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OPTIMAL HUMAN NAVIGATION IN
STEEP TERRAIN: A HAMILTON-JACOBI-BELLMAN APPROACH∗
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Abstract. We present a method for determining optimal walking paths in steep terrain using the
level set method and an optimal control formulation. By viewing the walking direction as a control
variable, we can determine the optimal control by solving a Hamilton-Jacobi-Bellman equation. We
then calculate the optimal walking path by solving an ordinary differential equation. We demonstrate
the effectiveness of our method by computing optimal paths which travel throughout mountainous
regions of Yosemite National Park. We include details regarding the numerical implementation of our
model and address a specific application of a law enforcement agency patrolling a nationally protected
area.
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1. Introduction

We consider the problem of determining the optimal walking path between two
points given elevation data in a region. If the terrain is fairly flat, this may be very easy
as conventional wisdom (“the shortest path between two points is a straight line”) will
provide a good approximation to the optimal path. However, in mountainous regions,
straight line travel is often inefficient or impossible and the optimal path between two
points is no longer clear.

The problem of optimal path planning goes back at least as far as Dijkstra [6] who
designed an algorithm for optimally traversing weighted graphs. In the years since,
significant effort has been devoted to developing and improving algorithms which find
optimal or near-optimal paths in a discrete setting [10,22,26]. Others have used modified
versions of Dijkstra’s algorithm for path planning in a semi-continuous setting [2, 41].

Recently, path planning problems have been largely reframed using control the-
ory and partial differential equations. An early approach was to compute geodesics on
triangulated manifolds using an Eikonal equation and gradient descent [14]. One inter-
esting application of path planning problems is modeling simple, autonomous robots.
These so-called Dubins’ cars were constrained by a maximum turning radius so Du-
bins considered paths with bounded local curvature [7]. Recently, this problem was
reformulated using a Hamilton-Jacobi-Bellman equation and adapted to include im-
passable obstacles [1, 40]. Indeed, Hamilton-Jacobi-Bellman (HJB) equations are now
used extensively in optimal path problems. Sethian and Vladmirsky compute paths by
realizing a HJB equation as a continuous version of Dijkstra’s algorithm [33, 34]. Re-
cent research employs HJB equations in determining reachable and avoidable sets when
traveling from a given ground state [5, 19]. Tomlin et al. also use HJB equations in
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adversarial reach-avoid games wherein a group of attackers attempt to reach a target
set while also avoiding defenders [42]. Others have considered optimal travel in regions
which randomly switch between different states; for example, this randomness could
account for the effect or weather patterns on a sailboat [35].

There has been some research into path planning in a geographical or terrain-
based setting though most previous work is focused on discrete, graph-based methods
employing Dijkstra’s algorithm and its many variants: so-called A∗ and D∗ algorithms
[15,30]. Such methods have long been used for vehicular navigation and can be adapted
to include real-time obstacle recognition [20]. This problem is also of particular interest
to those working on unmanned aerial vehicles (UAVs) and other autonomous robots [4,9,
12,18]. In a continuous approach, Popović et al. [28] propose a path planning algorithm
for UAVs by maximizing an information functional which measures the amount of data
a UAV can collect. However, the methods of control theory and HJB equations have
yet to be applied to terrain-based path planning which means, for example, that no
previous approach has been able to dynamically account for the optimal direction of
travel along a path.

In Section 2, we present a model which uses the level set method and a HJB formu-
lation to compute optimal walking paths in a continuous setting where travel direction
can be considered dynamically and walking speed is dependent on slope of the local
terrain. This is as opposed to other terrain-based path planning methods which are
fully or partially discrete and do not account for directional movement. In Section 3, we
discuss the numerical simulation of the model. We begin by testing the model against
toy problems using synthetic elevation data specifically designed so that the “correct
answer” is somewhat clear a priori and move on to use real elevation data of Yosemite
National Park. Results of numerical simulations are presented in Section 4.2. The
motivation for this work was to aid law enforcement agencies in efficiently patroling
protected areas such as parks or forests, but with small adjustments, our method could
be applied to optimal path planning in any number of scenarios.

