
COMMUN. MATH. SCI. c© 2019 International Press

Vol. 17, No. 4, pp. 1061–1069

ON LARGE TIME BEHAVIOR FOR THE CYLINDRICALLY
SYMMETRIC VLASOV-POISSON SYSTEM∗

JACK SCHAEFFER†

Abstract. A collisionless plasma is modeled by the Vlasov-Poisson system. Solutions in three
space dimensions that have smooth, compactly supported initial data with cylindrical symmetry are
considered. Using an identity of Rein and Illner (alt. Perthame) it is shown that almost every charac-
teristic of the Vlasov equation (i.e. almost every particle) “escapes” to infinity for large time.
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1. Introduction
Consider the Vlasov-Poisson system:

∂tfα+m−1α v ·5xfα+eαE ·5vfα= 0 α= 1, ... ,N

ρ(t,x) =
∑
αeα

∫
fα(t,x,v)dv

E=5xU→0 as |x|→∞

5·E=ρ

where t≥0 is time, x∈R3 is position, and v∈R3 is momentum. fα is the number density
in phase space of particles of the αth species which have mass mα>0 and charge eα.
Collisional effects are neglected. The initial condition

fα(0,x,v) =fα0(x,v)≥0,

for (x,v)∈R6 is given for each α where it is assumed that fα0∈C1
0 (R6) is nonnegative

and compactly supported. It is known that solutions remain smooth for all time [15,18].
We will be interested in the case of cylindrical symmetry and in this case the existence
and uniqueness of smooth solutions was established earlier in [10].

By a cylindrically symmetric solution we mean a solution for which

fα(t,Ox,Ov) =fα(t,x,v)

for every O of the form

O=

 cosθ sinθ 0
−sinθ cosθ 0
0 0 1

.
Such a solution is a function of t,r,u,a,x3,v3 where

r=
√
x21 +x22,
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u=
√
v21 +v22 ,

and a∈ [0,π] is defined by

rucosa=x1v1 +x2v2.

Define the characteristics of the Vlasov equation, (Xα(s,t,x,v),Vα(s,t,x,v)), by
dXα

ds =m−1α Vα Xα(t,t,x,v) =x

dVα

ds =eαE(s,Xα) Vα(t,t,x,v) =v.

Then

fα(s,Xα(s,t,x,v),Vα(s,t,x,v)) =fα(t,x,v).

Further introduce the notation

Rα=
√
X2
α1 +X2

α2,

Uα=
√
V 2
α1 +V 2

α2

and Aα∈ [0,π] defined by

RαUα cosAα=Xα1Vα1 +Xα2Vα2.

For cylindrically symmetric solutions

|Xα1Vα2−Xα2Vα1|=RαUα sinAα

is constant in s (conservation of angular momentum). This follows by differentiating
Xα1Vα2−Xα2Vα1 with respect to s and using the fact that E is the gradient of a function
of t,r,x3. Define

`(x,v) = |x1v2−x2v1|= rusina.

Define

P (t) = sup
{√

v21 +v22 :∃s∈ [0,t],x∈R3,v3∈R,α
with fα(s,x,v) 6= 0} .

Then we may state:

Lemma 1.1. For C1, compactly supported initial data that is cylindrically symmetric
there is a constant C>0 such that

|E(t,x)|≤Cr−1/2min 1/2(P (t), r−1)t−1/2 log1/2((1+r)(2+ t)4).

Our main goal is to understand the large-time behavior of solutions. One situation
where this is known is the small data problem. It is shown in [1] (see [22] also) that for
sufficiently small initial data

|E(t,x)|≤C(1+ t)−2
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hence lim
s→+∞

Vα(s,t,x,v) exists with

|Vα(s,t,x,v)− lim
u→+∞

Vα(u,t,x,v)|≤C(1+s)−1

for every characteristic. So for small initial data the nonlinearity becomes negligible for
large time and particles stream freely. We ask if this happens for arbitrary data.

Definition 1.1. We will say a characteristic, (X(s,t,x,v),V (s,t,x,v)), escapes if

lim
s→+∞

V (s,t,x,v)

exists and is not zero.

Clearly |X|→+∞ linearly if (X,V ) escapes. We have

Theorem 1.1. Let the initial data be C1, compactly supported, and cylindrically
symmetric. Then for each α the set

{(x,v) :fα0
(x,v) 6= 0 and (X(s,0,x,v),V (s,0,x,v)) does not escape}

has Lebesgue measure zero.

