
COMMUN. MATH. SCI. c© 2019 International Press

Vol. 17, No. 3, pp. 653–667

SHARP ENERGY CRITERIA AND SINGULARITY OF BLOW-UP
SOLUTIONS FOR THE DAVEY-STEWARTSON SYSTEM∗

JIAN ZHANG† AND SHIHUI ZHU‡

Abstract. By analyzing the geometric characteristic of related algebra equations, we first find
the sharp energy criteria of singular solutions and global solutions for the Davey-Stewartson systems.
Then, we study the limiting behavior of singular solutions, and obtain the rate of convergence of
singular solutions, rate of concentration of singular solutions for Davey-Stewartson systems with the
L2 super-critical nonlinearity.
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1. Introduction
The Davey-Stewartson systems were firstly proposed by Davey and Stewartson in

1974 (see [5, 28]). The original Davey-Stewartson system is the two coupled nonlinear
differential equations, which describe the evolution of a three dimensional wave packet
on water of finite depth. In terms of dimensionless variables, the two coupled nonlinear
differential equations have the following form.{

iψt+ψx1x1 +µψx2x2 =a|ψ|2ψ+bψφx1 ,
νφx1x1 +φx2x2 =−c(|ψ|2)x1 ,

(1.1)

where ψ(t,x1,x2) is the (complex) amplitude and φ(t,x1,x2) is the (real) mean veloc-
ity potential. The parameters µ,ν >0, a,b,c are real constants. In particular, as a
mathematical model for the evolution of shallow-water waves, the Davey-Stewartson
system is usually classified as elliptic-elliptic, elliptic-hyperbolic, hyperbolic-elliptic and
hyperbolic-hyperbolic according to the signs of (µ,ν): (+,+), (+,−), (−,+), (−,−).
But the last case (−,−) does not occur in the context of water waves. For the deriva-
tion and overview of the physical models for the Davey-Stewartson systems, one can
refer to Chapter 11 and 12 in [28]. Usually, by using the Fourier transform of the second
equation in Equation (1.1), the coupled system (1.1) is changed to the single equation
(see [4, 8, 33]), and the generalized Davey-Stewartson system has the following form:

iψt+4ψ+a|ψ|p−1ψ+bE(|ψ|2)ψ= 0, (1.2)

ψ(0,x) =ψ0, (1.3)

where4= ∂2

∂x2
1

+ ∂2

∂x2
2

+ ·· ·+ ∂2

∂x2
N

is the Laplace operator on RN ; E is the singular integral

operator with symbol σ1(ξ) = ξ1
2

|ξ|2 , ξ∈RN , E(|ψ|2) =F−1[ ξ1
2

|ξ|2F [|ψ|2]], F and F−1 are

the Fourier transform and Fourier inverse transform on RN , respectively.
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As the operator E is nonlocal in physical space and singular in frequency space,
studying the Davey-Stewartson system and its extensions is interesting and challeng-
ing. From the view-point of physics, the following problems are very basic and im-
portant. How large will the initial data be, whose corresponding wave will become
unstable to the singular solution (i.e. there exists a finite time 0<T <+∞ such that
lim
t→T−

‖ψ(t)‖H1 = +∞, which is also called the collapse solution or the blow-up solu-

tion)? How small will the initial data be, whose corresponding wave will be stable for
all time (the global solution)? Then, the sharp thresholds of singular solutions and
global solutions for Equation (1.2) are pursued strongly, as well as the structure of sin-
gular solutions, including the rate of convergence of singularity, the limiting behavior
of singular solutions etc.

Plenty of mathematicians have devoted contributions on the global solutions and
singular solutions for the Davey-Stewartson system. Here, we just list some works but
this list is not exhaustive. Ghidaglia and Saut [8], Hayashi and Saut [13], and Linares
and Ponce [20] studied global well-posedness for some generalized Davey-Stewartson
systems in different spaces. Wang and Guo [29] investigated the initial value problem
and scattering of global solutions to the generalized Davey-Stewartson systems. Cipo-
latti [3], Ohta [22, 23] studied the existence and stability of the standing waves for the
Davey-Stewartson system in the original and generalized forms. Gan and Zhang [12]
studied the sharp threshold of blow-up and global existence, and proved that the stand-
ing waves are strongly unstable in the general form by the cross-constraint variational
method. Ozawa in [24], Brown and Perry in [1] studied the exact singular solutions
of the hyperbolic-elliptic Davey-Stewartson system, which is a very different Davey-
Stewartson system in dimension two, namely the focusing DS II system. Papanicolaou,
Sulem, and Wang [25] studied the rate of convergence of singular solutions for Equation
(1.2) by numerical observations.

Motivated by these problems, we study the singular solutions of Equation (1.2) in
the focusing case: a= b= 1. First, we find the sharp energy criteria of singular solutions
and global solutions for Equation (1.2) in Section 3 by using three sharp Gagliardo-
Nirenberg-type inequalities.

By comparing with the results in [11, 12, 27], the sharp energy criteria obtained in
this paper are precisely in the sense that they were expressed by the L2-norms of the
corresponding ground state solutions. These results also improved our previous results
in [19,32] by extending the range of p to 1<p≤3, and here these sharp energy criteria of
singular solutions and global solutions may have a potential application for the physical
scientists in the experimental study of the Davey-Stewartson systems.

For the rest of this paper, we are focusing on the limiting behavior of singular
solutions for Equation (1.2). For the L2 critical case: p= 3 and N = 2, Li, Zhang,
Lai and Wu [18] studied the rate of convergence of singular, limiting behavior and
concentration of singular solutions in H1. Feng, Ren and Wang [7] studied the blow-
up solutions with several blow-up points. Richards [26] studied the concentration of
singular solutions in L2, Zhu [33, 34] proved the limiting profile and concentration of
singular solutions in L2 by the nonlinear profile decomposition argument.

