
COMMUN. MATH. SCI. c© 2019 International Press

Vol. 17, No. 4, pp. 1167–1175

FAST COMMUNICATION

A NOTE ON THE SOLUTION TO THE MOVING CONTACT LINE
PROBLEM WITH THE NO-SLIP BOUNDARY CONDITION∗

HANWEN CUI† AND WEIQING REN‡

Abstract. When two immiscible fluids flow on a solid substrate, a moving contact line forms at the
location where the fluid-fluid interface meets the solid surface. Under the no-slip boundary condition,
the velocity field is necessarily multi-valued at the moving contact line. In this paper we show that the
Stokes equation with the no-slip boundary condition does not admit such multi-valued solution when
the fluid-fluid interface is assumed to be flat near the moving contact line.
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1. Introduction

The moving contact line problem is a classical problem in fluid mechanics. It refers
to the motion of a contact line, i.e. the intersection of a fluid-fluid interface with a solid
substrate, relative to the solid wall, such as what occurs in the spreading dynamics of
a droplet. Traditional hydrodynamics imposes the requirement that the velocity of the
fluids in contact with the solid substrate must be equal to the velocity of the substrate,
i.e., the no-slip condition. However, this condition is obviously violated at the moving
contact line. In order to resolve this difficulty, much effort has been devoted to analyzing
the contact line dynamics and to developing alternative models. For samples of these
work, we refer to the research articles [3–6,9–12,16,18–21,24,25] and references therein.
We also refer to the monographs and review articles [2, 13, 14, 17, 22] as well as the
collected volume edited by Velarde [23], for the latest development for this problem.

In one of the earlier works [11], Huh and Scriven proposed a solution to the steady
Stokes flow for a moving contact line. It was assumed that the velocity field was gov-
erned by the Stokes equation with the no-slip boundary condition at the solid wall and
the usual stress conditions at the fluid interface. Furthermore, the fluid interface was
assumed to be planar. Under these conditions, the authors looked for a solution for the
stream function of the form

ψ(r,θ) = r(Asinθ+B cosθ+θ(C sinθ+Dcosθ)),

where r and θ are the polar coordinates, r= 0 is at the location of the contact line, and
θ= 0,π correspond to the solid surface on the two sides of the contact line, respectively.
The coefficients A, B, C and D were then determined by the conditions imposed on the
fluid interface and the solid wall. The solution they found corresponds to a velocity field
with multiple values at r= 0, which leads to a singular viscous stress with a divergence
rate of 1/r at the moving contact line.
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Fig. 2.1. The geometry of the vacuum-fluid-solid system near the moving contact line.

While the solution obtained in Ref. [11] satisfies all the conditions imposed on the
fluid interface and the solid wall as r→∞, it fails to satisfy the balance of the stress
condition at the fluid interface near the contact line. Therefore, what Huh and Scriven
obtained is, in a rigorous sense, not a solution to their setup. In fact, even the existence
of solutions to this problem remains unclear.

The purpose of this paper is to show that, under the setup in Ref. [11], there is
no solution to the Stokes equation with the no-slip boundary condition and the usual
conditions on the planar interface. This includes solutions which are possibly multi-
valued at the contact line. The precise statement is given in Theorem 2.1. For simplicity,
we will focus on a vacuum-fluid-solid system.

The paper is organized as follows. In Section 2 we describe the mathematical model
and introduce the main result (see Theorem 2.1). In Section 3, we rewrite all the real-
valued variables in the model into their respective complex form (see Lemma 4.1). The
main result is proved in Section 4 using techniques from complex analysis. The paper
is concluded in Section 5.

2. Mathematical model and the main result

Consider a vacuum-fluid-solid system in two dimensions. We focus on the velocity
field near the moving contact line, where the vacuum-fluid interface is assumed to be
flat. This geometry is the same as that in the pioneering work of Huh and Scriven [11].
The geometry is shown in Figure 2.1, where ` denotes the moving contact line, Γs
denotes the fluid-solid interface with Γs∩`=∅, Γf denotes the vacuum-fluid interface
with Γf ∩`=∅, and Ω is the interior of the fluid with Ω∩(`∪Γs∪Γf ) =∅. In addition,
α∈ (0,π) is the contact angle formed between Γs and Γf .

We choose the Cartesian coordinate with the origin being fixed at the contact line
` and the x1-axis coinciding with the solid surface Γs. We consider the steady-state
problem where the solid substrate moves horizontally with a constant speed and the
vacuum-fluid interface remains still in space. With these settings, the dimensionless
Stokes equations in Ω read

1

2

(
∂2

∂x21
+
∂2

∂x22

)
v1 =

∂p

∂x1
, (2.1)
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1

2

(
∂2

∂x21
+
∂2

∂x22

)
v2 =

∂p

∂x2
, (2.2)

with the incompressibility condition

∂v1
∂x1

+
∂v2
∂x2

= 0, (2.3)

where (x1,x2) denotes the Cartesian coordinate, (v1,v2) is the velocity field of the fluid,
and p is its pressure.

