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DYNAMIC BIFURCATION AND TRANSITION IN

THE RAYLEIGH-BÉNARD CONVECTION WITH INTERNAL

HEATING AND VARYING GRAVITY∗

DAOZHI HAN† , MARCO HERNANDEZ‡, AND QUAN WANG§

Abstract. In this article, we study the dynamic transition of the Rayleigh-Bénard convection with
internal heating and varying gravity. We show that this problem can only undergo a continuous or
catastrophic transition, and the specific type is completely determined by the sign of a parameter –
referred to as the transition number – that depends on the aspect ratio. Through numerical simulations
we compute, for six qualitatively different heating sources, the corresponding value of the transition
number, and find that the transition is always continuous. In particular, after transition, the system
bifurcates from a basic steady state to a family of stable steady states, homeomorphic to S1, that
describe the heating convection. Furthermore, upon varying the aspect ratio immediately after the
first transition has occurred, we find the existence of a second transition, which is always catastrophic.
More precisely, there exists a family of discrete values of the aspect ratio, which are the discontinuity
points of the transition number, at which the transition is catastrophic and the number of convection
rolls changes.
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and catastrophic transition; reduced equation.

AMS subject classifications. 76D10; 76E06; 76E20; 37L15; 37L99.

1. Introduction

The Rayleigh-Bénard convection is a type of natural convection, namely, a thermally
convected fluid flow whose dynamics are due to a non-uniform temperature distribution
on a flat horizontal fluid layer heated from below. Such flows develop as a result of
convective instability when the static vertical temperature gradient, i.e. the gradient
that would be present in a motionless fluid under the same conditions, is sufficiently
large.

The importance of convection phenomena cannot be overestimated. Problems per-
taining to the Rayleigh-Bénard convection have been of great interest for some time
in fields ranging from numerical analysis to experimental physics, and even in the geo-
physical sciences and many engineering applications [1–4].

For the Rayleigh-Bénard problem, the principle of exchange of stabilities – referred
to here as the PES condition, see Section 4 for a detailed discussion – was first addressed
by Pellew and Southwell [5]. They considered the case of a fluid in the Boussinesq ap-
proximation with uniform heating from below, where the equations governing instability
have special symmetries that make all the eigenvalues of the linearized problem real-
valued. The bifurcation associated with the Rayleigh-Bénard convection at the onset
of instability is well-known, see e.g. [2, 6] for the linear stability analysis, and [7, 8] for
nonlinear theories, among many others. Recently, Ma and Wang [7,9] have shown that
the Rayleigh-Bénard problem bifurcates from the basic steady state to an attractor con-
taining exactly eight singular points when the Rayleigh number crosses the first critical
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Rayleigh number, under physically sound boundary conditions. Hsia [10] studied the
dynamic transitions of the Rayleigh-Bénard problem with rotation. Further results in
this direction can be found in [11, 12].

In 1987, Pradhan and Samal [13] pointed out that in large scale atmospheric con-
vection phenomena the effect of variable gravity can be important and should not be
neglected. Thus in a real atmospheric convection scenario, variable gravity effects and
internal heating sources should be considered. Straughan [14] studied the case of a vari-
able gravity field, where his results indicate that decreasing or increasing the relative
intensity of the gravitational force can accelerate or delay the occurrence of convection.
In the context of arbitrary heat sources and varying gravity, Herron [15,16] showed that
the PES condition holds as long as the product of the gravity field and the integral of
the heat sources is nonnegative throughout the layer. In order to have a complete under-
standing of the heat circulation of the atmosphere it is thus crucial to study the dynamic
transitions of the Rayleigh-Bénard convection with internal heating and varying gravity.

Our first goal is to use the dynamic transition theory developed by Ma andWang [17]
to tackle this problem. The main philosophy of this theory is to search for the full set
of transition states, giving a complete characterization of stability and transition of
the bifurcated solutions at the onset of instability. The set of transition states is often
represented by a local attractor. Following this philosophy, the dynamic transition
theory aims to identify the transition states and to classify them both dynamically
and physically. One important ingredient of the theory is the introduction of a new
classification scheme for transitions into three types: continuous, catastrophic, and
random. Roughly speaking, a continuous transition means that the basic steady state
bifurcates to a local attractor; a catastrophic transition means that a system will jump to
another state, and a random transition indicates that both continuous and catastrophic
transitions are possible depending on the initial perturbation. In this work we show
that the type of transition of the Rayleigh-Bénard convection with internal heating and
varying gravity can be uniquely determined by the sign of a parameter, called transition
number, whose value can be efficiently computed numerically.

Details of the topological structure of the flow patterns, such as the number of roll
patterns, depend crucially on the aspect ratio; however, previous studies did not pay
any attention to the relationship between the aspect ratio and the topological structure
of the bifurcated solutions. Thus, our second aim is to perform a more detailed analysis
of this issue, and to determine, for instance, at which values of the aspect ratio the roll
pattern changes its topological structure.

The core of our analysis pertains to the task of obtaining a set of reduced ordinary
differential equations from the original system of partial differential equations. This
reduced system corresponds to the the full system restricted to its center-unstable man-
ifold. The dynamic transition is then studied using the reduced system following the
ideas from the dynamic transition theory, e.g. the transition number is derived from
the reduced equations through simple algebraic manipulations.