2. Mathematical model

Our primary mathematical tool is the level set method of Osher and Sethian [24].
The level set method models propagation of fronts by treating them as the zero level
set of auxiliary function φ, known as the level set function. We will discuss the method
in two spatial dimensions since this is relevant for terrain-based path planning, but this
can be easily generalized to higher dimensions.

2.1. The level set method. Suppose that Ω⊂R2 is open and bounded with
Lipschitz continuous boundary Γ(0) =∂Ω which is the curve that will evolve via some
level set motion. To begin, we find a Lipschitz continuous function φ0 :R2→R such that
φ0<0 in Ω and φ0>0 in R2 \Ω. Continuity of φ0 implies that Γ(0) ={x∈R2 :φ0(x) = 0};
that is, Γ is the zero level contour of the initial function. Next, we evolve the function
φ :R2×{t>0}→R using the Hamilton-Jacobi equation

φt+H(x,∇φ) = 0,

φ(x,0) =φ0(x),
(2.1)

where the Hamiltonian H(x,p) is homogeneous of degree one in the variable p; here p is
a proxy for ∇φ. As φ evolves according to the PDE, we define Γ(t) ={x∈R2 :φ(x,t) = 0}
(so that, in particular, Γ(0) = Γ) and the curve Γ(t) evolves with level set motion which
is prescribed by the Hamiltonian H [23].
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In the simplest case H(x,p) = |p| and (2.1) is the Eikonal equation φt+ |∇φ|= 0. Re-
writing the equation as φt+ n̂ ·∇φ= 0 where n̂=∇φ/|∇φ|, it is clear that locally this
equation gives advection in the outward normal direction with velocity 1. This causes
Γ(t) to deform outward with normal velocity 1. In this case, for t>0, Γ(t) represents
the set of all points which are at distance t from the original curve Γ(0). Equivalently,
since we are considering people traveling throughout regions, Γ(t) is the set of points
which can be reached if one travels from Γ(0) with normal velocity 1 for time t. To
prescribe a different normal velocity v(x) rather than allowing individuals to travel with
normal velocity 1, one can simply modify the Hamiltonian by setting H(x,p) =v(x)|p|.
Now Γ(t) represents the set of points which can be reached if one travels from Γ(0) with
normal velocity v(x) for time t.

Using the level set equation, one can compute the (approximate) time that it takes
to travel from one point to another in our domain. Let a∈R2 represent a starting point
and b∈R2 represent an ending point. For some small δ>0, let φ0(x) = |x−a|−δ so that
Γ(0) ={|x−a|= δ} is a small circle around the point a. When Γ(t) evolves outward with
prescribed normal velocity v(x), there will be some time t∗>0 such that b∈Γ(t∗); that
is, at some positive time t∗, the level set will hit our ending point. This time t∗ is the
time required to travel from point a to point b when traveling in the normal direction
with velocity v(x) (neglecting the small parameter δ). This approach can be seen as a
continuous analog of Dijkstra’s algorithm, assigning optimal travel times to points as
the level sets sweep through the region. This gives a method for calculating travel times,
but this model is too simple for our purposes, only allowing for travel in the normal
direction which is potentially far from optimal. For example, if in a physical setting
there is a large mountain between the points a and b, one may wish to walk around the
mountain rather than over the mountain, as normal direction travel may suggest. Thus
at each point, one must not only consider the speed of travel, but also the direction of
travel. Considering direction, it no longer makes sense to simply specify a velocity v(x)
at each point. Instead, we assume that walking velocity depends on both the gradient of
the terrain at the current point and the direction of travel as we search for the optimal
travel direction.