The above governing equations are supplemented with the following boundary and
interface conditions. The no-slip condition for the fluid on Γs reads

v1 = 1. (2.4)

The kinematic and hydrodynamic constraints on v1, v2 and p are as follows. The
impenetrability of the fluid on its boundary gives

v2 = 0 on Γs, (2.5)

v2 cosα−v1 sinα= 0 on Γf . (2.6)

The balance of pressure and viscous stress across Γf can be expressed in the matrix
form

T
(
−sinα

cosα

)
= 0, (2.7)

where the total stress tensor

T=


∂v1
∂x1
−p 1

2

(
∂v1
∂x2

+
∂v2
∂x1

)
1

2

(
∂v1
∂x2

+
∂v2
∂x1

)
∂v2
∂x2
−p

 .
With these settings and notations, let us state the target of this paper. We are to

show

Theorem 2.1. Under the assumption that the fluid interface is planar, the Stokes
Equations (2.1)–(2.3) admit no solution (v1,v2,p) with

v1,v2∈C2(Ω)∩C(Ω∪Γs)∩C1(Ω∪Γf ), (2.8)

p∈C1(Ω)∩C(Ω∪Γs∪Γf ) (2.9)

that satisfies the interface and boundary conditions in Equations (2.4)–(2.7) simultane-
ously.

Since the velocity field may assume multiple values at the contact line due to the
no-slip boundary condition [4], in Equations (2.8) and (2.9) we place no constraint on
v1, v2 and p at the contact line—they are allowed to diverge or to be multi-valued at
this location.
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3. Complex form of governing equations and boundary conditions
The proof of Theorem 2.1 makes use of complex analysis. We begin with a classical

result on the representation of the solutions to Stokes equations in terms of holomorphic
functions. Then we convert the boundary conditions to appropriate conditions on these
holomorphic functions.

For v1,v2∈C2(Ω) and p∈C1(Ω), Stokes Equations (2.1)–(2.3) can be rewritten as

∂

∂z̄

(
∂v

∂z
−p
)

= 0, (3.1)

Re

(
∂v

∂z

)
= 0, (3.2)

where z and v are complex-valued variables defined as

z=x1 + ix2,

v=v1 + iv2.

In the following classical result [7] (see also Ref. [8, pp. 160]), the solutions to the
above equations are represented using holomorphic functions, where O(U) denotes the
collection of all holomorphic functions defined on U ⊆C.

Lemma 3.1 (Goursat). There exist complex-valued functions v∈C2(Ω) and p∈C1(Ω)
that satisfy Equations (3.1) and (3.2) if and only if there exist holomorphic functions
g,h∈O(Ω) such that

v(z,z̄) =g(z)−zg′(z)+h(z), (3.3)

p(z,z̄) =−2 Re(g′(z)) (3.4)

hold for all z∈Ω.

Thanks to these representations, the regularity requirements (2.8) and (2.9) are
equivalent to

g∈O(Ω)∩C1(Ω∪Γs)∩C2(Ω∪Γf ), (3.5)

h∈O(Ω)∩C(Ω∪Γs)∩C1(Ω∪Γf ). (3.6)

Next, we convert the boundary conditions (2.4)–(2.7) into their respective complex
forms in terms of z, v and p. These conditions could be rewritten as

Re(v) = 1 on Γs, (3.7)

Im(v) = 0 on Γs, (3.8)

Im
(
e−iαv

)
= 0 on Γf , (3.9)

Re

(
∂v

∂z
−p
)

=e−2iα
∂v

∂z̄
on Γf . (3.10)

In particular, Equation (3.10) is equivalent to

Re

(
∂v

∂z
−e−2iα ∂v

∂z̄
−p
)

= 0 on Γf , (3.11)

Im

(
e−2iα

∂v

∂z̄

)
= 0 on Γf . (3.12)



H. CUI AND W. REN 1171

Now, we rewrite the above equivalent conditions (3.7)–(3.9), (3.11) and (3.12) in
terms of the holomorphic functions g and h by using the representations (3.3) and (3.4).
For one thing, we have z= z̄ on Γs. Thus at this boundary,

Re(v) = Re
(
g−zg′+ h̄

)
= Re(g−zg′+h),

where we have also used Equations (3.3) and (3.5). As a result, Equation (3.7) can be
expressed as

Re(g−zg′+h) = 1 on Γs. (3.13)

Similarly, Equation (3.8) can be converted into

Im(g+zg′−h) = 0 on Γs. (3.14)

On the interface Γf , we have z=eiα |z|. It follows that

z̄=e−iα |z|=e−2iα
(
eiα |z|

)
=e−2iαz.

