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Abstract. Postsynaptic neuron activity at both the sub and suprathreshold level is analyzed
through the combination of: (1) the numerical simulation of a simple leaky integrate-and-fire model
forced by both constant frequency and Poisson-distributed presynaptic spike-trains,(2) the transforma-
tion of the model’s response into sequences describing non-summation effects in subthreshold and the
probability of spiking within a time-window in suprathreshold dynamics, (3) for constant frequency
input, the analysis of these sequences through an autoregressive linear model, and (4) for non-uniform
input, their analysis through attributable components. It is found that the attributable component
methodology can reproduce the dynamics on testing data, effectively replacing the original dynamical
model, and that the optimal order of both the autoregressive and the attributable component model,
is an indicator of the relative strength of the underlying depression and facilitation mechanisms.
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1. Introduction

Many naturally occurring dynamical processes are driven not by a continuous ex-
ternal forcing but by discrete, punctuated events. The prototypical example arises in
neuronal dynamics, where each neuron receives as input not a continuous current but
spike-trains from other neurons through synaptic connections. Analyzing such pro-
cesses typically involves not only the development of conceptual models that explain
their behavior, but also of models that are exclusively data-driven, seeking to capture
the dynamics underlying a set of observations so as to be able to reproduce the dynamics
and make predictions accordingly. Ideally, such data-driven models can be combined
with field expertise to uncover mechanisms underlying the observed dynamics.

The purpose of this article is to explore the construction of data-driven models
of spike-driven processes via attributable component analysis, a recently developed
methodology for the explanation of variability in data [1]. This will be developed in the
particular context of the postsynaptic activity of individual neurons. It will be shown
that the attributable component methodology provides an effective non-parametric tool
for reproducing both the sub and suprathreshold dynamic response of a cell to excitatory
input spikes from another cells, and that the optimal number of spikes in the immediate
past used by the model provides an indicator of the relative levels of facilitation and
depression mechanisms operating at the synaptic level.

The dynamic behavior of neuronal circuits results from the cooperative activity
of the participating neurons and the synaptic network connectivity [2–4]. These com-
plex processes involve the intrinsic properties of the individual neurons (ionic currents,
nonlinearities, time scales), the type of neurotransmitter involved (AMPA excitation,
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GABAA inhibition) and the so-called synaptic plasticity, which describes the changes
in the efficacy of a synaptic connection over time [5–7].

Synaptic connections are highly complex processes. Schematically, they consist of
a presynaptic neuron (the “sender”), a postsynaptic neuron (the “receiver”) and the
proper synapse (the “directed arrow” from the sender to the receiver). Each of these
components possesses intrinsic dynamics with varying degrees of complexity. A crucial
step in understanding the dynamics of synaptic connections is to determine how the spik-
ing patterns of the presynaptic neurons (presynaptic spikes) shape the response of the
postsynaptic neurons both at the subthreshold (membrane potential) and suprathresh-
old (spike) levels. Computationally, this could be pursued from different perspectives.
The classical modeling approach focuses on determining the properties of the post-
synaptic patterns given a presynaptic spike-train and the properties of the synaptic
connection. The spike decoding approach focuses on reconstructing the presynaptic
spike train (e.g., stimulus) from the postsynaptic pattern (e.g., sensory neuron) [8–10].
A third approach focuses on determining the properties of the synaptic dynamics given
the postsynaptic pattern and the presynaptic spike-train [11–15]. This has been termed
synaptic decoding. Naturally, all cases require knowledge of the intrinsic properties of
the postsynaptic cell.

It is particularly important to understand how the synaptic short-term plasticity
(STP) contributes to this process. STP refers to the changes experienced by the synaptic
efficacy over time that reflect the history of the presynaptic activity [5,6,16,17]. In terms
of biophysical models, the synaptic connectivity is captured by the so-called synaptic
function S. In the absence of any synaptic dynamics the magnitude Smax of S is
constant over time (see Figures 3.1-A1 and -A2, red). In the presence of solely synaptic
depression Smax decreases over time (Figures 3.1-B1 and -B2, red), while purely synaptic
facilitation has the opposite effect. The combination of both may produce more complex
patterns (Figures 3.1-C1 and -C2, red).

Several models have been used to investigate the mechanisms underlying synaptic
transmission and short term dynamics [18], ranging from detailed models [19] to phe-
nomenological models of different types [12, 20–24]. These models are physiologically
interpretable based on the assumptions on which they rely. On the other extreme, non-
parametric models (lacking any assumption about the underlying process) have been
used to capture the input-output relationships associated to STP with minimal, rather
generic assumptions [14] about the memory process.

