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SOLVING THE YANG-BAXTER-LIKE MATRIX EQUATION WITH
NON-DIAGONALIZABLE ELEMENTARY MATRICES∗

DUANMEI ZHOU† , GUOLIANG CHEN‡ , JIU DING§ , AND HAIYAN TIAN¶

Abstract. Let A= I−uvT , where u and v are two n-dimensional complex vectors with vTu= 0.
Thus A is not diagonalizable. We find all solutions of the quadratic matrix equation AXA=XAX.
This is a continuation of the work [Computers Math. Appl., 72(6):1541–1548, 2016] from the case of
diagonalizable elementary matrices to non-diagonalizable ones.
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1. Introduction
In a recent paper [4], all solutions of the nonlinear matrix equation

AXA=XAX, (1.1)

where A is a diagonalizable elementary matrix, have been obtained. The above homo-
geneous quadratic equation, with A a given n×n complex matrix, is called the Yang-
Baxter-like matrix equation. Its origin is the classical Yang-Baxter equation [1,13]. The
original Yang-Baxter equation has found many connections and applications to knot
theory, braid group theory, integrable systems, quantum theory, and statistical physics
in mathematical and physical sciences; see [10,11,14]. Solving (1.1) has been a research
topic of linear algebra in the past several years, and a few results on its solutions have
been obtained for various classes of matrices A with different approaches; see, e.g., [3,5].
Most solutions obtained so far are commuting ones, that is, solutions X of (1.1) such
that AX=XA. Although all commuting solutions have been constructed for diagonal-
izable matrices A in [8], nilpotent matrices A in [9], and general matrices in [12], it is
still challenging to find non-commuting solutions when the given matrix A is arbitrary.

There have been some efforts toward finding all solutions of (1.1) when A has a
special structure, e.g., [2, 15]. In a recent paper [4], all solutions have been constructed
if A is a diagonalizable elementary matrix. This paper continues the study of [4] by
dropping the assumption of A being diagonalizable. As will be seen later, finding all
solutions with A not diagonalizable is much more tedious with many cases to consider.
The tediousness is compatible to our experience of solving polynomial equations.

If we multiply out the both sides of (1.1), solving the Yang-Baxter matrix equation
is equivalent to solving a system of n2 quadratic polynomial equations of n2 variables
with n the size of the matrix A, and the solution set of this system is a disconnected
nonlinear manifold in general. Thus, unlike solving linear matrix equations, it seems
that there is no effective way to express all the solutions in terms of a basis of elementary
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solutions such as some eigenvectors, even if A is symmetric. As a simple example, when
A is the 2×2 Jordan block J1 given by (2.1) in the next section, all the solutions of
the corresponding matrix Equation (1.1) are the two trivial solutions X= 0 and X=J1,
together with the one-parameter nontrivial solutions

X=

[
x (x−1)2

−1 2−x

]
, ∀x,

none of which is a commuting solution.
To overcome the difficulty in finding non-commuting solutions of (1.1), our strategy

here is to use the Jordan decomposition of A to obtain a simplified Yang-Baxter matrix
equation with A replaced by a simple 2×2 block diagonal matrix, and then we solve
a system of four matrix equations for the smaller sized solution blocks. Because of the
special structure of the new system, we are lucky to be able to apply some spectral per-
turbation results proved about ten years ago for rank-one or rank-two updated matrices,
resulting in all the solutions of the original Yang-Baxter matrix equation.

We shall establish the equivalent system of four matrix equations and present the
result for commuting solutions in Section 2. The next three sections are devoted to
finding all solutions of (1.1) under different assumptions. We conclude with Section 6.

2. All commuting solutions of the equation
Throughout the paper we let the given matrix in the Equation (1.1) be A= I−

uvT , where u and v are two nonzero n dimensional complex column vectors such that
vTu= 0. Let v1,. ..,vn−1 be linearly independent vectors in Cn such that vT vj = 0 for
j= 1,. ..,n−1. Then Avj =vj for each j, from which 1 is an eigenvalue of A with
eigenvectors v1,. ..,vn−1. As usual, we use R(B) and N(B) in the following to denote
the range and null space of a matrix B, respectively.

Since Au= (1−vTu)u=u, clearly u belongs to the (n−1)-dimensional subspace
spanned by v1,. ..,vn−1. Since A−I=−uvT 6= 0 and (A−I)2 = (−uvT )(−uvT ) =
(vTu)uvT = 0, the minimal polynomial of A is φ(x) = (x−1)2. The fact that x= 1 is
the double zero of φ ensures that the only eigenvalue of A is 1 with geometric multiplic-
ity n−1 while its algebraic multiplicity is n, so A is not diagonalizable. In this paper,
any eigenvalue, whose algebraic multiplicity is one more than its geometric multiplicity,
will be said to be of deficiency −1.

To find the Jordan form J of A and the corresponding similarity matrix W , from
w≡ (A−I)v̄=−‖v‖2u 6= 0 and (A−I)w= (A−I)2v̄= 0, we see A[w,v̄] = [w,v̄]J1 with

J1 =

[
1 1
0 1

]
(2.1)

the 2×2 Jordan block. Since vTw= 0, we may let vn−1 =w in the basis {v1,. ..,vn−1} of
the eigenspace N(A−I), getting the Jordan form decomposition A=WJW−1, where

W = [v1,. ..,vn−2,w,v̄] and J = diag(In−2,J1).

Solving (1.1) is equivalent to solving the simplified Yang-Baxter-like matrix equation

JY J =Y JY (2.2)

with the relation of solutions X to (1.1) and those Y to (2.2) given by X=WYW−1.
We solve (2.2) by partitioning Y as J into a 2×2 block matrix

Y =

[
Z H
KT T

]
, (2.3)
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where the (n−2)×2 sub-matrices H= [h,ĥ] and K= [k,k̂], and the 2×2 matrix

T =T (t,s,c,d)≡
[
t s
c d

]
. (2.4)

In the remainder of the paper, whenever the matrix Y appears, it always has the block
structure given by (2.3). Then (2.2) can be written as the system of four equations

Z2−Z = −HJ1KT ,
ZH = HJ1(I−T ),
KTZ = (I−T )J1K

T ,
KTH = J1TJ1−TJ1T,

(2.5)

which, after multiplying out, is equivalent to

Z2−Z = −[hkT +(h+ ĥ)k̂T ],

Zh = (1− t−c)h−cĥ,
Zĥ = (1−s−d)h+(1−d)ĥ,

kTZ = (1− t)kT +(1− t−s)k̂T ,
k̂TZ = −ckT +(1−c−d)k̂T ,
kTh = (t+c)(1− t)−sc,
kT ĥ = (1−s−d)(t+s)+s2 +c+d,

k̂Th = c(1− t−c−d),

k̂T ĥ = (c+d)(1−d)−sc.

(2.6)

Note that if KTH= 0, then the last equation of (2.5) is just a 2×2 Yang-Baxter-like
matrix equation J1TJ1 =TJ1T with all the solutions

T = 0,J1, and T (t,(1− t)2,−1,2− t), ∀ t

given by (2.4), after a direct computation. This fact will often be used when we solve
(2.5) under different situations of H and K.

We first find all commuting solutions of (2.5) by requiring further that[
In−2 0

0 J1

][
Z H
KT T

]
=

[
Z H
KT T

][
In−2 0

0 J1

]
.

This additional equation implies H=HJ1,K
T =J1K

T , and J1T =TJ1. It follows that
H= [0,ĥ],K= [k,0], and T =T (t,s,0,t) for any numbers t and s. Therefore, HJ1K

T =
0,HJ1(I−T ) = (1− t)H,(I−T )J1K

T = (1− t)KT , and

KTH=

[
0 kT ĥ
0 0

]
, J1TJ1−TJ1T =

[
t(1− t) s+2t−2ts− t2

0 t(1− t)

]
.

