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TOPOLOGICAL PROTECTION OF PERTURBED EDGE STATES∗

GUILLAUME BAL†

Abstract. This paper proposes a quantitative description of the low energy edge states at the
interface between two-dimensional topological insulators. They are modeled by systems of massive
Dirac equations, which are amenable to a large class of random perturbations. We consider general as
well as fermionic time reversal symmetric models. In the former case, Hamiltonians are classified by
means of the index of a Fredholm operator. In the latter case, the classification involves a Z2 index.
These indices dictate the number of topologically protected edge states.

A remarkable feature of topological insulators is the asymmetry (chirality) of the edge states, with
more modes propagating, say, up than down. In some cases, backscattering off imperfections is pre-
vented when no mode can carry signals backwards. This is a desirable feature from an engineering
perspective, which raises the question of how backscattering is protected topologically. A major moti-
vation for the derivation of continuous models is to answer such a question.

We quantify how backscattering is affected but not suppressed by the non-trivial topology by in-
troducing a scattering problem along the edge and describing the effects of topology and randomness
on the scattering matrix. Explicit macroscopic models are then obtained within the diffusion approxi-
mation of field propagation to show the following: the combination of topology and randomness results
in unhindered transport of randomness-dependent protected modes while all other modes (Anderson)
localize.

Keywords. Topological insulators; Edge states; Fredholm Operators; Index Theory; Dirac Equa-
tions; Z2 index; Scattering theory; Diffusion approximation; Anderson localization.
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1. Introduction
The characterization of phases of materials by topological invariants rather than

by symmetries and their spontaneous breaking constitutes a very active field of re-
search in condensed-matter physics. These phases display fundamental properties that
are immune to continuous changes in the material parameters unless the topological
invariant ceases to be defined. Examples of such properties in two-dimensional ma-
terials are the quantum Hall effect and the quantum spin Hall effect, which display
unusual transport properties of electronic edge states at the interface between insula-
tors [12,16,25,26,32,34,36,44]. Similar effects have also been predicted and observed in
many photonic and mechanical structures [18,21,22,30,31,33,37,39,41,45,46,49,51,52].

The objective of this paper is to derive a continuous partial differential model that
allows for a quantitative analysis of the properties of such edge (or interface) states and
how topology influences their behavior under perturbations by random fluctuations.

The existing models for edge states of topologically non-trivial materials are typi-
cally obtained as follows [16, 24, 34, 44]. Materials obeying translational invariance are
characterized by a Hamiltonian H(k) that depends continuously on a wavenumber k
living in a Brillouin zone T2. Such Hamiltonians are gapped by means of a mass term,
an order parameter M . For any energy E in the band gap, i.e., not in the spectrum of
H(k) for any k∈T2, the material is therefore an insulator. The mass term M , which
may be a scalar quantity or a more general object, describes the (tunable) topology of
the material: for certain values of M , say MR, the material is topologically trivial, while
for other values of that order parameter, say ML, the material is non-trivial. Edge states
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appear at the interface between materials characterized by MR and by ML. Assuming
a smooth transition from one value to another, the mass term M(x) passes through a
value where the topological invariant is not defined, the gap is closed, the material ceases
to be an insulator, and (metallic) edge states are allowed. The nature of the edge states
and their topological protection can often be related to the topology of the insulators
described by MR,L. This is the bulk-boundary correspondence [16,28,29,34,40,44].

The above results are based on the analysis of Hermitian bundles (parametrized
by the order parameter M) of appropriate eigen-spaces of the Hamiltonian over the
Brillouin zone T2 (or more general compact phase spaces in a ‘semi-classical’ approach
[16, Section III.B]). As such, they require that the material be invariant with respect
to discrete translations. This renders the analysis of random fluctuations that naturally
exist at all scales and therefore break the translational invariance quite difficult.

To obtain quantitative models for the influence of non-periodic random fluctuations
on edge states, we have to leave the realm of continua described by a Brillouin zone.
More precisely, we need to leave the commutative setting of Fourier (or phase-space)
multipliers on the Brillouin zone and the topology of Hermitian bundles, and consider
instead the non-commutative setting of operators acting on the physical variables, where
the topology is given by the indices of appropriate Fredholm operators. Such a successful
framework was introduced in [10,11] to model the quantum hall effect. It was extended
to more general topological material, including the analysis of edge and interface states
for discrete Hamiltonians, their perturbations by randomness, and the bulk-boundary
correspondence in a large body of works in the mathematical literature; see [2, 14, 38,
42, 43] and their numerous references. This index approach is related to the notion of
relative index of projections developed in [3–5] to analyze the quantum Hall effect.

The main objective of this work is to introduce continuous partial differential mod-
els, also of “index” type, to quantify the transport properties of edge states and assess
how such properties are affected by topological constraints and random perturbations.
In particular, we describe how the backscattering of edge modes is affected by topology
but not always suppressed in the presence of randomness. For concreteness, we focus on
an electronic application although the mathematical model, a system of Dirac equations,
applies to the analysis of transport in topological photonics; see above references.

Partial differential model. The framework we propose here is best motivated
by a concrete example related to graphene. We refer the reader to [15, 24, 34, 43, 44]
for the details and context. Unperturbed graphene is modeled by a Hamiltonian H(k),
k= (kx,ky) in a Brillouin zone T2, a two-dimensional torus, describing bulk states at
different sub-lattices (A or B) and spin configurations (up and down). Two wavenum-
bers ξK for ξ=±1, the Dirac points, are special in that the conduction and valence
bands meet exactly at these two points for an energy E normalized to 0. Valleys are
then described by wavenumbers k= ξK+q in the vicinity of these two Dirac points. Fo-
cusing on one valley, say ξ= 1, for a given spin, say up, and linearizing the Hamiltonian
in the vicinity of the Dirac point gives a Dirac operator for a Fermi velocity v written
in the Fourier domain as

v(qxσ1 +qyσ2) =v

(
0 qx− iqy

qx+ iqy 0

)
and describing quantum states at the sub-lattices A and B (first and second components,
respectively, of the spinor in C2 to which the Hamiltonian applies), where (σ1,σ2,σ3) are
the standard Pauli matrices. The above linear dispersion relation, which is very common
in the physical literature [15, 24, 34, 44], is valid for low frequencies vq, or equivalently
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low energies. This is the regime considered in this paper.

The above model is not gapped and graphene is metallic at energy E= 0. One
mechanism to gap graphene or graphene-like structures corresponds to an asymmetry
between the sub-lattices A and B, which results in the Hamiltonian for the valley ξ= 1,

H1(q) =v(qxσ1 +qyσ2 +m1σ3).

Let us assume that the valley ξ=−1 is gapped as well but with a mechanism that
results in a mass m2 not necessarily equal to m1 and a corresponding Hamiltonian
H2(q). It may be shown [24, 43] quite generally, including for the celebrated Haldane
model [32], that the (first) Chern number c1 = 1

2 (sign(m2)− sign(m1)) is a topological
invariant for the Hamiltonian H(k) defined for k over the whole Brillouin zone T2 and
whose linearization in the vicinity of ±K is given by H1(q)⊕H2(q). The Chern number
is physically relevant as it can be related by the Kubo formula to the quantum Hall
conductivity, which can be observed experimentally [15,24,34,43,44]. Note that such a
model breaks time reversal symmetry.

Here and below, we define the direct sum of operators hj : Hj→ H̃j , j= 1,2, as the

operator h1⊕h2 from H1⊕H2 to H̃1⊕H̃2 defined by (h1⊕h2)(u,v) = (h1u,h2v), i.e.,
formally the operator Diag(h1,h2).

A standard route to the derivation of edge states now assumes that mj =mj(x) with
x a macroscopic spatial variable. Then x>0 and x<0 correspond to two materials in
(possibly) different topological phases. Assume mj(x) continuous with, say, m1(x)→
±mα>0 changing signs as x→±∞ while m2(x)→mβ>0 does not change signs asymp-
totically in the same limits. Then, c1 = c1(x) = 1

2 (sign(m2(x))− sign(m1(x))) changes
values as x runs from −∞ to +∞ and hence must jump somewhere, say at x= 0, where
the material is metallic. An edge state localized in the vicinity of x= 0 may then appear
and propagate in the transverse direction y. This is confirmed by the classical analysis
we will come back to in detail in Section 4 of a Hamiltonian of the form

H(qy) =v
(1

i
∂xσ1 +qyσ2 +m1(x)σ3

)
⊕v
(1

i
∂xσ1 +qyσ2 +m2(x)σ3

)
. (1.1)

This Hamiltonian may be represented as a 4×4 matrix of operators and applies to
spinors of the form (ψA,ξ=1,ψB,ξ=1,ψA,ξ=−1,ψB,ξ=−1)t. The bulk-edge correspondence
provides a link between the topological bulk properties c1(±∞) of the two materials at
x>0 and x<0 and the number of edge modes c1(+∞)−c1(−∞) concentrated in the
vicinity of where the topological number c1(x) jumps.

Once written in the physical domain (where the multiplier qy is replaced by 1
i ∂y),

we obtain an unperturbed partial differential model for the interface, a system of Dirac
equations, which no longer requires the assumption of translational invariance.

Edge models. Our aim is to analyze the edge states in the vicinity of x= 0. Since
both domains ±x>0 are insulators, we now introduce operators that neglect (prevent)
bulk propagation and the resulting continuous spectra for energies not lying in the band
gap. This greatly simplifies our analysis. The work [6] shows that such simplifications
can be avoided at the price of significant functional technicalities we do not consider
here.

Let us focus on the mass term m(x) that changes signs. We wish to obtain a function
that faithfully describes the change of topology (i.e., changes sign in the vicinity of 0)
while confining the system to the vicinity of x= 0. The simplest example is mτ (x) =λx
for some λ>0. A large λ corresponds to a sharp transition from one topology to the
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other. The unperturbed edge states are now modeled by Hamiltonians of the form
(normalizing the Fermi velocity v= 1 for the rest of the paper):

h̃τ =
1

i
∂xσ1 +

1

i
∂yσ2 +mτ (x)σ3.

The mass term that does not change signs may be treated similarly, with the main
difference that m=mo(x) has a fixed sign at ±∞. Our choice of a model for mo(x) will
be a smooth function of x with a behavior at ±∞ of the form λ|x| so that sign(mo(x))
is constant. The Hamiltonian for the Haldane model corresponding to a transition of
c1(x) from a trivial phase c1(x) = 0 to a non-trivial phase c1(x) = 1 with a Hamiltonian
in physical variables given by h̃τ ⊕ h̃o, where h̃o is the Hamiltonian associated to the
mass term mo(x).

The physical intuition for such a model is clear: we assume that the energy range
where we operate the material is very small compared to the bulk gap generated by the
mass terms mτ,o(±∞) and so formally send the latter to infinity to avoid mathematical
difficulties that are irrelevant to characterize the propagation of the interface modes.

More general materials (than the above Haldane model) may be represented as
more general direct sums of block Hamiltonians of the form given above corresponding
to the different species present in the system (sub-lattice as described above, valleys,
spin, or any other internal degree of freedom; see [16, III.C.1]). Once we have obtained
such a family of unperturbed Hamiltonians H̃0, we can perturb them by a large class
of random fluctuations V , with V a Hermitian operator.

Let us reiterate that the models considered here are low energy approximations for
wavenumbers close to Dirac points. Non-trivial bulk materials are characterized by non-
trivial integers, the Chern numbers, which may be represented as integrals of curvature
forms over the Brillouin zone. Such integers depend on the singular behavior of the
curvature form in the vicinity of critical points, the Dirac points (±K in the preceding
model). Hamiltonians generically take the form of Dirac operators in the vicinity of
the Dirac points. These Hamiltonians are our starting point. They encode the Chern
numbers, and hence the topology of the materials typically considered in the physical
literature [24], by means of mass terms (of the form mτ,o in the preceding model).
We assume a continuous transition of the mass terms from one material to the other.
We also assume that masses tend to infinity away from the interface in order to focus
on edge properties, thereby eliminating the possibility of escape into the bulk and its
analysis; see [6]. This provides the starting point of our analysis, namely an operator of
the form H̃0 written as the direct sum of 2×2 Dirac operators of the form of h̃τ above.

