−1)θ
r−1

Lβx
î
x
ĩ

‖u‖
(2r−1)(1−θ)

r−1

Lξ
‖∇u‖2L2 ,

where we have used Young’s inequality in the last inequality, and 1<α≤β≤+∞, ξ∈
[1,+∞],θ∈ [0,1] and 1<r≤+∞ satisfying{

1
(2r−1)α + θ

α = 1−θ
ξ(α−1) ,

(2r−1)θ
β + (2r−1)(1−θ)

ξ = β−1
β .

(2.19)

By setting

r=
(α−1)βξ+αβ

2(α+αβ−β)
, ξ=

2r(α+αβ−β)−αβ
(α−1)β

and θ=
(2r−1)α−ξ(α−1)

(2r−1)(ξ(α−1)+α)
∈ [0,1],

(2.20)

it is easy to see that r,ξ and θ satisfy (2.19). Furthermore, it is easy to check that the
selected α,β,ξ,r,θ,a and t above satisfy all assumptions of (2.3), thus we have

I11≤
1

8
‖∇2u‖2L2 +C

∥∥∥‖∂iu1‖Lαxi∥∥∥ 1+(2r−1)θ
r−1

Lβx
î
x
ĩ

‖u‖
(2r−1)(1−θ)

r−1

Lξ
‖∇u‖2L2

=
1

8
‖∇2u‖2L2 +C

∥∥∥‖∂iu1‖Lαxi∥∥∥ 2rα
(r−1)(ξ(α−1)+α)

Lβx
î
x
ĩ

‖u‖
2rξ(α−1)

(r−1)(ξ(α−1)+α)

Lξ
‖∇u‖2L2 .

Now, for m∈ [1, 32 ) and 3
m <α≤β≤ 1

m−1 , by selecting

r=
( 5
2−m)αβ

α+αβ−β
=

(5−2m)αβ

2(α+αβ−β)
, (2.21)

then we have from (2.20) that

ξ=
2α(2−m)

α−1
. (2.22)

Hence

I11≤
1

8
‖∇2u‖2L2 +C

∥∥∥‖∂iu1‖Lαxi∥∥∥ 2rα
(r−1)(ξ(α−1)+α)

Lβx
î
x
ĩ

‖u‖
2rξ(α−1)

(r−1)(ξ(α−1)+α)

Lξ
‖∇u‖2L2

=
1

8
‖∇2u‖2L2 +C

∥∥∥‖∂iu1‖Lαxi∥∥∥ 2r
(r−1)(5−2m)

Lβx
î
x
ĩ

‖u‖
4r(2−m)

(r−1)(5−2m)

Lξ
‖∇u‖2L2

=
1

8
‖∇2u‖2L2 +C

∥∥∥‖∂iu1‖Lαxi∥∥∥ 2αβ
(3−2m)αβ−2α+2β

Lβx
î
x
ĩ

‖u‖
4αβ(2−m)

(3−2m)αβ−2α+2β

Lξ
‖∇u‖2L2 . (2.23)
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Applying Hölder’s inequality with

mαβ−β−2α

(3−2m)αβ−2α+2β
+

3(1−m)αβ+3β

(3−2m)αβ−2α+2β
= 1,

with
mαβ−β−2α

(3−2m)αβ−2α+2β
∈ (0,1] by (1.16).

Then (2.23) becomes

I11≤
1

8
‖∇2u‖2L2 +



C
(∥∥∥‖∂iu1‖Lαxi∥∥∥ 2αβ

mαβ−β−2α

Lβx
î
x
ĩ

+‖u‖
4α(2−m)

3(1−m)α+3

Lξ

)
‖∇u‖2L2

if mαβ−β−2α
(3−2m)αβ−2α+2β ∈ (0,1), i.e., 3

m <α≤β< 1
m−1 ,

C
∥∥∥‖∂iu1‖Lαxi∥∥∥ 2αβ

mαβ−β−2α

Lβx
î
x
ĩ

‖u‖
4αβ(2−m)
mαβ−β−2α

L2 ‖∇u‖2L2

if mαβ−β−2α
(3−2m)αβ−2α+2β = 1, i.e., α=β= 1

m−1 .

