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SPLITTING UP METHOD FOR 2D STOCHASTIC PRIMITIVE
EQUATIONS WITH MULTIPLICATIVE NOISE*

XUHUI PENGT AND RANGRANG ZHANGH

Abstract. This paper concerns the convergence of an iterative scheme for 2D stochastic primitive
equations on a bounded domain. The stochastic system is split into two equations: a deterministic
2D primitive equations with random initial value and a linear stochastic parabolic equation, which are
both simpler for numerical computations. An estimate of approximation error is given, which implies
that the strong speed rate of the convergence in probability is almost %
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1. Introduction

In this paper, we focus on the convergence of some iterative schemes for 2D stochas-
tic primitive equations, which is helpful for numerical approximation. As a fundamen-
tal model in meteorology, the primitive equations were derived from the Navier-Stokes
equations, with rotation, coupled with thermodynamics and salinity diffusion-transport
equations (see [14,15,18]). This model in the deterministic case has been intensively
investigated because of the interests stemmed from physics and mathematics. For exam-
ple, the mathematical study of the primitive equations originated in a series of articles
by Lions, Temam, and Wang in the early 1990s (see [14-17] and the references therein),
where they set up the mathematical framework and showed the global existence of weak
solutions. Cao and Titi [3] developed an approach to dealing with the LS-norm of the
fluctuation v of horizontal velocity and obtained the global well-posedness for the 3D
viscous primitive equations.

Along with the great successful developments of deterministic primitive equations,
the random situation has also been developed rapidly. For 3D stochastic primitive
equations, Guo and Huang [11] obtained the existence of universal random attractor of
strong solution under the assumptions that the momentum equation is driven by an ad-
ditive stochastic forcing and the thermodynamical equation is under a fixed heat source.
Debussche, Glatt-Holtz, Temam and Ziane [4] established the global well-posedness of
the strong solution when this model is driven by multiplicative random noises. Dong
et al. [5] studied its ergodic theory and proved that all weak solutions which are limits
of spectral Galerkin approximations share the same invariant measure. Moreover, they
established a large deviation principle for this model in [6]. For 2D stochastic primitive
equations, Gao and Sun [9] obtained its global well-posedness and Freidlin-Wentzell’s
large deviations.

The aim of this paper is to study numerical approximations to 2D stochastic prim-
itive equations. There are many literature on this topic for stochastic parabolic dif-
ferential equations. For example, using the semigroup and the cubature techniques,
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Dérsek [7] studied the weak speed of convergence of a certain time-splitting scheme com-
bining with a Galerkin approximation in the space variable for the stochastic Navier-
Stokes equations with an additive noise. The strong convergence of the splitting up
method has already been studied in a series of papers by Gyongy and Krylov (see [12,13]
etc.), where the rate of convergence is obtained based on stochastic calculus. However,
the linear setting used in their papers does not cover some hydrodynamical models, such
as stochastic Navier-Stokes equations, stochastic primitive equations and so on. Re-
cently, Bessaih, BrzeZniak and Millet [2] studied the splitting up method for the strong
solution of 2D stochastic Navier-Stokes equations on a torus in the space L%([0,7];V)
and proved that the strong speed of convergence in probability is almost %

In this paper, we devote to obtaining the strong speed of the convergence in prob-
ability for 2D stochastic primitive equations using the splitting up method from [2].
The splitting up method is implemented by using two consecutive steps on each time
interval. The first step is to solve the deterministic 2D primitive equations with ran-
dom initial value. The second step is to solve a stochastic parabolic equation. The
corresponding solutions are denoted by v™ and n™ (see (4.1) and (4.2)), respectively.
Our aim is to establish the approximation error of v —v and n™ —wv in the space
L>([0,T); H)NL?([0,T);V). During the proof process, the uniform V —norm estimates
Esupyefo,r llv(t) |2 of strong solution play a key role (see Proposition 5.1). In [2], the au-
thors obtained such estimates of 2D stochastic Navier-Stokes equations by transforming
this model into a curvature equation and utilizing its cancellation property in H C L2.
However, for 2D stochastic primitive equations, we have no uniform V —norm estimates,
only E fOT lo(t)||?dt <C is available, which leads to some difficulties. For example, dur-
ing the proof process of Proposition 5.1, the index of ||v(¢)|| in I(¢) has to be strictly
less than 2. Otherwise, we will encounter EfoT [lv(®)]|*dt for o> 2 after using Holder’s
inequality. To overcome this difficulty, we divide ||v(t)|| into several parts with small
index and make use of uniform V —estimates of v" and uniform H —estimates of v,0,v
(for details, see Proposition 5.1). Moreover, in order to obtain the uniform V —estimates
of v™, an appropriate stopping time is introduced (see Lemma 4.5). Besides, compared
with 2D stochastic Navier-Stokes equations, we need to make additional H—estimates
of 0,v™ and 0,n™ appeared in the estimations of nonlinear terms (see Lemma 2.1).

Specifically, for any n > 1, set the error term

ea(T) ™ sup ([0 (50) = olte)|+ 1" (17) — v(t)])

+</ ||v”<s>—v<s>||2ds> +</ ||n"<s>—v<s>||2ds>

Under some conditions, the main result we obtain is

1
2 2

THEOREM 1.1. Let €€[0,1). Under Hypotheses A-C, the error term e,(T) con-
verges to 0 in probability with the speed almost % Precisely, for any sequence 1(n)p>1
converging to oo, we have

lim P(en(T) > @) —0.
n—oo
Here, € is a parameter appeared in Hypotheses A—C, which will be described in Section
4 and 5.

This paper is organized as follows: In Section 2, the mathematical framework is
introduced. We obtain the global well-posedness of strong solution in Section 3. In
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Section 4, the splitting up method is presented, where two approximation equations
to the primitive equations are constructed. Further, the H and V—norm estimates of
the difference between the two approximation equations are established, respectively.
Finally, an auxiliary process is introduced for technical reasons. In Section 5, the speed
rate of the convergence in probability is obtained.

2. The mathematical framework

The two dimensional primitive equations can be formally derived from the full
three dimensional system under the assumption of invariance with respect to the second
horizontal variable y as in [10]. The 2D primitive equations driven by a stochastic forcing
in a Cartesian system can be written as

v aw
e — AV + v, v+ 00,0+ Opp=1(t,v) — i

Oyv+0.0=0, (2.2)

(2.1)

where the velocity v=v(t,x,z) €R, the vertical velocity 6 and the pressure p are all
unknown functionals. (z,z) € M=]0,L] x[—h,0]. W is a cylindrical Winner process,
which will be given in Section 2.2. A=02+40? is the Laplacian operator. Note that p
is independent of the vertical variable z.

We impose the following boundary conditions:

0,v=0, §=0onTI',=(0,L) x {0}, (2.3)
0,v=0, 0=00onI',=(0,L)x {—h}, (2.4)
v=0onI''={0,L} x (—h,0). (2.5)

Without loss of generality, we assume that

0
u=1, / vdz=0.
—h

Integrating (2.2) from —h to z and using (2.3), (2.4), we have
def
0(t,x,z) = ®(v)(t,x,2)= /avtxz

Then, (2.1)-(2.5) can be rewritten as

%—Av—i—v@zv—&—@( )3&—}—(’%}921/}(15,1})%, (2.6)
d,v|r, =0, d,v|r,=0, v|r,=0. (2.7)

The initial condition is given by
v(0) =wvg. (2.8)

2.1. Some functional spaces. Let £(K7;K2) (resp. Lo(K71;K>2)) be the space
of bounded (resp. Hilbert-Schmidt) linear operators from the Hilbert space K; to Ko,
whose norm is denoted by ||- || z(x ;i) (| || 22 (k1; k) For pe ZF, set

6], = (fM |¢(x,2)lpdxdz)%, Ve LP(M),
P 1

(Jlot)rdz)”,  voeIr (L)),
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In particular, |-| and (-,-) represent norm and inner product of L?(M) (or L2((0,L))),
respectively. For meNy, (W™P(M),]||-|lm,p) stands for the classical Sobolev space,
see [1]. When p=2, we denote by H™(M)=W"™2(M),

{ H™(M)= {v‘@ave (L*(M))? for |a Sm},
|v|%lm(/vl) = Zoga\gm |0av]?.

