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CONSISTENT MEAN FIELD OPTIMALITY CONDITIONS FOR
INTERACTING AGENT SYSTEMS∗
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Abstract. We are interested in the derivation of optimality conditions for controlled interacting
agent systems. We establish the relation between mean field optimality conditions and the optimality
condition of the mean field control problem. This link is important for many recently published articles
on control strategies for agent based systems since it establishes the precise relation between multipliers
for the individual agents and the probability density distribution of the multipliers in the mean field
limit. The relation to different notions of differentiability are also shown.
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1. Introduction
Dynamic agent systems have been used recently to describe phenomena different

from classical statistical mechanics, see e.g. the recent publications [7, 15, 22, 24]. In
many of those descriptions control actions may be applied in order to drive the system
towards a desired state using either open, closed loop or a competitive game setting. Of
particular interest has been the question of control actions prevailing in the meanfield
limit, i.e., in the limit of dynamical systems with infinitely many agents. Many examples
have been given in recent literature. We only recall a few results and refer to the
references therein for more details. For a Nash game theoretic setting the meanfield
limit has been discussed e.g. in [21], and for Stackelberg games in [2, 10]. Closed loop
feedback controls have been proposed in [4, 17] and using the additional constraint of
sparse controls for example in [11].

In the case of finitely many interacting agents the associated open loop control prob-
lem can be solved for example using Pontryagin’s maximum principle (PMP), dynamic
programming or the corresponding Hamilton–Jacobi equations. Similarly, open loop
control problems with respect to meanfield partial differential equations can be solved
using a version of the Lagrange multiplier theorem in infinite dimensional spaces. In
this paper we are interested in the relation between both approaches. In particular, we
are interested in the corresponding meanfield limit of the optimality conditions arising
from the PMP and its relation to the multipliers obtained by the optimization with
respect to the partial differential equation. This link is only partially explored so far.
Prior work [1, 3–6, 16] on control problems for agent systems applied feedback control
techniques to simplify the optimization problem. Typically, the obtained system yields
a formulation of the control depending on the current state of the system. Hence, in the
aforementioned publications it was not required to consider also the meanfield limit of
the corresponding multipliers. However, a formulation of the control as a function of the
current state allows to obtain meanfield limits similar to classical kinetic theory. Here,
we do not intend to obtain such a closed–loop form of the control, but rather study
the meanfield limit to the full optimality system. We study both the meanfield limit
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of optimized agent system as well as the optimized meanfield problem. Furthermore,
many results in literature are devoted to control of one–dimensional phase models mo-
tivated as models for wealth modeling or opinion formation [19,23]. Here, we study the
case of an arbitrary phase space where simplifications of the particular one–dimensional
setting do not hold true any more. In particular, we establish the link of the continuous
multiplier and the conditional expectation of the meanfield limit of the optimized agent
system.

This paper is organized as follows. In Section 2 we first establish the optimal control
system, based on the well known Pontryagin principle, for a system of N agents, each
influenced by agent to agent interaction forces. Assuming sufficient regularity an appli-
cation of PMP leads to the well–known two point boundary value problem in time for
the agent states and a set of N Lagrange multipliers, augmented by algebraic conditions
for an external control variable. Then we proceed to derive a mean field equation for the
agent state and its multplier leading to a multi–variable density distribution. Finally,
we derive an effective single agent mean field equation for the probability density of
a single agent and the corresponding meanfield Lagrange multipliers under the inde-
pendently and identically distributed (IID) assumption. In Section 3 we compare this
approach to the approach found in the literature. This approach relies to first derive a
meanfield equation for the dynamics of an effective single agent and then deriving an
optimal control system for the resulting transport equation, again via PMP. We note
the obvious difference, which arises from the fact that functional differences are not
taken in the space of density functions, but along the manifold of probability densities
with integral equal to unity. In Section 4 we discuss the connection between the three
models, the ODE model for N agents, the corresponding joint mean field model for the
effective single agent together with the Lagrange multipliers, and the PDE optimization
model based on optimizing the mean field dynamics. In the Appendix we give a brief
review of various other existing approaches to optimizing functionals over manifolds.

2. Controlled Interacting Agent Systems

2.1. Control of an N- agent system with binary interactions. We consider
controlled dynamics for a set of N agents, given by

d

dt
ξn=

1

N

N∑
m=1

p(ξn,ξm,u), ξn(0) = ξIn, n= 1,. ..,N, ξn and p∈RK , n= 1,. ..,N. (2.1)

We assume that, in general, the states ξn= ξn(t), n= 1,. ..,N are K− dimensional, i.e.
ξn∈RK . The mean-field will be considered in the number of particles N→∞ while
the dimension of the phase space K of each particle remains fixed. We also denote
by ~ξ= (ξn)Nn=1∈RKN the vector of all states. We also omit the dependence of ξn and
u on time t whenever the intention is clear. The initial positions ξIn are given. Also,
we assume p :R2K+1→R is at least differentiable in its arguments. For simplicity, we
assume u=u(t)∈R is the common control for all agents. It is not restrictive to assume
u∈R and the subsequent results extend to the case u∈RM . The control is chosen to
minimize a common objective functional on a time horizon T >0 given by∫ T

