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ITERATIVE TV MINIMIZATION ON THE GRAPH∗

JAPHET NIYOBUHUNGIRO† , ERIC SETTERQVIST‡ , FREDDIE ÅSTRÖM§ , AND

GEORGE BARAVDISH¶

Abstract. We define the space of functions of bounded variation (BV ) on the graph. Using the
notion of divergence of flows on graphs, we show that the unit ball of the dual space to BV in the
graph setting can be described as the image of the unit ball of the space `∞ by the divergence operator.
Based on this result, we propose a new iterative algorithm to find the exact minimizer for the total
variation (TV) denoising problem on the graph. The proposed algorithm is provable convergent and
its performance on image denoising examples is compared with the Split Bregman and Primal-Dual
algorithms as benchmarks for iterative methods and with BM3D as a benchmark for other state-of-the-
art denoising methods. The experimental results show highly competitive empirical convergence rate
and visual quality for the proposed algorithm.
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1. Introduction

1.1. Background. Removing or reducing the noise from obtained and observed
images is a fundamental image processing problem known as denoising appearing in
many application areas. The image noise η considered here is additive which means
that the observed image data u0 is related to the underlying true image u according to
the linear model

u0 =u+η. (1.1)

The noise component η is further assumed to be normally, independent and identically
distributed. We study in this work the total variation (abbreviated as TV) denoising
problem. In this problem a noisy image u0∈L2 (Ω), where the open set Ω⊂R2 is the
image domain, is observed and the denoised image approximating the original image is
then defined as the solution uopt of the optimization problem

inf
u∈BV (Ω)

(
1

2
‖u0−u‖2L2(Ω) + t‖u‖BV (Ω)

)
, (1.2)

where t>0 is called the regularization parameter and BV (Ω) is the space of functions
of bounded variation. The TV denoising model 1.2 was introduced in 1992 by Rudin,
Osher and Fatemi [24] and is now also widely known in the image processing community
as the ROF model. The space BV (Ω) is defined as follows
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Definition 1.1.

BV (Ω) =
{
u∈L1(Ω) :‖u‖BV <∞

}
where the bounded variation or total variation seminorm of u is given by

Definition 1.2.

‖u‖BV (Ω) =

∫
Ω

|Du|= sup

∫
Ω

u(x)div ~g(x)dx,

where the supremum is taken over all ~g∈C1
c

(
Ω,R2

)
such that supx∈Ω

√
g2

1(x)+g2
2(x)≤

1.

Note that if u is a differentiable function then ‖u‖BV (Ω) =
∫

Ω
|∇u(x)|dx. An im-

portant feature of the BV term in the minimization problem 1.2 is that it discourages
the solution from having oscillations and at the same time allowing it to have
discontinuities.

Since its appearance in 1992, the ROF model has received a large amount of popu-
larity for its effeciency in denoising images without smoothing out the boundaries, and
it has also been applied to a multitude of other imaging problems (see for example the
book [12]). We choose next to highlight a few selected works from the vast literature
on the ROF model and TV minimization which are related to our approach.

An early work on total variation minimization based on dual formulation is [11]. In
2004, Chambolle provided an iterative algorithm related to [11] and proved its conver-
gence, see [7]. We remark that the works [1, 9] also proposed efficient projection algo-
rithms for total variation minimization. The papers [16] and [3] adapted Chambolle’s
algorithm from [7] to handle linear operators in the ROF model, such as convolution
operators representing blurring.

After the appearance of [7], several iterative algorithms have been developed which
can be used to solve TV minimization problems. Bregman iteration was shown in
[19] to be an efficient and fast way to solve TV problems among other L1-regularized
optimization problems. In particular, a split Bregman method was proposed in [19]
and subsequently used to compute the ROF minimizer. The Primal-Dual algorithm
proposed in [10] is another general purpose iterative algorithm which can be efficiently
applied to solve TV minimization problems. The fast iterative shrinkage-thresholding
algorithm (FISTA) for linear inverse problems, see [4] and [5], is also known to be able
to solve TV minimization problems efficiently.

For anisotropic total variation minimization of quantized images, i.e. the pixels of
the image take values in a prescribed finite set because the observed image is decomposed
into a prescribed number of level sets, graph cut algorithms have been developed that
exactly compute the minimizer up to machine precision. Foundational works in this
direction are the algorithms of Chambolle [8], Darbon and Sigelle [14] and Goldfarb and
Yin [18]. These algorithms are not iterative and in terms of speed, they are very fast.

Based on the fact that an image has a locally sparse representation in transform
domain and that this sparsity is enhanced by grouping similar 2D image patches into
3D groups, a paper on collaborative filtering or BM3D grouping and filtering procedure
was written [13] and later analysed and implemented in [21]. Though this method is not
directly designed to solve the TV minimization problem, it is one of the state-of-the-art
filtering methods applicable to the denoising problem.
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Image decomposition models into a piecewise-smooth and oscillating components
that usually researchers refer to as cartoon and textures (or textures + noise) respec-
tively, have received great interest in the image processing community. For example
u0∈L2 (Ω) is decomposable as

u0 =uopt+(u0−uopt).

This is the decomposition of u0 into the piecewise-smooth component uopt∈BV (Ω)
satisfying 1.2 and the component (u0−uopt)∈L2 (Ω) which contains textures and
noise. The original theoretical model for such an image decomposition was intro-
duced in 2001 by Meyer in [22] by using the total variation to model the piecewise-
smooth component and an appropriate dual space G which is the Banach space
composed of the distributions f =∂1g1 +∂2g2 = div~g, where g1 and g2 are in L∞(Ω)
and ‖f‖G= inf ‖~g‖L∞(Ω;R2) where the infimum is taken over all ~g such that f = div~g

and ‖~g‖L∞(Ω;R2) = ess supx∈Ω

√
|g1(x)|2 + |g2(x)|2, to model the oscillating component.

Some of the works proposed in the literature for numerically solving Meyer’s model or its
variants include for instance [2] that proposed to split the image into three components,
a geometrical component modeled by the total variation, a texture component mod-
eled by a negative Sobolev norm and a noise component modeled by a negative Besov
norm. Furthermore, [17] designed an algorithm by using split Bregman iterations and
the duality used by Chambolle to find the minimizer of a functional based on Meyer’s
G-norm. Other works based on the G-norm include for example [25] and [23].

1.2. Summary of main contributions and motivation. We present an
iterative method for solving the discrete analogue of the TV minimization problem 1.2
on finite graphs. The algorithmic representation of the method is given in Algorithm 1
and is proved to converge to the exact minimizer. Further, the algorithm can be run on
a parallel computer architecture and is thereby suitable to handle large graphs and data
sets. The proof of the convergence result Theorem 3.2 is based on duality principles
from convex analysis and Theorem 3.1 which characterizes, in the graph setting, the
unit ball of the dual space to BV as the image of the unit ball of the space `∞ by
the divergence operator. We note that the strength of a graph representation is when
considering non-Euclidean metric spaces via manifold representations, for example when
the image is a map in spherical geometry, which could be the case in many applications.
Our approach also illustrates the properties of the optimal decomposition of the image
data into a piecewise-smooth image component and a noise component and gives its
geometrical interpretation. Experimental results confirm that our method is a highly
competitive TV denoising algorithm in terms of both convergence rate and visual quality.