Note that, in contrast to the small data result, this theorem provides no rate of
decay. The two main ingredients for this theorem are the conservation of angular mo-
mentum along characteristics and a time decay identity from [13] (also [17]). According
to [13] we have

d
dt

(
t
∑
α

∫∫
mαfα|m−1α v− t−1x|2dvdx+ t

∫
|E|2dx

)
=−

∑
α

∫∫
mαfα|m−1α v− t−1x|2dvdx,

and hence there is a constant, C>0, dependent on initial data, such that∑
α

∫ ∞
1

∫∫
fα|m−1α v− t−1x|2dvdx≤C (1.1)

and for t≥1 ∑
α

∫∫
fα|m−1α v− t−1x|2dvdx≤Ct−1 (1.2)

Some results on large-time behavior are obtained in the case of a single species of
charge in [2, 3, 11], and [20]. Time asymptotics for low dimensional, multiple species
problems are presented in [7, 8], and [9]. The asymptotic behavior of bounds on the v
support of solutions started with [18] and has developed from there ( [4,5,12,14,16]). For
general references on mathematical results for collisionless plasma we mention [6] and
[19]. Finally, as it contains techniques for handling cylindrically symmetric solutions,
we cite [10].

The proof of the lemma is Section 2, the proof of the theorem is Section 3. The
letter, C, denotes a generic positive constant which may change from line to line but is
determined by the initial conditions.
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2. The Proof of the Lemma
By an elementary calculation we have

|E(t,x)|= | 1

4π

∫
ρ(t,y)

x−y
|x−y|3

dy|

≤ 1

4π

∫
|ρ(t,y)|
|x−y|2

dy

=
1

4π

∫ ∞
0

∫
|ρ(t,r′,z′)|

∫ 2π

0

r′dθdz′dr′

r2 +(r′)2−2rr′cosθ+(x3−z′)2

=
1

2

∫ ∞
0

∫
|ρ(t,r′,z′)|
D−D+

r′dr′dz′ (2.1)

where

D±=
√

(r±r′)2 +(x3−z′)2.

Also define

κ(t,x) =
∑
α

∫
fα(t,x,v)|m−1α v− t−1x|2dv

and

M(t,r) = min(P (t),r−1).

Because `= rusina is conserved on characteristics, it is bounded uniformly on the
support of fα and

fα(t,x,v) 6= 0⇒usina≤CM(t,r).

Let q>0 and

S={v :usina≤CM and |m−1α v− t−1x|≤ q}.

Then on S the component of (v1,v2) that is perpendicular to (x1,x2) is bounded by
usina≤CM and all components of v−mαt

−1x are bounded by Cq. Hence S is included
within a rectangular box with side lengths CM by Cq by Cq. Hence,∫

fαdv≤
∫
S

Cdv+q−2κ≤Cq2M+q−2κ.

Taking

q2 =
√
M−1κ

yields ∫
fαdv ≤C

√
Mκ. (2.2)

Note that

M(t,r′)

D+
r′≤M(t,r)
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so, for any B≥ b>0, (2.2) yields∫∫
0<r′,b<D−<B

|ρ(t,r′,z′)|
D−D+

r′dz′dr′

≤C
∫∫

0<r′,b<D−<B

√
M(t,r′)κ

D−D+
r′dz′dr′

=C

∫∫
0<r′,b<D−<B

√
κr′

D−

√
M(t,r′)r′

D+

1√
D+

dz′dr′

≤C
√
M

1√
r

∫∫
0<r′,b<D−<B

√
κr′

D−
dz′dr′

≤C
√
M

r

√∫ ∞
0

∫
κr′dz′dr′

√√√√ ∫
0<r′,b<D−<B

∫
D−2− dz′dr′. (2.3)

But ∫∫
b<D−<B

D−2− dr′dz′=

∫ B

b

2πλdλ

λ2
= 2π log(

B

b
),

so using (1.2) in (2.3) yields∫∫
0<r′,b<D−<B

|ρ(t,r′,z′)|
D−D+

r′dz′dr′≤Cr−1/2M1/2t−1/2 log1/2 B

b
. (2.4)

Using mass conservation we have∫∫
0<r′,B<D−

|ρ(t,r′,z′)|
D−D+

r′dz′dr′≤ 1

rB

∫ ∞
0

∫
|ρ|r′dz′dr′≤Cr−1B−1. (2.5)

Letting

Q(t) = sup{|v| :∃s∈ [0,t],x∈R3,α with fα(s,x,v) 6= 0}

we also have ∫∫
0<r′,D−<b

|ρ(t,r′,z′)|
D−D+

r′dz′dr′

≤CQ3(t)

∫∫
0<r′,D−<b

r′

D−D+
dz′dr′

≤CQ3(t)

∫∫
0<r′,D−<b

1

D−
dz′dr′

≤CQ3(t)

∫ b

0

1

λ
2πλdλ≤CbQ3(t). (2.6)
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Using (2.4), (2.5), and (2.6) in (2.1) yields

|E(t,x)|≤C(r−1/2M1/2t−1/2 log1/2 B

b
+r−1B−1 +Q3(t)b).

