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SPECIAL SOLUTIONS TO A FOURTH-ORDER
NONLINEAR PARABOLIC EQUATION IN NON-DIVERGENCE FORM∗

XIANGSHENG XU†

Abstract. In this paper we study a crystal surface model first proposed by H. Al Hajj Shehadeh,
R.V. Kohn, and J. Weare (Physica D, 240:1771–1784, 2011). By seeking a solution of a particular
function form, we are led to a boundary value problem for a fourth-order nonlinear elliptic equation.
The mathematical challenge of the problem is due to the fact that the degeneracy in the equation is
directly imposed by one of the two boundary conditions. An existence theorem is established in which
a meaningful mathematical interpretation of one of the boundary conditions remains open. Our proof
seems to suggest that this is unavoidable. We also obtain self-similar solutions to the crystal surface
model which are positive and unbounded. This is in sharp contrast with the linear biharmonic heat
equation.
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1. Introduction
Let Ω be a bounded domain in RN with boundary ∂Ω. Consider the initial boundary

value problem

∂tρ+ρ2∆2ρ3 = 0 in Ω∞, (1.1)

ρ= 0 on Σ∞, (1.2)

∆ρ3 = 0 on Σ∞, (1.3)

ρ|t=0 =ρ0 on Ω, (1.4)

where Ω∞= Ω×(0,∞), Σ∞=∂Ω×(0,∞). If N = 1, the equation in (1.1) was proposed
by H. Al Hajj Shehadeh, R.V. Kohn, and J. Weare [1] as a continuum model for the
evolution of a one-dimensional monotone step train separating two facets of a crystal
surface in the attachment-detachment-limited regime. In this case, the space variable x
is the surface height and ρ the surface slope. Since the surface height is increasing, we
expect that

ρ≥0. (1.5)

The existence of a solution to (1.1)-(1.4) was left open in [1]. The mathematical diffi-
culty is due to the boundary condition (1.2), which forces the equation in (1.1) to be
degenerate. As a result, a priori estimates are difficult to obtain. In [6], an existence
assertion was established for (1.1)-(1.4) with boundary conditions (1.2) and (1.3) being
replaced by periodic boundary conditions. In [14], the authors reformulated (1.1) by
setting

∆u=
1

ρ
. (1.6)
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At least, one can formally show that u satisfies

∂tu= ∆(∆u)
−3

in Ω∞. (1.7)

This equation was then coupled with the initial boundary conditions

u= b0(x) on Σ∞, (1.8)

∆u= b1(x) on Σ∞, (1.9)

u(x,0) =u0(x) on Ω (1.10)

for given data b0(x), b1, and u0(x) with properties:

(H1) b0(x)∈W 1,2(Ω)∩L∞(Ω);

(H2) b1(x)∈W 2,2(Ω)∩L∞(Ω) and b1(x)≥ c0 a.e. in Ω for some c0>0 ;

(H3) u0(x)∈W 2,2(Ω), ∆u0(x)≥ c1>0 a.e. in Ω, and (∆u0(x))
−3∈W 2,2(Ω).

Under these conditions, the existence of a suitably-defined weak solution to (1.7)- (1.10)
was obtained in [14] for any space dimensions, where it was also revealed that there was
a singular part in ∆u. That is, one has

∆u=
1

ρ
+νs, (1.11)

where νs is a non-negative, finite Radon measure. The function ρ in (1.6) is also a
solution to (1.1) in a suitable weak sense only if one of the following conditions is met:

(1) ρ is continuous on Ω∞;

(2) νs= 0; or

(3) ρ satisfies the additional integrability conditions

ρ∂tρ∈L2(0,T ;W 1,2
0 (Ω)), ρ2∈L2(0,T ;W 2,2(Ω)) for each T >0. (1.12)

Unfortunately, in multiple space dimensions, none of the above conditions can really be
expected. More recently, the authors in [10] introduced the change of variable

1

ρ
= 1+v (1.13)

and transformed (1.1) into

∂tv= ∆2 1

(1+v)3
(1.14)

The equation was then coupled with the initial and periodic boundary conditions. The
existence of a “much stronger” weak solution than the one in [14] was obtained, provided
that the initial data was suitably small,. In particular, the weak solution was shown to
decay to 0 exponentially.