1.3. Overview. This paper is organized as follows. In Section 2 we present
some needed notation, definitions and simple results from interpolation theory and
algebra. Next, in Section 3 the TV minimization problem on the graph is formulated,
the proposed algorithm is given and its convergence is proved. Thereafter, in Section 4,
we present numerical experiments in order to compare the performance of the proposed
algorithm with other iterative TV denoising algorithms and the BM3D image denoising
method. Finally, discussion and concluding remarks are given in Section 5.

2. Notation and definitions

In this section we briefly introduce the necessary mathematical theory and notation
needed for presentation of the proposed algorithm.
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2.1. Interpolation theory. Let X0 and X1 be two Banach spaces. They form
a Banach couple (X0,X1) if there exists a Hausdorff topological vector space H in
which both X0 and X1 are linearly and continuously embedded. For an introduc-
tion to the theory of interpolation, we refer to the book [6]. When (X0,X1) is a
Banach couple, then the sum X0 +X1 given by X0 +X1 ={x∈H : x=x0 +x1, xj ∈
Xj , j= 0,1} is well defined, and can be shown to be a Banach space under the norm
‖x‖X0+X1

= inf
(
‖x0‖X0

+‖x1‖X1
, x=x0 +x1, xj ∈Xj , j= 0,1

)
. Furthermore, given a

Banach couple (X0,X1), an element u0∈X0 +X1 and a positive parameter t the Peetre’s
K-functional is defined by

K (t,u0;X0,X1) = inf
u∈X1

(
‖u0−u‖X0

+ t‖u‖X1

)
.

The K-functional is very important for the so-called K-method of real interpolation
which generates families of real interpolation spaces between X0 and X1. The K-
functional is a particular case of the more general L-functional which, for given 1≤
p0,p1<∞, is defined by

Lp0,p1 (t,u0;X0,X1) = inf
u∈X1

(
1

p0
‖u0−u‖p0X0

+
t

p1
‖u‖p1X1

)
. (2.1)

We need the following definitions of exact minimizers and optimal decomposition.

Definition 2.1 (Exact minimizers).
We say that the element uopt∈X1 is an exact minimizer for the functional 2.1 if

1

p0
‖u0−uopt‖p0X0

+
t

p1
‖uopt‖p1X1

=Lp0,p1 (t,u0;X0,X1) .

Definition 2.2 (Optimal decomposition). If uopt∈X1 is an exact minimizer for
2.1, then we call u0 =uopt+(u0−uopt) an optimal decomposition for 2.1.

Remark 2.1. It is important to note that an exact minimizer, and therefore an
optimal decomposition, does not always exist.

The Lp0,p1-functional appears in regularization of inverse problems where the second
term in the expression 2.1 is called a penalty term or regularization term. Note that the
total variation regularization functional 1.2 above is a particular case of the L-functional
2.1 for p0 = 2, p1 = 1 and for the spaces X0 =L2 (Ω) and X1 =BV (Ω).

2.2. Some algebra. We start with the definition of the notion of annihilator.

Definition 2.3. Let X be a Banach space and let Z be a subspace of X. The
annihilator of Z denoted ann(Z) is the set of bounded linear functionals that vanish on
Z. That is the set defined by

ann(Z) ={x∗∈X∗ : 〈x∗,z〉= 0, for all z∈Z} ,

where X∗ is the dual space of X and 〈x∗,z〉 denotes the action of the bounded linear
functional x∗∈X∗ on the element z∈Z.

We will make use of the following result in the sequel.

Lemma 2.1. Let X be a Banach space with dual space X∗, x0∈X and let Z be a
finite-dimensional subspace of X. Then

inf
z∈Z
‖x0 +z‖X = sup

x∗∈BX∗∩ann(Z)

〈x∗,x0〉,
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where BX∗ is the unit ball of X∗.

Proof. The case x0∈Z is obvious. From now on we suppose x0 /∈Z. Let us take
an arbitrary x∗∈BX∗ ∩ann(Z). Then we have

〈x∗,x0〉= 〈x∗,x0 +z〉≤‖x∗‖X∗ ‖x0 +z‖X ≤‖x0 +z‖X , ∀z∈Z.

Therefore since x∗∈BX∗ ∩ann(Z) and z∈Z are arbitrary, we have that

inf
z∈Z
‖x0 +z‖X ≥ sup

x∗∈BX∗∩ann(Z)

〈x∗,x0〉. (2.2)

In order to prove the reverse inequality, let us consider the space W , which is the
algebraic sum of the span of x0 and the space Z:

W ={x0}+Z={w∈X : w=λx0 +z, z∈Z and λ∈R},

and take z0∈Z such that infz∈Z ‖x0 +z‖X =‖x0 +z0‖X . The existence of such z0 follows
from the assumption that Z is a finite-dimensional subspace of X. Without loss of
generality we can assume that ‖x0 +z0‖X = 1. Since W is a normed vector space, it is
possible to consider its dual space. Further, as Z is a linear subspace of W x0 +z0∈W
and x0 +z0 /∈Z, the Hahn-Banach Theorem (see for example Corollary II.3.13 in [15])
gives that there exists a bounded linear functional x∗0∈W ∗ such that

〈x∗0,z〉= 0 for all z∈Z,and 〈x∗0,x0 +z0〉= 1.

It follows that

x∗0∈ann(Z) and 〈x∗0,x0〉= 1. (2.3)

Let us now investigate the action of x∗0 on W . Let w=λx0 +z be an element of W for
some λ∈R and z∈Z. Then we have

〈x∗0,w〉= 〈x∗0,λx0 +z〉= 〈x∗0,λx0 +λz0 +z−λz0〉
=λ〈x∗0,x0 +z0〉+〈x∗0,z−λz0〉=λ, (2.4)

because 〈x∗0,x0 +z0〉= 1 and 〈x∗0,z−λz0〉= 0 since x∗0∈ann(Z) and z−λz0∈Z. Let us
now describe the unit ball BW of W . Suppose that w=λx0 +z∈BW where λ 6= 0. We
have that

1≥‖w‖X =‖λx0 +z‖X = |λ|
∥∥∥x0 +

z

λ

∥∥∥
X
≥|λ|‖x0 +z0‖X = |λ|. (2.5)

Therefore w=λx0 +z∈BW implies that |λ|≤1. From 2.4 and 2.5, it follows that

‖x∗0‖W∗ = sup
w∈BW

〈x∗0,w〉= sup
w∈BW

λ= sup
|λ|≤1

λ= 1.

By invoking the Hahn-Banach theorem (see for example Theorem II.3.11 in [15]), we

can extend the functional x∗0 to a functional x̃∗0∈X∗ such that x̃∗0|W =x∗0 and
∥∥∥x̃∗0∥∥∥

X∗
=

‖x∗0‖W∗ = 1. From this and 2.3 we conclude that x̃∗0∈BX∗ ∩ann(Z). It follows that

inf
z∈Z
‖x0 +z‖X =‖x0 +z0‖X = 〈x∗0,x0 +z0〉= 〈x̃∗0,x0 +z0〉

≤ sup
x∗∈BX∗∩ann(Z)

〈x∗,x0 +z0〉= sup
x∗∈BX∗∩ann(Z)

〈x∗,x0〉. (2.6)

Putting 2.2 and 2.6 together, we obtain

inf
z∈Z
‖x0 +z‖X = sup

x∗∈BX∗∩ann(Z)

〈x∗,x0〉

which concludes the proof.



