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A SINGULAR LIMIT IN A FRACTIONAL REACTION-DIFFUSION
EQUATION WITH PERIODIC COEFFICIENTS∗

ALEXIS LÉCULIER†

Abstract. We provide an asymptotic analysis of a non-local Fisher-KPP-type equation in periodic
media and with a non-local stable operator of order α∈ (0,1). We perform a long time-long range scaling
in order to prove that the stable state invades the unstable state with a speed which is exponential in
time.
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1. Introduction

1.1. The equation. We are interested in the following equation:{
∂tn(x,t)+Lα(n)(x,t) =µ(x)n(x,t)−n(x,t)2, (x,t)∈Rd× [0,+∞)

n(x,0) =n0(x)∈C∞c (Rd,R+).
(1.1)

In the above setting, µ is a 1-periodic function, α∈ (0,1) is given and the term Lα

denotes a fractional elliptic operator which is defined as follows:

Lα(n)(x,t) :=−PV
∫
Rd

(n(x+h,t)−n(x,t))β(x,
h

|h|
)

dh

|h|d+2α
, (1.2)

where β :Rd×Sd−1→R is a 1-periodic smooth function such that for all (x,θ)∈Rd×
Sd−1

β(x,θ) =β(x,−θ) and 0<b≤β(x,θ)≤B,

with b and B positive constants. When β is constant, we recover the classical fractional
Laplacian (−∆)α.

The main aim of this paper is to describe the propagation front associated with
(1.1). We show that the stable state invades the unstable state with an exponential
speed.

1.2. The motivation. Equation (1.1) models the growth and the invasion of
a species subject to non-local dispersion in a heterogeneous environment. Such models
describe the situations where individuals can jump (move rapidly) from one point to the
other, for instance because of the wind for seeds or human transportation for animals.
The function n stands for the density of the population in position x at time t. The
diffusion term represented by the operator Lα describes the motions of individuals. The
“logistic term” µ(x)n(x,t)−n(x,t)2 represents the growth rate of the population. The
heterogeneity of the environment is modeled by the periodic function µ. The regions
where µ is positive represent areas where the species are favored whereas µ negative
prevents the growth of the species. Conversely, the term −n2 characterizes the death
term because of some “logistic” considerations, as for example the quantity of food.
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The operator Lα generalizes the fractional Laplacian (−∆)α which models “ho-
mogeneous” jumps: the individuals jump in every direction with the same frequency.
Whereas the operator Lα models “heterogeneous” jumps: the individuals prefer to jump
in the direction where β is high. Also, the frequency of jumps will depend on the posi-
tion x of the individuals. Note that for the one dimensional case, for a regular bounded

function n, (1−α)Lα(n)(x) tends to −β(x)4 n′′(x) as α tends to 1− which corresponds
to a heterogeneous local diffusion. Moreover, the function β will affect the principal
eigenvalue λ1 of Lα−µ(x)Id (and consequently the negativity of λ1 which is a crite-
rion for the existence of a positive bounded stationary state). However, the hypothesis
0<b≤β≤B implies that the techniques used for the fractional Laplacian are robust
and can be extended to the case of the operator Lα.

Equation (1.1) was first introduced by Fisher in [17] (1937) and Kolmogorov, Petro-
vskii and Piscunov in [19] (1938) in the particular case of a homogeneous environment
(µ= 1) and a standard diffusion (Lα=−∆) which corresponds to the case α= 1 and
β= 1. In [1], Aronson and Weinberger proved a first similar result to our result for
the case introduced by Fisher and Kolmogorov, Petrovskii and Piscunov. In this case,
the propagation is with a constant speed independent of the direction. In [18], Freidlin
and Grtner studied the question with a standard Laplacian in a heterogeneous environ-
ment (µ periodic). Using a probabilistic approach, they showed that the speed of the
propagation is dependent on the chosen direction e∈Sd−1. But, the speed c(e) in the
direction e is constant. Other proofs of this result, using PDE tools, can be found in [5]
and [21]. In the case of the fractional Laplacian and a constant environment, Cabré
and Roquejoffre in [9] proved the front position is exponential in time (see also for in-
stance [12] for some heuristic and numerical works predicting such behavior and [20] for
an alternative proof). Then in [8], Cabré, Coulon and Roquejoffre investigate the speed
of propagation in a periodic environment modeled by Equation (1.1) but considering
the fractional Laplacian instead of the operator Lα. One should underline the fact that
in the fractional case, the speed of propagation does not depend anymore on the direc-
tion. They proved that the speed of propagation is exponential in time with a precise
exponent depending on a periodic principal eigenvalue.

The objective of this work is to provide an alternative proof of this property using
an asymptotic approach known as “approximation of geometric optics”. We will be
interested in the long-time behavior of the solution n. We demonstrate that in the set{

(x,t) | |x|<e
|λ1|t
d+2α

}
, as t tends to infinity, n converges to a stationary state n+ and

outside of this domain n tends to zero. The main idea in this approach is to perform
a long time-long range rescaling to catch the effective behavior of the solution (see for
instance [15,16] and [3] for the classical Laplacian case). This paper is closely related to
[20] where the authors Méléard and Mirrahimi have introduced such an “approximation”
for a model with the fractional Laplacian and a simpler reaction term (n−n2). A very
recent work, [7], uses also the techniques introduced in [20] (known as the introduction
of an adapting rescaling and the investigation of adapted sub and super solution) to
investigate an integro-differential homogeneous Fisher-KPP-type equation: the operator
Lα is replaced by J ∗n−n where the kernel J is fat tailed but does not have singularity
at the origin.

This paper was initially written with a fractional Laplacian. At its completion,
we became aware of a preprint by Souganidis and Tarfulea [22] which proves a result
quite close to ours in the case of spatially periodic stable operators. Our proof is quite
different since their approach is based more on the theory of viscosity solutions. We
have verified that our approach works for the model treated in [22] with no additional
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idea. We present our result with the operator Lα given by (1.2), where the proof for
the fractional Laplacian applies almost word by word. In the course of the paper, we
explain the points of our proof that allow to reach the generality of [22].

1.3. The assumptions. For the initial data we will assume

n0∈C∞c (Rd,R+), n0 6≡0. (H1)

The function µ is a 1-periodic function, i.e.

∀k∈{1,...,d}, µ(x1,...,xk+1,...,xd) =µ(x1,...,xd). (H2)

Under the assumptions on β, the operator Lα−µ(x)Id admits a principal eigenpair
(φ1,λ1) by the Krein-Rutman theorem (see [2]) that is{

Lαφ1(x)−µ(x)φ1(x) =λ1φ1(x), x∈Rd,
φ1 periodic, φ1>0, ‖φ1‖= 1.

(1.3)

To assure the existence of a bounded, positive and periodic steady solution n+ for (1.1),
we will assume that the principal eigenvalue λ1 is negative:

λ1<0. (H3)

Note that such stationary solution is unique in the class of positive and periodic sta-
tionary solutions (see [4]).

In Section 4, we will study a more general equation:{
∂tn(x,t)+Lα(n)(x,t) =F (x,n(x,t)), (x,t)∈Rd× [0,+∞)

n(x,0) =n0(x)∈C∞c (Rd,R+).
(1.4)

We make the following assumptions for F :

(i) ∀s∈R, x 7→F (x,s) is periodic,

(ii) F (x,0) = 0,

(iii) ∃c,C >0 such that ∀(x,s)∈Rd× R, −c≤∂s(
F (x,s)

s
)≤−C,

(iv) ∃M>0,∀(x,s)∈Rd× [M,+∞[, F (x,s)<0.