Hence t= 0 or t= 1 from the last equation of (2.5), from which T =T (0,s,0,0) or
T (1,s,0,1) for any number s, respectively. Substituting the two values t= 0 or t= 1
with the corresponding T expressions respectively into (2.5) gives the following two
systems of equations for the remaining unknowns with any number s:

Z2−Z = 0,

Zĥ = ĥ,
kTZ = kT ,

kT ĥ = s

or


Z2−Z = 0,

Zĥ = 0,
kTZ = 0T ,

kT ĥ = 1−s.
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A matrix whose square equals itself is a projection. It is well-known that a projection
is diagonalizable with exactly two eigenvalues 1 and 0, except for the zero matrix with
the only eigenvalue 0 and the identity matrix with the unique eigenvalue 1. We therefore
have obtained the following result for commuting solutions.

Theorem 2.1. All commuting solutions of (1.1) are X=WYW−1, in which Z is any

projection, H= [0,ĥ] and K= [k,0], and either

(i) T =T (0,s,0,0) for any s, ĥ∈R(Z), and k∈R(ZT ) with kT ĥ=s, or

(ii) T =T (1,s,0,1) for any s, ĥ∈N(Z), and k∈N(ZT ) with kT ĥ= 1−s.

We tabulate the above result in Table 2.1 where Z,H,KT , and T are the four
submatrices of the partitioned 2×2 block matrix (2.3) of the solution matrix Y to the
simplified Yang-Baxter-like matrix equation JY J =Y JY , from which the solutions of
the original Yang-Baxter-like matrix Equation (1.1) are X=WYW−1.

Z H K T Conditions

Z=Z2 [0,ĥ] [k,0]

[
0 s
0 0

]
ĥ∈R(Z),k∈R(ZT ),kT ĥ=s

Z=Z2 [0,ĥ] [k,0]

[
1 s
0 1

]
ĥ∈N(Z),k∈N(ZT ),kT ĥ= 1−s

Table 2.1. All Commuting Solutions

In the remaining sections, we will find all non-commuting solutions of (1.1).

3. Solutions with one of H and K zero
From now on we look for all solutions of (2.5) to obtain all solutions of (1.1), which

is a tedious process. Let r(B) denote the rank of matrix B. We divide our analysis into
three non-overlapping assumptions on H and K in the solutions Y of (2.5), based on
their ranks: (i) r(H) = 0 or r(K) = 0; (ii) r(H) = r(K) = 1; (iii) r(H) = 2 and K 6= 0 or
r(K) = 2 and H 6= 0.

Suppose H= 0 or K= 0. Then the second or third equation of (2.5) is satisfied, and
the first and last ones are Z2 =Z and J1TJ1 =TJ1T . All solutions of the above two
equations are projections Z and T = 0,J1, or T (t,(1− t)2,−1,2− t) for any number t.
We next determine the structures of K,H and T from the remaining equation of (2.5)
for various situations. We have two cases to investigate.

Case 1: H= 0. If K= 0, then all solutions of (2.5) are diag(Z,T ). Suppose K= [k,0]
with k 6= 0. If T = 0 or J1, then the third equation of (2.5) is kTZ=kT or kTZ= 0T ,
respectively. If T =T (t,(1− t)2,−1,2− t), then k= 0, a contradiction.

Suppose K= [0, k̂] with k̂ 6= 0. If T = 0,J1, or T (t,(1− t)2,−1,2− t) with t 6= 0,1,

then the third equation of (2.5) implies k̂= 0, a contradiction. If T =T (0,1,−1,2) or

T (1,0,−1,1), then the third equation of (2.5) is k̂TZ= 0T or k̂TZ= k̂T , respectively.

Suppose k 6= 0 and k̂ 6= 0. If T = 0 or J1, then the third equation of (2.5) gives

kTZ=kT + k̂T and k̂TZ= k̂T , or kTZ=−k̂T and k̂TZ= 0T ,

respectively, from which k̂= 0, a contradiction. If T =T (t,(1− t)2,−1,2− t), then the
third equation of (2.5) becomes

kTZ= (1− t)kT + t(1− t)k̂T and k̂TZ=kT + tk̂T ,
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from which [k+(t−1)k̂]TZ= 0T .

Case 2: K= 0. Suppose H= [0,ĥ] with ĥ 6= 0. If T = 0 or J1, then the second equation

of (2.5) is Zĥ= ĥ or Zĥ= 0, respectively. If T =T (t,(1− t)2,−1,2− t), then the second

equation of (2.5) leads to ĥ= 0, a contradiction.

Suppose H= [h,0] with h 6= 0. If T = 0,J1, or T (t,(1− t)2,−1,2− t) with t 6= 1,2,
then the second equation of (2.5) implies h= 0, a contradiction. If T =T (1,0,−1,1) or
T (2,1,−1,0), then the second equation of (2.5) is Zh=h or Zh= 0, respectively.

Suppose h 6= 0 and ĥ 6= 0. If T = 0 or J1, then the second equation of (2.5) leads to
h= 0, a contradiction. If T =T (t,(1− t)2,−1,2− t), then the same equation becomes

Zh= (2− t)h+ ĥ and Zĥ= (t−1)(2− t)h+(t−1)ĥ,

so Z[(t−1)h− ĥ] = 0.

In summary, we have the following theorem.

Theorem 3.1. All solutions X=WYW−1 of (1.1) under the assumption that either
H= 0 or K= 0, are such that Z is any projection and

(i) Y = diag(Z,T ) with T = 0,J1, or T (t,(1− t)2,−1,2− t) for any number t;

(ii) H= 0, k̂= 0, and either k 6= 0∈R(ZT ) and T = 0 or k 6= 0∈N(ZT ) and T =J1;

(iii) H= 0,k= 0, and either k̂ 6= 0∈N(ZT ) and T =T (0,1,−1,2) or k̂ 6= 0∈R(ZT ) and
T =T (1,0,−1,1);

(iv) H= 0,k,k̂ 6= 0,T =T (t,(1− t)2,−1,2− t), and k+(t−1)k̂∈N(ZT ) for any t;

(v) K= 0,h= 0, and either ĥ 6= 0∈R(Z) and T = 0 or ĥ 6= 0∈N(Z) and T =J1;

(vi) K= 0,ĥ= 0, and either h 6= 0∈R(Z) and T =T (1,0,−1,1) or h 6= 0∈N(Z) and T =
T (2,1,−1,0);

(vii) K= 0,h,ĥ 6= 0,T =T (t,(1− t)2,−1,2− t), and (t−1)h− ĥ∈N(Z) for any t.

The above result is listed in Table 3.1, in which T is given by (2.4) and t represents
any number. Among all solutions (Z,H,KT ,T ) such that at least one of H and KT is
a zero matrix, the matrix Z is any projection.

4. Solutions with r(H) = r(K) = 1

In this section, we will find all solutions of (1.1) under the condition that both ranks
of H and K are 1. This can be done by solving (2.5) under different situations. To
reach our results that will be summarized into three theorems, we need the following
rank-one spectral perturbation result (Theorem 2.1 of [6]).

Lemma 4.1. Let M be an m×m matrix with eigenvalues µ1,µ2,. ..,µm, counting al-
gebraic multiplicity, and let x and y be two m-dimensional column vectors such that x
is an eigenvector of M or y is a left eigenvector of M associated with µ1. Then the
eigenvalues of M+xyT are µ1 +yTx,µ2,. ..,µm, counting algebraic multiplicity.

