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SPLITTING UP METHOD FOR 2D STOCHASTIC PRIMITIVE
EQUATIONS WITH MULTIPLICATIVE NOISE∗
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Abstract. This paper concerns the convergence of an iterative scheme for 2D stochastic primitive
equations on a bounded domain. The stochastic system is split into two equations: a deterministic
2D primitive equations with random initial value and a linear stochastic parabolic equation, which are
both simpler for numerical computations. An estimate of approximation error is given, which implies
that the strong speed rate of the convergence in probability is almost 1

2
.
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1. Introduction

In this paper, we focus on the convergence of some iterative schemes for 2D stochas-
tic primitive equations, which is helpful for numerical approximation. As a fundamen-
tal model in meteorology, the primitive equations were derived from the Navier-Stokes
equations, with rotation, coupled with thermodynamics and salinity diffusion-transport
equations (see [14, 15, 18]). This model in the deterministic case has been intensively
investigated because of the interests stemmed from physics and mathematics. For exam-
ple, the mathematical study of the primitive equations originated in a series of articles
by Lions, Temam, and Wang in the early 1990s (see [14–17] and the references therein),
where they set up the mathematical framework and showed the global existence of weak
solutions. Cao and Titi [3] developed an approach to dealing with the L6-norm of the
fluctuation ṽ of horizontal velocity and obtained the global well-posedness for the 3D
viscous primitive equations.

Along with the great successful developments of deterministic primitive equations,
the random situation has also been developed rapidly. For 3D stochastic primitive
equations, Guo and Huang [11] obtained the existence of universal random attractor of
strong solution under the assumptions that the momentum equation is driven by an ad-
ditive stochastic forcing and the thermodynamical equation is under a fixed heat source.
Debussche, Glatt-Holtz, Temam and Ziane [4] established the global well-posedness of
the strong solution when this model is driven by multiplicative random noises. Dong
et al. [5] studied its ergodic theory and proved that all weak solutions which are limits
of spectral Galerkin approximations share the same invariant measure. Moreover, they
established a large deviation principle for this model in [6]. For 2D stochastic primitive
equations, Gao and Sun [9] obtained its global well-posedness and Freidlin-Wentzell’s
large deviations.

The aim of this paper is to study numerical approximations to 2D stochastic prim-
itive equations. There are many literature on this topic for stochastic parabolic dif-
ferential equations. For example, using the semigroup and the cubature techniques,
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Dörsek [7] studied the weak speed of convergence of a certain time-splitting scheme com-
bining with a Galerkin approximation in the space variable for the stochastic Navier-
Stokes equations with an additive noise. The strong convergence of the splitting up
method has already been studied in a series of papers by Gyöngy and Krylov (see [12,13]
etc.), where the rate of convergence is obtained based on stochastic calculus. However,
the linear setting used in their papers does not cover some hydrodynamical models, such
as stochastic Navier-Stokes equations, stochastic primitive equations and so on. Re-
cently, Bessaih, Brzeźniak and Millet [2] studied the splitting up method for the strong
solution of 2D stochastic Navier-Stokes equations on a torus in the space L2([0,T ];V )
and proved that the strong speed of convergence in probability is almost 1

2 .
In this paper, we devote to obtaining the strong speed of the convergence in prob-

ability for 2D stochastic primitive equations using the splitting up method from [2].
The splitting up method is implemented by using two consecutive steps on each time
interval. The first step is to solve the deterministic 2D primitive equations with ran-
dom initial value. The second step is to solve a stochastic parabolic equation. The
corresponding solutions are denoted by vn and ηn (see (4.1) and (4.2)), respectively.
Our aim is to establish the approximation error of vn−v and ηn−v in the space
L∞([0,T ];H)∩L2([0,T ];V ). During the proof process, the uniform V−norm estimates
Esupt∈[0,T ]‖v(t)‖2 of strong solution play a key role (see Proposition 5.1). In [2], the au-
thors obtained such estimates of 2D stochastic Navier-Stokes equations by transforming
this model into a curvature equation and utilizing its cancellation property in H⊂L2.
However, for 2D stochastic primitive equations, we have no uniform V−norm estimates,

only E
∫ T

0
‖v(t)‖2dt≤C is available, which leads to some difficulties. For example, dur-

ing the proof process of Proposition 5.1, the index of ‖v(t)‖ in I(t) has to be strictly

less than 2. Otherwise, we will encounter E
∫ T

0
‖v(t)‖αdt for α>2 after using Hölder’s

inequality. To overcome this difficulty, we divide ‖v(t)‖ into several parts with small
index and make use of uniform V−estimates of vn and uniform H−estimates of v,∂zv
(for details, see Proposition 5.1). Moreover, in order to obtain the uniform V−estimates
of vn, an appropriate stopping time is introduced (see Lemma 4.5). Besides, compared
with 2D stochastic Navier-Stokes equations, we need to make additional H−estimates
of ∂zv

n and ∂zη
n appeared in the estimations of nonlinear terms (see Lemma 2.1).

Specifically, for any n≥1, set the error term

en(T )
def
= sup

k=0,···,n

(
|vn(t+k )−v(tk)|+ |ηn(t−k )−v(tk)|

)

+

(∫ T

0

‖vn(s)−v(s)‖2ds

) 1
2

+

(∫ T

0

‖ηn(s)−v(s)‖2ds

) 1
2

.

Under some conditions, the main result we obtain is

Theorem 1.1. Let ε∈ [0,1). Under Hypotheses A-C, the error term en(T ) con-
verges to 0 in probability with the speed almost 1

2 . Precisely, for any sequence l(n)n≥1

converging to ∞, we have

lim
n→∞

P
(
en(T )≥ l(n)√

n

)
= 0.

Here, ε is a parameter appeared in Hypotheses A–C, which will be described in Section
4 and 5.

This paper is organized as follows: In Section 2, the mathematical framework is
introduced. We obtain the global well-posedness of strong solution in Section 3. In
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Section 4, the splitting up method is presented, where two approximation equations
to the primitive equations are constructed. Further, the H and V−norm estimates of
the difference between the two approximation equations are established, respectively.
Finally, an auxiliary process is introduced for technical reasons. In Section 5, the speed
rate of the convergence in probability is obtained.

2. The mathematical framework
The two dimensional primitive equations can be formally derived from the full

three dimensional system under the assumption of invariance with respect to the second
horizontal variable y as in [10]. The 2D primitive equations driven by a stochastic forcing
in a Cartesian system can be written as

∂v

∂t
−µ∆v+v∂xv+θ∂zv+∂xp=ψ(t,v)

dW

dt
, (2.1)

∂xv+∂zθ= 0, (2.2)

where the velocity v=v(t,x,z)∈R, the vertical velocity θ and the pressure p are all
unknown functionals. (x,z)∈M= [0,L]× [−h,0]. W is a cylindrical Winner process,
which will be given in Section 2.2. ∆ =∂2

x+∂2
z is the Laplacian operator. Note that p

is independent of the vertical variable z.
We impose the following boundary conditions:

∂zv= 0, θ= 0 on Γu = (0,L)×{0}, (2.3)

∂zv= 0, θ= 0 on Γb = (0,L)×{−h}, (2.4)

v= 0 on Γl={0,L}×(−h,0). (2.5)

Without loss of generality, we assume that

µ= 1,

∫ 0

−h
vdz= 0.

Integrating (2.2) from −h to z and using (2.3), (2.4), we have

θ(t,x,z)
def
= Φ(v)(t,x,z) =−

∫ z

−h
∂xv(t,x,z′)dz′.

Then, (2.1)-(2.5) can be rewritten as

∂v

∂t
−∆v+v∂xv+Φ(v)∂zv+∂xp=ψ(t,v)

dW

dt
, (2.6)

∂zv|Γu
= 0, ∂zv|Γb

= 0, v|Γl
= 0. (2.7)

The initial condition is given by

v(0) =v0. (2.8)

2.1. Some functional spaces. Let L(K1;K2) (resp. L2(K1;K2)) be the space
of bounded (resp. Hilbert-Schmidt) linear operators from the Hilbert space K1 to K2,
whose norm is denoted by ‖·‖L(K1;K2)(‖·‖L2(K1;K2)). For p∈Z+, set

|φ|p=


(∫
M |φ(x,z)|pdxdz

) 1
p

, ∀φ∈Lp(M),(∫ l
0
|φ(x)|pdx

) 1
p

, ∀φ∈Lp((0,L)).
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In particular, | · | and (·,·) represent norm and inner product of L2(M) (or L2((0,L))),
respectively. For m∈N+, (Wm,p(M),‖·‖m,p) stands for the classical Sobolev space,
see [1]. When p= 2, we denote by Hm(M) =Wm,2(M),{

Hm(M) =
{
v
∣∣∣∂αv∈ (L2(M))2 for |α|≤m

}
,

|v|2Hm(M) =
∑

0≤|α|≤m |∂αv|2.

It’s known that (Hm(M), | · |Hm(M)) is a Hilbert space. | · |Hp((0,L)) stands for the norm
of Hp((0,L)) for p∈Z+.

Defining our working spaces for (2.6)-(2.8)

H
def
=

{
v∈L2(M)2 :

∫ 0

−h
vdz= 0

}
,

V
def
=

{
v∈ (H1(M))2 :

∫ 0

−h
vdz= 0, v= 0 on Γl

}
,

The space H is endowed with the L2 inner product

(v,ṽ) =

∫
M
vṽdxdz.

The norm of H is denoted by |v|= (v,v)
1
2 . The inner product and norm in the space V

are given by

((v,ṽ)) =

∫
M

(∂xv∂xṽ+∂zv∂z ṽ)dxdz,

and taking ‖·‖=
√

((·,·)). Note that under the above definition, a Poincaré inequality
|v|≤C‖v‖ holds for all v∈V .

Define the intermediate space

H def
= {v∈H,∂zv∈H}.

Let V ′ be the dual space of V . We have the dense and continuous embeddings

V ↪→H=H ′ ↪→V ′,

and denote by 〈x,y〉 the duality between x∈V and y∈V ′.

2.2. Some functionals. The Leray operator PH is the orthogonal projection of
L2(M) onto H. Define a Stokes-type operator A as a bounded map from V to V ′ as
〈v,Au〉= ((v,u)). A can be extended to an unbounded operator from H to H according
to Av=−PH∆v with the domain:

D(A) =
{
v∈H2(M) :

∫ 0

−h
vdz= 0, v= 0 on Γl, ∂zv= 0 on Γu∪Γb

}
.

It’s well-known that A is a self-adjoint and positive definite operator. Due to the
regularity results of the Stokes problem of geophysical fluid dynamics, we have |Av|∼=
|v|H2(O), see [19].

For the nonlinear terms, let

B(v,ṽ)
def
= PH(v∂xṽ+Φ(v)∂z ṽ).
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We establish that B is a well-defined and continuous mapping from V ×V →V ′ accord-
ing to

〈B(u,v),φ〉= b(u,v,φ),

where the associated trilinear form is given by

b(u,v,φ)
def
=

∫
M

(u∂xvφ+Φ(u)∂zvφ)dM.