It’s known that (H™(M),|-|gm ) is a Hilbert space. |-|gr((0,1)) stands for the norm
of H?((0,L)) for peZ™.
Defining our working spaces for (2.6)-(2.8)

0
Hdéf{veL2(M)2: / vdz:O}7

—h

deef{ve(Hl(M))Q: /

—h

0
vdz=0, v=0 on Fl},

The space H is endowed with the L? inner product
(v,0) :/ vodrdz.
M

The norm of H is denoted by |v|= (v,v)2. The inner product and norm in the space V
are given by

((v,0))= / (0300, 0+ 0,v0,0)dxdz,
M

and taking ||-]|=+/((+,-)). Note that under the above definition, a Poincaré inequality
|v| <Cllv] holds for all ve V.
Define the intermediate space

Hdzef{veH,azveH}.

Let V'’ be the dual space of V. We have the dense and continuous embeddings
Ve H=H <V,
and denote by (x,y) the duality between x €V and ye V.

2.2. Some functionals. The Leray operator Py is the orthogonal projection of
L?(M) onto H. Define a Stokes-type operator A as a bounded map from V to V' as
(v,Au) = ((v,u)). A can be extended to an unbounded operator from H to H according
to Av=—PyAv with the domain:

0

D(4)={ve (M) ;/

vdz=0, v=0o0n I';, 9,v=0 on Fuul“b}.
—h

It’s well-known that A is a self-adjoint and positive definite operator. Due to the
regularity results of the Stokes problem of geophysical fluid dynamics, we have |Av|2
|v] 20y, see [19].

For the nonlinear terms, let

B(v,5) % Py (v0,5+ ®(v)8,7).
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We establish that B is a well-defined and continuous mapping from V x V — V' accord-
ing to

<B(U,U),¢> = b(u,v,gb),

where the associated trilinear form is given by

bu,v,¢) % /M(u3$v¢+<1>(u)8zv¢)d./\/l.

This is contained in the following lemma, which is established in [10].

LEMMA 2.1. b is a continuous linear form on V. xV XV and satisfies
Hollr o (29)

JORN JONEN ~ 1 ER N ST ~ ~
[6(v,0,0)| = [(B(v,),0)| <C[5]||v]2[|v]|2|0[[|5]|= + |00 ||v]||0
|(B(,8) = B(9,8),5 - )| < C[[#][[5 - d|[|5 - ]|+ C|0.5] | — ]| 2[5 -8]2,  (2.10)

for any v,0,0€V. Moreover, b satisfies the cancellation property b(u,v,v) =0 and

b(v,0,0)=—b(v,0,0). (2.11)

REMARK 2.1. It is obvious that the above estimates of nonlinear terms of primi-
tive equations are of higher order than 2D Navier-Stokes equations, which results in
difficulties stated in the introduction.

For the stochastic forcing, we fix a single stochastic basis T (Q,F {Fi}i>0,B, W)
with the expectation E. Here, W is a cylindrical Wiener process with the form W (t,w) =
Y i1 Tiwi(t,w), where {r;};>1 is a complete orthonormal basis of a Hilbert space U,
{w;}i>1 is a sequence of independent one-dimensional standard Brownian motions on
(Qa-/_'.a{ft}tz()vp)'

Set

F(t,0(t)) = Av(t) + B(v(t),v (1)),
using the above functionals, it yields

{ do(t)+ F(t,v(t))dt =1 (t,v(t))dW (1),

2(0) = v, (2.12)

3. Global well-posedness. In this part, we aim to obtain a priori estimates
of the strong solution of (2.12). Firstly, we state the following definition introduced
by [10].

DEFINITION 3.1.  Let T=(Q,F,{Fi}+>0,P,W) be a fized stochastic basis, T >0 and
p>2. Assume the initial data vo € LP(Q2H) and is Fo—measurable. An F;—predictable
stochastic process v(t,w) is called a strong solution of (2.12) on [0,T] with the initial
value vy if

veC([0,TH) P—a.s., veL’(C([0,7):H))(LP(L([0,T];V)),

and satisfies

(0(8),6) — (0, 6) + / [(0(5). A0) + (B(v.0).4)] ds= / (6(5,0(5) AW (5),6), P—a.s.
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for all pe D(A).

In order to obtain the global well-posedness of (2.12), we need the following Hy-
potheses:

Hypothesis A: v is a continuous mapping, 1:[0,7] x V — Lo(U; H) (resp.
¥:[0,T) x H— Ly(U; H) for e =0) satisfies that there exist positive constants
K;,i=0,---,4, such that for t€[0,7], 0<e<1,

(A1) [t 2, . < Ko+ EKi|o]? +eKa|0l?, €V,
(A.2) For ¢1,02€V,

[, d1) =0t G2) 2y 1) < Bsldr — b2l +eKal|p1 — b2,

Hypothesis B: There exist constants L;,i=0,--+,2, such that for t €[0,7], 0<e <1,
104t D7, 11y < Lo+ L1100 +eLal|0-0|7,  0.6€V.

THEOREM 3.1.  Assume vg € H, Hypotheses A-B hold with Ko <K4<2 and Ly <2,
there exists a unique global solution v of (2.12) in the sense of Definition 3.1 with v(0) =
vo. Furthermore, if q €2, % + ﬁ), there exists a constant C=C(e,q,Ko,K1,K2,T)
such that

T
E(0235T|v<s>|q+ / Jos)2l0(s)|2ds) < C(1+EJu|). (3.1)

If Ko< %, then

T
]E/ lv(s)|?|lv(s)||?ds < C(1+Evg|*). (3.2)
0
Similarly, if ¢ € [27%—1—%), there exists a constant C =C(g,q,Ro,R1,R2,T) such that
T
IE( sup |8Zv(s)|q—|—/ ||(9Z’U(S)H2|821}(S)|q72d8)SC(1+E|8Z’U0‘(]).
0

0<s<T

2

175 we have

In particular, if Lo <

T
E( sup |82v(s)|4+/ 0:0(5)/219:0(s)|ds) < C(1+El.vol*).
T 0

0<s<

Proof. When Ko <K, <2 and Ly <2, the global well-posedness of strong solution
to (2.12) in the sense of Definition 3.1 has been proved by [10], we omit it. Let v be the
strong solution of (2.12). For any ¢>2, applying It6’s formula to |v(t)|?, we have

dlv(t)|?+qlo(t)|7?|Ju(t)||*dt
=—qlo(®)|T*(v(t), B(v(t),v(t)))dt
q(qg—1)

+alu®)]7 (), (v ()W (1)) + =) [ (v Z, 05 dt-

Using (2.11), we obtain

dlo(®)|” +qlo(®)|"2[lv(t)[*dt
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- q(q—1) -
<glo(®)]"* (), ¥ (t0(®)dW (1) + = @O [ v 2y wimdt: (3:3)
Then, it follows that

T
E sup [o(t )Iq+qE/ [o()772o(t) > dt
te[0,T

<E sup / [u(8)|972(v(s),(s,0(s))dW (s))

te[0,T]

+‘1(‘12_1)]E/0 @2t v )7, v dt

difjl + 1.

With the help of Hypothesis A, we get

1 T —1 g
Izﬁq(qz )KOE/ \v(t)|q_2dt+%K1]E/ sup |v(s)|‘Zdt
0

0 s€[0,t]

q(g—1) T o(H)192|v 2
+e LD R [ o) oo ot

Utilizing the Burkholder-Davies-Gundy inequality and Hypothesis A, we have

T 2
I <6gE (/0 [o() P4~ v(t)|2||¢(t,v(t))lliz(u;ﬂ)dt>

2

T
<6qE (/0 [0(8)]*772 (Ko + K1 [u(t)* + e Ka | u(t) |2)dt>

1
T 2 T
<6qE (KO / |v(t)|2‘12dt> +6¢E <K1 / |v(t)|2th)
0 0

. :
+6qE <6K2/ Iv(t)IQq_lev(t)IIZdt>
0

SN+ E+1

1
2

Using the Young’s inequality, it gives

T
If§6qK$E< sup Iv(t)lq/ v(t)lqzdf>
0

1
2

te[0,T]

1 q
<6¢KZE | sup |v(t)|? /|v V|9 2dt
t€[0,T]

E( sup |v(¢)|? )+18q2KOIE/ sup |v(s)|9dt+18¢* KoT.
te[0,T] 0 s€[0,¢]

S| =

I? can be bounded as

1 T
12 <6gKPE ( / |v(t)|2th>
0

N
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T
< —E( sup |v(t)|q)+18q2K1E/ sup |v(s)|%dt.
0

+€[0,T) s€[0,t]

| =

By the Young’s inequality, we have

Nl=

1 T
If§6qs%K;JE< sup [v(t)[? / |v<t>q-2|v<t>||2dt>
0

t€[0,T]

1 T
SE]E( sup |v(t)\q)+18q25K2E/ |v(t)|q*2||v(t)||2dt.
te[0,T] 0

Based on the above inequalities, we have

1 T
1< 5B sup [o(®)]") +186° (Ko + KE [ sup [o(s)]7de
te[0,T 0 s€[0,t]

T
182 KL / o(8)[22 [0 ()Pt + 1862 Ko T
0

Collecting the above estimates, we conclude that

1 T
E sup v<t>|q+z(qsq<q >K218q2eK2)E | ol oo P
t€[0,T] 2 0

-1 -1 ’
§2(q(q )k, + 90 )K1+18q2(K0+K1)>E/ sup |v(s)|?dt
2 2 0 se0,t]
+q(q—1)KoT+36¢> KT

When ¢ € [2,31—7+ﬁ), we have

-1
75%1(2 — 18(]26K2 >0.