0

1

N

N∑
n=1

φ(ξn(t),u(t))dt. (2.2)

The function φ :RK×R→R is assumed to be differentiable. In the present formulation
φ may contain also a regularization term in the control. This is possibly required when
discussing existence and uniqueness of the problem (2.2) and (2.1).
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Example 2.1. In [4] a simple model for opinion formation has been proposed where
ξn∈R. The function p is then given by p(ξn,ξm,u) =P (ξn,ξm)(ξm−ξn)+u for a given
function P :R2→R and φ(ξn,u) = (ξn−zd)2 + 1

2u
2 for a given desired state zd. Under

suitable assumptions on p and φ and using classical results from PMP the optimality
conditions to (2.2) and (2.1) are found as saddle point to the Lagrangian given by

1

N

N∑
n=1

∫ T

0

−µTn
d

dt
ξn dt+

1

N2

N∑
n=1

N∑
m=1

∫ T

0

µTnp(ξn,ξm,u) dt+
1

N

N∑
n=1

∫ T

0

φ(ξn,u) dt. (2.3)

Here, ~µ= (µ1,..,µN )T ∈RNK is the vector of discrete (time–dependent) Lagrange
multipliers. The first–order optimality conditions lead to the variational form for any n
and arbitrary perturbations δξn

1

N

∫ T

0

N∑
n=1

δξTn
d

dt
µn+

1

N2

N∑
m=1

N∑
n=1

∫ T

0

δξTn ∂1p(ξn,ξm,u)Tµn dt

+
1

N2

N∑
m=1

N∑
n=1

∫ T

0

δξTm∂2p(ξn,ξm,u)Tµn dt+
1

N

N∑
n=1

∫ T

0

δξTn∇ξφ(ξn,u) dt= 0.

Here we denote by ∂1p and ∂2p the K×K Jacobians with entries ∂1p(x,y,u)jk =
∂pj(x,y,u)

∂xk
and ∂2p(x,y,u)jk =

∂pj(x,y,u)
∂yk

, respectively. Further, ∇xφ(x,u) and ∇uφ(x,u)
denotes the gradients of φ with respect to x and u, respectively. Also, we denote by
divxp(x,y,u) =

∑N
j=1∂xjpj(x,y,u) the divergence of the vector p. Then, the previous

equation gives in strong form for all n and t

d

dt
µn+

1

N

N∑
m=1

∂1p(ξn,ξm,u)Tµn+
1

N

N∑
m=1

∂2p(ξm,ξn,u)Tµm+∇ξφ(ξn,u) = 0, µn(T ) = 0.

(2.4)
Additionally, the first–order optimality conditions contain the state equation

− d

dt
ξn+

1

N

N∑
m=1

p(ξn,ξm,u) = 0, ξn(0) = ξIn, (2.5)

and the optimality condition. The control is then determined by

1

N2

N∑
m=1

N∑
n=1

µTn∂up(ξn,ξm,u)+
1

N

N∑
n=1

∇uφ(ξn,u) = 0, ∀t (2.6)

Under suitable assumptions on the second derivatives ∇2
uuφ and ∇2

uup(ξn,ξm,u) the

control u can be expressed explicitly in terms of ~µ and ~ξ. e.g., in the case p independent
of u the strict convexity of φ is sufficient. For a formal proof and the corresponding
statement we refer to the literature, e.g. to [18]. As therein, we therefore remove u from
the previous conditions. Hence, we study the meanfield equations for (2.5) and (2.4)
only and, for simplicity of notation, keep u as a variable. This variable u is expressed
in terms of ~ξ and ~µ, respectively, as given by Equation (2.6).

In Section (2.2) we will derive the evolution equation for the joint 2N body density
for the states ξn,µn,n= 1,. ..,N , i.e. the corresponding probability density. Then, in
Section (2.3) we will carry out a mean field limit under the assumption of identical and
independently distributed particles to arrive at effective one agent equations for the
states and the Lagrange multipliers.



1098 CONSISTENT MEANFIELD OPTIMALITY CONDITIONS

2.2. The N-agent density of the optimality conditions. Here, we derive
the general relation between the solution of a system of ordinary differential equations
and the (degenerate) probability density, concentrated on discrete values, of its solution.
We first present a general result for a state ηn∈RK and n= 1,. ..,N. Later, we apply
the result to the specific system Equation (2.1). In general, the following result holds
true.

Proposition 2.1. Assume n= 1,. ..,N agents behave according to the following sys-
tem of ordinary differential equations:

∂tηn=vn(~η), n= 1,. ..,N.

We assume each state of agent n ηn∈RK and an initial datum ηn(0) =ηI0 be given.
Also, we assume that the velocity vn :RK→RK of the agent n is a known function.

Defining a measure F (·,t) on RKN as F (~y,t) =
∏N
n=1δ(yn−ηn(t)), then F satisfies

in the weak sense

∂tF (~y,t)+

N∑
n=1

divyn (vn(~y)F (~y,t)) = 0

and F (~y,0) =
∏N
n=1δ(yn−ηI0).