Thus to the best of our knowledge, no existing work has directly dealt with the
boundary condition (1.2). In this paper, we shall consider an elliptic version of the
problem. Indeed, by seeking a solution of (1.1)-(1.3) of the function form

ρ(x,t) =A(t)ψ(x), (1.15)

we arrive at the following boundary value problem for ψ

ψ∆2ψ3 =λ in Ω, (1.16)
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ψ= 0 on ∂Ω, (1.17)

∆ψ3 = 0 on ∂Ω, (1.18)

where λ is a positive number. (See Section 2 for details.) Evidently, the forced degen-
eracy by the boundary condition (1.17) is still present in the Equation (1.16). For this
problem, we have the following

Theorem 1.1. Assume that Ω is a bounded domain in RN with C2,α boundary ∂Ω
for some α>0. For each λ>0 there is a function ψ such that

(C1) ψ∈C∞loc(Ω), ψ3∈W 2,2(Ω), ψ(x)>0 for x∈Ω;

(C2) ψ= 0 on ∂Ω;

(C3) ψ(x)∆2ψ3(x) =λ for each x in Ω.
The proof of this theorem will be presented in Section 2. Our investigations reveal

that it does not seem to be possible to obtain any estimates for ∇∆ψ3. Thus the sense
in which the boundary condition (1.18) is satisfied is an open issue. Physically, the
surface of a crystal below the roughening temperature consists of steps and terraces,
and the ODE describing the evolution of the discrete steps is exactly the finite-difference
analogue of problem (1.1)-(1.4) [1]. Thus the boundary conditions (1.2) and (1.3) arise
naturally. Obviously, (1.18) is from (1.3). How to bridge the gap here is an interesting
open question.

Observe that the function ψ only needs to satisfy the equation

ψ2∆2ψ3 =λψ in Ω (1.19)

for Aψ to be a solution of (1.1). To find a solution to this equation, it seems to be
natural to consider the functional

H(v) =
1

6

∫
Ω

(
∆v3

)2
dx− λ

2

∫
Ω

v2dx on W ≡{v :v3∈W 2,2(Ω),v3|∂Ω = 0}. (1.20)

By the calculations in (2.42) below, we see that the functional is coercive on W for
each λ>0, and hence it has a minimizer. Unfortunately, W does not seem to be a
linear space. As a result, we cannot compute the Gâteaux derivative of this functional.
The connection of this minimizer to (1.19) is not clear, nor can we ascertain its non-
negativity.

Our solution in (1.15) satisfies the decay condition

‖ρ(x,t)‖W 2,2(Ω)≤
c1

(c2 +4λt)
1
4

, (1.21)

where c1,c2>0 and λ is given as in Theorem 1.1. We conjecture that this should be
true for any solution of problem (1.1)-(1.4).

It is also interesting to seek a self-similar solution of the equation ∂tρ+ρ2∆ρ3 = 0
in RN ×(0,∞) of the form

ρ(x,t) = tαf(y), y=
x

tβ
. (1.22)

By the calculations in Section 3, we see that α= 4β−1
4 and f satisfies the equation

f2(y)∆2f3(y)−βy ·∇f(y)+
4β−1

4
f(y) = 0 on RN . (1.23)
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If β= 0, then we roughly recover the equation in (1.19) in RN .
Definition 1.1. We say that a function f is a weak solution of (1.23) if f3∈W 2,2

loc (RN )
and the equation∫

RN

∆f3∆
(
f3ξ
)
dy+

β

2

∫
RN

f2y ·∇ξdy+
(4+2N)β−1

4

∫
RN

f2ξdy= 0 (1.24)

holds for each ξ∈C∞0 (RN ).
To gain some insights into Equation (1.23), we seek a solution of (1.23) in the

function form

f(y) = crs, (1.25)

where c is a constant and r= |y|. A simple calculation shows

∇rs=srs−2y, ∆rs=s(s+N−2)rs−2. (1.26)

With the aid of this, we plug f in (1.25) into (1.23) to derive

3s(3s−2)(3s+N−2)(3s+N−4)c5r5s−4−βcsrs+c
4β−1

4
rs= 0. (1.27)

For this to be an identity, we must take

s= 1, c4 =
1

12(N−1)(N+1)
. (1.28)

Subsequently, we obtain a non-trivial solution

f(y) =
1

(12(N−1)(N+1))
1
4

√
y2

1 + ·· ·+y2
N . (1.29)

That is, no matter what value β is, we alway have a positive, unbounded solution to
(1.23) in RN . Obviously, nonlinearities in our equation have played a key role. As
we recall, the function f(y) in self-similar solutions to the biharmonic heat equation
∂tu+∆2u= 0 changes signs infinitely many times and decays to 0 exponentially as
|y|→∞ [4, 5].

