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ON A NONLINEAR SCHRÖDINGER SYSTEM ARISING IN
QUADRATIC MEDIA∗

ADÁN J. CORCHO† , SIMÃO CORREIA‡ , FILIPE OLIVEIRA§ , AND JORGE D. SILVA¶

Abstract. We consider the quadratic Schrödinger system{
iut+∆γ1u+ ūv= 0

2ivt+∆γ2v−βv+ 1
2
u2 = 0, t∈R, x∈Rd×R,

in dimensions 1≤d≤4 and for γ1,γ2>0, the so-called elliptic-elliptic case. We show the formation of
singularities and blow-up in the L2-(super)critical case. Furthermore, we derive several stability results
concerning the ground state solutions of this system.
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1. Introduction
In this paper we consider the quadratic Schrödinger system{

iut+∆γ1u+ ūv= 0

2ivt+∆γ2v−βv+ 1
2u

2 = 0, t∈R, x∈Rd×R,
(1.1)

where d≤4, β,γ1,γ2∈R and ∆γ =∂2x1
+ ·· ·+∂2xd

+γ∂2xd+1
.

This system arises as a model for the interaction of waves propagating in χ(2)

dispersive media. In the case of electromagnetic waves, these media are characterized
by a polarization vector P of the form

P= ε0χ
(1)(ω0)E+χ(2)(ω0)E2.

Here, ε0 is the vacuum permittivity, E represents the electric field and ω0 its angular
frequency (see [2] for a rigourous derivation of (1.1) from the Maxwell-Faraday equa-
tion and Ampère’s Law). In fact, the quadratic Schrödinger system (1.1) governs the
dynamics of propagation in χ(2) media in other physical contexts, namely in nonlinear
optics (see for instance [10–12]). We observe that the case of propagation in χ(3) cen-
trosymmetric media, which gives rise to the Kerr nonlinearity (and hence to Schrödinger
equations with cubic nonlinearities), has been the subject of intense mathematical re-
search in the last fifty years. Despite the similarity between the two models, very few
mathematical results concerning quadratic systems are available in the literature.

Very recently, in [2], a rigorous mathematical study of (1.1) was undertaken in
the L2−subcritical case (d≤2). After establishing the global well-posedness of (1.1) in
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H1(Rd+1), the authors turn their attention to localized solutions, deriving conditions for
their existence (or non-existence). Furthermore, when γ1,γ2>0, the existence of ground
states is shown using the concentration-compactness principle due to P.L. Lions [9].
Finally, for d= 2 and β= 0, the authors prove the orbital stability of these ground
states.

Before stating the main results of the present paper, we continue this introduction
by making some considerations about system (1.1) and its localized solutions. Using
standard methods, for d≤4 (that is, in the H1−subcritical case) the following local
existence result can be obtained:

Theorem 1.1 (Local well-posedness). Let d≤4. The IVP (1.1) with initial data
(u0,v0)∈H1(Rd+1)×H1(Rd+1) admits a unique maximal solution

(u,v)∈C
(
[0,T ∗);H1(Rd+1)×H1(Rd+1)

)
.

If T ∗<+∞ then

lim
t→T∗

‖∇u(t)‖22 +‖∇v(t)‖22 = +∞.

Also, the following quantities are formally conserved by the flow of (1.1): the mass

M(u(t),v(t)) =

∫
Rd+1

(
|u(t,x)|2 +4|v(t,x)|2

)
dx (1.2)

and the energy

E(u(t),v(t)) =
1

2

∫
Rd+1

(
|∇u(t,x)|2γ1 + |∇v(t,x)|2γ2

+β|v(t,x)|2−Re(ū2(t,x)v(t,x))
)
dx, (1.3)

where

|∇f |2γ = |∂x1f |22 + ·· ·+ |∂xd
f |22 +γ|∂xd+1

f |22.

Remark 1.1. For d= 3 consider the case γ1 =γ2 = 1 and let CGN the best constant
for the vector-valued Gagliardo-Nirenberg inequality

Re

∫
ū2v≤‖u‖2L3‖v‖L3 ≤C

(∫
|u|2 +4|v|2

) 1
2
∫ (
|∇u|2 + |∇v|2

)
.

Then, from (1.3) and (1.2) we have∫ (
|∇u|2 + |∇v|2

)
= 2E(u0,v0)−β

∫
|v|2 +Re

∫
ū2v

≤2E(u0,v0)−β
∫
|v|2 +CGNM

1
2 (u0,v0)

∫ (
|∇u|2 + |∇v|2

)
= 2E(u0,v0)− β

4
M(u0,v0)+

β

4

∫
|u|2

+CGNM
1
2 (u0,v0)

∫ (
|∇u|2 + |∇v|2

)
.

Thus, the local solutions given in Theorem 1.1 can be extended to any time interval
[0,T ] for all data verifying M(u0,v0)<1/C2

GN . In particular, this condition implies that
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(i) E(u0,v0)>0 when β≥0,

(ii) 8E(u0,v0)>βM(u0,v0) when β<0.

Moreover, we can conclude from Lemma 4.1 of Section 4 that 1/C2
GN =M(P0,Q0),

where (P0,Q0) is a ground state of the system.

1.1. Main results. Now we state the main results obtained in this work. In Sec-
tion 2, using the invariants (1.2) and (1.3), we compute two virial identities which yield
the following blow-up results in the L2-critical and supercritical cases. Our theorems
generalize prior results obtained in [8] in the case β= 0 and γ1 =γ2 for d= 4.

For L2-critical interactions the result reads as follows.