Applying Gronwall’s inequality to (3.4), we obtain

E sup |v(t)]!<C(q,Ko,K1,K2,T)(1+E[vg|?).
t€[0,T]

Combining (3.4) and (3.5), we get

T
E sup |’U(t)‘q+]E/ |U(t)|q72HU(t)”2dt§C(q7K07K17K2aT)(1+E|UO|q)~
te[0,T) 0

Let r=0,v. From (2.12), we have
dr+ Ardt + (vV0,r + ®(v)0,1)dt = 0,9 (t,v(t))dW (¢).
Applying Itd’s formula to (3.7), we obtain

dlr(8)|7 4 glr(6)|772(lr(t) || 2dt
=—q|r(t)|72(r(t),(V0xr + B (v)D.7))dt

Falr (O 2r(0), 0.0t 0()aW () + DL 0520051 000)) 2 .
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We deduce from (2.11) that
dlr(®)|*+qlr(®)|*=|lr(t)]|*dt

:q\r(t)Iq*2<r(t),8zw(t,v(t))dW(t»+@

(0172 110:0 (8,0 (0) 12,y - (3.8)

Note that (3.8) is similar to (3.3). Following the same process exactly as above, we
conclude the result. a

REMARK 3.1. For (2.12) with vy € LP(;V), we have no uniform V—norm estimates
of v. That is, we can not find a positive constant C' such that Esup;c(o n lo®)||?<C.

4. Splitting up method
Let [["={0=to<t1<---<t,=T} be a finite partition of a given interval [0,7]
with a constant mesh h="Z. Let £€[0,1) and let F.:[0,7]xV — V"’ be defined by

F.(t,v)=(1—¢)Av+ B(v,v).

It’s easy to know Fy(t,v)=F(t,v).
Set t_y=—ZL. For t€[t_1,0), define

" (t)=n"(t)=vo, Fi=Fo.

The scheme is defined by induction as follows. Suppose we have defined processes
v"™(t) and n™(t) for te[t;—1,t;), i=0,---,n—1, such that 7"(¢;) is an H—valued
Fi, —measurable function. This clearly holds for i =0. Then we define v"(t),t € [t;,t;41)
as the unique solution of the (deterministic) problem with positive viscosity 1—¢& and
with initial condition ™ (¢; ) at time ¢;, that is,

LEL A+ F (10" (1) =0, t€ [t tir),

n + n(4— (41)

v ( )=o) =n"(t;),

Note that v™(t; +1) is a well-defined H —valued F;, —measurable random variable. Then
we can define n"(t),t € [t;,t;11) as the unique solution of the random problem with initial
condition v"(t;, ) at time #;:

{dn"( )J’_EAU () = ( nn(t))dW(t)7te[tiati+l)’ (4 2)
0t (t) =" () =0 (), '

We claim that ™ (t;, ;) defined above is a well-defined H—valued 3, , —measurable
random variable. In fact, when € >0, it’s classical that (4.2) has a unique weak solution
provided the stochastic parabolic condition holds (Ks, K4, Ly are small enough). When
=0, the smoothing effect of A does not act anymore, but ¢ satisfies the usual growth
and Lipschitz conditions for the H—mnorm. Finally, let v™(T%)=n"(T").

REMARK 4.1. As stated in [2], v™ and ™ constructed above are not continuous, only
right continuous.

In order to prove the convergence of the above scheme, we will need to establish
a priori estimates on v™ and n™. Firstly, we introduce some notations. Recall that
H”:{O:to <t1<-~'<tn:T}. Set
{d RO )dﬁ‘mh for t€ [t tiv1), i=0,1,---,n—2,

’ 4.3
d (t)dﬁftn 1 d*( ) - t’ru fOI' te[tn—latn] ( )
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Then, the processes v™(¢),n™(t) can be rewritten in a way close to the continuous equa-
tion:

t d"(t)
V" (t) = v — /0 Fu(s,0"(s))ds + /0 (e Ay (s)ds + (s, (s)dW (s)],  (4.4)

d, (1) t

=0 [ Flsuno)dst [ [eAr (st uls a6 )aW () (@)
0 0

In the following, we aim to establish both H—norm and V' —norm estimates of the

difference between v™ and n".

4.1. H—norm of v*—n". To achieve it, we firstly need to make a priori
estimates on v™ and n™.

LEMMA 4.1. Let vg€H. Fix e€[0,1). Let Hypotheses A-B hold with Ko< K4<2
and Ly <2. Then there exists a positive constant C=C(e,T,E|vg|?, K;,L;) such that for
every integer n>1,

T
swp E(l" 0P+ swp ") +E [ [ )lds<c (wo)
t€[0,T] s€[dn (t),d3, (2)) 0

Moreover, if e €(0,1), there exists a constant C such that
T
supIE/ In™(s)||?ds < C. (4.7)
n 0

Proof.  Taking the scalar product of (4.1) by v™ and integrating over (¢;,t] for
t € [ti,tiv1), we have

R ()2 +2(1—e) / o () Pds = o (57 2 / (B (s),0"()), 0" (5)) ds.

i

By (2.11), we obtain

\v"(t)\2+2(1*6)/t‘ lo™ (s)2ds < ™ (7). (4.8)

Taking expectation of (4.8), we get

E( sup  |o"(8)]*) <Eln" (7). (4.9)

t; <t<tiy1
Applying Itd’s formula to (4.2) and by Hypothesis A, it yields that for ¢ € [t;,t;11),
t
Ej"(t)|? +2<E / ™ (5) s
ti
t
—Ep (1) P HE / (s, ()12, s
t
B ()P HE [ (Kot Kol (9 + Kl (5) ).

t;
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Then
t
Ejr"()]? +(2 — Ko)E / " (3) s
ti

KT t
0 +K1/ Ejy(s)2ds. (4.10)

n t;

§E|v"(tf+1)|2+

Since K3 <2, we can neglect the integral of V—norm in (4.10) to obtain

KoT, mr
sup By (1)* < (Blo™ (6P + == )e (4.11)
t; <t<tiy1
Putting (4.9) to (4.11), it gives
_ KoT'| xir
sup  Eln"(6)]* < (Eln" (6 )P+ ——)e . (4.12)
t; <t<t;y1 n
Set
YK, Y K,
then, by a mathematical induction argument, we infer that for i=0,---;n—1,
ar T L ar
B( swp [o"()P)V( sup  Eln"(t)]) SElug et 5 4 223 el
t;<t<tiy1 t; <t<tiy1 n j=1
Hence, we deduce that
sup B( sup [u(s))| v [ sup Eln"(0)?]
te[0,T]  dn(t)<s<dy(t) t€[0,T]
o i T2T ~ AT
<El|uvg|“e™ —i——ZeJ n
noi
<Elvo|2e™T + 2217 (4.13)

1
which proves part of (4.6). Moreover, from (4.8), (4.10), and using (4.13), we obtain
that for every i=0,---,n—1,
B tit1 3 CcT
Bl ()P + (=8 [ " (s) Pds <z )P+ S
t

i

n(y— 2 fot n 2 n(y— 2 cr
Bl () +e@—K) [ (o) Pds B ()P +

Adding all these inequalities from i=0 to n—1, we conclude the proof of (4.6). At the
same time, when & >0, it gives (4.7). 0

Referring to [2] and similar to Lemma 4.1, we have the following higher moments
of H—norm.