If β≥ 1
4+2N and a weak solution f has the property

f3∈W 2,2(RN ), f ∈L2(RN ), (1.30)

then f = 0. This is due to the fact that we can construct a sequence of test functions ξk
in C∞0 (RN ) with the properties

ξk(y) = 1 on Bk(0), (1.31)

ξk(y) = 0 outside B2k(0), (1.32)

|∇ξk(y)|≤ c

k
, |∆ξk(y)|≤ c

k2
on RN . (1.33)

Here and in what follows Bs(z) denotes the ball centered at z with radius s for z∈RN
and s>0 and c a positive number. Then we have

∆(f3ξk) = ξk∆f3 +2∇ξk∇f3 +f3∆ξk→∆f3 strongly in L2(RN ), (1.34)
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RN

f2y ·∇ξkdy
∣∣∣∣ ≤ c∫

B2k(0)\Bk(0)

f2dy→0 as k→∞.(1.35)

Thus let ξ= ξk in (1.24) and take k→∞ in the resulting equation to derive the desired
result.

Theorem 1.2. Assume

− 1

4(N−1)
≤β≤0. (1.36)

Then for each pair of positive numbers c2,c4 there exists a radially symmetric solution
f =f(|y|) =f(r) to (1.23) with the property

c4 +c2r
2≤f3(r)≤ c4 +c2r

2 +cr4 for some positive number c= c(N,β,c2). (1.37)

The proof of this theorem will be given in Section 3. Since (1.37) holds, degeneracy
does not occur and solutions in Theorem 1.2 are very smooth. In addition, they seem
to lie in a “small” neighborhood of the solution in (1.29). The existence of any sign-
changing weak solutions to (1.23) remains an open question.

Self-similar solutions were also studied in [1, 15]. They focused on the case where
Ω = (0,1). Their methods and similarity variables were both different from ours.

Finally, we remark that continuum models for the evolution of a crystal surface
have received considerable attention recently. See, for example, [3, 11, 16, 18, 19] and
the references therein. Mathematical analysis of these models have revealed some very
interesting properties of solutions. To mention a few, we refer the reader to [7, 13, 14]
for solutions that contain measures. The study of exponential decay of solutions can
be found in [10, 12]. Development of singularity and finite extinction of solutions were
considered in [8]. Also see [2] for the existence of analytic solutions.

2. Solution by separation of variables
We seek a non-trivial solution of (1.1) of the function form

ρ(x,t) =A(t)ψ(x) (2.1)

coupled with the boundary conditions

ψ= ∆ψ3 = 0 ∂Ω. (2.2)

Substitute this into (1.1) to obtain

A′(t)ψ(x)+A5(t)ψ2(x)∆2ψ3(x) = 0. (2.3)

If both A(t) 6= 0 a.e and ψ(x) 6= 0 a.e., then

A′(t)

A5(t)
=−ψ(x)∆2ψ3(x). (2.4)

This is true if and only if both sides of the equation are a constant. Denote this constant
by −λ. We obtain

A′(t) =−λA5(t), t>0, (2.5)

ψ(x)∆2ψ3(x) =λ, x∈Ω. (2.6)
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Multiplying through (2.6) by ψ2 and integrating over Ω, we derive, with the aid of (2.2),

λ

∫
Ω

ψ2dx=

∫
Ω

(
∆ψ3

)2
dx. (2.7)

Here and in what follows, whenever there is no confusion we suppress the dependence
of a function on its dependent variables. Consequently,

λ≥0. (2.8)

If λ= 0, then A(t) =A(0) and ψ can be any non-zero constant. The resulting solution
is a constant solution of (1.1). From here on, we assume

λ>0. (2.9)

We solve (2.5) to obtain

A(t) =
1

(A−4(0)+4λt)
1
4

. (2.10)

Set

v= ∆ψ3. (2.11)

This leads to the consideration of the system{
∆v = λ

ψ ,

∆ψ3 =v.
(2.12)

We first consider an approximation to the above system.

Proposition 2.1. Let Ω be a bounded domain in RN with Lipschitz boundary ∂Ω and
λ a positive number. For ε>0 there exists a pair of functions (ψ,v) such that

(R1) ψ,v∈W 1,2(Ω)∩C0,α(Ω) for some α∈ (0,1);

(R2) ψ(x)≥0,v(x)≤0 for each x∈Ω;

(R3) They satisfy the boundary value problem

−div
(
3(ψ+ε)2∇ψ

)
=−v in Ω, (2.13)

−∆v=− λ

ψ+ε
in Ω, (2.14)

ψ= 0 on ∂Ω, (2.15)

v= 0 on ∂Ω (2.16)

in the weak sense.