This is contained in the following lemma, which is established in [10].

Lemma 2.1. b is a continuous linear form on V ×V ×V and satisfies

|b(v,ṽ, v̂)|= |〈B(v,ṽ), v̂〉|≤C‖ṽ‖|v| 12 ‖v‖ 1
2 |v̂| 12 ‖v̂‖ 1

2 +C|∂z ṽ|‖v‖|v̂|
1
2 ‖v̂‖ 1

2 (2.9)

|〈B(ṽ, ṽ)−B(v̂, v̂), ṽ− v̂〉|≤C‖ṽ‖|ṽ− v̂|‖ṽ− v̂‖+C|∂z ṽ|‖ṽ− v̂‖
3
2 |ṽ− v̂| 12 , (2.10)

for any v,ṽ, v̂∈V . Moreover, b satisfies the cancellation property b(u,v,v) = 0 and

b(v,ṽ, v̂) =−b(v,v̂, ṽ). (2.11)

Remark 2.1. It is obvious that the above estimates of nonlinear terms of primi-
tive equations are of higher order than 2D Navier-Stokes equations, which results in
difficulties stated in the introduction.

For the stochastic forcing, we fix a single stochastic basis T def
= (Ω,F ,{Ft}t≥0,P,W )

with the expectation E. Here, W is a cylindrical Wiener process with the form W (t,ω) =∑
i≥1riwi(t,ω), where {ri}i≥1 is a complete orthonormal basis of a Hilbert space U ,

{wi}i≥1 is a sequence of independent one-dimensional standard Brownian motions on
(Ω,F ,{Ft}t≥0,P).

Set

F (t,v(t)) =Av(t)+B(v(t),v(t)),

using the above functionals, it yields{
dv(t)+F (t,v(t))dt=ψ(t,v(t))dW (t),
v(0) =v0.

(2.12)

3. Global well-posedness. In this part, we aim to obtain a priori estimates
of the strong solution of (2.12). Firstly, we state the following definition introduced
by [10].

Definition 3.1. Let T = (Ω,F ,{Ft}t≥0,P,W ) be a fixed stochastic basis, T >0 and
p≥2. Assume the initial data v0∈Lp(Ω;H) and is F0−measurable. An Ft−predictable
stochastic process v(t,ω) is called a strong solution of (2.12) on [0,T ] with the initial
value v0 if

v∈C([0,T ];H) P−a.s., v∈Lp(Ω;C([0,T ];H))
⋂
Lp(Ω;L2([0,T ];V )),

and satisfies

(v(t),φ)−(v0,φ)+

∫ t

0

[
〈v(s),Aφ〉+〈B(v,v),φ〉

]
ds=

∫ t

0

(ψ(s,v(s))dW (s),φ), P−a.s.
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for all φ∈D(A).

In order to obtain the global well-posedness of (2.12), we need the following Hy-
potheses:

Hypothesis A: ψ is a continuous mapping, ψ : [0,T ]×V →L2(U ;H) (resp.
ψ : [0,T ]×H→L2(U ;H) for ε= 0) satisfies that there exist positive constants
Ki,i= 0, · · ·,4, such that for t∈ [0,T ], 0≤ε<1,

(A.1) ‖ψ(t,φ)‖2L2(U ;H)≤K0 +K1|φ|2 +εK2‖φ‖2, φ∈V ,

(A.2) For φ1,φ2∈V ,

‖ψ(t,φ1)−ψ(t,φ2)‖2L2(U ;H)≤K3|φ1−φ2|2 +εK4‖φ1−φ2‖2.

Hypothesis B: There exist constants Li,i= 0, · · ·,2, such that for t∈ [0,T ], 0≤ε<1,

‖∂zψ(t,φ)‖2L2(U ;H)≤L0 +L1|∂zφ|2 +εL2‖∂zφ‖2, ∂zφ∈V.

Theorem 3.1. Assume v0∈H, Hypotheses A–B hold with K2≤K4<2 and L2<2,
there exists a unique global solution v of (2.12) in the sense of Definition 3.1 with v(0) =
v0. Furthermore, if q∈ [2, 1

37 + 2
37K2

), there exists a constant C=C(ε,q,K0,K1,K2,T )
such that

E
(

sup
0≤s≤T

|v(s)|q+

∫ T

0

‖v(s)‖2|v(s)|q−2ds
)
≤C(1+E|v0|q). (3.1)

If K2<
2

147 , then

E
∫ T

0

|v(s)|2‖v(s)‖2ds≤C(1+E|v0|4). (3.2)

Similarly, if q∈ [2, 1
37 + 2

37L2
), there exists a constant C=C(ε,q,R0,R1,R2,T ) such that

E
(

sup
0≤s≤T

|∂zv(s)|q+

∫ T

0

‖∂zv(s)‖2|∂zv(s)|q−2ds
)
≤C(1+E|∂zv0|q).

In particular, if L2<
2

147 , we have

E
(

sup
0≤s≤T

|∂zv(s)|4 +

∫ T

0

|∂zv(s)|2‖∂zv(s)‖2ds
)
≤C(1+E|∂zv0|4).

Proof. When K2≤K4<2 and L2<2, the global well-posedness of strong solution
to (2.12) in the sense of Definition 3.1 has been proved by [10], we omit it. Let v be the
strong solution of (2.12). For any q≥2, applying Itô’s formula to |v(t)|q, we have

d|v(t)|q+q|v(t)|q−2‖v(t)‖2dt
=−q|v(t)|q−2〈v(t),B(v(t),v(t))〉dt

+q|v(t)|q−2〈v(t),ψ(t,v(t))dW (t)〉+ q(q−1)

2
|v(t)|q−2‖ψ(t,v(t))‖2L2(U ;H)dt.

Using (2.11), we obtain

d|v(t)|q+q|v(t)|q−2‖v(t)‖2dt



XUHUI PENG AND RANGRANG ZHANG 479

≤q|v(t)|q−2〈v(t),ψ(t,v(t))dW (t)〉+ q(q−1)

2
|v(t)|q−2‖ψ(t,v(t))‖2L2(U ;H)dt. (3.3)

Then, it follows that

E sup
t∈[0,T ]

|v(t)|q+qE
∫ T

0

|v(t)|q−2‖v(t)‖2dt

≤E sup
t∈[0,T ]

∫ t

0

|v(s)|q−2〈v(s),ψ(s,v(s))dW (s)〉

+
q(q−1)

2
E
∫ T

0

|v(t)|q−2‖ψ(t,v(t))‖2L2(U ;H)dt

def
= I1 +I2.

With the help of Hypothesis A, we get

I2≤
q(q−1)

2
K0E

∫ T

0

|v(t)|q−2dt+
q(q−1)

2
K1E

∫ T

0

sup
s∈[0,t]

|v(s)|qdt

+ε
q(q−1)

2
K2E

∫ T

0

|v(t)|q−2‖v(t)‖2dt.

Utilizing the Burkholder-Davies-Gundy inequality and Hypothesis A, we have

I1≤6qE

(∫ T

0

|v(t)|2(q−2)|v(t)|2‖ψ(t,v(t))‖2L2(U ;H)dt

) 1
2

≤6qE

(∫ T

0

|v(t)|2q−2(K0 +K1|v(t)|2 +εK2‖v(t)‖2)dt

) 1
2

≤6qE

(
K0

∫ T

0

|v(t)|2q−2dt

) 1
2

+6qE

(
K1

∫ T

0

|v(t)|2qdt

) 1
2

+6qE

(
εK2

∫ T

0

|v(t)|2q−2‖v(t)‖2dt

) 1
2

def
= I1

1 +I2
1 +I3

1 .

Using the Young’s inequality, it gives

I1
1 ≤6qK

1
2
0 E

(
sup
t∈[0,T ]

|v(t)|q
∫ T

0

|v(t)|q−2dt

) 1
2

≤6qK
1
2
0 E

 sup
t∈[0,T ]

|v(t)|
q
2

(∫ T

0

|v(t)|q−2dt

) 1
2


≤ 1

6
E( sup
t∈[0,T ]

|v(t)|q)+18q2K0E
∫ T

0

sup
s∈[0,t]

|v(s)|qdt+18q2K0T.

I2
1 can be bounded as

I2
1 ≤6qK

1
2
1 E

(∫ T

0

|v(t)|2qdt

) 1
2
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≤ 1

6
E( sup
t∈[0,T ]

|v(t)|q)+18q2K1E
∫ T

0

sup
s∈[0,t]

|v(s)|qdt.

By the Young’s inequality, we have

I3
1 ≤6qε

1
2K

1
2
2 E

(
sup
t∈[0,T ]

|v(t)|q
∫ T

0

|v(t)|q−2‖v(t)‖2dt

) 1
2

≤ 1

6
E( sup
t∈[0,T ]

|v(t)|q)+18q2εK2E
∫ T

0

|v(t)|q−2‖v(t)‖2dt.

Based on the above inequalities, we have

I1≤
1

2
E( sup
t∈[0,T ]

|v(t)|q)+18q2(K0 +K1)E
∫ T

0

sup
s∈[0,t]

|v(s)|qdt

+18q2εK2E
∫ T

0

|v(t)|q−2‖v(t)‖2dt+18q2K0T.

Collecting the above estimates, we conclude that

E sup
t∈[0,T ]

|v(t)|q+2

(
q−εq(q−1)

2
K2−18q2εK2

)
E
∫ T

0

|v(t)|q−2‖v(t)‖2dt

≤2

(
q(q−1)

2
K0 +

q(q−1)

2
K1 +18q2(K0 +K1)

)
E
∫ T

0

sup
s∈[0,t]

|v(s)|qdt

+q(q−1)K0T +36q2K0T. (3.4)

When q∈ [2, 1
37 + 2

37K2
), we have

q−εq(q−1)

2
K2−18q2εK2>0.

Applying Grönwall’s inequality to (3.4), we obtain

E sup
t∈[0,T ]

|v(t)|q≤C(q,K0,K1,K2,T )(1+E|v0|q). (3.5)

Combining (3.4) and (3.5), we get

E sup
t∈[0,T ]

|v(t)|q+E
∫ T

0

|v(t)|q−2‖v(t)‖2dt≤C(q,K0,K1,K2,T )(1+E|v0|q). (3.6)

Let r=∂zv. From (2.12), we have

dr+Ardt+(v∂xr+Φ(v)∂zr)dt=∂zψ(t,v(t))dW (t). (3.7)

Applying Itô’s formula to (3.7), we obtain

d|r(t)|q+q|r(t)|q−2‖r(t)‖2dt
=−q|r(t)|q−2〈r(t),(v∂xr+Φ(v)∂zr)〉dt

+q|r(t)|q−2〈r(t),∂zψ(t,v(t))dW (t)〉+ q(q−1)

2
|r(t)|q−2‖∂zψ(t,v(t))‖2L2(U ;H)dt.
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We deduce from (2.11) that

d|r(t)|q+q|r(t)|q−2‖r(t)‖2dt

=q|r(t)|q−2〈r(t),∂zψ(t,v(t))dW (t)〉+ q(q−1)

2
|r(t)|q−2‖∂zψ(t,v(t))‖2L2(U ;H)dt. (3.8)

Note that (3.8) is similar to (3.3). Following the same process exactly as above, we
conclude the result.