Theorem 1.2 (Blow-up, d=3). Consider the IVP for system (1.1) with d= 3, γ1 =
γ2 :=γ>0 and initial data (u0,v0)∈ (H1(R4)∩L2(R4, |x|2dx))2. Let

(u,v)∈C
(

[0,T ∗); (H1(R4)∩L2(R4,|x|2dx))2
)

be the corresponding maximal solution. Assume in addition that

E(u0,v0)<0 and β>0 (1.4)

or

8E(u0,v0)<βM(u0,v0) and β≤0. (1.5)

Then T ∗<∞ and lim
t→T∗

‖∇u(t)‖22 = +∞.

Remark 1.2. We highlight two important points:

(a) Notice that the above result guarantees that there will be certainly formation of
singularities in the component u of the system under conditions (1.4) and (1.5).

(b) For d= 3, Theorem 1.2 and Remark 1.1 imply that M(u0,v0) =M(P,Q), where
(P,Q) is any ground-state for the system with β= 0, is the threshold for blow-up
behaviour. Moreover, when β= 0, using the pseudo-conformal transformation, one
may exhibit a blow-up solution with critical mass (along the lines of [13]). For
β 6= 0, the pseudo-conformal transformation is not available. The existence of blow-
up solutions with critical mass remains an interesting open problem.

Theorem 1.3 (Blow-up, d=4). Consider the IVP for system (1.1) with d= 4,
γ1,γ2>0 and initial data (u0,v0)∈ (H1(R5)∩L2(R5,|x⊥|2dx))2, where x⊥= (x1,. ..,xd).
Let

(u,v)∈C
(

[0,T ∗); (H1(R5)∩L2(R5, |x⊥|2dx))2
)

be the corresponding maximal solution. Assume in addition that

E(u0,v0)<0 and β>0 (1.6)

or

8E(u0,v0)<βM(u0,v0) and β≤0. (1.7)

Then T ∗<∞.
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Remark 1.3. Data satisfying negative energy is a natural blow-up condition for this
model, but this is not the case for the conditions given in (1.5) and (1.7). Notice, how-
ever, that initial data satisfying this new hypothesis may be easily built in the following
way: let U ∈H1(Rd+1), U >0. Setting u0 =v0 =λU , λ∈R, a simple computation shows
that, for large λ, one has 8E(u0,v0)<βM(u0,v0).

For γ1,γ2,ω,4ω+β>0 (see [2]), the system (1.1) admits localized solutions of the
form

u(t,x) =P (x)eiωt, v(t,x) =Q(x)e2iωt. (1.8)

The functions P and Q satisfy the system{
−ωP +∆γ1P + P̄Q= 0,

−(4ω+β)Q+∆γ2Q+ 1
2P

2 = 0.
(1.9)

Let us denote by B the set of all bound states, that is, the set of all solutions (P,Q)∈
H :=H1(Rd+1)×H1(Rd+1) of the stationnary system (1.9).

We will say that a bound state (P,Q) is a ground state if (P,Q) minimizes the action

S(u,v) =E(u,v)+ωM(u,v) (1.10)

among all bound states. That is, denoting by G the set of all ground states, we have

(P0,Q0)∈G⇐⇒ (P0,Q0)∈B andS(P0,Q0)≤S(P,Q) for all (P,Q)∈B.

Now, define

I(u,v) :=K(u,v)+ωM(u,v),

J(u,v) :=Re

∫
Rd+1

ū2vdx,

where

K(u,v) =

∫
Rd+1

(
|∇u(t,x)|2γ1 + |∇v(t,x)|2γ2 +β|v(t,x)|2

)
dx,

and consider the problem

inf
{
I(u,v) : (u,v)∈W(P0,Q0)

}
, (1.11)

where

W(P0,Q0) =
{

(u,v)∈H : J(u,v) =Re

∫
Rd+1

P̄0
2
Q0dx

}
.

The existence of minimizers of (1.11) was proved in [2] as well as that they are
ground states. Furthermore, it is easy to prove, using arguments similar to those of [3,
Lemma 9] that (P0,Q0)∈G if and only if (P0,Q0) is a minimizer of the problem (1.11).

In Section 3 we will show the following instability results concerning ground states
in the L2-critical and supercritical cases:
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Theorem 1.4 (Strong instability). Let γ1 =γ2>0, β= 0 and d= 3. Let B be the set
of all bound states of (1.9). Then B is unstable in the following sense: given (P,Q)∈B,
there exists a sequence X0,k→ (P,Q) in H such that, for all k, the solution Xk of (1.1)
with initial data X0,k blows up in finite time.

Theorem 1.5 (Weak instability). Let γ1,γ2>0, d= 3 and β 6= 0 or d≥4 and β∈R.
For (P,Q)∈G, we consider its orbit

Σ =
{
f(θ,y)[P,Q] := (eiθP (·+y),e2iθQ(·+y)) : θ∈R, y∈Rd+1

}
.

Then Σ is weakly unstable by the flow of (1.1), in the following sense: there exists ε>0
and a sequence X0,k→ (P,Q) in H such that

• The solution Xk(t) to (1.1) with initial data X0,k is global and bounded in H;

• For all k, T ∗k = sup
{
T ≥0 : ∀t∈ [0,T ], Xk(t)∈Σε

}
<+∞, where Σε is the ε-

neighbourhood of Σ.

The proof of Theorem 1.5 closely follows the arguments in [6], which in turn are
based on the ideas developed by the seminal work of Grillakis, Shatah and Strauss [7].