Topological classification. Hamiltonians in the non-commutative setting are
typically mapped to Fredholm operators by spectral calculus, whose index reflects the
non-trivial topology of the problem; see [4, 14, 43] and references there. The Dirac
operators considered here can be mapped to similar Fredholm operators as shown in [6].
We will instead leverage the asymptotic behavior ofmτ,o at±∞ and propose a somewhat
simpler classification.

To classify the above Hamiltonian h̃τ (or H̃0), we introduce in Section 3 a family of
Fredholm operators given by the regularization D̃v =σ1⊗H̃0−vyσ2⊗I for some v>0
arbitrarily small, which should be thought of as v= 0+. This regularization is necessary
to ‘compactify’ the infinite domain R2 and bears some similarities with the topological
method based on Green’s functions presented in [50]; see also [28]. The operator D̃v is
a Dirac operator to which a Fredholm index can be assigned.

The class of edge Hamiltonians considered in this paper is introduced in Section
2. In Section 3, we show that the index of these Hamiltonians is: (i) not modified in
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the presence of a large class of (random) perturbations; (ii) equal to Mτ −Nτ , with
Mτ and Nτ the numbers of (protected) edge states propagating in the ±y direction in
the vicinity of x= 0, respectively; and (iii) two Hamiltonians with the same index are
connected by a continuous path of appropriate Fredholm operators.

Thus far, the Hamiltonians, such as h̃τ above, do not respect time reversal symmetry
(TRS). In the presence of TRS of fermionic type introduced in Section 3.2, we verify
that Mτ =Nτ and so the above index vanishes. The remarkable result obtained in
[25,26,34,36] shows that because of the fermionic TRS, edge modes are still topologically
(or algebraically) protected when they come in an odd number of pairs. Introducing the
Z2 index given by Mτ mod 2, we obtain again that such an index is immune to a large
class of random perturbations while two operators in the same class are connected by a
path of Fredholm operators preserving the TRS.

Scattering theory and diffusion approximation. The edge Hamiltonians con-
sidered here involve minor modifications (primarily the behavior of the mass terms at
infinity to concentrate the analysis to the vicinity of the interface and the resulting clas-
sification as Fredholm operators of regularized Dirac type) of low energy models readily
available in the literature [24, 43, 44]. The main motivation for their introduction is
to quantify the interaction of random fluctuations and topology on the edge modes,
and in particular obtain quantitative descriptions of the physically relevant notions of
transmission and reflection (backscattering).

Operators such as h̃τ are shown to be decomposed (for each wavenumber ζ, the
dual variable to y) into an infinite number of edge modes providing an appropriate
basis of functions in L2(Rx;CN ), where N is the dimension of the spinors to which the
Hamiltonian is applied. Some of these modes are the edge modes among the Mτ and Nτ
that characterize the topology of D̃v. Combining them with the other modes provides
a basis to describe a scattering theory as follows.

For a given energy level E, a finite number of these edge modes are propagating
while the rest are evanescent. In the presence of random fluctuations Ṽ coupling the
propagating modes (see Hypothesis 4.1 in Section 4), the amplitudes of said modes
satisfy a closed system of equations (in the y variable). Such a scattering theory is
introduced in Section 4. Edge transport is then characterized by a scattering matrix
composed of reflection and transmission coefficients. Conductance in such systems is
then physically proportional to the trace of the transmission matrix. In the topologically
trivial setting, Anderson localization shows that such a conductance decays exponen-
tially as the thickness of the slab of random perturbations increases. We will show that
the conductance is at least equal to the index of the Dirac operator D̃v in general and
at least equal to the mod 2 index in the presence of TRS. This validates the intuition
that non-trivial topology is an obstruction to (complete) Anderson localization of the
edge states.

Often associated to the absence of localization is the absence of backscattering.
The latter does not hold in general. For sufficiently low energy levels, the absence of
backscattering is certainly observed in some cases. However, for sufficiently high energy
levels, the number of edge modes is given by the protected modes plus a number of
pairs of modes that is energy dependent. Scattering among these modes is triggered by
the random fluctuations Ṽ . In the diffusive regime, the scattering coefficients satisfy
(in some cases) explicit quantitative diffusion (Brownian-type) motion as a function of
thickness L of the random medium. In this configuration, transmission is guaranteed by
topology and all modes experience backscattering except specific, medium-dependent
modes that are indeed reflection (backscattering) free. In the presence of large random-
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ness, we obtain the striking feature that Mτ −Nτ (Mτmod2 in the TRS setting) modes
are allowed to transmit while every other mode (Anderson) localizes. The details of the
derivation are presented in Sections 5 and 6.

The Hamiltonians considered here are low-frequency (energies close to the Fermi
energy) approximations of tight-binding Hamiltonians derived for translation invariant
materials. For recent derivations of edge states and their topological protection from
explicit potentials in a Schrödinger equation with appropriate non-periodic perturba-
tions, we refer the reader to [19, 20]. The stability properties of edge states we obtain
in this paper in the TRS setting are consistent with those derived in [47] for randomly
perturbed one-dimensional Dirac (continuous) models.

2. Edge Hamiltonians
The introduction section presented the Dirac Equation (1.1) as a model of low en-

ergy edge modes. We now consider more general models of topologically trivial and
non-trivial edge modes propagating in the ±y directions. We represent the Dirac op-
erators in an equivalent, more convenient, basis. General edge Hamiltonians are then
written as a direct sum of elementary blocks, which are not constrained to satisfy any
translation invariance and can thus be perturbed by a large class of random fluctuations.

Topologically non-trivial block. The main elementary (2×2 block) operator in
two space dimensions carrying an edge mode is given by:

hτ =

(
1
i ∂y a∗τ
aτ − 1

i ∂y

)
=

1

i
∂yσ3 +

1

i
∂xσ2 +mτ (x)σ1. (2.1)

Here, aτ =∂x+mτ (x) and its formal adjoint a∗τ =−∂x+mτ (x). We assume that

C∞(R)3mτ (x)→±∞ as x→±∞ and that
m′τ (x)
mτ (x)→0 as |x|→∞. To simplify the

functional setting, we assume that 0<λ−1
0 < |mτ (x)|

|x| <λ0 for |x|>1. A typical example

is mτ (x) =λx for λ>0 so that aτ is a rescaled version of the standard annihilation
operator (with a∗τ the creation operator) and aτa

∗
τ is related to the harmonic oscillator

of quantum mechanics.
We verify that aτ is bounded from H1(R;C2) to H0(R;C2) =L2(R;C2) with

H1(R;Cn) the Hilbert space defined by the norm (‖u‖2L2(R) +‖xu‖2L2(R) +‖∂xu‖2L2(R))
1
2 <

∞ for each of the n components. Consequently, its adjoint operator a∗τ is bounded from
H0 to H∗1, the dual space to H1; here and below we use H1 for H1(R;Cn) when n is
obvious from the context. The formal adjoint operator a∗τ is also bounded from H1 to
H0 so that aτ is bounded from H0 to H∗1 as well. To simplify notation, we use the same
expression aτ and a∗τ for these operators defined on different domains, so that both aτa

∗
τ

and a∗τaτ are bounded from H∗1 to H1.
The above Hamiltonian hτ is the same as h̃τ described in the introduction but

written in a different basis. Let Q2 = 1√
2

(
1 1
i −1

)
be the unitary matrix whose columns are

the eigenvectors of σ2. We verify that Q∗2h̃τQ2 =hτ . This new basis is more convenient
as ∂x and mτ,o(x) appear in the same matrix entries; see also [24].

We shall see in Section 4 that the above operator carries one edge mode propagating
in the positive y direction without dispersion as well as an infinite number of pairs of
dispersive modes. Standard calculations [24,44] show that when mτ (x) =λx, a solution
to hτψ=Eψ for E∈R is given by

ψ(x,y) = ceiEye−
λ
2 x

2

(
1
0

)
, (2.2)
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with c a normalizing constant. This is the typical example of an edge mode concentrated
in the vicinity of x= 0 with a linear dispersion relation E(ζ) = ζ for ζ the dual (Fourier)
variable to y with a group velocity ∂E

∂ζ = 1 (the Fermi velocity v being normalized to 1).

Here and below, we use the notation ∗ to represent Hermitian conjugation and ¯ to
represent complex conjugation (as opposed to the notation † and ∗, respectively, that is
more standard in the physics literature).

We also consider edge modes propagating in the opposite direction (towards negative
values of y). They are supported by the operator

−hτ =

(
− 1
i ∂y −a

∗
τ

−aτ 1
i ∂y

)
,

where the direction of time changed in a time-dependent Schrödinger equation. Such
modes are also modeled by the operator h̄τ , which may be seen as the time reversal
conjugate to hτ ; see Section 3.2. These two operators, h̄τ and −hτ , are the same
operator written in different bases since σ3h̄τσ3 =−hτ (and σ−1

3 =σ3). Since some
calculations to follow are simpler with −hτ , we use this choice of a representation.

Topologically trivial blocks. We finally consider the case of non topologically
protected edge modes. Such modes are modeled by a localizing mass term mo(x) that
does not change sign at infinity. We assume that C∞(R)3mo(x)→+∞ as x→±∞. We

also assume that 0<λ−1
0 < |mo(x)|

|x| <λ0 for |x|>1; typically mo(x) is a smooth version of

(or exactly that if we relax the regularity constraint) λ|x| for λ>0. We could similarly
have a term mo(x) converging to −∞ at ±∞. What is topologically relevant is that mo

has the same sign at ±∞ while mτ changes sign from −∞ to +∞.

We then define the building block

ho=

(
1
i ∂y a∗o
ao − 1

i ∂y

)
, ao=∂x+mo(x). (2.3)

The time reversal conjugate of such a block is then −ho=σ3h̄oσ3. The operators ao
and a∗o share the same functional setting as aτ and a∗τ . Note that no mode of the form
(2.2) with linear dispersion relation exists for the above Hamiltonian.

Unperturbed edge Hamiltonian. The unperturbed Hamiltonian describing the
propagation of the edge modes is then given more generally by the direct sum of copies
of the preceding building blocks:

H0 =h⊕Mτ
τ ⊕(−hτ )⊕Nτ ⊕h⊕Mo

o ⊕(−ho)⊕No . (2.4)

Such Hamiltonians now act on spinors of size N = 2(Mτ +Nτ +Mo+No). This gener-
alizes the operator in (1.1) (written in the Fourier domain for the variable y) where we
had Mτ =Mo= 1. Here, Mτ models the Chern number generalizing c1(+∞) introduced
in the introduction while Nτ models the Chern number generalizing c1(−∞). The bulk-
edge correspondence then states that the topologically relevant number of protected
edge modes should be Mτ −Nτ . This will be verified in the next sections.

There is no fundamental reason to assume that the mass terms mτ,o(x) are the same
for all the propagating modes. To (slightly) simplify notation, however, we assume that
they are indeed the same and that m2

τ (x) =m2
o(x) for |x|≥1, say. This is the basic

setting for the modeling of edge modes, with a collection of Mτ upward propagating
modes with (approximately) linear dispersion, Nτ downward propagating modes also
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with (approximately) linear dispersion, and as we shall see, a large class of other dis-
persive modes propagating upwards and downwards (i.e., with positive and negative
currents) in equal numbers.

General edge Hamiltonian. With this definition, the Hamiltonians we consider
in this paper are of the form

H=H0 +V, (2.5)

where V is a perturbation that models a wide class of (random) fluctuations. We will
be more precise on our assumptions on V in the next sections.