946 ITERATIVE TV MINIMIZATION ON THE GRAPH

3. Introducing iterative TV minimization on the graph

3.1. A graph specific problem formulation. Suppose we have an observed
noisy image u0∈L2 defined on the domain Ω = (0,1)

2⊂R2 which is a degraded version
of the original true image u∈BV (Ω) according to the linear model 1.1. The ROF model
suggests to take as an approximation to the original image u the function uopt∈BV
which is the exact minimizer for the L2,1-functional of the couple

(
L2,BV

)
:

L2,1

(
t,u0;L2,BV

)
= inf
u∈BV

(
1

2
‖u0−u‖2L2 + t‖u‖BV

)
, for some t>0. (3.1)

We will use the following anisotropic BV seminorm:

‖u‖BV (Ω) =

∫ 1

0

varxu(y)dy+

∫ 1

0

varyu(x)dx,

where

varxu(y) = sup
0≤x1≤...≤xn≤1

n−1∑
j=1

|u(xj+1,y)−u(xj ,y)|

is the total variation of u along the horizontal axis for a given y, and

varyu(x) = sup
0≤y1≤...≤yn≤1

n−1∑
i=1

|u(x,yi+1)−u(x,yi)|

is the total variation of u along the vertical axis for a given x. The reason for choosing
this BV seminorm is that it suggests a convenient formulation of total variation in the
graph setting, see 3.7a and 3.7b.

We use a standard approach when discretizing the functional 3.1, i.e., we divide Ω
into N×N square cells and, instead of the space L2(Ω), consider its finite-dimensional
subspace SN consisting of functions that are piecewise constant on each cell. Through-
out, we consider our discretization grid as a 2D Cartesian coordinate in screen space,
i.e., the same way matrices are represented on the computer. We define

SN =

u=

N∑
i,j=1

uijχij , χij (x,y) =

{
1 if j−1

N <x< j
N and i−1

N <y< i
N

0 otherwise.

.
It is clear that the BV seminorm of a function u∈SN is equal to

‖u‖BV (SN ) =
1

N

 N∑
i=1

N−1∑
j=1

|ui,j+1−uij |+
N∑
j=1

N−1∑
i=1

|ui+1,j−uij |

.
Therefore the discrete analogue of the functional 3.1 can be written as

L2,1

(
t,u0;L2,BV

)
= inf
u∈SN

(
1

2N2

 N∑
i,j=1

(
u0ij
−uij

)2
+
t

N

 N∑
i=1

N−1∑
j=1

|ui,j+1−uij |+
N∑
j=1

N−1∑
i=1

|ui+1,j−uij |

). (3.2)
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3.1.1. Graph notations. We now turn to the framework of graph which
generalizes the problem 3.2. Let G= (V,E) be a finite, directed and connected1 graph
with N vertices V ={v1,v2,. ..,vN} and M directed edges E={e1,e2,. ..,eM} where each
edge is determined by a pair of vertices, i.e. ek = (vi,vj) for some i,j∈{1,2,. ..,N} and
k= 1,2,. ..,M . We assume that the edge ek = (vi,vj) is directed from the vertex vi to
the vertex vj . Let SV ={f : f :V →R} denote the N−dimensional space of real-valued
functions defined on V and let SE ={g : g :E→R} denote the M -dimensional space of
real-valued functions defined on E.

The gradient operator grad :SV →SE is defined by

gradf(e) =f(vj)−f(vi),e= (vi,vj)∈E.

We define inner products on SE and SV according to

〈f1,f2〉SE
=
∑
e∈E

f1(e)f2(e)

and

〈g1,g2〉SV
=
∑
v∈V

g1(v)g2(v).

It is easy to show that the divergence operator div :SE→SV given by

divg(vj) =
∑

i:(vi,vj)∈E

g ((vi,vj))−
∑

k:(vj ,vk)∈E

g ((vj ,vk)).

is conjugate to grad, i.e.

〈divg,f〉SV
= 〈g,gradf〉SE

, ∀f ∈SV ,∀g∈SE . (3.3)

If we consider elements of SE as flows on the graph G= (V,E), the divergence at a
vertex can be interpreted as the difference between the total incoming flows and the
total outgoing flows.

The graph in Figure 3.1 illustrates the definition for the gradient and the di-
vergence operator by an example for the case N = 6 and M = 10. For example,
gradf(e6) =f(v5)−f(v2) is the gradient at e6 = (v2,v5) and divg(v3) =g ((v1,v3))+
g ((v4,v3))+g ((v6,v3))−g ((v3,v2))−g ((v3,v5)) is the divergence at v3.

Remark 3.1. The operator grad has a kernel given by

ker(grad) ={f ∈SV : f =C, for some C ∈R} ,

and its orthogonal complement coincides with its annihilator and is given by

(ker(grad))
⊥

= ann(ker(grad))=

{
F ∈SV :

∑
v∈V

F (v) = 0

}
. (3.4)

Since div is the conjugate operator of grad, the fundamental theorem of linear algebra
ensures that

im(div) = ann(ker(grad)) and im(grad) = ann(ker(div)) (3.5)

1The analysis can be extended to disconnected graphs as the components of the graph are considered
separately. For convenience, we have therefore chosen to only consider connected graphs in this paper.
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v1

v2

v3

v4

v5

v6

e1=(v1,v2)

e2=(v1,v3)

e3=(v4,v1)

e4=(v3,v2)

e5=(v4,v3)

e6=(v2,v5)

e7=(v3,v5)

e8=(v6,v3)

e9=(v6,v4)

e10=(v5,v6)

Fig. 3.1: Graph illustrating the notation and node relations for the discrete gradient and divergence
operators.

where im(A) denotes the image of the operator A.

An observed image u0∈SN can be considered as an element of SV for a graph
G= (V,E) where the cells are represented by the vertices in V and pairs of adjacent
cells are represented by edges in E (any direction of the edges can be chosen). The
functional 3.2 can then be written as

L2,1

(
t,u0;L2,BV

)
= inf
u∈SV

(
1

2N2
‖u0−u‖2`2(SV ) +

t

N
‖gradu‖`1(SE)

)
. (3.6)

It is clear that the exact minimizer of 3.6 coincides with the exact minimizer of

L2,1

(
s,u0;`2(SV ),BV (SV )

)
= inf
u∈SV

(
1

2
‖u0−u‖2`2(SV ) +s‖gradu‖`1(SE)

)
, s=Nt.

This observation leads to the following analogue of the ROF model on a general finite,
connected and directed graph.