Remark 3.1. For (2.12) with v0∈Lp(Ω;V ), we have no uniform V−norm estimates
of v. That is, we can not find a positive constant C such that Esupt∈[0,T ]‖v(t)‖2≤C.

4. Splitting up method
Let

∏n
={0 = t0<t1< · · ·<tn=T} be a finite partition of a given interval [0,T ]

with a constant mesh h= T
n . Let ε∈ [0,1) and let Fε : [0,T ]×V →V ′ be defined by

Fε(t,v) = (1−ε)Av+B(v,v).

It’s easy to know F0(t,v) =F (t,v).
Set t−1 =−Tn . For t∈ [t−1,0), define

vn(t) =ηn(t) =v0, Ft=F0.

The scheme is defined by induction as follows. Suppose we have defined processes
vn(t) and ηn(t) for t∈ [ti−1,ti), i= 0, · · ·,n−1, such that ηn(t−i ) is an H−valued
Fti−measurable function. This clearly holds for i= 0. Then we define vn(t),t∈ [ti,ti+1)
as the unique solution of the (deterministic) problem with positive viscosity 1−ε and
with initial condition ηn(t−i ) at time ti, that is,{

dvn(t)
dt +Fε(t,v

n(t)) = 0, t∈ [ti,ti+1),
vn(ti) =vn(t+i ) =ηn(t−i ),

(4.1)

Note that vn(t−i+1) is a well-defined H−valued Fti−measurable random variable. Then
we can define ηn(t),t∈ [ti,ti+1) as the unique solution of the random problem with initial
condition vn(t−i+1) at time ti:{

dηn(t)+εAηn(t)dt=ψ(t,ηn(t))dW (t), t∈ [ti,ti+1),
ηn(ti) =ηn(t+i ) =vn(t−i+1),

(4.2)

We claim that ηn(t−i+1) defined above is a well-defined H−valued Fti+1
−measurable

random variable. In fact, when ε>0, it’s classical that (4.2) has a unique weak solution
provided the stochastic parabolic condition holds (K2, K4, L2 are small enough). When
ε= 0, the smoothing effect of A does not act anymore, but ψ satisfies the usual growth
and Lipschitz conditions for the H−norm. Finally, let vn(T+) =ηn(T−).

Remark 4.1. As stated in [2], vn and ηn constructed above are not continuous, only
right continuous.

In order to prove the convergence of the above scheme, we will need to establish
a priori estimates on vn and ηn. Firstly, we introduce some notations. Recall that∏n

={0 = t0<t1< · · ·<tn=T}. Set{
dn(t)

def
= ti, d

∗
n(t)

def
= ti+1, for t∈ [ti,ti+1), i= 0,1, · · ·,n−2,

dn(t)
def
= tn−1, d

∗
n(t)

def
= tn, for t∈ [tn−1,tn].

(4.3)
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Then, the processes vn(t),ηn(t) can be rewritten in a way close to the continuous equa-
tion:

vn(t) =v0−
∫ t

0

Fε(s,v
n(s))ds+

∫ dn(t)

0

[−εAηn(s)ds+ψ(s,ηn(s))dW (s)], (4.4)

ηn(t) =v0−
∫ d∗n(t)

0

Fε(s,v
n(s))ds+

∫ t

0

[−εAηn(s)ds+ψ(s,ηn(s))dW (s)]. (4.5)

In the following, we aim to establish both H−norm and V−norm estimates of the
difference between vn and ηn.

4.1. H−norm of vn−ηn. To achieve it, we firstly need to make a priori
estimates on vn and ηn.

Lemma 4.1. Let v0∈H. Fix ε∈ [0,1). Let Hypotheses A–B hold with K2≤K4<2
and L2<2. Then there exists a positive constant C=C(ε,T,E|v0|2,Ki,Li) such that for
every integer n≥1,

sup
t∈[0,T ]

E
(
|ηn(t)|2 + sup

s∈[dn(t),d∗n(t))

|vn(s)|2
)

+E
∫ T

0

‖vn(s)‖2ds≤C. (4.6)

Moreover, if ε∈ (0,1), there exists a constant C such that

sup
n

E
∫ T

0

‖ηn(s)‖2ds≤C. (4.7)

Proof. Taking the scalar product of (4.1) by vn and integrating over (ti,t] for
t∈ [ti,ti+1), we have

|vn(t)|2 +2(1−ε)
∫ t

ti

‖vn(s)‖2ds= |ηn(t−i )|2−2

∫ t

ti

〈B(vn(s),vn(s)),vn(s)〉ds.

By (2.11), we obtain

|vn(t)|2 +2(1−ε)
∫ t

ti

‖vn(s)‖2ds≤|ηn(t−i )|2. (4.8)

Taking expectation of (4.8), we get

E( sup
ti≤t<ti+1

|vn(t)|2)≤E|ηn(t−i )|2. (4.9)

Applying Itô’s formula to (4.2) and by Hypothesis A, it yields that for t∈ [ti,ti+1),

E|ηn(t)|2 +2εE
∫ t

ti

‖ηn(s)‖2ds

=E|vn(t−i+1)|2 +E
∫ t

ti

‖ψ(s,ηn(s))‖2L2(U ;H)ds

≤E|vn(t−i+1)|2 +E
∫ t

ti

(K0 +K1|ηn(s)|2 +εK2‖ηn(s)‖2)ds.
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Then

E|ηn(t)|2 +ε(2−K2)E
∫ t

ti

‖ηn(s)‖2ds

≤E|vn(t−i+1)|2 +
K0T

n
+K1

∫ t

ti

E|ηn(s)|2ds. (4.10)

Since K2<2, we can neglect the integral of V−norm in (4.10) to obtain

sup
ti≤t<ti+1

E|ηn(t)|2≤ (E|vn(t−i+1)|2 +
K0T

n
)e

K1T
n . (4.11)

Putting (4.9) to (4.11), it gives

sup
ti≤t<ti+1

E|ηn(t)|2≤ (E|ηn(t−i )|2 +
K0T

n
)e

K1T
n . (4.12)

Set

r̃1
def
= K1, r̃2

def
= K0,

then, by a mathematical induction argument, we infer that for i= 0,· · ·,n−1,

E( sup
ti≤t<ti+1

|vn(t)|2)∨( sup
ti≤t<ti+1

E|ηn(t)|2)≤E|v0|2e(i+1)
r̃1T
n +

r̃2T

n

i+1∑
j=1

ej
r̃1T
n .

Hence, we deduce that[
sup
t∈[0,T ]

E( sup
dn(t)≤s<d∗n(t)

|vn(s)|2)
]
∨
[

sup
t∈[0,T ]

E|ηn(t)|2
]

≤E|v0|2er̃1T +
r̃2T

n

n∑
j=1

ej
r̃1T
n

≤E|v0|2er̃1T +
r̃2

r̃1
e2r̃1T , (4.13)

which proves part of (4.6). Moreover, from (4.8), (4.10), and using (4.13), we obtain
that for every i= 0,· · ·,n−1,

E|vn(t−i+1)|2 +(1−ε)E
∫ ti+1

ti

‖vn(s)‖2ds≤E|ηn(t−i )|2 +
CT

n
,

E|ηn(t−i+1)|2 +ε(2−K2)

∫ ti+1

ti

‖ηn(s)‖2ds≤E|vn(t−i+1)|2 +
CT

n
.

Adding all these inequalities from i= 0 to n−1, we conclude the proof of (4.6). At the
same time, when ε>0, it gives (4.7).

Referring to [2] and similar to Lemma 4.1, we have the following higher moments
of H−norm.

Lemma 4.2. Let v0∈H be F0−measurable. Fix ε∈ [0,1). Let Hypotheses A–B hold
with K2<

2
2p−1 , for some p≥2 and K4≤L2<2. Then there exists a positive constant

C=C(ε,T,E|v0|2p,Ki,Li) such that for every integer n≥1,

sup
t∈[0,T ]

E
(
|ηn(t)|2p+ sup

s∈[dn(t),d∗n(t))

|vn(s)|2p
)

+E
∫ T

0

‖vn(s)‖2|vn(s)|2(p−1)ds≤C. (4.14)
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In particular, when p= 2, it gives

E
∫ T

0

|vn(s)|4ds≤E
∫ T

0

‖vn(s)‖2|vn(s)|2ds≤C. (4.15)

Moreover, if ε∈ (0,1), there exists a constant C such that

sup
n∈N

E
∫ T

0

‖ηn(s)‖2|ηn(s)|2(p−1)ds≤C. (4.16)

Compared with the 2D stochastic Navier-Stokes equations studied by [2], we need
the following additional estimates of ∂zv

n and ∂zη
n. Define

rn=∂zv
n, qn=∂zη

n.

From (4.1), we have for t∈ [ti,ti+1),

drn+(1−ε)Arndt+
(
vn∂xr

n+Φ(vn)∂zr
n
)
dt= 0. (4.17)

Moreover, we deduce from (4.2) that for t∈ [ti,ti+1),

dqn+εAqndt=∂zψ(t,ηn(t))dW (t). (4.18)

The initial conditions for (4.17) and (4.18) are rn(ti) = qn(t−i ), qn(ti) = rn(t−i+1), respec-
tively.

Lemma 4.3. Let v0∈H be F0−measurable random variable. Fix ε∈ [0,1). Let
Hypotheses A–B hold with K2≤K4≤L2<2. Then there exists a positive constant
C=C(ε,T,E|∂zv0|2,Ki,Li) such that for every integer n≥1,

sup
t∈[0,T ]

E
(
|qn(t)|2 + sup

s∈[dn(t),d∗n(t))

|rn(s)|2
)

+E
∫ T

0

‖rn(s)‖2ds≤C. (4.19)

Moreover, if ε∈ (0,1), there exists a constant C such that

sup
n

E
∫ T

0

‖qn(s)‖2ds≤C. (4.20)

Proof. Taking the scalar product of (4.17) with rn in H and integrating over (ti,t]
for t∈ [ti,ti+1). With the help of the cancellation property, we have

d|rn|2

dt
+2(1−ε)‖rn‖2≤0, (4.21)

that is,

|rn(t)|2 +2(1−ε)
∫ t

ti

‖rn(s)‖2ds≤|qn(t−i )|2. (4.22)

Taking the expectation of (4.22), we deduce that

E

(
sup

t∈[ti,ti+1)

|rn(t)|2
)
≤E|qn(t−i )|2. (4.23)
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Using Itô’s formula to (4.18) and by Hypothesis B, we have for t∈ [ti,ti+1),

E|qn(t)|2 +ε(2−L2)E
∫ t

ti

‖qn(s)‖2ds≤E|rn(t−i+1)|2 +
L0T

n
+L1

∫ t

ti

E|qn(s)|2ds.