Proof. Let ψ be an arbitrary, compactly supported smooth function on RK . A
formal computation shows that

∂tF (~y,t) =−
N∑
n=1

vn(~η)T∇δ(yn−ηn)

N∏
k 6=n,k=1

δ(yk−ηk(t))

and therefore in the weak form we obtain the assertion by integration on RK∫
ψ(~y)∂tF (~y,t) d~y=

∫ N∑
n=1

vn(~y)T∇ynψ(~y)

N∏
k=1

δ(yk−ηk(t)) d~y

=

∫ N∑
n=1

vn(~y)T∇ynψ(~y)F (~y,t) d~y.

Integration by parts gives the strong form as

∂tF (~y,t)+

N∑
n=1

divyn (vn(~y)F (~y,t)) = 0.

The previous proposition is applied to the particle model (2.1). We set ~η= (~ξ,~µ)
and ~y= (~x,~z) in Equation (2.4) and (2.5) to obtain

∂tF (~x,~z,t)+
1

N

N∑
m=1

N∑
n=1

divxn [F (~x,~z,t)p(xn,xm,u)] (2.7a)

− 1

N

N∑
n=1

N∑
m=1

divzn [F (~x,~z,t)∂1p(xn,xm,u)T zn] (2.7b)

− 1

N

N∑
n=1

N∑
m=1

divzn [F (~x,~z,t)∂2p(xm,xn,u)T zm] (2.7c)
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−
N∑
n=1

divzn [F (~x,~z,t)∇xφ(xn,u)] = 0, (2.7d)

where again ∂1p and ∂2p denote the corresponding K×K Jacobi matrices of p.

2.3. Derivation of the meanfield limit for the single agent density. Equa-
tion (2.7) is posed on a higher-dimensional space R2KN+1 and therefore we apply an
IID ansatz in Equation (2.7). Hence, we assume that the 2N−particle density fulfills

F (~x,~z,t) =

N∏
n=1

f(xn,zn,t) (2.8)

for f :RK×RK×R+→R with f ∈M0 :={f :
∫
RK×K f dxdz= 1}, that is the manifold

of probability densities. The assumption (2.8) is common in the derivation of mean-field
equations, see e.g. [14], and it is relies on the observation that in many particle systems
the individual particles are identical and independent. Therefore, we may assume that
the probability density F is in fact a product of single particle distributions f.

In order to obtain the corresponding equation for f we integrate the equation for
F on d~x− d~z− where ~x−= (x2,..,xN ) and ~z−= (z2,..,zN ). This approach is as in the
derivation of the BBGKY hierarchy and we refer e.g. to [13, 14] for more details. The
following derivation is not rigorous in the sense that more assumptions on the agent
dynamics are required to rigorously prove a decomposition of the kinetic density in single
particle distributions (2.8). An example of suitable assumptions and the corresponding
derivation of the resulting equation is given in [9]. In the following, we present a formal
computation using Equation (2.8) as assumption.

∂tf(x1,z1,t)+
1

N

N∑
m=1

divx1
[

∫
F (~x,~z,t)p(x1,xm)] d~x− d~z− (2.9a)

− 1

N

N∑
m=1

divz1 [

∫
F (~x,~z,t)∂1p(x1,xm,u)T z1 d~x−~z−] (2.9b)

− 1

N

N∑
m=1

divz1 [

∫
F (~x,~z,t)∂2p(xm,x1,u)T zm d~x−~z−] (2.9c)

−divz1 [

∫
F (~x,~z,t)∇xφ(x1,u) d~x−~z−] = 0. (2.9d)

From Equation (2.8) we have

F (x,z,t) =f(x1,z1,t)F−(~x−,~z−,t)

and F−(~x−,~z−,t) =
∏N

2 f(xn,zn,t). This leads to the following equation for f(x1,z1,t)

∂tf(x1,z1,t)+
1

N

N∑
m=1

divx1 [f(x1,z1,t)

∫
F−(~x−,~z−,t)p(x1,xm)] d~x− d~z−

− 1

N

N∑
m=1

divz1 [f(x1,z1,t)

∫
F−(~x−,~z−,t)∂1p(x1,xm,u)T z1 d~x−~z−]

− 1

N

N∑
m=1

divz1 [f(x1,z1,t)

∫
F−(~x−,~z−,t)∂2p(xm,x1,u)T zm d~x−~z−]
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−divz1 [f(x1,z1,t)∇xφ(x1,u)

∫
F−(~x−,~z−,t) d~x−~z−] = 0.

An elementary but tedious computation leads to a closed form for f(x1,z1,t) upon
integration with respect to d~x−d~z−.

∂tf(x1,z1,t)+
N−1

N
divx1 [f(x1,z1,t)

∫
f(x2,z2,t)p(x1,x2,u)] dx2dz2

−N−1

N
divz1 [f(x1,z1,t)

∫
f(x2,z2,t)∂1p(x1,x2,u)T z1 dx2,z2]

−N−1

N
divz1 [f(x1,z1,t)

∫
f(x2,z2,t)∂2p(x2,x1,u)T z2 dx2dz2]

−divz1 [f(x1,z1,t)∇xφ(x1,u)] = 0.