LEMMA 4.2.  Let vg € H be Fo—measurable. Fiz £€[0,1). Let Hypotheses A-B hold
with Ko < 210%17 for some p>2 and K4 <Ly <2. Then there exists a positive constant

C=C(e,T,E|vg|*,K;,L;) such that for every integer n>1,

T
sup ]E(|17"(t)\2p—|— sup |v”(s)|2p) —|—E/ ||v"(s)||2|v"(5)|2(p71)d5SC’. (4.14)
te[0,T] s€[dn (t),d}, (t)) 0
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In particular, when p=2, it gives

T T
n 4 n 2|,.n 2
B[ n@ltds<B [ @) e)Pds< . (4.15)

Moreover, if € €(0,1), there exists a constant C such that
T
sup [ a7 o) Pl ()P0 Vds< €. (1.16)

Compared with the 2D stochastic Navier-Stokes equations studied by [2], we need
the following additional estimates of 0,v™ and 9,n"™. Define

rt=0,0", q"=0.n".
From (4.1), we have for t € [t;,ti41),
dr"+ (1=&) Ardt+ (0" 0" + (™) 0" ) dt =0. (4.17)
Moreover, we deduce from (4.2) that for t € [t;,t;41),
dq" +eAq"dt=0.4(t,n"(t))dW (t). (4.18)

The initial conditions for (4.17) and (4.18) are r™(t;) =q"(t; ), ¢"(t;) =r"(t;}1), respec-
tively.
LEMMA 4.3. Let vo € H be Fo—measurable random variable. Fiz €[0,1). Let

Hypotheses A-B hold with Ko< K4y<Lo<2. Then there exists a positive constant
C=C(g,T,E|0,v9|?, K;,L;) such that for every integer n>1,
T
sup E(\q"(t)|2+ sup \r"(s)|2)+E/ 7™ (s)||?ds < C. (4.19)
te[0,T) s€[dn (t),d}, (1)) 0

Moreover, if e €(0,1), there exists a constant C such that
T
supIE/ g™ (s)||?ds < C. (4.20)
n 0

Proof.  Taking the scalar product of (4.17) with ™ in H and integrating over (t;,]
for t € [t;,t;41). With the help of the cancellation property, we have

dlrm™ 2
M 4 o1 — ey 2 <0, (4.21)
dt
that is,
t
IT”(t)\2+2(1—5)/t 7™ ()P ds < |q" (t;) ] (4.22)

Taking the expectation of (4.22), we deduce that

E (te[sup )|r"(t)|2> <El|g"(t;])|*. (4.23)

titit
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Using It6’s formula to (4.18) and by Hypothesis B, we have for t € [t;,t;+1),

t LoT t
Blq (0 +e(2 - LB | a(s)|Pds SER"() P+ 25+ L [ Blg"(9)ds.
t; ti

When Ly <2, ignoring the V—norm and by Gronwall’s inequality, we get

n n LoTy mr
sup Elg t)]* < (E\T (t Z+1)|2 ) . (4.24)
te[ti,tiy1)
Putting (4.23) into (4.24), we obtain
LoTN a7
sup  E|q"(6)> < (Elg" (672 + =2 )e
tE[ti tit1) n
Set 73 =L1,74= Lo, by the induction argument, we have for i=0,---;n—1,
7o T r T s T
E( sup ["(@OP)V( sup  Elg"(t)]?) <E[duol?e D5 + T ZeJ -
ti <t<tijq1 ti <t<tiy1
Hence, we deduce that
sup B( sup  ["(s)3)] v | sup Elg"(1)?]
te[0,T]  dn(t)<s<d; () t€[0,T]
<E|d,vo|2e™T + T g2 (4.25)
T3
Using the same argument as Lemma 4.1, we conclude the rest of the result. ]

Similarly to Lemma 4.1, we can obtain the following higher order norm estimates.

LEMMA 4.4.  Let vo € H be Fo—measurable mndom variable. Fix e€(0,1). Let Hy-
potheses A—=B hold with Ky < K4 <2 and Ly < 5= for some p>2. Then there exists a

positive constant C =C(e,T,E|0,vo|?, K;,L;) such that for every integer n>1,
T
owp B(I 0+ swp )4 [ )P ()P Vds< . (420
te(0,7] s€ldn (£),d2 (1)) 0

Moreover, if € €(0,1), there exists a constant C such that

T
supE / la"(8)]121q" (s)P®~Vds < C. (4.27)

Based on the above, we are ready to prove an upper bound of the H—norm of the
difference between v™ and ™.

PROPOSITION 4.1.  Let vg € H be Fo—measurable random variable. For any €€ [0,1).
Assume Hypotheses A-B hold with K5 < %, K,<2 and Ls < %, there exists a positive
constant C=C(e,T,E|0,v|*, K;,L;) such that for any n €N,

T
E/|w@ (ﬂﬁ<%? (4.28)

0
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Proof. Case 1: e=0. For any t€[0,T), by (4.2) and Hypothesis A, we have
t

(Ko +K1|n"(s)|*)ds.

dn (t

t
Eln”(t)—v”(dii(t))IQ:]E/ ||¢(8,n"(8))||2£2(u-,md8SJE/d "
. (t
Then, by Fubini’s theorem and Lemma 4.1, we obtain

T T
E / 9" () — 0" (d4 () Pt < CE / L+l () ( /

d;,(s) T
dt |ds<C=.  (4.29)

From (4.1), we have
2

d;, (1)
0" (dy, (1)) =" (1) |* = Q/t (W (s) =" (1), dv"(s) =D _Li(t),

where

d;, (1)
L)% 201 75)/t (W™(s) —v"(t), Av™(s))ds,

dy, (t)
L) 2 / (07 (5) — 0" (£), B(v" (5),0"(5)))ds.

Using Lemma 4.1 and the Young’s inequality, we have

I Th(t)dtH(H)E [ [ oo opas
oo [ /d*(t (2™ I+ 2™+ 5 o (O] ds]
CT

. 0
S—E/ o™ ()] / ds | ar< L.
2 0 t n
By (2.9), we have

T T pdy(t)
B / I(t)dt| <2B / / 0" (8) o
0

& (t) ) 1
+2E / L @ e ) o) Basas

dEle + Ko.

"(s)|2dsdt

By Lemma 4.2, we deduce that

Ki=2% @)l ( / e |v"<s>ids> at
<2 (]E/()T|v”(t)|2dt> ' (E/OT( d:(t)|v”(s)ids)2dt>

oo 2 o)

1
2

—

[ —
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T T S
<C —E/ v"s4/ dt )ds
(n | @h( ) ) )
cT

1
2

" .

By the Cauchy-Schwarz inequality, Fubini’s theorem and Lemmas 4.1, 4.2, 4.4, we get

K> <1E/ / O ()0 (5|2 0" ()] dsdt

n T rdy(t)
<E / / @2 (5) o (5) | dsdt + B / / 0" (s) | 2dsdt
0 t
T di(t dy (t)
_IE/ |r"(t)|4/ dsdt+E/ / (1+]0"™(s)]?) 0" (s)||*dsdt

dy (t) s
<E r 4 S v v 2 S
/| |/t ddm@/ (Lt o7 () ) [0 (s) </dn(s)dt>d
T

t
Therefore,

IE/ 0" (d ()") — o™ () [2dt < % (4.30)
0

Combining (4.29) and (4.30), we conclude the result when £=0.
Case 2: £€(0,1). For any t€[0,77], from (4.4) and (4.5), we have

dax (t) t t
0 () — v () = — /t Fus,0"(s))ds —¢ /d AT [ e )W)

dn (1)

Applying Ito’s formula to |n™(t) —v™(t)|?, we obtain

E/OTn"@)—v"(t)th:iJi,
where -
B 2(1-¢) / / () v (s))ds,
0% 2E / | B ()07 (5)) " (5) — 0" (5) s,
02k ' / (A ()7 () — " (5)) s,

df
// (5,7 (5112, i sl

Exactly as pages 12-13 in [2], we have

n< S p < ST g <CE
n n n
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By (2.9), the Cauchy-Schwarz inequality, Fubini’s theorem and Lemmas 4.1, 4.2 and
4.4, we have

dn (t) 3 1
<2E/ / (™M™ )™ ()l +10=n"(s)l[[o" (s)][ 2 [0" (5)] 2 )ds
SCE/O (I )12+ ()™ ()17 + g™ (9)|* + [[v™ ()1

@Rl @I [ S(s)dt)ds

cTr
< —.
n
The above estimates imply that (4.28) holds when € € (0,1). ad
4.2. V—norm of v —n".  In order to obtain V—norm of v —n", we need an

additional hypothesis.
Hypothesis C: There exist constants R;,i=0,1,2, such that for t€[0,T], 0<e<1,

9t D)2, vy < Ro+ RullglI”> +eRa|Ad|*, ¢ € D(A).