In what concerns stability of ground states, the proof in [2] follows the argument
of Cazenave and Lions for the stability of ground states of the nonlinear Schrödinger
equation, by showing that the solutions of the minimization problem

inf
{
E(u,v) :M(u,v) =M(P,Q), (P,Q)∈G

}
(1.12)

are precisely the ground states of (1.1). In [2], it was proven that: such a minimization
problem has a solution; the solution is a bound state, and so it has an action larger or
equal than any ground state; the solution is actually a ground state, by proving that it
has the same action as any given ground state. The first and third steps only require
that system (1.1) is L2-subcritical, meaning that d≤2. However, to show the second
step, the procedure used therein only works for d= 2 and β= 0.

Recalling some arguments used in [4], one may actually skip the second step, as
long as the energy does not contain any L2 terms (in the present situation, it means
that β= 0). The consequence is a more direct approach, presented in Section 4, which
is also valid for d= 1:

Theorem 1.6. Suppose that d≤2 and β= 0. Then the set of ground states G is stable
with respect to the flow generated by (1.1), that is, for each δ>0, there exists ε>0 such
that, if (u0,v0)∈H satisfies

inf
(P,Q)∈G

‖(u0,v0)−(P,Q)‖H <ε,

then the solution (u,v) of (1.1) with initial data (u0,v0) satisfies

sup
t≥0

inf
(P,Q)∈G

‖(u(t),v(t))−(P,Q)‖H <δ.

2. Virial identities and blow-up

We begin this section by noticing that the system (1.1) can be put in the Hamilto-
nian form

∂X

∂t
(t) =JE′(X(t)), (2.1)
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where J is the skew-adjoint operator

[
−i 0
0 − i

2

]
and X= (u,v).

Using this fact, we will derive two global virial-type identities for system (1.1).
Instead of using the standard technique based on several integrations by parts to calcu-
late the second derivative in time for the variance of the solutions, we use an interesting
method presented in [6], based on the computation of Poisson brackets, that allows to
formally understand the evolution of certain real functional along the trajectories of
Hamiltonian systems. In Subsection 2.1 we describe the general idea of this procedure
applied to the system (1.1). Finally, we use the virial identities obtained to establish two
results about the formation of singularities for system (1.1) based on classical convexity
arguments.

2.1. Dual dynamics for system (1.1). Consider a real functional G, defined
on a dense subspace V of L2(Rd+1), with continuous derivatives in L2(Rd+1). The goal
is to study the evolution of G along the trajectories of the dynamical system defined by
Equation (2.1).

Recalling that X(t) = (u(t),v(t)), the time derivative of G calculated along X(t) is
given by

d

dt
G(X(t)) = 〈G′(X(t)), ∂X∂t (t)〉= 〈G′(X(t)), JE′(X(t))〉

:=P (X(t)). (2.2)

On the other hand, given X̃0 := (ũ0, ṽ0), consider the initial value problem

∂

∂t
X̃(t) =JG′(X̃(t)), X̃(0) = X̃0, (2.3)

which we suppose to be locally well-posed. Thus,

d

dt
E(X̃(t)) = 〈E′(X̃(t)), ∂X̃∂t (t)〉= 〈E′(X̃(t)), JG′(X̃(t))〉

=−〈G′(X̃(t)), JE′(X̃(t))〉
=−P (X̃(t)). (2.4)

Therefore, the validation at time t= 0 yields

P (X̃0) =− d

dt
E(X̃(t))

∣∣∣
t=0

, (2.5)

which determines the evolution of G along the trajectories of (2.1).
In what follows, we write x⊥ := (x1,x2,. ..,xd), ∇⊥ := (∂x1

,. ..,∂xd
) and xγ =

(x⊥,γxd+1). Also we decompose the energy (1.3) in the following way:

E(u,v) =Eγ1(u)+Eγ2(v)+Eβ(v)−ERe(u,v), (2.6)

where

Eγ1(u) =
1

2

∫
Rd+1

|∇u|2γ1dx=
1

2

∫
Rd+1

(
|∇⊥u|2 +γ1|∂xd+1

u|2
)
dx,

Eγ2(v) =
1

2

∫
Rd+1

|∇v|2γ2dx=
1

2

∫
Rd+1

(
|∇⊥v|2 +γ2|∂xd+1

v|2
)
dx,

Eβ(v) =
β

2

∫
Rd+1

|v|2dx,

ERe(u,v) =
1

2
Re

∫
Rd+1

ū2vdx.
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Finally, we set M0 :=M(u(·,0),v(·,0)) and E0 :=E(u(·,0),v(·,0)).

2.2. Virial-type identities. In this subsection we prove the following virial
identities:

Proposition 2.1 (Virial identity). Let d= 3,4 and

(u0,v0)∈ (H1(Rd+1)∩L2(Rd+1, |x|2dx))2.

Then, the variance

V(t) =V(u(t),v(t)) :=
1

2

∫
Rd+1

∣∣x|2( |u(t)|2 +4|v(t)|2)dx

is finite on the maximal time interval [0,T ∗) and V ∈C2
(
[0,T ∗)

)
. Furthermore, the

following identities hold:

(i)
dV
dt

(t) = 2Im

∫
Rd+1

(
xγ1 ·∇uūdx+2xγ2 ·∇v v̄

)
dx.

(ii) If γ1 =γ2 :=γ,

d2V
dt2

(t) = 4

∫
Rd+1

(
|∇u|2γ + |∇v|2γ

)
dx−(d+γ)Re

∫
Rd+1

ū2vdx.

(iii) In particular, for d= 3 and γ1 =γ2 = 1,

d2V
dt2

(t) = 8E0−4β

∫
R4

|v|2dx.

Proposition 2.2 (Transverse virial identity). Let d= 3,4 and

(u0,v0)∈ (H1(Rd+1)∩L2(Rd+1, |x⊥|2dx))2.