In the previous equation we may take the limit for infinitely many agents N→∞ to
obtain

∂tf(x1,z1,t)+divx1
[f(x1,z1,t)

∫
f(x2,z2,t)p(x1,x2,u)] dx2dz2 (2.10a)

−divz1 [f(x1,z1,t)

∫
f(x2,z2,t)∂1p(x1,x2,u)T z1 dx2,z2] (2.10b)

−divz1 [f(x1,z1,t)

∫
f(x2,z2,t)∂2p(x2,x1,u)T z2 dx2dz2] (2.10c)

−divz1 [f(x1,z1,t)∇xφ(x1,u)] = 0. (2.10d)

The density f(x1,z1,t) in Equation (2.10) still depends on the variables x1,z1, cor-
responding to the state x1 of the system and the Lagrange multiplier z1, respectively.
However, Equation (2.10) can be closed exactly. In order to do so, we write f in terms
of the conditional probability fc with respect to z1. Hence, we define the conditional
probability fc as follows:

f0(x1,t) =

∫
f(x1,z1,t) dz1, f(x1,z1,t) =fc(z1|x1,t)f0(x1,t). (2.11)

This implies that, for all x1,
∫
fc(z1|x1,t) dz1 = 1 holds. The vector–valued conditional

expectation µ(x1,t)∈RK is then given by

µ(x1,t) =Efc(x1,t) =

∫
z1fc(z1|x1,t) dz1 .

With a slight abuse of notation, we use the same symbol µ for the conditional expectation
as for the discrete Lagrange multiplier in Section 2.1. The reason for this is, that we
will show in Section 4 a certain equivalence of the systems obtained in Sections 2.1 and
2.2.

This allows to simplify Equation (2.10). With the definitions, Equation (2.10) is
closed in terms of f0 and the K− vector µ. We summarize the findings in the following
proposition.

Proposition 2.2. Assume f and u as in (2.10) and f0 and µ, given by Equation
(2.11). Then, f0,µ satisfy

∂tf0(x1,t)+divx1
[f0(x1,t)Gf (x1,t)] = 0, (2.12a)
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f0(x1,0) =f I(x1) (2.12b)

∂t[µ(x1,t)f0(x1,t)]+divx1
[f0(x1,t)Gf (x1,t)µ(x1,t)

T ] (2.12c)

+f0(x1,t)∂xGf (x1,t)
Tµ(x1)+f0(x1)bfµ(x1,t)+f0(x1)∇xφ(x1,u) = 0, (2.12d)

µ(x1,T ) = 0, (2.12e)

with the K− vectors Gf ,bfµ given by

Gf (x1,t) =

∫
f0(x2,t)p(x1,x2,u(t)) dx2, (2.13a)

bfµ(x1,t) =

∫
f0(x2,t)∂2p(x2,x1,u(t))Tµ(x2,t) dx2, (2.13b)

and the K×K Jacobian given by

∂xGf (x1,t) =

∫
f0(x2,t)∂1p(x1,x2,u(t)) dx2. (2.14)

Recall, that in (2.12)(b)-(c), we use the standard definition of the K− vector valued
divergence of a K×K matrix: div(A)j =

∑
k∂kAkj . Clearly, the K×K matrix Gfµ

T

has the entries (Gfµ
T )kj = (Gf )kµj .

Proof. For notational convenience, we suppress the dependence of the variables
on the time t and control u. We compute the zero order moment in z1 of (2.10), using∫
fc(z1|x1) dz1 = 1, ∀x1. Then, we obtain

∂tf0(x1)+divx1
[f0(x1)

∫
f0(x2)p(x1,x2,u) dx2] = 0. (2.15)

The Equation (2.15) is closed and yields (2.12)(a). Computing the first order mo-
ment in z1 in (2.10) with the K− vector µ(x1) the conditional expectation µ(x1) =∫
z1fc(z1|x1) dz1, using the identity

∫
zdivzg dz=−

∫
g dz gives

∂t[µ(x1)f0(x1)]+divx1 [

(∫
f0(x2)p(x1,x2,u) dx2

)
µ(x1)T ] (2.16a)

+f0(x1)

(∫
f0(x2)∂1p(x1,x2,u) dx2

)T
µ(x1) (2.16b)

+f0(x1)

∫
f0(x2)∂2p(x2,x1,u)Tµ(x2) dx2 +f0(x1)∇xφ(x1,u) = 0. (2.16c)

We define the the vector Gf ∈RK as Gf (x1) =
∫
f0(x2)p(x1,x2,u) dx2. Hence, its Ja-

cobian is ∂Gf (x1) =
∫
f0(x2)∂1p(x1,x2,u) dx2∈RK×K . We define the K− vector bfµ

as bfµ(x1) =
∫
f0(x2)∂2p(x2,x1,u)Tµ(x2) dx2. This gives by (2.15)–(2.16) the closed

system for the density f0 and the K− vector µ.