Problem 3.1.
Suppose that we know the function u0∈SV . For given t>0, find the exact minimizer

of the functional

L2,1

(
t,u0;`2(SV ),BV (SV )

)
= inf
u∈BV (SV )

(
1

2
‖u0−u‖2`2(SV ) + t‖u‖BV (SV )

)
,

where

‖u‖`2(SV ) =

(∑
v∈V

(u(v))
2

) 1
2

, ‖u‖BV (SV ) =‖gradu‖`1(SE) , (3.7a)

and ‖ψ‖`1(SE) =
∑
e∈E
|ψ(e)|. (3.7b)
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3.1.2. Description of the ball of dual space to BV (SV ). In order to
describe our algorithm for Problem 3.1, we first need a description of the ball of the
dual space to BV (SV ).

It was shown in [20] that the exact minimizer uopt for the L2,1- functional for the
couple

(
`2,X

)
, where X is a Banach space,

L2,1

(
t,u0;`2,X

)
= inf
u∈X

(
1

2
‖u0−u‖2`2 + t‖u‖X

)
,

is equal to the difference between u0 and the nearest element to u0 of the ball of
radius t>0 of the space X∗, i.e., uopt=u0−argmin

ψ∈tBX∗
‖u0−ψ‖`2 . Figure 3.2 provides a

geometrical illustration of the optimal decomposition.

T

O
u0−uopt

uopt

u0

tBX∗ ={ψ∈Rn : ||ψ||X∗ ≤ t}
{u∈Rn : ||u0−u||`2 ≤||uopt||`2}

Fig. 3.2: Geometrical illustration of the ball of dual space and the position of the element of best
approximation uopt=u0− argmin

ψ∈tBX∗
‖u0−ψ‖`2 . The hyperplane T is orthogonal to u0−uopt.

Consider now X=BV . As ‖·‖BV (SV ) is a seminorm on SV , we restrict to the

subspace (ker(grad))
⊥

where ‖·‖BV (SV ) is a norm. The dual space BV ∗(SV ) is then

(ker(grad))
⊥

equipped with the norm defined by

‖ψ‖BV ∗(SV ) = sup
‖h‖BV (SV )≤1

〈ψ,h〉SV
. (3.8)

We have the following characterization of the unit ball of BV ∗(SV ):

Theorem 3.1. The unit ball of the space BV ∗(SV ) is equal to the image of the unit
ball of the space `∞(SE) under the operator div, i.e.,

BBV ∗(SV ) = div
(
B`∞(SE)

)
.

Proof. Let us consider an arbitrary ψ∈BV ∗ (SV ). From relations 3.4 and 3.5, we
conclude that BV ∗ (SV ) = im(div). Therefore for all ψ∈BV ∗ (SV ), there exists at least
one g∈SE such that ψ= divg. Fix g0∈SE such that ψ= divg0. We have

inf
ψ=divg

‖g‖`∞(SE) = inf
ϕ∈ker(div)

‖g0 +ϕ‖`∞(SE) . (3.9)
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By applying Lemma 2.1 and using expression 3.5, together with 3.3, ψ= divg0, 3.7a and
3.8 we derive

inf
ψ=divg

‖g‖`∞(SE) = inf
ϕ∈ker(div)

‖g0 +ϕ‖`∞(SE) = sup
f∈B`1(SE)∩im(grad)

〈f,g0〉SE

= sup
‖gradh‖`1(SE)≤1

〈gradh,g0〉SE
= sup
‖gradh‖`1(SE)≤1

〈h,divg0〉SV

= sup
‖h‖BV (SV )≤1

〈h,ψ〉SV
=‖ψ‖BV ∗(SV ) .

From this it follows that

‖ψ‖BV ∗(SV )≤1 if and only if inf
ψ=divg

‖g‖`∞(SE)≤1.

So, it is clear that BV ∗ (SV )⊃div
(
B`∞(SE)

)
. Note next that the infimum in 3.9 is

attained because ker(div) is a subspace of the finite-dimensional space SE . Therefore,
for each ψ∈BBV ∗(SV ) there exists an element

gψ ∈g0 +ker(div) , such that ‖gψ‖`∞(SE)≤1 and divgψ =ψ.

We conclude that

BBV ∗(SV ) = div
(
B`∞(SE)

)
.

3.2. Algorithm. Algorithm 1 below embodies our algorithmic contribution for
computing the ROF-minimizer uopt and we will now describe its construction in detail.

The core of the algorithm is the construction of the element ψ̃= (u0−uopt)∈
tBBV ∗(SV ) that satisfies∥∥∥u0− ψ̃

∥∥∥
`2(SV )

= inf
ψ∈tBBV ∗(SV )

‖u0−ψ‖`2(SV ) .

From Theorem 3.1, this is equivalent to constructing a flow gψ̃ ∈ tB`∞(SE) such that∥∥∥u0−divgψ̃

∥∥∥
`2(SV )

= inf
g∈tB`∞(SE)

‖u0−divg‖`2(SV ) ,

and put ψ̃= divgψ̃. Once this is done, uopt=u0− ψ̃.

We now describe the steps of the algorithm in detail. Let u0 be defined on G= (V,E)
with vertex set V ={v1,. ..,vN} and edge set E={e1,. ..,eM}. The parameter t denotes
a regularization parameter and Niter denotes the maximum number of iterations. The
edge set is specifically defined as

ek = (vi,vj)∈E, k= 1,2,. ..,M ; for some i,j∈{1,2,. ..,N} .

Introduce the operator T : tB`∞(SE)→ tB`∞(SE) given by

T =TMTM−1TM−2 .. .T2T1 (3.10)
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where for k= 1,2,. ..,M , the operator Tk : tB`∞(SE)→ tB`∞(SE) is defined as follows

Tkg (e) =


Kg (ek) ,if Kg (ek)∈ [−t,+t];

−t ,if Kg (ek)<−t;
+t ,if Kg (ek)>+t.

, if e=ek;

g (e) , if e 6=ek.

(3.11)

Here

Kg (ek) =
[u0(vj)−div\ekg(vj)]− [u0(vi)−div\ekg(vi)]

2

and div\ek g (vi) = divg (vi)+g (ek);
div\ek g (vj) = divg (vj)−g (ek);
div\ek g (v`) = divg (v`), ∀` 6= i,j,

i.e. div\ek is the divergence operator div without taking into account the flow on the
edge ek.

The constructed operator T depends on the enumeration of the edges in E. However
the results concerning T , i.e. Proposition 3.1 and Theorem 3.2 below, hold regardless of
the specific enumeration of the edges. We will now point out a certain construction of
T which leads to a version of Algorithm 1 suitable for parallel computer architectures.

Colour the set of edges E such that incident edges, i.e. edges that share a common
vertex, have different colours. Denote by E1,...,EL the resulting disjoint subsets of
E, ∪i∈{1,...,L}Ei=E, from such a colouring with usage of L different colours. Let
ei,1,....,ei,Mi denote the edges of Ei and define TEi =Ti,MiTi,Mi−1...Ti,1 where

Ti,kg (e) =


Kg (ei,k) ,if Kg (ei,k)∈ [−t,+t];

−t ,if Kg (ei,k)<−t;
+t ,if Kg (ei,k)>+t.

, if e=ei,k;

g (e) , if e 6=ei,k.

Because the edges of Ei are non-incident, it follows that the applications of Ti,k, k=
1,...,Mi, can be done in arbitrary order without affecting the resulting update TEig of
g. The associated computations can therefore be done in parallel. With TEi

, i= 1,...,L,
given, the operator T is then constructed according to

T =TEL
TEL−1

...TE1
.