Then, the transverse variance

V⊥(t) =V⊥(u(t),v(t)) :=
1

2

∫
Rd+1

∣∣x⊥|2( |u(t)|2 +4|v(t)|2)dx

is finite on the maximal time interval [0,T ∗) and V⊥∈C2
(
[0,T ∗)

)
. Furthermore, the

following identities hold:

(i)
dV⊥
dt

(t) = 2Im

∫
Rd+1

(
x⊥ ·∇⊥uū+2x⊥ ·∇⊥v v̄

)
dx.

(ii)
d2V⊥
dt2

(t) = 4

∫
Rd+1

(
|∇⊥u|2 + |∇⊥v|2

)
dx−dRe

∫
Rd+1

ū2vdx.

(iii) In particular, for d= 4, we have

d2V⊥
dt2

(t) = 8E0−4β

∫
R5

|v|2dx−4

∫
R5

(
γ1|∂xd+1

u|2 +γ2|∂xd+1
v|2
)
dx.
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2.3. Proof of Proposition 2.1. We formally apply the technique of dual dy-
namics.

Proof of Assertion (i). Consider the functional G(u,v) :=V(u,v). The corre-
sponding IVP (2.3) for this functional is defined by{

ũt=−i|x|2ũ, ũ(0) = ũ0,

ṽt=−2i|x|2ṽ, ṽ(0) = ṽ0,

whose solution is given by(
ũ(x,t), ṽ(x,t)

)
=
(
e−i|x|

2tũ0,e
−2i|x|2tṽ0

)
.

Then, from (2.5), we get

P (ũ0, ṽ0) =− d

dt
E(e−i|x|

2tũ0,e
−2i|x|2tṽ0)

∣∣∣
t=0

=− d

dt
Eγ1(e−i|x|

2tũ0)
∣∣∣
t=0
− d

dt
Eγ2(e−2i|x|

2tṽ0)
∣∣∣
t=0

= 2Im

∫
Rd+1

xγ1 ·∇ũ0 ¯̃u0dx+4Im

∫
Rd+1

xγ2 ·∇ũ0 ¯̃u0dx,

since Eβ(ṽ) and ERe(ũ, ṽ) are independent of time. Thus, it follows from (2.2) that

dV
dt

(t) = 2Im

∫
Rd+1

(
xγ1 ·∇uūdx+2xγ2 ·∇v v̄

)
dx (2.7)

as claimed in (i).

Proof of Assertion (ii). To prove (ii), we choose instead

G(u,v) := Im

∫
Rd+1

(
2xγ ·∇uūdx+4xγ ·∇v v̄

)
dx.

The corresponding IVP (2.3) is now{
ũt=−4xγ ·∇ũ−2(d+γ)ũ, ũ(0) = ũ0,

ṽt=−4xγ ·∇ṽ−2(d+γ)ṽ, ṽ(0) = ṽ0,

so that

ũ(x,t) =e−2(d+γ)tũ0(e−4tx⊥,e
−4γtxd+1)

and

ṽ(x,t) =e−2(d+γ)tṽ0(e−4tx⊥,e
−4γtxd+1).

Now we proceed with the computation of P (ũ0, ṽ0) =− d

dt
E(ũ, ṽ)

∣∣∣
t=0

. Using the

change of variables (x⊥,xd+1) = (e4ty⊥, e
4γtyd+1), we get

E(ũ, ṽ) =
1

2

∫
Rd+1

(
e−8t|∇⊥ũ0(y)|2 +γe−8γt|∂xd+1

ũ0(y)|2
)
dy

+
1

2

∫
Rd+1

(
e−8t|∇⊥ṽ0(y)|2 +γe−8γt|∂xd+1

ṽ0(y)|2
)
dy

+
β

2

∫
Rd+1

|ṽ0(y)|2dy+
e−2(d+γ)t

2
Re

∫
Rd+1

¯̃u
2
0(y)ṽ0(y)dy.
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Finally, we conclude that

P (ũ0, ṽ0) =− d

dt
E(ũ, ṽ)

∣∣∣
t=0

= 4

∫
Rd+1

(
|∇⊥ũ0|2 +γ2|∂xd+1

ũ0|2 + |∇⊥ṽ0|2 +γ2|∂xd+1
ṽ0|2

)
dy

−(d+γ)Re

∫
Rd+1

¯̃u
2
0ṽ0dy,

which implies (ii).

Proof of Assertion (iii). The identity is an immediate consequence of (ii) combined
with the conservation of the energy (1.3).

Thus, the proof is finished.

2.4. Proof of Proposition 2.2. We proceed similarly to the Proposition 2.1.
Proof of Assertion (i). The proof is similar as the one performed for the case (i) in
Proposition 2.1 and follows without major changes.

Proof of Assertion (ii). Here we take G defined by

G(u,v) := Im

∫
Rd+1

(
2x⊥ ·∇⊥uūdx+4x⊥ ·∇⊥v v̄

)
dx.

In this case, the corresponding IVP (2.3) is written as follows:{
ũt=−4x⊥ ·∇⊥ũ−2dũ, ũ(0) = ũ0,

ṽt=−4x⊥ ·∇⊥ṽ−2dṽ, ṽ(0) = ṽ0,

so that

(ũ, ṽ) =
(
e−2dtũ0(e−4tx⊥,xd+1), e−2dtṽ0(e−4tx⊥,xd+1)

)
.