When L2<2, ignoring the V−norm and by Grönwall’s inequality, we get

sup
t∈[ti,ti+1)

E|qn(t)|2≤
(
E|rn(t−i+1)|2 +

L0T

n

)
e

L1T
n . (4.24)

Putting (4.23) into (4.24), we obtain

sup
t∈[ti,ti+1)

E|qn(t)|2≤
(
E|qn(t−i )|2 +

L0T

n

)
e

L1T
n .

Set r̃3 =L1, r̃4 =L0, by the induction argument, we have for i= 0,· · ·,n−1,

E( sup
ti≤t<ti+1

|rn(t)|2)∨( sup
ti≤t<ti+1

E|qn(t)|2)≤E|∂zv0|2e(i+1)
r̃3T
n +

r̃4T

n

i+1∑
j=1

ej
r̃3T
n .

Hence, we deduce that[
sup
t∈[0,T ]

E( sup
dn(t)≤s<d∗n(t)

|rn(s)|2)
]
∨
[

sup
t∈[0,T ]

E|qn(t)|2
]

≤E|∂zv0|2er̃3T +
r̃4

r̃3
e2r̃3T . (4.25)

Using the same argument as Lemma 4.1, we conclude the rest of the result.

Similarly to Lemma 4.1, we can obtain the following higher order norm estimates.

Lemma 4.4. Let v0∈H be F0−measurable random variable. Fix ε∈ [0,1). Let Hy-
potheses A–B hold with K2≤K4<2 and L2<

2
2p−1 for some p≥2. Then there exists a

positive constant C=C(ε,T,E|∂zv0|2,Ki,Li) such that for every integer n≥1,

sup
t∈[0,T ]

E
(
|qn(t)|2p+ sup

s∈[dn(t),d∗n(t))

|rn(s)|2p
)

+E
∫ T

0

‖rn(s)‖2|rn(s)|2(p−1)ds≤C. (4.26)

Moreover, if ε∈ (0,1), there exists a constant C such that

sup
n∈N

E
∫ T

0

‖qn(s)‖2|qn(s)|2(p−1)ds≤C. (4.27)

Based on the above, we are ready to prove an upper bound of the H−norm of the
difference between vn and ηn.

Proposition 4.1. Let v0∈H be F0−measurable random variable. For any ε∈ [0,1).
Assume Hypotheses A–B hold with K2<

2
3 , K4<2 and L2<

2
3 , there exists a positive

constant C=C(ε,T,E|∂zv0|4,Ki,Li) such that for any n∈N,

E
∫ T

0

|vn(t)−ηn(t)|2dt≤ CT
n
. (4.28)
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Proof. Case 1: ε= 0. For any t∈ [0,T ), by (4.2) and Hypothesis A, we have

E|ηn(t)−vn(d∗n(t))|2 =E
∫ t

dn(t)

‖ψ(s,ηn(s))‖2L2(U ;H)ds≤E
∫ t

dn(t)

(K0 +K1|ηn(s)|2)ds.

Then, by Fubini’s theorem and Lemma 4.1, we obtain

E
∫ T

0

|ηn(t)−vn(d∗n(t))|2dt≤CE
∫ T

0

(1+ |ηn(s)|2)

(∫ d∗n(s)

s

dt

)
ds≤CT

n
. (4.29)

From (4.1), we have

|vn(d∗n(t)−)−vn(t)|2 = 2

∫ d∗n(t)

t

〈vn(s)−vn(t),dvn(s)〉=
2∑
i=1

Ii(t),

where

I1(t)
def
= −2(1−ε)

∫ d∗n(t)

t

〈vn(s)−vn(t),Avn(s)〉ds,

I2(t)
def
= −2

∫ d∗n(t)

t

〈vn(s)−vn(t),B(vn(s),vn(s))〉ds.

Using Lemma 4.1 and the Young’s inequality, we have∣∣∣E∫ T

0

I1(t)dt
∣∣∣= ∣∣∣(1−ε)E∫ T

0

∫ d∗n(t)

t

(−2‖vn(s)‖2 +2‖vn(s)‖‖vn(t)‖)dsdt
∣∣∣

≤
∣∣∣(1−ε)E∫ T

0

∫ d∗n(t)

t

(−2‖vn(s)‖2 +2‖vn(s)‖2 +
1

2
‖vn(t)‖2)dsdt

∣∣∣
≤ 1−ε

2
E
∫ T

0

‖vn(t)‖2
(∫ d∗n(t)

t

ds

)
dt≤ CT

n
.

By (2.9), we have∣∣∣E∫ T

0

I2(t)dt
∣∣∣≤2E

∫ T

0

∫ d∗n(t)

t

‖vn(t)‖|vn(s)|24dsdt

+2E
∫ T

0

∫ d∗n(t)

t

|rn(t)|‖vn(s)‖|vn(s)| 12 ‖vn(s)‖ 1
2 dsdt

def
= K1 +K2.

By Lemma 4.2, we deduce that

K1 = 2E
∫ T

0

‖vn(t)‖

(∫ d∗n(t)

t

|vn(s)|24ds

)
dt

≤2

(
E
∫ T

0

‖vn(t)‖2dt

) 1
2
(
E
∫ T

0

(∫ d∗n(t)

t

|vn(s)|24ds
)2

dt

) 1
2

≤C

(
E
∫ T

0

T

n

∫ d∗n(t)

t

|vn(s)|44dsdt

) 1
2
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≤C

(
T

n
E
∫ T

0

|vn(s)|44
(∫ s

dn(s)

dt
)
ds

) 1
2

≤ CT
n
.

By the Cauchy-Schwarz inequality, Fubini’s theorem and Lemmas 4.1, 4.2, 4.4, we get

K2≤E
∫ T

0

∫ d∗n(t)

t

|rn(t)|‖vn(s)‖|vn(s)| 12 ‖vn(s)‖ 1
2 dsdt

≤E
∫ T

0

∫ d∗n(t)

t

|rn(t)|2|vn(s)|‖vn(s)‖dsdt+E
∫ T

0

∫ d∗n(t)

t

‖vn(s)‖2dsdt

≤E
∫ T

0

|rn(t)|4
∫ d∗n(t)

t

dsdt+E
∫ T

0

∫ d∗n(t)

t

(1+ |vn(s)|2)‖vn(s)‖2dsdt

≤E
∫ T

0

|rn(t)|4
∫ d∗n(t)

t

dsdt+E
∫ T

0

(1+ |vn(s)|2)‖vn(s)‖2(

∫ s

dn(s)

dt)ds

≤ CT
n
.

Therefore,

E
∫ T

0

|vn(d∗n(t)−)−vn(t)|2dt≤ CT
n
. (4.30)

Combining (4.29) and (4.30), we conclude the result when ε= 0.

Case 2: ε∈ (0,1). For any t∈ [0,T ], from (4.4) and (4.5), we have

ηn(t)−vn(t) =−
∫ d∗n(t)

t

Fε(s,v
n(s))ds−ε

∫ t

dn(t)

Aηn(s)ds+

∫ t

dn(t)

ψ(s,ηn(s))dW (s).

Applying Itô’s formula to |ηn(t)−vn(t)|2, we obtain

E
∫ T

0

|ηn(t)−vn(t)|2dt=
4∑
i=1

Ji,

where

J1(t)
def
= −2(1−ε)E

∫ T

0

∫ d∗n(t)

t

〈Avn(s),ηn(s)−vn(s)〉dsdt,

J2(t)
def
= −2E

∫ T

0

∫ d∗n(t)

t

〈B(vn(s),vn(s)),ηn(s)−vn(s)〉dsdt,

J3(t)
def
= −2εE

∫ T

0

∫ t

dn(t)

〈Aηn(s),ηn(s)−vn(s)〉dsdt,

J4(t)
def
= E

∫ T

0

∫ t

dn(t)

‖ψ(s,ηn(s))‖2L2(U ;H)dsdt.

Exactly as pages 12-13 in [2], we have

J1(t)≤ C(1−ε)T
n

, J3(t)≤ CεT
n

, J4(t)≤ CT
n
.
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By (2.9), the Cauchy-Schwarz inequality, Fubini’s theorem and Lemmas 4.1, 4.2 and
4.4, we have

J2(t)≤2E
∫ T

0

∫ d∗n(t)

t

(‖ηn(s)‖|vn(s)|‖vn(s)‖+ |∂zηn(s)|‖vn(s)‖ 3
2 |vn(s)| 12 )ds

≤CE
∫ T

0

(‖ηn(s)‖2 + |vn(s)|2‖vn(s)‖2 + |qn(s)|4 +‖vn(s)‖2

+ |vn(s)|2‖vn(s)‖2)
(∫ s

dn(s)

dt
)
ds

≤ CT
n
.

The above estimates imply that (4.28) holds when ε∈ (0,1).

4.2. V−norm of vn−ηn. In order to obtain V−norm of vn−ηn, we need an
additional hypothesis.

Hypothesis C: There exist constants Ri,i= 0,1,2, such that for t∈ [0,T ], 0≤ε<1,

‖ψ(t,φ)‖2L2(U ;V )≤R0 +R1‖φ‖2 +εR2|Aφ|2, φ∈D(A).

Fix n, for some N >0, define the stopping time

τNn
def
= inf

{
t : sup
i=0,···,n−1

∫ ti+1∧t

ti∧t
(|vn(s)|2‖vn(s)‖2 + |rn(s)|‖rn(s)‖)ds> N

n

}
. (4.31)

Then, we obtain

Lemma 4.5. Let v0∈V . Fix ε∈ [0,1). Let Hypotheses A–C hold with K2<
2
3 , K4<2

and L2<
2
3 , R2<2, then there exists a positive constant C=C(ε,T,E‖v0‖2,Ki,Li,Ri)

such that for any integer n≥1,

sup
t∈[0,T∧τN

n ]

E
(
‖ηn(t)‖2 + sup

s∈[dn(t)∧τN
n ,d

∗
n(t)∧τN

n )

‖vn(s)‖2
)

+E
∫ T∧τN

n

0

‖vn(s)‖22ds≤CK̃(N),

(4.32)

where K̃(N) = 1
N e

C(T )N .
Moreover, if ε∈ (0,1), we have

sup
n∈N

E
∫ T∧τN

n

0

‖ηn(s)‖22ds≤CK̃(N). (4.33)

Proof. Taking the scalar product of (4.1) by Avn in H and integrating over (ti,t]
for t∈ [ti,ti+1), we have

‖vn(t)‖2 +2(1−ε)
∫ t

ti

‖vn(s)‖22ds=‖ηn(t−i )‖2−2

∫ t

ti

〈B(vn(s),vn(s)),Avn(s)〉ds.