The objective of this paper is to analyze and quantify the robustness of the edge
modes with respect to the perturbation V . We distinguish between two types of
systems. One is the general setting of time reversal symmetry breaking Hamiltoni-
ans as described above. We will show that an index given by Mτ −Nτ characterizes
the classes of homotopically equivalent Hamiltonians for a given dimension of spinors
N = 2(Mτ +Nτ +Mo+No). The second regime is that of Hamiltonians satisfying a
fermionic time reversal symmetry. In such a setting, Mτ =Nτ and the index vanishes.
We will show that the Hamiltonians with a given dimension N are separated into two
homotopy classes given by the Z2 index Mτmod 2.

3. Topological invariants
Hamiltonians in the non-commutative setting such as those presented in the preced-

ing section (operators H corresponding to different perturbations V or different mass
terms m(x) no longer commute) need to be assigned topological invariants. A well-
established procedure to do so is based on the notion of Fredholm modules and on
Fredholm operators constructed from the Hamiltonian by spectral calculus; see [14, 43]
for definitions and details, as well as [6] for continuous Dirac Hamiltonians. Here, we
use the specific structure of the mass terms m(x) to introduce a simpler topological
classification. We first focus on the setting in which the Hamiltonian is not necessarily
time reversal symmetric and then the setting where the fermionic TRS holds.

3.1. Index theory for general edge Hamiltonians. The edge Hamiltonians
described in (2.5) are now mapped to Fredholm operators to which an index may be
assigned. Let us first focus on the block hτ . Such a Hamiltonian may be written in the
Fourier domain y→ ζ, where it has the following expression

ĥτ (ζ) =

(
ζ a∗τ
aτ −ζ

)
.

For each ζ, this is a one-dimensional Hamiltonian with purely discrete spectrum and a
Fredholm operator from H1 to H0 thanks to the confinement provided by mτ (x). Since
ζ is continuous in R, this shows that hτ written in an appropriate functional setting
on R2 will have essential (continuous) spectrum in the vicinity of 0 (and hence cannot
be Fredholm). In order to classify Hamiltonians, we use a classical regularization that
renders all these Hamiltonians Fredholm operators by ‘compactifying’ the variable y.
The simplest regularization consists of adding a term of the form vy appropriately for
v>0 (arbitrarily small).

We should think of v= 0+ so that the physical description of the Hamiltonian is
preserved in the limit v→0+. Only the sign of v matters to have a well-defined index.
Specifically, we introduce the regularization

Dv =σ1⊗H−σ2⊗vy=

(
0 H∗v
Hv 0

)
, Hv =H+

1

i
vy.
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Here, Hv is a non-Hermitian operator because of the presence of the 1
i vy term, and Dv

is the associated (Hermitian) Dirac operator. Our edge Hamiltonians are then classified
according to the index of the above Dirac operator defined as

Index Dv := Index Hv =Mτ −Nτ . (3.1)

We now justify the use of such an index.
Let hτv be the regularization of hτ :

hτv =

(
1
i av a∗τ
aτ

1
i a
∗
v

)
, av =∂y+vy.

We recognize in hτv a similar operator to the one defined in [35, Prop. 19.2.9] with
n= 2.

It is not difficult to verify that it is a Fredholm operator with index equal to 1 from
H1(R2;C2) toH0(R2;C2), whereH0 =L2((R2;C2)) whileH1(R2;Cn) is the Hilbert space

with norm (‖(1+ |x|+ |y|)u‖2 +‖∂xu‖2 +‖∂yu‖2)
1
2 for each of the n components. These

are the two-dimensional counterparts of H0 and H1, respectively. Here, ‖·‖ is the usual
L2(R2) norm. We use the notation Hj for Hj(R2;Cn) when n is clear from the context.
As in the one-dimensional case, both hτv and h∗τv are Fredholm operators (with indices
+1 and −1, respectively) from H1 to H0 as well as from H0 to H∗1, the dual to H1.

If hov is defined similarly with aτ replaced by ao, then we obtain a Fredholm operator
(in the same topologies) with a vanishing index. Similarly, (−ho)v =−ho+ 1

i vy is also
a Fredholm operator with vanishing index. Finally, we verify that

(−hτ )v =

(
1
i (vy−∂y) −a∗τ
−aτ 1

i (vy+∂y)

)
=

(
1
i a
∗
v −a∗τ

−aτ 1
i av

)
=−h∗τv,

is a Fredholm operator with an index equal to −1, as is (h̄τ )v =σ3(−hτ )vσ3. Note
that (−hτ )v can be continuously deformed to (h̄τ )v along a path of (non-Hermitian)
Fredholm operators by defining σ(t) = Diag(1,eiπt), which continuously deforms the
identity matrix to σ3 in the space of unitaries. The path is given by σ−1(t)(−hτ )vσ(t).
As indicated above, we could therefore have used h̄τ as the building block for negatively
propagating edge modes in (2.4) instead of (−hτ ).

This proves the validity of the index (3.1) when H is replaced by H0, a Fredholm
operator of index Mτ −Nτ from H1(R2;CN ) to H0(R2;CN ). Now, for V any relatively
compact perturbation of H0v, i.e., such that (λ−H0v)

−1V is compact as an operator
defined in L(H0(R2;CN )) for one λ∈C (and hence all λ in the resolvent set of H0v),
we obtain the standard result that the index is invariant [35, Chapter 19]: IndexHv =
IndexH0v. This justifies the definition of the index (3.1) for the operators Hv considered
in this paper. We observe that any local multiplication by V (x,y) for V bounded on R2

provides such a relatively compact perturbation. Note that the index is also independent
of the choice of v>0.

It is a classical (deep) result that Fredholm operators on Hilbert spaces with the
same index (possibly defined on different (separable) Hilbert spaces since all such spaces
can be identified) are path-connected; see [13, Theorem 3.40] and the comments before
that (Atiyah-Jänich) theorem. Since we will need a similar result in the TRS setting
where a general theory (which undoubtedly applies) may be harder to find, we propose
below a simple standard construction of the path. The proof also displays explicitly why
a material with Mτ =Nτ = 1 that may look non-trivial topologically is in fact trivial (in
that sense) and equivalent to a material with Mo=No= 1.
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Theorem 3.1. Let H1 and H2 be two Hamiltonians of the form (2.5) with the same
spinor dimension N . Let H1v and H2v be their Fredholm regularizations and V be a
relatively compact perturbation as described above. Assume that IndexH1v = IndexH2v.

Then there exists a continuous family of Fredholm operator Ft for 0≤ t≤1 such that
F0 =H1v and F1 =H2v.

Proof. We wish to show that Mτ −Nτ indeed characterizes the above class of
edge Hamiltonians. Since V is not affecting the index, H0v+ tV for t∈ [0,1] provides
a continuous family of Fredholm operators linking H0v to Hv. We consider D0v the
regularization of the unperturbed operator H0 defined in (2.4). Let Mτ >0 and Nτ >0
and consider a sub-block of H0 defined by the pair f =hτ ⊕(−hτ ) with fv its Fredholm
regularization. Let now g=ho⊕(−ho) be a similarly defined block of trivial operators
and gv its Fredholm regularization. More precisely, let us define

fv =

(
hτv 0
0 −h∗τv

)
, Df =

(
0 f∗v
fv 0

)
, gv =

(
hov 0
0 −h∗ov

)
, Dg =

(
0 g∗v
gv 0

)
.

Here, f corresponds to Mτ = 1 and Nτ = 1 while g corresponds to Mo= 1 and No= 1.
We want to show that the two Fredholm operators fv and gv are linked by a continuous
path of Fredholm operators and equivalently (if one insists on working with Hermitian
operators) that the Hermitian Dirac operators Df and Dg are linked by a continuous
path of Hermitian Fredholm operators. This is done as follows. Let us define the
rotation (by −t)

Rt=

(
ct st
−st ct

)
, ct= cos t, st= sin t.

Consider the family of operators

Ft=

(
hv 0
0 1

)(
ct st
−st ct

)(
1 0
0 −h∗v

)
=

(
cthv −sthvh∗v
−st −cth∗v

)
,

for hv being hτv for F0 =fv or hov for F0 =gv. We observe that this is a family of
Fredholm operators (as a composition of Fredholm operators) from H0⊕H1 to H∗1⊕H0;
see, e.g., [35, Corollary 19.1.7]. The family continuously links F0 to

Fπ
2

=−
(

0 hvh
∗
v

1 0

)
, hαvh

∗
αv =

(
ava
∗
v+a∗αaα 0

0 ava
∗
v+aαa

∗
α

)
, α= τ,o.

Now, we observe that hτvh
∗
τv and hovh

∗
ov are homotopic Fredholm operators. Indeed

aτa
∗
τ =−∂2

x+m2
τ (x)+m′τ (x), aoa

∗
o =−∂2

x+m2
o(x)+m′o(x).

Both operators are equal to −∂2
x+m2

τ (x) from H1 to H∗1 (in one space dimension) up to
the relatively compact perturbations m′τ (x) and m′0(x)+m2

τ (x)−m2
o(x), respectively.

They are therefore homotopic as Fredholm operators (with vanishing index). They are
also homotopic to a∗αaα for the same reason. With the same reasoning with the operators
av, we obtain that hτvh

∗
τv and hovh

∗
ov are homotopic Fredholm operators from H∗1 to

H1 (in two space dimensions).
This proves that fv and gv are homotopic Fredholm operators and that Df and Dg

are homotopic Hermitian operators. This shows that the operators with Mτ =Nτ = 1
and Mτ =Nτ = 0 are homotopic. Repeating the argument a finite number of times
justifies using the index Mτ −Nτ to characterize a large class of edge models that are
homotopic to each other in the sense described above.
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3.2. Mod 2 Index theory for TR edge Hamiltonians. Let us now as-
sume that the Hamiltonians satisfy a fermionic time reversal symmetry (TRS) whose
definition is given below. Consider first a Hamiltonian with Mτ propagating modes
hτ =h⊕Mτ

τ . This operator does not satisfy TRS. A time reversal symmetric operator is
obtained by direct sum hτ ⊕ h̄τ . We may also consider the presence of Mo trivial edge
modes ho=h⊕Mo

o , which becomes a time reversal operator after direct summation with
h̄o. Let us define the unperturbed operator as

H0 =

(
hτ ⊕ho 0

0 h̄τ ⊕ h̄o

)
. (3.2)

A general Hamiltonian H satisfying the fermionic TRS is one such that

θHθ−1 =H, (3.3)

where θ=T K, with K complex conjugation and T given for the above representation
(as 2(Mτ +Mo) blocks) by T = iσ2⊗I. We verify that T −1 =−T so that T 2 =−1 and
hence θ2 =−1 as well. The −1 above is a characteristic of fermionic TRS and is crucial
for the topological protection. Note that θ is an anti-linear transformation, such that
θ(αψ) = ᾱθ(ψ) for α∈C.

We verify that θH0θ
−1 =H0 for the above operator. We also verify that the most

general Hermitian TR-preserving perturbation is of the form

H=H0 +

(
V1 −V̄2

V2 V̄1

)
, (3.4)

with V1 =V ∗1 Hermitian and V T2 =−V2 an anti-symmetric operator; here T denotes
symmetric transposition. In other words, V is the complex representation of a matrix
of quaternions. We will assume that V1 and V2 are appropriate perturbations of the
leading term H0 that satisfy the above constraints.

We define the mod 2 index [25,27,36,48] of H as

Index2H=Mτ mod 2. (3.5)

We show that the above operators H are indeed classified as two classes of homotopic
families of Fredholm operators satisfying the TRS.

Let us first assume that Mτ = 2 and show that the Hamiltonian with two pairs of
edge modes is homotopic to a trivial case. As in the preceding section, this requires
regularizing the Hamiltonians so we can define Fredholm operators. It serves our pur-
pose to choose a different sign of the regularization for each element in the pair. Let
H0 =hτ ⊕hτ ⊕ h̄τ ⊕ h̄τ . We define the regularization

H0v =hτv⊕h∗τv⊕ ¯hτv⊕ ¯hτv
∗

=

(
hτv⊕h∗τv 0

0 ¯hτv⊕ ¯hτv
∗

)
.

Note that h∗τv is the same as a regularization with v replaced by −v (since the Hermitian
conjugation changes i into −i).