However, when N = 3 and p 6= 3, Equation (1.2) is not L2 critical and loses the
scaling invariance. The well-known arguments in [17, 21] to study the dynamics of
singular solutions for the L2 critical nonlinear Schrödinger equations fail. We first inject
the sharp Gagliardo-Nirenberg-type inequalities into the Strichartz estimates. And then
we can obtain the following rate of convergence of singular solutions for Equation (1.2)
with p 6= 3.
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Theorem 1.1. Let N = 3 and ψ0∈H1. Assume that ψ(t,x) is the corresponding
singular solution of the Cauchy problem (1.2)-(1.3), where 0<T <+∞ is the singular
time. Then, we have the following estimates.

(i) For 2≤p<3, there exists C>0 such that

‖∇ψ(t)‖2≥
C

(T − t) 1
6

for 0≤ t<T <+∞. (1.4)

(ii) For q>4 and 2≤p<3, there exists C>0 such that

‖ψ(t)‖q≥
C

(T − t)
q−2
6q

for 0≤ t<T <+∞. (1.5)

(iii) For 3<q≤4 and 2≤p< 7
3 , there exists C>0 such that

‖ψ(t)‖q≥
C

(T − t) 1
12

for 0≤ t<T <+∞. (1.6)

In the proof of the above theorem, we adapt the ideas and techniques from [2]. But,
when p 6= 3, Equation (1.2) does not have the scaling invariance, and the main difficulty
is that there is no comparison of ‖ψ‖p1 and ‖ψ‖p2 when p1 6=p2. And we need some
new ideas to obtain a uniform estimate for

‖∇(E(|ψ|2)ψ)‖
L

8
5
t ((t,τ);L

4
3
x )

and ‖∇(|ψ|p−1ψ)‖
L

8
5
t ((t,τ);L

4
3
x )
.

And then we can obtain the rate of convergence of singular solutions for Equation (1.2)
in Theorem 1.1.

Moreover, as a direct application of the rate of convergence of singular solutions, we
can obtain the rate of Ḣ

1
2 -norm concentration of singular solutions for Equation (1.2).

Let Q be the solution of

−4Q̃+(−4)
1
2 Q̃−E(|Q̃|2)Q̃= 0, (1.7)

where the pseudo-differential operator (−4)s is defined by F [(−4)sf ](ξ)≡|ξ|2sF [f ](ξ)
for s∈R, which in turn defines the homogeneous Sobolev space Ḣs= Ḣs(RN )≡{f ∈
S ′(RN ) :

∫
|ξ|2s|F [f ](ξ)|2dξ<∞} with its norm defined by ‖f‖Ḣs =‖(−4)

s
2 f‖2, where

S ′(RN ) denotes the space of tempered distributions. The existence of nontrivial solu-

tions of (1.7) has been given in [6]. Now, we obtain the rate of Ḣ
1
2 -norm concentration

of singular solutions for Equation (1.2), which improves Feng and Cai’s results in [6],
as follows.

Theorem 1.2. Let N = 3, 2≤p<3 and ψ0∈H1. Assume that ψ(t,x) is
the corresponding blow-up solution of the Cauchy problem (1.2)-(1.3) satisfying
sup

t∈[0,T )

‖ψ(t)‖
Ḣ

1
2
<+∞, where 0<T <+∞ is the blow-up time. Then, there exists

y(t)∈R3 such that

liminf
t∈[0,T )

‖ψ(t,x)‖
Ḣ

1
2 (|x−y(t)|≤(T−t)

1
6
−)
≥‖Q̃‖2

Ḣ
1
2
, (1.8)

where Q̃ is the solution of (1.7) and 1
6− is denoted as the real number 1

6−ε for any
sufficiently small ε>0.
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2. Notations and preliminaries
In this paper, we use the notation Lq :=Lq(R3), ‖·‖Lq(R3) :=‖·‖q, Hs :=Hs(R3)

and C standing for variant absolute constants. First, we recall some known facts of the
singular integral operator E.

Lemma 2.1 ( [3, 9, 10]). Let E be the singular integral operator defined in Fourier
variables by

F [E(ψ)](ξ) =σ1(ξ)F [ψ](ξ),

where σ1(ξ) = ξ1
2

|ξ|2 , ξ∈R3 and F denotes the Fourier transform in R3. Assume 1<p<
+∞.

(i) E∈L(Lp,Lp), where L(Lp,Lp) denotes the space of bounded linear operators
from Lp to Lp.

(ii) If ψ∈Hs, then E(ψ)∈Hs, s∈R.

(iii) If ψ∈Wm,p, then E(ψ)∈Wm,p and ∂kE(ψ) =E(∂kψ),k= 1,2.

(iv) E preserves the following operations:
– translation: E(ψ(·+y))(x) =E(ψ)(x+y),y∈R3;

– dilatation: E(ψ(λ·))(x) =E(ψ)(λx),λ>0;

– conjugation: E(ψ) =E(ψ), where ψ is the complex conjugate of ψ.

Guo and Wang [10] studied the local and global well-posedness for the Cauchy-
problem (1.2)-(1.3). In particular, the local well-posedness is in the following.

Proposition 2.1 ( [10]). Let N = 3 and ψ0∈H1. There exists a unique solution
ψ(t,x) of the Cauchy problem (1.2)-(1.3) on the maximal time interval [0,T ) such
that ψ(t,x)∈C([0,T );H1) and either T = +∞(global existence), or else 0<T <+∞ and
lim
t→T
‖ψ(t,x)‖H1 = +∞ (blow-up). Furthermore, for all t∈ [0,T ), ψ(t,x) satisfies the con-

servation laws:

(i) Conservation of mass:

M [ψ(t)] :=

∫
|ψ(t,x)|2dx=M [ψ0].