Using the change of variables (x⊥, xd+1) = (e4ty⊥, yd+1), we have

E(ũ, ṽ) =
e−8t

2

∫
Rd+1

(
|∇⊥ũ0(y)|2 + |∇⊥ṽ0(y)|2

)
dy

+
1

2

∫
Rd+1

(
γ1|∂xd+1

ũ0(y)|2 +γ2|∂xd+1
ṽ0(y)|2

)
dy

+
β

2

∫
Rd+1

|ṽ0(y)|2dy− e
−2dt

2
Re

∫
Rd+1

¯̃u
2
0(y)ṽ0(y)dy,

hence

P (ũ0, ṽ0) =− d

dt
E(ũ, ṽ)

∣∣∣
t=0

= 4

∫
Rd+1

(
|∇⊥ũ0(y)|2 + |∇⊥ṽ0(y)|2

)
dy−dRe

∫
Rd+1

¯̃u
2
0(y)ṽ0(y)dy,

which yields (ii).

Proof of Assertion (iii). Once again, this last assertion is a particular case of (ii)
combined with the conservation of the energy (1.3).

Thus, the proof is finished.
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2.5. Proof of the blow-up results. Here we give the sketch of the proof of
Theorems 1.2 and 1.3.
Proof of Theorem 1.2. By rescaling, it is easy to reduce the problem to the case
γ= 1, which can be treated by the classical convexity method, similar to the nonlinear
Schrödinger equation (see for instance [1]). The blow-up of ‖∇u‖22 follows from the
energy conservation law and the blow-up alternative presented in Theorem 1.1. Indeed,
from (1.3), Hölder’s inequality and the Sobolev inequality in dimension n= 4 it follows
that

‖∇γu(·,t)‖2L2 +‖∇γv(·,t)‖2L2 = 2E0−β‖v(·,t)‖2L2 +Re

∫
R4

ū2(·,t)v(·,t)

≤2E0 +
|β|
4
M0 +c‖∇u(·,t)‖2L2(R4)‖v(·,t)‖L2(R4)

≤2E0 +
|β|
4
M0 +c

√
M0

2
‖∇u(·,t)‖2L2(R4).

Then, the proof is finished.

We finish by noticing that the virial identity (iii) in Proposition 2.2 and arguments
similar to the ones used in the proof of Theorem 1.2 allow us to establish Theorem 1.3.

Remark 2.1. Notice that dimensions d= 3,4 are L2-(super)critical and H1-
subcritical. In this situation, the local H1×H1 existence theory allows to prove the
persistence of solutions in Hs×Hs, s> d+1

2 , provided that the initial data has Hs×Hs

regularity. In this framework, one can show the blow-up

lim
t→T∗

‖v(·,t)‖∞= +∞.

Indeed, for d= 3 (a similar computation can be produced for d= 4):

‖∇γu(·,t)‖2L2 +‖∇γu(·,t)‖2L2 = 2E0−β‖v(·,t)‖2L2 +Re

∫
R4

ū2(·,t)v(·,t)

≤2E0 +
|β|
4
M0 +‖u(·,t)‖2L2(R4)‖v(·,t)‖L∞(R4)

≤2E0 +
|β|
4
M0 +M0‖v(·,t)‖L∞(R4).

3. Instability of ground states
Proof of Theorem 1.4. The result is an immediate consequence of Theorem 1.2

and from the fact that, given a bound state (P,Q), the energy E(λP,λQ)<0 for λ>1.

We now show the weak instability of ground state solutions to (1.1) in the critical
(d= 3) and supercritical (d≥4) cases.

Let (P,Q) be a ground state, that is, a solution of the minimization problem (1.11).

Noticing that

∫
P̄ 2Qdx∈R+ (see [2]), we can show that the orbit of every ground

state contains an element (P̃ ,Q̃), with P̃ ,Q̃>0. More precisely:

Proposition 3.1. Let γ1,γ2>0 and n≥1. Then, for every solution (P,Q)∈H of the
minimization problem (1.11):

(i) (|P |,|Q|) is a solution of (1.11).
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(ii) (|P |, |Q|) belongs to the orbit

Σ =
{
eiθP (·+y),e2iθQ(·+y) : θ∈R,y∈Rd+1

}
of (P,Q).

Proof. Let (P,Q)∈H be a minimizer and take (P̃ ,Q̃) = (|P |,|Q|).

Proof of (i). It is straightforward to see that I(P̃ ,Q̃)≤ I(P,Q). Furthermore,

µ̃=Re

∫
P̃ 2Q̃=

∫
P̃ 2Q̃=

∫
|P̄ |2|Q|≥

∣∣∣∫ P̄ 2Q
∣∣∣=Re

∫
P̄ 2Q=µ.

Now, assume that µ̃>µ. For λ=
(µ
µ̃

) 2
n

, we put

(Pλ(·),Qλ(·)) = (λ
n
2 P̃ (λ·),λn

2 Q̃(λ·)).

We get

∫
P 2
λQλ=µ and I(Pλ,Qλ)<I(P̃ ,Q̃)≤ I(P,Q), which contradicts the minimality

of (P,Q).

Proof of (ii). Write (P,Q) = (|P |eθ1(x), |Q|eiθ2(x)). Our goal is to show that θ1, θ2 are
constant, and that θ2 = 2θ1.
We already showed that I(P,Q) = I(|P |, |Q|), hence∫ (

|∇P |2γ1 + |∇Q|2γ1
)

=

∫ (
(∇|P |)2γ1 +(∇|Q|)2γ3

)
and ∫ (

|P |2|∇θ1|2γ1 + |Q|2|∇θ2|2γ2
)

= 0.

To conclude that θ1 and θ2 are constant, one only needs to show that |P | and |Q| do
not vanish. To show that Q does not vanish, we use the (real) equation

−(4ω+β)Q+∆γ2Q=−1

2
P 2.

Noticing that for L= ∆γ2−(4ω+β), LQ≤0, we can conclude by using the maximum
principle stated in Theorem 3.5 of [5]). We can also show that P does not vanish by
applying a similar argument to equation

−ωP +∆γ1P =−1

2
PQ

in a neighborhood of its solution |P |.
Finally, the relation θ2 = 2θ1 simply comes from the fact that∫

|P̄ |2|Q|=
∫
P̄ 2Q,

as shown in the proof of (i).