The term I12 can be estimated in a similar way. Hence

I1≤
1

4
‖∆u‖2L2+



C
(
G(t)+‖u‖

4α(2−m)
3(1−m)α+3

Lξ

)
‖∇u‖2L2

if mαβ−β−2α
(3−2m)αβ−2α+2β ∈ (0,1), i.e., 3

m <α≤β< 1
m−1 ,

CG(t)‖u‖
4αβ(2−m)
mαβ−β−2α

L2 ‖∇u‖2L2

if mαβ−β−2α
(3−2m)αβ−2α+2β = 1, i.e., α=β= 1

m−1 ,

(2.24)

where we have used the identity ‖∇2u‖2L2 =‖∆u‖2L2 , and

G(t) =
∥∥∥‖∂iu1‖Lαxi∥∥∥ 2αβ

mαβ−β−2α

Lβx
î
x
ĩ

+
∥∥∥‖∂ju2‖Lαxj∥∥∥ 2αβ

mαβ−β−2α

Lβx
ĵ
x
j̃

, (2.25)

with mαβ−β−2α
(3−2m)αβ−2α+2β ∈ (0,1], i.e., 3

m <α≤β≤ 1
m−1 . Plugging (2.13) and (2.24) into

(2.12), one gets

d

dt
‖∇u(t)‖2L2 +‖∆u‖2L2

≤



C
(
G(t)+‖u(t)‖

4α(2−m)
3(1−m)α+3

Lξ
+‖(∇v,∇w)(t)‖2L2 +1

)
(e+‖∇u‖2L2)

if mαβ−β−2α
(3−2m)αβ−2α+2β ∈ (0,1), i.e., 3

m <α≤β< 1
m−1 ,

C
(
G(t)+‖(∇v,∇w)(t)‖2L2 +1

)
‖u‖

4αβ(2−m)
mαβ−β−2α

L2 (e+‖∇u‖2L2)

if mαβ−β−2α
(3−2m)αβ−2α+2β = 1, i.e., α=β= 1

m−1 .

(2.26)

Notice that from (2.9), (2.10) and the standard interpolation inequality, it follows that

(u,v,w)∈La(0,T∗;L
b(R3)) with

2

a
+

3

b
=

3

2
and 2≤ b≤6.
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On the other hand, it is easy to see that

2<ξ=
2α(2−m)

α−1
<6 if

3

m
<α≤β< 1

m−1

and then

3(1−m)α+3

2α(2−m)
+

3

ξ
=

3(1−m)α+3

2α(2−m)
+

3(α−1)

2α(2−m)
=

3

2
.

Thus, one obtains that

(u,v,w)∈L
3(1−m)α+3
2α(2−m) (0,T∗;L

ξ(R3)) for
3

m
<α≤β< 1

m−1
. (2.27)

When α=β= 1
m−1 , we can derive from (2.22) that ξ= 2, and then from energy inequality

(2.10) that

‖u(t)‖L2 ≤C1 for all 0≤ t≤T∗. (2.28)

By using these facts above, (2.9) and the assumption (2.7)2, one can apply Grönwall’s
inequality on (2.26) to get that

sup
0≤t≤T∗

‖∇u(t)‖2L2 +

∫ T∗

0

‖∆u‖2L2dt

≤
(
e+‖∇u0‖2L2

)
×



exp
{
C
∫ T∗
0

(
G(τ)+‖(∇v(τ),∇w(τ))‖2L2 +1

)
dτ
}

if mαβ−β−2α
(3−2m)αβ−2α+2β ∈ (0,1), i.e., 3

m <α≤β< 1
m−1

exp
{
C
∫ T∗
0

(
G(τ)+‖(∇v,∇w)‖2L2+1

)
‖u‖

4αβ(2−m)
mαβ−β−2α

L2 dτ
}

if mαβ−β−2α
(3−2m)αβ−2α+2β = 1, i.e., α=β= 1

m−1

≤C2, (2.29)

where C2 is a positive constant depending only on M , T∗, ‖u0‖H1 and ‖(v0,w0)‖L1∩L2 .