In the general setting, we define the regularization (hτ ⊕ho)v as prescribed in the
case Mτ = 2 by alternating the sign of v so that (hτ ⊕ho)v =hτv⊕h∗τv⊕hτv .. . and then
ensuring that the regularization of h̄τ ⊕ h̄o is the complex conjugation of that of hτ ⊕ho.
This uniquely defines H0v and hence Hv =H0v+V .
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In the matrix representation (3.4), any operator (not necessarily Hermitian as Hv

is no longer Hermitian) H such that θ−1Hθ=H is of the form

H=

(
H1 H2

H3 H4

)
for H4 = H̄1, H3 =−H̄2. (3.6)

We verify that the regularization Hv satisfies θ−1Hvθ=Hv and thus satisfies the TRS.
Then we have the result:

Theorem 3.2. Let H1 and H2 be two edge Hamiltonians satisfying the TRS constraint
(3.4), or equivalently θ−1Hjθ=Hj for j= 1,2. Let us assume that Index2H1 = Index2H2

and let H1v and H2v be the regularizations as described above. Then there is a continuous
family of Fredholm operators Ft for 0≤ t≤1 respecting the TRS (3.3) with F0 =H1v and
F1 =H2v.

Proof. The proof is similar to that of Theorem 3.1. We highlight the differences.
For any relatively compact perturbation V such that θ−1V θ=V , we obtain that Hv+V
is homotopically equivalent to Hv. We also define the family of Fredholm operators(

hv 0
0 1

)
Rt

(
0 1
0 h∗v

)
=

(
cthv sthvh

∗
v

−st cth
∗
v

)
=:Ht.

Here hv is hτv or hov. This shows that H0 is homotopically equivalent along a TR
symmetric path Diag (Ht,H̄t) to

0 hτvh
∗
τv 0 0

−1 0 0 0

0 0 0 ¯hτv ¯hτv
∗

0 0 −1 0

.
As in the proof of Theorem 3.1, the latter is then homotopic to the case with hτv replaced
by hov. This shows that the pair of non-trivial edge modes is continuously deformed to
a pair of trivial edge modes. The generalization to arbitrary Mτ is then obvious. One
has to make sure that the number of regularizations by v>0 is the same as the number
of regularizations by −v<0 except possibly for one mode pair that cannot be paired.

4. Scattering theory
We now consider the scattering theory for the model edge Hamiltonians introduced

in the preceding sections. We first focus on the scattering theory for the block hτ . The
general scattering theory is then obtained by direct summation as in the definition of
H0 in (2.4) or in (3.2). We show that the scattering theory is directly affected by the
index IndexH. We consider the scattering theory in the presence of TRS in the next
section, and obtain that scattering then depends on the index Index2H.

4.1. Spectral decomposition. Consider the operator hτ and its partial Fourier
transform (from y to the dual variable ζ):

ĥτ (ζ) =

(
ζ a∗τ
aτ −ζ

)
.

For each ζ ∈R, we diagonalize the above Fredholm operator. We denote a :=aτ to
simplify notation and look for solutions of ĥτψ=Eψ for ψ= (ψ1,ψ2)t. We find:

ζψ1 +a∗ψ2 =Eψ1, aψ1−ζψ2 =Eψ2,
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Fig. 4.1. Dispersion relation El=El(ζ) for −3≤ l≤3 and m(x) =5x.

so that a∗aψ1 = (E2−ζ2)ψ1 and aa∗ψ2 = (E2−ζ2)ψ2. The operators a∗a and aa∗ are
Fredholm self-adjoint operators that admit the spectral decomposition

a∗aνk =εkνk, N3k≥0, and aa∗µk =εkµk, N3k≥1.

The positive eigenvalues of a∗a and aa∗ are necessarily the same. With our assumption
on m(x), we find as in, e.g., [24, 44] that ε0 = 0 is a simple eigenvalue of a and a∗a but
not of aa∗. We denote by ν0(x) the normalized solution of aν0 = 0, which is of the form
ν0(x) =αe−

∫ x
0
mτ (t)dt. We define εk =η2

k for k≥0. We normalize ‖νk‖L2(R) = 1 for k≥0

and then µk =η−1
k aνk for k≥1 so that ηkνk =a∗µk as well. Note that both families

(νk)k≥0 and (µk)k≥1 are then complete families in L2(Rx). This gives the eigenvalues

Ek±(ζ) =±
√
εk+ζ2,

for k≥1 while E0(ζ) = ζ.
For k= 0, we find the mode:[

E0(ζ) = ζ, φ0(x,ζ) =

(
ν0(x)

0

)]
.

For k≥1 and the notation l= (k,±), we find the modes:[
El(ζ) =±

√
εk+ζ2, φl(x,ζ) =

1√
2El(El+ζ)

(
(El+ζ)νk(x)
ηkµk(x)

)]
.

Note that El(El+ζ)>0 for k≥1. For concreteness, the dispersion relation of the first
few modes when m(x) = 5x is sketched in Figure 4.1.

The general solution of the equation i∂tu=hτu is therefore

u(t,x,y) =

∫
R

∑
l

e−iEl(ζ)teiζyφl(x,ζ)ûl(ζ)dζ,

for ûl(ζ) uniquely characterized by the initial conditions u(0,x,y) for instance.

4.2. Waveguide decomposition. The preceding spectral decomposition was
obtained for each fixed ζ. Scattering theory aims at fixing the energy E and considering
the compatible modes ζ= ζ(E). Let therefore E be fixed and such that E2 6=η2

k =εk for
k≥1. The dispersion relation is E2 =η2

k+ζ2 for k≥1, which implies

ζl(E) =±
√
E2−η2

k, E2>η2
k, ζl(E) =±i

√
η2
k−E2, E2<η2

k,
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again using the notation l= (k,±) as well as the solution ζ0(E) =E.
This gives the presence of a protected edge mode ζ0(E) =E without any time re-

versal (TR) mode at −E, a finite number of propagating modes for η2
k<E

2 coming in
pairs of TR symmetric modes, and an infinite number of evanescent modes for η2

k>E
2

also coming in TR pairs.
We then find the following set of modes. For k= 0, we have

ϕ0(x,y) =φ0(x)eiEy, φ0(x) =

(
ν0(x)

0

)
.

For the k≥1 propagating modes, we have the two linearly independent (but not orthog-
onal for the usual inner product) solutions

ϕk+(x,y) =φk+(x)eiζky, φk+(x) =
1√
jk

(
ckνk(x)
skµk(x)

)
,

and

ϕk−(x,y) =φk−(x)e−iζky, φk−(x) =
1√
jk

(
skνk(x)
ckµk(x)

)
,

where we have defined

ck =
E+ζk√

2E(E+ζk)
, sk =

ηk√
2E(E+ζk)

, jk = c2k−s2
k =

ζk
E

(>0).

We verify that c2k+s2
k = 1 and c2k−s2

k = jk. The above normalization of the vectors
is such that the current1 in the y direction is normalized: (φl,σ3φl) = εj , (with the
notation l= (k,εl=±1)) where the inner product is that of L2(Rx;C2). We also find
that (φl,φl) = j−1

k .
Finally, the evanescent modes are given by

ϕk±(x,y) =φk±(x)e±|ζk|y, φk±(x) =
1√
2

(
θ±1
k νx(x)
µk(x)

)
, θ±1

k =
E± i|ζk|

ηk
∈S1.

For the evanescent modes, we verify that the current in the y direction vanishes with
(φl,σ3φl) = 0 while (φl,φl) = 1.

4.3. Mode decomposition and current conservation. The above propa-
gating and evanescent modes are the solutions to the fixed energy problem H0u(x,y) =
Eu(x,y), where H0 =hτ here. The solutions φl(x;E) form a basis of L2(Rx;C2) so that
for H=H0 +V with V a perturbation, we may write the solutions of Hu=Eu as

u(x,y) =
∑
l

αl(y)ϕl(x,y).

The objective of the scattering theory is to find equations for and analyze the behavior
of the amplitudes αl(y). Plugging the above ansatz into Hu=Eu recalling that H0ψl=
Eψl, we find after some algebra that∑

l

−iα′l(y)σ3ϕl+V αlϕl= 0.

1In the Heisenberg picture, the position operator y evolves according to jy := ẏ= i[hτ ,y] =σ3, which
is the current operator along the edge for the Hamiltonian hτ in (2.1). It is convenient to normalize
propagating modes so that they have unit current.
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By taking appropriate inner products, we find that

εlα
′
l+ i

∑
l′

αl′(ϕl,V ϕl′) = 0, εl=±1 for l= (k,±),

for propagating modes while for evanescent modes, we find

α′k∓
θ±2
k −1

2
+ i
∑
l′

αl′(ϕl,V ϕl′) = 0.

The evanescent modes play a quantitative role in the propagation of all modes but
qualitatively do not modify the regime of propagation [23]. Their inclusion involves
significant technical complications that we do not consider here. We will therefore
neglect them by making the following:

Hypothesis 4.1. We consider perturbations of the form V =
∑
lmVlm(y)j−1

l j−1
m φl⊗

φm, where the summation is done over the propagating modes only.

Such a perturbation is local in y but not local in x since its integral (Schwartz) kernel
is given by

∑
lmVlm(y)j−1

l j−1
m φl(x

′)⊗φm(x). Assuming that Vlm(y) is bounded, we
obtain that V is a relatively compact perturbation of H0v as introduced in the preceding
section. As a consequence, H0v+ tV for t∈ [0,1] provides a continuous path of Fredholm
operators linking H0v and Hv.

With this convenient simplifying assumption, we obtain the system of equations

εlα
′
l(y)+ i

∑
m

ei(ζm−ζl)yVlm(y)αm(y) = 0, (4.1)

where the summation is understood over all propagating modes 1≤m≤n with n=n(E)
an odd number. Since V is Hermitian, we find that V̄lm=Vml in the above expression.
Considering the complex conjugate equation, we obtain that

εl(ᾱlα
′
l+αlᾱ

′
l)+ i

∑
m

[ei(ζm−ζl)yVlmᾱlαm−ei(ζl−ζm)yV̄lmᾱmαl] = 0.

Summing over j and using V̄lm=Vml, we find the current conservation∑
l

εl|αl|2(y) is constant in y.

On a given interval (0,L), this translates into∑
k

|αk+|2(L)+ |αk−|2(0) =
∑
k

|αk−|2(L)+ |αk+|2(0). (4.2)

Here, the summation is over all n propagating modes knowing that there is one 0+
mode but no 0− mode (so that α0−(y)≡0, say).

4.4. Summary on propagating modes. To sum up the preceding derivation,
we constructed a finite number of unperturbed propagating modes ϕl(x,y) carried by the
Hamiltonian hτ . Such modes are characterized by a current εljl with εl=±1 describing
the direction of propagation of the mode. They are of the form

ϕl(x,y) =φl(x)eiζly (4.3)
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with ζl∈R a phase velocity with the same sign as εl. The transverse component φl(x)
is normalized so its current in the y direction (φl,σ3φl) = εl.

In the decomposition of hτ , we find one mode l= 0 such that ζ0 =E (hereafter called
the zero mode) and pairs of modes l=k± with the same phase |ζl| and current jl and
propagating in opposite directions εk±=±1 (hereafter called pairs of non-zero modes).
There are therefore nτ propagating modes for nτ an odd number.

The decomposition of −hτ , or equivalently h̄τ , provides a similar decomposition
with one mode associated with a phase velocity equal to −E and pairs of modes with
opposite phase velocities and currents.

We can similarly consider the decomposition of the Hamiltonian ho. The only
difference with respect to the decomposition of hτ is that no mode l= 0 exists as 0 is
not an eigenvalue of either ao or a∗o. As a consequence, we find no propagating modes
of the form (4.3) coming in pairs, where no is now an even number.

This provides a full mode decomposition for the operator H0 in (2.4), with a total
of propagating modes equal to nN = (Mτ +Nτ )nτ +(Mo+No)no.