Then, the proof of proposition is finished.
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3.1. Proof of Theorem 1.5. For convenience of the notations, we will take
γ1 =γ2 = 1, although the exact same proof remains valid for arbitrary γ1,γ2>0. In view
of Proposition (3.1), we may assume that P,Q>0. Let

L=
{

(u,v)∈H :M(u,v) =M(P,Q)
}
.

Following [6], it is sufficient to prove the existence of Ψ∈H satisfying the following
conditions:

(c1) Ψ is tangent to L at (P,Q);

(c2) J−1Ψ is L2-orthogonal to ∂θf(0,0)[P,Q] = i(P,2Q) and to ∇yf(0,0)[P,Q] =
(∇P,∇Q);

(c3) ∂θf(0,0)[P,Q] and ∇yf(0,0)[P,Q] are linearly independent;

(c4) 〈S′′(P,Q)Ψ,Ψ〉<0.

In order for the present paper to be self-contained, we briefly explain in the next two
steps how these four points can be used to prove Theorem 1.5. For details, we refer the
reader to [6].

Step 1: Construction of an Auxiliary Dynamical System.

From conditions (c2) and (c3), and for some ε>0, we build an auxiliary dynamical
system

H : Σε→R

with the following properties:

• ∀(U,V )∈Σε, ∀θ,y∈R×Rn, H(f(θ,y)v) =H(v);

• ∀(U,V )∈Σε, H′(v)∈H and H′ : Σε→H is C1 with bounded derivative;

• JH′(P,Q) = Ψ.

Indeed, consider the mapping

F : H×R×Rn → R
((U,V ),θ,y)→ 1

2‖f(θ,y)(U,V )−(P,Q)‖22.

Using the fact that ∂θf(0,0)[P,Q] and ∇yf(0,0)[P,Q] are linearly independent, one
can show, applying the implicit function theorem to F and arguing by convexity,
that for (U,V ) in a neighborhood V of (P,Q), there exists a function G(U,V ) =
(G1(U,V ),G2(U,V )) = (θ(U,V ),y(U,V )) that minimizes F ((U,V ),·,·) in a ball centered
at (0,0); that is, locally, the L2-distance between (U,V ) and the orbit of (P,Q) is
achieved. Furthermore, one can show that, for all (θ,y)∈R×Rn,

G1(f(θ,y)(U,V ))≡G1(U,V )−θ mod 2π (3.1)

and

G2(f(θ,y)(U,V )) =G2(U,V )−y (3.2)

provided that f(θ,y)(U,V )∈V. These properties allow to coherently extend the func-
tional

H(U,V ) = 〈J−1Ψ,f(G(U,V ))(U,V )〉

from V to an entire neighbourhood Σε of the orbit of (P,Q). Furthermore, in view of
(3.1) and (3.2), it is straightforward that H is invariant by the action of f .
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Using again the implicit function theorem and the expressions it provides for G′1
and G′2, we can check that H′(U,V )∈H and that H′ is C1 with bounded derivative.

Finally, from the orthogonality relations expressed in condition (c2), one can deduce
that H′(P,Q) =J−1Ψ, that is, JH′(P,Q) = Ψ.

Step 2: Instability. The main idea of the proof is to follow the evolution of the action
S along the integral curves of the auxiliary dynamical system. More precisely, given
X0 = (U0,V0) in a neighbourhood Σε of Σ and for a σ>0, we consider the path

φ : s∈]−σ,σ[→φ(X0,s)∈Σε

such that
d

ds
φ(X0,s) =JH′(X0,s).

We consider the evolution of the action along this path, S(φ(X0,s)). A simple
computation then yields

d

ds
S(φ(X0,s)) =P ((φ(X0,s)) and

d2

ds2
S(φ(X0,s)) =R((φ(X0,s)), (3.3)

where

P (U,V ) = 〈S′(U,V ),JH′(U,V )〉

and

R(U,V ) = 〈S′′(U,V )iH′(U,V ),JH′(U,V )〉+〈S′(U,V ),JH′′(U,V )(JH′(U,V ))〉.

Using the Taylor expansion, we obtain the existence of ξ∈ [0,1] such that

S(φ(X0,s)) =S(X0)+P (X0)s+
1

2
R(φ(X0,ξs))s

2. (3.4)

Noticing that S′(P,Q) = 0 (from (1.9)) and JH′(P,Q) = Ψ, we obtain that

R(P,Q) = 〈S′′(P,Q)Ψ,Ψ〉<0,

yet, from (3.4), for X0 in a neighbourdhood of (P,Q) and for small s,

S(φ(X0,s))≤S(X0)+P (X0)s. (3.5)

By intersecting the manifoldW(P,Q) with the trajectories of the auxiliary dynamical
system, using the implicit function theorem, it is possible to obtain a uniform version
of (3.5), namely, for some ε>0,

∀X0∈Σε,∃s∈]−σ,σ[, S(φ(X0,s))≤S(X0)+P (X0)s. (3.6)

This means that P measures the variations of S (hence of E) along the trajectories of
the auxiliary dynamical system. The crucial step is now to prove that P also measures
the variations of H along the flow of the initial system (1.1). More precisely, considering
the solution (u(t),v(t)) of (1.1) with initial data X0, we have

d

dt
H(u(t),v(t)) =−P (u(t),v(t)). (3.7)

This can be achieved by justifying the following formal computation:

H(u(t),v(t))−H(u0,v0) =

∫ t

0

〈H′(u(τ),v(τ)),(ut(τ),vt(τ))〉dτ
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=

∫ t

0

〈H′(u(τ),v(τ)),J−1E′(u(t),v(t))〉dτ =−
∫ t

0

P (u(τ),v(τ))dτ

since mass is conserved along the trajectories of the auxiliary dynamical system (1.1)
and J−1 is skew-adjoint.