Later we shall see that we actually have that the strict inequality in (R2) holds.

Proof. We define an operator T from L∞(Ω) into L∞(Ω) as follows: We say
T (g) =ψ if ψ is the unique solution of the problem

−div
(
3(g+ +ε)2∇ψ

)
=−v in Ω, (2.17)

ψ= 0 on ∂Ω, (2.18)
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where v solves

−∆v=− λ

g+ +ε
in Ω, (2.19)

v= 0 on ∂Ω. (2.20)

Obviously, λ
g++ε ∈L

∞(Ω) and the two equations in (2.17) and(2.19) are both linear

and uniformly elliptic. Classical theory [9] for this type of equations asserts that there
is a unique weak solution v to (2.19)-(2.20) in the space W 1,2(Ω)∩C0,α(Ω) for some
α∈ (0,1). This, in turn, implies that problem (2.17)-(2.18) has a unique weak solution ψ
in the same type of function spaces. That is, T is well-defined. We can further conclude
from these relevant a priori estimates that T is also continuous and precompact. To
apply the Leray-Schauder fixed point theorem ( [9], p. 280), we still need to establish
that for each σ∈ (0,1] and each ψ∈L∞(Ω) such that

ψ=σT (ψ), (2.21)

we have

‖ψ‖∞,Ω≤ c. (2.22)

Here and in what follows ‖·‖p,Ω denotes the norm in Lp(Ω). To see this, we observe
that (2.21) is equivalent to the following equations

−div
(
3(ψ+ +ε)2∇ψ

)
=−σv in Ω, (2.23)

−∆v=− λ

ψ+ +ε
in Ω, (2.24)

ψ= 0 on ∂Ω, (2.25)

v= 0 on ∂Ω. (2.26)

Note that the term on the right-hand side of (2.24) is non-positive. Thus by the maxi-
mum principle, we have

v≤0 a.e. in Ω. (2.27)

With this in mind, we can apply the maximum principle to (2.23) to obtain

ψ≥0 a.e. in Ω. (2.28)

Consequently, ψ+ =ψ and we can write (2.23) as

∆(ψ+ε)3 =σv a.e. in Ω. (2.29)

By the classical uniform estimate for linear elliptic equations, we deduce that for each
p> N

2 there is a positive number c= c(N,Ω) such that

max
Ω

((ψ+ε)3−ε3)≤ c‖v‖p,Ω, (2.30)

max
Ω

(−v)≤ c
∥∥∥∥ λ

ψ+ε

∥∥∥∥
p,Ω

≤ cλ
ε
. (2.31)

Combining the preceding two estimates yields (2.22). This completes the proof.
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Proof. (Proof of Theorem 1.1.) For each k∈{1,2, ·· ·} let {ψk,vk} be a solution
of the problem

∆ϕk =vk in Ω, (2.32)

∆vk =
λ

ψk+ 1
k

in Ω, (2.33)

ψk = 0 on ∂Ω, (2.34)

vk = 0 on ∂Ω (2.35)

in the sense of Proposition 2.1, where

ϕk =

(
ψk+

1

k

)3

− 1

k3
. (2.36)

Thus we have

vk≤0, ψk≥0 in Ω. (2.37)

We add the term −vk to both sides of (2.32) and square the resulting equation to derive∫
Ω

(∆ϕk)
2
dx+

∫
Ω

v2
kdx= 2

∫
Ω

∆ϕkvkdx=−2

∫
Ω

∇ϕk∇vkdx. (2.38)

Note that

ϕk = 0 on ∂Ω. (2.39)

Multiply through (2.33) by the term and integrate the resulting equation over Ω to
obtain

−
∫

Ω

∇ϕk∇vkdx=λ

∫
Ω

((
ψk+

1

k

)2

− 1

k3
(
ψk+ 1

k

))dx. (2.40)

Substitute this into (2.38) to derive∫
Ω

(∆ϕk)
2
dx+

∫
Ω

v2
kdx+2λ

∫
Ω

1

k3
(
ψk+ 1

k

)dx= 2λ

∫
Ω

(
ψk+

1

k

)2

dx. (2.41)