In this paper we combine attributable components analysis –described in the sec-
tion on methods below– with simple dynamical systems tools to understand the dynamic
structure embedded in synaptic decoding in the presence of STP (synaptic depression,
facilitation, or both). We focus on the relatively simple architecture consisting of a
passive postsynaptic neuron receiving a presynaptic spike-train input. Each presynap-
tic spike generates a prototypical membrane potential response (Figures 3.1-A1, blue)
whose height is assumed to vary due to the effects of synaptic summation (Figure 3.1-
A2, blue), depression and facilitation (Figures 3.1-B and -C, blue). The difference Aj

(indexed over the input spike times tj) between the heights of the postsynaptic responses
to a given input spike in the presence and absence of STP (once the summation effects
have been removed) generates a finite sequence [12, 13]. Each point in the domain of
this sequence (except for j=1) has an associated value for the input inter-spike interval
(ISI). In order to analyze the spiking response to the presynaptic input spikes we use a
spiking probability metric adapted from [11] that assigns to each input spike a spiking
probability Pj that a spike occurs within some bin after the jth input spike.
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Using simple passive postsynaptic cell and STP models we show that the evolu-
tion of {Aj}, viewed as a discrete dynamical system evolving over the index set j, can
be captured by a linear autoregressive map with ISI-dependent parameters when the
input frequency is constant. These parameters can be estimated from the synthetic
data generated by the model. For either pure depression or facilitation the sequence
{Aj} is either decreasing or increasing, and the map that generates this sequence is
one-dimensional, corresponding to a first-order model. When both depression and facil-
itation are present, the sequence of {Aj} can overshoot, and the corresponding map can
be two- or three-dimensional – of second or third order – depending on the relative levels
between the two processes. This higher-dimensionality reflects the interaction between
the two history-dependent processes. The differences in dimensionality obtained by us-
ing two different parameter sets reflect differences in the relative levels of depression
and facilitation. Interestingly, this shows that in order to produce the present value of
Aj the system needs information up to three steps back depending on the STP scenario.
For constant input frequencies, the evolution of Pj shows qualitatively similar behavior
to that of Aj .

We then investigate the properties of the subthreshold and spiking responses for
the more realistic Poisson-distributed input spike-trains. Here the sequence to analyze
involves not only the {Aj} or {Pj}, but also the spiking times {tj} of the presynap-
tic neuron. We develop a procedure whereby, given the input sequence {tj}, we first
generate the response of the postsynaptic neuron through the numerical solution of a
current-balance equation model, and decode it in terms of {Aj} or {Pj}, depending
on whether we are analyzing sub or suprathreshold responses. We use attributable
component analysis to build a non-linear autoregressive model that computes Aj (or
Pj) in terms of ns prior values of Aj and of the corresponding inter-spike intervals
∆j = tj− tj−1.

This article is structured as follows: after this introduction, Section 2 (Subsec-
tion 2.1) describes the leaky integrate-and-fire model used for the postsynaptic cell, the
stochastic model for the presynaptic spike-trains, and the short-term dynamics of synap-
tic depression and facilitation. Subsection 2.2 summarizes the attributable component
methodology developed in [1]. Section 3 describes the results obtained for both history-
dependent membrane potential response patterns and spiking response patterns. In
both cases, we first analyze the response to uniform spike-trains of constant frequency,
showing how the combined effects of facilitation and depression give rise to distinct
transient patterns and to autoregressive dynamics of different orders for the reduced
variables A and P . Then we consider stochastic spike-trains drawn from Poisson distri-
butions, and show how the attributable component methodology can robustly reproduce
the response of the postsynaptic neuron, and how the optimal number of steps in the
past that the model considers relates to the relative amounts of facilitation and depres-
sion. Finally, we summarize the results in Section 4, where we also discuss directions
for further development.

2. Methods

2.1. Models.

2.1.1. Postsynaptic cell: leaky integrate-and-fire model. The current-
balance equation for the postsynaptic cell is given by

C
dV

dt
=−gL(V −EL)+Iapp−Isyn+Inoise, (2.1)
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where t is time (ms), V represents the voltage (mV), C the specific capacitance
(µF/cm2), gL the leak conductance (mS/cm2), Iapp the tonic (DC) current (µA/cm2),

Inoise=
√
2Dη(t) represents white noise (delta correlated with zero mean), and Isyn is

an excitatory synaptic current of the form

Isyn=GexS (V −Eex). (2.2)

Here Gex is the maximal synaptic conductance (mS/cm2), Eex=0 is the reversal po-
tential for AMPA excitation, and the synaptic variable (S) obeys a kinetic equation of
the form

dS

dt
=− S

τdec
, (2.3)

where τdec=3 (ms) is the decay time of excitation. Each presynaptic spike instanta-
neously raises S to some value Smax which varies depending on the properties of the
short-term dynamics (depression and/or facilitation) and is given by Smax= ru defined
below. We refer the reader to [2, 3] for additional details on biophysical (conductance-
based) models.