2.2. Our model. For our model, assume that in addition to the starting and
ending points a,b∈R2, there is an elevation profile E(x) and a velocity function V (S)
which gives human walking velocity as a function of terrain slope S. Let θ∈ [0,2π] be
a control variable which represents walking direction and let s(θ) = (cos(θ),sin(θ)) be
the corresponding direction vector. Now if one is standing at a point x and desires to
walk in the direction θ, they can walk with velocity V (s(θ) ·∇E(x)) since s(θ) ·∇E(x)
represents the slope at x in the direction of θ. For each θ∈ [0,2π], define the directional
Hamiltonian Hθ(x,p) =V (s(θ) ·∇E(x))[s(θ) ·p]. Note that using this Hamiltonian, the
corresponding Hamilton-Jacobi equation models advection in the direction of θ. To
consider optimal travel, we take the supremum over all θ. Define the optimal path
Hamiltonian

H(x,p) ..= sup
θ∈[0,2π]

Hθ(x,p) = sup
θ∈[0,2π]

{
V (s(θ) ·∇E(x))[s(θ) ·p]

}
. (2.2)

This results in a Hamilton-Jacobi-Bellman equation, which, after resolving the supre-
mum in θ takes the form (2.1); it is indeed a level set equation, since this optimal
path Hamiltonian is still homogeneous of degree one in the variable p. Now to find the
optimal travel time between points a and b, one can use the same method described
above: letting Γ(0) ={x∈R2 : |x−a|= δ} for small δ, evolve Γ(t) using the level set
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equation with the optimal path Hamiltonian until the time t∗>0 such that b∈Γ(t∗).
This t∗ is the minimal time required to travel from a to b. This procedure is displayed
in Figure 2.1.

What remains is to compute the optimal path from a to b: the path which requires
time t∗ to traverse. In order to do this, one simply needs to follow the characteristics
of the Hamilton-Jacobi-Bellman equation. We would like to travel along characteristics
originating from a toward b. However, with this small parameter δ, we have removed
a small neighborhood of a and instead initiate the motion from the circle Γ(0). Note
for example, that φ0 is non-differentiable at a. Accordingly, one should follow the
characteristics backwards from b to Γ(0). The characteristic equations are

ẋ=−∇pH(x,p), x(0) = b,

ṗ= ∇xH(x,p), p(0) =∇φ(b,t∗).
(2.3)

Physically, one can imagine starting at the point b, considering what was the direction
of the optimal step which led to the current point, stepping backwards in that direction
and updating the direction in real time as one is walking backwards. Running this
system of ODEs to time t∗, one will have backtracked optimally from b to Γ(0).

To summarize, once we have defined the optimal path Hamiltonian (2.2), the algo-
rithm for finding the optimal path consists of two steps:

(1) Find the optimal travel time by advancing the PDE

φt+H(x,∇φ) = 0,

φ(x,0) = |x−a|−δ,

until the time t∗>0 such that b∈Γ(t∗).

(2) Find the optimal travel path by advancing the ODE system

ẋ=−∇pH(x,p), x(0) = b,

Fig. 2.1: To find optimal travel time, begin with a small circle around a (red) and evolve level sets
Γ(t) (magenta) outward until the time t∗>0 at which b∈Γ(t∗).
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ṗ= ∇xH(x,p), p(0) =∇φ(b,t∗)

until time t∗.

In another approach, Sethian and Vladimirsky [33, 34] devise a static Hamilton-
Jacobi-Bellman formulation for path planning. In doing so, they are able to solve similar
problems without the time-dependence that is present in our model. While removing
the time-dependence eliminates a dimension, since we are only solving problems in
two spatial dimensions, our algorithm is sufficiently efficient for our purposes, and has
the advantage that it is simple to implement at any order of accuracy one desires. If
efficiency is a concern, local level set methods [17,21,27] could be used to speed up the
level set computation.