The paper is organized as follows. In Section 2 we introduce the governing equations
and the basic steady states whose stability we intend to study. The stream-function
and abstract Hilbert space formulations of the problem are briefly discussed in Section
3. The linear stability analysis and PES condition are explored in Section 4. Section
5 contains the details of the nonlinear analysis and the corresponding main transition
theorem. In Section 6 we present results obtained through numerical simulations
and the conclusions that can be extracted from them in combination with the main
transition theorem.
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2. Governing equations

The two dimensional Boussinesq equations describing a fluid with internal heating,
varying gravity, L-periodicity in the x-direction, and y-homogeneity are given by

∂u

∂t
+(u ·∇)u+

1

ρ0
∇P = ν∆u+αkg(z)T,

∂T

∂t
+(u ·∇)T =κ∆T +Q(z),

div u=0,

(2.1)

supplemented with the boundary conditions

u(x+L,z)=u(x,z), T (x+L,z)=T (x,z), (2.2)

u(x,0)=u(x,h)=0,
∂T

∂z
(x,0)=0, T (x,h)=0. (2.3)

The function Q(z) in the second equation of system (2.1) is a generic heating source.
We assume the gravitational potential term g above is of the form

g(z)= g0(1+ l(z))

where g0 is a constant and l(z) is a dimensionless function of the height.

It can be verified by direct substitution that a simple steady state solution of the
above equations is given by

ū≡0, T̄ (z)=−
1

κ

∫ z

0

(z−z′)Q(z′)dz′−cz,

P̄ (z)=−ρ0

∫ z

0

g(z′)
(

1−α(T̄ (z′))
)

dz′,

(2.4)

where the constant c is given by

c=−
1

κh

∫ h

0

(h−z)Q(z)dz.

In order to make the equations describing deviations from this steady state non-
dimensional, we let

(x,t)=

(

hx′,
h2

ν
t′
)

,

(u,T,P )=

(

νu′/h,T̄ +

(

cν3

κg0αh2

)1/2

θ′,P̄ +
ρ0ν

2

h2
P ′

)

,

N ′(z)=
1

κc

∫ z

0

Q(z′)dz′, H ′(z)=1+ l(z)=
g(z)

g0
,

Pr= ν/κ, γ=
L

h
, R=

(

ch4g0α

κν

)
1
2

.

We recall that Pr is the Prandtl number, γ is the aspect ratio, and R is the Rayleigh
number.
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Then, omitting the primes and setting u=(u,w), we can write the resulting equa-
tions as

∂u

∂t
+(u ·∇)u+

∂P

∂x
=∆u

∂w

∂t
+(u ·∇)w+

∂P

∂z
=∆w+RH(z)θ,

Pr

(

∂θ

∂t
+(u ·∇)θ

)

=∆θ+RN(z)w,

∂u

∂x
+
∂w

∂z
=0.

(2.5)

The boundary conditions are non-dimensionalized accordingly as well.
Throughout this article it is assumed that H and N are smooth with bounded

derivatives of all orders. In our numerical simulations we will further restrict our atten-
tion to the following expressions of H and N , taken from [14],

H(z)=1+δz, δ∈ [0,1], (2.6)

N(z)=































































N1(z)= z,

N2(z)=
1

2
(z+z2),

N3(z)=2z+
1

2
z3−

3

2
z2,

N4(z)=
1

2π
(1−cos(2πz)),

N5(z)= e
z−1−z,

N6(z)= z+
1

4π
(3−2cos2πz−cos4πz),

(2.7)

These terms N are selected to represent a wide range of heating sources and sinks.
Specifically, N is a heating source if its derivative is positive; N is a sink if its derivative is
negative; and N is mixed if its derivative changes sign, see Figure 2.1 for an illustration.
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Fig. 2.1: The derivative of N , which is a source (sink) if it is positive (negative); N is mixed if its
derivative changes sign.
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3. Mathematical formulation

The forthcoming analysis is considerably simplified by using instead a stream-

function formulation of (2.5). This is accomplished by setting u=
∂ψ

∂z
and w=−

∂ψ

∂x
.

The resulting equations then take the form











∂

∂t
∆ψ=∆2ψ−RH(z)

∂θ

∂x
+J(ψ,∆ψ),

Pr
∂θ

∂t
=∆θ−RN(z)

∂ψ

∂x
+PrJ(ψ,θ),

(3.1)

where

J(u,v)=
∂u

∂x

∂v

∂z
−
∂u

∂z

∂v

∂x
.

Furthermore, the corresponding domain Ω and boundary conditions are now

Ω=(0,γ)×(0,1), (3.2)

ψ(x+γ,z)=ψ(x,z), θ(x+γ,z)= θ(x,z), (3.3)

ψ(x,0)=ψ(x,1)=
∂ψ

∂z
(x,0)=

∂ψ

∂z
(x,1)=0, (3.4)

θ(x,1)=
∂θ

∂z
(x,0)=0. (3.5)

In what follows we formulate the evolution equations given in (3.1) using an abstract
functional setting that is standard in the framework of dynamic transitions.

First, we let H4(Ω), H2(Ω), and L2(Ω) denote the usual Sobolev and Lebesgue
spaces. Then, denoting ϕ=(ψ,θ), we let H1, H0 and H−1 be the Hilbert spaces given
by

H1= {ϕ∈H4(Ω)×H2(Ω)| ϕ satisfies (3.3)−(3.5)},

H0= {ϕ∈H2(Ω)×L2(Ω)| ϕ satisfies (3.3)−(3.4)},

H−1= {ϕ∈L2(Ω)2| ϕ satisfies (3.3)},

endowed with their natural inner products.