2.1.2. Presynaptic spike-trains. We model the spiking activity of the presy-
naptic cell as a spike train by providing the presynaptic spike times t1,t2, . . . ,tN . We
consider two types of input spike-trains: uniformly- and Poisson-distributed. The uni-
form spike-trains are characterized by their interspike interval (ISI) or its reciprocal, the
spiking frequency. Poisson distributed inputs are characterized by their mean spiking
frequency or the associated exponential distribution of ISIs.

2.1.3. Short-term dynamics: synaptic depression and facilitation. We
use a phenomenological model introduced in [22]. Short-term depression and facilitation
are described by two independent variables: r and u that obey kinetic equations of the
form

dr

dt
=

1−r

τdep
and

du

dt
=

U−u

τfac
, (2.4)

respectively, where τdep and τfac are characteristic time constants and U =0.1. Each
presynaptic spike instantaneously decreases r by an amount equal to the current value
of the product ru and increases u by an amount equal to U (1−u). These variables
enter into the current-balance equation through Smax, which is given by the product
ru. In the absence of depression, r= const (=1), and in the absence of facilitation,
u=U=0.1.

2.2. Attributable components. Attributable components is a recently devel-
oped methodology [1] for estimating the conditional mean x̄(z) of a variable x dependent
on covariates z=(z1, . . . ,zL). Although the x and each zl can be variables of quite gen-
eral type, we will limit the description here to the particular case in which they are
all real and scalar, as this will be the situation in the application to history dependent
processes under consideration.

Given n data pairs of the form
{

xi,zi
}

, one seeks the conditional expectation x̄(z),
which may be characterized as the minimizer of the empirical variance

x̄(z)=argmin
f

n
∑

i=1

∥

∥xi−f
(

zi
)∥

∥

2
, (2.5)
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as in least-square regression. The challenge is how to describe the multivariate function
f(z) in a way that is at the same time general (minimally parametric), robust (not
prone to overfitting), and efficiently computable. The proposal in [1] is to perform the
equivalent to a low-rank tensor factorization

f(z)=

d
∑

k=1

L
∏

l=1

f(l)k (zl) (2.6)

for variables zl that are not necessarily discrete, as are the rows and columns in con-
ventional matrix factorization. When the zl are real variables, (2.6) is analogous to
a truncated sum of the separated-variable solutions used for instance in linear partial
differential equations.

In order to characterize each function f(l)k (zl) in (2.6), we introduce a grid
{

zg
j
l

}

,

not necessarily uniform, and write each observed value zil in the form

zil =
∑

j

α(l)jizg
j
l , α(l)ji ≥ 0,

∑

j

α(l)ji =1, (2.7)

where for each i only two α(l)ji are nonzero: those corresponding to the two grid points

zg
j
l immediately surrounding zil . Then we model f(l)k(zl) through piecewise linear

interpolation on the given grid:

f(l)k
(

zil
)

=
∑

j

α(l)jiV (l)kj , V (l)kj = f(l)k
(

zg
j
l

)

. (2.8)

Thus the parameters that characterize f(z) are the L matrices V (l). Yet one should not
let these be completely free in the minimization of (2.5), as this could lead to overfitting,
especially when the grids zg chosen are very fine with respect to the number n of sample
points available. Instead, the algorithm proposed in [1] penalizes the non-smoothness
of f(l)k(zl) through an extra term added to the combination of (2.5), (2.6) and (2.8):

min
V

∑

i

(

x
i−
∑

k

∏

l∈L

∑

j

α(l)jiV (l)kj

)2

+λ

L
∑

l=1

∑

k





∏

b∈L,b6=l

‖V (b)k‖2



V (l)k
′
C

l
V (l)k, (2.9)

where the matrices Cl model the square norm of finite difference approximations to
combinations of derivatives of f(l)k(z), typically the first and second derivative.