(ii) Conservation of energy:

H[ψ(t)] :=

∫
(|∇ψ(t)|2− 2

p+1
|ψ(t)|p+1− 1

2
E(|ψ(t)|2)|ψ(t)|2)dx=H[ψ0].

Furthermore, in order to study the singular solution for Equation (1.2), in terms of
Weinstein’s arguments in [30], we need the following proposition, which can be obtained
by some basic calculus(see also [12,22,23]).

Lemma 2.2 ( [12,22,23]). Assume that N = 3, ψ0∈H1, |x|ψ0∈L2 and the correspond-
ing solution ψ(t,x) of the Cauchy-problem (1.2)-(1.3) on the interval [0,T ). Then, for
all t∈ [0,T ) we have |x|ψ(t,x)∈L2. Moreover, let J(t) :=

∫
|x|2|ψ(t,x)|2dx. We have

J ′(t) =−4=
∫
xψ∇ψdx, and

J ′′(t) = 8

∫
|∇ψ|2dx−12

p−1

p+1

∫
|ψ|p+1dx−6

∫
E(|ψ|2)|ψ|2dx. (2.1)

Finally, we collect three sharp Gagliardo-Nirenberg-type inequalities.
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Lemma 2.3 ( [32]). Let N = 3 and Q be the ground state solution of

−3

2
4Q+

1

2
Q−|Q|2Q−E(|Q|2)Q= 0, Q∈H1. (2.2)

Then, we have the following sharp Gagliardo-Nirenberg inequality,∫
|u|4 +E(|u|2)|u|2dx≤ 2

‖Q‖22
‖∇u‖32‖u‖2, u∈H1. (2.3)

This inequality is sharp in the sense that the equality can be obtained by taking u=Q.

Lemma 2.4 ( [32]). Let N = 3 and R be the ground state solution of

−3

2
4R+

1

2
R−E(|R|2)R= 0, R∈H1. (2.4)

Then, we have the following sharp Gagliardo-Nirenberg inequality,∫
E(|u|2)|u|2dx≤ 2

‖R‖22
‖∇u‖32‖u‖2, u∈H1. (2.5)

This inequality is sharp in the sense that the equality can be obtained by taking u=R.

Lemma 2.5 ( [30]). Let N = 3 and P be the ground state solution of

−3(p−1)

4
4P +

5−p
4

P −|P |p−1 = 0, P ∈H1. (2.6)

Then, we have the following sharp Gagliardo-Nirenberg inequality,

‖u‖p+1≤ p+1

2‖P‖p−12

‖∇u‖
3(p−1)

2
2 ‖u‖

5−p
2

2 , u∈H1. (2.7)

This inequality is sharp in the sense that the equality can be obtained by taking u=P .

3. Sharp energy criteria
In this section, we will answer the first question mentioned in the introduction: How

to distinguish between the domains of initial datum for singular solutions and global
solutions? The known results on this topic rely heavily on the scaling invariant of
the evolution equation (see [14,15,31]). But the scaling invariant of Equation (1.2) fails
when p 6= 3. Our main argument is choosing various ground state solutions corresponding
to Equation (1.2) and constructing six pairs of invariant sets. Here, we will give the
detailed proof for the case 1<p<1+ 2

3 , and for the other cases, we will just give the
mainline.

Case 3.1: 1<p<1+ 2
3

Applying the sharp Gagliardo-Nirenberg inequalities (2.5) and (2.7), we deduce that
for a solution ψ(t) of Equation (1.2), for all t∈ I(the maximal existence interval)

H[ψ(t)]+M [ψ(t)]≥‖∇ψ(t)‖22 +‖ψ(t)‖22−
‖ψ(t)‖p2
‖P‖p−12

(‖∇ψ(t)‖22 +‖ψ(t)‖22)

− 1

‖R‖22
(‖∇ψ(t)‖22 +‖ψ(t)‖22)2

= (1− ‖ψ0‖p2
‖P‖p−12

)‖ψ(t)‖2H1−
1

‖R‖22
‖ψ(t)‖4H1 . (3.1)
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Define f1(y) = (1− ‖ψ0‖p2
‖P‖p−1

2

)y− 1
‖R‖22

y2, y≥0. We see that (3.1) is equivalent to

H[ψ(t)]+M [ψ(t)]≥f1(‖ψ(t)‖2H1)

for all t∈ I. Next, we will analyze the geometric characteristic of the algebra equation
f(y) = 0 to construct the invariant flows. Obviously, f1(y) reaches the maximum at

the point y∗1 =
‖R‖22(‖P‖

p−1
2 −‖ψ0‖p2)

2‖P‖p−1
2

provided ‖P‖p−12 >‖ψ0‖p2. More precisely, f1max=

f1(y∗1) =
‖R‖22(‖P‖

p−1
2 −‖ψ0‖p2)

2

4‖P‖2(p−1)
2

. Now, we define

G1 :=

{
u∈H1 :f1(‖u‖2H1)<H[u]+M [u]<

‖R‖22(‖P‖
p−1
2 −‖ψ0‖p2)

2

4‖P‖2(p−1)
2

,

‖u‖2H1 <
‖R‖22(‖P‖p−12 −‖ψ0‖p2)

2‖P‖p−12

, ‖u‖p2<‖P‖
p−1
2

}
,

G2 :=

{
u∈H1 :f1(‖u‖2H1)<H[u]+M [u]<K, ‖u‖p2< 1

3‖P‖
p−1
2 ,

‖u‖2H1 >
‖R‖22(4‖P‖p−12 −3(p−1)‖ψ0‖p2)

3‖P‖p−12

}
,

where K=
‖R‖22(4‖P‖

p−1
2 −3(p−1)‖ψ0‖p2)(2‖P‖

p−1
2 +3(p−3)‖ψ0‖p2)