4.5. Scattering framework. We focus here on the propagating modes of the
operator hτ and set n=nτ to simplify notation. All scattering operators are obtained
under the coupling assumption of Hypothesis 4.1.

Let us consider first the case E2<ε1 so that there is only one propagating mode
n= 1. In that case, we find that

α′0(y)+ iV(y)α0(y) = 0,

so that α0(y) is given by the exponential of the integral of iV(y). The random perturba-
tion V(y) translates into a mere phase shift and |α0|2(y) is constant. This corresponds
to a setting with a perfect transmission and no backscattering. It is the mode that is
typically referred to as topologically protected [34,44] since its transport properties are
not affected by the presence of the random perturbation V(y). Experimental evidence
of such protection may be found, e.g., in [37, 51]. As the rest of the paper shows, this
total absence of backscattering is related to the energy constraint E2<ε1 and not only
to the non-trivial topology.

Let us consider the topologically equivalent but practically less favorable case where
ε1<E

2<ε2 so that we have three propagating modes, α0 and α±1. Current conservation
implies that

|α0|2(y)+ |α1|2(y)−|α−1|2(y) is conserved.

Even though the index of the regularization of the operator hτ is equal to 1, the zero
mode undergoes scattering and couples with the modes α±1. The scattering properties
of such a problem are, however, very much affected by the non-trivial topology as we
shall see below.

More generally, let us assume that there are n propagating modes and let α be the
vector of amplitudes (αl)1≤l≤n, where the amplitudes with positive εl come first and
the amplitudes with negative εl last. We assume that the amplitude of the zero mode
α0 comes at the “center” of the vector α. We recast the Equation (4.1) for α as

εα′+ iVα= 0, V= (Vmn)m,n, Vmn(y) =e−i(ζm−ζn)yVmn(y), (4.4)

for a Hermitian matrix V of local multipliers with V̄mn(y) =Vnm(y) and a diagonal
matrix ε= Diag(εl). For n= 2k+1 the size of α, we find that ε is the diagonal matrix
with k+1 times 1 and k times −1 on its diagonal. There are n linearly independent
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solutions to the above ODE, which we combine into the n×n matrix P (y) such that
P (0) = In the n×n identity matrix. We then find that

εP ′+ iVP = 0, P (0) = In. (4.5)

P is the propagation or transfer matrix. Note that α(y) =P (y)α(0) as a defining prop-
erty of P (y).

Consider a slab given by y∈ [0,L] for some L>0. Let us now define the central
element in the theory, namely the scattering matrix S

S=

(
R+ T−
T+ R−

)
,

where R+ is the k×(k+1) matrix of reflection of the modes from bottom (negative
values of y) to bottom, T+ is the (k+1)×(k+1) transmission matrix of the same
modes to the top (positive values of y), R− is the (k+1)×k matrix of reflection of the
modes from top to top and T− is the k×k matrix of transmission of those modes to the
bottom.

Let us consider the first column α of the scattering matrix. This corresponds to
α(0) given by 1 followed by k zeros followed by k reflection coefficients rj while α(L) is
given by k+1 transmission coefficients tj followed by k zeros. Conservation of current
implies that

1−
∑
j

|rj |2 =
∑
j

|tj |2 so that
∑
j

|S1j |2 = 1.

This holds for any column of S as well as by linearity of the above equation for P for
any linear combination of columns of S. From this, we deduce the standard property
that S is a unitary matrix so that S−1 =S∗. This implies the relations

R∗+R+ +T ∗+T+ = Ik+1, R∗−R−+T ∗−T−= Ik, R∗+T−+T ∗+R−= 0, T ∗−R+ +R∗−T+ = 0.

We now state the main result of this section:

Theorem 4.2. Consider first the setting Mτ = 1 and Nτ = 0. Let E2 6=εk for k≥1,
and α be the vector of mode amplitudes with the first k+1 components propagating
towards increasing values of y and the last k components towards decreasing values of
y. Consider a random slab of thickness L, i.e., V (y) = 0 outside of [0,L].

Then there is a (non-trivial) incoming vector τ = (τj)1≤j≤k+1 that is purely trans-
mitting, i.e., such that R+τ = 0. Moreover, the conductance satisfies Tr(T ∗+T+)≥1.

For the general case of H0 in Section 4.4, with nτ = 2k+ +1 and no= 2k−, we
have (Mτ +Nτ )k+ +(Mo+No)k− modes propagating in each direction with an extra Mτ

modes propagating towards increasing values of y and an extra Nτ modes propagating to-
wards decreasing values of y. Then, there are IndexHv =Mτ −Nτ (non-trivial) linearly
independent transmission vectors τ l that are transmitted without reflection (R+τ

l= 0)
and the conductance satisfies Tr(T ∗+T+)≥Mτ −Nτ .

Proof. Since R+ is a k×(k+1) matrix, it is at most of rank k. Let Rj be the
1≤ j≤k rows of R+. Then there exists (at least) one (normalized) vector τ orthogonal
to all of them. This vector satisfies R+τ = 0 by construction. The reflection matrix
R+ can be obtained experimentally by means of k scattering experiments so that τ is
observable. Note that it depends on V and hence is fluctuation dependent.
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Recall the conservation R∗+R+ +T ∗+T+ = Ik+1. Since R+ is of rank k at most, we
deduce that 1 is necessarily an eigenvalue of the matrix T ∗+T+. As a consequence,
there is necessarily transmission thanks to the topological protection, and physically,
the Landauer formula [8, (33)] implies that conductance is at least equal to 1 (in those
units).

When the index is Mτ −Nτ , then the above picture generalizes to a setting with
nN propagating modes. There is an excess of Mτ −Nτ modes propagating towards
positive values of y compared to those propagating in the opposite direction. As a
consequence, we find that T ∗+T+ admits at least Mτ −Nτ eigenvalues equal to 1 so that
the conductance in the Landauer formula is at least equal to Mτ −Nτ . Moreover, we
now find that Mτ −Nτ (non-trivial, linearly independent) transmission vectors τ l may
be transmitted without reflection, which are the vectors orthogonal to the all the rows
of R+. This completes the proof of the result.

This result shows that complete localization [8, 23], which would correspond to
an exponential decay of the eigenvalues of T ∗+T+ as L increases, cannot happen when
IndexHv≥1. This is a direct consequence of the topological protection of the edge
modes.

However, this does not mean that T ∗+T+ is close to identity in the presence of
randomness. We will show in the case Mτ = 1 and k= 1 that significant reflection occurs
in the presence of random fluctuations. Note that R∗−R− can be of maximal rank k and
so we do not expect the eigenvalues of T ∗−T− to be large in the presence of randomness.
Indeed, when k= 1, we obtain that T ∗−T− goes to 0 as L increases in the presence of
random fluctuations. So unless k= 0, which occurs when E2<ε1 in our model Mτ = 1,
there is both significant transmission as well as significant reflection.

Significant transmission, i.e., Tr(T ∗+T+)≥1, and in fact equal to 1 asymptotically
as we shall see in Section 6, is topologically protected. For reflection, the picture is
as follows. When E2<ε1, then no reflection occurs when the protected mode is trans-
mitted. Note that when m(x) =λx, then ε1 is proportional to λ. As a consequence, a
sharp transition between two material topologies is energetically favorable for the pres-
ence of one and only one edge mode. This is protected energetically, not topologically.
When E2>ε1, then significant reflection occurs when the unperturbed protected mode
is transmitted. However, there is a random vector, which plays the role of the protected
mode in the random environment and is purely transmitted. In that sense (and in that
sense only), the absence of reflection is also topologically protected.

5. Scattering theory in the TRS setting

Consider an operator H0 =h⊕Mτ
τ ⊕ h̄τ

⊕Mτ satisfying the TR symmetry θH0θ
−1 =

H0. For concreteness, we assume Mτ = 1, with obvious generalizations to the case
Mτ >1. Recalling the solutions of (hτ −E)ψ= 0 in the preceding section, we obtain the
following solutions for (H0−E)ψ= 0 given by

ϕl(x,y) =

(
φl(x)

0

)
eiζly and θϕl=

(
0

−φl(x)

)
e−iζly.

Here, each φl is a two-vector while ϕl and θϕl are now four-vectors. We verify that ϕl
and θϕl are orthogonal vectors associated to the same energy E. This is the standard
Kramers degeneracy.

Indeed, for H0ψ=Eψ, we have θH0ψ=θH0θ
−1θψ=H0θψ=Eθψ so θψ is an-

other eigenvector of H0 with energy E. Now (ψ,θψ) = (ψ,T ψ̄) =−(T ψ,ψ̄) =−(ψ,T ψ̄) =
−(ψ,θψ) = 0. More generally, (θa,θb) = (a,b) by the same reasoning.
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It is this orthogonality of time reversed modes for θ2 =−1 that is responsible for
the topological protection when Mτ = 1 mod 2.

Let us now look for solutions of Hψ=Eψ with H=H0 +V and use the decompo-
sition

ψ(x,y) =
∑
l

al(y)ϕl(x,y)+bl(y)θϕl(x,y), θψ(x,y) =
∑
l

āl(y)θϕl(x,y)− b̄l(y)ϕl(x,y).

Here, as above, we use the anti-linearity of the map θ.
Using the same method as earlier, we find the equations for the above amplitudes

εla
′
l = −i

∑
m

(ϕl,V ϕm)am+(ϕl,V θϕm)bm

−εlb′l = −i
∑
m

(θϕl,V ϕm)am+(θϕl,V θϕm)bm.

We recast these as

εma
′
m=−iAmlal− iB̄mlbl, −εmb′m= iBmlan− iĀmlbn,

for n×n matrices A=A∗ and B=−BT so that 2n is the total number of propagating
modes. We assume as before that the TR symmetric matrix V is chosen so that only
the propagating modes are coupled and are independent of the evanescent modes, which
we neglect here. We then have the current conservation(∑

m

εm|am|2−εm|bm|2
)′

= 0.

With ε the diagonal matrix with εm as its entries (twice), we have

ε

(
a
b

)′
=−iM

(
a
b

)
, M =

(
A B̄
B −Ā

)
, MJ =−JM̄, J =

(
0 1
−1 0

)
.

With c= (a,b)t, we find θ(εc)′= iθ(Mc) = iJM̄ c̄=−iMJc̄=−iMθc so that c and θc
solve the same equation, where θ=JK in the above representation since J ≡ iσ2. So,
the property that the equation is TR symmetric remains true for the one-dimensional
scattering equation for c(y). We still use the notation θ to represent that symmetry.

Let Q be the solution of the equation for c with initial conditions given by (I 0)t for
I the n×n identity matrix. We then find that −θQ is the solution with initial conditions
given by (0,I)t. As a consequence, the transfer matrix P solution of the above equation
with I2n×2n initial conditions is given by

P = (Q −θQ), Q=

(
α
β

)
, P =

(
α −β̄
β ᾱ

)
.

We recover that P is a complex representation of a matrix of quaternions, which is a
standard representation of transfer matrices of problems with θ2 =−1 TR symmetry.

Let us consider a representation where the first N components of c are the forward
propagating modes f(z) corresponding to positive values of ζl whereas the last N com-
ponents of c are the backward propagating modes b(z) with negative values of ζl. In
this choice of basis (obtained by a permutation from the original basis), we have(

f(L)
b(L)

)
=P (L)

(
f(0)
b(0)

)
.
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We still use the notation P for the transfer matrix in this new basis. The scattering
matrix is then given by

S=S(L) =

(
R+ T−
T+ R−

)
so that

(
b(0)
f(L)

)
=S

(
f(0)
b(L)

)
for all possible solutions c(z) = (f(z),b(z))t of the above equation. The matrix S is
unitary as we already observed. However, thanks to the TR symmetry, it satisfies
additional properties. We find

c(z) =

(
f(z)
b(z)

)
, θc(z) =

(
b̄(z)
−f̄(z)

)
so that

(
−f̄(0)
b̄(L)

)
=S

(
b̄(0)
−f̄(L)

)
and hence, with σ3 = diag(In,−In) (i.e., really σ3⊗In)

−σ3

(
−f(0)
b(L)

)
=−σ3S̄σ3σ3

(
b(0)
−f(L)

)
so

(
f(0)
b(L)

)
=−σ3S̄σ3

(
b(0)
f(L)

)
=S−1

(
b(0)
f(L)

)
.