3.3. Convergence results. For Algorithm 1, convergence is established in
Theorem 3.2. Its proof is based on the following proposition.

Proposition 3.1. The operator T : tB`∞(SE)→ tB`∞(SE) given by 3.10-3.11 is contin-
uous and satisfies the following two conditions

(1) For any g∈ tB`∞(SE), divg= ψ̃ if and only if Tg=g;

(2) For any g∈ tB`∞(SE), if divg 6= ψ̃ then ‖u0−div(Tg)‖`2(SV )<‖u0−divg‖`2(SV ).

Proof. Each operator Tk is continuous because by definition, it is clear that small
changes of g∈ tB`∞(SE) leads to small changes of Tk and therefore T is continuous as a
product of continuous operators.
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Algorithm 1 :ROF model on the graph

n←0
choose initial g∈ tB`∞(SE)

gn←g
while n<Niter do

if Tgn=gn then
stop

else {Tgn 6=gn}
Compute gn+1 =Tgn

end if
n=n+1

end while
Compute ψ̃= div(gn)

return uopt=u0− ψ̃

We now prove condition (1). Let g∈ tB`∞(SE) and assume that divg= ψ̃. Take
ek = (vi,vj)∈E. We note that u(ek) appears only in the following two terms of

‖u0−divg‖2`2(SV ):

[u0(vj)−divg(vj)]
2

+[u0(vi)−divg(vi)]
2

=
[
u0(vj)−

(
div\ek g(vj)+g(ek)

)]2
+
[
u0(vi)−

(
div\ek g(vi)−g(ek)

)]2
. (3.12)

Since divg= ψ̃, g(ek) in particular must minimize 3.12 in the interval [−t,t]. By Jensen’s
inequality we note that

ξ(g(ek)) =
[
u0(vj)−

(
div\ek g(vj)+g(ek)

)]2
+
[
u0(vi)−

(
div\ek g(vi)−g(ek)

)]2
≥2

([
u0(vj)−div\ek g(vj)

]
+
[
u0(vi)−div\ek g(vi)

]
2

)2

.

Equality holds if and only if

u0(vj)−
(
div\ek g(vj)+g(ek)

)
=u0(vi)−

(
div\ek g(vi)−g(ek)

)
,

or equivalently

g(ek) =

[
u0(vj)−div\ek g(vj)

]
−
[
u0(vi)−div\ek g(vi)

]
2

=:Kg(ek).

Moreover, ξ(x) is strictly convex and therefore strictly decreasing for x<Kg(ek) and
strictly increasing for x>Kg(ek). So the minimal value of ξ(x) on the interval [−t,t] is
only attained at

(i) the point Kg(ek) if Kg(ek)∈ [−t,t],
(ii) the point −t if Kg(ek)<−t,
(iii) the point t if Kg(ek)>t.

The assumption divg= ψ̃ then implies that g(ek) must be the nearest point in the
interval [−t,t] to Kg(ek), implying that Tkg(ek) =g(ek). Since ek ∈E was arbitrary, it
follows that Tkg (ek) =g (ek) for all k= 1,...,M . Therefore Tkg=g for all k= 1,...,M and
we conclude that Tg=g.



J. NIYOBUHUNGIRO, E. SETTERQVIST, F. ÅSTRÖM, AND G. BARAVDISH 953

Conversely, let us assume that g∈ tB`∞(SE) and Tg=g. Then for any edge e∈E,
g(e) coincides with the point of the interval [−t,t] which is nearest to Kg(e). As
‖u0−div(·)‖`2(SV ) is a convex function on tB`∞(SE), it is enough to show that g mini-

mizes ‖u0−div(·)‖`2(SV ) locally, i.e. it is enough to show that for some small ε>0 we
have

‖u0−divg‖`2(SV ) = inf
ω∈Dε

‖u0−divω‖`2(SV ) ,

where Dε is the tubular set given by Dε=
{
ω∈ tB`∞(SE) : ‖g−ω‖`∞(SE)≤ε

}
. Note

that for any ω∈Dε and e∈E we have ω(e)∈ [−t,t]∩ [g(e)−ε,g(e)+ε]. The set Dε is a
compact subset of SE and it therefore contains a function ωε∈Dε such that

‖u0−divωε‖`2(SV ) = inf
ω∈Dε

‖u0−divω‖`2(SV ) . (3.13)

So, we will need to prove that

‖u0−divg‖`2(SV ) =‖u0−divωε‖`2(SV ) .

We first note that it follows from the necessity direction proved above that for any edge
e∈E, ωε(e) will coincide with the point of the interval [−t,t]∩ [g(e)−ε,g(e)+ε], which
is nearest to Kωε(e).

Let us now decompose the edge set E into two parts. The first part denoted
by Ωg consists of the edges for which Kg(e) does not belong to the interval [−t,t], i.e.
Ωg ={e∈E : Kg(e) /∈ [−t,t]}. As g(e) is the nearest point in the interval [−t,t] to Kg(e)
we have

g(e) =

{
−t if Kg (e)<−t
+t if Kg (e)>+t

for edges e∈Ωu.

If the number ε>0 is small enough, it follows from ‖g−ω‖`∞(SE)≤ε that on e∈Ωg
where we have Kg(e)<−t we will also have Kωε(e)<−t and therefore ωε(e) =−t=
g(e). Analogously, on e∈Ωg where Kg(e)>t we will have Kωε(e)>t and therefore
ωε(e) = t=g(e). So we have

ωε(e) =g(e) for all e∈Ωg. (3.14)

Next, we consider the remaining edges E\Ωg. Let G′= (V,E\Ωg), i.e. the graph
G with the edges in Ωg removed. The graph G′ is the union of several connected
components (Vk,Ek), k= 1,...,` so that we have V1∪ ...∪V`=V and E1∪ ...∪E`=E\Ωg.
Note that it is possible that some of the graphs (Vk,Ek) consist of just one single vertex.
For these graphs there is nothing to prove because Ek =∅. Let us now consider a
subgraph (Vk,Ek) where Ek 6=∅. On each e∈Ek we have Kg(e)∈ [−t,t] and therefore
g(e) =Kg(e), i.e. if e= (vi,vj) then

g(e) =Kg(e) =

[
u0(vj)−div\eu(vj)

]
−
[
u0(vi)−div\eu(vi)

]
2

,

or equivalently, in view of the definition of div\eg(·), we get that

u0(vj)−divg(vj) =u0(vi)−divg(vi).
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Note that operators K, div and div\u(e) are considered in the original setting of G=
(V,E). Therefore, for all v∈Vk the values of u0(v)−divg(v) are equal. It follows that

∑
v∈Vk

[u0(v)−divg(v)]
2

= |Vk|
(∑

v∈Vk
[u0(v)−divg(v)]

|Vk|

)2

. (3.15)

For ωε we can with Jensen’s inequality derive the corresponding inequality

∑
v∈Vk

[u0(v)−divωε(v)]
2≥|Vk|

(∑
v∈Vk

[u0(v)−divωε(v)]

|Vk|

)2

. (3.16)

Now, note that flows on edges in Ek are canceled in the sums
∑
v∈Vk

[u0(v)−divg(v)]
and

∑
v∈Vk

[u0(v)−divωε(v)]. Therefore, only flows on edges in Ωg remain in these
sums. It then follows from (3.14) that∑

v∈Vk

[u0(v)−divωε(v)] =
∑
v∈Vk

[u0(v)−divg(v)].