36‖P‖2(p−1)
2

. We claim that G1 and G2 are

two invariant evolution flows generated by the Cauchy problem (1.2)-(1.3). Indeed, let
ψ(t) be the solution of the Cauchy problem (1.2)-(1.3). It follows from the conservation
of mass and energy that

f1(‖ψ(t)‖2H1)<H[ψ(t)]+M [ψ(t)]<
‖R‖22(‖P‖p−12 −‖ψ0‖p2)2

4‖P‖2(p−1)2

:=f1max

and ‖ψ(t)‖p2<‖P‖
p−1
2 are true for all t∈ I. If ‖ψ(t)‖2H1 <

‖R‖22(‖P‖
p−1
2 −‖ψ0‖p2)

2‖P‖p−1
2

is not true

for all t∈ I, then by the continuity of the solution ψ(t,x) with respect to t, there exists

a t0∈ I such that ‖ψ(t0)‖2H1 =
‖R‖22(‖P‖

p−1
2 −‖ψ0‖p2)

2‖P‖p−1
2

. And then f(‖ψ(t0)‖2H1) =f1(y∗1) =

f1max, which is a contradiction with the fact that for all t∈ I, f(‖ψ(t)‖2H1)<f1max. This
completes the proof of the invariance of G1. Furthermore, we can prove the invariance
of G2 by the same argument.

Hence, we can obtain the following Theorem.

Theorem 3.1. Let N = 3, 1<p<1+ 2
3 , R and P be the ground state solution of (2.4)

and (2.6) respectively. Then, we have the following:

(i) if ψ0∈G1∪{0}, then ψ(t,x) exists globally in H1;

(ii) if ψ0∈G2 and |x|ψ0∈L2, then ψ(t,x) is a singular solution in a finite time,

where ψ(t,x) is the solution of Equation (1.2) corresponding to ψ0.

Proof.

(i) It follows from the invariance of G1 that the corresponding solution ψ(t,x) of
Equation (1.2) with the initial data ψ0∈G1, must be bounded in H1 for all t∈ I, and
then these solutions exist globally by Proposition 2.1.
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(ii) Suppose ψ0∈G2, then the solution ψ(t)∈G2, that is, for all t∈ I

H[ψ(t)]+M [ψ(t)]<K and ‖ψ(t)‖2H1 >
‖R‖22(4‖P‖p−12 −3(p−1)‖ψ0‖p2)

3‖P‖p−12

.

Injecting above estimates into Lemma 2.2, we see that

J ′′(t) ≤12K−4(‖∇ψ(t)‖22 +‖ψ(t)‖22)+
(18−6p)‖ψ0‖p2
‖P‖p−12

‖∇ψ(t)‖2‖ψ(t)‖2

≤12K− 4‖P‖p−12 −(18−6p)‖ψ0‖p2
‖P‖p−12

‖ψ(t)‖2H1

<−‖R‖
2
2(4‖P‖p−12 −3(p−1)‖ψ0‖p2)(2‖P‖p−12 +(3p−9)‖ψ0‖p2)

3‖P‖2(p−1)2
<0.

This implies that for sufficiently large |t|, J(t) is negative, while J(t) :=
∫
|x|2|ψ|2dx is

non-negative, which means that both T− and T+ are finite. Specifically, the solution
ψ(t,x) is a singular solution of the Cauchy problem (1.2)-(1.3).

Case 3.2: p= 1+ 2
3

Applying the sharp inequalities (2.5) and (2.7), we have, for all t∈ I

H[ψ(t)]+M [ψ(t)]≥ (1− ‖ψ0‖
2
3
2

‖P‖
2
3
2

)‖ψ(t)‖2H1−
1

‖R‖22
‖ψ(t)‖4H1 =f2(‖ψ(t)‖2H1),

where f2(y) = (1− ‖ψ0‖
2
3
2

‖P‖
2
3
2

)y− 1
‖R‖22

y2, y≥0. Obviously, f2(y) reaches the maximum

at the point y∗2 =
‖R‖22(‖P‖

2
3
2 −‖ψ0‖

2
3
2 )

2‖P‖
2
3
2

provided ‖P‖2>‖ψ0‖2. More precisely, f2max=

f2(y∗2) =
‖R‖22(‖P‖

2
3
2 −‖ψ0‖

2
3
2 )2

4‖P‖
2
3
2

. Define

G3 :=

{
u∈H1 :f2(‖u‖2H1)<H[u]+M [u]<

‖R‖22(‖P‖
2
3
2 −‖ψ0‖

2
3
2 )2

4‖P‖
4
3
2

,

‖u‖2H1 <
‖R‖22(‖P‖

2
3
2 −‖ψ0‖

2
3
2 )

2‖P‖
2
3
2

,‖u‖2<‖P‖2
}
,

G4 :=

{
u∈H1 :f2(‖u‖2H1)<H[u]+M [u]<

2‖R‖22(‖P‖
2
3
2 −‖ψ0‖

2
3
2 )2

9‖P‖
4
3
2

,

‖u‖2H1 >
2‖R‖22(‖P‖

2
3
2 −‖ψ0‖

2
3
2 )

3‖P‖
2
3
2

,‖u‖2<‖P‖2
}
.

We can prove that G3 and G4 are two invariant evolution flows generated by the Cauchy
problem (1.2)-(1.3). Then, we have the following theorem.

Theorem 3.2. Let N = 3, p= 1+ 2
3 , R and P be the ground state solution of (2.4)

and (2.6), respectively. Then, we have the following:
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(i) if ψ0∈G3∪{0}, then ψ(t,x) exists globally in H1;

(ii) if ψ0∈G4 and |x|ψ0∈L2, then ψ(t,x) is a singular solution in a finite time,
where ψ(t,x) is the solution of Equation (1.2) corresponding to ψ0.