We deduce from Poincaré’s inequality that∫
Ω

ϕ2
kdx≤ c

∫
Ω

|∇ϕk|2dx

= c

∫
Ω

(div(ϕk∇ϕk)−ϕk∆ϕk)dx

=−c
∫

Ω

ϕk∆ϕkdx

≤ 1

2

∫
Ω

ϕ2
kdx+c

∫
Ω

|∆ϕk|2dx, (2.42)

from whence follows ∫
Ω

ϕ2
kdx≤ c

∫
Ω

|∆ϕk|2dx. (2.43)
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With this in mind, we are ready to estimate

∫
Ω

(
ψk+

1

k

)2

dx≤ c

(∫
Ω

(
ψk+

1

k

)3

dx

) 2
3

= c

(∫
Ω

ϕkdx+
|Ω|
k3

) 2
3

≤ c
(∫

Ω

ϕ2
kdx

) 1
3

+
c

k2

≤ c
(∫

Ω

|∆ϕk|2dx
) 1

3

+
c

k2
. (2.44)

Use this in (2.41) to obtain∫
Ω

(∆ϕk)
2
dx+

∫
Ω

v2
kdx+2λ

∫
Ω

1

k3
(
ψk+ 1

k

)dx≤ c. (2.45)

Since we have assumed that ∂Ω is C2,α for some α>0, the classical Calderón-Zygmund

estimate implies that {
(
ψk+ 1

k

)3}={ϕk+ 1
k3 } is bounded in W 2,2(Ω). Thus we extract

a subsequence of {ψk+ 1
k}, still denoted by {ψk+ 1

k}, such that

ψk+
1

k
→ψ strongly in L2(Ω) and a.e. in Ω, (2.46)(

ψk+
1

k

)3

→ψ3 weakly in W 2.2(Ω) and strongly in W 1,2(Ω). (2.47)

Similarly, we may assume that

vk⇀v weakly in L2(Ω). (2.48)

Now we can take the limit in (2.32) to obtain

∆ψ3 =v in Ω. (2.49)

Proposition 2.2. The sequence {vk} is bounded in W 1.2
loc (Ω).

Proof. Let r>0,z∈Ω be such that

Br(z)⊂Ω. (2.50)

Choose a cut-off function ζ ∈C∞(RN ) with the properties

ζ(x) =

{
1 if x∈B r

2
(z),

0 if x∈RN \Br(z),
(2.51)

0≤ ζ≤1, (2.52)

|∇ζ|≤ c
r
. (2.53)

We easily see from (2.33) that

∆(−vk)≤0 in Ω. (2.54)
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That is, −vk is a non-negative superharmonic function in Ω. Since vk cannot be iden-
tically 0, the strong maximum principle asserts that

−vk(x)>0 in Ω. (2.55)

Furthermore, we can conclude from Theorem 8.18 in ( [9], p.194) that

inf
B r

2
(z)

(−vk(x))≥ c
∫
−

Br(z)
(−vk(x))dx. (2.56)

We claim that ∫
Br(z)

(−v(x))dx>0. (2.57)

Were this not true, we would have

v= 0 a.e. on Br(z). (2.58)

We calculate from Fatou’s lemma, (2.46), (2.33), and (2.48) that∫
B r

2
(z)

1

ψ
dx≤

∫
Br(z)

ζ

ψ
dx

≤ liminf
k→∞

∫
Br(z)

ζ

ψk+ 1
k

dx

=
1

λ
liminf
k→∞

∫
Br(z)

∆vkζdx

=
1

λ
liminf
k→∞

∫
Br(z)

vk∆ζdx= 0. (2.59)

That is, ψ=∞ on B r
2
(z). This contradicts (2.46). The claim (2.57) follows.

Use 1
−vk ζ

2 as a test function in (2.54) to obtain∫
Ω

1

v2
k

|∇vk|2ζ2dx≤
∫

Ω

1

−vk
∇vk2ζ∇ζdx, (2.60)

from whence follows ∫
B r

2
(z)

1

v2
k

|∇vk|2dx≤ crN−2. (2.61)

We can easily deduce from (2.56) and (2.57) that there is a positive number c such that

inf
B r

2
(z)

(−vk)≥ c for k sufficiently large. (2.62)

This together with (2.61) implies that∫
B r

2
(z)

|∇vk|2dx≤ crN−2 for k sufficiently large.. (2.63)

Since this is true for each r>0 and each z∈Ω with Br(z)⊂Ω, the proposition follows.
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To continue the proof of Theorem 1.1, we see from the proposition that v∈W 1,2

loc
(Ω).

