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IMPROVED DUALITY ESTIMATES: TIME DISCRETE CASE AND
APPLICATIONS TO A CLASS OF CROSS-DIFFUSION SYSTEMS∗

THOMAS LEPOUTRE†

Abstract. We adapt the improved duality estimates for bounded coefficients derived by Canizo
et al. to the framework of cross diffusion. Since the estimates can not be directly applied we need to
derive a time discrete version of their results and apply it to an implicit semi-discretization in time of
the cross diffusion systems. This leads to new global existence results for cross diffusion systems with
bounded cross diffusion pressures and potentially superquadratic reaction.
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1. Introduction

The following manuscript is devoted to the adaptation of improved duality estimates
introduced in [7] to a time discrete setting. As an application we extend some recent
existence results in cross-diffusion-reaction models in Laplace form. Cross-diffusion
appears in ecology, chemistry or semiconductor modelling. The systems we have in
mind have been introduced by Shigesada Kawasaki and Teramoto in [24] and have
given birth to a large literature. The original system has the form (Ω is a smooth
bounded domain)

∂tu−∆(d1 +a11u+a12v)u=u(R1−r11u−r12v),

∂tv−∆(d2 +a21u+a22v)v=v(R2−r21u−r22v),

∂nu=∂nv= 0, on ∂Ω.

(1.1)

For the most part, the local existence and uniqueness of strong solutions in a very
general settings stem from the seminal work of Herbert Amann [1]. Passing from local to
global existence for (1.1) remains an open problem except if strong additional structural
assumptions are added on the coefficients aij see [16, 25]. We are here interested in
the question of weak solutions for such systems. Such solutions have been studied
by Jungel and coauthors for (1.1) [8, 9, 15] through the fundamental remark that the
original system possesses an entropic structure. Such solutions are global in time (but
uniqueness is lost except in very specific situations [10]). This entropic structure has
been considerably exploited and generalized in several complementary directions. The
first one that has been introduced by Burger and coauthors in [6] and generalized in [17]
consists in considering systems in which the gradient dissipation implied in the entropy
dissipation leads to boundedness. This is the so-called boundedness by entropy principle.
If boundedness can not be obtained, one might need additional estimates besides the
entropy dissipation. To solve this, a direction that has been considered since [3] is based
on the parabolic structure of cross-diffusion models with a Laplace structure, namely of
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the form {
∂tui−∆pi(U)ui=uir

−
i (U)+r+

i (U) =Ri(U), in Ω, 1≤ i≤ I,
∂n(pi(U)ui) = 0.

(1.2)

For such systems, one can have additional estimates derived in the context of reaction-
diffusion systems in [23], applied to cross-diffusion models in [4] for a specific case
and in a more systematic way in [3, 11, 12, 20]. This can be resumed in the fact that
under general hypothesis we can deduce a priori bounds on ‖U‖L2(QT ) (QT standing for
Ω×(0,T )). This comes from a very elegant duality argument or direct time integration
of the equation.

In the context of chemical reaction diffusion systems, these duality estimates have
been considerably precised by Canizo et al. in [7] in the specific case of bounded
diffusion coefficients. Their results insures Lp(QT ) estimates where p>2 depends on
the domain, and the lower and upper bound of the coefficients. It has been applied
to several situations concerning systems with constant but species-dependent diffusion
coefficients [7,14] with an infinite number of species [5] or in the cross-diffusion triangular
setting [13].

Approximation difficulty. It has been noticed in former works [11, 12, 20] that
the entropic structure and the duality estimate are of different nature and that it is
therefore a nontrivial problem to build solutions respecting both structures. In case
of reaction diffusion system, a truncation of nonlinearities allows to apply estimate to
smooth approximations that are robustly preserving the estimates. For cross diffusion
systems, this is known to be more difficult. One of the most commonly used way of
building solutions is a time discretization. The approximation scheme based on entropic
variables and exploited in [9] and [6] is generally not suitable if one wants to keep the
duality estimate at the limit. An implicit in time discretization scheme (also called
Rothe method) has been developed in [12] and generalized in [20], and it has proved to
be an approach combining the power of both structures. In the cases p= 2 there is no
additional cost (the constants involved in the estimates are the same). For Lp, p>2
this is not the case. We do not keep the optimal constants throughout the process and
therefore cannot ensure that we can reach the optimal Lp integrability. On the other
hand we are still in position of ensuring better than L2 integrability in the cases of
bounded pi. In this manuscript, we show that a discrete version of the estimates derived
in [7] also applies to this approximation procedure, allowing extension of existence results
to a larger class of reaction terms in case of bounded diffusion (from above and below)
pi.