To get H1-bound of (v,w), we multiply ∆v to (1.1)3, and integrate it over R3, it
can be seen that

1

2

d

dt
‖∇v(t)‖2L2 +‖∆v‖2L2 =−

∫
R3

(u ·∇)v∆vdx−
∫
R3

∇·(v∇Ψ)∆vdx

:=I3 +I4. (2.30)

Applying Hölder’s inequality, Young’s inequality, (2.9) and (2.29), the two terms I3 and
I4 on the right-hand side of (2.30) can be estimated as

I3≤C‖u‖L6‖∇v‖L3‖∆v‖L2 ≤C‖∇u‖L2‖∇v‖
1
2

L2‖∆v‖
3
2

L2

≤1

8
‖∆v‖2L2 +C‖∇u‖4L2‖∇v‖2L2

≤1

8
‖∆v‖2L2 +C‖∇v‖2L2

2We notice that from (2.7) and the definition of G on (2.25), one gets
∫ T∗
0 G(τ)dτ ≤M .
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and

I4≤C‖∆v‖L2‖∇·(v∇Ψ)‖L2 ≤C‖∆v‖L2

(
‖∇v‖L3‖∇Ψ‖L6 +‖v‖L4‖∆Ψ‖L4

)
≤ 1

16
‖∆v‖2L2 +C

(
‖∇v‖2L3‖∇Ψ‖2L6 +‖(v,w)‖4L4

)
≤ 1

16
‖∆v‖2L2 +C

(
‖(v,w)‖2L2‖∇v‖L2‖∆v‖L2 +‖(v,w)‖

5
2

L2‖(∆v,∆w)‖
3
2

L2

)
≤ 1

8
‖(∆v,∆w)‖2L2 +C(1+‖(∇v,∇w)‖2L2).

Inserting estimates of I3 and I4 above into (2.30), one obtains

d

dt
‖∇v(t)‖2L2 +2‖∆v‖2L2 ≤

1

2
‖(∆v,∆w)‖2L2 +C(1+‖(∇v,∇w)‖2L2).

Similar estimate still holds for w. Hence, one obtains that

d

dt
(‖∇v(t)‖2L2+‖∇w(t)‖2L2)+

3

2
(‖∆v‖2L2 +‖∆w‖2L2)

≤C(1+‖(∇v,∇w)‖2L2), (2.31)

which together with Grönwall’s inequality yields that

sup
0≤t≤T∗

(‖∇v(t)‖2L2 +‖∇w(t)‖2L2)+

∫ T∗

0

(‖∆v(t)‖2L2 +‖∆w(t)‖2L2)dt

≤C(1+‖(∇v0,∇w0)‖2L2)≤C3, (2.32)

where C3 is a positive constant depending only on T∗, C0, C1, C2 and ‖(v0,w0)‖H1 .

Step 3. H2-bound of u. Taking ∆ on (2.11), then multiplying the resulting
equation with ∆u and integrating over R3, by the condition ∇·u= 0, we see that

1

2

d

dt
‖∆u(t)‖2L2 +‖∇∆u‖2L2 =

∫
R3

∇((u ·∇)u) ·∇∆udx−
∫
R3

∇(∆Ψ∇Ψ) ·∇∆udx

:=I5 +I6. (2.33)

By using Hölder’s inequality, interpolation inequality, Young’s inequality and (2.29)
again, the terms I5 and I6 on the right-hand side of (2.33) can be bounded as

I5≤C‖∇∆u‖L2(‖∇u‖2L4 +‖u‖L6‖∇2u‖L3)

≤C‖∇∆u‖2L2(‖∇u‖
5
4

L2‖∇∆u‖
3
4

L2 +‖∇u‖L2‖∆u‖
1
2

L2‖∇∆u‖
1
2

L2)

≤1

8
‖∇∆u‖2L2 +C(‖∇u‖10L2 +‖∇u‖4L2‖∆u‖2L2)

≤1

8
‖∇∆u‖2L2 +C(‖∆u‖2L2 +1)

and

I6 =−
∫
R3

∇((v−w)∇Ψ) ·∇∆udx

≤C‖∇∆u‖2L2

(
‖(∇v,∇w)‖L3‖∇Ψ‖L6 +‖(v,w)‖L4‖∇2Ψ‖L4

)
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≤C‖∇∆u‖2L2

(
‖(∇v,∇w)‖L3‖(v,w)‖L2 +‖(v,w)‖2L4

)
≤C‖∇∆u‖L2

(
‖(v,w)‖L2‖(∇v,∇w)‖

1
2

L2‖(∆v,∆w)‖
1
2

L2 +‖(v,w)‖
5
4

L2‖(∆v,∆w)‖
3
4

L2

)
≤1

8
‖∇∆u‖2L2 +

1

4
‖(∆v,∆w)‖2L2 +C

(
1+‖(∇v,∇w)‖2L2

)
.