This along with the fact that −v is superharmonic in Ω asserts that

inf
B r

2
(z)

(−v)≥ c
∫
Br(z)

(−v)dx>0. (2.64)

We see from (2.49) that ψ3 is also superharmonic in Ω. Thus there holds

inf
B r

2
(z)
ψ3≥ c

∫
Br(z)

ψ3dx for some c>0. (2.65)

We can claim that∫
Br(z)

ψ3dx>0 for each r>0 and each z∈Ω with Br(z)⊂Ω. (2.66)

Were this not true, we would have

ψ= 0 in Br(z) for some r>0,z∈Ω with Br(z)⊂Ω. (2.67)

By (2.49), we also have that v= 0 on the same ball. This contradicts (2.64). Obviously,
if we replace ψ by ψk in(2.65), the resulting inequality still holds. This combined with
(2.66) implies that

ψk≥ c on B r
2
(z) for some c>0. (2.68)

Hence we can pass to the limit in (2.33) to get

∆v=
λ

ψ
in Ω. (2.69)

This, along with (2.65), implies that v is locally bounded. With this in mind, we can use
(2.49) again to conclude that ψ is also locally bounded. We have actually established
that for each r>0,z∈Ω with Br(z)⊂Ω there is a positive number c with

c≤ψ(x)≤ 1

c
for each x∈B r

2
(z). (2.70)

We can conclude (C1) from a boot strap argument. Take the Laplacian of both sides
of (2.49) and substitute (2.69) into the resulting equation to yields (C3). The proof of
Theorem 1.1 is complete.

We would like to point out the negative impact of the boundary condition (1.17)
on a priori estimates. Observe from (2.32) that∫

Ω

∆

(
ψk+

1

k

)2

dx=

∫
∂Ω

2

(
ψk+

1

k

)
∇ψk ·νdHN−1

=
2k

3

∫
∂Ω

3

(
ψk+

1

k

)2

∇ψk ·νdHN−1

=
2k

3

∫
Ω

∆

(
ψk+

1

k

)3

dx=
2k

3

∫
Ω

vkdx→−∞ as k→∞.
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We infer from (2.32) and (2.33) that∫
Ω

∆

(
ψk+

1

k

)3
λ

ψk+ 1
k

dx=

∫
Ω

vk∆vkdx=−
∫

Ω

|∇vk|2dx. (2.71)

The left-hand side of the above equation can be calculated as follows:∫
Ω

∆

(
ψk+

1

k

)3
λ

ψk+ 1
k

dx=

∫
Ω

∆

(
ψk+

1

k

)3

λ

(
1

ψk+ 1
k

−k
)
dx

+λk

∫
Ω

∆

(
ψk+

1

k

)3

dx

=−λ
∫

Ω

∇
(
ψk+

1

k

)3

∇ 1

ψk+ 1
k

dx+λk

∫
Ω

vkdx

= 3λ

∫
Ω

|∇ψk|2dx+λk

∫
Ω

vkdx. (2.72)

Combining this with (2.71) yields

3λ

∫
Ω

|∇ψk|2dx+

∫
Ω

|∇vk|2dx=−λk
∫

Ω

vkdx→∞ as k→∞. (2.73)

It does not seem to be possible to have any estimates on ∇v on the whole domain Ω.
Thus the sense in which the boundary condition v= 0 on ∂Ω is satisfied is an issue.

3. Self-similar solutions
We seek a solution of the equation ∂tρ+ρ2∆ρ3 = 0 on Ω∞ of the form

ρ(x,t) = tαf(y), y=
x

tβ
. (3.1)

We compute

∂tρ=αtα−1f(
x

tβ
)−βtα∇f(y)

x

tβ+1

= tα−1 (αf(y)−βy ·∇f(y)), (3.2)

ρ2∆2ρ3 = t5α−4βf2(y)∆2f3(y). (3.3)

Substitute these into (1.1) to arrive at

f2(y)∆2f3(y)t4α−4β+1−βy ·∇f(y)+αf(y) = 0 on RN . (3.4)

Thus we need to choose α,β so that

4α−4β+1 = 0. (3.5)

This gives (1.23).