The paper is organized as follows: In Section 2, we remind the structural hypothesis
we make on system (1.2), remind the duality estimates from [7]. We then give the time
discrete equivalent and state our main results on (1.2) in the case of bounded pi. In
Section 3, we establish the proof of time-discrete estimates and their consequences for
semi-discretization of parabolic equations. In Section 4, we illustrate our results through
simple examples.

2. Framework and statement of the main results

2.1. Preliminary hypothesis on (1.2). Structural hypothesis on (1.2).
Concerning systems of the form (1.2), a vectorial notation is then the following U =
(ui)1≤i≤I ,A(U) = (pi(U)ui)1≤i≤I .

∂tU−∆A(U) =R(U). (2.1)
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And the divergence form is the following

∂tU−div (DA(U)∇U) =R(U). (2.2)

We will make the following structural hypothesis (see [12] and [20] for more details).

Regularity assumption on the coefficients.
In what follows we will make the following hypothesis

pi∈C0(RI+,R+)∩C1((R∗+)I ,R+), (2.3)

r±i ∈C
0(RI+,R+)∩C1((R∗+)I ,R+), (2.4)

We will also make the following assumption on A:

A :RI+ 7→RI+ is a homeomorphism. (2.5)

Entropy dissipation control.

Definition 2.1. We say that the system (1.2) admits a nondegenerate entropy if
there exists a convex C2functional H : (R∗+)I 7→R+ such that

D2H(U)DA(U)>0. (2.6)

It is said to be compatible with R if we have additionally

∇H(U).R(U)≤CH
(

1+
∑

Ui+H(U)
)
. (2.7)

The entropy is said to be uniform if there exists positive continuous function fi such
that if we denote Df the diagonal matrix with (Df )ij =fi(ui)δi=j, we have

D2H(U)DA(U)≥Df . (2.8)

In the sense of symmetric matrices.

Definition 2.2. The reaction terms are called mass controlling if there exists a
positive constant CR≥0 such that

∀U ≥0,
∑
i

Ri(U)≤CR(1+
∑

ui). (2.9)

Note that the hypothesis (2.9) immediately implies the following estimates∫
Ω

ui(t)≤KeCRt, (2.10)∫
Ω

H(U)(t)+

∫ t

0

eC(t−s)
∫

Ω

∇UD2H(U)DA(U)∇U ≤eCt
∫

Ω

H(U0)+K ′e(C+CR)t.

(2.11)

The hypothesis on the pi together with (2.9) ensure the following time and space esti-
mate which is at the heart of our construction∫ T

0

∫
Ω

(
∑

ui
∑

piui)+

∫
Ω

∣∣∣∣∣∇
∫ T

0

∑
piuie

−CR(t−s)

∣∣∣∣∣
2
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≤C(R,A,Ω,T )

(
‖U0‖1 +

∥∥∥∑u0
i −〈

∑
u0
i 〉
∥∥∥
H−1(Ω)

)
. (2.12)

For more details, we refer to lemma 2.11 in [12].
We remind here the existence results that is allowed by such a structure.

Theorem 2.1 ( [20]). Let Ω be a smooth domain. Assume (2.3), (2.4), (2.5) and that
there exists uniform compatible entropy (satisfying (2.6), (2.7), (2.8)). Assume finally
that the function R satisfies (for some norm ‖·‖ on RI)

‖R(X)‖= o

((
I∑
i=1

pi(X)xi

)(
I∑
i=1

xi

)
+H(X)

)
, as ‖X‖→∞. (2.13)