Proof. The global existence part is obvious (see the first part of the proof of
Theorem 3.1). Now, we give the proof of (ii). It follows from the invariance of G4 that
for all t∈ I(the maximal existence interval),

J ′′(t) ≤12(H[ψ(t)]+M [ψ(t)])−4(‖∇ψ(t)‖22 +‖ψ(t)‖22)

+
8‖ψ0‖

2
3
2

‖P‖
2
3
2

‖∇ψ(t)‖2‖ψ(t)‖2

≤12(H[ψ(t)]+M [ψ(t)])−4(1− ‖ψ0‖
2
3
2

‖P‖
2
3
2

)‖ψ(t)‖2H1

<0.

Case 3.3: 1+ 2
3 <p<1+ 4

3
Applying the sharp Gagliardo-Nirenberg inequalities (2.5) and (2.7), we obtain that,

for all t∈ I(the maximal existence interval),

H[ψ(t)]+M [ψ(t)]≥‖ψ(t)‖2H1−
‖ψ0‖

5−p
2

2

‖P‖p−12

‖ψ(t)‖
3(p−1)

2

H1 − ‖ψ0‖22
‖R‖22

‖ψ(t)‖3H1 . (3.2)

Denote f3(y) :=y− ‖ψ0‖
5−p
2

2

‖P‖p−1
2

y
3(p−1)

4 − ‖ψ0‖22
‖R‖22

y
3
2 y≥0. Then,

f ′3(y) = 1− 3(p−1)‖ψ0‖
5−p
2

2

4‖P‖p−12

y
3(p−1)

4 −1− 3‖ψ0‖22
2‖R‖22

y
1
2 = 1−F (y). (3.3)

where F (y) =
3(p−1)‖ψ0‖

5−p
2

2

4‖P‖p−1
2

y
3(p−1)

4 −1 +
3‖ψ0‖22
2‖R‖22

y
1
2 . Obviously, F (y) has only one positive

minimizer y∗>0. Writing Fmin=F (y∗) and adding the condition of Fmin<1, we claim
that there exists a unique positive solution y0 for the equation f ′3(y) = 0. Indeed, we
have f ′3(y∗)>0, and lim

y→+∞
f ′3(y) =−∞. Since f ′3(y) is continuous on [0,+∞), there

exists a unique positive y0∈ [y∗,+∞) such that f ′3(y0) = 0. Therefore, we can deduce
that 0 and y0 are two minimizers of f ′3(y), and f ′3(y) is increasing on the interval [0,y0)
and decreasing on the interval [y0,+∞). Note that

f3max=f3(y0) =
1

3
y0 +

(p−3)‖ψ0‖
5−p
2

2

2‖P‖p−12

y
3(p−1)

4
0 . (3.4)

We define

G5 :=
{
u∈H1 :f3(‖u‖2H1)<H[u]+M [u]<f3(y0),‖u‖2H1 <y0,Fmin<1

}
,

G6 :=
{
u∈H1 :f3(‖u‖2H1)<H[u]+M [u]<f3(y0),‖u‖2H1 >y0,Fmin<1

}
.

We can prove that G5 and G6 are two invariant evolution flows generated by the Cauchy
problem (1.2)-(1.3). Then, we have the following theorem.

Theorem 3.3. Let N = 3, 1+ 2
3 <p<1+ 4

3 , R and P be the ground state solution of
(2.4) and (2.6) respectively. Then, we have the following:
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(i) if ψ0∈G5, then ψ(t,x) exists globally in H1;

(ii) if ψ0∈G6 and |x|ψ0∈L2, then ψ(t,x) is a singular solution in a finite time,
where ψ(t,x) is the solution of Equation (1.2) corresponding to ψ0.

Proof. Here, we just give the proof of blow-up case, as the global existence case is
obvious. From the invariance of G6 and Lemma 2.2, we obtain

J ′′(t) = 12(H[ψ(t)]+M [ψ(t)])−4‖∇ψ(t)‖22−12‖ψ(t)‖22 +
36−12p

p+1
‖ψ(t)‖p+1

p+1

≤12f3(y0)−4‖ψ(t)‖2H1 +
(18−6p)‖ψ(t)‖

5−p
2

2

‖P‖p−12

(‖ψ(t)‖2H1)
3(p−1)

4 .

(3.5)

Let g(y) =
(18−6p)‖ψ0‖

5−p
2

2

‖P‖p−1
2

y
3(p−1)

4 −4y. By some simple computations, we know that

gmax=g(ym) as well as g(y) is increasing on the interval [0,ym) and decreasing on the
interval [ym,+∞). Moreover, we find that y0∈ (ym,+∞), and then when y>y0,

g(y)≤g(y0) =
(18−6p)‖ψ0‖

5−p
2

2

‖P‖p−12

y
3(p−1)

4
0 −4y0 =−12f3(y0).

By injecting above fact into (3.5), we deduce that when ‖ψ(t)‖2H1 >y0,

J ′′(t)<12f3(y0)+g(y0)≤0.