(H4)

We will denote ∂s(F )(x,0) by µ(x) and we still denote by (λ1,φ1) the principal eigenvalue
and eigenfunction of Lα−µ(x)Id. We also still suppose (H3) (i.e. λ1 is strictly negative).

1.4. The main result and the method. We introduce the following rescaling

(x,t) 7−→
(
|x| 1ε x
|x|
,
t

ε

)
. (1.5)

We perform this rescaling because one expects that for t large enough, n is close to the

stationary state n+ in the following set
{

(x,t)∈Rd×R+ | |x|<e
|λ1|t
d+2α

}
and n is close to

0 in the set
{

(x,t)∈Rd×R+ | |x|>e
|λ1|t
d+2α

}
. The change of variable (1.5) will therefore

respect the geometries of these sets. We then rescale the solution of (1.1) as follows

nε(x,t) =n(|x| 1ε x
|x|
,
t

ε
)
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and a new steady state

n+,ε(x) =n+(|x| 1ε x
|x|

).

We prove:

Theorem 1.1. Assuming (H1), (H2) and (H3), let n be the solution of (1.1). Then

(i) nε→0, locally uniformly in A=
{

(x,t)∈Rd×(0,∞)| |λ1| t< (d+2α)log |x|
}

,

(ii)
nε
n+,ε

→1, locally uniformly in B=
{

(x,t)∈Rd×(0,∞)| |λ1| t> (d+2α)log |x|
}

.

To provide the main idea to prove Theorem 1.1, we first explain the main element
of the proof in the case of constant environment which was introduced in [20].
A central argument to prove such a result in the case of a constant environment, is that,
using the rescaling (1.5), as ε→0, the term

(
(−∆)α(n)n−1

)
(|x| 1ε−1x, tε ) vanishes. More

precisely, one can provide a sub and a super-solution to the rescaled equation which are
indeed a sub and a super-solution to a perturbation of an ordinary differential equation
derived from (1.1) by omitting the term (−∆)α. They also have the property that when
one applies the operator f 7→ (−∆)α(f)f−1 to such functions, the outcome is very small
and of order O(ε2) as ε tends to 0.

In the case of periodic µ, we use the same idea. However, in this case, the
sub and super-solutions are multiplied by the principal eigenfunction and, the term(
Lα(n)n−1

)
(|x| 1ε−1x, tε ) will not just tend to 0 as in [20] but also compensate the pe-

riodic media. To prove the convergence of nε, dealing with this periodic term, we use
the method of perturbed test functions from the theory of viscosity solutions and ho-
mogenization (introduced by Evans in [13] and [14]). Note that we also generalize the
arguments of [20] to deal with a more general integral term Lα while in [20], only the
case of the fractional Laplacian was considered. In the last part, we will also generalize
Theorem 1.1 to the case of Fisher-KPP reaction term:

Theorem 1.2. Assuming (H1), (H2), (H3) and (H4), let n be the solution of (1.4).
Then
(i) nε→0, locally uniformly in A=

{
(x,t)∈Rd×(0,∞)| |λ1| t< (d+2α)log |x|

}
,

(ii)
nε
n+,ε

→1, locally uniformly in B=
{

(x,t)∈Rd×(0,∞)| |λ1| t> (d+2α)log |x|
}

.

The proof of this Theorem follows from an adaptation of the proof of Theorem 1.1.
In Section 2, we introduce preliminary results and technical tools. In Section 3,

after the rescaling, we provide a sub and a super-solution and demonstrate Theorem
1.1. In Section 4, we provide the points of the proof of Theorem 1.2 that differ from the
proof of Theorem 1.1.

2. Preliminary results
We first state a classical result on the fractional heat kernel.

Proposition 2.1 ( [10]). There exists a positive constant C larger than 1 such that
the heat kernel pα(x,y,t) associated with the operator ∂t+Lα verifies the following in-
equalities for t>0:

C−1×min(t−
d
2α ,

t

|x−y|d+2α
)≤pα(x,y,t)≤C×min(t−

d
2α ,

t

|x−y|d+2α
). (2.1)

The proof of this proposition is given in [10].
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Now we use this proposition to demonstrate that beginning with a positive com-
pactly supported initial data leads to a solution with algebraic tails.

Proposition 2.2. Assuming (H1), then there exist two constants cm and cM depending
on n0, d, α and µ such that:

cm
1+ |x|d+2α

≤n(x,1)≤ cM
1+ |x|d+2α

.

Proof. First, we define M := max(maxn0,max|µ|), we easily note that the constant
functions 0 and M are respectively sub and super-solution to our problem. Then, thanks
to the comparison principle (which is given in [9]), we have the following inequalities,
for all (x,t)∈Rd× [0,+∞[:

0≤n(x,t)≤M.

Let n and n be the solutions of the two following systems:{
∂tn+Lαn=−2Mn,

n(x,0) =n0(x),
(2.2)

and {
∂tn+Lαn= max|µ| n,
n(x,0) =n0(x).

(2.3)

Thanks to Proposition 2.1, we can solve (2.2) and find

n(x,t) =e−2Mt

∫
Rd
pα(x,y,t)n0(y)dy,

Thus for any t>0, we obtain

e−2Mt

∫
supp(n0)

C−1×n0(y)min(t−
d
2α ,

t

|x−y|d+2α
)dy≤n(x,t)

⇒e−2M
∫
supp(n0)

C−1×n0(y)min(1,
1

|x−y|d+2α
)dy≤n(x,1).

Thanks to the dominated convergence theorem, we have:

(1+ |x|d+2α)×e−2M
∫
supp(n0)

C−1

×n0(y)min(1,
1

|x−y|d+2α
)dy −→
|x|→∞

e−2M
∫
supp(n0)

C−1×n0(y)dy.

Therefore, we conclude by a compactness argument that for any x∈Rd:

e−2MC−1

(1+ |x|d+2α)
≤n(x,1), (2.4)

where the last C is a new constant depending only on n0. Moreover thanks to the
comparison principle, we have that for any t≥0

n(x,t)≤n(x,t)⇒ e−2MC−1

(1+ |x|d+2α)
≤n(x,1). (2.5)
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In the same way, we can solve (2.3) and the solution is

n(x,t) =emax|µ|t
∫
Rd
n0(y)×pα(t,x,y)dy.

Using similar arguments, we get that for all x∈Rd,

n(x,1)≤n(x,1)≤ Cemax|µ|t

(1+ |x|d+2α)
. (2.6)

By combining (2.5) and (2.6) together, we finally obtain

cm
1+ |x|d+2α

≤n(x,1)≤ cM
1+ |x|d+2α

. (2.7)

We next provide a technical lemma which will be useful all along the article. The
main ideas of the proof of the lemma come from [20] by S. Méléard and S. Mirrahimi for
Point (i) and [11] by A.C. Coulon Chalmin for Point (ii). To this end, we first introduce
the computation of Lα of a product of functions:

Lα(fg)(x,t) =f(x,t)Lαg(x,t)+g(x,t)Lαf(x,t)−K̃(f,g)(x,t),

with,

K̃(f,g)(x,t) :=C ′ PV

∫
Rd

(f(x,t)−f(x+h,t))(g(x,t)−g(x+h,t))

|h|d+2α
β(x,

h

|h|
)dy.