2.3. The associated control problem. Since we are determining optimal
travel, we know that underlying the formalism of Section 2.2, there is a control problem
that is being solved and a payoff function which is being maximized. As above, let a∈R2

be the initial point. If one is standing at the point x∈R2, then traveling optimally away
from the point a for a time t is the same as maximizing the distance |x(t)−a|, where
x(τ), 0≤ τ ≤ t is a path with x(0) =x. At each time along the path, denote the direction
of travel by θ(τ). As discussed above, the travel velocity at the point x(τ) and in the
direction θ(τ) is given by V (s(θ(τ)) ·∇E(x(τ))). Thus, the problem can be phrased as
such: maximize the payoff function

Px,t(θ(·)) = |x(t)−a| (2.4)

among measurable functions θ : [0,t]→ [0,2π] and subject to the constraint

ẋ(τ) =V
(
s(θ(τ)) ·∇E(x(τ))

)
s(θ(τ)), 0≤ τ ≤ t

x(0) =x.
(2.5)

Computing formally, one sees that the HJB equation associated with the value function
u(x,t) = supθPx,t(θ(·)) for this control problem is (2.1) with the optimal path Hamilto-
nian (2.2) and initial condition φ0(x) = |x−a|. We then make the slight modification
φ0(x) = |x−a|−δ for small positive δ so that we may utilize the level set method to
track optimal travel away from a for every point on Γ(0) simultaneously. To make this
rigorous, one could require that the map x 7→V (s(θ) ·∇E(x)) is Lipschitz with a Lips-
chitz constant which is uniform in θ. When this holds, the value function will be the
viscosity solution of the HJB Equation (2.1). However, this requirement will, in turn,
depend upon the smoothness of the elevation data E, which is something we cannot
guarantee, so we emphasize that, in our case, the connection between the value function
for the optimal control problem and our HJB equation is merely formal.

2.4. Accounting for uncertainty in the starting point. The above algo-
rithm will compute a path for one who wishes to travel optimally throughout a region.
We would like to incorporate some uncertainty into the model to account for a real
world situation which law enforcement agents may encounter. Consider a scenario
wherein a law enforcement agency has knowledge that environmental criminals (for ex-
ample, poachers or illegal loggers) are operating within a protected region but can only
identify the criminals’ location with some uncertainty. Supposing that the criminals
perpetrate a crime within the region and then travel to a known final destination, the
law enforcement agency may want to predict which paths the criminals will take.

In this situation, assume that rather than a starting point a, we have a compact
set A of possible starting points along with a probability distribution from which one
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can sample elements of A. The algorithm described above requires a starting point
which could be drawn from A upon which one could calculate an optimal path to the
end point b. However, we wish to calculate the optimal path to b from each point in
A and according to our procedure, this will require solving (2.1) for each point in A.
Computationally, this would be very inefficient, so instead one can invert the problem:
rather than starting from a point a∈A and evolving level sets outward toward b, one
should evolve level sets outward from b. As the level sets Γ(t) evolve outward from b,
they sweep through the region A so that for each a∈A, we find a time t∗(a) such that
a∈Γ(t∗(a)). The computation can be stopped when A is inside Γ(t) and for each a∈A,
we will have found the time t∗(a) required to travel from a to b. This is pictured in
Figure 2.2. Having done this, we can draw points N points {ai}Ni=1 from A and calculate
the optimal paths using (2.3) with starting values x(0) =ai, p(0) =∇φ(ai,t

∗(ai)). In
this way, we can calculate optimal paths to N points in A with only one level set
computation.

As a minor note, walking velocity is maximal when one is walking on a slight decline.
Thus reversing the direction of the level set evolution means we must also reverse our
sense of slope since the walking direction is now opposite the direction of the level set
evolution. Hence, we replace E with −E. In doing so, when we evolve level sets outward
from b, we are actually calculating optimal travel as if one was traveling inward toward
b. Thus we can still compute the optimal path from a to b even though we use b as the
“starting point” for the level sets.

3. Numerical framework
We discuss in detail the numerical methods that we use to simulate our model.

The first obstacle is deciding how to calculate our Hamiltonian since this requires a
maximization over θ∈ [0,2π]. If the velocity function V is sufficiently simple, it may be
possible to resolve this maximization explicitly using calculus. When this is not possible
(as with our simulations), one can maximize H discretely. That is, rather than maximize
over θ∈ [0,2π], we maximize Hθ(x,p) over the finite set θ∈{ 2πm

M :m= 1,. ..,M}. This

Fig. 2.2: If there is uncertainty in the location of the starting point, we evolve level sets outward from
b until they cover A, recording optimal times for each a∈A as we go.