Then, for any 0≤Uin∈L1(Ω)∩H−1(Ω), such that H(Uin)∈L1(Ω), there exists 0≤U ∈
L1(QT ) such that A(U)∈L1(QT ) and R(U)∈L1(QT ) which is a weak solution of system
(1.2) with initial data Uin and homogeneous Neuman boundary conditions, i.e. for all
Ψ∈C1

c ([0,T );C2(Ω)I) satisfying ∂nΨ = 0 on ∂Ω, there holds

−
∫

Ω

Uin ·Ψ(0, ·) =

∫
QT

(
U.∂tΨ+A(U) ·∆Ψ+R(U) ·Ψ

)
. (2.14)

Moreover, this solution satisfies the following estimate on [0,T ]:∫
Ω

H(U(t))+

∫ t

0

∫
Ω

〈∇U,D2(H)(U)D(A)(U)∇U〉≤ (1+eCT )

(
1+

∫
Ω

H(Uin)

)
, (2.15)

where C is a combination of CH and CR.

Remark 2.1. For sake of simplicity we have chosen a mass control but everything
done here works if we replace (2.9) by the existence of a positive vector φ>0 such
that φ.R(U)≤CR(1+φ.U). Essentially, all the sums in (2.12) have to be replaced by
weighted sums (

∑
vi→

∑
φivi). This result is very large and its main constraint is

in practice the control of reaction. In most situations of interest, the Equation (2.13)
does not allow to treat standard logistic reaction terms. For the system (1.1) it is not
a real problem, because additional equiintegrability is directly given from the entropy
dissipation inequality [9] offering a gain of a priori L2logL integrability. In [12], we have
treated a general case for power like pi. Let us consider the system,

∂tu−∆(d1 +vα)u=u(1−u−v),

∂tv−∆
(
d2 +uβ

)
v= 0,

∂nu=∂nv= 0, on ∂Ω.

(2.16)

As soon as we have αβ≤1, the system possesses an entropy structure satisfying (2.7)
given by

H(U) =
uβ−βu+β−1

β(β−1)
+
vα−αu+α−1

α(α−1)
,

Surprisingly, when β is large, the control given by the entropy allows to obtain the nec-
essary control (2.13) to treat the quadratic terms u2 in the reaction. When β is small,
we can not establish existence through Theorem 2.1. The results from [20] however
can cover quadratic reaction terms when the entropy gives an important control or in
presence of self-diffusion (as a verification that |X|2 then satisfies (2.13)). In low dimen-
sion the gradient control coming out of (2.11) can give enough additional integrability
through Sobolev emebeddings. What follows gives a solution for the case where one
replaces uβ by a bounded function (keeping all the other hypotheses true).
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2.2. Improved duality estimates: continuous and discrete case. In [7], a
breakthrough was obtained and applied to reaction diffusion systems. Firslty one needs
to introduce an important notation.

Definition 2.3. Let Ω be a smooth domain of RN , for all p∈]1,∞[ and m>0 there
exists a constant denoted Cm,p independent of T such that the solution to

∂tw−m∆w=f,

∂nw= 0,

w(0,x) = 0.

satisifies

‖∆w‖Lp(QT )≤Cm,p‖f‖Lp(QT ).

In [7] it is applied to equalities, so we prefer to refer to an inequality version in the
form of a stability principle.

Lemma 2.1 (Adapted from Proposition 2.5 in [5]). Let M ≥0 be a lower and upper
bounded function: 0<a≤M(t,x)≤ b<+∞. Let p∈]1,∞[ satisfy

b−a
2

C a+b
2 ,p<1. (2.17)

Assume u≥0 satisifies weakly
∂tu−∆Mu≤C(1+u),

∂n(Mu) = 0,

u0∈Lp(Ω),

then u∈Lp(QT ) and we have the following a priori estimate

‖u‖Lp(QT )≤C(1+‖u0‖Lp(Ω)),

where C depends only on Ω,a,b,T .

These results gives room for improvement of our results in the case of bounded
coefficients. In principle, in case where (2.9) is satisfied and the pi satisfy 0<a≤pi≤
b<+∞ and p∈]2,∞[ satisfying (2.17), we shall be able to extend Theorem 2.1 replacing
condition (2.13) by

U0∈Lp(Ω)I ,‖R(X)‖=o(1+ |X|p).