Since S is unitary, we deduce that S−1 =S∗=−σ3S̄σ3 so that ST =−σ3Sσ3. In other
words, the matrix S̃=Sσ3 is skew symmetric: S̃T =−S̃. This is the representation of S
as a skew symmetric matrix in an appropriate basis; see [7,8]. The above representation
is as directly useful as the skew symmetric one. Indeed, we find that

ST =

(
RT+ TT+
TT− RT−

)
=−σ3Sσ3 =

(
−R+ T−
T+ −R−

)
.

Thus, R+ and R− are skew symmetric and T+ and T− are transpose to each other.

Theorem 5.1. Let E2 6=εk for all k≥1 and let 2n be the number of propagating
modes in a TRS environment with 2(Mτ +M) blocks. Then, when Index2Hv =Mτmod
2 = 1, there is a non-trivial incoming vector τ+ = (τj)1≤j≤n such that R+τ+ = 0. Sim-
ilarly, there is a non-trivial incoming vector τ− such that R−τ−= 0. Moreover, the
conductances satisfy Tr(T∗+T+)≥Mτmod 2 and Tr(T∗−T−)≥Mτmod 2.

Proof. As we noted earlier,

T ∗+T+ +R∗+R+ = I,

with a symmetric expression for R− and T−. The above matrices are n×n and no
standard index prevents T from being negligible as the thickness L increases. However,
the mod 2 index does prevent this from happening. Indeed, the number of modes n is
equal to Mτ +2M since all non-protected modes come in TR pairs. When Mτ is even,
then n is even as well. However, when Mτ is odd, then the skew symmetric matrix R+

is a matrix with odd dimension. In such a case, its rank is at most n−1 and we again
obtain that 1 is an eigenvalue of the matrix T ∗+T+. That R+ is at most of rank n−1 when
Mτ mod 2 = 1 comes from the diagonalization property of such matrices [7, 48, 53]. In
other words, complete localization is prevented and there exists a vector τ+ as indicated
above. Results for τ− in the opposite direction are obtained by symmetry.

From the skew symmetry of R+ and R−, we deduce the absence of backscattering
from one mode into its time reversed alter ego, a well-documented feature in the liter-
ature [1,36]. However, as in the TRS breaking setting, while transmission is protected,
an amount of backscattering is inevitable unless the protected mode is one of the modes
τ± defined in the above theorem.
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6. Diffusion approximation

The diffusion approximation is a macroscopic model that allows us to understand
the large distance influence of (typically one-dimensional) random perturbations in dif-
ferential equations. In the setting of this paper, it is based on assessing the limiting
behavior of S and P introduced in the preceding section as the thickness L of the ran-
dom medium increases. The reader is referred to [23, Chapters 6 & 7] for the main
results and history of the diffusion approximation, in which the reflection and trans-
mission coefficients are modeled as stochastic diffusions. The method also bears some
similarities with the random matrix theory of quantum transport [8, 9].

6.1. Classes of transmitting or localizing systems. In the preceding sec-
tions, we showed that edge Hamiltonians belonged to separate classes depending on the
value of Index Hv =Mτ −Nτ in (3.1) and on the value of Index2H=Mτ mod 2 in (3.5)
in the TRS setting. For random fluctuations coupling propagating modes as described
in Hypothesis 4.1, which we assume also holds for the rest of the section, we showed
that the conductance along the edge was bounded from below by these two indices.
In the topologically non-trivial cases, we therefore obtain that transport is guaranteed
no matter how strong the random fluctuations V are. In other words, complete (An-
derson) localization, which may be characterized by asymptotically vanishing transport
(conductance) as the strength of the randomness increases [23], is not possible. This
is consistent with results obtained in [43, Theorem 6.6.3] for general classes of Hamil-
tonians and under the assumption of a mobility edge constraint that we do not need
to verify in this paper. Heuristically, we expect that non-trivial topologies generate
an obstruction to (complete) localization by forcing the presence of delocalized modes;
see [43, Section 6].

We now prove a more precise result: for an appropriate form of the disorder V
described in detail below, the edge Hamiltonians are homotopic to a setting in which
the conductance is asymptotically, as the thickness L of the random domain increases,
exactly equal to Index Hv =Mτ −Nτ in general and to Index2H=Mτ mod 2 in the
TRS setting. When the latter vanishes, we show that conductance vanishes exponen-
tially as L increases, which is a hallmark of wave localization in one space dimension.
In the case of non-trivial indices, the physical explanation is therefore that a number
of protected modes equal to the non-trivial index is allowed to propagate while every-
thing else (Anderson) localizes. We thus have a direct sum of the space of propagating
modes into one component observing free transport and an orthogonal component that
(asymptotically) fully localizes.

Returning to the question of backscattering, we show that when E2>ε1, the unper-
turbed zero modes do undergo scattering, for which we obtain a quantitative description.
This implies that the backscattering free modes, which are realization dependent, need
to be defined as described in the preceding section.

It is quite likely that the aforementioned results hold for a much larger class of
random fluctuations than the ones we are considering here. However, this would require
additional unknown results on the diffusion approximation that we do not develop here.

Scaling and choice of coupling operator. The specific random fluctuations we
consider to asymptotically obtain transport of protected modes and localization of all
other modes are as follows. Recall that the mode propagation is governed by (4.4) and
the coupling to the random fluctuations by the local multipliers Vmn(y). Although this
is not necessary, we assume for simplicity that Vmn(y) =WmnV(y), i.e., that all couplings
see a unique scalar-valued random field V(y).
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We now need to perform two choices: find which coupling coefficients Wmn are non-
zero and then find the dependency of V(y) in the y variable that leads to the diffusion
approximation. Let 0<ε�1. We assume the slab of propagation through random
heterogeneities of size Lε=ε−

1
2L (for some L>0) large compared to the frequencies ζm

(of order O(1)) of the propagating modes. We also assume that the random fluctuations

oscillate rapidly at the scale
√
ε and thus are of the form V(ε−

1
2 y). Upon rescaling

y→ε−
1
2 y, we thus obtain that the propagator in (4.4) is given by

εP ′ε+ iVεPε= 0, Vε= (Vεmn)m,n, Vεmn(y) =e
−i(ζm−ζn) y√

εWmn
1√
ε
V(
y

ε
). (6.1)

The above regime is one of the classical asymptotic regimes leading to diffusions since
for a mean-zero sufficiently mixing process V, we obtain that ε−

1
2 V(ε−1y) converges to

a rescaled Brownian motion as ε→0. The above scaling, corresponding to a domain of
size ε−

1
2 and a scale of the random fluctuations (correlation length) also of ε

1
2 leads to

the computationally least complicated of the regimes to which diffusion approximations
can be applied; see [23, Chapters 6], where our

√
ε is denoted ε. Our assumption on V

is as follows.

Hypothesis 6.1. The process V(y) is a mean-zero, stationary (homogeneous), ergodic
process such that its infinitesimal generator LV satisfies the Fredholm alternative; i.e.,
for any bounded function f that is centered, i.e., E{f(V(y))}=E{f(V(0))}= 0, then the
problem LVu(y) =f(y) admits a unique bounded solution with E{u(V(0))}= 0.

For instance, any (stationary) Ornstein-Uhlenbeck process satisfies the above con-
straint; see [23, Section 6.3.3].

It remains to choose the coupling coefficients of the operator V , given above by the
scalar terms Wmn, that are non-vanishing. This is done as follows. For the Hamiltonian
in (2.5) with unperturbed Hamiltonian given in (2.4), and following the results of Section
4, we obtain nτ propagating modes for each block hτ or −hτ (or equivalently h̄τ ) and
no propagating modes for eack block ho and −ho (or equivalently h̄o). Note that nτ is
odd while no is even. Now we choose Wmn to couple the propagating modes into 2×2
or 3×3 systems of equations as follows.

Let ϕ1 and ϕ2 be two such (unperturbed) modes with respective currents ε1j1 and
ε2j2. Then a coupling between the two modes is obtained by defining 0<

√
γij =Wij for

1≤ i,j≤2 with γ12 =γ21 andW1j =W2j =Wj1 =Wj2 = 0 otherwise. It will be convenient
to use the coefficients γij in the following. The coefficients Wij need not be positive
but since only their square appears in the diffusive limit, we assume the above form for
concreteness.

Let α1 and α2 be the corresponding amplitudes of these modes. They satisfy the
coupled system, with Vε(y) = 1√

ε
V(yε ),

(
ε1α1

ε2α2

)′
+ iVε(y)

( √
γ11

√
γ12e

i(ζ1−ζ2) y√
ε

√
γ12e

i(ζ2−ζ1) y√
ε

√
γ22

)(
α1

α2

)
= 0. (6.2)

The generalization to the coupling of 3 modes ϕj for 1≤ j≤3 (or more modes,
but for which we do not know how to analyze the diffusion approximation) is then
straightforward, with a choice of coefficients Wij non-vanishing only for both 1≤ i,j≤3
with corresponding γij =γji. The above coupled system of equations for (αj)1≤j≤3 is
then modified accordingly.
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General case without TRS. Let H=H0 +V be a general Hamiltonian as defined in
(2.5) and let the energy E be such that the Hamiltonian carries nN = (Mτ +Nτ )nτ +
(Mo+No)no propagating modes. We couple the modes (choose the coefficients Wmn)
using the above 2×2 or 3×3 systems as follows. Without loss of generality, we assume
Mτ ≥Nτ . For Nτ ≥1, we pair Nτ zero modes of an operator hτ with that of an operator
ho. For each of the Mτ −Nτ remaining zero modes of the operators hτ , we couple them
with a pair of non-zero modes (with currents ±jk) if such modes are available. Each
remaining pair of non-zero modes are finally coupled to form their own 2×2 systems.

So, our choice of Hermitian perturbation V is such that each zero mode of −hτ is
coupled with a zero mode of a hτ operator. Each of the remaining Mτ −Nτ zero modes
is either part of a 3×3 system if enough pairs of non-zero modes are available or solves a
decoupled 1×1 system otherwise. Each remaining pair of non-zero modes finally solves
a 2×2 system of equations. Then here is our main result:

Theorem 6.2. Let H be defined as in (2.5), the perturbation V =Vε as described
above and the random process V(y) satisfying Hypothesis 6.1.

Then, asymptotically as ε→0, the limiting scattering matrix S=S(L) is such that
Tr T ∗+T+(L) converges to Mτ −Nτ as L→∞. Moreover, let α0 be the amplitude of a
zero mode in a 3×3 system as described above. Then the resulting scattering matrix
involves a reflection matrix R+ = (r1,r2) such that |r1|2 + |r2|2 converges to 1 as L→∞.
Finally, for some realizations of V(y), |r1|2 and |r2|2 are as close to 1 as one wishes
(though not both at the same time).

Remark 6.1. The proof of the above theorem is given under the additional assumption
that each 3×3 coupling matrix satisfies that γ12 =γ13. A very similar proof works when
γ12 6=γ13 but requires results for parabolic equations with degenerate coefficients at the
domain’s boundary that likely hold based on existing theories in [17,23] but nonetheless
not done in detail. See a footnote in the proof for additional details.

The proof of the theorem will be given in Sections 6.3 and 6.4 where the asymptotic
analysis of the 3×3 and 2×2 systems are presented, respectively.

Case where TRS holds. Let us now assume that the Hamiltonian H satisfies the
TRS. We thus have Mτ =Nτ and Mo=No. The main difference with respect to the
preceding case is that V now needs to satisfy the TRS constraints indicated in (3.4).
Let us consider the modes ϕ of an operator hτ and those θϕ of its conjugate h̄τ . Such
modes cannot be coupled by random perturbations since they are orthogonal by TRS
independently of the random fluctuations. The coupling V thus needs to be modified
accordingly.