Thanks to this relation, Equations (3.9), (3.11) and (3.12) can be rewritten in a similar
way as

Im
(
e−iα (g+zg′)−eiαh

)
= 0 on Γf , (3.15)

Re
(
2g′+zg′′−e2iαh′

)
= 0 on Γf , (3.16)

Im
(
zg′′−e2iαh′

)
= 0 on Γf . (3.17)

Equations (3.13)–(3.17) are the conditions that g and h need to satisfy on Γs and Γf ,
respectively.

4. Proof of the main result
In this section, we show that holomorphic functions g and h satisfying the above

conditions on Γs and Γf do not exist, as is stated in the following lemma.

Lemma 4.1. There do not exist holomorphic functions g and h, with regularities (3.5)
and (3.6), that satisfy Equations (3.13)–(3.17) simultaneously.

The proof of this lemma proceeds in three steps. First, we derive a relation between
g and h by using Equations (3.15) and (3.16) with the help of the Schwarz reflection
principle [1, pp. 172] and the identity theorem [1, pp. 127]. Then we obtain the general
solution to g by using Equations (3.13) and (3.14), together with, again, the Schwarz
reflection principle and the identity theorem. Lastly, we show that, as per all its possible
solutions, g violates the condition (3.17).

Step 1. Relation between h and g. To begin with, let q1 =e−iα (g+zg′)−eiαh.
Note that (i) q1∈O(Ω)∩C(Ω∪Γf ) by Equations (3.5) and (3.6), (ii) Im(q1) = 0 on
Γf by Equation (3.15), and (iii) Γf is part of a straight line by the assumption upon
the geometry. Thanks to these properties, the Schwarz reflection principle applies. It
follows that q1 can be analytically extended across Γf , such that

q1 =e−iα (g+zg′)−eiαh∈O(Uf ), (4.1)

where Uf ={z∈C : |z|>0∧argz∈ (0,2α)}.
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Next, let z(s) =eiαs be the arc-length parametrization of Γf . Taking the derivative
of Equation (3.15) with respect to s yields

d

ds

(
Im
(
e−iα (g+zg′)−eiαh

)
z=eiαs

)
= 0,

from which, as well as property (4.1), we have

Im

(
∂

∂z

(
e−iα (g+zg′)−eiαh

)
z=eiαs

dz

ds

∣∣∣∣
z=eiαs

)
= 0,

i.e.,

Im
(
2g′+zg′′−e2iαh′

)
z=eiαs

= 0.

In other words,

Im
(
2g′+zg′′−e2iαh′

)
= 0 on Γf . (4.2)

Combined with Equation (3.16), Equation (4.2) implies that

2g′+zg′′−e2iαh′= 0 on Γf . (4.3)

Thereafter, note that

2g′+g′′−e2iαh′=
(
g+zg′−e2iαh

)′
=
(
eiαq1

)′
. (4.4)

It follows from property (4.1) that

2g′+zg′′−e2iαh′∈O(Uf ).

Since we also have Γf ⊆Uf , the identity theorem applies: Equation (4.3) holds not only
on Γf , but in the whole of Uf , i.e.,

2g′+zg′′−e2iαh′= 0 in Uf . (4.5)

This result, together with Equation (4.4), implies that

g+zg′−e2iαh=C1 in Uf

for some C1∈C. With the help of Equation (3.15), it is straightforward to see that
C1 =K1e

iα for some K1∈R. As a result, the last equation from above becomes

g+zg′−e2iαh=K1e
iα in Uf ,

or, taking the continuity of g, g′ and h in Ω∪Γs into consideration,

g+zg′−e2iαh=K1e
iα in Uf ∪Γs.

Thus,

h=e−2iα(g+zg′)−K1e
−iα in Uf ∪Γs. (4.6)

Equation (4.6) reveals the relation between h and g. This completes Step 1.
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Step 2. The general solution to g. To begin with, substitute Equation (4.6) into
the boundary conditions (3.13) and (3.14), and we have, on Γs,