∂t[µ(x1)f0(x1)]+divx1 [f0(x1)Gf (x1)µ(x1)T ]+f0(x1)∂Gf (x1)Tµ(x1)

+f0(x1)bfµ(x1)+f0(x1)∇φ(x1) = 0,

∂tf0(x1)+divx1
[f0(x1)Gf (x1)] = 0.

This finishes the proof.

Equation (2.12)(b,c) will be compared to the optimization of the meanfield limit in
the next section.
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3. Optimality condition based on mean-field dynamics
In this section we consider an approach based on first deriving the meanfield dy-

namics and then solving a constrained optimization problem where the constraint is
given by a partial differential equation. Under IID this problem results essentially in
computing admissible variations with respect to the meanfield density f(x,t). As in the
previous section, the meanfield dynamics associated with Equation (2.1) and under the
IID assumption is given by

∂tf(x1,t)+divx1 [f(x1)Gf,u(x1,t)] = 0, f(x1,0) =f I0 (x1), (3.1a)

Gf,u(x1,t) =

∫
p(x1,x2,u)f(x2,t) dx2 (3.1b)

and initial conditions f I0 . Further, u=u(t) is the corresponding meanfield control. The
cost function (2.2) is computed on the meanfield and is given by∫ T

0

∫
φ(x1,u(t))f(x1,t)dx1dt.

Hence, we study the formal constrained optimization for functions u(·) by optimizing
the previous functional on the manifold given by the differential Equation (3.1). The
formal differential of the corresponding Lagrangian∫ T

0

∫
λ(x1,t)

(
∂tf(x1,t)+divx1

[f(x1,t)Gf,u(x1,t)]
)

+φ(x1,u)f(x1,t)dx1dt

with respect to f leads to the terminal value problem for the multiplier λ(x1,t) as

−∂tλ(x1,t)−∇x1
λ(x1,t)

TGf,u(x1,t) (3.2a)

−
∫
f(x2,t)∇x2

λ(x2,t)
T p(x2,x1,u) dx2 +φ(x1,u) = 0 (3.2b)

and terminal conditions

λ(x1,T ) = 0.

Some remarks are in order.
While the mean-field equation for the evolution of the states obviously is the same

as (2.12)(a) in Section 2.3, with the obvious change in notation f↔f0, the Equation
(3.2) for the Lagrange multiplier seems different from Equation (2.12)(b)-(c). For one,
λ in (3.2) is a scalar function, whereas µ in (2.12)(b) is a K− vector. Second, µ
follows a possibly hyperbolic balance equation whereas λ is given by a non-conservative
equation. Furthermore, λ is influenced through the source term by φ whereas µ depends
on ∇xφ(x,u). Also, considering the system in dimensional units the unit of λ is given
by the unit of φ, i.e., [λ] = [φ], whereas the the unit of µ in (2.12)(b)-(c) is given by

[µ] = [φ]
[x] , given the units of the functional φ and the state space variable x .

If we consider f to be an L2−integrable density, the previous computation is the
formal Gateaux differential of the Lagrangian with respect to f. However, this does not
take into account the fact that f is a probability density, i.e., the fact that f satisfies∫
f(x,t) dx= 1, ∀t. So, in fact, we should consider the optimization problem for the

density f rather on the manifoldM :={f(x1,t) :
∫
f(x1,t)dx= 1, ∀t∈ [0,T ]}. This leads

to additional nonlinear constraints on f that may be handled as follows:
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Equation (3.2) is derived as the strong formulation of the weak functional deriva-
tive of the Lagrangian with respect to f where we skip the dependence on (x1,t) for
notational convenience. This requires to compute variations of f in direction g. The
weak formulation for any variation g of f is given by∫ T

0

∫
λ
(
∂tg+divx[gGf,u+f∂fGf,ug]

)
+φ(x,u)g dxdt= 0, ∀g.

To compute the derivative along the tangent space of the manifold M, we would have
to parameterize the tangent space. The previous condition can be achieved for example
by considering g=g(x1,t) that additionally fulfills

∫
g(x1,t) dx1 = 0 ∀t.

In the case of a one dimensional state space (K= 1), this condition can be enforced
by considering variations g(x,t) such that g(x,t) =∂xψ(x,t) for some sufficiently smooth
L1(R) function ψ. In a strong formulation, this would result in taking the gradient of
Equation (3.2) and introducing the gradient of the multiplier λ as a new variable. In
broad generality this technique has been used in [20]. Other approaches and their
rigorous derivation as well as analytical results on derivatives with respect to measures
are discussed in [8, 12] and briefly reviewed in the Appendix.