We write Mτ = 2p+η with p≥0 and η= 0 or η= 1. For p≥1, consider a pair
of operators hτ and their complex conjugate h̄τ . Restricted to these sub-blocks, the
Hamiltonian takes the form

hτ +V11 V ∗12 −V̄13 V ∗14

V12 hτ +V22 −V̄14 −V̄24

V13 −V T14 h̄τ + V̄11 V̄ ∗12

V14 V24 V̄12 h̄τ + V̄22

 .
Here, Vij for 1≤ i,j≤2 are arbitrary Hermitian, while V13 =−V T13 and V24 =−V T24 and
we verify that the constraint (3.4) implies that V23 =−V T14 as indicated above for V14

an arbitrary Hermitian 2×2 matrix. The coupling between the zero mode of the first
hτ with that of the first h̄τ is therefore prohibited since the (1,1) entry of V13 needs to
vanish. We already know this as these zero modes are orthogonal independently of V .
We therefore set V13 =V24 = 0.
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Since V14 is arbitrary, however, we choose it so that the zero mode of the first hτ
and the zero mode of the second h̄τ are coupled. Note that the zero mode of the second
hτ is now coupled to the zero mode of the first h̄τ with the same coupling constant up
to a sign, which has no influence on the final result. It remains to choose V11 and V22

such that all the non-zero modes of each of these blocks are coupled as we did in the
TRS breaking setting.

When η= 0, all propagating modes have been coupled into 2×2 systems of the form
(6.2). When η= 1, the remaining block may be obtained by retaining the first and third
rows and columns in the above matrix. We then set V13 to 0 and are left with two
uncoupled blocks. The fluctuations V11 are then chosen as in the TRS breaking case:
unless nτ = 1 for the block, the zero mode is coupled with an other pair of non-zero
modes to form a 3×3 system. Each remaining pair of non-zero modes is coupled into a
2×2 system. Then we have our main result:

Theorem 6.3. Let H be a TRS Hamiltonian and V =Vε chosen as above. Then the
conclusions of Theorem 6.2 hold with Mτ −Nτ replaced by Mτ mod 2. The proof of

the theorem is the same as that of Theorem 6.2 as it involves the same 3×3 and 2×2
coupled systems. We now turn to the description of the diffusion approximation and a
proof of the above theorems.

6.2. Diffusion equations for transfer matrices. Let us recall the
ε−dependent Equation (6.1) for the propagator

ΛP ′ε+ iVεPε= 0

where we use the notation Λ = ε−1 = ε with diagonal entries λk. According to the choice
of coefficients Wmn described in the preceding section, the above equation takes the
form of a block diagonal equation with blocks of size 2×2 or 3×3. More generally at
this level of the analysis, the transfer matrix Pε(y) is an n×n matrix.

The objective of the diffusion approximation is to find the asymptotic law as ε→0
of the variables P =Q+ iR (both the real part Q and imaginary part R). The choice of
scaling presented in the preceding section

Vεmn(y) =Vε(y)e
−i ζm−ζn√

ε
y
Wmn=:

1√
ε
V(
y

ε
)Mmn(

y√
ε

).

The multiplier M = (Mmn)m,n therefore now encodes the effects of the phases ζm and
the choice of coupling coefficients Wmn. Let U be a column vector of all the variables
in Q and R.

The diffusion operator (infinitesimal generator) in the variables U is then given
by [23, comments below Theorem 6.4]

L= lim
T→∞

1

T

∫ T

0

∫ ∞
0

E[V0)M̃(τ)U ·∇U ][V(y)M̃(τ)U ·∇U ]dydτ.

This non-trivial result is one of the main places where we use the theory explained in
detail in [23, Chapter 6 & 7]. Here M̃ is the real-valued matrix defined such that M̃U
is the column representing the real and imaginary components of the complex object
MP .

The above operator L admits the following interpretation. Let π(y,U ′,U)dU be the
probability that U ′ at y= 0 becomes U within dU at y>0. Thus, π(0,U ′,U) = δ(U−U ′).
Then we obtain (see, e.g., [23, Chapter 6]) that ∂yπ=Lπ as a function of (y,U ′) for a
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fixed U while ∂yπ=L∗π as a function of (y,U) for a given initial condition U ′ at y= 0,
where L∗ is the formal adjoint to L. These are the forward and backward Kolmogorov
equations, respectively, of the limit as ε→0 of the process Pε solution of (6.1). They
indicate, in the limit ε→0, how the law of the coefficients of the propagator P vary with
L. It is in this limit that we analyze the scattering coefficients described in Theorems
6.2 and 6.3.

We assume that all the coefficients ζmn= ζm−ζn are incommensurate in order
to avoid coupling between the frequencies. Rather than working with the variables
U = (Q,R), we introduce the change of variables P =Q+ iR and P̄ =Q− iR as an equiv-
alent basis to represent the complex object P ; see [23, Section 20.3]. We denote by
R̂0 =

∫∞
0

E{V(0)V(y)}dy the power of the random fluctuations. After some lengthy cal-
culations similar to those in [23], we obtain the following expression

L= R̂0X̄0X0 +2R̂0

∑
k<l

|Wkl|2(X̄klXkl+XklX̄kl) (6.3)

where

X0 =
∑
k,l

λkWkk(Pkl∂Pkl− P̄kl∂P̄kl)

and

Xkl=λkYkl−λlȲlk, Ykl=
∑
m

Plm∂Pkm .

We observe that L is a second-order differential operator. We have 1
2n(n−1)+1

vector fields X0 and Xkl when P is an n×n operator for n2 (complex) scalar variables.
L is therefore a (very) degenerate operator (nowhere elliptic).

6.3. Diffusion approximation for 3×3 systems. The topological phases
described in earlier sections are characterized by two types of asymptotic results, one in
which localization prevails and that can be demonstrated by a 2×2 system as has already
appeared in the literature [23], and another one in which localization is prevented by
topological considerations. This can be demonstrated by a 3×3 system, whose theory
is developed in the current section.

The three modes in the TR symmetry breaking setting (or in a TR symmetry setting
assuming that both blocks do not communicate) physically represent a protected mode
0 with wavenumber ζ0 =E>0 and two modes ±1 with wavenumber ±ζ1 =±

√
E2−ε1

in our simple block model.
For concreteness 2, we assume that the modes 0 and 1 propagate from top to bottom

and the mode −1 from bottom to top (as y increases). The propagator P (y) propagates
I on the bottow (at y= 0) to P (y) on the top of a slab of thickness y. We now introduce
some relationships between the scattering coefficients in the scattering matrix S and
the coefficients in P .

We thus obtain the following relations between S and P :

P

(
T+ R−
0 I

)
=

(
I 0
R+ T−

)
.

2The general solution operator is P (y′,y) propagating I at y′ to the solution at y. Then,
P−1(y,y′) =P (y′,y) and we find equations for P by differentiating either in the y or y′ variables.
The closed-form equation for (R+,T+) or (R−,T−) is obtained by differentiating on the side where
reflection occurs.
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Solving for P yields

P =

(
T−1

+ −T−1
+ R−

R+T
−1
+ T−−R+T

−1
+ R−

)
.

From the unitarity of the scattering matrix, we may verify that T+−R−T−1
− R+ =T−∗+

and T−−R+T
−1
+ R−=T−∗− although we will not use these relations. Since our primary

objective is the analysis of (T+,R+), and more precisely R+, which provides how the 0
and 1 modes are reflected back into the −1 mode, we concentrate on the left columns
of P and define

P3×2 =

(
T−1

+

R+T
−1
+

)
.

The above algebraic manipulations are independent of dimension. In the 3×3 problem,
the matrix T+ is a 2×2 matrix while R+ is a 1×2 (co-)vector. The matrix P3×2 satisfies
the same equation as P .

We write P3×2 = (Pij)1≤i≤3; 1≤j≤2 and apply L to functions that depend only on
those variables and their complex conjugates. Since P3×2 satisfies a closed form equa-
tion, we are guaranteed that L applied to such functions will depend only on the Pij of
the 3×2 system. Significant simplifications are in fact possible. We know that closed
Riccati equations can be obtained for the reflection coefficients [23]. This justifies look-
ing for a diffusion equation that only involves (functions of) the reflection coefficients.
This is done as follows.

With the above convention, we may write the explicit form of the transmission and
reflection matrices:

T+ =

(
t1 t2
t3 t4

)
=

(
t1→1
+ t0→1

+

t1→0
+ t0→0

+

)
, R+ =

(
r1 r2

)
=
(
r1→−1
+ r0→−1

+

)
.

With the above expression for P3×2 we solve to obtain

T+ =
1

det12

(
P22 −P12

−P21 P11

)
, R+ =

(
det32

det12

det13

det12

)
, detpq =Pp1Pq2−Pq1Pq2.

Perhaps somewhat surprisingly, it turns out that we can obtain a closed form dif-
fusion in the variables (d1,d2) with dj =dj(P,P̄ ) = |rj |2 = rj r̄j . This will help us solve
the 3×3 problem as well as the 2×2 problem simply by assuming that the 0 mode does
not couple to the 2×2 system composed of the ±1 modes.

We first verify

X0dj =X0rj r̄j+rjX0r̄j = 0.

So, the objective is to apply Xkl and X̄klXkl to functions of (d1,d2) and realize
that the coefficients depend on the coefficients Pij only via the coefficients (d1,d2). The
details of the derivation are as follows. Recall that Ypq =Pq ·∇Pp =Pq1∂Pp1 +Pq2∂Pp2
with Pq the qth row of P3×2. We calculate

Yqpdetmn= detqnδpm+detmqδpn,

from which we deduce

Ypqr1 =
detq2δp3 +det3qδp2

det12
− det32

(det12)2
(detq2δp1 +det1qδp2)

Ypqr2 =
detq3δp1 +det1qδp3

det12
− det13

(det12)2
(detq2δp1 +det1qδp2).
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With this, we find

Y12r1 = 0, Y21r1 =−r2, Y12r2 =−r1, Y21r2 = 0
Y13r1 =−r2

1, Y31r1 = 1, Y13r2 =−r1r2, Y31r2 = 0
Y23r1 =−r1r2, Y32r1 = 0, Y23r2 =−r2

2, Y32r2 = 1.

Now

Xpqφ(d1,d2) =∂1φXpqd1 +∂2φXpqd2

so that

X̄pqXpq = |Xpqd1|2∂2
1 +(Xpqd2Xpqd1 +c.c.)∂2

12 + |Xpqd2|2∂2
2

+[X̄pqXpqd1]∂1 +[X̄pqXpqd2]∂2.

Recall that Xpq =λpYpq−λqȲqp with λ1 =λ2 =−λ3 = 1. With the above expressions
for Ypq, we obtain after some algebra

|X12d1|2 = |X12d2|2 =d1d2, X12d2X12d1 =−d1d2, X̄12X12d1 =−X̄12X12d2 =d2−d1.

For the second vector field, we find

|X23d1|2 =d2
1d2, |X23d2|2 =d2(d2−1)2, X23d2X23d1 =d1d2(d2−1)

while the drift terms are given by

X̄23X23d1 =d1(d2−1), X̄23X23d2 = (d2−1)2.

The third vector field X13 is obtained by symmetry considerations with d1 and d2

exchanged compared to the above results for X23. This is logical as reflection from 0
to −1 is physically similar to reflection from 1 to −1. Note that since all the above
quantities are real-valued, we find that XklX̄klφ= X̄klXklφ.