Case 3.4: p= 1+ 4
3

By (2.5) and (2.7), we deduce that for all t∈ I

H[ψ(t)]+M [ψ(t)] ≥‖∇ψ(t)‖22 +‖ψ(t)‖22−
‖ψ(t)‖

4
3
2

‖P‖
4
3
2

(‖∇ψ(t)‖22 +‖ψ(t)‖22)

− 1
‖R‖22

(‖∇ψ(t)‖22 +‖ψ(t)‖22)2

= (1− ‖ψ0‖
4
3
2

‖P‖
4
3
2

)‖ψ(t)‖2H1−
1

‖R‖22
‖ψ(t)‖4H1 :=f4(‖ψ(t)‖2H1),

where the function f4(y) is defined on [0,∞) by f4(y) = (1− ‖ψ0‖
4
3
2

‖P‖
4
3
2

)y− 1
‖R‖22

y2. We easily

observe that f4(y) has a similar structure as f2(y), by the same argument as in Case
3.2, we define

G7 :=

{
u∈H1 :f4(‖u‖2H1)<H[u]+M [u]<

‖R‖22(‖P‖
4
3
2 −‖ψ0‖

4
3
2 )2

4‖P‖
8
3
2

,

‖u‖2H1 <
‖R‖22(‖P‖

4
3
2 −‖ψ0‖

4
3
2 )

2‖P‖
4
3
2

,‖u‖2<‖P‖2
}
,

G8 :=

{
u∈H1 :f4(‖u‖2H1)<H[u]+M [u]<

2‖R‖22(‖P‖
4
3
2 −‖ψ0‖

4
3
2 )2

9‖P‖
8
3
2

,

‖u‖2H1 >
2‖R‖22(‖P‖

4
3
2 −‖ψ0‖

4
3
2 )

3‖P‖
4
3
2

,‖u‖2<‖P‖2
}
.
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By the same argument as in the Case 3.1, we can prove that G7 and G8 are two
invariant evolution flows generated by the Cauchy problem (1.2)-(1.3). Then, we have
the following theorem.

Theorem 3.4. Let N = 3, p= 1+ 4
3 , R and P be the ground state solution of the

nonlinear elliptic Equation (2.4) and (2.6) respectively. Then, we have the following:
(i) if ψ0∈G7∪{0}, then ψ(t,x) exists globally in H1;

(ii) if ψ0∈G8 and |x|ψ0∈L2, then ψ(t,x) is a singular solution in a finite time,
where ψ(t,x) is the solution of Equation (1.2) corresponding to ψ0.

Proof. The proof of Theorem 3.4 is similar to that of Theorem 3.2.

Case 3.5: 1+ 4
3 <p<3

Let us recall the estimate (3.2). Here, we use the same algebra function

f5(y) :=y− ‖ψ0‖
5−p
2

2

‖P‖p−12

y
3(p−1)

4 − ‖ψ0‖22
‖R‖22

y
3
2 ,

but the parameter p and the method are different from the case 1+ 2
3 <p<1+ 4

3 . We

have f ′5(y) = 1− 3(p−1)‖ψ0‖
5−p
2

2

4‖P‖p−1
2

y
3(p−1)

4 −1− 3‖ψ0‖22
2‖R‖22

y
1
2 . We claim that there exists a unique

positive solution y0 for the equation f ′5(y) = 0. Indeed, by some computations, we have
for y>0

f ′′5 (y) =−3(p−1)(3p−7)‖ψ0‖
5−p
2

2

16‖P‖p−12

y
3(p−1)

4 −1− 3‖ψ0‖22
4‖R‖22

y−
1
2 <0, (3.6)

which implies that f ′5(y) is decreasing on [0,+∞). Notice that f ′5(0) = 1 and

f ′5(( 2‖P‖2
3‖ψ0‖2 )

1
2 )<0. Since f ′5(y) is continuous on [0,+∞), there exists a unique positive

y0 such that f ′5(y0) = 0.

f5max=f5(y0) =
3p−7

3(p−1)
y0 +

(3−p)‖ψ0‖22
(p−1)‖R‖22

y
3
2
0 >

3p−7

3(p−1)
y0. (3.7)

We define

G9 :=

{
u∈H1 :f5(‖u‖2H1)<H[u]+M [u]<

3p−7

3(p−1)
y0,‖u‖2H1 <y0

}
,

G10 :=

{
u∈H1 :f5(‖u‖2H1)<H[u]+M [u]<

3p−7

3(p−1)
y0,‖u‖2H1 >y0

}
.

By the same argument as in the Case 3.1, we can prove that G9 and G10 are two
invariant evolution flows generated by the Cauchy problem (1.2)-(1.3). Then, we have
the following theorem.

Theorem 3.5. Let N = 3, 1+ 4
3 <p<3, R and P be the ground state solution of the

nonlinear elliptic Equation (2.4) and (2.6) respectively. Then, we have the following:
(i) if ψ0∈G9∪{0}, then ψ(t,x) exists globally in H1;

(ii) if ψ0∈G10 and |x|ψ0∈L2, then ψ(t,x) is a singular solution in a finite time,
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where ψ(t,x) is the solution of Equation (1.2) corresponding to ψ0.

Proof. The proof of Theorem 3.5 is similar to that of Theorem 3.3.

Case 3.6: p= 3

Applying the sharp Gagliardo-Nirenberg inequalities (2.5) and (2.7), we see that for
all t∈ I(the maximal existence interval),

H[ψ(t)]+M [ψ(t)]≥‖ψ(t)‖2H1−
1

‖Q‖22
‖ψ(t)‖4H1 :=f6(‖ψ(t)‖2H1), (3.8)

where the function f6(y) is defined on [0,+∞) by f6(y) =y− 1
‖Q‖22

y2. Obviously, f6(y)

reaches the maximum at the point y∗6 =
‖Q‖22

2 . More precisely, f6max=f6(y∗6) =
‖Q‖22

4 .
We define

G11 :=

{
u∈H1 :f6(‖u‖2H1)<H[u]+M [u]<

‖Q‖22
4

,‖u‖2H1 <
‖Q‖22

2

}
,

G12 :=

{
u∈H1 :f6(‖u‖2H1)<H[u]+M [u]<

2‖Q‖22
9

,‖u‖2H1 >
2‖Q‖22

3

}
.

By the same argument as in the Case 3.1, we can prove that G11 and G12 are two
invariant evolution flows generated by the Cauchy problem (1.2)-(1.3). Then, we have
the following theorem.