We can then introduce differential operators LR,G :H1→H−1 and A :H0→H−1 as
follows

LRϕ=

(

∆2ψ−RH(z) ∂θ∂x
∆θ−RN(z)∂ψ∂x

)

, (3.6)

G(ϕ)=

(

J(ψ,∆ψ)
PrJ(ψ,θ)

)

, Aϕ=

(

∆ψ
Prθ

)

(3.7)

We thus obtain the following equivalent form of (3.1)

d

dt
Aϕ=LRϕ+G(ϕ). (3.8)

Note that A is an isomorphism between H0 and A(H0)⊂H−1, and L(H1)⊂A(H0),
hence the operator LR :=A−1 ◦LR is bounded from H1 into H0. Furthermore, due to
the classical Sobolev embeddings, the inclusion H1 →֒H0 is dense and compact, and
thus LR : D(LR)=H1⊂H0→H0 has a compact resolvent.
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Similar considerations regarding the spectrum of LR, and the continuity of the
quadratic form G, allow us to cast this problem in the form







du

dt
=LRu+G(u),

u(0)=u0∈H0,
(3.9)

and show that it satisfies the hypotheses of [17] p. 41.

4. Linear analysis

As is customary in the theory of dynamical systems, we begin by studying the lin-
earized equations associated with (3.1). They take the form of a generalized eigenvalue
problem,

LRϕ=βAϕ.

Noting that A is self-adjoint, we see that the corresponding dual equations are

L∗
Rϕ

∗=β∗Aϕ∗.

where the same boundary conditions (3.3) and (3.4) are in place.
These eigenvalue problems have the important property that their solutions are

orthogonal under the inner product 〈A·, ·〉. That is, if β is a simple eigenvalue with
corresponding eigenfunction ϕ, and (β′,ϕ∗) is a solution of the dual problem, then

〈Aϕ,ϕ∗〉 6=0⇐⇒β′=β, (4.1)

where β denotes the complex conjugate of β.
Except for very special cases (c.f. Appendix), the aforementioned eigenvalue prob-

lem does not possess a closed form solution. Consequently, we approach this problem
by using a numerical scheme as follows. First, by taking advantage of the periodicity
on the horizontal direction, we use the method of separation of variables to write

ψ(x,z)= eiamxΨ(z),

θ(x,z)= eiamxΘ(z),
(4.2)

where am= 2πm
γ .

Next we introduce the family of one-dimensional differential operators given by

Am(Ψ,Θ)=

(

(∂2z−a
2
m)Ψ

PrΘ

)

,

Lm(Ψ,Θ)=

(

(∂2z−a
2
m)2Ψ− iamRH(z)Θ

(∂2z−a
2
m)Θ− iamRN(z)Ψ

)

.

Then the eigenfunctions can be determined by solving the following family of bound-
ary value problems:































Lm(Ψm,k,Θm,k)=βm,kAm(Ψm,k,Θm,k),

Ψm,k(0)=
dΨm,k
dz

∣

∣

∣

z=0
=0,

Ψm,k(1)=
dΨm,k
dz

∣

∣

∣

z=1
=0,

dΘm,k
dz

∣

∣

∣

z=0
=Θm,k(1)=0.

(4.3)
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Without loss of generality we assume that the eigenvalues {βm,k}m,k are ordered
by decreasing real part for each wavenumber. That is, we assume that

ℜβm,1≥ℜβm,2≥ℜβm,3≥···→−∞, ∀m∈Z.

Then the principle of exchange of stabilities (PES condition) takes the following
form:

Definition 4.1 (Principle of Exchange of Stabilities). There exists n∈Z\{0} and

R∗> 0 such that, for all R close enough to R∗,

ℜβn,1











> 0 if R>R∗,

=0 if R=R∗,

< 0 if R<R∗,

(4.4)

ℜβm,k< 0 if m 6=n or k> 1. (4.5)

It is known that the PES holds for this problem for almost every value of γ, see e.g.
[15,16]. Hereafter we will proceed under the working assumption that the wavenumber
m has been chosen to satisfy this condition. More precisely, we will study the transition
as R crosses R∗, for γ∈ [1,10].

The solution to the eigenvalue problem is obtained using a classical spectral Galerkin
numerical scheme, see [18] for details. Below we show the components of the eigenfunc-
tion corresponding to the heating source N(z)=N4(z)=

1

2π (1−cos(2πz)); other choices
of N give rise to qualitatively similar results, with the differences being mostly confined
to the shape of the θ profiles. For the purpose of illustration we take γ=8, where
the PES holds for n=3 and the critical Rayleigh number is given approximately by
R∗=73.175136. Note that the real and imaginary parts of the associated eigenfunc-
tions in Figure 4.1 differ only by a translation in the horizontal direction.

Fig. 4.1: Eigenfunction corresponding to n=3 and k=1, with γ=8 and N(z)=N4.

As mentioned above, we also explore the values of the critical Rayleigh number from
a global perspective. More precisely, we compute for each γ> 0 the value Rm of R such
that maxkℜβm,k=0. By doing this we obtain, for each m, a curve Rm=Rm(γ) that
determines the onset of linear instability for each wavenumber.