Proof. (Proof of Theorem 1.2.) As before, we transform the fourth-order Equa-
tion (1.23) into a system of two second-order equations

∆f3(y) =v(y) in RN , (3.6)

∆v(y) =−βy ·∇
(

1

f(y)

)
− 4β−1

4

1

f(y)
in RN . (3.7)
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We seek a radially symmetric solution. That is, we assume that

v=v(r), f =f(r), (3.8)

where r= |y| is the same as before. Then a simple calculation shows that(
f3(r)

)′′
+
N−1

r

(
f3(r)

)′
=v(r) in (0,∞), (3.9)

v′′(r)+
N−1

r
v′(r) =−βr

(
1

f(r)

)′
− 4β−1

4

1

f(r)
in (0,∞). (3.10)

Multiply through (3.10) by rN−1 to obtain

(
rN−1v′(r)

)′
=−β

(
rN

f(r)

)′
+

(4(N−1)β+1)rN−1

4f(r)
. (3.11)

Integrate to yield

v′(r) =− βr

f(r)
+

c1
rN−1

+
4(N−1)β+1

4rN−1

∫ r

0

sN−1

f(s)
ds. (3.12)

We take the constant of integration c1 to be 0 to avoid a blow-up at r= 0. Continue to
integrate the preceding equation to derive

v(r) = c2−β
∫ r

0

s

f(s)
ds+

4(N−1)β+1

4

∫ r

0

G1(τ,r)

f(τ)
dτ, (3.13)

where

G1(τ,r) =

∫ r

τ

τN−1

sN−1
ds=

{
τ(rN−2−τN−2)

(N−2)rN−2 if N >2,

τ ln r
τ if N = 2.

(3.14)

Multiply through (3.9) by rN−1 and integrate the resulting equation to deduce

rN−1
(
f3(r)

)′
= c3 +

∫ r

0

sN−1v(s)ds

= c3 +c2r
N −β

∫ r

0

sN−1

∫ s

0

τ

f(τ)
dτds

+
4(N−1)β+1

4

∫ r

0

∫ s

0

sN−1G1(τ,s)

f(τ)
dτds

= c3 +c2r
N −β

∫ r

0

H1(τ,r)

f(τ)
dτ+

4(N−1)β+1

4

∫ r

0

G2(τ,r)

f(τ)
dτ, (3.15)

where

H1(τ,r) =

∫ r

τ

τsN−1ds=
1

N
τ(rN −τN ), (3.16)

G2(τ,r) =

∫ r

τ

sN−1G1(τ,s)ds

=

{ 1
(N−2)

(
1
N τr

N − 1
2r

2τN−1 + N−2
2N τN+1

)
if N >2,

1
2τr

2 ln r
τ −

1
4τ(r2−τ2) if N = 2.

(3.17)
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As before, we let c3 = 0 to derive

f3(r) = c4 +c2r
2−β

∫ r

0

∫ s

0

H1(τ,s)

sN−1f(τ)
dτds

+
4(N−1)β+1

4

∫ r

0

∫ s

0

G2(τ,s)

sN−1f(τ)
dτds

= c4 +c2r
2 +

∫ r

0

G(τ,r)

f(τ)
dτ. (3.18)

where

G(τ,r) =−β
∫ r

τ

H1(τ,s)

sN−1
ds+

4(N−1)β+1

4

∫ r

τ

G2(τ,s)

sN−1
ds. (3.19)

Observe that H1(τ,r),G1(τ,r),G2(τ,r) are all non-negative for 0≤ τ ≤ r. This combined
with our assumption (1.36) implies

G(τ,r)≥0 for 0≤ τ ≤ r. (3.20)

This fact is the key to our proof. Set

h(r) =f3(r). (3.21)

We can write (3.18) as

h(r) = c4 +c2r
2 +

∫ r

0

G(τ,r)

h
1
3 (τ)

dτ. (3.22)

Now fix

c4, c2>0. (3.23)

Consider the function space

W ={g(r)∈C[0,∞) :g(r)≥ c4 +c2r
2 for each r≥0}. (3.24)

We define an operator T on W as follows: For each g∈W we let

T (g) = c4 +c2r
2 +

∫ r

0

G(τ,r)

g
1
3 (τ)

dτ. (3.25)

To see that T is well-defined on W , we will have to separate the case where

N >2 and N 6= 4 (3.26)

from the remaining cases. Assume (3.26) to be true. We calculate from (3.16) and
(3.17) that

G(τ,r) =− β
N

∫ r

τ

τ(sN −τN )

sN−1
ds+

4(N−1)β+1

4(N−2)