Applying the chain rule to eφ(t)‖vn(t)‖2, we reach

eφ(t)‖vn(t)‖2 +2(1−ε)
∫ t

ti

eφ(s)‖vn(s)‖22ds
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=eφ(t−i )‖ηn(t−i )‖2−2

∫ t

ti

eφ(s)〈B(vn(s),vn(s)),Avn(s)〉ds+

∫ t

ti

φ′(s)‖vn(s)‖2eφds.

Using Hölder’s inequality and interpolation inequality, we deduce that

|〈B(vn(s),vn(s)),Avn(s)〉|

≤C|Avn||vn| 12 ‖vn‖‖vn‖
1
2
2 +C|Avn|‖vn‖|rn| 12 ‖rn‖ 1

2

≤ (1−ε)
2
‖vn‖22 +C1(|vn|2‖vn‖2 + |rn|‖rn‖)‖vn‖2.

Then, we have

E

(
sup

t∈[ti∧τN
n ,ti+1∧τN

n )

eφ(t)‖vn(t)‖2 +(1−ε)
∫ ti+1∧τN

n

ti∧τN
n

eφ(s)‖vn(s)‖22ds

)

≤E(eφ(t−i ∧τ
N
n )‖ηn(t−i ∧τ

N
n )‖2)+2C1E

∫ ti+1∧τN
n

ti∧τN
n

eφ(s)(|vn|2‖vn‖2 + |rn|‖rn‖)‖vn‖2ds

+

∫ ti+1∧τN
n

ti∧τN
n

φ′(s)‖vn(s)‖2eφds. (4.34)

For t∈ [ti∧τNn ,ti+1∧τNn ], set

φ(t)
def
= −C1

∫ t

t−i ∧τN
n

(|vn|2‖vn‖2 + |rn|‖rn‖)ds,

where C1 is the constant appeared in (4.34).
Based on the previous estimates and by Grönwall’s inequality, we deduce that

E

(
sup

t∈[ti∧τN
n ,ti+1∧τN

n )

eφ(t)‖vn(t)‖2
)
≤E(‖ηn(t−i ∧τ

N
n )‖2). (4.35)

Since eφ(ti+1∧τN
n )≥e−C1

N
n P−a.s., we deduce from (4.35) that

E

(
sup

t∈[ti∧τN
n ,ti+1∧τN

n )

‖vn(t)‖2
)
≤E(‖ηn(t−i ∧τ

N
n )‖2)eC1

N
n . (4.36)

Applying Itô’s formula to (4.2), by Hypothesis B, we have for t∈ [ti∧τNn ,ti+1∧τNn ),

E‖ηn(t)‖2 +ε(2−R2)E
∫ t

ti∧τN
n

‖ηn(s)‖22ds

≤E‖vn(t−i+1∧τ
N
n )‖2 +

R0T

n
+R1

∫ t

ti∧τN
n

E|ηn(s)|2ds.

When R2<2, we can ignore the V−norm. Then, by (4.1) and Grönwall’s inequality, we
get

sup
t∈[ti∧τN

n ,ti+1∧τN
n )

E‖ηn(t)‖2≤
(
E‖vn(t−i+1∧τ

N
n )‖2 +

R0T

n

)
e

R1T
n . (4.37)
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Putting (4.36) into (4.37), we deduce that

sup
t∈[ti∧τN

n ,ti+1∧τN
n )

E‖ηn(t)‖2≤
(
E‖ηn(t−i ∧τ

N
n )‖2 +

R0T

n

)
e

(C1N+R1T )
n .

Set r̃5 =C1N+R1T,r̃6 =R0T , by the induction argument, we have for i= 0,· · ·,n−1,

E( sup
ti∧τN

n ≤t<ti+1∧τN
n

‖vn(t)‖2)∨( sup
ti∧τN

n ≤t<ti+1∧τN
n

E‖ηn(t)‖2)

≤E‖v0‖2e(i+1)
r̃5
n +

r̃6

n

i+1∑
j=1

ej
r̃5
n .

Hence, we deduce that[
sup

t∈[0,T∧τN
n ]

E( sup
dn(t)∧τN

n ≤s<d∗n(t)∧τN
n

‖vn(s)‖2)
]
∨
[

sup
t∈[0,T∧τN

n ]

E‖ηn(t)‖2
]

≤E‖v0‖2er̃5 +
r̃6

r̃5
e2r̃5 . (4.38)

Exactly following the same procedure as Lemma 4.1, we can obtain the result.

Similarly to Lemma 4.1, it gives that

Lemma 4.6. Let v0∈V be F0−measurable random variable. Fix ε∈ [0,1). Let Hy-
potheses A–C hold with K2<

2
3 , K4<2 and L2<

2
2p−1 , R2<

2
2p−1 for some p≥2. Then

there exists a positive constant C=C(ε,T,E‖v0‖2,K2,K4,L2,R2) such that for every
integer n≥1,

sup
t∈[0,T∧τN

n ]

E
(
‖ηn(t)‖2p+ sup

s∈[dn(t)∧τN
n ,d

∗
n(t)∧τN

n )

‖vn(s)‖2p
)

+E
∫ T∧τN

n

0

‖vn(s)‖22‖vn(s)‖2(p−1)ds≤CK̃(N), (4.39)

where K̃(N) is the same as Lemma 4.5.
Moreover, if ε∈ (0,1), we have

sup
n∈N

E
∫ T∧τN

n

0

‖ηn(s)‖22‖ηn(s)‖2(p−1)ds≤CK̃(N). (4.40)

Up to now, we are ready to obtain an upper bound of the V−norm of the difference
between vn and ηn.

Proposition 4.2. Let v0∈V be F0−measurable random variable. Fix ε∈ [0,1). As-
sume Hypotheses A–C hold with K2<

2
3 , K4<2 and L2<

2
3 , R2<

2
3 , there exists a

positive constant C such that for any n∈N,

E
∫ T∧τN

n

0

‖vn(t)−ηn(t)‖2dt≤ C(T )K̃(N)

n
. (4.41)

Proof. Case 1: ε= 0. For any t∈ [0,T ∧τNn ), by (4.2) and Hypothesis C, we have

E‖ηn(t)−vn(d∗n(t))‖2 =E
∫ t

dn(t)

‖ψ(s,ηn(s))‖2L2(U ;V )ds≤E
∫ t

dn(t)

(R0 +R1‖ηn(s)‖2)ds.
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Then, by Fubini’s theorem and Lemma 4.1, we obtain

E
∫ T∧τN

n

0

‖ηn(t)−vn(d∗n(t))‖2dt

≤CE
∫ T∧τN

n

0

(1+‖ηn(s)‖2)

(∫ d∗n(s)

s

dt

)
ds

≤CT
n
. (4.42)

From (4.1), we have

‖vn(d∗n(t)−)−vn(t)‖2 = 2

∫ d∗n(t)

t

〈A(vn(s)−vn(t)),dvn(s)〉=
2∑
i=1

Ii(t),

where

I1(t) =−2(1−ε)
∫ d∗n(t)

t

〈A(vn(s)−vn(t)),Avn(s)〉ds,

I2(t) =−2

∫ d∗n(t)

t

〈A(vn(s)−vn(t)),B(vn(s),vn(s))〉ds,

Using Lemma 4.5 and the Young’s inequality, we have∣∣∣E∫ T∧τN
n

0

I1(t)dt
∣∣∣

=
∣∣∣(1−ε)E∫ T∧τN

n

0

∫ d∗n(t)

t

(−2|Avn(s)|2 +2|Avn(s)||Avn(t)|)dsdt
∣∣∣

≤
∣∣∣(1−ε)E∫ T∧τN

n

0

∫ d∗n(t)

t

(−2|Avn(s)|2 +2|Avn(s)|2 +
1

2
|Avn(t)|2)dsdt

∣∣∣
≤ 1−ε

2
E
∫ T∧τN

n

0

|Avn(t)|2
(∫ d∗n(t)

t

ds

)
dt≤ CK̃(N)T

n
.

Using Hölder’s inequality, interpolation inequality and Young’s inequality, we obtain

|〈Avn(s),B(vn(s),vn(s))〉|≤ 1

4
|Avn(s)|2 +C(|vn|2‖vn‖2 + |rn|‖rn‖)‖vn‖2,

|〈Avn(t),B(vn(s),vn(s))〉|≤ 1

4
|Avn(t)|2 +

1

4
|Avn(s)|2 +C(|vn|2‖vn‖2 + |rn|‖rn‖)‖vn‖2,

Hence, by Lemmas 4.1, 4.4, 4.5 and 4.6, we deduce that∣∣∣E∫ T∧τN
n

0

I2(t)dt
∣∣∣

≤1

2
E
∫ T∧τN

n

0

|Avn(s)|2
(∫ s

dn(s)

dt

)
ds+

1

4

∣∣∣E∫ T∧τN
n

0

|Avn(t)|2
(∫ d∗n(t)

t

ds

)
dt
∣∣∣

+C
∣∣∣E∫ T∧τN

n

0

(|vn|2‖vn‖4 + |rn|2‖rn‖2 +‖vn‖4)

(∫ s

dn(s)

dt

)
ds
∣∣∣
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≤CK̃(N)T

n
.

Therefore, based on the above, we conclude that (4.41) holds when ε= 0.

Case 2: ε∈ (0,1). We have

E
∫ T∧τN

n

0

‖ηn(t)−vn(t)‖2dt

=−2(1−ε)E
∫ T∧τN

n

0

∫ d∗n(t)

t

〈Avn(s),A(ηn(s)−vn(s))〉dsdt

−2E
∫ T∧τN

n

0

∫ d∗n(t)

t

〈B(vn(s),vn(s)),A(ηn(s)−vn(s))〉dsdt

−2εE
∫ T∧τN

n

0

∫ t

dn(t)

〈A(ηn(s)),A(ηn(s)−vn(s))〉dsdt

+E
∫ T∧τN

n

0

∫ t

dn(t)

‖ψ(s,ηn(s))‖2L2(U ;V )dsdt

def
= J1 +J2 +J3 +J4.

Note that

〈Au,A(y−u)〉= 〈A(u−y),A(y−u)〉+〈Ay,A(y−u)〉
=−|A(y−u)|2 +〈Ay,A(y−u)〉≤〈Ay,A(y−u)〉, (4.43)

2〈Au,A(y−u)〉≤〈Au,A(y−u)〉+〈Ay,A(y−u)〉
= 〈A(y+u),A(y−u)〉≤〈Ay,Ay〉. (4.44)

By (4.44) and Fubini’s theorem, we have

J1≤ (1−ε)E
∫ T∧τN

n

0

|Aηn(s)|2
(∫ s

dn(s)

dt

)
ds

≤ (1−ε)T
n

E
∫ T∧τN

n

0

|Aηn(s)|2ds≤ CK̃(N)(1−ε)T
n

. (4.45)

Similar to the above, we have

J2≤CE
∫ T∧τN

n

0

∫ d∗n(t)

t

(|Avn(s)|2 + |Aηn(s)|2 + |vn|2‖vn‖4 + |rn|2‖rn‖2 +‖vn‖4)dsdt.