For the sake of simpler presentation, we divide our discussion into several situations.
First we assume that only one column of both H and K is zero, which has four cases.
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H K T Conditions

[0,0] [0,0] 0,J1,

[
t (1− t)2
−1 2− t

]
[0,0] [k,0] 0 k 6= 0∈R(ZT )
[0,0] [k,0] J1 k 6= 0∈N(ZT )

[0,0] [0, k̂]

[
0 1
−1 2

]
k̂ 6= 0∈N(ZT )

[0,0] [0, k̂]

[
1 0
−1 1

]
k̂ 6= 0∈R(ZT )

[0,0] [k,k̂]

[
t (1− t)2
−1 2− t

]
k 6= 0 6= k̂,k+(t−1)k̂∈N(ZT )

[0,ĥ] [0,0] 0 ĥ 6= 0∈R(Z)

[0,ĥ] [0,0] J1 ĥ 6= 0∈N(Z)

[h,0] [0,0]

[
1 0
−1 1

]
h 6= 0∈R(Z)

[h,0] [0,0]

[
2 1
−1 0

]
h 6= 0∈N(Z)

[h,ĥ] [0,0]

[
t (1− t)2
−1 2− t

]
h 6= 0 6= ĥ,(t−1)h− ĥ∈N(Z)

Table 3.1. All Solutions with H = 0 or K = 0

Case 1. H= [h,0] and K= [k,0] with h 6= 0 and k 6= 0. Then (2.6) becomes

Z2−Z = −hkT ,
Zh = (1− t−c)h,
0 = (1−s−d)h,
kTZ = (1− t)kT ,
0T = −ckT ,
kTh = (t+c)(1− t)−sc,
0 = (1−s−d)(t+s)+s2 +c+d,
0 = c(1− t−c−d),
0 = (c+d)(1−d)−sc.

(4.1)

In the above system, the third and fifth equations imply s+d= 1 and c= 0, so s2 +d= 0
and d(1−d) = 0 from the seventh and ninth equations. But the equalities s+d= 1,s2 +
d= 0, and d(1−d) = 1 are contradictory. Hence, system (4.1) has no solution.

Case 2. H= [h,0] and K= [0, k̂] with h 6= 0 and k̂ 6= 0. Now (2.6) is

Z2−Z = −hk̂T ,
Zh = (1− t−c)h,
0 = (1−s−d)h,

0T = (1− t−s)k̂T ,
k̂TZ = (1−c−d)k̂T ,
0 = (t+c)(1− t)−sc,
0 = (1−s−d)(t+s)+s2 +c+d,

k̂Th = c(1− t−c−d),
0 = (c+d)(1−d)−sc.

(4.2)
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In the above system, the third and fourth equations ensure s+d= 1 and t+s= 1, so
d= t, and then the seventh and ninth equations imply s2 +c+d= 0 and d(1−d) = 0.
Consequently c=−1 with either d= t= 1 and s= 0 or d= t= 0 and s= 1. Hence
(4.2) is reduced to the systems Z2−Z=−hk̂T , Zh=h, k̂TZ= k̂T , k̂Th= 0 or Z2−Z=

−hk̂T , Zh= 2h, k̂TZ= 2k̂T , k̂Th=−2, which can be shortened to

Z2−Z=−hk̂T , Zh=h, k̂TZ= k̂T

or

Z2−Z=−hk̂T , Zh= 2h, k̂TZ= 2k̂T ,

corresponding to T =T (1,0,−1,1) or T =T (0,1,−1,0), respectively.

Case 3. H= [0,ĥ] and K= [k,0] with ĥ 6= 0 and k 6= 0. Then (2.6) is simplified to

Z2−Z = 0,

0 = −cĥ,
Zĥ = (1−d)ĥ,
kTZ = (1− t)kT ,
0T = −ckT ,
0 = (t+c)(1− t)−sc,
kT ĥ = (1−s−d)(t+s)+s2 +c+d,
0 = c(1− t−c−d),
0 = (c+d)(1−d)−sc.

Clearly c= 0. From the first equation above, Z is a projection, so its eigenvalues are
either 1 or 0. This implies that d and t are 1 or 0. The possibilities that d and t take
different values are excluded since otherwise we would obtain contradictory systems
Zĥ= 0,kTZ=kT ,kT ĥ= 1 or Zĥ= ĥ,kTZ= 0,kT ĥ= 1. Thus, we obtain the system

Z2 =Z, Zĥ= ĥ, kTZ=kT , kT ĥ=s

or the system

Z2 =Z, Zĥ= 0, kTZ= 0, kT ĥ= 1−s,

corresponding to T =T (0,s,0,0) or T =T (1,s,0,1) for any number s, respectively.

Case 4. H= [0,ĥ] and K= [0, k̂] with ĥ 6= 0 and k̂ 6= 0. Then (2.6) can be written as

Z2−Z = −ĥk̂T ,
0 = −cĥ,
Zĥ = (1−d)ĥ,

0T = (1− t−s)k̂T ,
k̂TZ = (1−c−d)k̂T ,
0 = (t+c)(1− t)−sc,
0 = (1−s−d)(t+s)+s2 +c+d,
0 = c(1− t−c−d),

k̂T ĥ = (c+d)(1−d)−sc.

Consequently, c= 0 and t+s= 1, so s(1−s) = 0 and s2−s+1 = 0, which is impossible.
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In summary, the key system (2.6) has solutions only in Cases 2 and 3. Using Lemma
4.1 and the same technique as in [4, 8], we can prove the following theorem.

Theorem 4.1. All solutions X=WYW−1 of (1.1) under the assumption that r(H) =
r(K) = 1 with exactly one zero column from H and K each are such that

(i) ĥ= 0 and k= 0. Either T =T (1,0,−1,1) and Z has eigenvalue 1 of deficiency −1

with corresponding eigenvector h and left eigenvector k̂T satisfying k̂Th= 0, and the
other possible eigenvalue of Z is 0 that is semi-simple, or T =T (0,1,−1,0), and Z is
diagonalizable and has one simple eigenvalue 2 with corresponding eigenvector h and
left eigenvector k̂T satisfying k̂Th=−2, and the other eigenvalues in {0,1};
(ii) h= 0, k̂= 0, and Z is any projection. Either T =T (0,s,0,0),ĥ∈R(Z), and k∈R(ZT )

with kT ĥ=s or T =T (1,s,0,1),ĥ∈N(Z), and k∈N(ZT ) with kT ĥ= 1−s, for any s.

Proof. The proof of the first part of (i) is exactly the same as that for Proposition
2.5 (iii) of [4], and the second part of (i) can be shown the same way as Theorem 4.1
in [8]. The conclusion of (ii) is obvious.

Remark 4.1. Compared with Theorem 2.1, all solutions from Theorem 4.1(ii) are
exactly the commuting ones.

There are also four cases when exactly one of the four columns of [HK] is zero.

Case (i): h 6= 0,ĥ=αh with α 6= 0,k= 0, and k̂ 6= 0. Then we can express (2.6) as

Z2−Z = −(1+α)hk̂T ,
Zh = (1− t−c−cα)h,
Zh =

(
1−s−d
α +1−d

)
h,

0T = (1− t−s)k̂T ,
k̂TZ = (1−c−d)k̂T ,
0 = (t+c)(1− t)−sc,
0 = (1−s−d)(t+s)+s2 +c+d,

k̂Th = c(1− t−c−d),

k̂Th = (c+d)(1−d)−sc
α .

Again t+s= 1. Then t(1− t) = 0 from the sixth equation above. So t= 0 and s= 1, or
t= 1 and s= 0. So c=−1 by the seventh equation. Thus the above system is split to

Z2−Z = −(1+α)hk̂T ,
Zh = (2+α)h,
Zh =

(
1−d− d

α

)
h,

k̂TZ = (2−d)k̂T ,

k̂Th = d−2,

k̂Th = d(2−d)
α

or



Z2−Z = −(1+α)hk̂T ,
Zh = (1+α)h,
Zh = (1−d)

(
1+ 1

α

)
h,

k̂TZ = (2−d)k̂T ,

k̂Th = d−1,

k̂Th = − (d−1)2

α .