∫ r

τ

1
N τs

N − 1
2s

2τN−1 + N−2
2N τN+1

sN−1
ds

=− β
N

(
1

2
r2τ− N

2(N−2)
τ3 +

1

(N−2)
r−N+2τN+1

)
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+
4(N−1)β+1

4(N−2)

(
1

2N
τr2 +

1

2(4−N)
τ3− 1

2N
r−N+2τN+1

)
+

4(N−1)β+1

8(N−2)(N−4)
r−N+4τN−1

=
4β+1

8N(N−2)
r2τ− 12β+1

8(N−2)(N−4)
τ3− 4(N+1)β+1

8N(N−2)
r−N+2τN+1

+
4(N−1)β+1

8(N−2)(N−4)
r−N+4τN−1, (3.27)

from whence follows∫ r

0

G(τ,r)

g
1
3 (τ)

dτ ≤ c
∫ r

0

G(τ,r)dτ ≤ cr4 for each g∈W. (3.28)

The case where N = 2 or 4 can be handled in an entirely similar manner. We shall omit
it here. By virtue of (3.20), the range of T is contained in W .

Claim 3.1. For each R>0 the operator T has a fixed point in the space WR≡
C[0,R]∩W . That is, there is a function h in the space such that

h=T (h). (3.29)

Proof. We wish to apply Corollary 11.2 in ( [9], p. 280). Evidently, WR is a
closed convex set in C[0,R] and T maps WR into itself. To check that T is continuous,

we observe that s−
1
3 is uniformly Lipschitz on [c4,∞). Let g1,g2∈WR be given. We

estimate for r∈ [0,R] that

|T (g1)(r)−T (g2)(r)|≤
∫ r

0

G(τ,r)

∣∣∣∣∣ 1

g
1
3
1 (τ)

− 1

g
1
3
2 (τ)

∣∣∣∣∣dτ
≤ c‖g1−g2‖C[0,R]

∫ r

0

G(τ,r)dτ ≤ cR4‖g1−g2‖C[0,R]. (3.30)

That is, T is Lipschitz on WR. To see that the range of T is precompact in C[0,R], for
g∈WR we differentiate (3.25) to derive

(T (g))
′
(r) = 2c2r+

∫ r

0

∂rG(τ,r)

g
1
3 (τ)

dτ. (3.31)

Here we have used the fact that

G(r,r) = 0. (3.32)

In view of (3.27) and (3.28), we deduce∣∣(T (g))
′
(r)
∣∣≤2c2R+cR3 for r∈ [0,R]. (3.33)

This completes the proof of the claim.

Fix R>0 and denote by h(r) the fixed point given by the above claim. We differ-
entiate (3.31) three more times to obtain

(T (g))
′′

(r) = 2c2 +
∂rG(r,r)

g
1
3 (r)

+

∫ r

0

∂2
rrG(τ,r)

g
1
3 (τ)

dτ = 2c2 +

∫ r

0

∂2
rrG(τ,r)

g
1
3 (τ)

dτ, (3.34)
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(T (g))
′′′

(r) =
∂2
rrG(r,r)

g
1
3 (r)

+

∫ r

0

∂3
rrrG(τ,r)

g
1
3 (τ)

dτ =
cr

g
1
3 (r)

+

∫ r

0

∂3
rrrG(τ,r)

g
1
3 (τ)

dτ, (3.35)

(T (g))
(4)

(r) =

(
cr

g
1
3 (r)

)′
+
∂3
rrrG(r,r)

g
1
3 (r)

+

∫ r

0

∂4
rrrrG(τ,r)

g
1
3 (τ)

dτ. (3.36)

Note from (3.27) that ∂3
rrrG(r,r) = c and∣∣∣∣∫ r

0

∂4
rrrrG(τ,r)

g
1
3 (τ)

dτ

∣∣∣∣≤ c. (3.37)

This indicates that the function h lies in C4[0,R]∩C∞(0,R], and hence f(r) =h
1
3 (r) is

a solution to (1.23) in BR(0). Observe that h≡ (h,h′,h′′,h′′′) is a bounded solution of
a system of ordinary differential equations of the form h′=F(r,h) on [0,R], where F is
locally Lipschitz in (0,∞)×(0,∞)×R3. Thus we can extend h(r) to [0,∞). The proof
of Theorem 1.2 is complete.

Remark 3.1. It seems to be possible to find more general conditions under which
G(τ,r) is non-negative. We leave this to the interested reader. The existence of a
solution remains unsolved when G(τ,r) changes signs for 0≤ τ ≤ r.
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