With the help of Fubini’s theorem, Lemma 4.2, we get

J2≤CE
∫ T∧τN

n

0

(|Avn(s)|2 + |Aηn(s)|2 + |vn|2‖vn‖4 + |rn|2‖rn‖2 +‖vn‖4)

(∫ s

dn(s)

dt

)
ds

≤ CK̃(N)T

n
. (4.46)

From Lemma 4.5, it’s easy to obtain

J3≤CεE
∫ T∧τN

n

0

∫ t

dn(t)

(|Avn(s)|2 + |Aηn(s)|2)dsdt
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≤CE
∫ T∧τN

n

0

(|Avn(s)|2 + |Aηn(s)|2)

(∫ s

dn(s)

dt

)
ds

≤ CK̃(N)T

n
. (4.47)

We deduce from Hypothesis C, Lemma 4.1 and Lemma 4.5 that

J4≤E
∫ T∧τN

n

0

∫ t

dn(t)

(R0 +R1‖ηn(s)‖2 +εR2|Aηn(s)|2)dsdt

≤CR0T

n
+CE

∫ T∧τN
n

0

(R1‖ηn(s)‖2 +εR2|Aηn(s)|2)

(∫ s

dn(s)

dt

)
ds

≤ CK̃(N)T

n
. (4.48)

Combining (4.45)-(4.48), we complete the proof of (4.41) when ε∈ (0,1).

4.3. Auxiliary process. For technical reasons, consider an auxiliary process
Zn(t),t∈ [0,T ] defined by

Zn(t) =v0−
∫ t

0

Fε(s,v
n(s))ds−ε

∫ dn(t)

0

Aηn(s)ds+

∫ t

0

ψ(s,ηn(s))dW (s).

When ε= 0, we have

Zn(tk) =ηn(t−k ) =vn(t+k ) for k= 0,1, · · ·,n.

The following lemma gives an estimate of the difference between Zn and vn in
different topologies.

Lemma 4.7. Let v0∈V be F0−measurable random variable. Fix ε∈ [0,1).

(i) Suppose that Hypotheses A–B hold with K2<
2

2p−1 , K4<2 and L2<
2
3 , R2<

2
2p−1 .

Then there exists a positive constant C=C(T,ε,E|v0|2p) such that for every
integer n≥1,

sup
t∈[0,T∧τN

n ]

E|Zn(t)−vn(t)|2p≤ CK̃(N)

np
. (4.49)

Moreover, if L2 = 0, we obtain

sup
t∈[0,T ]

E|∂z(Zn(t)−vn(t))|2p≤ C

np
. (4.50)

(ii) Assume that Hypothesis A–C hold with K2<
2
3 , K4<2 and L2<

2
3 , R2<2. Then

there exists a positive constant C=C(T,ε,E‖v0‖2p) such that for every integer
n≥1,

E
∫ T∧τN

n

0

‖Zn(t)−vn(t)‖2dt≤ CK̃(N)

n
.

Moreover, if L2<
2

2p−1 and R2 = 0, we have

sup
t∈[0,T∧τN

n ]

E‖Zn(t)−vn(t)‖2p≤ CK̃(N)

np
.
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Proof. For t∈ [0,T ∧τNn ], we have

Zn(t)−vn(t) =

∫ t

dn(t)

ψ(s,ηn(s))dW (s).

(i) Applying the Burkholder-Davies-Gundy inequality, Hypothesis A, Lemma 4.2 and
Lemma 4.6, we obtain

E|Zn(t)−vn(t)|2p

≤CpE|
∫ t

dn(t)

‖ψ(s,ηn(s))‖2L2(U ;H)ds|
p

≤Cp(
T

n
)p−1E|

∫ t

dn(t)

|K0 +K1|ηn(s)|2 +εK2‖ηn(s)‖2|pds

≤ Cp(T )

np

(
Kp

0 +Kp
1 sup
t∈[0,T∧τN

n ]

E|ηn(t)|2p+εpKp
2 sup
t∈[0,T∧τN

n ]

E‖ηn(t)‖2p
)

≤ Cp(T )K̃(N)

np
.

Note that

∂z(Z
n(t)−vn(t)) =

∫ t

dn(t)

∂zψ(s,ηn(s))dW (s).

When L2 = 0, using Hypothesis B and Lemma 4.4, we deduce that

E|∂z(Zn(t)−vn(t))|2p≤CpE|
∫ t

dn(t)

‖∂zψ(s,ηn(s))‖2L2(U ;H)ds|
p

≤Cp(
T

n
)p−1E|

∫ t

dn(t)

|L0 +L1|∂zηn(s)|2|pds

≤ Cp(T )

np
(Lp0 +Lp1 sup

t∈[0,T ]

E|∂zηn(t)|2p)≤ Cp(T )

np
.

(ii) With the aid of Hypothesis C, the Burkholder-Davies-Gundy inequality, the
Fubini’s theorem and Lemmas 4.1, 4.5, we get

E
∫ T∧τN

n

0

‖Zn(t)−vn(t)‖2dt

≤
∫ T∧τN

n

0

E
∫ t

dn(t)

‖ψ(s,ηn(s))‖2L2(U ;V )dsdt

≤E
∫ T

0

(R0 +R1‖ηn(s)‖2 +εR2|Aηn(s)|2)
(∫ d∗n(s)

s

dt
)
ds

≤ T
n

[R0T +R1E
∫ T∧τN

n

0

‖ηn(s)‖2ds+εR2E
∫ T∧τN

n

0

|Aηn(s)|2ds]

≤ C(T )K̃(N)

n
.



XUHUI PENG AND RANGRANG ZHANG 495

If R2 = 0, by Hypothesis C and Lemma 4.6, it gives

E‖Zn(t)−vn(t)‖2p≤CpE|
∫ t

dn(t)

‖ψ(s,ηn(s))‖2L2(U ;V )ds|
p

≤Cp(
T

n
)p−1E|

∫ t

dn(t)

|R0 +R1‖ηn(s)‖2|pds

≤ Cp(T )

np
(Rp0 +Rp1 sup

t∈[0,T∧τN
n ]

E‖ηn(t)‖2p)

≤ Cp(T )K̃(N)

np
.

From Propositions 4.1, 4.2 and Lemma 4.7, we deduce that

Corollary 4.1. There exists a positive constant C=C(T,ε) such that for every
integer n≥1,

E
∫ T∧τN

n

0

|Zn(t)−ηn(t)|2dt≤ CK̃(N)

n
,

E
∫ T∧τN

n

0

‖Zn(t)−ηn(t)‖2dt≤ CK̃(N)

n
.

5. Speed of convergence
In this section, we devote to prove Theorem 1.1.
For the strong solution v of (2.12), vn of (4.1), rn of (4.17) and some M>0, define

the stopping time

ςMn
def
= inf

{
t∈ [0,T ] :

∫ t

0

(‖v(s)‖+‖vn(s)‖2 + |rn|4)ds>M
}
.

Let τ
def
= ςMn ∧τNn , where τNn is defined by (4.31).

The following proposition states that the strong speed of convergence of Zn to v
(resp. vn and ηn to v) in L∞([0,T ∧τ ];H) (resp. L∞([0,T ∧τ ];V ) ) is 1

2 .

Proposition 5.1. Let v0∈V be F0−measurable random variable. For any ε∈ [0,1),
assume Hypotheses A–C hold with K2<

2
147 , L2 =R2 = 0 and εK4 strictly smaller than

2(1−ε), then there exists positive constant C(T ) such that for every M>0 and n∈N,
we have

E

(
sup

t∈[0,T∧τ ]

|Zn(t)−v(t)|2 +

∫ T∧τ

0

(
‖vn(t)−v(t)‖2 +‖ηn(t)−v(t)‖2

)
dt

)

≤K(T,M,N)

n
, (5.1)

where

K(T,M,N) =C(T )K̃(N)exp{C(T )eC(b0)M}, C(b0) is a positive constant,

and K̃(N) =
1

N
eC(T )N .
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Proof. Fix M>0 and n≥1. Then for any t∈ [0,T ], we have

Zn(t∧τ)−v(t∧τ) =−
∫ t∧τ

0

[Fε(s,v
n(s))−F (s,v(s))]ds−ε

∫ dn(t∧τ)

0

Aηn(s)ds

+

∫ t∧τ

0

[ψ(s,ηn(s))−ψ(s,v(s))]dW (s).

Applying Itô’s formula to |Zn(t∧τ)−v(t∧τ)|2, we get

|Zn(t∧τ)−v(t∧τ)|2 =

5∑
i=1

Ji(t),

where

J1(t)
def
= −2

∫ t∧τ

0

〈Fε(s,vn(s))−Fε(s,v(s)),Zn(s)−v(s)〉ds,

J2(t)
def
= −2ε

∫ dn(t∧τ)

0

〈Aηn(s)−Av(s),Zn(s)−v(s)〉ds,

J3(t)
def
= −2ε

∫ t∧τ

dn(t∧τ)

〈Av(s),Zn(s)−v(s)〉ds,

J4(t)
def
=

∫ t∧τ

0

‖ψ(s,ηn(s))−ψ(s,v(s))‖2L2(U ;H)ds,

J5(t)
def
= 2

∫ t∧τ

0

〈[ψ(s,ηn(s))−ψ(s,v(s))]dW (s),Zn(s)−v(s)〉.

Using (2.11), J1(t) can be rewritten as

J1(t) =−2(1−ε)
∫ t∧τ

0

〈Avn(s)−Av(s),vn(s)−v(s)〉ds

−2(1−ε)
∫ t∧τ

0

〈Avn(s)−Av(s),Zn(s)−vn(s)〉ds

−2

∫ t∧τ

0

〈B(vn(s)−v(s),vn(s)),vn(s)−v(s)〉ds

−2

∫ t∧τ

0

〈[B(vn(s)−v(s),vn(s))+B(v(s),vn(s)−v(s))],Zn(s)−vn(s)〉ds

def
= J1,1(t)+J1,2(t)+J1,3(t)+J1,4(t).

Referring to pages 21-23 in [2], the following estimates hold:

J1,1(t) =−2(1−ε)
∫ t∧τ

0

‖vn(s)−v(s)‖2ds,

J1,2(t)≤ b0(1−ε)
∫ t∧τ

0

‖vn(s)−v(s)‖2ds+
1−ε
b0

∫ t∧τ

0

‖Zn(s)−vn(s)‖2ds.

Using (2.11) and Young’s inequality, we obtain

J1,3(t)≤2

∫ t∧τ

0

|〈B(vn(s)−v(s),vn(s)),vn−v(s)〉|ds
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≤2C

∫ t∧τ

0

(‖vn(s)‖|vn(s)−v(s)|‖vn(s)−v(s)‖

+ |∂zvn|‖vn(s)−v(s)‖ 3
2 |vn(s)−v(s)| 12 )ds

≤ b0
∫ t∧τ

0

‖vn(s)−v(s)‖2ds+C(b0)

∫ t∧τ

0

(‖vn(s)‖2 + |∂zvn|4)|Zn(s)−v(s)|2ds

+C(b0)

∫ t∧τ

0

(‖vn(s)‖2 + |∂zvn|4)|Zn(s)−vn(s)|2ds.