(4.3)

We first solve (4.3) with α=−1. Then Z is a projection, so the equation k̂TZ=

(2−d)k̂T implies d= 1 or 2. If d= 1, then (4.3) becomes
Z2−Z = 0,
Zh = h,

k̂TZ = k̂T ,

k̂Th = −1

or


Z2−Z = 0,
Zh = 0,

k̂TZ = k̂T ,
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corresponding to T =T (0,1,−1,1) or T (1,0,−1,1), respectively. If d= 2, then the re-
spective two systems of (4.3) are


Z2−Z = 0,
Zh = h,

k̂TZ = 0
or


Z2−Z = 0,
Zh = 0,

k̂TZ = 0,

k̂Th = 1,

corresponding to T =T (0,1,−1,2) or T (1,0,−1,2), respectively.
Next we assume α 6=−1. Then d=−α 6= 1 in the left system of (4.3) and d= 1−α 6= 2

in the right one of (4.3), and the two systems are reduced toZ2−Z = −(α+1)hk̂T ,
Zh = (2+α)h,

k̂TZ = (2+α)k̂T
or

Z2−Z = −(α+1)hk̂T ,
Zh = (1+α)h,

k̂TZ = (1+α)k̂T

since the last equation in (4.3) is now redundant, corresponding to T =T (0,1,−1,−α)
or T (1,0,−1,1−α), respectively.

Case (ii): h 6= 0,ĥ=αh with α 6= 0,k 6= 0, and k̂= 0. Then (2.6) is simplified to

Z2−Z = −hkT ,
Zh = (1− t−c−cα)h,
Zh =

(
1−s−d
α +1−d

)
h,

kTZ = (1− t)kT ,
0T = −ckT ,
kTh = (t+c)(1− t)−sc,
kTh = (1−s−d)(t+s)+s2+c+d

α ,
0 = c(1− t−c−d),
0 = (c+d)(1−d)−sc.

We have c= 0, so d= 0 or 1 by the last equation above. Thus,

Z2−Z = −hkT ,
Zh = (1− t)h,
Zh =

(
1−s
α +1

)
h,

kTZ = (1− t)kT ,
kTh = t(1− t),
kTh = t(1−s)+s

α

or



Z2−Z = −hkT ,
Zh = (1− t)h,
Zh = − s

αh,
kTZ = (1− t)kT ,
kTh = t(1− t),
kTh = 1−ts

α .

(4.4)

The first three equations of the left or right system in (4.4) imply kTh= (s−1)(1−
t)/α or kTh=−ts/α, respectively, which contradicts respectively the last equation.
Hence neither system in (4.4) has a solution.

Case (iii): h= 0,ĥ 6= 0,k 6= 0, and k̂=βk with β 6= 0. Simplifying (2.6) leads to c= 0
and t= 0, or c= 0 and t= 1, with their respective systems

Z2−Z = −βĥkT ,
Zĥ = (1−d)ĥ,
kTZ = [1+β(1−s)]kT ,
kTZ = (1−d)kT ,

kT ĥ = s+d(1−s),
kT ĥ = d(1−d)

β

or



Z2−Z = −βĥkT ,
Zĥ = (1−d)ĥ,
kTZ = −βskT ,
kTZ = (1−d)kT ,

kT ĥ = 1−ds,
kT ĥ = d(1−d)

β .

(4.5)
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The first, third, and fourth equations of the left or right system in (4.5) imply

kT ĥ= (s−1)(1−d) or kT ĥ=−ds, respectively, which contradicts the respective fifth
equation. Hence neither system in (4.5) has a solution.

Case (iv): h 6= 0,ĥ= 0,k 6= 0, and k̂=βk with β 6= 0. In this case we have

Z2−Z = −(1+β)hkT ,
Zh = (2− t)h,
kTZ = [1−(1+β)t]kT ,

kTZ =
(

1
β +2

)
kT ,

kTh = t(2− t),
kTh = t−2

β

or



Z2−Z = −(1+β)hkT ,
Zh = (2− t)h,
kTZ = (1+β)(1− t)kT ,
kTZ =

(
1
β +1

)
kT ,

kTh = −(t−1)2,
kTh = t−1

β

(4.6)

with s= 1,c=−1, and d= 0, or s= 0,c=−1, and d= 1, respectively. The next step is
similar to case (i). Assume β=−1 first. Since Z is a projection, the second equation of
both systems in (4.6) implies t= 1 or 2. If t= 1, then (4.6) is reduced to

Z2−Z = 0,
Zh = h,
kTZ = kT ,
kTh = 1

or

Z2−Z = 0,
Zh = h,
kTZ = 0T ,

corresponding to T =T (1,1,−1,0) or T (1,0,−1,1), respectively. On the other hand, if
t= 2, then we have Z2−Z = 0,

Zh = 0,
kTZ = kT

or


Z2−Z = 0,
Zh = 0,
kTZ = 0T ,
kTh = −1,

corresponding to T =T (2,1,−1,0) or T (2,0,−1,1), respectively.
Suppose now β 6=−1. Then t=−1/β 6= 1 in the left system of (4.6) and t= 1−1/β 6=

2 in its right system, so (4.6) is
Z2−Z = −(β+1)hkT ,

Zh =
(

2+ 1
β

)
h,

kTZ =
(

2+ 1
β

)
kT

or


Z2−Z = −(β+1)hkT ,

Zh =
(

1+ 1
β

)
h,

kTZ =
(

1+ 1
β

)
kT ,

after removing the redundant last two equations therein, corresponding to T =
T (−1/β,1,−1,0) or T (1−1/β,0,−1,1), respectively.

To summarize, the system (2.6) has a solution only for Cases (i) and (iv) above,
and the resulting theorem is as follows.

Theorem 4.2. All solutions X=WYW−1 of (1.1) under the assumption that r(H) =
r(K) = 1 with exactly one zero column from [HK] are such that

(i) h 6= 0,ĥ=−h,k= 0, k̂ 6= 0, and Z is any projection.

a. T =T (0,1,−1,1),h∈R(Z), and k̂∈R(ZT ) with k̂Th=−1.

b. T =T (1,0,−1,1),h∈N(Z), and k̂∈R(ZT ).

c. T =T (0,1,−1,2),h∈R(Z), and k̂∈N(ZT ).

d. T =T (1,0,−1,2),h∈N(Z), and k̂∈N(ZT ) with k̂Th= 1.
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(ii) h 6= 0,ĥ=αh for any α 6= 0,−1,k= 0, and k̂ 6= 0. Either T =T (0,1,−1,α), and Z
is diagonalizable and has one simple eigenvalue 2+α with corresponding eigenvector
h and left eigenvector k̂T satisfying k̂Th=−(2+α), or T =T (1,0,−1,1−α), and Z is
diagonalizable and has one simple eigenvalue 1+α with corresponding eigenvector h and
left eigenvector k̂T satisfying k̂Th=−α. The other eigenvalues of Z are in {0,1}.

(iii) h 6= 0,ĥ= 0,k 6= 0, k̂=−k, and Z is any projection.

a. T =T (1,1,−1,0),h∈R(Z), and k∈R(ZT ) with kTh= 1.

b. T =T (1,0,−1,1),h∈R(Z), and k∈N(ZT ).

c. T =T (2,1,−1,0),h∈N(Z), and k∈R(ZT ).

d. T =T (2,0,−1,1),h∈N(Z), and k∈N(ZT ) with kTh= 1.