Lemma 2.1. Let γ be a positive constant such that

γ∈
{

[0,2α[ if α< 1
2

]2α−1,1[ if 1
2 ≤α<1,

χ :R→Rd be a C1 periodic, strictly positive function and g(x) := 1
1+|x|d+2α . Then there

exists a positive constant C, which does not depend on x, such that, for all x∈Rd:

(i) for all a>0,

|Lαg(ax)|≤a2αCg(ax),

(ii) for all a∈]0,1],

|K̃(g(a.),χ)(x)|≤ Ca2α−γ

1+(a|x|)d+2α
=Ca2α−γg(ax).

The proof is given in the Appendix. Note that we will not use the assumption b≤β
in the proof of Lemma 2.1 (but only β≤B). The assumption b≤β is necessary for
Proposition 2.1 and also to ensure the existence and the positiveness of φ1.

Remark 2.1. If we want to reach the same level of generality as in [22], we just have
to adapt the previous Lemma to an operator Lα with a kernel β of the form β(x,y)
where β is a 1-periodic with respect to x, smooth function from Rd×Rd such that for
all (x,y)∈Rd×Rd

β(x,y) =β(x,−y) and 0<b≤β(x,y)≤B,

with b and B positive constants. The interested reader can verify that the proof of
Lemma 2.1 is robust enough and can easily be adapted to such kernels.
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3. The proof of Theorem 1.1
In this section we will provide the proof of Theorem 1.1. Let us rewrite (1.1) with

respect to the rescaling given by (1.5)

ε∂t( n(|x| 1ε x
|x|
,
t

ε
) ) =−Lα(n)(|x| 1ε x

|x|
,
t

ε
)+n(|x| 1ε x

|x|
,
t

ε
)[µ(|x| 1ε x

|x|
)−n(|x| 1ε x

|x|
,
t

ε
)].

(3.1)

Notation 3.1. For any function v :Rd×R+→R and w :Rd→R we denote by vε and
wε the rescaled functions given by:

vε(x,t) :=v(|x| 1ε x
|x|
,
t

ε
) and wε(x) =w(|x| 1ε−1x).

One can write the first term in the right-hand side of (3.1) in terms of nε in the following
way.

Lα(n)(|x| 1ε−1x, t
ε

) =−PV
∫
Rd

n(|x| 1ε−1x+h, tε )−n(|x| 1ε−1x, tε )

|h|2α+d
×β(|x| 1ε−1x, h

|h|
)dh

=−PV
∫
Rd

(
nε

(∣∣∣|x| 1ε−1x+h
∣∣∣ε (|x| 1ε−1x+h)

||x| 1ε−1x+h|
,t

)
−nε(x,t)

)
βε(x,

h
|h| )dh

|h|2α+d
.

We can hence define:

Lαε (nε)(x,t) :=Lα(n)(|x| 1ε x
|x|
,
t

ε
),

which allows us to write (3.1) as below:

ε∂tnε(x,t) =−Lαε nε(x,t)+nε(x,t)[µε(x)−nε(x,t)]. (3.2)

In the same way we define

K̃ε(nε,χε)(x,t) := K̃(n,χ)(|x| 1ε−1x, t
ε

).

Moreover, according to the inequalities (2.7), we can consider n(x,1) as our initial data
instead of n(x,0). So we can replace the assumption (H1) by:

cm
1+ |x|d+2α

≤n0(x)≤ cM
1+ |x|d+2α

⇒ cm

1+ |x| d+2α
ε

≤n0,ε(x)≤ cM

1+ |x| d+2α
ε

. (H1’)

In the next subsection we are going to provide sub and super-solutions to (3.2)
which will allow us to demonstrate Theorem 1.1 in a second subsection.

3.1. Sub and super-solution to (3.2).

Theorem 3.1. We assume (H2) and (H3) and we choose positive constants Cm<
|λ1|

maxφ1

and CM > |λ1|
minφ1

and δ such that

0<δ≤min(
√
CM minφ1−|λ1|,

√
|λ1|−Cmmaxφ1).

Then there exists a positive constant ε0<δ such that for all ε∈]0,ε0[ we have:

(i) fMε (t,x) =φ1,ε(x)× CM

1+e−
t
ε
(|λ1|+ε2)− δ

ε |x|
d+2α
ε

is a super-solution of (3.2),
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(ii) fmε (x,t) =φ1,ε(x)× Cme
− δ
ε

1+e−
t
ε
(|λ1|−ε2)− δ

ε |x|
d+2α
ε

is a sub-solution of (3.2).

(iii) Moreover, if we assume (H1’) and Cm<
cm

max |φ1|
and CM >

cM
min |φ1|

where cm

and cM are given by (H1’) then for all (x,t)∈Rd× [0,+∞[,

φ1,ε(x)× Cme
−δ
ε −εt

1+e−
|λ1|t+δ

ε |x| d+2α
ε

≤nε(x,t)≤φ1,ε(x)× CMe
εt

1+e−
|λ1|t+δ

ε |x| d+2α
ε

. (3.3)

Proof. Since the proofs of (i) and (ii) follow from similar arguments, we will only
provide the proof of (i) and (iii).

Proof. (Proof of (i).) We define:

ψ(x,t) :=
CM

1+e−t(|λ1|+ε2)− δε |x|d+2α
. (3.4)

Then, noticing that φ1 is independent of t, we first bound ∂tψε from below,

∂tψε(x,t) =
CM

(|λ1|+ε2)
ε e−t

(|λ1|+ε
2)

ε − δε |x| d+2α
ε

(1+e−t
(|λ1|+ε2)

ε − δε |x| d+2α
ε )2

=
ψε(x,t)

ε
[(|λ1|+ε2)

e−t
(|λ1|+ε

2)
ε − δε |x| d+2α

ε

1+e−t
|λ1|+ε2)

ε − δε |x| d+2α
ε

]

≥ψε(x,t)
ε

[|λ1|+ε2−ψε(x,t)φ1,ε(x)]. (3.5)

The last inequality is obtained from the definition of CM and ε. Actually, for such CM
and ε, we have, for any positive non-null constant A, the following relation:

A(|λ1|+ε2)

1+A
≥|λ1|+ε2− CM minφ1

1+A
,

because,

|λ1|+ε2− CM minφ1
1+A

=
(1+A)(|λ1|+ε2)−CM minφ1

1+A

=
A(|λ1|+ε2)−(CM minφ1−|λ1|−ε2)

1+A

≤ A(|λ1|+ε2)

1+A
.

We also compute Lαε (fMε )(x,t) as a fractional Laplacian of a product of functions,

Lαε (fMε )(x,t) =φ1,ε(x)Lαεψε(x,t)+ψε(x,t)L
α
ε φ1,ε(x)−K̃ε(ψε,φ1,ε)(x,t) (3.6)

with K̃ given in Section 2. Replacing this in Equation (3.2) and using the two previous
results (3.5) and (3.6), we find:

ε∂tf
M
ε (x,t)+Lαε f

M
ε (x,t)−fMε (x,t)[µε(x)−fMε (x,t)]

≥fMε (x,t)(|λ1|+ε2−fMε (x,t))+φ1,ε(x)Lαεψε(x,t)+ψε(x,t)L
α
ε φ1,ε(x)

−K̃ε(ψε,φ1,ε)(x,t)−µε(x)fMε (x,t)+fMε (x,t)2

=ε2fMε (x,t)+φ1,ε(x)Lαεψε(x,t)−K̃ε(ψε,φ1,ε)(x,t),
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where we have used (1.3) and (H3) for the last equality.