Therefore, taking into account (3.15) and (3.16), we obtain∑
v∈Vk

[u0(v)−divωε(v)]
2≥

∑
v∈Vk

[u0(v)−divg(v)]
2
.

Summing over all Vk gives

‖u0−divωε‖2`2(SV )≥‖u0−divg‖2`2(SV ) ,

and we conclude from the definition of ωε, recall (3.13), that

‖u0−divωε‖2`2(SV ) =‖u0−divg‖2`2(SV ) .

So, g minimizes ‖u0−div(·)‖`2(SV ) on Dε and therefore, by convexity, on tB`∞(SE).

Therefore, Tg=g implies divg= ψ̃ and we have now established condition (1).
Finally, we prove condition (2). Note that by definition for ∀g∈ tB`∞(SE), the

operators Tk, k= 1,...,M satisfy

‖u0−div(Tku)‖`2(SV )≤‖u0−divu‖`2(SV ) ,

with equality if and only if Tkg(ek) =g(ek). This implies that

‖u0−div(Tg)‖`2(SV )≤‖u0−divg‖`2(SV ) ,

with equality if and only if Tg=g which in turn by condition (1) is equivalent to

divg= ψ̃. Hence for any g∈ tB`∞(SE), if divg 6= ψ̃ then

‖u0−div(Tg)‖`2(SV )<‖u0−divg‖`2(SV ) .

We are now ready to show the following theorem which establishes that Algorithm
1 converges to the ROF-minimizer uopt.
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Theorem 3.2. Let g∈ tB`∞(SE) and T : tB`∞(SE)→ tB`∞(SE) be the operator given by
3.10-3.11. Then

div(Tng)→ ψ̃=u0−uopt as n→+∞.

Proof. From Proposition 3.1, it follows that T is continuous and sat-
isfies the conditions (1) and (2). These conditions in turn give that the se-

quence
(
‖u0−div(Tng)‖`2(SV )

)
n∈N

is monotonically decreasing and bounded below by∥∥∥u0− ψ̃
∥∥∥
`2(SV )

. Therefore it converges. Let us now consider the sequence (Tng)n∈N⊂

tB`∞(SE). The ball tB`∞(SE) is a compact set and therefore has (Tng)n∈N a convergent
subsequence in tB`∞(SE), say (Tnkg)k∈N:

lim
k→∞

Tnkg=gψ ∈ tB`∞(SE).

Since T , div and ‖·‖`2(SV ) are continuous operators, we have

‖u0−div(Tgψ)‖`2(SV ) =

∥∥∥∥u0−div

(
T

(
lim
k→∞

Tnkg

))∥∥∥∥
`2(SV )

= lim
k→∞

‖u0−div(T (Tnkg))‖`2(SV )

= lim
k→∞

∥∥u0−div
(
Tnk+1g

)∥∥
`2(SV )

.

As Tnk+1g=TmTnk+1g for some m∈{0,1,2,...}, Proposition 3.1 implies

lim
k→∞

∥∥u0−div
(
Tnk+1g

)∥∥
`2(SV )

≥ lim
k→∞

‖u0−div(Tnk+1g)‖`2(SV ) .

The continuity of div and ‖·‖`2(SV ) then gives

‖u0−div(Tgψ)‖`2(SV )≥ lim
k→∞

‖u0−div(Tnk+1g)‖`2(SV ) =‖u0−divgψ‖`2(SV ) .

Applying Proposition 3.1 again, we conclude that

divgψ = ψ̃

and therefore, by the continuity of div,

lim
k→∞

div(Tnkg) = ψ̃. (3.17)

The final step is to show the convergence of the entire sequence (div(Tng))n∈N.
From 3.17 it follows that

lim
k→∞

‖u0−div(Tnkg)‖`2(SV ) =
∥∥∥u0− ψ̃

∥∥∥
`2(SV )

.

Since the subsequence
(
‖u0−div(Tnkg)‖`2(SV )

)
k∈N

must converge to the same limit as

the convergent sequence
(
‖u0−div(Tng)‖`2(SV )

)
n∈N

, we conclude that

lim
n→∞

‖u0−div(Tng)‖`2(SV ) =
∥∥∥u0− ψ̃

∥∥∥
`2(SV )

.
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Therefore, as ψ̃ is the unique nearest element to u0 in tBBV ∗(SV ) = tdiv
(
B`∞(SE)

)
, we

have

lim
n→∞

div(Tng) = ψ̃.

4. Numerical results
In order to evaluate the performance of the proposed method, we make a numerical

comparison with other efficient iterative TV minimization methods and one of the best
known state-of-the-art denoising methods, namely BM3D. We have tested different types
of images and made comparisons in terms of convergence rate, peak signal to noise
ratio (PSNR), running time and visual quality. All experiments were performed on a
Windows 7 Professional 32-bit computer with a Intel(R) Core(TM) i5-2400 CPU, 3.1
GHz Processor and a RAM of 4096 MB.

4.1. Comparison with other iterative TV minimization methods. In
this subsection the proposed algorithm is compared numerically with two state-of-the-
art iterative algorithms for TV denoising, the Split-Bregman algorithm [19] and the
Primal-Dual algorithm [10]. We include numerical results obtained by testing different
types of images and various noise levels. More specifically we consider a denoising
scenario of natural and cartoon images aimed to numerically evaluate and illustrate the
proposed algorithm’s convergence rate and PSNR. In our experiments we used Gaussian
noise with standard deviation 10, 20 and 30.

• The implementation of the Split-Bregman algorithm was obtained from [26]. To
find the best performing regularization parameter λ we performed a brute-force
optimization in the interval [1,30] uniformly quantized into 100 values.

• The implementation for the Primal-Dual algorithm was obtained from the
publicly available repository GPU4Vision https://github.com/VLOGroup/

primal-dual-toolbox. In this implementation τ =σ= 1/
√

8,γ= 0.7λ, the
value of λ was optimized in the same range as the regularization parameter
in the Split-Bregman algorithm. The parameter θ was dynamically updated at
each iteration by the rule θ←1/

√
1+2γτ as well as τ← τθ and σ←σ/θ.

• We implemented the proposed ROF model on the graph Algorithm 1 and op-
timized the regularization parameter using the same parameter space as the
Split-Bregman algorithm.

The stopping criteria for all approaches was set to ||uk−uk−1||/||uk||<10−5, where || · ||
is the Frobenius norm and uk is the current iterate of the numerical scheme.