(iv) h 6= 0,ĥ= 0,k 6= 0, and k̂=βk for any β 6= 0,−1. Either T =T (−1/β,1,−1,0), and Z
is diagonalizable and has one simple eigenvalue 2+1/β with corresponding eigenvector h
and left eigenvector kT satisfying kTh=−(2β+1)/β2, or T =T (1−1/β,0,−1,1), and Z
is diagonalizable and has one simple eigenvalue 1+1/β with corresponding eigenvector
h and left eigenvector kT satisfying kTh=−1/β2. The other eigenvalues of Z are in
{0,1}.

The remaining situation is h 6= 0,ĥ=αh for any α 6= 0,k 6= 0, and k̂=βk for any β 6= 0.
Then (2.6) becomes 

Z2−Z = −[1+(1+α)β)]hkT ,
Zh = [1− t−c(1+α)]h,
Zh =

(
1−d−s
α +1−d

)
h,

kTZ = [1− t+β(1− t−s)]kT ,
kTZ =

(
− c
β +1−c−d

)
kT ,

kTh = (t+c)(1− t)−sc,
kTh = (1−s−d)(t+s)+s2+c+d

α ,

kTh = c(1−t−c−d)
β ,

kTh = (c+d)(1−d)−sc
αβ .

(4.7)

Since 1− t−c(1+α) and its square are an eigenvalue of Z and Z2 respectively, the first
two equations of (4.7) and Lemma 4.1 imply

[1− t−c(1+α)]2 = 1− t−c(1+α)− [1+(1+α)β][t(1− t)+c(1− t−s)].

The second and fourth equations of (4.7) guarantee 1− t−c(1+α) = 1− t+β(1− t−s),
so 1− t−s=−c(1+α)/β. It follows that

[1− t−c(1+α)]2 = 1− t−c(1+α)− [1+(1+α)β]

[
t(1− t)− c

2(1+α)

β

]
,

which can be simplified to

(α+1)(c−βt)(c−βt+β) = 0.

Therefore, α=−1,c= tβ, or c=β(t−1). We analyze each case as follows.
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Case I: α=−1. Then 1−d−s= 0 and (4.7) becomes

Z2−Z = −hkT ,
Zh = (1− t)h,
Zh = sh,
kTZ = (1− t)kT ,
kTZ =

(
− c
β +1−c−d

)
kT ,

kTh = t(1− t),
kTh = t(s−1)−s−c,
kTh = c(1−t−c−d)

β ,

kTh = c(s−1)−d(1−c−d)
β ,

from which 
1− t−s = 0,
1+ tβ = 0,
t(1− t)+ t(1−s)+s+c = 0,
c(1− t−c−d)+c(1−s)+d(1−c−d) = 0.

All solutions of the above system are

c=−1, d= 1, s= 1+
1

β
, t=− 1

β
or c=−1, d= 2, s=

1

β
, t= 1− 1

β
.

We therefore have two respective systems to solve:
Z2−Z = −hkT ,
Zh =

(
1+ 1

β

)
h,

kTZ =
(

1+ 1
β

)
kT

or


Z2−Z = −hkT ,
Zh = 1

βh,

kTZ = 1
βk

T .
(4.8)

Here we have dropped the redundant equations of each system.
We first solve the left system of (4.8) with β=−1. Then it becomes Z2−Z=

−hkT ,Zh= 0,kTZ= 0, and Z cannot be diagonalizable since otherwise Z2−Z= 0 from
the fact that all eigenvalues of Z2−Z are zero. In this case, T =T (1,0,−1,1). Similarly,
when β 6=−1, the corresponding T =T (−1/β,1+1/β,−1,1).

By the same token, for the right system of (4.8), if β= 1, then the corresponding
T =T (0,1,−1,2), and if β 6= 1, then the corresponding T =T (1−1/β,1/β,−1,2).

Case II: c= tβ. The second and fourth equations of (4.7) give 1− t−c(1+α) = 1− t+
β(1− t−s), so s= 1+ tα. Equating the second and fifth equations gives 1− t−c(1+α) =
1−c−d− t, from which d= tαβ. Then comparing the sixth and seventh equations sets
αt(1− t)+αc(1− t−s) = t(1−s)+s+c+d(1− t−s), which implies c= tβ=−1. Substi-
tuting the expressions t=−1/β,s= 1−α/β,c=−1,d=−α into (4.7) and removing those
equations that depend on others, we obtain the simplified equivalent system

Z2−Z = −[1+(1+α)β]hkT ,

Zh =
(

2+α+ 1
β

)
h,

kTZ =
(

2+α+ 1
β

)
kT .

By the same idea as for Case I, we reach the following conclusions:



ZHOU, CHEN, DING, AND TIAN 405

(1) If (2+α)β 6=−1 6= (1+α)β so that 2+α+1/β 6= 0 or 1, then T =T (−1/β,1−
α/β,−1,−α).

(2) If (2+α)β=−1, then T =T (2+α,(1+α)2,−1,−α).

(3) If (1+α)β=−1, then T =T (1+α,(1+α)2−α,−1,−α).

Case III: c= (t−1)β. Now s= (t−1)α from equating the second and fourth equations
of (4.7). Comparing the second and fifth equations gives d= 1+(t−1)αβ. Then the
sixth and seventh equations imply c= (t−1)β=−1. Putting t= 1−1/β,s=−α/β,c=
−1,d= 1−α into (4.7) and removing the redundant equations, we have

Z2−Z = −[1+(1+α)β]hkT ,

Zh =
(

1+α+ 1
β

)
h,

kTZ =
(

1+α+ 1
β

)
kT .

This gives the following parallel assertions:
(a) If (1+α)β 6=−1 6=αβ, then T =T (1−1/β,−α/β,−1,1−α).

(b) If (1+α)β=−1, then T =T (2+α,α(1+α),−1,1−α).

(c) If αβ=−1, then T =T (1+α,α2,−1,1−α).

In summary, the system (2.6) has solutions in all the three cases, which are obtained
by Lemma 4.1 and the same technique as above.

Theorem 4.3. All solutions X=WYW−1 of (1.1) under the assumption that r(H) =
r(K) = 1 with no zero columns in [HK] are such that

(i) h 6= 0,ĥ=−h,k 6= 0, and k̂=βk for any β 6= 0.
a. β=−1,T =T (1,0,−1,1), and Z has eigenvalue 0 of deficiency −1 with corre-

sponding eigenvector h and left eigenvector kT satisfying kTh= 0. The other possible
eigenvalue of Z is 1, which is semi-simple.

b. β 6=−1,T =T (−1/β,1+1/β,−1,1), and Z is diagonalizable and has one simple
eigenvalue 1+1/β with corresponding eigenvector h and left eigenvector kT satisfying
kTh=−(β+1)/β2. The other eigenvalues of Z are in {0,1}.

c. β= 1,T =T (0,1,−1,2), and Z has eigenvalue 1 of deficiency −1 with corre-
sponding eigenvector h and left eigenvector kT satisfying kTh= 0. The other possible
eigenvalue of Z is 0, which is semi-simple.

d. β 6= 1,T =T (1−1/β,1/β,−1,2), and Z is diagonalizable and has one simple
eigenvalue 1/β with corresponding eigenvector h and left eigenvector kT satisfying
kTh= (β−1)/β2. The other eigenvalues of Z are in {0,1}.
(ii) h 6= 0,ĥ=αh,k 6= 0, and k̂=βk for any α 6= 0 and β 6= 0, and c=βt.

a. (α+2)β 6=−1,(α+1)β 6=−1,T =T (−1/β,1−α/β,−1,−α), and Z is diagonaliz-
able with simple eigenvalue 2+α+1/β, corresponding eigenvector h and left eigenvector
kT satisfying kTh=−[(2+α)β+1]/β2, and other eigenvalues in {0,1}.

b. (α+2)β=−1,T =T (2+α,(1+α)2,−1,−α), and Z has eigenvalue 0 of deficiency
−1 with corresponding eigenvector h and left eigenvector kT satisfying kTh= 0. The
other possible eigenvalue of Z is 1, which is semi-simple.

c. (α+1)β=−1,T =T (1+α,(1+α)2−α,−1,−α), and Z has eigenvalue 1 of de-
ficiency −1 with corresponding eigenvector h and left eigenvector kT satisfying kTh=
α+1. The other possible eigenvalue of Z is 0, which is semi-simple.