In our application, the variable xi to explain is given by either Ai or P i, depending
on whether we study subthreshold (membrane potential) response or spiking response
patterns. The covariates zil can be divided into two groups: previous values Ai−k or
P i−k with k ranging from (1) to ns, and the corresponding time intervals ∆i+1−k, with
∆i= ti− ti−1. Here ns is a modeling parameter measuring the order of the discrete
dynamical model, i.e. how far back in time it looks in order to make predictions.
During training, all xi and zi are drawn from the data. During testing, only the time
intervals ∆i are given, while the xi are inferred from the model, using, for the missing
components of the zi, the corresponding values of xi−k previously inferred.

3. Results

Below we analyze the history-dependent neuronal response patterns to (AMPA)
excitatory presynaptic spike-trains. We consider two cases: (i) postsynaptic membrane
potential response patterns in the absence of spikes, and (ii) postsynaptic spiking re-
sponse patterns. The first case includes subthreshold responses and more complex
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types of responses where spikes are either ignored or filtered, for example when one
considers the voltage envelope of bursting patterns. Because we are focusing on the
history-dependent effects of the presynaptic activity, we use the relatively simple leaky
integrate-and-fire model for the postsynaptic cell to avoid interferences with postsynap-
tic ionic currents (other than the leak current).

3.1. History-dependent membrane potential response patterns.

3.1.1. Uniformly distributed presynaptic spike-trains. Figure 3.1 shows
representative membrane potential (V ) response patterns to (AMPA) excitatory presy-
naptic spike-trains with constant frequency generated using the model described in Sec-
tion 2.1. Each presynaptic spike generates a signal represented by the synaptic function
S (red), which is the input to the current-balance Equation (2.1) in the postsynaptic
cell through the synaptic current (2.2). This signal interacts with the neuronal intrinsic
properties and produces a stereotypical voltage output V (blue). In the absence of any
other factors V has the prototypical shape (alpha function or difference of exponentials)
shown in (Figure 3.1-A1, blue). It is qualitatively similar to S, but V evolves on a slower
time scale than S. As the input frequency increases, the voltage oscillation amplitude
decreases, while the oscillation envelope may show different types of behavior depending
on the synaptic properties.

For low enough frequencies, V decreases to zero before the next spike arrives. For
higher frequencies, the so-called summation phenomenon amplifies the signal, in the
sense that the oscillation peaks are larger the higher the input frequency, although the
oscillation amplitude decreases with increasing input frequency (compare panels A1 and
A2). Synaptic depression causes the amplitude of the synaptic function S to decrease
with increasing number of spike times (Figure 3.1-B, red). For low enough input fre-
quencies, the voltage response exhibits the same phenomenon (Figure 3.1-B1), while for
higher input frequencies the interplay of summation and depression generates a peak
in the voltage response (Figure 3.1-B2). The interplay of depression and facilitation
generates a peak in the response of both S and V (Figure 3.1-C) under appropriate
conditions (e.g., input frequency, τdep, τfac). The peak in S is the result of the inter-
play of depression and facilitation at the presynaptic level (the envelope of S remains
at baseline). The peak in V depends on the additional interaction with the filtering
properties of the postsynaptic cell. For low enough frequencies, the voltage response
roughly mimics the S pattern (Figure 3.1-C1), while for higher frequencies summation
generates an additional amplification of the voltage response (Figure 3.1-C2). We note
that the dependence of the S and V patterns on the input frequency and the synaptic
depression and facilitation time constants is highly complex, a full analysis is beyond
the scope of this article.

Typically, the presynaptic spike times are not uniform (e.g., the ISIs are Poisson-
distributed) and one has access to the voltage response V to a presynaptic spike train,
but not to the synaptic functions S that are hidden. This together with the summa-
tion effects make the synaptic decoding, particularly the determination of the presence
of STP, not straightforward. One approach that has been used in the literature is to
approximate the voltage response by kernels that themselves approximate the stereotyp-
ical voltage responses to a single (isolated) input spike as in Figure 3.1-A1 (blue) [12].
Specifically, if the presynaptic spike times are t1,t2, . . .tN , then

Vest(t)=

N
∑

j=1

K(t− tj)[1+Aj ] (3.1)
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Fig. 3.1. Subthreshold (membrane potential) neuronal response to spike train inputs
with synaptic excitation (AMPA): representative examples for different input frequencies
and short-term dynamic properties. Black dots indicate the arrival of a presynaptic spike. The
postsynaptic voltage response (V) is scaled and raised (by -52.5 mV) for comparison purposes with the
synaptic function S. A. No short-term dynamics. B. Synaptic depression. C. Synaptic depression and
facilitation. We used the following parameter values: C=1, EL=−60, GL=0.2, Iapp=1.5, Gex=0.2,
Eex=0, τdep =300, τfac=400, U =0.1.

where the kernel K(t) can be extracted from the voltage response to a single (isolated)
input spike, or by adopting a prototypical shape for it –alpha functions or the difference
of exponentials– and estimating its parameters from the data. The components of the
vector A= {Aj}Nj=1 measure the size of the response to the input spike at time tj as
compared to the baseline size (A=0), independently of summation, and are history-
dependent.