However, as it has been noticed in [11, 12, 20], the construction of solution to (1.2)
is not immediate. In particular, combining duality estimates and entropy dissipation
is quite difficult. An approximation procedure for (1.2) has been developed in [12, 20]
that preserves both entropy dissipation and L2 duality estimates. This construction
is based on a time implicit discretization, solving a Euler backwards version of (1.2).
Time discrete equivalent of (2.11) and (surprisingly)(2.12) can be then derived. The
adaptation of Lemma 2.1 is in fact much more demanding. We shall see in the sequel
that there is a discrete equivalent of Definition 2.3 but there is no guarantee (apart
from the fundamental case p= 2) that the discrete equivalent of Cm,p has the same
value. This is why we have to restrict our result following the discrete version of the
Meyers estimate whose proof can be found in [2] or [18].
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Lemma 2.2 (Ashyrakyev, Piskarev and Weis, Remark 5.2). Let us denote Ψ =
Ψ(τ,m,F ) the solution of {

Ψk+1−Ψk

τ +m∆Ψk =F k+1,

ΨN = 0, ∂nΨk = 0.

then there exists a constant Kp,m that depends only on Ω,p,m such that for any F in
lp(Lp), we have(

N−1∑
k=0

τ‖∆Ψk‖pLp(Ω)

)1/p

≤Km,p

(
N−1∑
k=0

τ‖F k‖pLp(Ω)

)1/p

.

As for the continuous case [19], it is remarkable that the constant does not depend on
the time horizon (T or N).

2.3. Application to cross diffusion systems. We are now in position to
state our main theorem

Theorem 2.2. Let the hypothesis of Theorem 2.1 hold. Assume additionally that the
pi are bounded from above and below

0<a≤pi(U)≤ b<+∞. (2.18)

Assume p∈]2,∞[ is such that,

b−a
2

Ka,b,p<1. (2.19)

Then the conclusion of the Theorem 2.1 holds true adding the hypothesis U0∈Lp(Ω)I

and replacing (2.13) by

|R(U)|=o(|U |p). (2.20)

Remark 2.2. As it is the case for (2.17), we shall see that there always exists p such
that (2.19) holds true since it is always valid for p= 2.

3. Improved duality estimates: discrete case

3.1. The estimates on dual problem. As for the time continuous case, the
crucial point is that the constant does not depend on the horizon (represented here by N
instead of T ) nor the time step τ . The result can in fact be generalized to Lp(0,T ;Lq(Ω))
spaces. Note that the dependency on m takes the form Km,p≤K1,p/m.

Following the lines of [7], we give an estimate of the value of Km,2.

Lemma 3.1. The constant Km,p satisfies

Km,p=
K1,p

m
.

The case p= 2 is given by

Km,2 =
1

m
.
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Proof. The proof is simply based on the equality (putting both members to the
square) ∫

Ω

(
Ψk+1−Ψk

τ

)2

+m2(∆Ψk)2 =

∫
Ω

(F k+1)2−m
∫

Ω

Ψk+1−Ψk

τ
∆Ψk

≤
∫

Ω

(F k+1)2 +
m

2τ

∫
Ω

(∇Ψk+1)2−(∇Ψk)2.

Summation over k gives the result (we remind that ψN = 0). Note that even if we are
only interested in the inequality, this is in fact an equality (we just need to consider
N = 1 and F 1 is an eigenvector of the Laplacian associated with a large eigenvalue to
approach the equality case).

The second important point is just a consequence of interpolation between Lp

spaces.

Lemma 3.2. Let p′ be the conjugate exponent of p such that 1/p+1/p′= 1, then we
have Km,p=Km,p′ . Furthermore if we have p<r<q and 0<θ<1 such that

1

r
=
θ

p
+

1−θ
q

,

then we have

Km,r≤Kθ
m,pK

1−θ
m,q .

This leads to the main consequence for adaptation of results of [7].

Lemma 3.3. Consider solutions of the problem{
Ψk+1−Ψk

τ +ak+1∆Ψk =F k+1,

ΨN = 0, ∂nΨk = 0.
(3.1)

with smooth ak+1 satisfying 0<a<ak+1<b<+∞, assume that F ∈ lp(Lp) with p sat-
isfying

b−a
2

K a+b
2 ,p<1,

then we have the following estimates:(
N−1∑
k=0

τ‖∆ψk‖pLp(Ω)

)1/p

≤ D̄a,b,p

(
N−1∑

0

τ‖F k+1‖pLp(Ω)

)1/p

(3.2)

‖ψ0‖Lp(Ω)≤
(
1+bD̄a,b,p

)
(Nτ)1/p′

(
N−1∑

0

τ‖F k+1‖pLp(Ω)

)1/p

(3.3)

where

D̄a,b,p=
K a+b

2 ,p

1− b−a
2 K a+b

2 ,p

.
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Proof. The proof follows the lines of the proof of Lemma 2.2 in [7]. We simply
write

Ψk+1−Ψk

τ
+
a+b

2
∆Ψk =F k+1 +

(
a+b

2
−ak+1

)
∆Ψk.