Finally, setting

P=
{

(U,V )∈Σε : S(U,V )<S(P,Q) and P (U,V ) 6= 0
}
,

it can be shown that, for X0∈P, P (u(t),v(t)) remains bounded away from the origin
as long as the solution (u(t),v(t)) exists. This implies that solutions of (1.1) for initial
data X0∈P must leave in finite time any neighbourhood of Σ. Indeed,∣∣∣ d

dt
H(u(t),v(t))

∣∣∣= |P (u(t),v(t))|≥C(X0)>0,

which contradicts the fact that H in bounded in any neighbourhood of Σ. (Recall that
H is invariant by f(θ,y), θ∈R y∈Rn).

Now, following the action along the trajectory of the auxiliary dynamical system
that contains (P,Q) it can be shown that P contains points arbitrarely close to (P,Q)
of the form φ((P,Q),s), that is, belonging to the considered trajectory.

Also, setting W (U,V ) =Re

∫
Ū2V dx the potential energy and observing that the

map

A : s→W (φ((P,Q),s))

is C1 and has a nonvanishing derivative at the origin, for small s with the adequate
sign,

W (φ((P,Q),s))<W (P,Q).

Putting X0 =φ((P,Q),s) and considering the solution X(t) = (u(t),v(t)) of (1.1) with
initial data X0, we have, as long as the solution exists,

W (X(t))<W (P,Q).

Indeed, if at some point W (X(t)) =W (P,Q) then we would obtain a contradiction with
the fact that X0∈P and that (P,Q) is a solution of (1.11):

X(t)∈W(P,Q) and S(X(t))≤S(X0)<S(P,Q).

Since E is conserved by the flow of (1.1), it is enough to prove that (u(t),v(t)) is bounded
in H and global.

End of the proof of Theorem 1.5. We now exhibit Ψ∈H satisfying properties (c1),
(c2), (c3) and (c4).

Let ε>0. We begin by considering the curve

Γ : t∈ [0,ε[→
(
γ(t)λ

n
2 (t)P (λ(t)·),α(t)λ

n
2 (t)Q(λ(t)·)

)
where α,γ and λ are smooth real functions to be chosen later, such that

α(0) =γ(0) =λ(0) = 1 ( that is, Γ(0) = (P,Q)). (3.8)
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I. Setting k=
‖P‖2L2

4‖Q‖2L2

, the condition

γ2k+α2 =k+1 (3.9)

assures that Γ⊂L, and, in particular,

Ψ = Γ′(0) (3.10)

is tangent to L at (P,Q).

II. Noticing that

Ψ = ((λ
n
2 γ)′(0)P +λ′(0)∇P,(λn

2 α)′(0)Q+λ′(0)∇Q)

has real components,

iΨ⊥∇yf(0,0)[P,Q].

Also, iΨ⊥ i(P,2Q) since Ψ∈TL(P,Q) and (P,2Q)⊥TL(P,Q).

III. Since i(P,2Q)⊥ (∇P,∇Q), these two vectors are linearly independent.

IV. We begin by computing the energy (1.3) along the path Γ:

E(Γ(t)) = γ2λ2
∫
|∇P |2 +α2λ2

∫
|∇Q|2 +βα2

∫
Q2−γ2αλn

2

∫
P 2Q

=
1

k

(
(k+1−α2)λ2

∫
|∇P |2 +kα2λ2

∫
|∇Q|2 +kβα2

∫
Q2

−(k+1−α2)αλ
n
2

∫
P 2Q.

Differentiating with respect to t,

k
d

dt
E(Γ(t)) = α′A(t)+λ′B(t),

with

A(t) =−2αλ2
∫
|∇P |2 +2kαλ2

∫
|∇Q|2 +2kβα

∫
Q2 +(3α2−k−1)λ

n
2

∫
P 2Q

and

B(t) = 2λ(k+1−α2)

∫
|∇P |2 +2kα2λ

∫
|∇Q|2 +

n

2
(α2−k−1)αλ

n−2
2

∫
P 2Q.

Now, observe that since (P,Q) is a solution of (1.9), A(0) =B(0) = 0 (see [2], (5.2)).
Hence, putting α0 =α′(0) and λ0 =λ′(0),

k
d2

dt2
E(Γ(t))|t=0 = α0A

′(0)+λ0B
′(0)

= α2
0

(
−2

∫
|∇P |2 +2k

∫
|∇Q|2 +2kβ

∫
Q2 +6

∫
P 2Q

)
+λ20

(
2k

∫
|∇P |2 +2k

∫
|∇Q|2− n(n−2)

4
k

∫
P 2Q

)
+2α0λ0

(
−4

∫
|∇P |2 +4k

∫
|∇Q|2− (k−2)

2
n

∫
P 2Q

)
.
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Using once again that A(0) =B(0) = 0, this quantity can be re-written in terms of

∫
P 2Q

and

∫
Q2 exclusively:

k
d2

dt2
E(Γ(t))|t=0 = α2

0

(
(k+4)

∫
P 2Q

)
+λ20

(n(4−n)

4
k

∫
P 2Q

)
+2α0λ0

(
−4kβ

∫
Q2 +

(k−2)(4−n)

2

∫
P 2Q

)
.