In order to control Lαεψε(x,t) and K̃ε(ψε,φ1,ε)(x,t), we are going to use Lemma 2.1.

For, Lαεψε(x,t), noticing that ψε(x,t) =CMg(e
−t(|λ1|+ε

2)−δ
ε(1+2α) |x| 1ε−1x), and thanks to the

point (i) of Lemma 2.1, we obtain:

−Ce−2α
t(|λ1|+ε

2)+δ
ε ψε(t,x)≤Lαεψε(t,x).

But, comparing the growths, there exists ε1>0 such that for ε<ε1 and for all t≥0:

CM ×Ce−2α
t(|λ1|+ε

2)+δ

ε(d+2α) − ε
2

3
≤0,

hence:

−ε
2

3
ψε(x,t)≤Lαεψε(x,t).

Now we deal with K̃ε(ψε,φ1,ε)(x,t) in a similar fashion. Thanks to Lemma 2.1 (ii), we
find:

K̃ε(ψε,φ1,ε)(x,t) = K̃(ψ,φ1)(|x| 1ε x
|x|
,
t

ε
)

≤Ce−
(2α−γ)[t(|λ1|+ε

2)+δ]
ε ψ(|x| 1ε x

|x|
,
t

ε
)

=Ce−
(2α−γ)[t(|λ1|+ε

2)+δ]
ε ψε(x,t).

Then, noticing that for any choice of α, 2α−γ is strictly positive, we deduce that there
exists ε2>0 such that for all ε<ε2:

Ce−(2α−γ)
t(|λ1|+ε

2)+δ
ε − ε

2minφ1
3

≤0.

We deduce that

K̃ε(ψε,φ1,ε)(x,t)≤
ε2

3
ψε(x,t)minφ1≤

ε2

3
ψε(x,t)φ1,ε(x).

We set:

ε0 = min(ε1,ε2).

Then, we conclude that for ε≤ε0, we have:

ε∂tf
M
ε (x,t)+Lαε f

M
ε (x,t)−fMε (x,t)[µε(x)−fMε (x,t)]

≥ε2fMε (x,t)+φ1,ε(x)Lαεψε(x,t)−K̃ε(ψ,φ1)(x,t)

≥ε2fMε (x,t)− ε
2

3
φ1,ε(x)ψε(x,t)−

ε2

3
φ1,ε(x)ψε(x,t)

≥ ε
2

3
fMε (x,t)

≥0.

Therefore fMε is a super-solution of (3.2) and this concludes the proof of the point (i).
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Proof. (Proof of (iii).) From (H1’), since max|φ1|Cm<cm and cM <CM min|φ1|,
we have:

fmε (x,0) =
φ1,ε(x)×Cme−

δ
ε

1+e−
δ
ε |x| d+2α

ε

=
φ1,ε(x)×Cm
e
δ
ε + |x| d+2α

ε

≤ cm

1+ |x| d+2α
ε

≤nε(x,0)≤fMε (x,t).

Then, according to the comparison principle, we obtain:

φ1,ε(x)× Cme
− δε

1+e−
t
ε (|λ1|−ε2)− δε |x| d+2α

ε

≤nε(x,t)≤φ1,ε(x)× CM

1+e−
t
ε (|λ1|+ε2)− δε |x| d+2α

ε

,

and hence

φ1,ε(x)× Cme
−δ
ε −εt

1+e−
|λ1|t+δ

ε |x| d+2α
ε

≤nε(x,t)≤φ1,ε(x)× CMe
εt

1+e−
|λ1|t+δ

ε |x| d+2α
ε

. (3.3)

3.2. Convergence to the stationary state. Thanks to the inequalities (3.3),
we can now prove Theorem 1.1. To prove this theorem, we are going to follow the ideas
of Méléard and Mirrahimi in [20].

Proof. (Proof of Theorem 1.1.) First, we perform a Hopf-Cole transformation

uε(x,t) :=ε lognε(x,t) and u+,ε(x) :=ε logn+,ε(x). (3.7)

Taking the logarithm in (3.3) and multiplying by ε, we find:

−ε2t+ε logCmφ1,ε−ε log(1+e−
|λ1|t+δ

ε |x|
d+2α
ε )−δ≤uε(x,t)

and uε(x,t)≤ε2t+ε logCMφ1,ε−ε log(1+e−
|λ1|t+δ

ε |x|
d+2α
ε ).

Define

u(x,t) = liminf
ε→0

uε(x,t), u(x,t) = limsup
ε→0

uε(x,t), for all (x,t)∈Rd×(0,+∞).

Letting ε→0, we obtain

min(0, |λ1| t+δ−(d+2α)log |x|)−δ≤u(x,t)

≤u(x,t)≤min(0,|λ1| t+δ−(d+2α)log |x|).

We then let δ→0 and we obtain

u(x,t) :=u(x,t) =u(x,t) = min(0,|λ1| t−(d+2α)log |x|).

We deduce that uε converges locally uniformly in Rd× [0,+∞[ to u since the above
limits are locally uniform in ε.

Proof. (Proof of (i).) For any compact set K in A, there exists a positive constant
a such that for all (x0,t0)∈K, we have u(x0,t0)<−a. It is thus immediate from (3.7)
that nε converges uniformly to 0 in K⊂A. This concludes the proof of (i).

Proof. (Proof of (ii).) We divide (3.2) by nε and we obtain

∂tuε+Lαε nεn
−1
ε =µε−nε,
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that we rewrite as below,

nε=n+,ε+(−∂tuε−Lαε nεn−1ε +µε−n+,ε). (3.8)

Step 1:
nε(x0,t0)

n+,ε(x0)
≥1+o(1) in every compact set of B.

Let K be a compact set of B and (x0,t0)∈K. We choose ν a positive constant small
enough such that for all (y,s)∈K,

(d+2α)log |y|< |λ1|s−2ν and 2ν < |λ1|s. (3.9)

First, we define

ϕ(x,t) := min(0,−(d+2α)log |x|+ |λ1|t0−ν)−(t− t0)2.

It is easy to verify that u−ϕ achieves a local strict in t and a global in x minimum at
(x0,t0). Then, we define

ϕ
ε
(x,t) :=−εlog(1+e−

|λ1|t0−ν
ε |x|

d+2α
ε )−(t− t0)2.

Thus, (ϕ
ε
)ε converges locally uniformly to ϕ. Moreover, since n+ is periodic and strictly

positive, we have that u+,ε converges to 0, hence uε−(ϕ
ε
+u+,ε)−→

ε→0
u−ϕ locally uni-

formly. Thus, there exists (xε,tε)∈Rd× [0,+∞[ such that (xε,tε) is a minimum point
(local in t and global in x) of (uε−ϕε−u+,ε) and (uε−ϕε−u+,ε)(xε,tε)→0. Since
(x0,t0) is a strict in t local minimum of u−ϕ, one can choose tε such that tε→ t0. We
deduce that

∂tuε(xε,tε) =∂tϕε(xε,tε) =−2(tε− t0) =o(1). (3.10)

One should ensure that (xε)ε→0 have all their accumulation points in B(0,e
|λ1|t0−ν
d+2α )

as ε tends to 0. This is the case because, at time t= t0, in B(0,e
|λ1|t0−ν
d+2α ), uε−ϕε−u+,ε

tends to 0, whereas in B(0,e
|λ1|t0−ν
d+2α )c, uε−ϕε−u+,ε tends to a strictly positive function.