Inserting estimates of I5 and I6 into (2.33), one obtains that

d

dt
‖∆u(t)‖2L2 +‖∇∆u‖2L2 ≤

1

4
‖(∆v,∆w)‖2L2 +C

(
1+‖(∇v,∇w)‖2L2 +‖∆u‖2L2

)
,

which together with (2.31) yields that

d

dt

(
‖∆u(t)‖2L2 +‖(∇v,∇w)(t)‖2L2

)
+
(
‖∇∆u‖2L2 +‖(∆v,∆w)‖2L2

)
≤C
(
1+‖(∇v,∇w)‖2L2 +‖∆u‖2L2

)
.

By using Grönwall’s inequality again, it follows that

sup
0≤t≤T∗

‖∆u(t)‖2L2 +

∫ T∗

0

‖∇∆u(t)‖2L2dt≤C4, (2.34)

where C4 is a positive constant depending only on T∗, C0, C1, C2, ‖u0‖H2 and
‖(v0,w0)‖H1 .

Step 4. Proof of (2.8). Taking ∇∆ on (2.11), then multiplying the resulting
equation with ∇∆u and integrating over R3, one obtains

1

2

d

dt
‖∇∆u(t)‖2L2 +‖∆2u‖2L2 =−

∫
R3

∇∆((u ·∇)u) ·∇∆udx+

∫
R3

∇∆(∆Ψ∇Ψ) ·∇∆udx

:=I7 +I8. (2.35)

To bound I7, we need to use the following inequality (cf., [22])

‖Λs(fg)−fΛsg‖Lp ≤C(‖Λf‖L∞‖Λs−1g‖Lp +‖Λsf‖Lp‖g‖L∞) for s>0 and 1<p<∞,

where Λ = (−∆)
1
2 . Then, by using the divergence-free condition ∇·u= 0 and interpola-

tion inequality, one has

I7 =−
∫
R3

[
∇∆((u ·∇)u)−(u ·∇)∇∆u

]
·∇∆udx

≤C‖∇∆((u ·∇)u)−(u ·∇)∇∆u‖
L

6
5
‖∇∆u‖L6

≤C‖∆2u‖L2‖∇u‖L∞‖∇∆u‖
L

6
5

≤C‖∆2u‖L2(‖∇u‖
1
2

L2‖∆2u‖
1
2

L2)(‖∇u‖
1
2

L2‖∇∆u‖
1
2

L2)

≤ 1

4
‖∆2u‖2L2 +C‖∇u‖4L2‖∇∆u‖2L2 ≤

1

4
‖∆2u‖2L2 +C‖∇∆u‖2L2 .

For I8, by using (1.1)5, Hölder’s inequality, Young’s inequality, (2.9) and (2.32), one
has

I8 =−
∫
R3

∆((v−w)∇Ψ) ·∆2udx≤C‖∆2u‖2L2‖∆((v−w)∇Ψ)‖2L2
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≤C‖∆2u‖L2

(
‖(∆v,∆w)‖L3‖∇Ψ‖L6+‖(∇v,∇w)‖L6‖∇2Ψ‖L3 +‖(v,w)‖L3‖∇∆Ψ‖L6

)
≤C‖∆2u‖L2

(
‖(∆v,∆w)‖L3‖∆Ψ‖L2 +‖(v,w)‖L3‖(∇v,∇w)‖L6

)
≤C‖∆2u‖2L2

(
‖(∆v,∆w)‖

1
2

L2‖(∇∆v,∇∆w)‖
1
2

L2 +‖(∇v,∇w)‖
1
2

L2‖(∆v,∆w)‖2L2

)
≤ 1

4
‖∆2u‖2L2 +

1

8
‖(∇∆v,∇∆w)‖2L2 +C

(
1+‖(∇v,∇w)‖2L2

)
‖(∆v,∆w)‖2L2

≤ 1

4
‖∆2u‖2L2 +

1

8
‖(∇∆v,∇∆w)‖2L2 +C‖(∆v,∆w)‖2L2 .