(iii) h 6= 0,ĥ=αh,k 6= 0, and k̂=βk for any α 6= 0 and β 6= 0, and c=β(t−1).
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a. (α+1)β 6=−1,αβ 6=−1,T =T (1−1/β,−α/β,−1,1−α), and Z is diagonalizable
and has one simple eigenvalue 1+α+1/β with corresponding eigenvector h and left
eigenvector kT satisfying kTh=−(αβ+1)/β2. The other eigenvalues of Z are in {0,1}.

b. (α+1)β=−1,T =T (2+α,α(1+α),−1,1−α), and Z has eigenvalue 0 of defi-
ciency −1 with corresponding eigenvector h and left eigenvector kT satisfying kTh=
−α−1. The other possible eigenvalue of Z is 1, which is semi-simple.

c. αβ=−1,T =T (1+α,α2,−1,1−α), and Z has eigenvalue 1 of deficiency −1
with corresponding eigenvector h and left eigenvector kT satisfying kTh= 0. The other
possible eigenvalue of Z is 0, which is semi-simple.

Table 4.1 below combines the results of Theorems 4.1-4.3, in which σ=σ(Z) is the

set of all eigenvalues of Z, and α and β are any numbers but 0 or −1. Also when h,ĥ,k,
or k̂ appears, it is assumed nonzero.

5. One of H and K is full ranked
It is time to study the last assumption that one of H and K is full column ranked

and the other is nonzero. Suppose r(H) = 2. Then the first two equations of (2.5) and
the fact that HJ1 is of full column rank give rise to KTH= (I−T )[I−J1(I−T )]. Since

J1TJ1−TJ1T =

[
(t+c)(1− t)−sc (1− t)(d+s−1)−ds+c+1
c(1− t−c−d) (c+d)(1−d)−cs

]
and

(I−T )[I−J1(I−T )] =

[
(t+c)(1− t)−sc (1− t)(d+s−1)−ds
c(1− t−c−d) (c+d)(1−d)−cs

]
,

the last equation of (2.5) is also satisfied if and only if c=−1. Similarly, if r(K) = 2,
then c=−1. Thus, (2.5) is reduced toZ2−Z = −HJ1KT ,

ZH = HJ1(I−T ),
KTZ = (I−T )J1K

T ,
T =T (t,s,−1,d)

since the last equation of (2.5) can be removed.
We need a rank-2 spectral perturbation result (Theorem 2.2 in [7]) as follows.

Lemma 5.1. Let M be an m×m matrix with eigenvalues µ1,µ2,. ..,µm, counting
algebraic multiplicity, and let U and V be two m×2 matrices such that MU =UΛ or
V TM = ΛV T for a 2×2 matrix Λ and the eigenvalues of Λ are µ1,µ2. If U or V is
full column ranked, then the eigenvalues of M+UV T are η1,η2,µ3,. ..,µm, counting
algebraic multiplicity, where η1,η2 are the eigenvalues of Π = Λ+V TU .

To apply the above lemma to our problem, we let M =Z,U =H,V T =−J1KT , and

Λ =J1(I−T ) =

[
2− t 1−d−s

1 1−d

]
.

Then

Π =J1(I−T )−J1KTH= Λ2 =

[
(t−2)2 +1−d−s (3−d− t)(1−d−s)

3−d− t (d−2)(d−1)−s

]
.

The characteristic polynomial of Λ is

φ(λ) = |λI−Λ|=λ2 +(d+ t−3)λ+(1−d)(2− t)+d+s−1,
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Z H K T Conditions

σ⊂{0,1} [h,0] [0, k̂]

[
1 0
−1 1

]
h∈N(Z−I), k̂∈N(ZT −I)

0 is semi-simple h 6= 0 k̂ 6= 0 k̂Th= 0,1 has deficiency −1

diagonalizable [h,0] 6= 0 [0, k̂] 6= 0

[
0 1
−1 0

]
h∈N(Z−2I), k̂∈N(ZT −2I)

σ⊂{0,1,2} 2 is simple, k̂Th=−2

projection [0,ĥ] 6= 0 [k,0] 6= 0

[
0 s
0 0

]
ĥ∈R(Z),k∈R(ZT ),kT ĥ=s

projection [0,ĥ] 6= 0 [k,0] 6= 0

[
1 s
0 1

]
ĥ∈N(Z),k∈N(ZT ),kT ĥ= 1−s

projection [h,−h] [0, k̂]

[
0 1
−1 1

]
0 6=h∈R(Z),0 6= k̂∈R(ZT ), k̂Th=−1

projection [h,−h] [0, k̂]

[
1 0
−1 1

]
0 6=h∈N(Z),0 6= k̂∈R(ZT )

projection [h,−h] [0, k̂]

[
0 1
−1 2

]
0 6=h∈R(Z),0 6= k̂∈N(ZT )

projection [h,−h] [0, k̂]

[
1 0
−1 2

]
0 6=h∈N(Z),0 6= k̂∈N(ZT ), k̂Th= 1

diagonalizable [h,αh] 6= 0 [0, k̂] 6= 0

[
0 1
−1 α

]
h∈N(Z−(2+α)I),2+α is simple

σ⊂{0,1,2+α} α 6=−1,0 k̂∈N(ZT −(2+α)I), k̂Th=−(2+α)

diagonalizable [h,αh] 6= 0 [0, k̂] 6= 0

[
1 0
−1 1−α

]
h∈N(Z−(1+α)I),1+α is simple

σ⊂{0,1,1+α} α 6=−1,0 k̂∈N(ZT −(1+α)I), k̂Th=−α

projection [h,0] 6= 0 [k,−k] 6= 0

[
1 1
−1 0

]
h∈R(Z),k∈R(ZT ),kTh= 1

projection [h,0] 6= 0 [k,−k] 6= 0

[
1 0
−1 1

]
h∈R(Z),k∈N(ZT )

projection [h,0] 6= 0 [k,−k] 6= 0

[
2 1
−1 0

]
h∈N(Z),k∈R(ZT )