J1,4(t) can be rewritten as

J1,4(t) =−2

∫ t∧τ

0

〈B(vn(s)−v(s),vn(s)),Zn(s)−vn(s)〉ds

−2

∫ t∧τ

0

〈B(v(s),vn(s)−v(s)),Zn(s)−vn(s)〉ds

def
= J̃1(t)+ J̃2(t).

Using (2.9) and Young’s inequality, we get

J̃1(t)

≤2

∫ t∧τ

0

(‖vn(s)‖ 3
4 |Zn(s)−vn(s)| 12 ‖Zn(s)−vn(s)‖ 1

2 ‖vn(s)‖ 1
4 |vn(s)−v(s)| 12

×‖vn(s)−v(s)‖ 1
2 + |∂zvn|‖vn(s)−v(s)‖|Zn(s)−vn(s)| 12 ‖Zn(s)−vn(s)‖ 1

2 )ds

≤C
∫ t∧τ

0

(‖vn(s)‖ 3
2 |Zn(s)−vn(s)|‖Zn(s)−vn(s)‖

+‖vn(s)‖ 1
2 |vn(s)−v(s)|‖vn(s)−v(s)‖+

b0
2
‖vn(s)−v(s)‖2

+C(b0)|∂zvn|4|Zn(s)−vn(s)|2 +C(b0)‖Zn(s)−vn(s)‖)ds

≤b0
∫ t∧τ

0

‖vn(s)−v(s)‖2ds+C(b0)

∫ t∧τ

0

‖vn(s)‖|Zn(s)−v(s)|2ds

+C(b0)

∫ t∧τ

0

(1+‖vn(s)‖3 + |∂zvn|4)|Zn(s)−vn(s)|2ds

+C(b0)

∫ t∧τ

0

‖Zn(s)−vn(s)‖2ds.

We deduce from (2.9) and (2.11) that

J̃2(t)≤2

∫ t∧τ

0

|〈B(v(s),Zn(s)−vn(s)),vn(s)−v(s)〉|ds

≤2

∫ t∧τ

0

‖Zn(s)−vn(s)‖|v(s)| 12 ‖v(s)‖ 1
2 |vn(s)−v(s)| 12 ‖vn(s)−v(s)‖ 1

2 ds

+2

∫ t∧τ

0

|∂z(Zn(s)−vn(s))|‖v(s)‖|vn(s)−v(s)| 12 ‖vn(s)−v(s)‖ 1
2 ds

def
= J̃2,1 + J̃2,2.

Applying the Cauchy-Schwarz inequality and Young’s inequality, we obtain

J̃2,1(t)≤
∫ t∧τ

0

(b0‖vn(s)−v(s)‖2 +C|v(s)|‖v(s)‖ 1
2 ‖Zn(s)−vn(s)‖2
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+C(b0)‖v(s)‖|vn(s)−v(s)|2)ds

≤b0
∫ t∧τ

0

‖vn(s)−v(s)‖2ds+C(b0)

∫ t∧τ

0

‖v(s)‖|Zn(s)−v(s)|2ds

+C(b0)

∫ t∧τ

0

‖v(s)‖|Zn(s)−vn(s)|2ds

+C

∫ t∧τ

0

(|v(s)|2 +‖v(s)‖)‖Zn(s)−vn(s)‖2ds.

By the Hölder inequality and Young’s inequality, we deduce that

J̃2,2(t)≤
∫ t∧τ

0

(|∂z(Zn−vn)|2‖v(s)‖ 3
2 +‖v(s)‖ 1

2 |vn(s)−v(s)|‖vn(s)−v(s)‖)ds

≤
∫ t∧τ

0

(
b0‖vn(s)−v(s)‖2 + |∂z(Zn−vn)|2‖v(s)‖ 3

2

+C(b0)‖v(s)‖|vn(s)−v(s)|2
)
ds

≤ b0
∫ t∧τ

0

‖vn(s)−v(s)‖2ds+C(b0)

∫ t∧τ

0

(1+‖v(s)‖)|Zn(s)−v(s)|2ds

+C(b0)

∫ t∧τ

0

(1+‖v(s)‖)|Zn(s)−vn(s)|2ds+C

∫ t∧τ

0

|∂z(Zn−vn)|2‖v(s)‖ 3
2 ds.

Hence, we have

J1,4(t)≤3b0

∫ t∧τ

0

‖vn(s)−v(s)‖2ds+C(b0)

∫ t∧τ

0

(1+‖v(s)‖+‖vn(s)‖)|Zn(s)−v(s)|2ds

+C(b0)

∫ t∧τ

0

(1+‖vn(s)‖3 + |∂zvn|4 +‖v(s)‖)|Zn(s)−vn(s)|2ds

+C(b0)

∫ t∧τ

0

(1+ |v(s)|2 +‖v(s)‖)‖Zn(s)−vn(s)‖2ds

+C

∫ t∧τ

0

‖v(s)‖ 3
2 |∂z(Zn−vn)|2ds.

Replacing v by vn, and using the Cauchy-Schwarz inequality and Young’s inequality,
we obtain

J2(t)≤−2ε

∫ dn(t∧τ)

0

‖vn(s)−v(s)‖2ds+2ε

∫ dn(t∧τ)

0

‖ηn(s)−vn(s)‖‖Zn(s)−vn(s)‖ds

+2ε

∫ dn(t∧τ)

0

‖vn(s)−v(s)‖(‖ηn(s)−vn(s)‖+‖Zn(s)−vn(s)‖)ds

≤C(ε)

∫ dn(t∧τ)

0

‖ηn(s)−vn(s)‖2ds+C(ε)

∫ dn(t∧τ)

0

‖Zn(s)−vn(s)‖2ds.

We deduce from the Cauchy-Schwarz inequality and Young’s inequality that

J3(t)≤2ε

∫ t∧τ

dn(t∧τ)

‖v(s)‖(‖Zn(s)−vn(s)‖+‖vn(s)−v(s)‖)ds

≤ b0ε
∫ t∧τ

dn(t∧τ)

‖vn(s)−v(s)‖2ds+C(ε)

∫ t∧τ

dn(t∧τ)

‖vn(s)−v(s)‖‖Zn(s)−vn(s)‖ds
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+C(ε)

∫ t∧τ

dn(t∧τ)

(‖vn(s)‖‖Zn(s)−vn(s)‖+‖vn(s)‖‖vn(s)−v(s)‖)ds

≤2b0ε

∫ t∧τ

dn(t∧τ)

‖vn(s)−v(s)‖2ds+C(ε)

∫ t∧τ

dn(t∧τ)

‖Zn(s)−vn(s)‖2ds

+C(ε)
T

n
sup

dn(t∧τ)≤s≤t∧τ
‖vn(s)‖2.

Using Hypothesis A, we obtain

J4(t)≤
∫ t∧τ

0

(K3|ηn(s)−v(s)|2 +εK4‖ηn(s)−v(s)‖2)ds

≤2K3

∫ t∧τ

0

|Zn(s)−v(s)|2ds+εK4b0

∫ t∧τ

0

‖vn(s)−v(s)‖2ds

+2K3

∫ t∧τ

0

|ηn(s)−Zn(s)|2ds+εC

∫ t∧τ

0

‖ηn(s)−vn(s)‖2ds.

Choosing b0>0 satisfies

2(1−ε)−b0(1−ε)−3b0−2b0ε−εK4b0>α>0, for some α>0.

For t∈ [0,T ], let

X(t)
def
= sup

s∈[0,t∧τ ]

|Zn(s)−v(s)|2, Y (t)
def
=

∫ t∧τ

0

‖vn(s)−v(s)‖2ds.

Then,

X(t)+αY (t)≤
∫ t∧τ

0

Θ1(s)X(s)ds+Θ2(t),

where the processes are defined as follows:

Θ1(s)
def
= C(b0)(1+‖v(s)‖+‖vn(s)‖2 + |rn|4),

Θ2(t)
def
= sup

s∈[0,t∧τ ]

|J5(s)|+I(t),

I(t)
def
= C(b0)

∫ t∧τ

0

(1+‖vn(s)‖3 + |∂zvn|4 +‖v(s)‖)|Zn(s)−vn(s)|2ds

+C(b0)

∫ t∧τ

0

(1+ |v|2 +‖v‖)‖Zn(s)−vn(s)‖2ds

+C

∫ t∧τ

0

|∂z(Zn−vn)|2‖v(s)‖ 3
2 ds

+C(ε)
T

n
sup

t∧τ≤s≤dn(t∧τ)

‖vn(s)‖2 +2K3

∫ t∧τ

0

|ηn(s)−Zn(s)|2ds

+εC

∫ t∧τ

0

‖ηn(s)−vn(s)‖2ds.

The definition of τ implies that∫ τ

0

Θ1(s)ds≤C(b0)(T +M)
def
= C0, P−a.s..
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By the Burkholder-Davies-Gundy inequality, Hypothesis A, Proposition 4.2 and Corol-
lary 4.1, we obtain

E
(

sup
0≤s≤t∧τ

|J5(s)|
)

=CE(

∫ t∧τ

0

‖ψ(s,ηn(s))−ψ(s,v(s))‖2L2(U ;H)|Z
n(s)−v(s)|2ds) 1

2

≤βE( sup
0≤s≤t∧τ

|Zn(s)−v(s)|2)+C(β)E
∫ t∧τ

0

(K3|ηn(s)−v(s)|2 +εK4‖ηn(s)−v(s)‖2)ds

≤βE( sup
0≤s≤t∧τ

|Zn(s)−v(s)|2)+C(β)K3

∫ t∧τ

0

E|Zn(s)−v(s)|2ds

+C(β)K3

∫ t∧τ

0

E|ηn(s)−Zn(s)|2ds+C(β)εK4

∫ t∧τ

0

E‖ηn(s)−vn(s)‖2ds

+C(β)εK4

∫ t∧τ

0

E‖vn(s)−v(s)‖2ds

≤βEX(t)+C(β)K3

∫ t

0

EX(s)ds+C(β)εK4EY (t)+
C(T )K̃(N)

n
,

where β>0 will be chosen later. Using Theorem 3.1 and Lemmas 4.1, 4.4, 4.5, 4.6, we
have

EI(t)≤C(b0)T
1
2

(
E sup
s∈[0,t∧τ ]

|Zn(s)−vn(s)|4
) 1

2

×
[
E
∫ t∧τ

0

(1+‖vn(s)‖6 + |rn(s)|8 +‖v(s)‖2)ds

] 1
2

+C(b0)T
1
2

(
E sup
s∈[0,t∧τ ]

‖Zn(s)−vn(s)‖4
) 1

2 [
E
∫ t∧τ

0

(1+ |v(s)|4 +‖v(s)‖2)ds

] 1
2

+C(T )

(
E sup
s∈[0,t∧τ ]

|∂z(Zn(s)−vn(s))|8
) 1

4 (
E
∫ t∧τ

0

‖v(s)‖2ds
) 3

4

+C(ε)
T

n
E sup
dn(t∧τ)≤s≤t∧τ

‖vn(s)‖2 +2K3E
∫ t∧τ

0

|ηn(s)−Zn(s)|2ds

+εCE
∫ t∧τ

0

‖ηn(s)−vn(s)‖2ds≤ C(T )K̃(N)

n
.