Inserting the above two estimates of I7 and I8 into (2.35), it follows that

d

dt
‖∇∆u(t)‖2L2 +‖∆2u‖2L2

≤1

4
‖(∇∆v,∇∆w)‖2L2 +C

(
‖∇∆u‖2L2 +‖(∆v,∆w)‖2L2

)
. (2.36)

Taking ∆ to (1.1)3, then multiplying the resulting equations by ∆v and integrating
over R3, after integration by parts, we deduce that

1

2

d

dt
‖∆v(t)‖2L2 +‖∇∆v‖2L2 =

∫
R3

∇((u ·∇)v) ·∇∆vdx+

∫
R3

∆(v∇Ψ) ·∇∆vdx

:=I9 +I10. (2.37)

Applying (2.9), (2.29) (2.32) and (2.34) again,

I9≤C‖∇∆v‖L2

(
‖∇u‖L4‖∇v‖L4 +‖u‖L6‖∆v‖L3

)
≤C‖∇∆v‖L2

(
(‖∇u‖

1
4

L2‖∆u‖
3
4

L2)
1
3 (‖∇u‖

5
8

L2‖∇∆u‖
3
8

L2)
2
3 ‖∇v‖

1
4

L2‖∆v‖
3
4

L2

+‖∇u‖L2‖∆v‖
1
2

L2‖∇∆v‖
1
2

L2

)
≤1

8
‖∇∆v‖2L2 +C

(
‖∇u‖4L2‖∆v‖2L2 +‖∇u‖2L2‖∆v‖2L2 +‖∆u‖2L2‖∇∆u‖2L2

)
≤1

8
‖∇∆v‖2L2 +C

(
‖∇∆u‖2L2 +‖∆v‖2L2

)
and

I10≤C‖∇∆v‖2L2‖∆(v∇Ψ)‖L2

≤C‖∇∆v‖L2

(
‖∆v‖L3‖∇Ψ‖L6 +‖∇v‖L6‖∇2Ψ‖L3 +‖v‖L3‖∇(v−w)‖L6

)
≤C|∇∆v‖L2

(
‖∆v‖L3‖(v,w)‖L2 +‖∆v‖L2‖(v,w)‖L3 +‖v‖L3‖(∆v,∆w)‖L2

)
≤C‖∇∆v‖L2

(
‖∆v‖

1
2

L2‖∇∆v‖
1
2

L2 +‖(∇v,∇w)‖
1
2

L2‖(∆v,∆w)‖L2

)
≤ 1

8
‖∇∆v‖2L2 +C

(
1+‖(∆v,∆w)‖2L2

)
.

Inserting the two estimates of I9 and I10 into (2.37), one gets

d

dt
‖∆v(t)‖2L2 +

7

4
‖∇∆v‖2L2 ≤C

(
1+‖∇∆u‖2L2 +‖(∆v,∆w)‖2L2

)
.

Similar estimate still holds for w. Thus we have

d

dt
‖(∆v(t),∆w(t))‖2L2 +

7

4
‖(∇∆v,∇∆w)‖2L2 ≤C

(
1+‖∇∆u‖2L2 +‖(∆v,∆w)‖2L2

)
,
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which together with (2.36) yields that

d

dt
(‖∇∆u(t)‖2L2 +‖(∆v,∆w)(t)‖2L2)+(‖∆2u‖2L2 +‖(∇∆v,∇∆w)‖2L2)

≤C
(
1+‖∇∆u‖2L2 +‖(∆v,∆w)‖2L2

)
.

Applying Grönwall’s inequality again, one can derive that

sup
0≤t≤T∗

(‖∇∆u(t)‖2L2 +‖(∆v,∆w)(t)‖2L2)

+

∫ T∗

0

(‖∆2u(t)‖2L2 +‖(∇∆v,∇∆w)(t)‖2L2)dt≤C5,

where C5 is a positive constant depending only on T∗, Ci (i= 0,1,2,3,4), ‖u0‖H3 and
‖(v0,w0)‖L1∩H2 . The above inequality together with (2.9) and (2.10) implies (2.8), and
this completes the proof of Theorem 1.1. �
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[26] G. Prodi, Un teorema di unicità per le equazioni di Navier–Stokes, Ann. Mat. Pura Appl., 48:173–
182, 1959. 1

[27] C. Qian, A generalized regularity criterion for 3D Naiver–Stokes equations in terms of one velocity
component, J. Diff. Eqs., 260:3477–3494, 2016. 1, 1, 1

[28] I. Rubinstein, Electro-Diffusion of Ions, SIAM Studies in Appl. Math., SIAM, Philadelphia, 1990.
1