We refer to A as a sequence and we view it as a discrete dynamical system evolving
along the tspk,in= {tj}Nj=1 domain [25]. We illustrate this is Figure 3.2. In the presence
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of synaptic depression only (blue curve), A is a decreasing function of tspk,in, which
eventually saturates. In the presence of both synaptic depression and facilitation (red),
A first increases, then decreases and finally saturates. In the presence of facilitation
only (not shown) A is an increasing function of tspk,in, which eventually also saturates
(qualitatively, a mirror image of the blue curve). The transition among the different
types of A patterns depends on the relative levels of depression and facilitation, which
can be measured in terms of τdep and τfac. The details are being studied in [25].

0 100 200 300 400

t
spk,in

  [ms]

-0.5

0

0.5

1
A

Depression

Depression + facilitation

Fig. 3.2. Components of the vector A={Aj}
N
j=1 in Equation (3.1). We used the following

parameter values: C=1, EL=−60, GL=0.1, Iapp=0, Gex=0.5, Eex=0, τdep =300, τfac=400,
U =0.1.

The shapes of A (see Figure 3.2) suggest they can be generated by discrete low-
dimensional linear autoregressive maps of the form

Âk =
M
∑

j=1

αk−j Âk−j (3.2)

where M<N and the coefficients αk−j (j=1, . . .,M) are input-frequency dependent.
Because the map requires M initial conditions, M should be small for the map to be of
any use. Processes that involve only depression or facilitation can be captured by 1D
linear maps (M =1), while processes that involve both require up to M =3 [25]. We
refer to them as MD maps. We illustrate this in Figure 3.3 where we show the error
between A and the linear map approximations Â

Error=
1

N

N
∑

K=1

|Ak− Âk| (3.3)

as a function of τfac for fixed values of τdep using M =1 (blue), M =2 (red) and M =3
(green). The parameter N represents the number of input spike times within an interval
that captures the transient behavior of A.

For low enough values of τfac, a 1D map is enough to capture the evolution of A,
consistently with the fact that depression dominates. As τfac increases, the 1D map
(blue) does no longer provide a good approximation, since it cannot capture the non-
monotonic behavior of A. The 2D map (red) still provides a good approximation for a
small range of intermediate values of τfac. For higher values of τfac, only the 3D map
(green) provides a good approximation. As expected, the error varies with τdep (compare
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panels A and B), indicating that the relative value of the time constants between the
two processess matter.

We emphasize that these map approximations are only valid for uniform distribu-
tions of input spikes, and that they depend on the input frequency. Yet they identify the
interplay of depression and facilitation, on the basis of the order of the model, that is the
number of steps back required to capture the behavior of A. The fact that we obtained
qualitatively similar results for different input frequencies suggests that this memory
effect (maximum value of M) may persist for non-uniform distribution of presynaptic
spike-trains, and that the values of M would identify the different levels of complexity
resulting from different ratios τfac/τdep.
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Fig. 3.3. Approximation error (3.3) between the linear maps and the sequence A for
representative parameter values. The input frequency (uniform distribution of input spikes) is 60
Hz. We used the following parameter values: C=1, EL=−60, GL=0.1, Iapp=0, Gex=0.5, Eex=0,
U =0.1, M=31 (tspk ≤500. A. τdep =250. B. τdep =500.

3.1.2. Poisson distributed input spike-trains. The analysis above was
restricted to uniformly timed spike-trains. In order to analyze more general input data,
we follow the following steps:

(1) We draw two input sequences of spikes {tj} from a Poisson distribution with spec-
ified mean frequency, one for training and one for testing.

(2) We model the response V (t) to this input via the model in (2.1) as before, with
specified values for τfac and τdep.

(3) As in the prior subsection, we post-analyze this response, transforming it into a
sequence {Aj}.

(4) We apply attributable-component analysis to the training sequence {tj ,Aj}, seek-
ing to determine the functional dependence of Aj on (Aj−1, . . . ,Aj−ns

) and
(∆j−1, . . . ,∆j−ns

), where ∆j = tj− tj−1 represents the time-interval between two
consecutive input spikes, and ns represents the number of prior input pairs that the
analysis will consider. Thus we seek

Āj =F (Aj−1,∆j−1, . . . ,Aj−ns
,∆j−ns

) (3.4)

in the functional form given by (2.9).