We deduce that there exists ε1>0 such that for all ε<ε1 we have xε∈B(0,e
|λ1|t0−

ν
2

d+2α ).
Then we continue by proving (−Lαε (nε)n

−1
ε +µε−n+,ε)(xε,tε)≥o(1),

−Lαε (nε)n
−1
ε (xε,tε) =

∫
Rd

(e

uε

∣∣∣∣∣|xε| 1ε−1
xε+h

∣∣∣∣∣
ε−1

(|xε|
1
ε
−1

xε+h),tε

−uε(xε,tε)
ε −1)

βε(x,
h
|h| )dh

|h|d+2α
.

From the definition of (xε,tε), we have for all y∈Rd:

(uε−ϕε−u+,ε)(xε,tε)≤ (uε−ϕε−u+,ε)(y,tε),

and thus

(ϕ
ε
+u+,ε)(y,tε)−(ϕ

ε
+u+,ε)(xε,tε)≤uε(y,tε)−uε(xε,tε).

Therefore, from (3.7) we have

−Lαε (e
ϕ
ε
ε n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε,tε)≤−Lαε (nε)n
−1
ε (xε,tε).
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Finally, using that n+,ε is a solution of the stationary equation, we obtain

(−Lαε (nε)n
−1
ε +µε−n+,ε)(xε,tε)≥(−Lαε (e

ϕ
ε
ε n+,ε)(e

ϕ
ε
ε n+,ε)

−1 +µε−n+,ε)(xε,tε)

=(−Lαε (e
ϕ
ε
ε )(e−

ϕ
ε
ε )−Lαε (n+,ε)(n+,ε)

−1

+K̃ε(e
ϕ
ε
ε ,n+,ε)(e

ϕ
ε
ε n+,ε)

−1 +µε−n+,ε)(xε,tε)

=−Lαε (e
ϕ
ε
ε )(e−

ϕ
ε
ε )(xε,tε)

+K̃ε(e
ϕ
ε
ε ,n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε,tε).

In order to control the last two terms of the above inequality, we are going to use

Lemma 2.1. Note that, we have the following link between e
ϕ
ε
ε and g(x) = 1

1+|x|d+2α :

e
ϕ
ε
ε (x,t) =

e−
(t−t0)2

ε

1+e−
|λ1|t0−ν

ε |x| d+2α
ε

=e
−(t−t0)2

ε g(e−
|λ1|t0−ν
(d+2α)ε |x| 1ε−1x).

And so, we can deduce from Lemma 2.1 that:

o(1) =−Ce−
2α(|λ1|t0−ν)

(d+2α)ε ≤−Lαε (e
ϕ
ε
ε )(e−

ϕ
ε
ε )(xε,tε),

and,

o(1) =−C e−
(2α−γ)(|λ1|t0−ν)

ε n+,ε(xε,tε)
−1≤ K̃ε(e

ϕ
ε
ε ,n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε,tε).

We deduce that:

o(1)≤ (−Lαε (nε)n
−1
ε +µε−n+,ε)(xε,tε). (3.11)

Finally, combining the above inequality with (3.8) and (3.10), we obtain that

1+o(1)≤ nε(xε,tε)
n+,ε(xε)

.

Now, we want to bring back this inequality at the point (x0,t0). There are two cases:

Case 1: |xε|≥ |x0|
Because of the definition of ϕ

ε
, we have:

ϕ
ε
(xε,tε)≤ϕε(x0,t0).

Since (xε,tε) is a minimum point of uε−(ϕ
ε
+uε,+), we deduce that

uε(xε,tε)−u+,ε(xε)≤uε(x0,t0)−u+,ε(x0).

Thanks to (3.7), it follows that

1+o(1)≤ nε(xε,tε)
n+,ε(xε)

≤ nε(x0,t0)

n+,ε(x0)
.

Case 2: |xε|< |x0|
In this case, since (x0,t0)∈K and thanks to (3.9), we have that

−|λ1|t0 +ν+(d+2α)log(|xε|)≤−|λ1|t0 +ν+(d+2α)log(|x0|)≤−ν <0,



ALEXIS LÉCULIER 577

and thus e
−|λ1|t0+ν+(d+2α)log(|xε|)

ε =o(1). We deduce that

e−
ϕ
ε
(xε,tε)

ε =e
(tε−t0)2

ε (1+e
−|λ1|t0+ν+(d+2α)log(|xε|)

ε )≥1.

Moreover, following similar computations, we obtain that e
ϕ
ε
(x0,t0)

ε = 1+o(1). Hence,
from the definition of (xε,tε), we get

uε(xε,tε)−u+,ε(xε)+ϕ
ε
(x0,t0)−ϕ

ε
(xε,tε)≤uε(x0,t0)−u+,ε(x0).

Thanks to (3.7), we obtain that

1+o(1)≤ nε(xε,tε)
n+,ε(xε)

× e
ϕ
ε
(x0,t0)

ε

e
ϕ
ε
(xε,tε)

ε

≤ nε(x0,t0)

n+,ε(x0)
.

So we have proved, in all cases

1+o(1)≤ nε(x0,t0)

n+,ε(x0)
.

Step 2:
nε(x0,t0)

n+,ε(x0)
≤1+o(1) in every compact set of B.

This step is very similar to the first one.
We pick (x0,t0)∈B and let ν be a positive constant. As before, we define

ϕ(x,t) := min(0, |λ1|t0 +ν−(d+2α)log |x|)+(t− t0)2.

It is easy to verify that u−ϕ achieves a local and strict in t and a global in x
maximum at (x0,t0). Then, defining

ϕε(x,t) :=−ε log(1+e−
|λ1|t0+ν

ε |x|
d+2α
ε )+(t− t0)2,

we have that (ϕε)ε converges locally uniformly to ϕ. Moreover, we know that u+,ε
tends to 0 and so uε−(ϕε+u+,ε)−→

ε→0
0 uniformly in B. Thus, there exists (xε,tε)∈

Rd× [0,+∞[ such that (xε,tε) is a maximum point, global in x and local in t, of (uε−
ϕε−εu+,ε) and

(uε−ϕε−u+,ε)(xε,tε)→0. (3.12)

Since (x0,t0) is a strict in t local maximum of u−ϕ, one can choose tε such that tε→ t0.
We deduce that

∂tuε(xε,tε) =∂tϕε(xε,tε) = 2(tε− t0) =o(1). (3.13)

One should ensure that (xε)ε→0 have all their accumulation points in B(0,e
|λ1|t0+ ν

4
d+2α ).

This is the case because for ε small enough, in B(0,e
|λ1|t0
d+2α ), uε−ϕε−u+,ε tends to 0

whereas in B(0,e
|λ1|t0+ ν

4
d+2α )c, uε−ϕε−u+,ε is lower than a strictly negative function.

We deduce that there exists ε2>0 such that for all ε<ε2 we have

xε∈B(0,e
|λ1|t0+ ν

2
d+2α ). (3.14)
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Then we continue by showing (−Lαε (nε)n
−1
ε +µε−n+,ε)≤o(1). With similar com-

putations as in step 1, we obtain:

(−Lαε (nε)n
−1
ε +µε−n+,ε)(xε,tε)≤−Lαε (e

ϕε
ε )(e−

ϕε
ε )(xε,tε)

+ K̃ε(e
ϕε
ε ,n+,ε)(e

ϕε
ε n+,ε)

−1(xε,tε).