C. PARKINSON, D. ARNOLD, A.L. BERTOZZI, Y.T. CHOW, AND S. OSHER 233

causes some approximation error, but as long as V (s(θ) ·∇E(x)) is continuous in θ for
fixed x, this discrete maximization will tend to the exact supremum as M→∞.

Next, one must decide how to solve (2.1) numerically. There has been much re-
search into efficient and accurate numerical methods for Hamilton-Jacobi equations
[3, 13, 27, 39]. Since these equations are (in general) nonlinear, naive differencing meth-
ods will not always work. Instead, we trade the Hamiltonian H(x,φx,φy) for a nu-

merical Hamiltonian Ĥ(x,φ+
x ,φ

−
x ,φ

+
y ,φ

−
y ) which somehow averages the forward differ-

ence and backward difference approximations to φx and φy, represented here by φ+
x ,φ

−
x

and φ+
y ,φ

−
y respectively. We then advance the PDE via explicit time-stepping. Osher

and Shu [25] give several suggestions for different types of numerical Hamiltonians and
describe methods for attaining higher-order accuracy. For our purposes, we use the
Godunov Hamiltonian given by

Ĥ(x,φx+,φ
x
−,φ

y
+,φ

y
−) = ext

u∈I(φx
−,φ

x
+)

ext
v∈I(φy

−,φ
y
+)
H(x,u,v) (3.1)

where

I(a,b) = [min(a,b),max(a,b)] (3.2)

and

ext
x∈I(a,b)

=

{
mina≤x≤b if a≤ b,
maxb≤x≤a if a>b.

(3.3)

These extrema are designed to take into account the direction in which information is
flowing and, as a result, the Godunov Hamiltonian gives a fully upwind scheme. Again,
we need to perform minimization or maximization computationally and again, in certain
cases, these can be resolved explicitly (for example, if H(x,u,v) is monotone in the argu-
ments (u,v)), but this is not possible in our case, so we do this discretely. The Godunov
Hamiltonian Ĥ gives a first-order approximation to the Hamiltonian H. Following Os-
her and Shu [25], we use second-order, essentially non-oscillatory approximations for the
derivatives φx,φy and second-order total variation diminishing Runge-Kutta time step-
ping to evolve the solution. In doing so, we have constructed a second-order accurate
scheme for (2.1). Finally, one can solve the optimal path ODE system (2.3) using any
method one wishes. For relatively jagged elevation data E, the equation can become
stiff, so it is recommended that one uses a stiff solver with accuracy which matches that
of the numerical solution to (2.1).

While this describes the basics of the numerical implementation, there are some
minor adjustments required to obtain our results which we discuss in Section 4.3. Some
of these issues are caused by roughness in the terrain data. Indeed, rough terrain data
may violate the smoothness conditions required to ensure second-order accuracy, and
for this reason, first-order schemes may be sufficient to solve this problem. However,
there is no significant difficulty in implementing the above scheme at second-order. This
will provide second-order accuracy in regions where terrain is relatively smooth, and in
some cases we observed slightly improved results (in terms of optimal travel time) using
the second-order scheme.

4. Implementation & results
The model was implemented in MATLAB and in the succeeding section we discuss

the results of the simulations and some issues which one may encounter. Before this, it
remains to decide what elevation data to use and what form the velocity function takes.
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4.1. Elevation & velocity. For the velocity function, we use a slight modifi-
cation of the function Irmischer and Clarke [11]. Irmischer and Clarke analyze human
walking speed data and suggest the function

VIC(S) = 0.11+exp

(
− (100S+2)2

1800

)
(4.1)

where S= rise
run . However, in their paper, they only considered slopes up to 45◦ (grades

up to 100%), and their function is bounded below by 0.11. This is a good starting
point, but we would like to consider slopes much higher than 45◦ where walking speed
may become very small. Accordingly, using a slightly different ansatz and fitting the
denominator in the exponential, we have arrived at our own velocity function which
approximates the Irmischer and Clarke function for small slopes, but which decays to
zero for more extreme slopes:

V (S) = 1.11exp

(
− (100S+2)2

2345

)
. (4.2)

While this function is never exactly zero, it is no longer bounded from below by any
positive number. It bears mentioning that the exact form of the velocity function
is not terribly important for the model so long as the function V (S) that we choose
has maxV (S)≈1, is fairly near the maximum for all S≈0 and is nearly zero for |S|
large. Our velocity function is plotted against the Irmischer-Clarke velocity function in
Figure 4.1.