Fix n, for some N >0, define the stopping time
def tip1 At N
@ urfe s [T PR @ e S L @)
i=0,---,n—1Jt; At n
Then, we obtain

LEMMA 4.5. Letwvg€V. Fixe€l0,1). Let Hypotheses A-C hold with Ko< %, Ky<2
and Ly < %, Ry <2, then there exists a positive constant C =C(e,T,E|lvo||?, K, Li, R;)
such that for any integer n>1,

T/\‘rfbv _
swp (I @+ sw ) +E [ o (6) s SCRON),
te[0,TATN] s€[dn (ATY & (ATN) 0
(4.32)
where K(N)= LeCIN
Moreover, if € €(0,1), we have
T/\Tn _
suplE / ™ (s)12ds < CR(N). (4.33)
neN

Proof. Taking the scalar product of (4.1) by Av™ in H and integrating over (t;,t]
for te [ti,ti+1), we have

\Iv”(t)ll2+2(1—€)/t‘ I\v”(8)||3d8=Hn”(tf)IIQ—?/ (B(v"(s),0"(s)), Av™ (s))ds.

i

Applying the chain rule to e®®|[v™(t)||?, we reach

t
O )+ 2(1-2) [ e o s) s

ti
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t t
=t )Iln"(tZ)HQ—2/ ) (B(v"(s),0"(s)), Av"(s))ds+ [ ¢(s)[|[v"(s)||”e?ds.
ti ti
Using Holder’s inequality and interpolation inequality, we deduce that
[(B(v"(s),v"(s)), Av"(s))]
1
<ClAv™ o™ 2 [[o™ [I[v" 13 + C|Av™[[o™ ||| % ||| =
(1_8) n n n n n n
< Tllv 13+ Cr(fo" P ™ 12+ ™[l D lo™ |-

Then, we have

ti+1/\7'flv
B s fOr@Pra-g) [ o)
te[tiATN tipiATY) tinTN
_ N ti+1/\TT]LV
<E(e? A I (87 AT7€V)|I2)+201E/ e? ([ 2 [[o™ |2 + [P [ ) [l™ | *ds
tiATN
ti+1/\T,,1LV
+/ ¢ ()| (s)||*eds. (4.34)
ti/\T}LV

For t € [t; ATN ti1 AT, set

t
def n n n n
(t) :_cl/ (o™ Pl 12+l ds,
t

— AN
i NTp

where C is the constant appeared in (4.34).
Based on the previous estimates and by Gronwall’s inequality, we deduce that

E( s 6d’(t)llv"(t)|2>SE(IIn”(tZATéV)Ilz)- (4.35)
te

ti /\T}lv i1 /\T,,Ilv)

Since e?(ti+1A7) > =1 P_g.s. we deduce from (4.35) that

E sup o™ () ) <E(In™ (7 Ama)1)e” (4.36)
tE[ti/\TVZLV,t¢+1/\TTILV)

Applying 1t&’s formula to (4.2), by Hypothesis B, we have for t € [t; AT ;11 ATY),

t

E[li" ()| +£(2— Ro)E / 7 (5)2ds

ti/\’l'}bv

nip— Ny |12 ROT ¢ n 2
<E[v"(t;q ATy )II°+ + Ry E|n"(s)|"ds.
t

n i/\TTJLV

When Ry <2, we can ignore the V—norm. Then, by (4.1) and Grénwall’s inequality, we
get

n nfe— RyT'\ mT

sup Bl 0 < (Efo" (5, Ara ) 2+ )e

te[t AT i ATY)

(4.37)

n
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Putting (4.36) into (4.37), we deduce that

n

sup Bl ()7 < (Bl (17 ArY) 2+

te [ti ATN tit1 /\Tflv)

n

RoT\ (ciN+RiT)
— e .
n

Set 75 =C1N + R1T,7g = RoT, by the induction argument, we have for i=0,---,n—1,

E( sup o™ (1) v ( sup Elln"(@®)])
L ATN <t<tip i ATH AT <t<ti i ATY
N 7 i+l
<E 2,641 72 | 16 it
SEfpole 0% + 03 e

Hence, we deduce that

s B( s )R] V] sw Bl
te[0,TATN]  dn(t)ATN <s<dx (t)ATY te[0,TATY]
<E||vo|2e™ + -8 2. (4.38)
Ts
Exactly following the same procedure as Lemma 4.1, we can obtain the result. ]

Similarly to Lemma 4.1, it gives that

LEMMA 4.6.  Let vo €V be Fo—measurable random variable. Fiz e€[0,1). Let Hy-
potheses A—C hold with Ko < %, Ki<2 and Loy < 21%1, Ry < 21%1 for some p>2. Then
there exists a positive constant C'=C (e, T,E|vo||?, K2, K4,La,Ra) such that for every

integer n>1,

sup B |ln" (1) + sup o (s) %)
te[0,TATN] s€[dn ()ATYN dx ()ATN)
T/\TfLV B
4B [ @I )P0 ds <R, (4.39)
0

where K(N) is the same as Lemma 4.5.
Moreover, if e€(0,1), we have

T/\‘rfbv ~
SEEE/O ™ ()I3110" ()2~ Vds < CK(N). (4.40)

Up to now, we are ready to obtain an upper bound of the V' —norm of the difference
between v™ and n™.

PROPOSITION 4.2. Let vg €V be Fo—measurable random variable. Fix e €1[0,1). As-
sume Hypotheses A-C hold with Ko< 2, K;<2 and L2<%7 Ry < 2, there exists a

37 37
positive constant C' such that for any n€N,
TATY %
n C(T)K(N
[ o - oPars R, (1.41)
0

Proof. Case 1: e=0. For any t€[0,T A7), by (4.2) and Hypothesis C, we have

Bl (£) —o™(d5 (1)) |2 =E /

n n

t
G D s <B / | ot Rl ).
t t
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Then, by Fubini’s theorem and Lemma 4.1, we obtain

T/\TTJLV
n *”Un * 2
E / o (8) — o (5 (1)) | 2t

TAT, dr (s)
SCE/ (1+In™(s)]1?) (/ dt) ds
0 s

<Cc-. (4.42)
From (4.1), we have
dr, (1)
||v”(d2(t)_)—v"(t)||2=2/t (A(U”(S)—v”(f)%dU”(S))ZZIi(t)a
where
dy, (t)
Il(t):—Q(l—s)/t (A" (5) — 0™ (), A" (s))ds,

(1)
I(t)= —2/t (A(v"™(s) =" (1)), B(v"(5),0" (s)))ds,

Using Lemma 4.5 and the Young’s inequality, we have

T/\'r
E / dt‘

—la-oE /TM/ (—2|Av"( )|2+2|Av”(s)||Av”(t)|)dsdt’

T/\'rn dy (t 1
< (1_5)1@/ / (—2|Av”(s)|2+2|Av”(s)|2—|—§|Av”(t)|2)dsdt‘
0 t

e T 3, (1) :
! EIE/ | Av™ (£)[? </ ds) dt < CENT.
2 0 ¢ n

Using Holder’s inequality, interpolation inequality and Young’s inequality, we obtain

[(Av™(s5), B(0"(s),0"(s)))| < %IAU"(S)IQ+C(Iv"\2llv"||2+ [l D™ 11,
(A" (2), B(v"(s),0"(s)))| < %IAU"(t)F+ilAv”(S)F+C(|v”|2||v”||2+ [ [l D™ I,

Hence, by Lemmas 4.1, 4.4, 4.5 and 4.6, we deduce that

T/\TTIZV
)E/ Ig(t)dt‘

0
1 TATY s 1 TATY dy (t)
gfIE/ |Av”(s)\2/ dt ds+f‘]E/ |Av”(t)|2/ ds dt’
2 Jo dn(s) 41 Jo ¢

N

TAT, s
+C[E [ QP R P o) ( / dt) ds
0 dn(s)

n (S
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< CK(N)T
n
Therefore, based on the above, we conclude that (4.41) holds when £=0.