This trick will not work in the case of higher dimensional phase space, i.e., x∈
RK , K >1. However, it motivates to consider the gradient of Equation (3.2) and to
introduce

µ(x1,t) =−∇x1
λ(x1,t). (3.3)

as a new variable. µ is now a K− vector and, in a dimensional formulation, has at least
the same units as the conditional expectation µ in Section 2.3. Formally, this leads to

∂tµ(x1,t)+∇x1 [µT (x1,t)Gf,u(x1,t)] (3.4a)

+∇x1 [

∫
f(x2,t)µ(x2,t)

T p(x2,x1,u) dx2]+∇x1φ(x1,u) = 0 (3.4b)

or, written in terms of Gf =Gf,u and bfµ(x1,t) =
∫
f(x2,t)∂2p(x2,x1,u)Tµ(x2,t) dx2 as

in Equation (2.13)

∂tµ(x1,t)+∇[µT (x1,t)Gf (x1,t)]+bfµ(x1,t)+∇x1
φ(x1,u) = 0. (3.5)

We devote the next section to a discussion of the relation between (3.5) and the
derivations leading to Proposition 2.2, i.e., in particular Equation (2.12).

4. Relation between the different approaches
In this section we discuss the relation between the different approaches given in

Sections 2 and 3. It turns out that, the presented approaches can be linked to each
other by suitable differentiation of multipliers and suitable decomposition of the kinetic
densities using conditional probabilities and expectations. In the first Section 4.1 we
show that, given a certain particle based semi - discretization of the system (2.12), in
Section 2.3, we recover the equations for the multi -agent optimization problem (2.1-
2.4). In Section 4.2 we compute that Equation (3.5), together with the equation (3.1)
for the agent dynamics, is equivalent to the system (2.12) in Section 2.3.

4.1. Equivalence of the multi-agent model with the mean field equations.
Here, we compare the solution of the N−agent optimization problem given by Equa-

tions (2.1)–(2.4) with the solution of the meanfield approximation in Section 2.3 given
by Equation (2.10) and (2.12), respectively.
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It turns out that the meanfield approximation in Section 2.3 is an exact discretiza-
tion. That is, given a certain consistent discretization of the system (2.12) by a particle
method, we recover the optimality Equations (2.1)–(2.4), respectively.

This result holds true for more general equations and therefore we start by dis-
cretizing a general meanfield equation similar to (2.10)

∂tf(x,z,t) =divx(A(x,t)f(x,z,t))+divz(B(x,z,t)f(x,z,t)) (4.1)

by a particle method in the x−direction with N particles, leaving the z−variable con-
tinuous for the moment. A particle method approximates f by N moving particles at
location ξn(t) as

f(x,z,t) =
1

N

N∑
n=1

δ(x−ξn(t))gn(z,t),

where gn is the weight of particle n. This weight function might depend on z and t. The
previous ansatz also represents a discretization of Equation (2.11) if gn(z,t) =fc(z|xn,t).

Then, we obtain for all z and any test function ψ(x) in the weak form∫
ψ(x)∂tf(x,z,t) dx=

1

N

N∑
n=1

gn(z,t)∇xψ(ξn)T∂tξn(t)+ψ(ξn)∂tgn(z,t). (4.2)

Computing the terms on the right-hand side of Equation (4.1) gives∫
ψ(x)divx(A(x,t)f(x,z,t)) dx=− 1

N

N∑
n=1

gn(z,t)∇xψ(ξn)TA(ξn,t), (4.3a)

∫
ψ(x)divz(B(x,z)f(x,z,t)) dx=

1

N

N∑
n=1

ψ(ξn)divz(B(ξn,z,t)gn(z,t)). (4.3b)

Comparing the ψ and the ∇ψ terms in (4.2) and (4.3) yields the particle dynamics for
ξn as

d

dt
ξn(t) =−A(ξn,t), ∂tgn(z,t) =divz(B(ξn,z,t)gn(z,t)). (4.4)

The Equation (4.4) is a consistent semi-discretization of the density Equation (4.1). We
now relate (4.4) to the Equation (2.10) by computing the integral terms, and including
the dependence on the control u:

A(x,t) =−
∫
f(x2,z2)p(x,x2,u) dx2z2 =− 1

N

N∑
m=1

p(x,ξm,u)ρm(t),

B(x,z,t) =
1

N

N∑
m=1

∂1p(x,ξm,u)T zρm(t)+
1

N

N∑
m=1

∂2p(ξm,x,u)Tµm(t)+∇xφ(x,u),

with ρm,µm the zeroth and first order moments of the functions gm, i.e., for each m we
have ρm(t) =

∫
gm(z,t) dz, and µm(t) =

∫
zgm(z,t) dz.

Computing the zeroth and first order moments of (4.4) using again the identity∫
zdivz[B(ξn,z,t)gn(z,t)] dz=−

∫
B(ξn,z,t)gn(z,t) dz, gives the exact closure equa-

tions

d

dt
ξn(t) =

1

N

N∑
m=1

p(ξn,ξm,u)ρm(t), (4.5a)
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d

dt
ρn(t) = 0, (4.5b)

d

dt
µn(t) =− 1

N

∑
m

∂1p(ξn,ξm,u)Tµn(t)ρm(t) (4.5c)

− 1

N

∑
m

∂2p(ξm,ξn,u)Tµm(t)ρm(t)−∇xφ(ξn,u)ρn(t). (4.5d)

Some remarks are in order.
Equation (4.4) is a consistent discretization of the Equation (2.10). Therefore, equation
(4.5) is a consistent discretization of the closure system (2.12), as long as we choose a
discretization method in the z−variables which allows for the identity