-150 -100 -50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4.1: Comparison of our velocity function (blue, solid) with Irmischer & Clarke’s velocity function
(red, dotted).

To test our code, we first ran simulations with synthetic (and very simple) elevation
data. This allows us to gauge whether our model aligns with our intuition. When
we were confident that our model and numerical methods were correct, we were able
to download real elevation data from the United States Geological Survey and run
simulations in a real national park. For our simulations, we chose Yosemite National
Park and we ran optimal path simulations in the direct vicinity of the mountain El
Capitan. Specifically, we use data spanning longitude 119◦W - 120◦W and lattitude
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38◦N - 39◦N with 1/3 arcsecond resolution which we obtained from the USGS National
Map Viewer. The data was processed and re-formatted using QGIS [29] and imported
to MATLAB using TopoToolbox [31,32].

4.2. Results. As in Figure 2.1 above, in the following images, the starting
point a is represented by the black asterisk surrounded with a red circle which denotes
the starting contour Γ(0). Next, the magenta contours represent several steps in the
evolution of the contours Γ(t). The green asterisk represents the point b and the thick
black line represents the optimal path from a to b. The elevation contours are plotted in
colors ranging from blue representing low elevation to yellow representing high elevation.
In our first simulations, we place mountains in certain areas and our intuition tells us
that the optimal path should likely bend around the mountains since it would require
too much effort to climb up the mountain. Our simulations do indeed reflect this; see
Figure 4.2.

Fig. 4.2: Optimal path winding around two mountains (toy problem).

Next, we use actual elevation data from the area surrounding El Capitan. Before
showing the result of the simulation, we show the elevation profile and the starting and
ending points in Figure 4.3. Note that directly above the endpoint, there is a very
steep cliff face which should be nearly impossible to traverse. Thus we would expect
the optimal path to travel to the east or west, descending down a gully rather than a
cliff. Indeed, this is shown to happen in Figures 4.4a, 4.4b, wherein the path travels
down the eastern or western slope depending on the location of the initial point.

Finally, we ran our algorithm which accounts for uncertainty in the location of the
starting point. Before we display our results, we remind the reader of the distinction
here. In all of these above results, we are calculating one optimal path from the point a
to the point b. Now we wish to calculate several optimal paths from the region A to the
point b. Whereas previously we evolved level sets outward from point a until they reach
the point b, now we evolve level sets outward from b until they subsume the region A
and record the optimal travel time for each a∈A as the level sets sweep through the
region. This is shown in Figure 2.2. We ran our algorithm in two different areas within
Yosemite. We let A be a circle near the peak of El Capitan and calculated the optimal
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path down the mountain from 100 random points drawn uniformly from A. We then did
the same thing but using the elevation profile of Half Dome, another peak in Yosemite
National Park. The results are pictured in Figures 4.5a, 4.5b.

Note that in both cases, while there are 100 randomly chosen starting positions,
all of the paths eventually conform to one of very few routes. We seek to quantify
this similarity between some paths. Suppose we have calculated several paths {Pi}Ni=1

starting from different locations. For each path, we know the time Ti>0 required to
traverse the path, so that Pi : [0,Ti]→R2 and the paths are oriented so that P (0) = b
and P (Ti) =ai, the ith starting location. However, we are not concerned with where a
path began, we would like to classify the route that the path eventually takes. Thus, we
only consider points along the path which are outside of the set A; that is, if we define
T ∗i = sup{t : Pi(t) 6∈A}, we would only like to compare the paths on the intervals [0,T ∗i ].
After making this restriction, one can then re-parametrize using τ = t/T ∗i so that for
each i, Pi : [0,1]→R2 denotes a path from the ending point b to the set A. Then it is
easy to define a metric to judge whether two such paths lie nearby each other: for two