Furthermore, for all but countably many values of γ, there is only one wavenumber
n=n(γ) for which Rn=minm∈NR

∗
m. Thus, this is the critical Rayleigh number R∗=Rn



182 DYNAMIC TRANSITION OF RAYLEIGH-BÉNARD CONVECTION
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Fig. 4.2: Neutral stability curves for a given wavenumber, R=R∗
m(γ), i.e. the roots of

maxkℜβm,k(γ,R)=0.
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Fig. 4.3: Neutral stability curves, R=R∗(γ), i.e. the roots of minm,kℜβm,k(γ,R)=0.

at which the first transition occurs. This defines a continuous function R=R∗(γ) that
is piecewise smooth, with possible cusp points at the values of γ for which there is
more than one wavenumber giving rise to linear instability – or, equivalently, the center
subspace has dimension greater than 2.

In Figure 4.2 we show the curves R∗
m=R∗

m(γ) for different values of m for a special
heating source (N(z)= z). Note that the critical wavenumber n increases with the
aspect ratio parameter γ.

The critical Rayleigh number, as discussed above, is then given by R∗=minm∈NR
∗
m,

and can be easily obtained from the previous analysis. We show in Figure 4.3 the associ-
ated curves R=R∗(γ) for an ensemble of different heating sources. We made numerical
simulations for all the different heating sources mentioned in the previous section, but
the results were all qualitatively identical. Thus, for the purpose of illustration, we only
show here three of them, which we note differ only in amplitude and the exact location
of the cusps that occur when the heating source N changes.

5. Reduced equations and main theorem

Let us denote the center-unstable space by Hc. That is, Hc is given by the real part
of the complex linear span of all the eigenfunctions with the real part of corresponding
eigenvalue changing its sign at critical Rayleigh number R∗. We similarly denote by H∗

c

the center-unstable subspace associated with the dual eigenvalue problem.

Because of the previous discussion we know that, generically, Hc and H∗
c have
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dimension 2 and are respectively given by the real part of the complex span of

ϕ1(x,z)=

(

ψ1(x,z)
θ1(x,z)

)

= eianx
(

Ψ1(z)
Θ1(z)

)

, (5.1)

ϕ∗
1(x,z)=

(

ψ∗
1(x,z)
θ∗1(x,z)

)

= eianx
(

Ψ∗
1(z)

Θ∗
1(z)

)

, (5.2)

where the wavenumber n above is chosen so that

ℜβn,1=max
m,k

ℜβm,k.

Upon choosing a normalization for ϕ1 above, any element ϕ in Hc can be written
uniquely in the form

ϕ= ζϕ1+ζϕ1, (5.3)

for some ζ ∈C. An analogous property holds for ϕ∗
1 and H∗

c .
Thus, the approximate expression for the center manifold given by (A.2.12) in [17]

takes the form

h(ϕ)=h2(ϕ)+o(|ζ|
2). (5.4)

Here h2 is the quadratic leading order approximation of the center manifold func-
tion, which is uniquely determined by the equations

2βAh2(ϕ)−LRh2(ϕ)=G(ϕ,ϕ)= ζ2G(ϕ1,ϕ1)+ζ
2
G(ϕ1,ϕ1)+ |ζ|2(G(ϕ1,ϕ1)+G(ϕ1,ϕ1)).

(5.5)

where we recall the bilinear form G(u,v) is given by

G(u,v)=

(

J(u1,∆v1)
PrJ(u1,v2)

)

,u=

(

u1
u2

)

,v=

(

v1
v2

)

. (5.6)

Upon substituting (5.1) in (5.6) we find that

G(ϕ1,ϕ1)(x,z)= iane
i2anx

(

Ψ1(z)Ψ
′′′
1 (z)−Ψ′

1(z)Ψ
′′
1(z)

PrΨ1(z)Θ
′
1(z)−PrΨ′

1(z)Θ1(z)

)

, (5.7)

G(ϕ1,ϕ1)(x,z)=−iane
−i2anx

(

Ψ1(z)Ψ′′′
1 (z)−Ψ′

1(z)Ψ
′′
1(z)

PrΨ1(z)Θ′
1(z)−PrΨ′

1(z)Θ1(z)

)

. (5.8)

G(ϕ1,ϕ1)(x,z)=ian

(

Ψ1(z)Ψ1

′′′
(z)+Ψ′

1(z)Ψ1

′′
(z)

PrΨ1(z)Θ′
1(z)

)

− ian

(

a2nΨ
′
1(z)Ψ1(z)+a

2
nΨ1(z)Ψ′

1(z)

−PrΨ′
1(z)Θ1(z)

)

,

G(ϕ1,ϕ1)(x,z)=ian

(

a2nΨ
′
1(z)Ψ1(z)+a

2
nΨ1(z)Ψ

′
1(z)

−PrΨ1(z)Θ
′
1(z)

)

− ian



Ψ1(z)Ψ
′′′
1 (z)+Ψ′

1(z)Ψ
′′
1(z)

PrΨ′
1(z)Θ1(z)



, (5.9)
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and

[G(ϕ1,ϕ1)+G(ϕ1,ϕ1)](x,z)=ian

(

Ψ1(z)Ψ′′′
1 (z)+Ψ′

1(z)Ψ
′′
1(z)

PrΨ1(z)Θ′
1(z)+PrΨ′

1(z)Θ1(z)

)

− ian

(

Ψ1(z)Ψ
′′′
1 (z)+Ψ′

1(z)Ψ
′′
1(z)

PrΨ′
1(z)Θ1(z)+PrΨ1(z)Θ

′
1(z)

)

. (5.10)

Note that A and LR are linear operators. Then the right-hand side of the Equation
(5.5) allows us to look for its solution h2(φ) in the form of

h2(φ)= ζ
2ϕ20+ |ζ|2ϕ11+ζ

2
ϕ02.