projection [h,0] 6= 0 [k,−k] 6= 0

[
2 0
−1 1

]
h∈N(Z),k∈N(ZT ),kTh= 1

diagonalizable [h,0] 6= 0 [k,βk] 6= 0

[
− 1
β

1

−1 0

]
h∈N(Z−(2+ 1

β
)I),2+ 1

β
is simple

σ⊂{0,1,2+ 1
β
} β 6=−1 k∈N(ZT −(2+ 1

β
)I),kTh= 2β+1

−β2

diagonalizable [h,0] 6= 0 [k,βk] 6= 0

[
1− 1

β
0

−1 1

]
h∈N(Z−(1+ 1

β
)I),1+ 1

β
is simple

σ⊂{0,1,1+ 1
β
} β 6=−1,0 k∈N(ZT −(1+ 1

β
)I),kTh= −1

β2

σ⊂{0,1} [h,−h] 6= 0 [k,−k] 6= 0

[
1 0
−1 1

]
h∈N(Z),0 has deficiency −1

1 is semi-simple k∈N(ZT ),kTh= 0

σ⊂{0,1,1+ 1
β
} [h,−h] 6= 0 [k,βk] 6= 0

[
− 1
β

1+ 1
β

−1 1

]
h∈N(Z−(1+ 1

β
)I),1+ 1

β
is simple

diagonalizable β 6=−1 k∈N(ZT −(1+ 1
β

)I),kTh= β+1
−β2

σ⊂{0,1} [h,−h] 6= 0 [k,k] 6= 0

[
0 1
−1 2

]
h∈N(Z−I),1 has deficiency −1

0 is semi-simple k∈N(ZT −I),kTh= 0

σ⊂{0,1, 1
β
} [h,−h] 6= 0 [k,βk] 6= 0

[
1− 1

β
1
β

−1 2

]
h∈N(Z− 1

β
I), 1

β
is simple

diagonalizable β 6= 1 k∈N(ZT − 1
β
I),kTh= β−1

β2

σ⊂{0,1,2+α+ 1
β
} [h,αh] 6= 0 [k,βk] 6= 0

[
− 1
β

1− α
β

−1 −α

]
h∈N(Z−(2+α+ 1

β
)I),2+α+ 1

β
is simple

diagonalizable β 6= −1
α+2

β 6= −1
α+1

k∈N(ZT −(2+α+ 1
β

)I),kTh= (2+α)β+1

−β2

σ⊂{0,1} [h,αh] [k, −1
α+2

k]

[
2+α (1+α)2

−1 −α

]
h∈N(Z),0 has deficiency −1

1 is semi-simple h 6= 0 k 6= 0 k∈N(ZT ),kTh= 0,

σ⊂{0,1} [h,αh] [k, −1
α+1

k]

[
1+α 1+α+α2

−1 −α

]
h∈N(Z−I),1 has deficiency −1

0 is semi-simple h 6= 0 k 6= 0 k∈N(ZT −I),kTh= 1+α

σ⊂{0,1,1+α+ 1
β
} [h,αh] 6= 0 [k,βk] 6= 0

[
1− 1

β
−α
β

−1 1−α

]
h∈N(Z−(1+α+ 1

β
)I),1+α+ 1

β
is simple

diagonalizable β 6=− 1
α

β 6=− 1
α+1

k∈N(ZT −(1+α+ 1
β

)I),kTh= αβ+1
−β2

σ⊂{0,1} [h,αh] [k, −1
α+1

k]

[
2+α α(1+α)
−1 1−α

]
h∈N(Z),0 has deficiency −1

1 is semi-simple k∈N(ZT ),kTh=−α−1

σ⊂{0,1} [h,αh] 6= 0 [k,− 1
α
k] 6= 0

[
1+α α2

−1 1−α

]
h∈N(Z−I),1 has deficiency −1

0 is semi-simple k∈N(ZT −I),kTh= 0

Table 4.1. All Solutions with r(H) = r(K) =1

so the eigenvalues of Λ are

µ,ν=
3−d− t±

√
(1+d− t)2 +4(1−d−s)

2
, (5.1)

in which µ and ν correspond to the plus and minus signs, respectively. It is easy to see
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that µ,ν 6= 0 if and only if s 6= (d−1)(1− t) and µ,ν 6= 1 if and only if s 6= 1−dt. Also
µ 6=ν if and only if s 6= 1−d+(1+d− t)2/4.

By Lemma 5.1 with µ1 =µ and µ2 =ν, the eigenvalues of Z2 are η1,η2,µ3,. ..,µn−2,
where η1 =µ2 and η2 =ν2. On the other hand, the eigenvalues of Z2 are the squares of
those of Z, so µj = 0 or 1 for j= 3,. ..,n−2.

There are several cases on the eigenvalues of Λ.

Case 1): µ= 0 and ν= 0. Then φ(λ) =λ2 gives (d+ t−3)λ+(1−d)(2− t)+d+s−1≡0,
so d+ t= 3 and s= (d−1)(1− t). Thus t= 3−d and s= (d−1)(d−2), and T =T (3−
d,(d−1)(d−2),−1,d).

Case 2): µ= 0 and ν= 1 or µ= 1 and ν= 0. Then d+ t= 2 and s= (d−1)(1− t) from
φ(λ) =λ(λ−1). So t= 2−d and s= (d−1)2, thus T =T (2−d,(d−1)2,−1,d).

Case 3): µ= 1 and ν= 1. Then φ(λ) = (λ−1)2, so d+ t= 1 and s= (d−1)(1− t)+1.
Therefore t= 1−d and s=d(d−1)+1. Hence T =T (1−d,d(d−1)+1,−1,d).

Case 4): µ= 0 and ν 6= 0 or 1. In this case ν= 3−d− t 6= 0 or 1, thus t 6= 3−d or 2−d,
and s= (d−1)(1− t). Consequently T =T (t,(d−1)(1− t),−1,d).

Case 5): µ= 1 and ν 6= 0 or 1. Now t 6= 2−d or 1−d, and s= 1−dt. It follows that
T =T (t,1−dt,−1,d).

Case 6): µ 6= 0 or 1, ν 6= 0 or 1, and µ 6=ν. From φ(0) 6= 0,φ(1) 6= 0, and the equivalent
condition for µ 6=ν, we see that T =T (t,s,−1,d) such that

s 6= (d−1)(1− t), s 6= 1−dt, and s 6= 1−d+
(1+d− t)2

4
.

Case 7): µ=ν 6= 0 or 1. Then µ=ν= (3−d− t)/2 by (5.1), so t 6= 3−d or 1−d, and
s= 1−d+(1+d− t)2/4. Now T =T (t,1−d+(1+d− t)2/4,−1,d).

From the above analysis, and using the same arguments as in the proofs of Propo-
sition 2.5 (iii) in [4] and Theorem 4.1 in [8], we obtain the following result.

Theorem 5.1. All solutions X=WYW−1 of (1.1) under the assumption that r(H) =
2 and K 6= 0 or r(K) = 2 and H 6= 0 are such that

(i) T =T (3−d,(d−1)(d−2),−1,d) for any d. And Z has eigenvalue 0 of deficiency

−1 with respective eigenvector Hξ and generalized eigenvector Hξ̂, and left eigenvector
ζTJ1K

T and generalized left eigenvector ζ̂TJ1K
T , where 0 is the eigenvalue of J1(I−T )

of deficiency −1 with respective eigenvector ξ and generalized eigenvector ξ̂, and left
eigenvectors ζT and generalized left eigenvector ζ̂T , satisfying

KTH=

[
d−2 (d−1)(2−d)

1 1−d

]
.

The other possible eigenvalue of Z is 1.

(ii) T =T (2−d,(d−1)2,−1,d) for any d. And Z is a projection since it is diagonaliz-

able with eigenvalues 0 and 1, with respective eigenvectors Hξ,Hξ̂ and left eigenvectors
ζTKT , ζ̂TKT , where 0 and 1 are eigenvalues of J1(I−T ) with respective eigenvectors

ξ,ξ̂ and also eigenvalues of (I−T )J1 with respective left eigenvectors ζT , ζ̂T , satisfying

KTH= 0.

(iii) T =T (1−d,d(d−1)+1,−1,d) for any d. And Z has eigenvalue 1 of deficiency

−1 with respective eigenvector Hξ and generalized eigenvector Hξ̂, and left eigenvector
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ζTJ1K
T and generalized left eigenvector ζ̂TJ1K

T , where 1 is the eigenvalue of J1(I−T )

of deficiency −1 with respective eigenvector ξ and generalized eigenvector ξ̂, and left
eigenvectors ζT and generalized left eigenvector ζ̂T , satisfying

KTH=

[
1−d d(d−1)
−1 d

]
.

The other possible eigenvalue of Z is 0.