[29] R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems
modeling electrohydrodynamics, arXiv:0910.4973v1, 2009. 1

[30] R. J. Ryham, C. Liu, and L. Zikatanov, Mathematical models for the deformation of electrolyte
droplets, Discrete Contin. Dyn. Syst. Ser. B, 8(3):649–661, 2007. 1, 1

[31] V. Scheffer, Partial regulaity of solutions to the Navier–Stokes equations, Pacific J. Math., 66:535–
552, 1976. 1

[32] V. Scheffer, Hausdorff measure and the Navier–Stokes equations, Comm. Math. Phys., 55:97–112,
1977. 1

[33] M. Schmuck, Analysis of the Navier–Stokes–Nernst–Planck–Poisson system, Math. Models Meth.
Appl. Sci., 19(6):993–1014, 2009. 1, 2

[34] J. Serrin, On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Ra-
tional Mech. Anal., 9:187–195, 1962. 1

[35] Z. Zhang and Z. Yin, Global well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system
in dimension two, Appl. Math. Lett., 40:102–106, 2015. 1

[36] J. Zhao, Regularity criteria for the 3D dissipative system modeling electro-hydrodynamics, Bull.
Malays. Math. Sci. Soc., https://doi.org/10.1007/s40840-017-0537-1, 2017. 1

[37] J. Zhao and M. Bai, Blow-up criteria for the 3D nonlinear dissipative system modeling electro-
hydrodynamics, Nonlinear Anal. Real World Appl., 31:210–226, 2016. 1, 1, 1.2, 2

[38] J. Zhao, C. Deng, and S. Cui, Global well-posedness of a dissipative system arising in electrohy-
drodynamics in negative-order Besov spaces, J. Math. Phys., 51:093101, 2010. 1

[39] J. Zhao and Q. Liu, Well-posedness and decay for the dissipative system modeling electro-
hydrodynamics in negative Besov spaces, J. Diff. Eqs., 263:1293–1322, 2017. 1

[40] J. Zhao, T. Zhang, and Q. Liu, Global well-posedness for the dissipative system modeling electro-
hydrodynamics with large vertical velocity component in critical Besov space, Discrete Contin.
Dyn. Syst. Ser. A, 35(1):555–582, 2015. 1

[41] Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier–Stokes equations via
one velocity component, Nonlinearity, 23:1097–1107, 2010. 1, 1

https://link.springer.com/article/10.1007%2Fs00028-016-0356-0
https://doi.org/10.1016/0022-0396(86)90096-3
https://doi.org/10.1002/mana.19510060203
https://doi.org/10.1081/TT-120015505
https://doi.org/10.1016/j.na.2011.08.003
https://doi.org/10.1016/j.na.2009.05.047
https://www.onacademic.com/detail/journal_1000033825050910_cd11.html
 https://doi.org/10.1201/9781420035674
https://projecteuclid.org/euclid.acta/1485888078
https://projecteuclid.org/euclid.acta/1485888078
https://link.springer.com/article/10.1023%2FB%3AAPOM.0000048124.64244.7e
https://link.springer.com/article/10.1007%2FBF02410664
https://link.springer.com/article/10.1007%2FBF02410664
https://doi.org/10.1016/j.jde.2015.10.037
https://epubs.siam.org/doi/book/10.1137/1.9781611970814
https://www.researchgate.net/publication/45880618_Existence_Uniqueness_Regularity_and_Long-term_Behavior_for_Dissipative_Systems_Modeling_Electrohydrodynamics
http://www.aimsciences.org/journals/displayArticles.jsp?paperID=2680
https://msp.org/pjm/1976/66-2/p16.xhtml
https://msp.org/pjm/1976/66-2/p16.xhtml
https://link.springer.com/article/10.1007%2FBF01626512
https://link.springer.com/article/10.1007%2FBF01626512
https://doi.org/10.1142/S0218202509003693
https://link.springer.com/article/10.1007%2FBF00253344
https://doi.org/10.1016/j.aml.2014.10.002
https://doi.org/10.1007/s40840-017-0537-1
http://www.doc88.com/p-0751510367490.html
https://doi.org/10.1063/1.3484184
https://doi.org/10.1016/j.jde.2017.03.015
http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10234
https://iopscience.iop.org/article/10.1088/0951-7715/23/5/004/meta