Case 2: £€(0,1). We have

T/\T:LV
E/ ™ (6) — o™ ()2t
TATY  pdr ()
:—2(1—5)1}3/0 /t (Av"(s8),A(n"(s) —v"(s)))dsdt
TATY  pdi(t
_9E / / (B (s),0™(5)), A(1" () —v"(s)))dsdt
T/\TT]:] t
%R / / RECROIR RO OV

T/\Tiv t
LE / /d G D s

C I+ T+ Js+ 4

Note that
(Au, A(y —u)) = (A(u—y), Ay —u)) +(Ay, A(y —u))

=—|A(y—u)*+(Ay, A(y —u)) < (Ay, A(y —u)), (4.43)
2(Au, A(y —u)) < (Au, A(y —u)) + (Ay, A(y —u))
= (A(y+u), Ay —u)) < (Ay, Ay). (4.44)

By (4.44) and Fubini’s theorem, we have

TATY s
J1<(1 —E)E/ | An™(s)]? / dt | ds
0 dn(s)

0 n

- n
Similar to the above, we have
TATY  pdi(t)
T CE [ [T (A ) LAn )+ o o B | s,
With the help of Fubini’s theorem, Lemma 4.2, we get

T/\'rfy s
JéSCE/E UAW%$F+A%f@N2+WﬂﬂWﬂﬁ+VﬂFWmW44Wﬂﬁ)(/ ﬁ)ds
0 s)

dn
CK(N)T
<——
n

(4.46)

From Lemma 4.5, it’s easy to obtain

T/\'r,llv t
hg&ﬂ/) t/ (| Av" ()2 + | A" (5) 2) dsdt
0 dn (1)
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<CE / " (A ()P + | Ann()P) ( /d s dt) s

Tl(s)

K(N)T
< u (4.47)
n
We deduce from Hypothesis C, Lemma 4.1 and Lemma 4.5 that
T/\TTZLV t
W< [ [ (Rt Rall 9+ eRal v (o))
0 dn(t)
R()T T/\T,JLV . ) . ) s
<C——+CE (R1[n™(s)|1* +<Ra| An™(s) ) dt | ds
0 dn(s)
CK(N)T
< GEWNT (4.48)
n
Combining (4.45)-(4.48), we complete the proof of (4.41) when £ € (0,1). 0
4.3. Auxiliary process. For technical reasons, consider an auxiliary process

Z™(t),t€]0,T] defined by

t dn (t) t
Zn(t):'UO_/ F5(S?Un(3))d5_€/ An”(s)ds—'—/ ¢(S,7]n(3))dW(S)
0 0 0
When £ =0, we have
Z(t)=n"(ty)=v"(t{) for k=0,1,---n.

The following lemma gives an estimate of the difference between Z™ and v" in
different topologies.

LEMMA 4.7.  Let vg €V be Fo—measurable random variable. Fiz ¢ €[0,1).

(i) Suppose that Hypotheses A—B hold with Ko< ﬁ, Ky<2 and Ly < %, Ry < 21%1.

Then there exists a positive constant C =C(T,e,E|vy|??) such that for every
mteger n>1,

CK(N
sup  E|Z"(t) —o"(t)[* < ( ) (4.49)
te[0,TATY] np
Moreover, if Lo =0, we obtain
C
sup E[0.(Z™(t) —v"(t))|*P < —. (4.50)
t€[0,7] np

(ii) Assume that Hypothesis A—C hold with Ky < %, Ky<2 and Ls < %, Ry <2. Then
there exists a positive constant C =C(T,e,E|jvo||??) such that for every integer
n>1,

K(N)

T/\T:Lv C
A Al
0

- 2
Moreover, if Ly < -1 and Re =0, we have

CK(N
sup E||Z"(t)—v"(t)||2p§ ( )
te[0,TATN] np
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Proof. For t€[0,TA7Y], we have

27 () — o (1) = / e ) G)

(i) Applying the Burkholder-Davies-Gundy inequality, Hypothesis A, Lemma 4.2 and
Lemma 4.6, we obtain

E|Z"(t) =" (£)|*

t
<C,E| /d T O sl

T t
<CLPE [ Ko Kol ) Rl )

(T

<”(,D)<K6’+Kf sup  Ely" ()% +P K} sup Elln"(t)l2p>
n te[0,TATN] te[0,TATN]

_ GMEN)

npbP

Note that
0.(Z"(t) " (1) = / | D ) ()

When Ls =0, using Hypothesis B and Lemma 4.4, we deduce that

t
Elaz(Z”(t)—v”(t))lzpSCpEl/d ()||3z¢(8,77"(8))|I%2(U;H)d8|p
n(t

T t
<Cy (L1 / Lo+ L |0y (s) 2P ds
n dy (t)
C (T C,(T
2D (12112 sup Bl ) < 2,

<
€[0T np

(i) With the aid of Hypothesis C, the Burkholder-Davies-Gundy inequality, the
Fubini’s theorem and Lemmas 4.1, 4.5, we get

T/\Tfl\r

B[z -0 P

0

T/\TTILV t
<[ s DI v dsi

0 dn (t)

T dy, (s)
g]E/O (R0+R1||n”(s)||2+6R2|An”(s)|2)(/ dt) ds

T T/\TYIL\] T/\‘rﬁbv
<RTHRE [ )P eeraE [ L )Pas
0 0

C(T)K(N)

<
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If R, =0, by Hypothesis C and Lemma 4.6, it gives

t
EHZ"(t)*v"(t)HQ”SCpEI/ ||1/J(S,Tl"(8))H%Z(U;wdSIp

<Cp(— Lyl |Ro+Ru[n" (s)|?[Pds
" dn (t)
C
dDmmy s Bl o))
np t€[0,TATY]
Cp(T)K(N)
= np .
d
From Propositions 4.1, 4.2 and Lemma 4.7, we deduce that
COROLLARY 4.1. There exists a positive constant C'=C(T,e) such that for every

mteger n>1,

T/\TT]LV %
E/ 1270~ (o)2ar < CEE).
0

n

K(N)

T/\‘rg C
B[ 1200 - o)<
0

5. Speed of convergence

In this section, we devote to prove Theorem 1.1.

For the strong solution v of (2.12), v™ of (4.1), ™ of (4.17) and some M >0, define
the stopping time

M it {1 (0.7] ;/O (o) 1+ 1" (5) 2+ 1 #)ds > M }.

Let 7% SMATN, where 7V is defined by (4.31).
The followmg proposition states that the strong speed of convergence of Z" to v
(resp. v™ and 7™ to v) in L>=([0,TA7];H) (resp. L=([0,TAT];V) ) is 1.

PROPOSITION 5.1.  Let vg €V be Fo— measumble random variable. For any €€ [0,1),
assume Hypotheses A—C hold with Ko < 147, Lo=Rs=0 and eKy strictly smaller than
2(1—¢), then there exists positive constant C(T) such that for every M >0 and n€N,
we have

E(tesup 2z =v0F + T(|v”<t>—v<t>||2+||n"<t>—v<t>||2)dt>

[0,TAT]
K(T,M,N)
<)

- , (5.1)

where
K(T,M,N)=C(T)K(N)exp{C(T)e®®M} " C(by) is a positive constant,
1
K cC(IIN
and K(N)= e
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Proof. Fix M >0 and n>1. Then for any ¢ €[0,7], we have
tAT dp (tAT)
Z"(t/\T)—v(t/\T):—/ [F.(s,0™(9)) —F(s,v(s))]ds—s/ An"(s)ds
0 0

+f [0 () — (s, 0(s)JdV ().
0

Applying Ito’s formula to |Z"(tAT) —v(tAT)|?, we get

1Z"(tAT)—o(tAT)P = Ti(t),
i=1
where
J1(t) def —2/ T(Fs(s,v”(s)) —F_(s,0(s)),Z"(s) —v(s))ds,
0

dp, (tAT)
To(1) % _0e /O (A (s) — Av(s), Z"(5) — v(s))ds,

tAT

To(t) % e / (Au(s), Z7(s) — v(s))ds,
dp (EAT)

def

Ja(t) % / 5 (8)) — 65,0 () gy

Js(t) =2 / ([ (5)) — (5, 0()) AW (), 27 (5) —o(s))-

Using (2.11), J1(¢) can be rewritten as
Ji(t)=-2(1 —5)/0 T(Av”(s) — Av(s),v"™(s) —v(s))ds

—-2(1 —5)/ T(Av”(s) —Av(s),Z"(s) —v"(s))ds

0

> / (B () — v(s), 0™ (5)).0" (5) — u(s))ds
= (B () — () 0 (8)) + Blu(s).07(5) — ()], 27 (5) — o7 (5))ds

o Jia(t)+ 1 2(t) + 1 3() + J1a(t).