Inserting the preceding formula into (5.5) and comparing coefficients on both sides, we
obtain a system of equations for the coefficients ϕ20,ϕ11,ϕ02 given by

2βAϕ20−LRϕ20=G(ϕ1,ϕ1),

2βAϕ02−LRϕ02=G(ϕ1,ϕ1),

2ℜβAϕ11−LRϕ11=G(ϕ1,ϕ1)+G(ϕ1,ϕ1).

(5.11)

Noting that the x dependence on the right-hand side of (5.11) involves, at most,
only terms of the form e±2ianx, we can again use separation of variables to write

ϕ20(x,z)=

(

ψ20(x,z)
θ20(x,z)

)

= e2ianx
(

Ψ20(z)
Θ20(z)

)

, (5.12)

ϕ02(x,z)=

(

ψ02(x,z)
θ02(x,z)

)

= e−2ianx

(

Ψ02(z)
Θ02(z)

)

, (5.13)

ϕ11(x,z)=

(

ψ11(x,z)
θ11(x,z)

)

=

(

Ψ11(z)
Θ11(z)

)

. (5.14)

Furthermore, since the quadratic form G has no complex-valued coefficients, it fol-
lows from (5.7)–(5.8) and (5.11) that

ϕ20=ϕ02.

Hence, we only need to solve the first and third equations in (5.11), which, upon using
(5.12)-(5.14), take the form











































(2βn,1A2n−L2n)(Ψ20,Θ20)= e
−2ianxG(ϕ1,ϕ1),

(2ℜβn,1A0−L0)(Ψ11,Θ11)=G(ϕ1,ϕ1)+G(ϕ1,ϕ1),

Ψ20(0)=Ψ11(0)=
dΨ20

dz

∣

∣

∣

z=0
=
dΨ11

dz

∣

∣

∣

z=0
=0,

Ψ20(1)=Ψ11(1)=
dΨ20

dz

∣

∣

∣

z=1
=
dΨ11

dz

∣

∣

∣

z=1
=0,

dΘ20

dz

∣

∣

∣

z=0
=
dΘ11

dz

∣

∣

∣

z=0
=Θ20(1)=Θ11(1)=0.

At this point no further analytical simplifications are possible in this generality, and
the problem must be approached through a numerical scheme. Nevertheless, assuming
the coefficients ϕij have been found we can continue the analysis from an abstract
perspective.
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Applying the general formula for the reduced equations (A.2.12) in [17], we obtain
the complex-valued ODE

dζ

dt
=βn,1ζ+〈G(ϕ,ϕ)+G(ϕ,h2)+G(h2,ϕ),ϕ

∗
1〉+o(|ζ|

3), (5.15)

where we use the normalization

〈Aϕ1,ϕ
∗
1〉=

1

γ

∫

Ω

Aϕ1ϕ∗
1dx=1.

Combining (5.3) and (5.4) we find that

〈G(ϕ,h2),ϕ
∗
1〉=〈G(ζϕ1+ζϕ1,ζ

2ϕ20+ |ζ|2ϕ11+ζ
2
ϕ02),ϕ

∗
1〉

=ζ3〈G(ϕ1,ϕ20),ϕ
∗
1〉+ζ|ζ|

2〈G(ϕ1,ϕ20),ϕ
∗
1〉

+ζ|ζ|2〈G(ϕ1,ϕ11),ϕ
∗
1〉+ζ|ζ|

2〈G(ϕ1,ϕ11),ϕ
∗
1〉

+ζ|ζ|2〈G(ϕ1,ϕ02),ϕ
∗
1〉+ζ

3
〈G(ϕ1,ϕ02),ϕ

∗
1〉,

〈G(h2,ϕ),ϕ
∗
1〉=〈G(ζ2ϕ20+ |ζ|2ϕ11+ζ

2
ϕ02,ζϕ1+ζϕ1),ϕ

∗
1〉

=ζ3〈G(ϕ20,ϕ1),ϕ
∗
1〉+ζ|ζ|

2〈G(ϕ20,ϕ1),ϕ
∗
1〉

+ζ|ζ|2〈G(ϕ11,ϕ1),ϕ
∗
1〉+ζ|ζ|

2〈G(ϕ11,ϕ1),ϕ
∗
1〉

+ζ|ζ|2〈G(ϕ02,ϕ1),ϕ
∗
1〉+ζ

3
〈G(ϕ02,ϕ1),ϕ

∗
1〉,

The above can be further simplified by making use of (5.1)–(5.2) and (5.13)–(5.14),
from where one can see that

〈G(ϕ1,ϕ20),ϕ
∗
1〉= 〈G(ϕ20,ϕ1),ϕ

∗
1〉=0,

〈G(ϕ1,ϕ11),ϕ
∗
1〉= 〈G(ϕ11,ϕ1),ϕ

∗
1〉=0,

〈G(ϕ1,ϕ02),ϕ
∗
1〉= 〈G(ϕ02,ϕ1),ϕ

∗
1〉=0,

〈G(ϕ1,ϕ02),ϕ
∗
1〉= 〈G(ϕ02,ϕ1),ϕ

∗
1〉=0.