Theorem 3.6. Let N = 3, p= 3 and Q be the ground state solution of (2.2). Then we
have the following:

(i) if ψ0∈G11∪{0}, then ψ(t,x) exists globally in H1;

(ii) if ψ0∈G12 and |x|ψ0∈L2, then ψ(t,x) is a singular solution in a finite time,
where ψ(t,x) is the solution of Equation (1.2) corresponding to ψ0.

Proof. The proof of Theorem 3.6 is similar to that of Theorem 3.2.

4. Rate of convergence of singular solutions and concentration
In this section, we study the rate and concentration of singular solutions for Equa-

tion (1.2). Here, our main tools are the Strichartz estimates(see [2, 16]). As p 6= 3,
Equation (1.2) does not have the scaling invariance, and the singular integral operator
E also has a bad effect on the study of the rate of convergence of singular solutions. We
inject the Gagliardo-Nirenberg inequality and conservation of mass into the Strichartz
estimates, and we give the proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1) First of all, we recall the Strichartz admissible
pair and Strichartz estimates for the linear and nonlinear Schrödinger equations.

A pair is called L2 Strichartz admissible, iff 2≤ q,r≤+∞, (q,r) 6= (2,∞) and 2
q =

N( 1
2−

1
r ), where N is the space dimension. It is easy to check that for N = 3, (q,r) =

(∞,2) and (q,r) = ( 8
3 ,4) are L2 Strichartz admissible pairs.

Denote the Schrödinger semigroup by eit4ψ(x) =F−1[e−it|ξ|
2F [ψ]] for any tem-

pered distribution ψ, and f(ψ) =E(|ψ|2)ψ+ |ψ|p−1ψ. Then, the Cauchy problem (1.2)-
(1.3) is equivalent to

ψ(t,x) =eit4ψ0− i
∫ t

0

ei(t−τ)4f(ψ(τ,x))dτ. (4.1)
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For any L2 Strichartz admissible pair (q,r), we have the following Strichartz estimates:

‖eit4ψ‖Lq
t ((t,τ);L

r
x)
≤C‖ψ‖L2

x
, (4.2)

‖
∫ t

0

ei(t−τ)4f(ψ)dτ‖Lq
t ((t,τ);L

r
x)
≤C‖f(ψ)‖

Lq
′

t ((t,τ);Lr
′

x )
, (4.3)

where 1
q + 1

q′
= 1, 1

r + 1
r′

= 1 and ‖ψ‖Lq
t ((t,τ);L

r
x)

:= (
∫ τ
t

(
∫
R2 |ψ(t,x)|rdx)

q
r dt)

1
q .

Secondly, by injecting the fact that (∞,2) and (q,r) = ( 8
3 ,4) are L2 Strichartz ad-

missible pairs, and the corresponding (q
′
,r
′
) = ( 8

5 ,
4
3 ), into the Strichartz estimate (4.2)-

(4.3), we obtain

‖∇ψ‖L∞t ((t,τ);L2
x)

+‖∇ψ‖
L

8
3
t ((t,τ);L4

x)

≤ C‖∇ψ0‖L2
x

+C‖∇(E(|ψ|2)ψ)‖
L

8
5
t ((t,τ);L

4
3
x )

+C‖∇(|ψ|p−1ψ)‖
L

8
5
t ((t,τ);L

4
3
x )
.

(4.4)

Indeed, for the term ‖∇(E(|ψ|2)ψ)‖
L

8
5
t ((t,τ);L

4
3
x )

, by the interpolation estimate and the

Gagliardo-Nirenberg inequality: ‖ψ‖44≤C‖ψ‖2‖∇ψ‖32, we deduce that

‖∇(E(|ψ|2)ψ)‖
L

4
3
x

≤C‖ψ‖2L4
x
‖∇ψ‖L4

x
≤C‖∇ψ‖

3
2

L2
x
‖∇ψ‖L4

x
.

Then, for any 0<t<τ <T <+∞, we deduce that

‖∇(E(|ψ|2)ψ)‖
L

8
5
t ((t,τ);L

4
3
x )

≤C(1+‖∇ψ‖L∞t ((t,τ);L2
x)

)
3
2 (

∫ τ

t

1 ·‖∇ψ‖
8
5

L4
x
dτ)

5
8

≤C(1+‖∇ψ‖L∞t ((t,τ);L2
x)

)
3
2 (τ− t) 1

4 ‖∇ψ‖
L

8
3
t ((t,τ);L4

x)

≤C(τ− t) 1
4 (1+‖∇ψ‖L∞t ((t,τ);L2

x)
+‖∇ψ‖

L
8
3
t ((t,τ);L4

x)
)

5
2 . (4.5)

For the term ‖∇(|ψ|p−1ψ)‖
L

8
5
t ((t,τ);L

4
3
x )

, we see that

‖∇(|ψ|p−1ψ)‖
L

4
3
x

≤C‖ψ‖p−1
L

2(p−1)
x

‖∇ψ‖L4
x
≤C‖ψ‖

4−p
2

L2
x
‖∇ψ‖

3(p−2)
2

L2
x
‖∇ψ‖L4

x
,

where in the last step, we use 0≤ 3(p−2)
2 < 3

2 for 2≤p<3, and the Gagliardo-Nirenberg

inequality: ‖ψ‖2(p−1)
L

2(p−1)
x

≤C‖ψ‖4−pL2
x
‖∇ψ‖3(p−2)L2

x
. Thus, by the same argument in (4.5), we

have

‖∇(|ψ|p−1ψ)‖
L

8
5
t ((t,τ);L

4
3
x )
≤C(τ− t) 1

4 (1+‖∇ψ‖L∞t ((t,τ);L2
x)

+‖∇ψ‖
L

8
3
t ((t,τ);L4

x)
)

5
2 ,

(4.6)
for any 0<t<τ <T <+∞. This completes the proof of Claim (4.4).