∫
zdivzB dz=

−
∫
B dz to be exact for the discretized system.
Equation (4.5) reproduces the agent based system (2.5-2.4) if ρn(t) =

∫
gn(z,0) dz=

1, ∀n∀t. Therefore, if we start with a, uniform in x− , distribution in the Lagrange
parameter z with zero first order moment, at the end time T , i.e. ρn(T ) =

∫
gn(z,T ) dz=

1, ∀n, and µn(T ) =
∫
zgn(z,T ) dz= 0, ∀n, we obtain the agent based system (2.4)–(2.5)

exactly. Hence, for the special case of uniform terminal conditions with zero expectation
the given semi-discretization, (2.12) is equivalent to the multi agent optimization system
(2.5 - 2.4).

So, the difference in the result between solving (2.10) by some other arbitrary dis-
cretization method, and solving the agent based system (2.4-2.5), is solely given by the
choice of discretization methods at terminal time and the corresponding discretization
error.

4.2. Equivalence of the meanfield limit for the combined agent - Lagrange
multiplier meanfield system (2.12) and the optimality system based on opti-
mizing the meanfield dynamics(3.5). Next, we discuss relation between Equation
(2.12)(b) and Equation (3.5). Recall, that (2.12) has been obtained by the meanfield
limit of the optimized discrete agent system. The adjoint variable µ is the conditional
expectation of the meanfield distribution in both primal and Lagrange variables. On
the contrary, Equation (3.5) has been obtained as Gateaux derivative of the meanfield
optimization problem (3.1) and then differentiation with respect to the spatial variable.
Here, µ(x,t) =∇xλ(x,t) and λ is the continuous Lagrange multiplier function.

In order to compare (3.5) and Equation (2.12) we start with Equation (3.5) and use
the meanfield dynamics

∂tf0(x1,t)+divx[f0(x,t)Gf (x,t)] = 0

to obtain an equation for µf0.

This leads to the equivalent Equation (4.6) as follows

0 =∂t[f0(x1,t)µ(x1,t)]+divx1
[f0(x1,t)Gf (x1,t)µ

T (x1,t)] (4.6a)

+f0(x1,t)∂G
T
f (x1,t)µ(x1,t) (4.6b)

+f(x1,t)[∇x1bfµ(x1,t)+∇xφ(x1,u)]+f0(x1,t)S(x1,t), (4.6c)

S(x1,t) =∂µT (x1,t)Gf (x1,t)−(GTf (x1,t)∇x1
)µ(x1,t). (4.6d)

Equation (4.6) follows from the following elementary computation where we omit the
dependence on (x1,t)∈RK×R. The i−th component of µ fulfills

0 =µi∂tf0 +µi

K∑
j=1

∂xj (f0(Gf )j) =µi∂tf0 +

K∑
j=1

∂xj [f0(Gf )jµi]−
K∑
j=1

f0(Gf )j∂xjµi,
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and hence

µ∂tf0 +divx[f0Gfµ
T ]−f0[GTf∇x]µ= 0. (4.7)

Also, we obtain from Equation (3.4)

0 =f0∂tµi+f0∂xi [
∑
j

µj(Gf )j ]+f0∂xibfµ+f∂xiφ

=f0∂tµi+
∑
j

f0(Gf )j∂xi
µj+f0µj∂xi

(Gf )j+f0[∂xi
bfµ+f0∂xi

φ],

or

f0∂tµ+f0∂µ
TGf +f0∂G

T
f µ+f0∇xbfµ+f0∇φ= 0. (4.8)

Adding Equation (4.7) and Equation (4.8) we obtain (4.6). Using the definition of
µ=∇λ we observe that the components of the term S are given by k= 1 :K

Sk =

K∑
j=1

(∂xk
µj−∂xj

µk)Gf j =

K∑
j=1

(∂xk
∂xj

λ−∂xj
∂xk

λ)Gf j = 0. (4.9)

Hence, we have established the equivalence of the meanfield system (2.12) and the
optimality system based on optimizing the meanfield dynamics (3.5).

5. Summary
We are concerned with active particle systems that allow for some control influence.

For a class of interacting particle systems we investigate optimality conditions and
their corresponding meanfield limit. The novelty of this paper is to establish the link
between optimization of particle systems and the optimization of the corresponding
system obtained as meanfield of the particle description. The interesting connection
is on the level of the Lagrange multipliers. The gradient of the multipliers of the
meanfield system are equivalent to the conditional expectation of the meanfield limit of
the multipliers of the particle system. Besides the theoretical result, this can be used
to derive suitable numerical discretization schemes as outlined in Section 4.1.

Appendix. Suitable notions of differentials for optimal control problem.
Here, we summarize formal computations to motivate the links discussed in Section 4.
Since the time–dependence is not important for the following computation we omit it.