Taking

b= r−1/2M1/2t−1/2Q−3(t)

and

B= max (b,r−1/2M−1/2t1/2)

yields

|E|≤Cr−1/2M1/2t−1/2(1+log1/2(1+M−1tQ3(t))). (2.7)

From Theorem 1.1 of [21]

Q(t)≤C(t+2)11/15 log4/15(t+2)

and so the lemma follows from (2.7).

3. The Proof of the Theorem
Proof. From (1.1) it follows that

C≥
∫ ∞
1

∫∫
fα(t,x,v)|m−1α v− t−1x|2dvdxdt

=

∫∫
fα0(x,v)

∫ ∞
1

η2α(t,x,v)dtdvdx

where we define

ηα(t,x,v) = |m−1α Vα(t,0,x,v)− t−1Xα(t,0,x,v)|.

Hence {
(x,v)∈Sα0 :

∫ ∞
1

η2α(t,x,v)dt=∞
}

has measure zero, where we define

Sα0 ={(x,v) :fα0(x,v) 6= 0}.

Also

{(x,v)∈Sα0 : `(x,v) = 0}

has measure zero. Consider any (x,v)∈Sα0 with∫∞
1
η2α(t,x,v)dt finite (3.1)

and

`(Xα(t,0,x,v),Vα(t,0,x,v)) 6= 0.
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We will suppress the dependence on (x,v) and write, for example,

ηα(t) =ηα(t,x,v).

Note that

η2α(t) =|m−1α Vα− t−1Xα|2

=(m−1α Uα cosAα− t−1Rα)2

+(m−1α R−1α `)2 +(m−1α Vα3− t−1Xα3)2. (3.2)

We claim that there exists T ≥1 such that

Rα(T )

T
>T−1/2

√∫ ∞
T

η2α(s)ds. (3.3)

Suppose this is not the case, then

Rα(t)

t
≤ t−1/2

√∫ ∞
t

η2α(s)ds

for all t≥1. Then it follows (using (3.2)) that∫ ∞
1

η2α(t)dt≥
∫ ∞
1

(m−1α R−1α (t)`)2dt

≥(m−1α `)2
∫ ∞
1

(
t1/2

√∫ ∞
t

η2α(s)ds

)−2
dt

=(m−1α `)2
∫ ∞
1

t−1
(∫ ∞

t

η2α(s)ds

)−1
dt

≥(m−1α `)2
∫ ∞
1

t−1
(∫ ∞

1

η2α(s)ds

)−1
dt=∞.

This contradicts (3.1) and hence (3.3) is established.
Now by (3.2)

d

ds
(s−1Rα) =s−1

(
dRα
ds
−s−1Rα

)
=s−1

(
m−1α Uα cosAα−s−1Rα

)
≥−s−1ηα(s)

so for t≥T we have

t−1Rα(t)≥T−1Rα(T )−
∫ t

T

s−1ηα(s)ds

≥T−1Rα(T )−
(∫ ∞

T

s−2ds

)1/2(∫ ∞
T

η2αds

)1/2

=T−1Rα(T )−T−1/2
(∫ ∞

T

η2αds

)1/2

. (3.4)
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Letting

D=T−1Rα(T )−T−1/2
(∫ ∞

T

η2αds

)1/2

,

(3.3), (3.4), and the lemma yield

|E(t,Xα(t))|≤CR−1/2α min 1/2(P,R−1α )t−1/2 log1/2((1+Rα)(2+ t)4)

≤CR−1α t−1/2(log(1+Rα)+log(2+ t))1/2

≤Ct−1/2(R−9/10α +R−1α log1/2(2+ t))

≤Ct−1/2((Dt)−9/10 +(Dt)−1 log1/2(2+ t)).

Therefore ∫ ∞
T

|E(t,Xα(t))|dt

is finite and

lim
t→+∞

Vα(t)

exists. It follows from (3.4) that this limit is not zero and therefore this characteristic
escapes.
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