paths P,Q, define d(P,Q) =
∫ 1

0
||P (τ)−Q(τ)||dτ . With this metric, one can evaluate

the pairwise distances between our paths, {d(Pi,Pj)}Ni,j=1. Now, using basic clustering
algorithms, one can categorize the paths into collections which are morally the same,
in the sense that they eventually collapse onto the same route. We performed this
clustering for the above two examples. Specifically, we used k-means clustering with
k= 2 clusters in each case, though other clustering methods could be used. The results
are included in Figures 4.6a, 4.6b, where the first cluster of paths is depicted in red and
the second in blue. Here, we have plotted each of the 100 paths as well as the mean
path for each cluster. Thus any initial point which is marked with a blue circle has
a corresponding optimal path which eventually closely resembles the bright blue path
and any initial point which is marked with a red asterisk has a corresponding optimal
path which eventually closely resembles the bright red path. Returning to our original
motivation, these graphics could be of great interest to law enforcement agencies who
are tracking criminal movement. For example, in the case of El Capitan (Figure 4.6a),

Fig. 4.3: Elevation profile of El Capitan.
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(a) Optimal path down the western slope. (b) Optimal path down the eastern slope.

Fig. 4.4: Optimal paths down from El Captian avoid the steep cliff.

(a) 100 optimal paths traveling down from the
summit of El Capitan.

(b) 100 optimal paths traveling down from the
summit of Half Dome.

Fig. 4.5: Calculation optimal paths accounting for uncertainty in the initial location.

we observe that 20% of the paths travel down the western slope while 80% travel down
the eastern slope. This may suggest to law enforcement that they should patrol the
eastern slope with roughly four times the resources which they devote to the western
slope.

4.3. Implementation notes. There are a few specific issues that arise when im-
plementing the model numerically. We discuss three such issues (and their resolutions)
and demonstrate their effects in Figures 4.7a-4.9b. First, note that the initial function
φ(x,0) gives precisely the signed distance from x to Γ(0); that is

φ(x,0) = dist(x,Γ(0)) ..=

{
infy∈Γ(0) |x−y| , x inside Γ(0),
−infy∈Γ(0) |x−y| , x outside Γ(0).

As the level sets evolve, there is some distortion so that for t>0 we no longer have
φ(x,t) = dist(x,Γ(t)). This distortion happens when |∇φ| becomes too large or too
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(a) Clustering the paths down from El Capitan
into two collections.

(b) Clustering the paths down from Half Dome
into two collections.

Fig. 4.6: Clustering can help us identify which paths are morally the same. The bright blue path is
the representative path for the blue points and the bright red path is the representative path for the red
points.

small near the zero level contour Γ(t) and can cause the level set results to become
unreliable. We can fix this by occasionally replacing φ with the signed distance function
to Γ(t). That is, we occasionally halt the time integration, reset φ(x,t) = dist(x,Γ(t)) and
continue. This process is known as re-distancing. The typical strategy for computing the
distance function to the current contour Γ(t) is to set σ(x) = sign(φ(x,t)) and, initializing
d(x,0) =φ(x,t), solve the equation

dτ =σ(x)(1−|∇d|), τ >0, (4.3)

until steady state. The steady state solution will then be the signed distance function to
the current contour. One advantage of this method is that we do not need to explicitly
compute the contour Γ(t); the contour is resolved implicitly by observing the sign of
φ(x,t). If there is no difficulty computing the contour Γ(t), and φ(·,t) is being resolved
on a grid (xi,yj), one can explicitly calculate the distance from each grid point to the
contour, eliminating the need to solve (4.3). However, this will only be computationally
feasible in very low dimension. The re-distancing problem is well established in the
literature and several schemes have been developed to solve the problem [8, 16, 36–38].
Figure 4.7 shows the effect of re-distancing.