Hence, letting P ∈C be given by

P =〈G(ϕ1,ϕ20),ϕ
∗
1〉+〈G(ϕ1,ϕ11),ϕ

∗
1〉

+〈G(ϕ20,ϕ1),ϕ
∗
1〉+〈G(ϕ11,ϕ1),ϕ

∗
1〉. (5.16)

we see that the reduced Equations (5.15) take the form

dζ

dt
=βn,1ζ+Pζ|ζ|

2+o(|ζ|3). (5.17)

In what follows we refer to P above as the transition number, since the sign of its real
part completely determines the type of transition. Although above calculations show
that P is always a real number in this problem, its exact value can only be determined
numerically in the general case. Nevertheless, in the special case of constant N and
H , and with slightly different boundary conditions, we are able to obtain a closed form
formula for P (c.f. Appendix).

From the preceding discussion we see that the type of transition for the problem
(3.1) is completely determined by the reduced Equations (5.15). More precisely, the
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sign of P given in (5.16) determines which of the three different types of transitions
from the basic solution (2.4) can occur. We summarize these results in the following:

Theorem 5.1. If P < 0, then (3.1) undergoes a continuous transition at the critical

Rayleigh number R∗. More precisely,

• If the Rayleigh number R<R∗, the steady state (ψ,θ)= (0,0) is locally asymp-

totically stable.

• The problem (3.1) bifurcates from ((0,0),R∗) to an attractor B homeomorphic

to S1 which consists of infinitely many steady states. In addition, any (ψ,θ)∈B
can be expressed as

(ψ,θ)=

(

βn,1
|P |

)
1
2

(xℜϕ1+yℑϕ1)+o

(

(

βn,1
|P |

)
1
2

)

, x2+y2=1.

• There is an open set U ∈H1 such that B attracts U \Γ, where Γ is the stable

manifold of the origin, which has codimension 2 in H1.

Proof. By the S1 attractor bifurcation theorem (see Theorem 2.2.3 in [17]), we
only need to show that the origin is a locally stable equilibrium point when R=R∗, and
that there exists a family of steady states which are homeomorphic to S1.

Using (5.17) we see that r= |ζ| satisfies the ODE

dr

dt
=ℜβn,1(R)r+Pr

3+o(r3). (5.18)

When R=R∗ we have ℜβn,1(R)=0 and P < 0, and thus the solution r(t) of the
preceding equation with any sufficiently small initial value r0 decreases to zero as t
increases, i.e., the origin is a locally stable equilibrium point for the reduced Equation
(5.17). Hence, the origin is a locally stable equilibrium point for (3.1) at R=R∗.

Let now ϕs(x,z) be any steady state of (3.1) which is nonconstant. It can be
directly verified that the problem (3.1), subject to (3.3)-(3.4), is invariant under the
transformation

ϕs(x,z)→ϕs(x+x0,z),∀x0∈R.

Then, letting

Σs= {ϕs(x+x0,z)|∀x0∈R},

it is clear that Σs is homeomorphic to S1. The proof is complete.

Remark 5.1. A similar result, albeit rather more complicated to formulate, holds
in the complementary case P > 0, which corresponds to a jump transition. However,
as shown below, our numerical simulations suggest that this scenario can never occur
for this system. Thus Theorem 5.1 completely characterizes the transition type of this
problem.

6. Numerical results

As discussed in the preceding section, the transition that (3.1) undergoes at the
critical Rayleigh number R∗ can only be of continuous or catastrophic type. In this
section, we find using numerical experiments the exact type of transition for (3.1) under
the effect of six different heating sourcesN taken from [14]. In particular, we analyze the
functional dependence between the transition number P and the geometric parameter
γ.
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It is clear that the first eigenfunction and the corresponding dual eigenfunction
can only be computed numerically. For this purpose we rely on the classical spectral
Galerkin Legendre method. The details of such a procedure are well known, and a more
detailed discussion can be found in [18].

First, we make a comparison between the exact transition number and its numerical
counterpart to show that our implementation of the method is highly accurate when
predicting the value of P . In order to do this, we focus on the case when H and N
in (3.1) are constants, and use slightly different boundary conditions (7.1)–(7.2). The
exact formula for the transition number P =P0 is given in the Appendix.

Table 6.1: Comparison between exact values of transition number and numerical pre-
dictions.

H,N,γ Exact P Numerical prediction Relative error
H=1,N=1,γ=2 -0.237945538212927 -0.237945538209306 1.52×10−11

H=1,N=2,γ=2 -0.121911934621018 -0.121911934619325 1.39×10−11

H=1,N=1,γ=3 -0.143761912015905 -0.143761912018452 1.77×10−11

H=1,N=2,γ=3 -0.074316592089502 -0.074316592086761 3.69×10−11

As seen in the above table, this method works as a good predictor of the sign
of the transition number as long as the predicted value is at least 10−11 away from
zero. Note also that, under these boundary conditions, the type of transition for the
Rayleigh-Bénard convection problem is always continuous.

The goal in the following is to study the transition type for the six different heating
sources given by (2.6) for different values of the ratio aspect γ. For all our simulations
we take δ= 1

100
, Pr=10, and let γ take values in the interval [1,10]. We recall that

these heating sources are given by

N(z)=































































N1(z)= z,

N2(z)=
1

2
(z+z2),

N3(z)=2z+
1

2
z3−

3

2
z2,

N4(z)=
1

2π
(1−cos(2πz)),

N5(z)= e
z−1−z,

N6(z)= z+
1

4π
(3−2cos2πz−cos4πz),

(6.1)

The corresponding values of P are shown in Figure 6.1, and the critical Rayleigh
numbers are shown in Figure 4.3. For the sake of clarity we show only values of P
associated with N(z)=Ni(z) for i=2,5,6; other heating sources give rise to very similar
results.