Using the previous lemma, we have immediately(
N−1∑
k=0

τ‖∆ψk‖Lp(Ω)

)1/p

≤K a+b
2 ,p

(
N−1∑

0

τ

∥∥∥∥F k+1 +

(
a+b

2
−ak+1

)
∆Ψk

∥∥∥∥p
Lp(Ω)

)1/p

≤K a+b
2 ,p

(
N−1∑

0

τ‖F k+1‖pLp(Ω)

)1/p

+K a+b
2 ,p

(
N−1∑

0

τ

∥∥∥∥a+b

2
−ak+1

∥∥∥∥
∞
‖∆Ψk‖pLp(Ω)

)1/p

.

Since by construction, we have∥∥∥∥a+b

2
−ak+1

∥∥∥∥
∞
≤ b−a

2
,

we end up with(
N−1∑
k=0

τ‖∆ψk‖Lp(Ω)

)1/p(
1− b−a

2
K a+b

2 ,p

)
≤K a+b

2 ,p

(
N−1∑

0

τ‖F k+1‖pLp(Ω)

)1/p

.

Leading immediately to Equation (3.2). To obtain (3.3), we remark

Ψ0 =

N−1∑
k=0

τ
(
F k+1−ak+1∆Ψk

)
.

Therefore, we have immediately

‖Ψ0‖p≤
N−1∑
k=0

τ
(
‖F k+1‖p+‖ak+1∆Ψk‖p

)
≤
N−1∑
k=0

τ
(
‖F k+1‖p+b‖∆Ψk‖p

)
≤ (Nτ)1/p′

(N−1∑
0

τ‖F k+1‖pLp(Ω)

)1/p

+b

(
N−1∑
k=0

τ‖∆ψk‖pLp(Ω)

)1/p
 .

Applying (3.2) we obtain the result (3.3) and thereby the lemma.

Remark 3.1. Apart from the case p= 2, we cannot insure the equality between Km,p

and Cm,p in general. Note that we have also by this mean a general estimate on ‖Ψk‖p

‖Ψk‖p≤
(
1+D̄a,b,p

)
((N−k)τ |Ω|)1/p′

(
N−1∑
k

τ‖F k+1‖Lp(Ω)

)1/p

.
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3.2. Consequences for discretized parabolic problems. Consider a se-
quence of functions uk≥0 (nonnegativity is crucial if we limit ourselves to inequalities)
satisfying 

uk+1−uk

τ
−∆ak+1uk+1≤C(1+uk+1),

∂n(ak+1uk+1) = 0,

u0≥0, u0∈L∞(Ω),

(3.4)

for nonnegative functions ak+1 satisfying

0<a≤ak+1≤ b<+∞,

and some nonegative constant C≥0, such that Cτ <1, then

Lemma 3.4. Let 1<p<+∞ be such that

b−a
2

K a+b
2 ,p<1.

Then, the following estimate holds true(
N∑
k=1

∫
Ω

τ |uk|p
′

)1/p′

≤ (1−Cτ)−N
(
‖u0‖p′+CNτ |Ω|1/p

′
)(

1+
D̄a,b,p

1−Cτ

)
(Nτ)1/p′ .

(3.5)

Proof. Replacing uk by vk = (1−Cτ)kuk , we can replace the inequality by
vk+1−vk

τ −∆ ak+1

1−Cτ u
k+1≤C(1−Cτ)k,

∂n(ak+1vk+1) = 0,

v0≥0, v0∈L∞(Ω).