Since

e
ϕε
ε (x,t) =

e
(t−t0)2

ε

1+e−
|λ1|t0+ν

ε |x| d+2α
ε

=e
(t−t0)2

ε g(e−
|λ1|t0+ν

ε(d+2α) |x| 1ε−1x),

we can deduce thanks to Lemma 2.1 that:

(−Lαε (e
ϕε
ε )(e−

ϕε
ε )(xε,tε)≤Ce−

2α(|λ1|t0+ν)

(d+2α)ε =o(1),

and,

K̃ε(e
ϕε
ε ,n+,ε)(e

ϕε
ε n+,ε)

−1(xε,tε)≤C e−
(2α−γ)(|λ1|t0+ν)

ε(d+2α) n+,ε(xε,tε)
−1 =o(1).

Finally, combining the two previous inequalities and (3.13) in (3.8) we have obtained

nε(xε,tε)

n+,ε(xε)
≤1+o(1).

Then, there are two cases to bring it back to the point (x0,t0):

Case 1: |xε|≤ |x0| By definition of ϕε, we have:

ϕε(x0,t0)≤ϕε(xε,tε).

Since (xε,tε) is a maximum point of uε−(ϕε+uε,+), we deduce that

uε(x0,t0)−u+,ε(x0)≤uε(xε,tε)−u+,ε(xε).

Thanks to (3.7), it follows that,

nε(x0,t0)

n+,ε(x0)
≤ nε(xε,tε)
n+,ε(xε)

≤1+o(1).

Case 2: |xε|> |x0| Thanks to (3.14), there exists ε2 such that for all positive
ε<ε2 there holds

|xε|≤e
|λ1|t0+ ν

2
d+2α ⇒−|λ1|t0−ν+(d+2α)log |xε|<−

ν

2
.

And thus,

e−
ϕε(xε,tε)

ε =e
−(tε−t0)2

ε (1+e
−|λ1|t0−ν+(d+2α)log(|xε|)

ε )≤1+e
−ν
2ε ≤1+o(1).

Moreover, we know by definition that e
ϕε(x0,t0)

ε = 1+o(1).
Furthermore, by definition of (xε,tε), we have

uε(x0,t0)−u+,ε(x0)≤uε(xε,tε)−u+,ε(xε)+ϕε(x0,t0)−ϕε(xε,tε),
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Combining the above inequalities and thanks to (3.7) we obtain that

nε(x0,t0)

n+,ε(x0)
≤ nε(xε,tε)
n+,ε(xε)

× e
ϕε(x0,t0)

ε

e
ϕε(xε,tε)

ε

≤1+o(1).

So we have proved, in all cases

nε(x0,t0)

n+,ε(x0)
≤1+o(1).

Passing up to the limit, we finally obtain the result of (ii).

4. Generalization to KPP-type reaction terms
We can generalize our result to a model with a reaction term F (x,s) which verifies

the Fisher KPP assumptions given by (H4).

Example 4.1. Obviously we can take as before

F (x,s) =µ(x)s−s2.

Example 4.2. We can generalize it to the classical example:

F (x,s) =µ(x)s−ω(x)s2.

Where µ is a continuous periodic function, and ω is a continuous periodic strictly posi-
tive function.

Of course, we keep the main idea of the previous proof: the rescaling (1.5). So the
Equation (1.4) becomes:

ε∂tnε(x,t) =−Lαε nε(x,t)+Fε(x,nε(x,t)). (4.1)

As before, according to the comparison principle, the point (ii) and (iii) of (H4) imply

µ(x)n−cn2≤F (x,n)≤µ(x)n−Cn2. (4.2)

If we associate this result with (2.1), one can still obtain that the solution will have
algebraic tails at time t= 1 and hence one can replace the assumption (H1) by (H1’):

cm

1+ |x| d+2α
ε

≤n0,ε(x)≤ cM

1+ |x| d+2α
ε

. (H1’)

Therefore, we still have the same sub and super-solutions:

Theorem 4.1. We assume (H2), (H3) and (H4) and if we choose Cm<
|λ1|

cmaxφ1
and

CM > |λ1|
Cminφ1

where c and C are given by the assumptions (iii) of (H4) and a positive

constant δ such that

0<δ≤min(

√
CCM minφ1−|λ1|,

√
|λ1|−cCmmaxφ1);

then there exists a positive constant ε0<δ such that for all ε∈]0,ε0[ we have:

(i) fMε (x,t) =φ1,ε(x)× CM

1+e−
t
ε
(|λ1|+ε2)− δ

ε |x|
d+2α
ε

is a super-solution of (4.1),

(ii) fmε (x,t) =φ1,ε(x)× Cme
− δ
ε

1+e−
t
ε
(|λ1|−ε2)− δ

ε |x|
d+2α
ε

is a sub-solution of (4.1).
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(iii) Moreover, if we assume (H1’) and Cm<
cm

max|φ1|
and CM >

cM
min|φ1|

with cm

and cM given by (H1’) then for all (x,t)∈Rd× [0,+∞[,

φ1,ε(x)× Cme
−δ
ε −εt

1+e−
|λ1|t+δ

ε |x| d+2α
ε

≤nε(x,t)≤φ1,ε(x)× CMe
εt

1+e−
|λ1|t+δ

ε |x| d+2α
ε

. (4.3)

Proof. Here is the main step of the proof of the point (i). As in the proof of
Theorem 3.1, we put:

fMε (t,x) =φ1,ε(x)×ψε(x,t),

where ψε is given by (3.4), but with a constant CM given in Theorem 4.1. Then, with
similar computations as before, we find:

∂tf
M
ε ≥

fMε
ε

(|λ1|+ε2−CfMε ).

Therefore, using (4.2) and Lemma 2.1, we get:

ε∂tf
M
ε (x,t)+Lαε f

M
ε (x,t)−Fε(x,fε(x,t))

≥fMε (x,t)(|λ1|+ε2−CfMε (x,t))+φ1,ε(x)Lαεψε(x,t)+ψε(x,t)L
α
ε φ1,ε(x)

−K̃ε(ψ,φ1)(x,t)−µε(x)fMε (x,t)+CfMε (x,t)2

≥ε2fMε (x,t)− ε
2

3
fMε (x,t)− ε

2

3
fMε (x,t)+ψε(x,t)[Lαε φ1,ε(x)−(λ1 +µε(x))φ1,ε(x)]

≥0.

Thus, we have demonstrated the point (i). The proof of the point (ii) follows similar
arguments. We do not give the proof of the point (iii) because this is similar to the
proof of (iii) of Theorem 3.1: the main argument is the comparison principle.

Thus, we can perform the Hopf-Cole transformation (3.7) and we obtain that uε
converges locally uniformly to:

u(x,t) = min(0,|λ1| t−(d+2α)log |x|).

Therefore the part (i) of Theorem 1.2 can be proved following similar arguments as in
the proof of (i) of Theorem 1.1. The proof of (ii) changes a little bit so we are going to
provide the demonstration.

Proof. (Proof of (ii) of Theorem 1.2.) Dividing by nε in (3.2), we obtain

∂tuε+Lαε nεn
−1
ε =

Fε(x,nε)

nε
. (4.4)

Step 1:
nε(x0,t0)

n+,ε(x0)
≥1+o(1) in every compact set of B.

The main difference with the proof of Theorem 1.1 is that from (4.4), we do not obtain di-

rectly
nε(xε,tε)

n+,ε(xε)
≥1+o(1) but we deduce

Fε(xε,n+,ε)

n+,ε
(xε,tε)−

Fε(xε,nε)

nε
(xε,tε)≥o(1).