1 = Re
((

1+e−2iα
)
g−
(
1−e−2iα

)
zg′−K1e

−iα)
= (1+cos2α)Re(g)+sin2α Im(g)−(1−cos2α)Re(zg′)+sin2α Im(zg′)−K1cosα

(4.7)
and

0 = Im
((

1−e−2iα
)
(g+zg′)+K1e

−iα)
= (1−cos2α)Im(g+zg′)+sin2αRe(g+zg′)−K1 sinα,

(4.8)

respectively.
Next, let q2 =

(
1−e−2iα

)
(g+zg′)+K1e

−iα. Note that (i) q2∈O(Ω)∩C(Ω∪Γs) by
Equations (3.5) and (3.6), (ii) Im(q2) = 0 on Γs by Equation (4.8), and (iii) Γs is part
of a straight line by the assumption upon the geometry. Thanks to these properties,
the Schwarz reflection principle applies. It follows that q2 can be analytically extended
across Γs, such that

q2 =
(
1−e−2iα

)
(g+zg′)+Ke−iα∈O(Uw),

where Uw ={z∈C : |z|>0∧argz∈ (−α,α)}. This result obviously implies that

(zg)
′
=g+zg′∈O(Uw),

which, furthermore, implies that g itself can be analytically extended to Uw, i.e.,

g∈O(Uw). (4.9)

Thereafter, let z=s be the arc-length parametrization of Γs. It follows from Equa-
tion (4.9) that

Re(zg′)z=s=sRe(g′)z=s=sRe

(
d

ds
g|z=s

)
=s

d

ds
Re(g)z=s ,

and similarly,

Im(zg′)z=s=s
d

ds
Im(g)z=s .

With these results, Equations (4.7) and (4.8) become

s
d

ds

(
Re(g)
Im(g)

)
z=s

+

(
0 0

cotα 1

)(
Re(g)
Im(g)

)
z=s

=

 −1

2
K1 +cosα

2sinα

, (4.10)

whose general solution reads

Re(g)z=s=−1

2
logs+K2,

Im(g)z=s=
K3

s
+

cotα

2
logs+

K1−2K2cosα

2sinα
,

for some K2,K3∈R. Therefore, all the possible solutions to g must follow

g= i

(
K3

z
+

eiα

2sinα
logz+

K1−2K2e
iα

2sinα

)
on Γs. (4.11)
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Lastly, thanks to Equation (4.9), as well as the fact that Γs⊆Uw, the identity
theorem applies: Equation (4.11) holds not only on Γs, but in the whole of Uw, i.e.,

g= i

(
K3

z
+

eiα

2sinα
logz+

K1−2K2e
iα

2sinα

)
in Uw,

or, taking the continuity of g in Ω∪Γf into consideration,

g= i

(
K3

z
+

eiα

2sinα
logz+

K1−2K2e
iα

2sinα

)
in Uw∪Γf . (4.12)

Equation (4.12) depicts the general solution to g. This completes Step 2.

Step 3. Violation of condition (3.17). The rest of this proof is straightforward: as
Equation (4.12) gives all the possible solutions to g in Uw∪Γf , it suffices to show that
none of them comply with Equation (3.17), the only boundary condition that has not
yet been considered.

Combining Equations (3.17) and (4.2) yields the following necessary condition

Im(g′) = 0 on Γf .

Let z=eiαs be the arc-length parametrization of Γf . It follows from Equation (4.12),
together with property (3.5), that

Im(g′)z=eiαs= Im

(
i

(
K3

z
+

eiα

2sinα
logz+

K1−2K2e
iα

2sinα

)′)
z=eiαs

= Im

(
i

(
−K3

z2
+

eiα

2sinα

1

z

))
z=eiαs

=
1

s

(
1

2sinα
−K3cos2α

s

)
.

It is now clear that, due to the arbitrariness of s, Im(g′)z=eiαs= 0 shall never be possible
no matter what value K3 takes. In other words, there does not exist holomorphic
functions g and h, with properties (3.5) and (3.6), that satisfy Equations (3.13)–(3.17)
simultaneously. This completes Step 3, and also the proof of Lemma 4.1.

Theorem 2.1 follows from Lemmas 3.1 and 4.1 immediately.

5. Conclusions
Using techniques in complex analysis, in particular the Schwarz reflection principle

and the identity theorem, we proved the non-existence of classical solutions to the
two-dimensional steady Stokes flow, with a flat fluid interface, that satisfy the no-slip
and impenetrability conditions at the solid wall, and the stress conditions at the fluid
interface simultaneously.

This result generalizes the work in Ref. [11] by considering a more general space of
classical solutions (2.8) and (2.9), with multi-values of the solution being allowed at the
moving contact line. This space is more general than the one depicted by the Michell
solution [15].

While we have focused on a vacuum-fluid-solid system in this paper, our method and
result also apply to general fluid-fluid-solid systems considered in Ref. [11]. For those
systems, the proof remains almost the same if the two fluids have the same viscosity,
but becomes rather involved when their viscosities differ. Whatever the setup, (multi-
valued) classical solutions do not exist if the interface is assumed to be flat. Therefore, if
there does exist a (multi-valued) classical solution consistent with the no-slip condition,
the interface must be curved. Yet this existence still remains an open problem.
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