Cartoon image denoising. In this example we have the exact ground truth image
data u available which makes an objective evaluation of the methods possible. Figures
4.1, 4.3 and 4.5 show the qualitative results for each evaluated method and noise level
with the corresponding best PSNR values. The proposed method produces results with
the best PSNR value in all cases. The visual quality of the results produced by all
methods is comparable. Panels (a) of Figures 4.2, 4.4 and 4.6 show the respective peak
signal to noise ratio (PSNR) curves for the highest obtained PSNR values, obtained
after a dense parameter grid search as previously described, for the respective methods
and noise levels. Panels (b) of the same figures show the descent towards the stopping
criteria. Each algorithm was terminated when the normalized difference between the
current iterate and the previous iterate became smaller than 10−5, this is illustrated in
panels (b). From the same figures it is clear that up till 30 (resp. 20) iterations for

https://github.com/VLOGroup/primal-dual-toolbox
https://github.com/VLOGroup/primal-dual-toolbox
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(a) Split-Bregman (39.45) (b) Primal-Dual (39.39) (c) Proposed (40.80)

Fig. 4.1: Reconstructions when the original image was corrupted by Gaussian noise of standard
deviation 10. Panels (a)-(c) show the images obtained at the best PSNR value for a brute-force
parameter optimization strategy described in the main text. Obtained PSNR values are shown in
parenthesis. Reaching the stopping criteria of 10−5, the proposed solution strategy shows improved
PSNR compared to the other methods. We refer to Figure 4.2 for empirical convergence results.
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Fig. 4.2: Panels (a)-(b) show the PSNR and empirical convergence rates for the solution images
in Figure 4.1. Panel (b) depicts that after 30 iterations the Split-Bregman scheme shows a smaller
relative update between two consecutive update steps, this indicates earlier convergence for said method.
However, after 30 iterations the improvement of the iterates is negligible compared to the ground truth
data as seen in panel (a).
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(a) Split-Bregman (34.09) (b) Primal-Dual (34.04) (c) Proposed (35.17)

Fig. 4.3: Reconstructions when the original image was corrupted by Gaussian noise of standard
deviation 20. Panels (a)-(c) show the images obtained at the best PSNR value for a brute-force
parameter optimization strategy described in the main text. Obtained PSNR values are shown in
parenthesis. Reaching the stopping criteria of 10−5, the proposed solution strategy shows improved
PSNR compared to the other methods. We refer to Figure 4.4 for empirical convergence results.
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Fig. 4.4: Panels (a)-(b) show the PSNR and empirical convergence rates for the solution images
in Figure 4.3. Panel (b) depicts that after 20 iterations the Split-Bregman scheme shows a smaller
relative update between two consecutive update steps, this indicates earlier convergence for said method.
However, after 20 iterations the improvement of the iterates is negligible compared to the ground truth
data as seen in panel (a).
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(a) Split-Bregman (31.09) (b) Primal-Dual (31.05) (c) Proposed (31.94)

Fig. 4.5: Reconstructions when the original image was corrupted by Gaussian noise of standard
deviation 30. Panels (a)-(c) show the images obtained at the best PSNR value for a brute-force
parameter optimization strategy described in the main text. Obtained PSNR values are shown in
parenthesis. Reaching the stopping criteria of 10−5, the proposed solution strategy shows improved
PSNR compared to the other methods. We refer to Figure 4.6 for empirical convergence results.
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Fig. 4.6: Panels (a)-(b) show the PSNR and empirical convergence rates for the solution images
in Figure 4.5. Panel (b) depicts that after 20 iterations the Split-Bregman scheme shows a smaller
relative update between two consecutive update steps, this indicates earlier convergence for said method.
However, after 20 iterations the improvement of the iterates is negligible compared to the ground truth
data as seen in panel (a).
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(a) Split-Bregman (32.73) (b) Primal-Dual (32.72) (c) Proposed (32.73)

Fig. 4.7: Reconstructions when the original image was corrupted by Gaussian noise of standard
deviation 10. Panels (a)-(c) show the images obtained at the best PSNR value for a brute-force
parameter optimization strategy described in the main text. Obtained PSNR values are shown in
parenthesis. The methods produce near identical PSNR values. We refer to Figure 4.8 for empirical
convergence results.
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Fig. 4.8: Panels (a)-(b) show the PSNR and empirical convergence rates to obtain the solution
images in Figure 4.7. In this example, the proposed solution scheme shows an improved convergence
rate compared to the Split-Bregman and the Primal-Dual approaches, yet resulting in near identical
error values as seen in panel (a).
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(a) Split-Bregman (28.93) (b) Primal-Dual (28.92) (c) Proposed (28.93)

Fig. 4.9: Reconstructions when the original image was corrupted by Gaussian noise of standard
deviation 20. Panels (a)-(c) show the images obtained at the best PSNR value for a brute-force
parameter optimization strategy described in the main text. Obtained PSNR values are shown in
parenthesis. The methods produce near identical PSNR values. We refer to Figure 4.10 for empirical
convergence results.
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Fig. 4.10: Panels (a)-(b) show the PSNR and empirical convergence rates to obtain the solution
images in Figure 4.9. In this example, the proposed solution scheme shows an improved convergence
rate compared to the Split-Bregman and the Primal-Dual approaches, yet resulting in near identical
error values as seen in panel(a).
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(a) Split-Bregman (26.95) (b) Primal-Dual (26.95) (c) Proposed (26.94)

Fig. 4.11: Reconstructions when the original image was corrupted by Gaussian noise of standard
deviation 30. Panels (a)-(c) show the images obtained at the best PSNR value for a brute-force
parameter optimization strategy described in the main text. Obtained PSNR values are shown in
parenthesis. The methods produce near identical PSNR values. We refer to Figure 4.12 for empirical
convergence results.
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Fig. 4.12: Panels (a)-(b) show the PSNR and empirical convergence rates to obtain the solution
images in Figure 4.11. In this example, the proposed solution scheme shows an improved convergence
rate compared to the Split-Bregman and the Primal-Dual approaches, yet resulting in near identical
error values as seen in panel (a).
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(a) Man (b) Couple

(c) Hill (d) Boat

Fig. 4.13: Images used to compare the proposed algorithm with the BM3D in terms of PSNR, running
time, and visual quality.

noise level 10 (resp. for noise levels 20 and 30) the proposed method shows a faster
convergence rate. Note, however, that after these number of iterations any further
updates of the iterative schemes have an negligible effect to the end result.

Natural image denoising. In this imaging scenario, we denoise the “camera-
man”image. We have the exact ground truth image data u available so that it is possi-
ble to evaluate the methods objectively. Figures 4.7, 4.9 and 4.11 show the qualitative
results for each evaluated method and noise level with the corresponding best PSNR
values. The proposed method produces results with the best or comparable PSNR value
in all cases. The visual quality of the results produced by all methods is also compara-
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(a) Man: Noisy with σ= 20 (b) Couple: Noisy with σ= 20

(c) Man: BM3D with PSNR 30.59 dB (d) Couple: BM3D with PSNR 30.76 dB

(e) Man: Proposed with PSNR 29.42 dB (f) Couple: Proposed with PSNR 28.90 dB

Fig. 4.14: Subjective visual quality comparison between denoised images by BM3D and the proposed
method. Noise with σ= 20 has been added to the images shown in 4.13a and 4.13b. In both cases it
is clear that though there is a gap in PSNR values, the methods generate reconstructions of similar
visual quality. The same conclusion holds for the other images shown in Figure 4.13 and different
noise levels.
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Man
512×512