Let K be a compact set of B and (x0,t0)∈K. We choose ν a positive constant small
enough such that for all (y,s)∈K,

(d+2α)log |y|< |λ1|s−2ν and 2ν < |λ1|s. (4.5)
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First, we define

ϕ(t,x) := min(0,−(d+2α)log |x|+ |λ1|t0−ν)−(t− t0)2.

It is easy to verify that u−ϕ achieves a local strict in t and a global in x minimum at
(x0,t0). Then, we define

ϕ
ε
(x,t) :=−εlog(1+e−

|λ1|t0−ν
ε |x|

d+2α
ε )−(t− t0)2.

Thus, (ϕ
ε
)ε converges locally uniformly to ϕ. We know that u+,ε tends to 0 and so

uε−(ϕ
ε
+u+,ε)−→

ε→0
u−ϕ locally uniformly. Thus, there exists (xε,tε)∈B such that

(xε,tε) is a minimum point of (uε−ϕε−u+,ε) and (uε−ϕε−u+,ε)(xε,tε)→0. Since
(x0,t0) is a strict local minimum of u−ϕ in t, we can choose tε such that tε→ t0. Then

∂tuε(xε,tε) =∂tϕε(xε,tε) =−2(tε− t0) =o(1). (4.6)

With the same reasoning as in the proof of Theorem 1.1, we get that there exists ε1>0

such that for ε<ε1, xε∈B(0,e
|λ1|t0−

ν
2

d+2α ).
Then we continue by proving

(−Lαε (nε)n
−1
ε +

Fε(x,nε)

nε
)(xε,tε)≥ (

Fε(x,nε)

nε
− F (xε,n+,ε)

n+,ε
)(xε,tε)+o(1).

We know that

−Lαε (nε)n
−1
ε (xε,tε) =

∫
Rd

(e

uε

∣∣∣∣∣|xε| 1ε−1
xε+h

∣∣∣∣∣
ε−1

(|xε|
1
ε
−1

xε+h),tε

−uε(xε,tε)
ε −1)

βε(xε,
h
|h| )dh

|h|d+2α
.

Note that, from the definition of (xε,tε), we have for all y∈Rd:

(uε−ϕε−u+,ε)(xε,tε)≤ (uε−ϕε−u+,ε)(y,tε),

and thus by (3.7)

−Lαε (e
ϕ
ε
ε n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε,tε)≤−Lαε (nε)n
−1
ε (xε,tε).

Finally, we obtain

(−Lαε (nε)n
−1
ε +

Fε(x,nε)

nε
)(xε,tε)≥(−Lαε (e

ϕ
ε
ε n+,ε)(e

ϕ
ε
ε n+,ε)

−1 +
Fε(x,nε)

nε
)(xε,tε)

≥(−Lαε (e
ϕ
ε
ε )(e−

ϕ
ε
ε )− Fε(x,n+,ε)

n+,ε

+K̃ε(e
ϕ
ε
ε ,n+,ε)(e

ϕ
ε
ε n+,ε)

−1 +
Fε(x,nε)

nε
)(xε,tε)

≥(o(1)+
Fε(x,nε)

nε
− Fε(x,n+,ε)

n+,ε
)(xε,tε). (4.7)

We have to note that thanks to Lemma 2.1, in the last inequality, we have controlled
the terms:

o(1)≤ K̃ε(e
ϕ
ε
ε ,n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε,tε) and o(1)≤−Lαε (e
ϕ
ε
ε )(e−

ϕ
ε
ε )(xε,tε).
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Finally combining (4.6) and (4.7), we obtain

o(1)≤ Fε(xε,n+,ε)

n+,ε
(xε,tε)−

Fε(xε,nε)

nε
(xε,tε). (4.8)

We are going to prove by contradiction that (4.8) implies o(1)+n+,ε(xε)≤nε(xε,tε).
Let’s suppose that there exists a subsequence (εk)k∈N and a positive constant C such
that

nεk(xεk ,tεk)+C<n+,εk(xεk).

Then, thanks to the strict monotony of the function s 7→ F (x,s)
s (assumption (iv) in (H4))

and the mean value theorem, there exists a sequence yk such that

oεk(1)≤ F (xεk ,n+,εk)

n+,εk
(xεk ,tεk)− F (xεk ,nεk)

nεk
(xεk ,tεk)

=∂s(
F (xεk ,s)

s
)(yεk)(n+,εk−nεk)(xεk ,tεk)

≤−C×C.

This is a contradiction. Therefore, for ε small enough,

n+,ε(xε)+o(1)≤nε(xε,tε)⇒1+o(1)≤ nε(xε,tε)
n+,ε(xε)

.

To bring back this inequality at the point (x0,t0), we use exactly the same arguments
as for the proof of Theorem 1.1 by considering a disjunction of cases |xε|< |x0| and
|x0|< |xε|. We do not provide the details of this disjunction of cases since they are the
same.
So we have proved, in all cases

1+o(1)≤ nε(x0,t0)

n+,ε(x0)
.

The second step can also be proved following similar arguments as in the previous
step, thus we do not provide the demonstration.

Appendix. The proof of Lemma 2.1. All along the appendix, we will denote
by C positive constants that can change from line to line.

Proof. (Proof of Lemma 2.1.)
Proof. (Proof of (i).) We are going to follow the Appendix A of [20].
Let δ< 1

2 be a positive constant. By a compactness argument, we only have to
prove it for |x|>1. We compute∣∣∣∣Lα(g)(x)

g(x)

∣∣∣∣=
∣∣∣∣∣
∫
Rd

(
1+ |x|d+2α

1+ |x+h|d+2α
−1

)
β(x, h|h| )dh

|h|d+2α

∣∣∣∣∣
≤
∫
Rd\[B(−x,δ|x|)∪B(0,δ)]

∣∣∣∣ 1+ |x|d+2α

1+ |x+h|d+2α
−1

∣∣∣∣ β(x, h|h| )dh

|h|d+2α

+

∫
B(−x,δ|x|)\B(0,δ)

∣∣∣∣ 1+ |x|d+2α

1+ |x+h|d+2α
−1

∣∣∣∣ β(x, h|h| )dh

|h|d+2α
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+

∫
B(0,δ)

∣∣∣∣ 1+ |x|d+2α

1+ |x+h|d+2α
−1

∣∣∣∣ β(x, h|h| )dh

|h|d+2α

=I1 +I2 +I3.

Let us begin by approximating I1.

I1 =

∫
Rd\[B(−x,δ|x|)∪B(0,δ)]

∣∣∣∣ 1+ |x|d+2α

1+ |x+h|d+2α
−1

∣∣∣∣ β(x, h|h| )dh

|h|d+2α

≤
∫
Rd\[B(−x,δ|x|)∪B(0,δ)]

∣∣∣∣ C

δd+2α
−1

∣∣∣∣ β(x, h|h| )dh

|h|d+2α

≤ (C+1)

δd+2α
B mes(Sd−1)

∫ +∞

δ

dh

|h|1+2α
=

C

δd+4α
.