(iv) T =T (t,(d−1)(1− t),−1,d) for any t and d satisfying t 6= 3−d. And Z is diago-

nalizable and has eigenvalues 0 and 3−d− t, with respective eigenvectors Hξ,Hξ̂ and
left eigenvectors ζTKT , ζ̂TKT , where 0 and 3−d− t are eigenvalues of J1(I−T ) with

respective eigenvectors ξ,ξ̂ and also eigenvalues of (I−T )J1 with respective left eigen-

vectors ζT , ζ̂T , satisfying

KTH=

[
(1− t)(d+ t−2) (d−1)(t−1)(d+ t−2)

d+ t−2 (1−d)(d+ t−2)

]
.

The other possible eigenvalue of Z is 1.

(v) T =T (t,1−dt,−1,d) for any t and d satisfying t 6= 2−d. And Z is diagonalizable and

has eigenvalues 1 and 2−d− t, with respective eigenvectors Hξ,Hξ̂ and left eigenvectors
ζTKT , ζ̂TKT , where 1 and 2−d− t are eigenvalues of J1(I−T ) with respective eigen-

vectors ξ,ξ̂ and also eigenvalues of (I−T )J1 with respective left eigenvectors ζT , ζ̂T ,
satisfying

KTH=

[
t(2−d− t) dt(d+ t−2)
d+ t−2 d(2−d− t)

]
.

The other possible eigenvalue of Z is 0.

(vi) T =T (t,1−d+(1+d− t)2/4,−1,d) for any t and d satisfying t 6= 3−d or 1−d. And
Z has eigenvalue (3−d− t)/2 of algebraic multiplicity 2 and deficiency −1 with respec-

tive eigenvector Hξ and generalized eigenvector Hξ̂, and left eigenvector ζTJ1K
T and

generalized left eigenvector ζ̂TJ1K
T , where (3−d− t)/2 is the eigenvalue of J1(I−T )

of deficiency −1 with respective eigenvector ξ and generalized eigenvector ξ̂, and left
eigenvector ζT and generalized left eigenvector ζ̂T , satisfying

KTH=

[
1−d+ (1+d−t)2

4 −(1− t)2 d(d−1)+ (1−d−t)(1+d−t)
4

d+ t−2 d(1−d)+ (1+d−t)2
4

]
.

The other eigenvalues of Z are in {0,1}.
(vii) T =T (t,s,−1,d) for any t,s, and d satisfying s 6= 1−d+(1+d− t)2/4,(d−1)(1− t),
or 1−dt. And Z is diagonalizable and has eigenvalues µ 6=ν given by (5.1), other than 0

and 1, with respective eigenvectors Hξ,Hξ̂ and left eigenvectors ζTKT , ζ̂TKT , where µ1

and µ2 are eigenvalues of J1(I−T ) with respective eigenvectors ξ,ξ̂ and also eigenvalues

of (I−T )J1 with respective left eigenvectors ζT , ζ̂T , satisfying

KTH=

[
s−(1− t)2 (1− t)(d+s−1)−ds
d+ t−2 s−(1−d)2

]
.

The other eigenvalues of Z are in {0,1}.

In Table 5.1 below, µ and ν are given by (5.1). We denote e≡3−d− t,f ≡2−d−
t,g≡1−d− t,o≡s+dt−1,p≡ (d−1)(1− t),q≡1−d+(1+d− t)2/4.
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Z T KTH Λ Conditions H Conditions K Conditions

σ⊂{0,1}
[

3−d (d−1)(d−2)
−1 d

] [
d−2 (d−1)(2−d)

1 1−d

]
ξ∈N(Λ), ξ̂∈N(Λ2)

ζ ∈N(ΛT ), ζ̂ ∈N((ΛT )2)

Hξ∈N(Z)

Hξ̂∈N(Z2)

KJT1 ζ ∈N(ZT )

KJT1 ζ̂ ∈N((ZT )2)

projection

[
2−d (d−1)2

−1 d

]
0

ξ∈N(Λ), ξ̂∈N(Λ−I)

ζ ∈N(ΛT ), ζ̂ ∈N((ΛT −I))

Hξ∈N(Z)

Hξ̂∈N(Z−I)

KJT1 ζ ∈N(ZT )

KJT1 ζ̂ ∈N(ZT −I)

σ⊂{0,1}
[

1−d d(d−1)+1
−1 d

] [
1−d d(d−1)
−1 d

]
ξ∈N(Λ−I), ξ̂∈N((Λ−I)2)

ζ ∈N(ΛT −I), ζ̂ ∈N((ΛT −I)2)

Hξ∈N(Z−I)

Hξ̂∈N((Z−I)2)

KJT1 ζ ∈N(ZT −I)

KJT1 ζ̂ ∈N((ZT −I)2)

diagonalizable
σ⊂{1,e},e 6= 0

[
t (d−1)(1− t)
−1 d

] [
(1− t)(d+ t−2) (d−1)(t−1)(d+ t−2)

d+ t−2 (1−d)(d+ t−2)

]
ξ∈N(Λ), ξ̂∈N(Λ−eI)

ζ ∈N(ΛT ), ζ̂ ∈N(ΛT −eI)

Hξ∈N(Z)

Hξ̂∈N(Z−eI)

KJT1 ζ ∈N(ZT )

KJT1 ζ̂ ∈N(ZT −eI)

diagonalizable
σ⊂{0,f},f 6= 0

[
t 1−dt
−1 d

] [
t(2−d− t) dt(d+ t−2)
d+ t−2 d(2−d− t)

]
ξ∈N(Λ−I), ξ̂∈N(Λ−fI)

ζ ∈N(ΛT −I), ζ̂ ∈N(ΛT −fI)

Hξ∈N(Z−I)

Hξ̂∈N(Z−fI)

KJT1 ζ ∈N(ZT −I)

KJT1 ζ̂ ∈N(ZT −fI)

σ⊂{0,1, e
2
}

g 6= 0,e 6= 0

[
t 1−d+ (1+d−t)2

4

−1 d

] [
1−d+ (1+d−t)2

4
−(1− t)2 d(d−1)+ (1−d−t)(1+d−t)

4

d+ t−2 d(1−d)+ (1+d−t)2
4

]
ξ∈N(Λ− e

2
I), ξ̂∈N((Λ− e

2
I)2)

ζ ∈N(ΛT − e
2
I), ζ̂ ∈N((ΛT − e

2
I)2)

Hξ∈N(Z− e
2
I)

Hξ̂∈N((Z− e
2
I)2)

KJT1 ζ ∈N(ZT − e
2
I)

KJT1 ζ̂ ∈N((ZT − e
2
I)2)

diagonalizable
σ⊂{0,1,µ,ν}
o,p,q 6= 0

[
t s
−1 d

] [
s−(1− t)2 (1− t)(d+s−1)−ds
d+ t−2 s−(1−d)2

]
ξ∈N(Λ−µI), ξ̂∈N(Λ−νI)

ζ ∈N(ΛT −µI), ζ̂ ∈N(ΛT −νI)

Hξ∈N(Z−µI)

Hξ̂∈N(Z−νI)

KJT1 ζ ∈N(ZT −µI)

KJT1 ζ̂ ∈N(ZT −νI)

Table 5.1. All Solutions with r(H) =2 and K 6= 0 or r(K) =2 and H 6= 0

6. Conclusions

We have found all the solutions X of the Yang-Baxter-like matrix Equation (1.1)
when A is a non-diagonalizable elementary matrix, after all the solutions of the equation
for diagonalizable elementary matrices were obtained in [4]. Because of the simple and
special structure of the Jordan form for A and with the help of spectral perturbation
results for rank-1 and rank-2 perturbations of matrices, we were able to completely solve
the quadratic matrix equation for general elementary matrices.

Our approach may be extended to solve the same matrix equation for more general
matrices A, which will be further explored in the future work.
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