Choosing β>0 such that

2β(1+C0eC(b0)M )≤1,

then suppose K4 is small enough to ensure that

C(β)εK4(1+C0eC(b0)M )≤ α
4
.

Then, using similar argument as Lemma 3.9 in [8], we deduce that

X(t)+
α

2
Y (t)≤ [I(t)+ sup

0≤s≤t∧τ
|M(s)|](1+C0eC(b0)M ).
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Taking expectation and by estimates of EI(t), we obtain

EX(T )+
α

4
EY (T )

≤2
C(T )K̃(N)

n
(1+C0eC(b0)M )+C(β)K3(1+C0eC(b0)M )

∫ t

0

EX(s)ds.

Applying the Grönwall inequality, we have

EX(T )+
α

4
EY (T )≤2

C(T )K̃(N)

n
(1+C0eC(b0)M ) ·exp

{
C(β)K3T (1+C0eC(b0)M )

}
.

where C(T ),C0,C(b0),C(β) is independent of n.
Finally, with the aid of Proposition 4.2, we have

E
∫ T∧τ

0

‖ηn(t)−v(t)‖2dt≤E
∫ T∧τ

0

‖ηn(t)−vn(t)‖2dt+EY (T )

≤ C(T )K̃(N)

n
exp

{
C(T )eC(b0)M

}
.

We complete the proof.

Remark 5.1. As explained in the introduction, the index of ‖v‖ appeared in I(t) has
to be strictly less than 2. Otherwise, EI(t) can not be controlled because of the lack of
uniform V−norm estimates of v.

For every M =M(n)>0,N =N(n)>0, t∈ [0,T ] and any integer n≥1, let

ΩM,N
n (t)

def
=
{
ω∈Ω : sup

i=0,···,n−1

∫ ti+1∧t

ti∧t
(|vn(s)|2‖vn(s)‖2 + |rn(s)|‖rn(s)‖)ds≤ N

n

and

∫ t

0

(‖v(s)‖+‖vn(s)‖2 + |rn|4)ds≤M
}
.

Theorem 5.1. Under the same conditions as Proposition 5.1, we have

E

[
IΩM,N

n (t) sup
k=0,···,n

(
|vn(t+k )−v(tk)|+ |ηn(t+k )−v(tk)|

)]
≤ K(M,N,T )

n
, (5.2)

E
[
IΩM,N

n (t)

∫ t

0

(‖vn(s)−v(s)‖2 +‖ηn(s)−v(s)‖2)ds

]
≤ K(M,N,T )

n
. (5.3)

where K(M,N,T ) =C(T )K̃(N)exp
{
C(T )eC(b0)M

}
, K̃(N) = 1

N e
C(T )N .

Proof. On ΩM,N
n (t), we have τ ≥ t. With the aid of Proposition 5.1, we deduce

that (5.3) holds. For (5.2), by the Hölder inequality and Lemma 4.6, we have

E

(
sup

k=0,···,n
|Zn(tk∧τ)−ηn(t−k ∧τ)|2

)
=E

(
sup

k=0,···,n
ε2|
∫ tk+1∧τ

tk∧τ
Aηn(s)ds|2

)

≤ε2T

n
E

(
sup

k=0,···,n

∫ tk+1∧τ

tk∧τ
|Aηn(s)|2ds

)
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≤ C(T )K̃(N)ε2

n
.

In view of Zn(tk) =vn(t+k ) =ηn(t−k ), we deduce from Proposition 5.1 that

E
[
IΩM,N

n (T ) sup
k=0,···,n

(|vn(t+k )−v(tk)|2 + |ηn(t−k )−v(tk)|2)
]
≤ K(M,N,T )

n
. (5.4)

Using Hypothesis A and Lemma 4.5, for k= 0, · · ·,n−1, we get

E

(
sup

t∈[tk∧τ,tk+1∧τ)

|ηn(t)−ηn(t+k )|2
)

≤E
[∫ tk+1∧τ

tk∧τ
(
ε

2
‖ηn(t+k )‖2 +K0 +K1|ηn(s)|2 +εK2‖ηn(s)‖2)ds

]

+E
[∫ tk+1∧τ

tk∧τ
|ηn(s)−ηn(t+k )|2(K0 +K1|ηn(s)|2 +εK2‖ηn(s)‖2)ds

] 1
2

≤ 1

2
E

(
sup

t∈[tk∧τ,tk+1∧τ)

|ηn(t)−ηn(t+k )|2
)

+C
T

n
sup

s∈[0,T∧τ ]

E‖ηn(s)‖2.

It follows that

E

(
sup

t∈[tk∧τ,tk+1∧τ)

|ηn(t)−ηn(t+k )|2
)
≤ C(T )K̃(N)

n
.

Using Hypothesis A and Hypothesis C, we obtain

E
(

sup
t∈[tk∧τ,tk+1∧τ)

|v(t)−v(t+k )|2
)

≤E
(

sup
t∈[tk∧τ,tk+1∧τ)

∫ t

tk

[
|〈v(s)−v(t+k ),Av(s)〉|+ |〈v(s)−v(t+k ),B(v(s),v(s))〉|

]
ds
)

+E
(

sup
t∈[tk∧τ,tk+1∧τ)

∫ t

tk

[
(R0 +R1|v(s)|)|v(s)−v(t+k )|

+K0 +K1|v(s)|2 +εK2‖v(s)‖2
]
ds
)

+E
(∫ tk+1

tk

|v(t)−v(t+k )|2(K0 +K1|v(s)|2 +εK2‖v(s)‖2)ds
) 1

2

≤E
[

sup
t∈[tk∧τ,tk+1∧τ)

∫ t

tk

(
−2‖v(s)‖2 +2‖v(s)‖‖v(t+k )‖+ |v(s)|24‖v(s)−v(t+k )‖

+ |∂z(v(s)−v(t+k ))|‖v(s)‖ 3
2 |v(s)| 12

)
ds
]

+E
(

sup
t∈[tk∧τ,tk+1∧τ)

∫ t

tk

[
(R0 +R1|v(s)|)|v(s)−v(t+k )|

+K0 +K1|v(s)|2 +εK2‖v(s)‖2
]
ds
)

+E
(∫ tk+1∧τ

tk∧τ
|v(s)−v(t+k )|2(K0 +K1|v(s)|2 +εK2‖v(s)‖2)ds

) 1
2
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≤1

2
E( sup
t∈[tk∧τ,tk+1∧τ)

|v(t)−v(t+k )|2)

+
C

n

(
1+ sup

t∈[0,T∧τ)

E‖v(t)‖2 + sup
t∈[0,T∧τ)

E(|∂zv(t)|8 + |v(t)|4)
)
.

Hence, by Lemmas 4.2, 4.4, 4.5, we get

E

(
sup

t∈[tk∧τ,tk+1∧τ)

|v(t)−v(t+k )|2
)
≤ C(T )

n
.

Using Lemma 4.6, we have

E

(
sup

t∈[tk∧τ,tk+1∧τ)

|vn(t)−vn(t+k )|2
)

≤ C
n

(
1+ sup

t∈[0,T∧τ)

E(‖vn‖4 +‖ηn‖4)
)

≤ C(T )K̃(N)

n
.

We complete the proof.

For any n≥1, define the error term

en(T )
def
= sup

k=0,···,n

(
|vn(t+k )−v(tk)|+ |ηn(t−k )−v(tk)|

)

+

(∫ T

0

‖vn(s)−v(s)‖2ds

) 1
2

+

(∫ T

0

‖ηn(s)−v(s)‖2ds

) 1
2

.

Now, we can prove the strong speed of the convergence in probability.

Proof. (Proof of Theorem 1.1). Fix a sequence l(n)→∞, as n→∞. Let M(n) =
ln(ln(ln(l(n)))), N(n) = ln(ln(l(n))), then M(n)→∞ and N(n)→∞. Note that

P
(

(ΩM(n),N(n)
n )c(T )

)
≤P
(

sup
i=0,···,n−1

∫ ti+1∧T

ti∧T
(|vn(s)|2‖vn(s)‖2 + |rn(s)|‖rn(s)‖)ds> N(n)

n

)
+P
(∫ T

0

(‖v(s)‖+‖vn(s)‖2 + |rn|4)ds>M(n)
)
.

Clearly, by Lemmas 4.2, 4.4, we have

P
(

sup
i=0,···,n−1

∫ ti+1∧T

ti∧T
(|vn(s)|2‖vn(s)‖2 + |rn(s)|‖rn(s)‖)ds> N(n)

n

)c
=P
(

sup
i=0,···,n−1

∫ ti+1∧T

ti∧T
(|vn(s)|2‖vn(s)‖2 + |rn(s)|‖rn(s)‖)ds≤ N(n)

n

)
≤P
(∫ T

0

(|vn(s)|2‖vn(s)‖2 + |rn(s)|‖rn(s)‖)ds≤N(n)
)

→1 as n→∞.
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Using Theorem 3.1 and Lemmas 4.1, 4.4, we obtain

P
[∫ T

0

(‖v(s)‖+‖vn(s)‖2 + |rn|4)ds>M(n)
]
→0 as n→∞.

Hence, when n→∞,

P
(

(ΩM(n),N(n)
n )c(T )

)
→0. (5.5)

Now, we deduce from Chebyshev’s inequality and Theorem 5.1 that

P
(
en(T )≥ l(n)√

n

)
≤P
(

(ΩM(n),N(n)
n )c(T )

)
+

n

l2(n)
E
(
I
Ω

M(n),N(n)
n (T )

e2
n(T )

)
≤P
(

(ΩM(n),N(n)
n )c(T )

)
+C(T )

1

N(n)
eC(T )N(n) n

l2(n)

1

n
exp

{
C(T )(ln(ln(l(n))))C(b0)

}
≤P
(

(ΩM(n),N(n)
n )c(T )

)
+C(T )

1

N(n)

n

l2(n)

1

n
exp

{
C(T )(ln(ln(l(n))))C(b0)∨1

}
.

Since C(T )(ln(ln(l(n))))C(b0)∨1−2ln(l(n))→−∞, we have

C(T )
1

N(n)

n

l2(n)

1

n
exp

{
C(T )(ln(ln(l(n))))C(b0)∨1

}
→0. (5.6)

Combining (5.5) and (5.6), we get

P
(
en(T )≥ l(n)√

n

)
→0, as n→∞.

We complete the proof.
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