(5) We apply the model (3.4), with parameters determined using the training sequence,
to the testing sequence, attempting to reconstruct the {Aj} from the {tj} alone.

Denoting our sought reconstruction
{

Ãj

}

, we set
{

Ã1, . . . ,Ãns

}

=0 – a natural
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default, since we cannot determine the first ns elements of the sequence through
a model that requires the prior ns values –, and then compute for all subsequent
values of j

Ãj =F
(

Ãj−1,∆j−1, . . . ,Ãj−ns
,∆j−ns

)

.

Thus we are effectively replacing the dynamical model (2.1) with one derived solely
from data, whose only input – additional to the training data sequence itself and
the penalization parameter λ – is ns, indicating the extent of the system’s memory.

(6) We measure the accuracy of the reconstruction via the variance reduction it achieves,
defined as

V R=

1

n−ns

∑n
j=ns+1

(

Aj− Ãj

)2

1

n

∑n

j=1

(

Aj− Ā
)2

, Ā=
1

n

n
∑

j=1

Aj . (3.5)

For the reconstruction to work, it is not only necessary that the model (3.4) be
accurate and robust, but also that the dynamics of both the biophysical model (2.1)
and the data-driven model (3.4) be stable, so that discrepancies in the initialization and
in realizations of the noise and local errors do not propagate downstream the time-series.

1.15 1.2 1.25 1.3

t 10
4

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A

dep
 = 

fac
 = 250,  freq = 20Hz,  3 steps back

Fig. 3.4. Out of sample observations (in blue stars) and predictions (in red circles) for Aj,
for an input mean frequency of 20Hz, equal values τ =250 for the time-scales for facilitation and
depression, and ns=3. The dynamics resulting from the biophysical and the data-driven model are
virtually indistinguishable.

Figure (3.4) displays the reconstructed
{

Ãj

}

(in red circles) and the true {Aj} (in

blue stars) as a function of the spiking times {tj} for one instance of the parameters, for
a subset of the testing set small enough that one can distinguish visually the individual
predictions. As one can see, the procedure is accurate and robust, and one can indeed
replace (2.1) by the data driven model (3.4) as an effective dynamical model.

Does the data-driven model inform us on the biophysical mechanisms underlying
the data? Table (3.1) displays the variance reduction V R from (3.5) for a range of
combinations of the biophysical parameters τdep and τfac and values of ns ranging
between 1 and 4. As one can see, while for no facilitation one or two steps back suffice
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τdep τfac freq. 1 step 2 steps 3 steps 4 steps
250 10 0.0815 0.0631 0.0730 0.1409
500 10 0.0746 0.0440 0.0494 0.0689
250 20 0.0896 0.0766 0.0816 0.1334
500 20 0.0799 0.0788 0.1087 0.2575
250 30 0.0993 0.1095 0.1001 0.6897
500 30 0.1038 0.1399 0.2991 0.8321
250 5 10 0.4476 0.3812 0.4915 0.4029
250 10 10 0.6767 0.6598 0.3775 0.3826
250 100 10 0.2793 0.1918 0.1568 0.1232
250 250 10 1.1011 0.2572 0.1158 0.3712
250 5 20 0.5626 0.2560 0.2584 0.2389
250 10 20 0.7462 0.2633 0.2373 0.2590
250 100 20 1.1920 0.1394 0.0654 0.0742
250 250 20 0.1225 0.0683 0.0389 0.0521
250 5 30 0.7190 0.2496 0.2040 0.1860
250 10 30 0.8236 0.2558 0.1846 0.1712
250 100 30 1.2266 0.1205 0.0925 0.1018
250 250 30 0.0997 0.0463 0.0347 0.0372

Table 3.1. Variance reduction through factor removal for subthreshold dynamics. As the
timescales τ for depression and facilitation become comparable, the optimal number of prior steps
to include increases from 1-2 to 3-4.