As seen in Figure 6.1, the sign of P is always negative, which remains true for
all six different heating sources. Thus, the corresponding types of dynamic transitions
are always continuous. Physically, this means that the critical Rayleigh numbers for
different aspect ratios found using linear stability analysis will also coincide with the
values measured experimentally.
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-10
1

-10
0

Fig. 6.1: The transition number P given in (5.16) for different heating sources and for Prandtl
number Pr=10

From Figure 6.1 we see that the transition number P is discontinuous as a function
of the aspect ratio γ. In fact, as Figures 6.1 and 4.3 show, the left and right limits of P
differ exactly at the values of γ at which the first eigenvalue has algebraic multiplicity
greater than one. Furthermore, recalling that, from Theorem 5.1, the approximate
expression of a bifurcated steady state solution of (3.1) for R>R∗ is

Us=(ψ,θ)=

(

βn,1
|P |

)
1
2

(xℜϕ1+yℑϕ1)+o

(

(

βn,1
|P |

)
1
2

)

, x2+y2=1, (6.2)

we see that the map γ 7→Us inherits these discontinuities.
In order to gain more insight into the topological meaning of this phenomenon, we

turn to (7.3). In this special case, since we have an explicit formula, it is clear that
the transition number, P0, depends on γ only through an=

2nπ
γ , and there exists an

increasing sequence {γi}i≥1 such that

n=

{

1 if 0<γ<γ1,

i+1 if γi<γ<γi+1,

and thus these are exactly the values of γ at which P0 is discontinuous.
The dependence on the aspect ratio of any bifurcated steady state, as given by

(6.2), has a clear interpretation in the framework of dynamic transitions. Namely, using
γ as a control parameter and a bifurcated solution as a basic steady state, the system
(3.1) undergoes a catastrophic transition at each γi. An important feature of such a
transition is that, as γ crosses each γi, the number of rolls in the fluid changes from 2i
to 2i+2. For example, for N =N2, the bifurcated steady state solution corresponding
to γ=3<γ1 has a two-roll pattern, as shown in Figure 6.2, and for γ1<γ=5<γ2, it
has a four-roll pattern, as shown in Figure 6.3.

From Figure 6.1 we can also extract a rough transition diagram. More precisely,
we note that at γ1 (the first discontinuity point of P ), the left limit is negative infinity,
whereas the right limit is a finite negative number; similarly, at γi, i> 1, the left and
right limits are both finite negative numbers, with the left limit being greater than the
right one. Accordingly, we see that any bifurcated solution Us (see (6.2)), satisfies

lim
γ→γ−

1

Us(γ)=0, lim
γ→γ+

1

Us(γ)=Us(γ1),
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Fig. 6.2: Bifurcated solution with a two-roll pattern for γ=3 (γ <γ1), N =N2 and n=1

Fig. 6.3: Bifurcated solution with a four-roll pattern for γ=5 (∈ (γ1,γ2)), N =N2 and n=2

and, for i> 1,

lim
γ→γ−

i

Us(γ)=Us(γ
−
i ), lim

γ→γ+

i

Us(γ)=Us(γ
+
i ),

with

|Us(γ
−
i )|> |Us(γ

+
i )|.

Figures 6.5a and 6.5b show the bifurcation diagrams corresponding to these two
situations.

Finally, we note that, as can be seen from (7.3), the transition number P0 in the
absence of heating sources and with constant gravity, is asymptotically proportional
to the Prandtl number Pr when Pr is large, which is the regime under consideration.
This property is retained by the general case of non-zero heating source and varying
gravity. To see this, we compute as before the values of the transition number for Pr in
the range [10,100]. The aforementioned scaling property is then clear from Figure 6.4.
Note also that when the magnitude of the transition number P increases, the size of the
basic solution (2.4) decreases. Since Pr is proportional to kinematic viscosity ν, which
from a physical perspective is inversely proportional to the typical velocity of the fluid
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particles, we see that the fact that transition number P is asymptotically proportional
to the Prandtl number is consistent with physical reality.

10 20 30 40 50 60 70 80 90 100

-140

-120

-100

-80

-60

-40

-20

0

Fig. 6.4: The transition number P given in (5.16) for N =N2 and different values of γ, with respect
to the Prandtl number.

γ
i

U
s

(a) i=1

γ
i

U
s

(b) i>1

Fig. 6.5: Bifurcation diagrams of the second transition relative to the zero solution

Appendix. In this section we derive an explicit formula for the transition number
corresponding to (3.1), subject to the boundary conditions

ψ(x+γ,z)=ψ(x,z),

ψ(x,0)=ψ(x,1)=
∂2ψ

∂z2
(x,0)=

∂2ψ

∂z2
(x,1)=0,

(7.1)

θ(x+γ,z)= θ(x,z), θ(x,1)= θ(x,0)=0. (7.2)

We assume also that H and N are given positive constants. Then, setting β=0,
the critical mode em can be found explicitly as

en= e
ianx

(

α
√

H
N sinπz

−i
√

π2+a2nαsinπz

)

where α∈C is an arbitrary normalization constant.
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The solution e∗n of the dual problem,

βA∗
nu=L∗

nu

where

L∗
n(Ψ,Θ)=

(

(∂2z−a
2
n)

2Ψ+ ianRN(z)Θ
(∂2z−a

2
n)Θ+ ianRH(z)Ψ

)

and the boundary conditions are the same as above, can also be found explicitly and is
given by

e∗n= e
ianx

(

α∗
√

N
H sinπz

i
√

π2+a2nα
∗ sinπz

)

.