Couple
512×512

Hill
512×512

Boat
512×512

σ BM3D Proposed BM3D Proposed BM3D Proposed BM3D Proposed
5 37.82 36.80 37.52 36.50 37.13 36.40 37.06 36.27
10 33.98 32.77 34.04 32.44 33.62 32.57 33.89 32.49
15 31.93 30.73 32.11 30.31 31.86 30.70 32.10 30.50
20 30.59 29.34 30.76 28.90 30.72 29.50 30.83 29.17
25 29.62 28.48 29.72 27.90 29.85 28.63 29.85 28.18
30 28.86 27.75 28.87 27.09 29.15 27.94 29.04 27.41
35 28.22 27.16 28.15 26.45 28.49 27.39 28.32 26.78
40 27.65 26.67 27.48 25.93 27.88 26.94 27.63 26.25
45 27.17 26.25 26.91 25.09 27.43 26.56 27.12 25.81
50 26.81 25.88 26.46 24.75 27.19 26.23 26.67 25.43
55 26.44 25.56 26.01 24.48 26.74 25.94 26.27 25.10
60 26.14 25.27 25.66 24.45 26.52 25.68 25.90 24.80
65 25.90 25.01 25.29 24.18 26.12 25.44 25.56 24.52
70 25.56 24.77 25.00 23.94 25.93 25.23 25.25 24.27
75 25.32 24.56 24.70 23.72 25.68 25.03 24.97 24.04
80 25.06 24.36 24.42 23.52 25.43 24.85 24.70 23.83
85 24.86 24.17 24.21 23.33 25.10 24.68 24.45 23.64
90 24.63 24.00 23.94 23.16 24.98 24.52 24.22 23.46
95 24.39 23.83 23.67 23.01 24.66 24.38 24.01 23.29
100 24.22 23.67 23.51 22.86 24.58 24.24 23.80 23.13

Table 4.1: PSNR (dB) results of the proposed method and BM3D method

ble. In accordance with the previous example, panels (a) of Figures 4.8, 4.10 and 4.12
show the respective peak signal to noise ratio (PSNR) curves for the highest obtained
PSNR values, obtained after a dense parameter grid search as previously described,
for the respective methods and noise levels. Further, panels (b) of the same figures
show the descent towards the stopping criteria. Each algorithm was terminated when
the normalized difference between the current iterate and the previous iterate became
smaller than 10−5, this is illustrated in panels (b). From the same figures it is clear that
similar to the cartoon image, the relative convergence rate seen in (b) is initially faster
for the proposed method than for the compared methods, and then it is overcome by the
Split-Bregman algorithm at a certain number of iterations after which the improvement
of the image quality is insignificant for all methods. Panels (b) show that the best error
rates for the proposed method are obtained at comparable or fewer iterations than the
Split-Bregman and the Primal-Dual approaches.

4.2. Comparison with BM3D. In this subsection we compare numerically the
proposed algorithm with the BM3D denoising method introduced in [13]. This method
is a state-of-the-art filtering method applicable to denoising among other important
problems in image processing. It is therefore interesting to make a comparison although
BM3D is not directly designed to solve the TV minimization problem.

In our experiments we used different types of images and Gaussian noise with stan-
dard deviation ranging from 5 to 100. More precisely, we have reproduced and compared
results obtained by BM3D and by the proposed method by testing all images available
at the online repository http://www.cs.tut.fi/~foi/GCF-BM3D/. However, since all
results obtained lead to the same conclusions, we have only reported results obtained
for test images illustrated in Figure 4.13. Comparison with BM3D has been made in
terms of PSNR, running time and visual quality.

http://www.cs.tut.fi/~foi/GCF-BM3D/
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Man
512×512

Couple
512×512

Hill
512×512

Boat
512×512

σ BM3D Proposed BM3D Proposed BM3D Proposed BM3D Proposed
5 7.50 1.24 7.40 0.99 8.10 0.98 11.4 0.99
10 8.00 2.37 7.80 2.04 8.50 2.15 8.4 2.21
15 8.40 3.40 8.20 3.09 8.90 3.52 8.7 3.28
20 8.60 4.66 8.50 4.06 9.20 4.67 11.6 4.15
25 8.90 5.42 8.70 5.14 9.50 5.72 9.0 5.08
30 9.00 6.47 9.00 6.05 9.50 6.89 9.1 6.23
35 9.10 7.57 9.00 7.02 9.50 7.77 9.0 6.94
40 8.80 8.55 8.60 7.99 9.30 8.96 8.8 8.18
45 10.50 9.69 10.50 8.88 10.70 9.89 10.6 9.01
50 10.60 10.84 10.60 9.66 10.80 10.70 10.7 9.62
55 10.70 11.62 10.70 10.42 10.90 12.12 10.8 10.54
60 10.80 12.46 10.70 11.48 11.00 13.20 10.9 11.54
65 10.80 14.00 10.80 12.14 11.10 13.61 11.0 12.42
70 10.90 14.35 10.90 13.26 11.10 15.13 13.4 13.15
75 11.00 15.53 11.00 13.87 11.20 15.46 11.3 14.30
80 11.00 16.60 11.10 15.08 11.20 16.02 11.3 15.20
85 11.10 17.40 11.10 16.02 11.40 17.65 11.4 15.85
90 11.20 17.99 11.20 16.76 11.40 18.34 11.4 16.44
95 11.20 18.97 11.30 17.93 11.50 19.54 11.4 17.22
100 11.20 19.32 11.30 18.32 11.50 20.49 11.4 17.38

Table 4.2: Running time (seconds) results of the proposed method and BM3D method

• The implementation of the BM3D was obtained from [13] and the online repos-
itory http://www.cs.tut.fi/~foi/GCF-BM3D/.

• We implemented the proposed Algorithm 1 and optimized the regularization
parameter t by performing a brute-force optimization with uniformly quantized
values in suitable sub-intervals of the interval [1,100] corresponding to noise
levels ranging from 5, 10, .. ., 100.

Obtained results in terms of PSNR, running time and visual quality are shown in Table
4.1, Table 4.2 and Figure 4.14 respectively. As might be expected, the PSNR values for
the test images is higher for the BM3D method as shown in Table 4.1. The difference
in PSNR values is in the range of 1 to 2 dB. In terms of running time, as can be seen
in Table 4.2, the proposed algorithm is the most competitive in the low noise regime.
However, it is also more sensitive to the noise level than the BM3D method. In terms
of visual quality, the methods produce comparable results.

5. Conclusion

In this work we proposed an iterative algorithm for total variation minimization on
graphs and proved its convergence. The algorithm that is presented can be viewed as a
coordinate descent on dual space and can be run on a parallel computer architecture,
which makes it suitable to handle large graphs and data sets. The algorithm is simple,
easy to implement and converges to the exact minimizer with fewer iterations compared
to the Split-Bregman and Primal-Dual algorithms. Furthermore, in order to compare
the proposed method with other state-of-the-art denoising methods, BM3D was chosen
as a benchmark and obtained results still show competitive performance for the proposed
method. In a follow-up work we intend to further study the convergence rate of the
algorithm and include additional imaging scenarios.

http://www.cs.tut.fi/~foi/GCF-BM3D/
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