for capturing the dynamics, for values of τfac comparable to τdep three or four steps back
are required to maximize out-of-sample variance reduction. Hence, just from looking at
the optimal ns, one could infer at least qualitatively the amount of facilitation present
in the process. Figure (3.5) corresponds to a case with no facilitation where just one
step back suffices. Since in this case z is only two-dimensional, consisting of the previous
value of A and the last time-interval, one can display the prediction Ãj(Aj−1,∆j−1), as
well as its individual components, sorted by the amount of variability that they explain.
Even though 5 components were used for this simulation, the figure shows how the first
component captures most of the behavior of the function, and the second provides a
smaller, yet meaningful correction.
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Fig. 3.5. The predicted function Ãj(Aj−1,∆j−1) for a case without facilitation, and its two first
components, sorted by the amount of variability that they explain. Notice how the first component
explains much of the variability of A, while the second corrects mainly its behavior for small values of
Aj−1 and ∆j−1.
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3.2. History-dependent spiking response patterns. Here we focus on the
postsynaptic spiking response to presynaptic spike trains in the presence of depression
and facilitation. We use a metric analogous to the vector A discussed above, assigning
to each presynaptic spike tj the probability P (tj) of a spike being generated within some
time interval Bj =[tj ,tj+∆t ]. In order to compute the vector P , we carry out Ntrial

simulations using the same presynaptic input with different realization of white noise,
we compute the number of times that a postsynaptic spike is produced within Bj, and
we average over the Ntrial trials. We focus on the case where the cell is silent in the
absence of presynaptic input.

3.2.1. Uniformly distributed presynaptic spike-trains. Our results for a
representative set of parameter values and uniform spiking input frequencies are pre-
sented in Figure 3.6. The parameter values in all panels are the same with the exception
of the spiking input frequency that increases from A to D.

The input spikes in Figure 3.6-A are well separated and the resulting P -patterns
capture the relative strengths of depression and facilitation. For τfac=10, depression
dominates, while for τfac=500, facilitation dominates.

The P -patterns in Figure 3.6-B capture the interaction between depression and
facilitation much in the same way as the A-pattern in Figure 3.2 (red). This effect is
observed when τfac is not too small relative to τdep. For τfac=100 and above (red,
green and cyan curves), P first increases and then decreases.

For higher spiking input frequencies the effect is felt even for lower values of τfac
(compare Figure 3.6-B and -C), but the “bump” is more compressed in time, as expected
from the higher spiking input frequencies. The P -patterns for the different values of
τfac are less well separated than in Figure 3.6-C than in the previous panels. This
persists for even higher spiking input frequencies (Figure 3.6-D), but the P -patterns for
the different values of τfac are almost indistinguishable.

As for the A-sequences discussed in the previous section, the P-sequences capture
the interplay of depression and facilitation on the basis of the amount of steps back
needed to capture the behavior of P . Despite the fact that this is only valid for uniform
distributions of input spikes, the similarity of the results discussed here with these of
the previous section (for A) and the qualitative similarity of the P distributions for
different input frequencies, suggest that relatively low values of M would identify the
different levels of complexity resulting from different ratios τfac/τdep.

3.2.2. Poisson distributed input spike-trains. When the input spike train
is not uniform but follows a Poisson process instead, we follow the same procedure than
in the subthreshold case, but with the Pj replacing the Aj , that is:

(1) We draw two input sequences of spikes {tj} from a Poisson distribution with spec-
ified mean frequency, one for training and one for testing.

(2) We model the response V (t) to this input via the model in (2.1), but recording only
the postsynaptic spike-times. We do this repeatedly for the same input sequences
of strikes but different realizations of white noise.

(3) We post-analyze this response, transforming all realizations into a single sequence
{Pj}.

(4) We apply attributable-component analysis to the training sequence {tj ,Pj}, seeking
a relation of the form

P̄j =F (Pj−1,∆j−1, . . . ,Pj−ns
,∆j−ns

). (3.6)
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Fig. 3.6. Spiking probability response to presynaptic input spikes with uniform fre-
quency. The input frequency (uniform distribution of input spikes) increases from panel A to D. A.
Input frequency: 10 Hz. B. Input frequency: 30 Hz. C. Input frequency: 60 Hz. D. Input frequency:
100 Hz. We used the following parameter values: C=1, EL=−60, GL =0.1, Iapp=0.8, D=0.1,
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Fig. 3.7. Out of sample observations (in blue stars) and predictions (in red circles) for the spiking
probability Pj, for an input mean frequency of 30Hz, facilitation and depression time-scales τfac=500
and τdep=250 , and ns=4. Even though the dynamics at suprathreshold are much more noisy than
at subthreshold, the data-driven model still mimics the biophysical model very accurately.
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τdep τfac freq. 1 step 2 steps 3 steps 4 steps
250 10 10 0.9097 0.8685 0.8033 1.3277
250 100 10 0.7812 0.6956 0.7313 0.9046
250 250 10 0.4297 0.2987 0.3267 0.5829
250 500 10 0.3751 0.2693 0.2216 0.6559
250 10 30 0.7466 0.6152 0.6013 0.8475
250 100 30 0.8822 0.6745 0.6708 0.6851
250 250 30 0.2769 0.2210 0.1947 0.1919
250 500 30 0.1703 0.1384 0.1260 0.1290
250 10 60 0.6296 0.5392 0.5303 0.6310
250 100 60 0.7138 0.4429 0.4460 0.4600
250 250 60 0.3407 0.2395 0.2393 0.2368
250 500 60 0.1701 0.1269 0.1257 0.1237

Table 3.2. Out of sample variance reduction through factor removal for spiking dynamics. At
high frequencies – less dominated by noise – the optimal number of prior steps to consider increases
as the time-scales of depression and facilitation become comparable.