Thirdly, let Ft(τ) := 1+‖∇ψ‖L∞t ((t,τ);L2
x)

+‖∇ψ‖
L

8
3
t ((t,τ);L4

x)
. Then, it follows from

(4.4), (4.5) and (4.6) that there exists C0>0 such that

Ft(τ)≤C0(1+‖∇ψ(t)‖L2
x
)+C0(τ− t) 1

4 F
5
2
t (τ), (4.7)
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for any 0<t<τ <T <+∞. Now, we investigate the properties of Ft(τ). For any t∈
(0,T ), if T <+∞, then by Proposition 2.1 the solution ψ(t,x) is the singular solution
of the Cauchy problem (1.2)-(1.3), and lim

τ→T
Ft(τ) = +∞. And Ft(τ) is continuous and

nondecreasing on (t,T ), and for τ >t, we see that Ft(τ)→1+‖∇ψ(t)‖L2
x

as τ→ t. It
follows from the continuity of Ft(τ) with respect to τ that there exists τ0∈ (t,T ) such
that

Ft(τ0) = (C0 +1)(1+‖∇ψ(t)‖L2
x
), (4.8)

where C0>0 is the constant in (4.7). Taking τ = τ0 in (4.7), yields

1+‖∇ψ(t)‖L2
x

=Ft(τ0)−C0(1+‖∇ψ(t)‖L2
x
)

≤C0(τ0− t)
1
4 (C0 +1)

5
2 (1+‖∇ψ(t)‖L2

x
)

5
2

≤ (C0 +1)
7
2 (T − t) 1

4 (1+‖∇ψ(t)‖L2
x
)

5
2 ,

and so

1+‖∇ψ(t)‖L2
x
≥ 1

(C0 +1)
7
3 (T − t) 1

6

for 0<t<T <+∞.

This completes the proof of (1.4).
Finally, we prove Lq-norm of blow-up solutions for Equation (1.2). By the assump-

tion 3<q≤4, we use the Hölder interpolation estimate to obtain∫
E(|ψ(t)|2)||ψ(t)|2dx≤C‖ψ(t)‖44≤C‖∇ψ(t)‖

12−3q
6−q

2 ‖ψ(t)‖
2q

6−q
q (4.9)

for all 0≤ t<T <+∞. It follows from 2≤p< 7
3 and the Gagliardo-Nirenberg inequality

that there exists 0<C0<
p+1
4 and C1>0 such that

‖ψ(t)‖p+1
p+1≤C ‖ψ(t)‖

5−p
2

2 ‖∇ψ(t)‖
3(p−1)

2
2 ≤C0‖∇ψ(t)‖22 +C1 (4.10)

for all 0≤ t<T <+∞. Inject (4.9) and (4.10) into the energy. For all 0≤ t<T <+∞,
we have

(1− 2C0

p+1
)‖∇ψ(t)‖22≤2H[ψ0]+

2C1

p+1
+C‖∇ψ(t)‖

12−3q
6−q

2 ‖ψ(t)‖
2q

6−q
q ,

which implies that

‖ψ(t)‖
2q

6−q
q ≥C‖∇ψ(t)‖

q
6−q

2

and then (1.6) follows from (1.4).
For (1.5), it follows from the assumption 2≤p<3 and the Hölder interpolation

estimate that for all 0≤ t<T <+∞,

‖ψ(t)‖p+1
p+1≤C‖ψ(t)‖θ(p+1)

2 ‖ψ(t)‖(1−θ)(p+1)
4 ≤C2 +‖ψ(t)‖44, (4.11)

where θ= 3−p
p+1 ∈ (0,1) and C2>0. We remark that when 2<4<q, from the Hölder

interpolation estimate, we deduce that

‖ψ(t)‖44≤C‖ψ(t)‖
2(q−4)
q−2

2 ‖ψ(t)‖
2q

q−2
q (4.12)
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for all 0≤ t<T <+∞. Now, inject (4.11) and (4.12) into the energy. For all 0≤ t<T <
+∞

‖∇ψ(t)‖22≤2H[ψ0]+
2C2

p+1
+C‖ψ(t)‖

2(q−4)
q−2

2 ‖ψ(t)‖
2q

q−2
q ,

which implies that

‖ψ(t)‖q≥C‖∇ψ(t)‖
q−2
q

2

and then (1.5) follows from (1.4). This completes the proof of Theorem 1.1.

At the end of this section, we obtain the rate of Ḣ
1
2 -norm concentration of singular

solutions for Equation (1.2) and give the proof of Theorem 1.2.

Proof. (Proof of Theorem 1.2) Denote λ(t)>0 such that

λ(t)‖∇ψ(t)‖22→+∞, as t→T, (4.13)

where Q̃ is the solution of (1.7). Then, it follows from the results in [6] that if
ψ(t,x) is the singular solution of the Cauchy problem (1.2)-(1.3) satisfying (4.13) and
sup

t∈[0,T )

‖ψ(t)‖
Ḣ

1
2
<+∞, then there exists y(t)∈R3 such that

liminf
t∈[0,T )

∫
|x−y(t)|≤λ(t)

|(−4)
1
4ψ(t,x)|2dx≥‖Q̃‖2

Ḣ
1
2
. (4.14)

From Theorem 1.1, we can obtain (1.8) by taking λ(t) = (T − t) 1
6− in (4.14). Indeed, it

follows from (1.4) that ‖∇ψ(t)‖2≥C( 1
T−t )

1
6 . And then we see that

λ(t)‖∇ψ(t)‖22 = (T − t) 1
6− ‖∇ψ(t)‖22→+∞ as t→T.

Therefore, λ(t) = (T − t) 1
6− satisfies (4.13), which implies that (4.14) is true, so is (1.8).
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