We consider a test function F k≤0. We introduce the solution of (3.1). It is
straightforward that Ψk≥0. Therefore, multiplying one equation by Ψk and the other
by vk+1 and summing up we have

−
N∑
k=1

∫
Ω

τvkF k≤
∫

Ω

v0Ψ0 +C

N−1∑
k=0

τΨk.

By the previous results, we have then immediately

−
N∑
k=1

∫
Ω

τvkF k≤
(
‖v0‖p′+CNτ |Ω|1/p

′
)

max
k
‖Ψk‖p.

Combining this with Remark 3.1 and the fact that

D̄ a
1−Cτ ,

b
1−Cτ ,p

=
D̄a,b,p

1−Cτ
,

we end up with

−
N∑
k=1

∫
Ω

τvkF k≤
(
‖v0‖p′+CNτ |Ω|1/p

′)(
1+

D̄a,b,p
1−Cτ

)
(Nτ)1/p′

(
N−1∑

0

τ‖F k+1‖pLp(Ω)

)1/p

.
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Since vk≥0 and the result holds for any F k≤0 this leads to(
N∑
k=1

∫
Ω

τ |vk|p
′

)1/p′

≤
(
‖v0‖p′+CNτ |Ω|1/p

′
)(

1+
D̄a,b,p

1−Cτ

)
(Nτ)1/p′ ,

which ends the proof of the lemma.

4. Application to cross-diffusion system with bounded pressures
We present here the main application we have in mind concerning the discrete

duality estimates. As mentioned above, one of the main difficulties is to extend estimates
to the approximation procedure.

4.1. Small remarks on construction procedure from [20]. At the heart
of construction procedure is the backward Euler (often called Rothe method) approxi-
mation scheme for the equation:

uki−u
k−1
i

τ −∆pi(U
k)uki =Ri(U

k),

∂nu
k
i = 0,

U0≥0 given.

(4.1)

We recall a general result on the construction procedure introduced in [12] and
extended in [20]. We adapt lemma from [12].

Lemma 4.1. Assume hypotheses (2.3), (2.4), (2.5), (2.9) hold true, assume τ satisifies
CRτ,CHτ ≤1/2. Assume U0≥0,U0∈L∞ and

∫
Ω
U0>0 (component by component),

then there exists a sequence (Uk)k≥1 solution of (4.1). Moreover, this sequence satisifies
the following properties depending on τ

∀k≥1,∀p∈]1,+∞[, pi(U
k)uki ∈W 2,p(Ω),

Uk ∈L∞(Ω;RI+), inf
Ω

min
i
uki >0,

and the following properties

‖Uk‖1≤K(1−CRτ)−k,∫
Ω

H(UN )+

N∑
k=1

τ

∫
Ω

∇UkD2H(Uk)DA(Uk)∇Uk≤C(Nτ,U0),

N∑
k=1

τ

∫
Ω

(
I∑
i=1

pi(U
k)uki

)(
I∑
i=1

uki

)
≤C(Nτ,U0)

Finally, if we denote a= mini infRI+ pi(U)>0 and b= maxi supRI+ pi(U)<+∞, for all

p>1, such that b−a
2 K a+b

2 ,p<1, we have

N∑
k=1

τ

(
I∑
i=1

uki

)p
≤C(Nτ,‖U0‖p,a,b,p).

We let the reader notice that the sequence is defined for all k>0. We denote then the
step function

Uτ (t,x) =

∞∑
k=0

Uk+1(x)χkτ<t≤(k+1)τ .
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It has been established in [12,20] that for T >0, we can extract a subsequence Uτn that
converges almost surely to U . Using then the L2(QT ) standard bounds

Uτ→U in Lr(QT ), ∀r<2

A(Uτ )→A(U) in Lr(QT ), ∀r<2.

We can now complete this result by a Lp integrability for suitable p.

Lemma 4.2. The extraction Uτ converges also strongly in Lp(QT ) for any p satisfying
b−a

2 K a+b
2 ,p<1. In particular, we have strong convergence for p= 2.

Proof. Let such p be given, then there exists q>p such that (b−a)K a+b
2 ,q<1.

Then applying Lemma 3.4 to wk =
∑
uki and q where the ui are solutions to (4.1), we

obtain a uniform estimate from (3.5) for any τ ≤2/CR.

‖Uτ‖Lq(QT )≤e2CRT
(
‖U0‖q′+CRT |Ω|1/q

′
)

(1+2D̄a,b,q)T
1/q′ .