For I2, we write:

I2 =

∫
B(−x,δ|x|)\B(0,δ)

∣∣∣∣ 1+ |x|d+2α

1+ |x+h|d+2α
−1

∣∣∣∣ β(x, h|h| )dh

|h|d+2α

≤B
∫
B(−x,δ|x|)\B(0,δ)

∣∣∣∣ 1+ |x|d+2α

1+ |x+h|d+2α
−1

∣∣∣∣ dh

|h|d+2α

≤B
∫
B(−x,δ|x|)\B(0,δ)

∣∣|x|d+2α−|x+h|d+2α
∣∣

1+ |x+h|d+2α

dh

|h|d+2α

≤B
∫
B(−x,δ|x|)\B(0,δ)

|x|d+2α+ |x+h|d+2α

1+ |x+h|d+2α

dh

|h|d+2α

≤B
∫
B(−x,δ|x|)\B(0,δ)

|x|d+2α+ |δx|d+2α

1+ |x+h|d+2α

dh

|h|d+2α

≤C
∫
B(−x,δ|x|)\B(0,δ)

1

1+ |x+h|d+2α

|x|d+2α

|h|d+2α
dh.

But we know that h∈B(−x,δ|x|)\B(0,δ), using that δ< 1
2 < |x|, we deduce that

|x|(1−δ)≤|h|≤ (1+δ)|x|⇒
∣∣∣x
h

∣∣∣≤ ∣∣∣∣ 1

1−δ

∣∣∣∣ .
Thus, we deduce

I2≤
C

(1−δ)d+2α

∫
B(−x,δ|x|)\B(0,δ)

1

1+ |x+h|d+2α
dh

≤ C

(1−δ)d+2α

∫ δ|x|

0

rd−1

1+rd+2α
dr

≤ C

(1−δ)d+2α

∫ ∞
0

rd−1

1+rd+2α
dr.

To control I3, we write I3 in the following form:

I3 =C

∣∣∣∣∣
∫
B(0,δ)

(
1+ |x|d+2α

1+ |x+h|d+2α
+

1+ |x|d+2α

1+ |x−h|d+2α
−2

)
β(x, h|h| )dh

|h|d+2α

∣∣∣∣∣ .
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Next, we define

f(x,h) :=
1+ |x|d+2α

1+ |x+h|d+2α
.

Since for all x∈Rd, the map that (h 7→f(x,h)) is C1+2α, we know that I3 is well defined.
Moreover for every h∈B(0,δ)\{0}, when the parameter |x| tends to ∞, we have that
(f(x,h)+f(x,−h)−2)β(x, h|h| )

|h|d+2α tends to 0. So we deduce thanks to the dominated convergence

Theorem, that (x 7→ I3(x)) tends to 0 when |x| tends to ∞. According to the continuity
of the maps (x 7→f(x,h)) and (x 7→β(x,θ)), we deduce that the map (x 7→ I3(x)) is
continuous and so we conclude that I3 is bounded independently of x. We refer to [20]
for more details (see the Annex A1).

Combining the above inequalities, we obtain that there exists a constant C such
that for all x∈Rd,

|Lαg(x)|≤Cg(x). (5.1)

Using the above inequality, we can conclude with a change of variable z=ay:

|Lαg(ax)|= |
∫
Rd

g(ax)−g(ax+ay)

|y|d+2α
β(ax,

y

|y|
)dy|

= |
∫
Rd

g(ax)−g(ax+z)

|a−1z|d+2α
a−dβ(ax,

a−1z

|a−1z|
)dz|

=a2α|Lα(g)(ax)|
≤Ca2αg(ax).

Finally, we obtain

|Lαg(ax)|≤Ca2αg(ax).

Proof. (Proof of (ii).) Since all the functions involved in K̃ are differentiable, and

thanks to the dominated convergence theorem, we deduce that K̃ is continuous. We
can note the following fact:

|∇g(x)|=O(|x|−(d+2α+1)) as |x|→+∞. (5.2)

With the change of variable x̃=ay, we find:

K̃(g(a.),χ)(x) =a2αC ′ PV

∫
Rd

(g(ax)−g(x̃))(χ(x)−χ(a−1x̃))

|ax− x̃|d+2α
β(x,

ax− x̃
|ax− x̃|

)dx̃. (5.3)

Since χ∈C1(Rd)∩L∞(Rd), β∈L∞(Rd×Sd−1) and g∈C1(Rd)∩L∞(Rd) this integral
converges in Rd. For x∈Rd, we have to estimate

J(x) =a2αC ′ PV

∫
Rd

(g(x)−g(x̃))(χ(a−1x)−χ(a−1x̃))

|x− x̃|d+2α
β(a−1x,

x− x̃
|x− x̃|

)dx̃

at point ax. We define for x∈Rd

J1(x) =a2αC ′ PV

∫
B(x,1)

(g(x)−g(x̃))(χ(a−1x)−χ(a−1x̃))

|x− x̃|d+2α
β(a−1x,

x− x̃
|x− x̃|

)dx̃,
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and J2(x) =a2αC ′ PV

∫
Rd\B(x,1)

(g(x)−g(x̃))(χ(a−1x)−χ(a−1x̃))

|x− x̃|d+2α
β(a−1x,

x− x̃
|x− x̃|

)dx̃,

so that J =J1 +J2. We split the proof in two parts: when |x|≤M and when |x|>M
with M a positive constant arbitrarily large.
For |x|≤M , according to (5.3)

K̃(g(a·),χ)(x) =a2αJ(ax).

First we prove the existence of a constant C large enough such that

∀x∈B(0,M), |J(x)|≤Cg(x). (5.4)

Since |J | is continuous, we deduce that in B(0,M), |J | is bounded by a constant D.
Thus, since g is decreasing, if we take C larger than D×(1+Md+2α), the assertions
(5.4) holds true. Since a<1, we conclude that for all x∈B(0,M):

|K̃(g(a·),χ)(x)|=a2α|J(ax)|

≤a2α C

1+ |ax|d+2α
≤a2α−γC 1+ |x|d+2α

1+ |ax|d+2α

1

1+ |x|d+2α

≤a2α−γCg(x).

For |x|>M , we first study J1 and then J2.
Estimate of J1: From the formula (5.2), for |x|>M , since χ is C1(Rd) and periodic,
and since γ <1 and 2α−γ is strictly positive, we have:

|J1(x)|≤CB
∫
B(x,1)

a2α−γ |x− x̃|γ

|x− x̃|d+2α
sup
z∈[x;x̃]

|∇g(z)||x− x̃|dx̃

≤C a2α−γ

|x|d+2α

∫
B(x,1)

1

|x− x̃|d+2α−γ−1 dx̃

≤ a2α−γD1

1+ |x|d+2α
.

Estimate of J2: Since χ is bounded and a<1, we obtain:

|J2(x)|≤a2αCB
∫
|y|≥1

g(x)

|y|d+2α
dy+a2αCB

∫
|y|≥1

g(x+y)

|y|d+2α
dy

≤a2αCBg(x)+a2αCB

∫
|y|≥ |x|2

g(x+y)

|y|d+2α
dy+a2αCB

∫
1≤|y|≤ |x|2

g(x+y)

|y|d+2α
dy

≤a2α CB

|x|d+2α
+a2α

2d+2αCB

|x|d+2α

∫
Rd
g(y)dy+a2αCB

∫
1≤|y|≤ |x|2

g(x2 )

|y|d+2α
dy

≤a2α CB

|x|d+2α
+a2α

2d+2αCB

|x|d+2α

∫
Rd
g(y)dy+a2αCB2d+2αg(x)

∫
|y|≥1

1

|y|d+2α
dy

≤a2α−γ D2

1+ |x|d+2α
.

The third line is obtained noting that for |y|≤ |x|2 , we have |x|2 ≤|x|−|y|≤ |x+y|.
Putting all together we find the existence of C such that (ii) holds.
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