The determinant of
d2

dt2
E(Γ(t)|t=0 as a quadratic form in (α0,λ0) is given by

∆ = (k+4)
n(4−n)

4

(∫
P 2Q

)2
−
( (k−2)(4−n)

2

∫
P 2Q−4kβ

∫
Q2
)2
.

For d≥4(n≥5), ∆<0. For d= 3(n= 4) and β 6= 0,

∆ =−16β2k2
(∫

Q2

)2

Hence, in both these situations, one can choose α(t),λ(t) such that

d2

dt2
E(Γ(t))|t=0<0.

Now, observe that

d

dt
S(Γ(t)) = 〈S′(Γ(t)),Γ′(t)〉

and

d2

dt2
S(Γ(t)) = 〈S′(Γ(t)),Γ′′(t)〉+Γ′(t)T

[
S′′(Γ(t))

]
Γ′(t).

Since S′(Γ(0)) =S′(P,Q) = 0, setting t= 0 yields

d2

dt2
S(Γ(t))|t=0 = 〈S′′(P,Q)Ψ,Ψ〉.

Finally Γ⊂L,
d

dt
M(Γ(t)) = 0 and

〈S′′(P,Q)Ψ,Ψ〉= d2

dt2
E(Γ(t))|t=0<0.

Then, the proof is finished.

4. A stability result
Define, for any (u,v)∈H such that J(u,v)>0,

GN(u,v) =
M(u,v)

3
2−

d+1
4 K(u,v)

d+1
4

J(u,v)
.
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This functional is closely related with a vector-valued Gagliardo-Nirenberg inequality:
if one sets

C−1GN := inf{GN(u,v) :J(u,v)>0}, (4.1)

then CGN is the optimal constant of the inequality

Re

∫
ū2v≤C

(∫
|u|2 +4|v|2

) 3
2−

d+1
4
(∫
|∇u|2 + |∇v|2

) d+1
4

.

Lemma 4.1. Suppose that β= 0. Then the set of solutions for the minimization
problem (4.1) is G, up to scalar multiplication and scaling.

Proof. By [2], we know that G 6=∅ is the set of solutions of (1.11). Let Q∈G and
W = (w,z) be such that J(W )>0. Recall that I(Q) =J(Q)>0. Define

ν=

(
J(Q)M(W )

M(Q)J(W )

) 1
2p

and

ζ=

(
ν2
(
M(W )

M(Q)

)) 1
N

.

Then Z(x) =νW (ζx) satisfies

J(Z) =J(Q), M(Z) =M(Q) GN(Z) =GN(W ).

By the minimality of Q, I(Q)≤ I(Z), which implies that GN(Q)≤GN(Z) =
GN(W ). Therefore Q is a solution of (4.1). On the other hand, if W is a solution
of (4.1), then one has necessarily GN(Z) =GN(Q), which implies that I(Z) = I(Q).
Therefore Z ∈G, which concludes our proof.

Lemma 4.2. Suppose that d≤2 and β= 0. Then the set of ground states G is the set
of solutions of (1.12).

Proof. Let W = (w,z)∈H be such that M(W ) =ν. For any λ>0, define Wλ(x) :=

λ
d+1
2 W (λx). Consider the function

λ 7→f(λ) =E(Wλ), λ>0

Since d≤2, f has a unique minimum λ0. Let Z=Wλ0 . Then f ′(λ0) = 0, which implies
that

K(Z) =
d+1

6
J(Z).

Therefore,

E(Z) =
d−3

2d+2
K(Z). (4.2)

Let Q∈G. Notice that, by Pohozaev’s equality, the same relations are valid for Q:

K(Q) =
d+1

6
J(Q), E(Q) =

d−3

2d+2
K(Q). (4.3)
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By Lemma 4.1, we have

(d+1)ν
3
2−

d+1
4 K(Q)

d+1
4

6K(Q)
=GN(Q)≤GN(Z) =

(d+1)ν
3
2−

d+1
4 K(Z)

d+1
4

6K(Z)

and so K(Z)≤K(Q). Hence, by (4.2) and (4.3),

E(W )≥E(Z) =
d−3

2d+2
K(Z)≥ d−3

2d+2
K(Q) =E(Q),

and so Q is a solution of (1.12).
On the other hand, if W is also a solution of (1.12), then one must have Z=W and

K(W ) =K(Q). Again by (4.2) and (4.3),

J(W ) =
6

d+1
K(W ) =

6

d+1
K(Q) =J(Q).

Moreover, since M(W ) =M(Q), one has I(W ) = I(Q). This implies that W is a solution
of (1.11), i.e., W ∈G.

4.1. Sketch of the proof of Theorem 1.6.
Proof. The proof follows the same steps as [2, Proposition 4]: Suppose, by

contradiction, that there exist sequences {(un0 ,vn0 )}n∈N⊂H and {tn}n∈N⊂R+ with

inf
(P,Q)∈G

‖(un0 ,vn0 )−(P,Q)‖H→0 (4.4)

and such that the corresponding solutions (un,vn) satisfy

inf
(P,Q)∈G

‖(un(tn),vn(tn))−(P,Q)‖H >δ. (4.5)

By (4.4), for any given (P,Q)∈G,

M(un0 ,v
n
0 )→M(P,Q), E(un0 ,v

n
0 )→E(P,Q).

Using the conservation of mass and energy, one has

M(un(tn),vn(tn))→M(P,Q), E(un(tn),vn(tn))→E(P,Q).

This implies that (up to a normalization) {(un(tn),vn(tn))}n∈N is a minimizing sequence
of problem (1.12). The argument of [2] implies that

(un(tn),vn(tn))→ (P̃ ,Q̃),

where (P̃ ,Q̃) is a solution of (1.12), that is, (P̃ ,Q̃)∈G. This convergence contradicts
(4.5), thus finishing the proof.
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