Combining this with the almost sure convergence, we conclude that the statement holds.

It has been established that solutions of (4.1) converge to a very weak solution of
(1.2). The discrete estimate leads to estimates (2.9), (2.11) and (2.12). Our contribution
consists here in the additional convergence properties.

4.2. Examples. We give two last simple examples that are not covered by
Theorem 2.1 but can be covered by Theorem 2.2.

∂tu−∆
(
d1 + v

1+v

)
u=u(1−u−v),

∂tv−∆
(
d2 + u

1+u

)
v=v(1−v−u),

∂nu=∂nv= 0, on ∂Ω.

(4.2)

A very close but superquadratic example is the following
∂tu−∆

(
d1 + v

1+v

)
u=u(1−ulog(1+u)−v),

∂tv−∆
(
d2 + u

1+u

)
v=v(1−v−u),

∂nu=∂nv= 0, on ∂Ω.

(4.3)

In both cases, the entropy verifies

H(U) =ulog
2u

1+u
+

1−u
2

+v log
2v

1+v
+

1−v
2

, ∇H=

(
log 2u

1+u + 1
1+u−

1
2

log 2v
1+v + 1

1+v −
1
2

)
.

We restrict ourselves to a L∞ initial data for sake of clarity (it is clearly not optimal).
We let the reader check that all structural hypotheses of Theorem 2.1 are fullfilled

with the notable exception of (2.13). To apply Theorem 2.2 we recall from Lemma 3.4
that there exists p>2 such that (2.19) holds true. Therefore, there exists p>2 (de-
pending on a,b and Ω) such that hypothesis holds true. As a consequence, the reaction
terms are in both cases uniformly equiintegrable; thanks to Vitali theorem and almost
everywhere convergence they converge in L1(QT ). Estimate (2.15) is then an exten-
sion of its discrete equivalent in Lemma 4.1. Since Uτ satisifies (convention U =U0 for
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t∈]−τ,0]) {
Uτ (t)−Uτ (t−τ)

τ −∆A(Uτ (t)) =R(Uτ (t)),t>0, in Ω

∂nU
τ = 0, on ∂ΩUτ =U0, t∈]−τ,0].

Multyipling by a test function as in Theorem 2.2 and integrating by parts we have

−
∫

Ω

Uin

(
1

τ

∫ 0

−τ
Ψ(t+τ)dt

)
=

∫ T−τ

0

Ψ(t+τ)−Ψ(t)

τ
Uτ (t)+

∫
QT

(
A(Uτ )∆Ψ+R(Uτ )Ψ

)
.

Passing to the limit we obtain (2.14).
There is a small difference anyway between the two cases:

• In the first situation the reaction terms are quadratic and we need to establish
some strong convergence in L2(QT ) from the approximated solutions. This
difficulty can be dealt with by employing direct L2 compactness arguments
see [21,22].

• In the second case (4.3), strong compactness in L2 is not sufficient; additional
integrabilty is needed and our result is necessary to ensure in particular the
equiintingrability of the reaction term u2 log(1+u).

Remark 4.1. In general, the value of constantKm,p (or Cm,p) is not known. Moreover,
its values (for p 6= 2) depends on the domain. The most practical (meaning independent
of the domain) application of hypothesis (2.20) is the case of possibly superquadratic
reaction terms but still satisfying

|R(U)|=o(|U |p) ∀p>2.

Typically the application to cubic nonlinearities in reaction terms may depend on the
domain.

5. Conclusion
In this manuscript we have established a time-discrete version of the improved

duality estimate from [7]. This allows to extend a little bit known results on cross-
diffusion with bounded cross-diffusion pressures. A quite important open question is
the optimal possible estimate. It remains to establish if Lemma 3.4 can hold after
replacing Km,p by Cm,p. We think there is hope for it up to the price of a dependence
on τ,N for the correction. Typically, we have in mind that there shall be room so that
the optimal constant for Nτ fixed (that is T is fixed) could be in the limit τ→+0
bounded by Cm,p. If such a result was established, then we would be able to extend our
results to the optimal condition replacing Km,p by Cm,p. An important open problem
is the treatment of quadratic reaction for unbounded diffusion pressures.
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