Let us define γkl= |Wkl|2 and assume that 4R̂0 = 1 or absorb that latter constant
into γkl. With this, we just found that applied to functions φ(d1,d2), the infinitesimal
generator in (6.3) is reduced to

L=γ12

[
d1d2

(
1 −1
−1 1

)
:∇2 +(d2−d1)

(
1
−1

)
·∇
]

+γ23

[(
d2

1d2 d1d2(d2−1)
d1d2(d2−1) d2(d2−1)2

)
:∇2 +

(
d1(d2−1)
(d2−1)2

)
·∇
]

+γ13

[( d1(d1−1)2 d1d2(d1−1)
d1d2(d1−1) d2

2d1

)
:∇2 +

(
(d1−1)2

d2(d1−1)

)
·∇
]
. (6.4)

We may recast the above expression as

L=γ12[d1d2ϕ3⊗ϕ3 :∇2 +(d2−d1)ϕ3 ·∇]+γ13[d2ϕ2⊗ϕ2 :∇2 +(d2−1)ϕ2 ·∇]
+γ23[d1ϕ1⊗ϕ1 :∇2 +(d1−1)ϕ1 ·∇]

ϕ3 =

(
1
−1

)
, ϕ2 =

(
d1

d2−1

)
, ϕ1 =

(
d1−1
d2

)
.

So, the generator may be expressed as the sum of three one-dimensional diffusions; γ12

in the direction parallel to the edge d1 +d2 = 1, γ13 in the direction towards the point
(0,1), and γ23 in the direction towards the point (1,0). The combination provides a net
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drift in the direction d1 +d2 = 1, which is never attained but converged to exponentially
as we shall see below in a simplified setting.

Let us first define the domain of definition for such an equation. We deduce from
the unitarity of the scattering matrix that

|r1→−1
+ |2 + |r0→−1

+ |2 + |t−1→−1
− |2 = 1

as a consequence of current conservation. As a result, d1 +d2 + |t−1→−1
− |2 = 1 and the

domain of definition of the diffusion is 0≤d1≤1, 0≤d2≤1, as well as d1 +d2≤1. In
other words, the two-dimensional diffusion lives on an open triangle T in (d1,d2) space.

Each of the above three terms in (6.4) is degenerate as a one-dimensional diffusion.
However, the three terms combined ensure that L is elliptic inside T (with positive
definite diffusion tensor at each point inside T ). The equation nonetheless remains
degenerate as the diffusion coefficients all vanish at the boundary of T . The rate at
which they approach 0 depends on the point at the boundary ∂T . In the vicinity of
the two boundary segments defined by d1 = 0 and d2 = 0, we observe that the diffusion
coefficients converge linearly to 0 while the drift terms converge to a vector field pointing
towards the inside of T . In the vicinity of the boundary segment d1 +d2 = 1, the drift
term vanishes linearly while the diffusion coefficients vanish quadratically. Heuristically,
this implies that the diffusion may reach but is repelled from the former two segments
while it converges asymptotically to the latter segment (as “time” L increases) while
never reaching it. Neglecting transverse diffusion, the former segments are modeled
locally by x∂2

x+b∂x for b>0, where x= 0 is the boundary point, while the latter segment
is modeled locally by x2∂2

x+αx∂x with α∈R any constant. The standard change of
variables x=ey shows that the point x= 0 corresponds to the point y=−∞ in a standard
heat equation, and hence is never attained.

Theories for equations of the form (6.4) follow after some modifications of theories
available in the literature. A complete theory for linearly vanishing coefficients in the
vicinity of the boundary was developed in [17] and its references with applications
primarily in biology. One-dimensional versions of (6.4) are treated in [23, Chapter 7].
Here, although this is not absolutely necessary, we will consider the simplified setting
where γ=γ13 =γ23. Then, we observe that L applied to functions φ(d1 +d2) is of the
form

Lφ(d1 +d2) =γ
[
[(d1 +d2)(1−d1−d2)2∂2 +(2−d1−d2)(1−d1−d2)∂]φ(d1 +d2)

]
.

In other words, we are fortunate enough to obtain a one-dimensional diffusion for the
variable ρ=d1 +d2 with the diffusion operator, with γ set to 1 to simplify

Lρ=ρ(1−ρ)2∂2
ρ+(1−ρ)(2−ρ)∂ρ.

The above equation is similar to that in [23, Chapter 7] (constructed for the variable
τ = 1−ρ) with a simpler analysis. As in [23, Chapter 7], we observe that the law of the
diffusion ρ converges exponentially to 1 (in the L1 sense) as “time” L increases.

More precisely, let πρ be the solution of ∂Lπρ=L∗ρπρ with initial condition πρ(L=
0,ρ) = δ0+(ρ). Then πρ converges to a delta function at ρ= 1 exponentially rapidly as

L increases. Indeed, let 0≤m0(L) =E(1−ρ) =E|1−ρ|=
∫ 1

0
(1−ρ)πρ(ρ)dρ. We find

∂Lm0 =

∫ 1

0

πρL(1−ρ)dρ=

∫ 1

0

(1−ρ)(ρ−2)πρdρ≤−m0(z)
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since 2−ρ≥1. This shows that m0 =E|1−ρ| is either 0 or decays exponentially faster
that e−L. This shows that πρ(L,ρ) converges in distribution exponentially to the atom
δ1(ρ) in any reasonable metric.

Armed with this information, we return to the analysis of the diffusion in (6.4)
with γ13 =γ23 to observe that d1 +d2 converges to 1 exponentially quickly. For large
“times” L, we may therefore approximate the law π(L,d1,d2) solution of ∂Lπ=L∗π as
π(L,d1,d2)≈πd1(L,d1) 1√

2
δ(d1 +d2−1), where we find that the reduced density πd1 is

normalized to 1 and solves the reduced equation

∂Lπd1 =L∗d1πd1 , Ld1 = (γ12 +γ)∂d1
[
d1(1−d1)∂d1

]
.

This is a degenerate diffusion equation in the variable d1 posed on the interval (0,1) of
the type analyzed in [17]. Note that the diffusion coefficient converges linearly to 0 as d1

approaches either 0 or 1. We easily observe that there is an invariant measure (unique
thanks to the results of [17]) solution of L∗d1π∞= 0 and given by π∞= 1 on (0,1).

We summarize the above derivation as:

Theorem 6.4. Let π(L,d1,d2) be the solution of ∂Lπ=L∗π with initial conditions
π(0) = δ0+(d1)δ0+(d2). We assume that γ13 =γ23>0.3 Then as L→∞, the above prob-
ability distribution converges in distribution to the invariant measure 1√

2
δ(d1 +d2−1).

Proof. The Green’s function π(L,d1,d2) is defined and smooth for positive L as in
regular potential theory and as in the potential theory developed in [17] for degenerate
coefficients at the domain’s boundary. The details of adaptation of these theories to the
equation with a different degeneracy at the interface d1 +d2 = 1 are not done in detail
here. Then, d1 +d2 satisfies an independent one-dimensional diffusion equation with
d1 +d2 converging to 1 as L→∞ as we demonstrated above. This shows that π(L,d1,d2)
also concentrates to the vicinity of d1 +d2 = 1. In the d1 variable, we obtained in the
above derivation that the unique invariant measure was given by a constant distribution,
which yields the theorem.

The above result shows that for L large (or equivalently for γ large by rescaling),
the reflection coefficients |r1→−1

+ |2 and |r0→−1
+ |2 diffuse between the values of 0 and 1

and by definition of the invariant measure, come close to any value between 0 and 1
as L progresses. This concludes our proof of Theorems 6.2 and 6.3 in the topologically
non-trivial cases.

6.4. Case of 2×2 systems. We can use the calculations of the previous section
to revisit standard results of localization in the presence of two modes ±1. It suffices
to neglect the mode 0 in the preceding calculations and assume that it does not couple
with the other modes. Only the quantity d1 = |r1→−1

+ |2 then matters and we know from
scattering that

d1 + |t−1→−1
− |2 =d1 + |t1→1

+ |2 = 1.

3The result of the theorem generalizes to the setting where γ13>0 and γ23>0 are not necessarily
equal. These coefficients are in fact not expected to be equal since the 0 and ±1 modes have different
currents jk. We briefly sketch the proof of the generalization. We verify that the variable m0(L) =
E(1−d1−d2) =E|1−d2−d2| also decays exponentially following the same proof as for the variable
ρ above. The rate of convergence depends on the coefficients γij . This allows us to approximate

π(L,d1,d2) by πd1 (L,d1) 1√
2
δ(d1 +d2−1) as above. It remains to analyze the equation for πd1 (L,d1),

which is a degenerate diffusion equation treated in [17] and show that πd1 (L,d1) converges to an
invariant measure, which is no longer uniform on (0,1) when γ13 6=γ23.
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So, proving that d1 converges to 1 exponentially as the thickness of the slab increases
shows that modes localize: transmission is exponentially small as a function of thickness
L. In the above equation, this corresponds to looking at γ13 the only non-vanishing
coefficient and considering function φ=φ(d1). We then find the diffusion

L=γ13[d1(d1−1)2∂2 +(1−d1)2∂].

Note that the drift term (1−d1)2 always pushes the diffusion towards d1 = 1. However,
since both diffusion and drift decay to 0 quadratically at d1 = 1, the limit is never
attained. Let τ = 1−d1 be the transmission coefficient. In this variable, we find

Lτ =γ13[τ2(1−τ)∂2
τ −τ2∂τ ].

This is the operator describing transmission in [23, Chapter 7]. We know that τ decays
exponentially to 0, or more precisely that π(τ) its law concentrates exponentially rapidly
to the vicinity of τ = 0. This is a signature of the localization of waves in random slabs.

This concludes our proof of Theorems 6.2 and 6.3 in the topologically trivial cases.

7. Conclusions
This paper introduces a class of Hamiltonians in (2.5) modeling the low frequency

components (for energies close to the Fermi energy) of general edge states at the interface
of two-dimensional materials in different topological phases. After appropriate regular-
ization, these Hamiltonians are classified in Theorem 3.1 as Fredholm operators based
on their index IndexHv =Mτ −Nτ given by the difference of zero modes propagating
with positive and negative velocities along the edge, respectively.

In the presence of fermionic time reversal symmetry (TRS), Mτ =Nτ and the above
index is trivial. Another index given by Index2Hv =Mτ mod 2 separates edge Hamil-
tonians into two classes as described in Theorem 3.2.

The Hamiltonians are defined on a open domain R2 and are not required to satisfy
any translational invariance. They are therefore amenable to perturbations by a large
class of random fluctuations. The spectral decomposition of the unperturbed Hamil-
tonian H0 in Section 4 allows one to develop a scattering theory for the propagating
modes of H. In this paper, the random fluctuations are modeled by a specific operator
V so that the evanescent modes do not couple with the propagating ones.

Under this assumption, we were able to assess the influence of the topology of Hv on
the scattering matrix. More specifically, we show that the transmission (conductance)
TrT ∗+T+ is bounded from below by Mτ −Nτ , and, for a certain choice of mode cou-
plings, is asymptotically equal to that value in the limit of strong random fluctuations.
Transmission, and hence the absence of Anderson localization, is one of the hallmarks
of non-trivial edge Hamiltonians. We also obtain that backscattering is present for
energies E2 above a certain threshold (equal to ε1 in our model). Only for specific,
random, linear combinations of the propagating modes do we observe a total absence
of backscattering; see Theorem 4.2.

For TRS Hamiltonians, the same scattering picture emerges with IndexHv =Mτ −
Nτ replaced by the Z2 index Index2Hv =Mτ mod 2. We obtain TrT ∗+T+ and TrT ∗−T−
are bounded from below by Mτ mod 2 and when the latter is non-trivial, obtain the
existence of random linear combinations of propagating modes (one for each direction
of propagation) such that no backscattering occurs.

The model for the scattering amplitudes takes the form of a system of one-
dimensional ordinary differential equations obeying a current conservation. The macro-
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scopic limit for the influence of highly oscillatory random fluctuations is then well de-
scribed by a diffusion equation. We generalized known derivations of diffusion equations
to the specific 3×3 systems that naturally appear when zero modes are coupled with
a pair of other propagating modes. This allowed us to obtain the following result (for
a specific choice of random fluctuations): In the high scattering regime, only IndexHv

(in the general case) or Index2Hv (in the TRS case) modes propagate without any
backscattering. All other modes are localized as in standard Anderson localization in
the sense that their transmission decays exponentially with the thickness of the random
slab (or equivalently with the strength of the random fluctuations).
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