(5) We apply the model (3.6), with parameters determined using the training sequence,
to the testing sequence, so as to reconstruct the {Pj} from the {tj} alone.

(6) As before, we measure the accuracy of the reconstruction via the variance reduction
it achieves.

Figure (3.7) displays an example of the performance achieved by the algorithm
on a testing set, and Table (3.2) shows the variance reduction achieved for various
combinations of facilitation and depression, though models looking back (1) to (4) steps.
Even though the dynamics is clearly much more noisy than in the subthreshold scenario,
particularly for low frequencies, when the input frequencies are higher one can still see
the transition in the optimal out-of-sample fit from 2 to 4 steps back as the facilitation
and depression time-scales get closer to each other.

4. Discussion

We set out to explore the construction of data-driven models of spike-driven pro-
cesses via attributable component analysis [1] in the particular context of the postsynap-
tic response of individual neurons to presynaptic spikes in the presence of STP. Using
this minimal model formulation, data generated from this model using subthreshold
linear dynamics (only passive subthreshold ionic currents) in the postsynaptic cell, and
simple dynamical systems ideas, we provide a proof of concept that the attributable
component methodology provides an effective non-parametric tool for reproducing both
the sub and suprathreshold dynamic response of a cell to excitatory input spikes from
another cells, and that the optimal number of spikes in the immediate past used by the
model provides an indicator of the relative levels of facilitation and depression mecha-
nisms operating at the synaptic level.

We followed a complementary dual strategy that allowed us to interpret the results
of the non-parametric attributable components analysis for Poisson-distributed input
spike trains in terms of discrete linear dynamics applied to uniformly distributed spike
trains. Specifically, for both Poisson- and uniformly-distributed spiking inputs we (i)
generated artificial data using the model, and (ii) computed the two metrics capturing
the subthreshold (Aj) and spiking (Pj) responses to the incoming presynaptic spikes.
For Poisson-distributed spiking inputs, we additionally (iii) robustly reproduced these
responses using the attributable component methodology. For uniformly-distributed
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inputs, on the other hand, we (iii) described the transient patterns for both {Aj} and
{Pj} for various representative values of the input frequency, and (iv) estimated the
corresponding linear autoregressive maps.

For Poisson-distributed inputs we showed that the optimal number of steps in the
past the model considers is not uniform across data sets, and relates to the relative
amounts of depression and facilitation used to generate the data. This is consistent
with the order of the linear autoregressive maps computed for uniform distributed in-
puts for {Aj}. Because the order of discrete maps is an indication of the interactions
between the participating gating variables and these variables directly relate to the
two STP processes, we conclude the effective memory of the system for non-uniform
input spikes is also reflecting these interactions. We extend this conclusion to the post-
synaptic spiking responses using {Pj}. Since the discrete map approach requires the
uniform distribution of input spike trains and cannot be straightforwardly extended to
non-uniform distributions, the combination with the attributable component approach
becomes synergistic.

This article considered the simplest combination of network architecture and post-
synaptic intrinsic properties that allows us to capture the effects of presynaptic input
spikes on the postsynaptic patterns in the presence of STP. Future work should consider
models that include (i) the presence of active ionic currents, particularly currents that
produce spike-frequency adaptations (e.g., slow potassium), whose effect can be similar
to synaptic depression, (ii) the effects of synaptic inhibition, particularly in the pres-
ence of hyperpolarization-activated currents (e.g., mixed-cation sodium/potassium and
T-type calcium), (iii) the presence of multiple depression and facilitation process with
different relaxation scales, (iv) other types of “hidden variables” such as GABAB and
plasticity in electrical gap junctions, and (v) the adaptation of the methods presented
here to these situations. Even though we have assumed the postsynaptic cell to be
silent in the absence of presynaptic spikes, we expect that, with minimal corrections,
the results will remain valid in situations where the cells spike autonomously.

The data used in this paper was generated with a biophysical (conductance-based)
model, a necessary step to calibrate the methods and understand their potential to
explain experimental data both in vitro and in vivo.
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