Referring to pages 21-23 in [2], the following estimates hold:

Jii(t)=—2(1—e) / " len(s) — v(s)|Pds,

1—¢
bo

Jal) <hl1-2) [ o) —o(s)]Pds+ / "127(s) —v(s) 2.

Using (2.11) and Young’s inequality, we obtain

Jat) <2 / 1B (5) —v(s).0"(5)).0" —v(s))]ds
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<2C / <||v"<s>|||v"<s>l—v<s>|||v"<s>—v<s>||
100" [[0" (5) —v(s)]|2 " (s) = v(s)| 2 )ds

tAT

<by / "l (s) —o(s)|Pds+ C(bo) / ([0 ()| + 00" [4)| 27 (5) — v(s) Pds

+C(bo)/0 T(Ilv"(5)||2+|3zv”|4)|Z”(5)*v"(S)IQdS-

J1,4(t) can be rewritten as
J174(t):—2/0 T(B(v"(s) —v(s),v"(s)),Z"(s) —v"(s))ds
“2 [ B0 ()~ (9),27(6) =07 (5

LT (1) + Ja(b).

Using (2.9) and Young’s inequality, we get
Ji(t)
1

SQ/O T(an(s)H%|Zn(3)—v"(s)ﬁ||Zn(s)_Un(S)H§an(S)H%‘Un(S)_U(S)l%

% [[0™(s) —v(5)[12 +1.0" [ (s) —v(s) || 2™ (5) —v" ()| 2]| 2" () —v"(3) ]| ¥ )ds
<C / (o™ ()1 2127(s) =™ (s)]| 2" (s) —v"(s)]
0

[0 ()12 [0 (5) = v (s)] |07 () = (s)]] +b50|\v”(8) —(s)|
+C(b0)|0:0" 1127 (5) — 0™ (5)[* + C(bo) [| 2" (5) —v" ()| ds

tAT

<bo / ") — v(s)|[Pds + C(bo) / [ ($)][127(5) — v(s)|2ds
+C(b) / (U 0 ()P + 100 )] 27 (5) — o (s) P
+C(b0)/0 "127(s) — o™ (5) | 2ds.
We deduce from (2.9) and (2.11) that

J2(1) §2/0 ' [(B(v(s), 2" (s) =v"(s)),0"(s) —v(s))|ds

1

+2/0 T|3z(Z”(S)*v"(S))IHv(S)HIU"(S)*v(S)Iva”(S)*v(S)II%dS

f ~ ~
= Jo1+J2 0.
Applying the Cauchy-Schwarz inequality and Young’s inequality, we obtain

J2,1(t) 3/0 (bollo™(8) —v()2+Clo(@) [o(s) 3127 (5) =" ()]
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+C(bo)llv(s)][[v" (s) —v(s)[*)ds

" "(s)—v(s)||%ds v(s "(s)—v(s)|?ds
Sbo/o [v"(s) —v(s)[|"d +C(bo)/0 [v(s)[[|Z27(s) —v(s)|"d
+C(bo) / lo() 127 (5)— v"(s) ds

+C/0 T(\U(S)\2+IIU(S)II)IIZ”(S)—v”(S)HQdS'

By the Holder inequality and Young’s inequality, we deduce that
tAT
T n n 3 1 n n
J22(t) S/O (10:(Z" =o™)P[u()]IZ + [l (s)[|2 " (s) = v(s)[[[v" (s) —v(s)|)ds

<), (bollo™ () —o(P+10- (2"~ Pls)

+C(bo)l[v(s)[l[o"(s) = v(S)\Q)dS

<t [ )= olPdsClba) [+ IoDIZ6) - uls) s

0

+C(bo)/0 T(1+||v(8)||)Z”(S)—v”(8)|2d8+0/0 T\3z(Z”—v”)|2||v($)II%d8~

Hence, we have

tAT

T3t [0 (s) — o) s+ Clbo) [ (@4 [els) |+ [ (D12 (5) —vlo) s
0 0
+C0) [ A" @I +007 o+ [ D12 ()" () s
) [+ +Io D2 5) =0 (5 ds

tAT
+c/ o(s)][210.(27 — v™) 2ds.
0

Replacing v by v", and using the Cauchy-Schwarz inequality and Young’s inequality,
we obtain

dn (LAT) dn (EAT)
Ja(t) < —26/0 Hv”(s)—v(s)ll2ds+2e/O " (s) =™ (s)[[[|[ 2" (s) —v"(s)l|ds
dy, (EAT)
+2€/0 [0 (s) —v(s)|[(In"(s) =" ()| + [ 2" (s) —v" (s)]])ds

do (tAT) dn (tAT)
<C(e) / " (s) — 0" (3)|ds + C(e) / 127(s) — v ()| ds.

We deduce from the Cauchy-Schwarz inequality and Young’s inequality that

tAT

J3(t) S%/d o )IIU(S)II(IIZ”(S)—v"(8)||+llv"(8) —v(s)l))ds

Sb(ﬁ/d (; )Ilv”(S)—v(8)||2d5+C(€)/ [0"(s) —v(s)[[[| 2" (s) —v" (s) | ds

dp (tAT)
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+Ce) /d C (@2 )~

n(tAT)

S+l ()l (s) —v(s)[)ds
S 2b0€/t/\7'
d

tAT
o7 ()= v(s) Pds +C(e) |
n (EAT)
T
HOET s )
N d, (tAT)<s<tAT

Using Hypothesis A, we obtain

127 (s) =

dy, (EAT)

v”(s)||2ds

J4(t)§/0 T(Kaln”(S)*v(S)IQJrusan (s) —v(s)II%)

tAT tAT
§2K3/ |Z”(s)—v(s)|2ds—|—8K4b0/
0

o (s) — v(s)]*ds
~orc, [ T|n”<s>—Z"<s>|2ds+sc/O " () — o (s) P

Choosing by > 0 satisfies

2(1—e)—bp(1—e)—

3bg — 2bge —eK4by > >0, for some >0
For t€[0,77, let

X(t) et sup

tAT
n def n
2™ (s)=v(s)%, Y (1) 3/ [[0"(s) —v(s)|"ds
s€[0,tAT] 0
Then,

t)+aY(t / O1(s)X (s)ds+0O2(t),

where the processes are defined as follows

=8

01(5) = Cbo) (L+ o(s) ||+ [l (5)]2 + 17|
0,(1) < 6?315 ]|J5(8)|+I(t)7

1(t) % ¢ (bo) / " o (S 0+ () )12 (5) — ™ () P
+C(b) / (Ao o))

tAT
e / 0.(2"
0

T tAT
oL s ()P 42K / 7™ (s) — 27 (s) %ds
N tAT<s<dy (tAT) 0
tAT
+€C’/ ||77”(s)7v"(s)\|2ds.
0

The definition of 7 implies that

|27 (s) =v" ()] *ds

n 3
v [lo(s)l|= ds

/ 01(s)ds < C(bo)(T+ M) ¢y, P—a.s
0

499



500 SPLITTING UP METHOD FOR 2D STOCHASTIC PRIMITIVE EQUATIONS

By the Burkholder-Davies-Gundy inequality, Hypothesis A, Proposition 4.2 and Corol-
lary 4.1, we obtain

B( s 156])

0<s<tAT

=C]E(/O : 146 (5,m™ (5)) = (5,0 () | Za 01y | 27 (5) = v(s) )