Next, as mentioned before, the system (2.3) used to find the optimal path becomes
very stiff when non-smooth elevation profiles are used. Even when using a stiff solver,
the results were unreliable in that the value of p(t) corresponding to a location x(t)
was straying far from the theoretically correct value ∇φ(x(t),t). This was causing
the “optimal path” that our code found to be wildly inaccurate, often times not even
connecting b to a, opting instead to wander off in some seemingly random direction.
To fix this, we do something similar to the above fix: we occasionally stop the time
integration, re-initialize p(t) =∇φ(x(t),t) and then restart the time stepping. We refer
to this as re-initialization and the effect is shown in Figure 4.8. If one can resolve φ at
all values of (x,t) (as opposed to resolving φ only on a discrete grid), one could replace
the system (2.3) with the single equation

ẋ=−∇pH(x,∇φ(x,t)), x(0) = b. (4.4)
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When φ is not available at all points, one can solve for p using (2.3) and re-initialize as
often as possible which is akin to solving (4.4).

Finally, there is still one shortcoming of our Hamiltonian with respect to direc-
tional movement: the slope in the direction of travel and its orthogonal are completely
decoupled. For example, consider a situation where there is a steep cliff face in the
north-south direction while the slope in the east-west direction is very mild. Our model
would allow an individual to walk east-west in this situation even though they may be
standing on an prohibitively steep slope. To fix this problem, we add a penalty for
walking in locations where the maximum slope in any direction is very large. This
is as simple as multiplying our Hamiltonian by a pre-factor which is approximately 1
for low slopes and approximately zero for high slopes. We have chosen the penalization
function P (S) = 1

2−
1
2 tanh(S−1) where S= rise

run is the slope. Thus we actually solve the
Hamilton-Jacobi-Bellman equation with Hamiltonian P (|∇E(x)|)H(x,p) where H(x,p)
is the optimal path Hamiltonian.

(a) Level sets without re-distancing “jump
over” the cliff.

(b) Level sets with re-distancing wrap
around the cliff.

Fig. 4.7: Level sets without, (a), and with, (b), re-distancing.

(a) Optimal path without re-initialization
veers off the map.

(b) Optimal path with re-initialization finds
its target.

Fig. 4.8: Optimal paths without, (a), and with, (b), re-initilialization.
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(a) Optimal path without high-slope penal-
ization zig-zags up the cliff.

(b) Optimal path with high-slope penaliza-
tion avoids the cliff.

Fig. 4.9: Optimal paths without, (a), and with, (b), the high-slope penalization.

5. Conclusion
We have presented a method for resolving optimal walking paths given terrain data.

The key element of the model is a generalization of the level set equation. By repre-
senting the direction of travel for the level sets with a control variable, we constructed
a Hamiltonian whose corresponding level set equation models optimal travel. Using
this, we described a simple algorithm for calculating the optimal walking path between
a starting and ending point which consists of numerically solving a Hamilton-Jacobi-
Bellman (HJB) equation and then a system of ordinary differential equations. Further,
we suggest a method for incorporating uncertainty into the location of the starting
point: by modifying the algorithm slightly, we can compute several optimal paths while
only solving one HJB equation. We then suggested numerical methods for simulat-
ing the HJB equation. We used Godunov’s numerical Hamiltonian with second-order,
essentially non-oscillatory finite difference approximations for spatial derivatives and
second-order, total variation diminishing time integration. We also suggested modifica-
tions to the numerical methods which avoid common pitfalls which one may encounter.
To test our algorithm, we simulated our model first using artificial elevation data and
then using the actual elevation data in certain regions of Yosemite National Park. In
both cases, results aligned very well with our physical intuition. Finally, we sampled
several different starting locations and calculated optimal paths which travel down from
the summits of El Capitan and Half Dome and noticed that in both cases, the paths
can be naturally clustered into collections of paths which follow the same basic route.
We performed k-means clustering to separate the paths into such collections. Such clus-
tering could suggest simple yet effective patrol strategies for a law enforcement agency
tasked with patrolling nationally protected areas.
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