Note that we have the property

〈Anen,e
∗
n〉=−αα∗γ(π2+a2n)

1+Pr

2
.

Regarding the nonlinear interactions, we have that

G(en,en)=G(e−n,e−n)=0,

G(en,e−n)= ian

(

−H
N 2π|α|2(π2+a2n)sinπz cosπz

i
√

H
N 2π|α|2

√

π2+a2nPrsinπz cosπz

)

G(e−n,en)=−ian

(

−H
N 2π|α|2(π2+a2n)sinπz cosπz

−i
√

H
N 2π|α|2

√

π2+a2nPrsinπz cosπz

)

By using the same procedure outlined in Section 5, we find that

∂zΘ11(z)= i

√

H

N
|α|2

√

π2+a2nPrcos2πz, Ψ11≡ 0

and

G(Φ11,en)=0,

G(en,Φ11)= e
ianx

(

0

−iHNPr2
√

π2+a2na
2
n|α|

2αsinπz cos2πz

)

so that

〈G(en,Φ11)+G(Φ11,en),e
∗
n〉=

Pr2H

4N
γ(π2+a2n)a

2
n|α|

2αα∗

Then, assuming that the first eigenfunction em is normalized under the inner prod-
uct

(u,v)=
1

γ

∫ γ

0

∫ 1

0

uvdxdz,
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we obtain

|α|2=
2

(HN +π2+a2n)
,

from where the transition number P0 is found to be

P0=−
HPr2a2n

(1+Pr)(H+Nπ2+Na2n)
. (7.3)
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[6] K. Kirchgässner, Bifurcation in nonlinear hydrodynamic stability, SIAM Rev., 17(4):652–683,

1975. 1
[7] T. Ma and S. Wang, Attractor bifurcation theory and its applications to Rayleigh-Bénard convec-

tion, Commun. Pure Appl. Anal., 2(4):591–599, 2003. 1
[8] P. H. Rabinowitz, Existence and nonuniqueness of rectangular solutions of the Bénard problem,

Arch. Ration. Mech. Anal., 29:32–57, 1968. 1
[9] T. Ma and S. Wang, Dynamic bifurcation and stability in the Rayleigh-Bénard convection, Com-

mun. Math. Sci., 2(2):159–183, 2004. 1
[10] C.-H. Hsia, T. Ma, and S. Wang, Stratified rotating Boussinesq equations in geophysical fluid

dynamics: dynamic bifurcation and periodic solutions, J. Math. Phys., 48(06):065602, 2007.
1

[11] C.-H. Hsia, T. Ma, and S. Wang, Rotating Boussinesq equations: dynamic stability and transi-
tions, Discrete Contin. Dyn. Syst., 28(1):99–130, 2010. 1

[12] C.-H. Hsia, C.-S. Lin, T. Ma, and S. Wang, Tropical atmospheric circulations with humidity
effects, Proc. R. Soc. A., 471(2173):20140353, 24, 2015. 1

[13] G. K. Pradhan and P. C. Samal, Thermal stability of a fluid layer under variable body forces, J.
Math. Anal. Appl., 122(2):487–495, 1987. 1

[14] B. Straughan, The Energy Method, Stability, and Nonlinear Convection, Second Edition, Appl.
Math. Sci., Springer-Verlag, New York, 91, 2004. 1, 2, 6

[15] I. H. Herron, On the principle of exchange of stabilities in Rayleigh-Bénard convection, SIAM J.
Appl. Math., 61(4):1362–1368, 2001. 1, 4

[16] I. H. Herron, On the principle of exchange of stabilities in Rayleigh-Bénard convection II. No-slip
boundary conditions, Ann. Univ. Ferrara Sez. VII (N.S.), 49:169–182, 2003. 1, 4

[17] T. Ma and S. Wang, Phase Transition Dynamics, Springer, New York, 2014. 1, 3, 5, 5, 5
[18] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications,

Springer Science & Business Media, 41, 2011. 4, 6

https://link.springer.com/chapter/10.1007/3-540-13319-4_15
https://physicstoday.scitation.org/doi/10.1063/1.3058072
https://doi.org/10.1080/14786442608564114
https://doi.org/10.1016/0021-8928(67)90070-6
https://www.jstor.org/stable/97537
https://doi.org/10.1137/1017072
http://www.aimsciences.org/journals/displayArticles.jsp?paperID=71
https://link.springer.com/article/10.1007%2FBF00256457
http://dx.doi.org/10.4310/CMS.2004.v2.n2.a2
https://doi.org/10.1063/1.2710350
http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5064
https://doi.org/10.1098/rspa.2014.0353
https://doi.org/10.1016/0022-247X(87)90280-0
https://link.springer.com/book/10.1007/978-1-4757-2194-2
https://doi.org/10.1137/S0036139900370388
http://www.doc88.com/p-8826954619383.html
https://link.springer.com/book/10.1007%2F978-1-4614-8963-4
https://link.springer.com/book/10.1007%2F978-3-540-71041-7