<PE( sup IZ"(S)—U(8)|2)+C(5)E/O T(Ks\n"(S)—U(S)I2+€K4||77"(S)—U(S)IIZ)dS

0<s<tAT

<BE( sup |Z"(s)—v(s)|2)+C(B)K3/O TE|Z"(S)—U(S)|2ds

0<s<tAT
tAT

+C(B)Ks / "Bl (s) — 27(s)Pds + C(B)ekKs / Ellq"(s) — 0™ ()] 2ds

L C(B)eK, / "EfJun(s) —v(s)|Pds

. _
C(T)K(N
<BEX()+C(HKs [ BX(s)ds+C@)erimy () + S,
0
where >0 will be chosen later. Using Theorem 3.1 and Lemmas 4.1, 4.4, 4.5, 4.6, we

have

EI(t) <C(bo)T? (E sup |Z"<s>v”<s>|4>

s€[0,tAT]

2

< [E / T<1+||v"<s>||6+|r"<s>|8+|v(s)2>ds}
L C(bo)TH (E sup ||Z"(s>—v"<s>||4) [E / T<1+|v<s>|4+||v<s>||2>ds}2

s€[0,tAT]
tAT %
(E / |v<s>||2ds)
0

T tAT
+CEOIE  sup ||v"(s)||2+2K31E/ " (s) — 27 () 2ds
0

n 4, (tAT)<s<tAT

1
4

+C(T) (E sup |0:(Z2"(s) —v"(S))|8>

s€[0,tAT]

—i-EC’E/MT 7™ (s) —v™(s)||?ds < w
0 n
Choosing 5> 0 such that

26(1+ CoeC oMy <1/
then suppose K is small enough to ensure that

C(B)eK4(1+ CoeC )My < %

Then, using similar argument as Lemma 3.9 in [8], we deduce that

X()+ SV W< [TO+ swp [M(s)[(1+Coe M),

0<s<tAT
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Taking expectation and by estimates of EI(¢), we obtain

EX (T)+ %]EY(T)

C(T)K(N

t
<2 ) (14 CoeC M) L () K3(1 +coec<b°>M)/ EX (s)ds.
0

Applying the Gronwall inequality, we have
TYK(N
£x (1) + 2B (1) <2 ST | goeceony. e [o8) 0,01+ 0 ),

where C(T),Cy,C(by),C(8) is independent of n.
Finally, with the aid of Proposition 4.2, we have

TAT TNAT
]E/O Hn"(t)f’u(t)llzdtsml/0 ™ (t) —v™(2)||2dt + EY (T)

Xp {C(T)ec(bO)M}.

We complete the proof. 0

REMARK 5.1.  As explained in the introduction, the index of ||v|| appeared in I(t) has
to be strictly less than 2. Otherwise, EI(f) can not be controlled because of the lack of
uniform V' —norm estimates of v.

For every M =M (n)>0,N=N(n)>0, tc[0,7] and any integer n>1, let

=

N fuen: s [ (@)l (s <

i=0,--,n—1Jt; At

and [ (o(a)l+ o7 6) P+ o) s < 21}

THEOREM 5.1. Under the same conditions as Proposition 5.1, we have

E IQ#”,”N(t)k:SSlP (‘” (t) —v(te) |+ " () —v(te) )] s KLY, T)’ (5.2)
B 1oy [ Q00— 007+ )~ Phts| < 54 MNT). 6
where K(M,N,T):C(T)f((N)exp{C(T) C<bo>M} K(N)=LeC@n,

Proof.  On QM:N(t), we have 7 >t. With the aid of Proposition 5.1, we deduce
that (5.3) holds. For (5.2), by the Holder inequality and Lemma 4.6, we have

te41 AT

E( sup |Z"(t;€/\7')—77"(t,;/\7')|2> :]E< sup &% An"(s)ds|2>

k=0,---,n k=0,---,n t AT

T tetr1 AT
<2=E| sup / |An™(s)|*ds
n k:07,..,n t AT
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In view of Z"(ty) =v"(t})=n"(t; ), we deduce from Proposition 5.1 that

E[Ingz‘/f)N(T) sup (|U”(tz)—U(tk)|2+|nn(t;)_v(tk)|2)}Sw

k=0,n n

Using Hypothesis A and Lemma 4.5, for k=0,---,n—1, we get

te[tk/\T7tk+1/\T)

IE( sup In"(t)n”(ti)F)

that 1 AT €
<E| [ G DI+ Kot Kb )P+l (o) s
t

kN\T

Nl=

+IEM - Tlnn(s)—n"(t$)|2(Ko+K1In”(8)l2+5K2”"n(s)Q)ds}

kN\T
<1E 5 HOETH(SIE Oz 5 E|[n™(s)|?
< sup In"™ () —n" (&)1 ) + sup  El[ln"(s)[I".
2 LE[tR ATt 1 AT) T se[0,TAT]
It follows that

C(T)E(N)

E<te[ sup n"(t)—n“(t$>|2><

tkAT,tk+1AT)

Using Hypothesis A and Hypothesis C, we obtain

B swp () —v(t))?)

tE[tR AT i1 AT)

<i( swp /t[|<v<s>—v(tz>,Av<s>>|+|<v<s>—v(tp,B(v(s),v(s)»]ds)

te[tk/\T,tk+1/\T) tr

(s [ [Ror RilblDle(s) o7

tE[tk/\T,t]H,l /\7') tr

+ Ko+ Kifo(s)? + 2 o(s)] ] ds )

-

SB[ o) o tDP Ko+ Kalo(s) P+ eKallos) P)ds)

tr

<[ s [ (=2l P2l |+ o)) - ot

tE[LR AT tlp1 AT) J g,

10: (v(s) — o (B e(s)|1F fo(s) ) ds|
-HE( sup / {(RO+R1|U(8)\)|U(5)—U(t;)|

tE[LL AT ey 1 AT) J g,
+ Ko+ K [o(s)[* + e Ko (s)[2] ds )
tpr1 AT 1
+]E(/ [0(s) = 0 ()P (Ko + K [o(s) 2+ K Ju(s)]2)ds )
t

ENT

(5.4)
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<SE( s o(t)—u(t))

1
2 tE[LL AT, tlp1AT)

C
+= (14 s EBlo@)P+ swp B0t +un)]h).
n te[0,TAT) te[0,TAT)

N—

Hence, by Lemmas 4.2, 4.4, 4.5, we get

E( sup |v(t)—v(t2‘)|2> <

te[tk/\T,tk+1AT)

Using Lemma 4.6, we have

E( sup |v”(t)—v”(t:)|2>

tE[tk/\T7tk+1/\T)
C n n
<= (14 s E( 0t )Y)
n te[0,TAT)
OT)K(N)

R

<

We complete the proof. ]
For any n>1, define the error term

def

en(D)™ sup (o () —v(t)|+n" () —v(to)])

k=0,---,n
T T
+</ o™ (s)— v(s)] ds> +</ 1" (s) — v(s)] ds>

Now, we can prove the strong speed of the convergence in probability.

1
2 2

Proof. (Proof of Theorem 1.1). Fix a sequence [(n) — 0o, as n— 0o. Let M (n)=
In(In(In(i(n)))), N(n)=1In(ln(l(n))), then M(n)— oo and N(n)— oo. Note that

P((QM N )e(T))

tip 1 AT n
SP< sup /t ([ ()P l™ ()11 + " (s)][|r" (5) ) ds > %)

i=0,---n—1J¢t; AT
T
+P( / (o)l + 10" ()12 + [ [)ds > M (n)).

Clearly, by Lemmas 4.2, 4.4, we have

tit1 AT e
w(_sw [ R ool s> Y0)

—p(_ s / (0" () ||v"<>||2+|r<>|||r<>||>ds<NfL"))

—1 as n—oo.
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Using Theorem 3.1 and Lemmas 4.1, 4.4, we obtain

T
PL (1@ 157 s> M) 0 a5 nsoc.

Hence, when n — oo,

P((Q%”%N(">)C(T>) 0. (5.5)
Now, we deduce from Chebyshev’s inequality and Theorem 5.1 that
P(en(T) > l(jﬁ))
S]P)((QM(H N(n)ye )+ o) IE( A4<n),N<n)(T)ei(T))
<P ((QM(") N(n)ye )+c (T) Nin eCON s - %eXp{C’(T)(ln(ln(l(n))))c(b")}
<P((QY N (1)) +0(T) zn o ~exp { C(T) (1))}

Since C(T)(In(In(I(n))))¢ V1 —2In(i(n)) — —oo, we have

—
3
—

RIOTE0) ~exp { C(T)(In(In(1(n)))) ™"} 0. (5.6)

We complete the proof. ]
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