We refer to [8, 12] for analytical results of derivatives with respect to measures. In
the analysis of meanfield games the following notion of measure valued derivatives has
been introduced, see [12, Section 2.2]. This notion could also be used to define proper
optimality conditions for a Lagrangrian. We recall the basic Definition [12, Definition
2.1]. Let T be some open set of R. For any function φ :M(T )→R we say that φ
is of class C1 if there exists a continuous map δφ

δf :M(T )×T→R such that for any

f,f ′∈M(T ) we have

φ(f)−φ(f ′) =

∫ 1

0

∫
T

δφ

δf
((1−s)f+sf ′,x)d(f−f ′)(x)ds.

The map δφ
δf is defined up to an additive constant and it is assumed to be normalized

by
∫
T
δφ
δf (f,x)df(x) = 0. It is important to note that if δφ

δf is also of class C1 w.r.t. to x,

then the so–called intrinsic derivative Dµφ :M(T )×T→R is defined by

Dµφ(f,x) =Dx

(
δφ

δf
(f,x)

)
.
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We may illustrate this on the cost functional as

Dµφ(f,x) =∂x

(
∂φ

∂f
(f,x)

)
which can be computed explicitly for our example as follows: Define the functional
J(f) :=

∫
φ(x)df(x). Hence,

J(f)−J(f ′) =

∫
φ(x)d(f−f ′)dx=

∫ ∫ 1

0

δJ

δf
((1−s)f+sf ′,x)d(f−f ′)dsdx

=⇒ DmJ(f,x) =Dx
δJ

δf
(f,x) =∂xφ(x).

Computing the Gateaux differential of J in direction g and using g=∂xψ we obtain
∂J
∂f [−ψ] =−

∫
φ(x)∂xψ(x)dx for any ψ sufficiently smooth. Hence, we obtain the weak

form of the intrinsic derivative. Similar computations may be carried out for the La-
grangian of the optimal control problem. We consider a functional J :M=M(R)→R
given e.g. by J(f) =

∫
φ(x)df(x) as before and we compute variations of the functional in

a subspace ofM. For any given f ∈M and any fixed ψ∈C1(R;R) we define η(s,·)∈M
to be the weak solution to

∂sη(s,x)+∂x (ψ(x)η(s,x)) = 0, η(0,x) =f(x). (6.1)

Then, we define the gradient of J at f as

∂J

∂f
(f) := lim

s→0

J(η(s,·))−J(f)

s
. (6.2)

In case of the given example we simply obtain

∂J

∂f
(f) =

∫
φ(x)∂sη(0,x)dx=

∫
φ(x)∂x(−ψ(x)η(0,x))dx=

∫
∂xφ(x)f(t,x)ψ(x)dx.

This computation formalizes a notion of differentials in arbitrary spatial dimensions that
is not based on variations of the density function, but based on the derivative
with respect to particle paths. To this end we write the density function

f(x) =

∫
δ(x−ξ(s)ω(s))ds,

∫
ω(s)ds= 1.

This implies writing the probability density f in terms of a continuum of weighted
particle paths η(s) with some weight ω. Using this form of f(x) obviously implies the
condition

∫
f(x)dx= 1 and therefore f being a probability density.

Taking the derivative with respect to the particle paths η(y) gives g(x) =−
∫
∇δ(x−

η(s))T δη(s)ω(s) ds , which immediately implies
∫
g(x) dx= 0. Integrating g against any

function h(x) gives ∫
h(y)g(y) dy=

∫
∇xh(η(s))T δη(s)ω(s)ds

which in the one dimensional case corresponds, up to a sign, setting g=∂xψ.

Acknowledgements. This work has been supported by NSF RNMS grant No.
1107291 (KI-Net) and DFG HE5386/14-15, BMBF 05M18PAA, DFG-GRK 2326 and
ID390621612 Cluster of Excellence Internet of Production (IoP).



1108 CONSISTENT MEANFIELD OPTIMALITY CONDITIONS

REFERENCES

[1] G. Albi and L. Pareschi, Modeling of self-organized systems interacting with a few individuals:
from microscopic to macroscopic dynamics, Appl. Math. Lett., 26(4):397–401, 2013. 1

[2] G. Albi, M. Bongini, E. Cristiani, and D. Kalise, Invisible control of self-organizing agents leaving
unknown environments, SIAM J. Appl. Math., 76(4):1683–1710, 2016. 1

[3] G. Albi, M. Fornasier, and D. Kalise, A Boltzmann approach to mean-field sparse feedback control,
IFAC-PapersOnLine, 50(1):2898–2903, 2017. 1

[4] G. Albi, M. Herty, and L. Pareschi, Kinetic description of optimal control problems and applica-
tions to opinion consensus, Commun. Math. Sci., 13(6):1407–1429, 2015. 1, 2.1

[5] G. Albi, L. Pareschi, and M. Zanella, Boltzmann type control of opinion consensus through leaders,
Philos. Trans. Royal Soc. A, 372(2028), 2014. 1

[6] G. Albi, L. Pareschi, and M. Zanella, Uncertainty quantification in control problems for flocking
models, Math. Probl. Eng., 850124, 1–14, 2015. 1

[7] N. Bellomo, P. Degond, and E. Tadmor, Active Particles, Volume 1 : Advances in Theory,
Models, and Applications, Modeling and Simulation in Science, Engineering and Technology,
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