
COMMUN. MATH. SCI. c© 2019 International Press

Vol. 17, No. 5, pp. 1387–1406

THE EVOLUTION OF LARGE-SCALE MODELING OF MONKEY
PRIMARY VISUAL CORTEX, V1: STEPS TOWARDS

UNDERSTANDING CORTICAL FUNCTION∗

LAI SANG YOUNG† , LOUIS TAO‡ , MICHAEL SHELLEY§ , ROBERT SHAPLEY¶,

AADITYA RANGAN‖, AND DAVID W. MCLAUGHLIN∗∗

In memory of Professor David Shenou Cai

Abstract. Over the past two decades, mathematicians and neuroscientists at New York Uni-
versity have developed several large-scale computational models of a layer of macaque primary visual
cortex. Here we provide an overview of these models, organized by the specific questions about cortical
processing that each model addressed. Each model was founded upon the available anatomical and
physiological data; and not by building into the model network assumptions about theoretical mecha-
nisms specifically designed to enable the network to produce desired response properties. Also, our aim
was to use one comprehensive network, with a fixed architecture and one set of parameters, to model
all experiments. The response properties of individual neurons and populations of neurons then emerge
from this experimentally constrained model. This overview is dedicated to Professor David Cai, who
played a leading role in several of the models described here. We are very fortunate to have had the
opportunity to work with him over the past two decades.
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1. Introduction
What are the purposes and general goals of large-scale computational modeling in

neural science? What are the problems to be solved and the questions to be answered?
Perhaps the first, most basic question is: “Is enough known from experiments on the
brain area, in sufficient detail, to construct a large scale model that emulates that area’s
function?”

The macaque monkey’s primary visual cortex (V1), and especially an input layer
of V1 such as 4Cα, seems a good place to start to answer the basic question with large-
scale cortical modeling. V1, the cortical “front end” of the visual pathway (Retina →
LGN → V1 → higher cortical areas), is the first cortical area within which significant
visual processing is known to take place. Its input from the Lateral Geniculate Nucleus
(LGN) is well-characterized. Its input layer 4Cα receives minimal feedback from higher
cortical areas. In addition, there is a large amount of experimental data about V1 - far
more than for other cortical areas.
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Our work on models of V1 was stimulated by Sompolinsky’s “ring model” [1] for
orientation selectivity that captured the cortex’s sharpening of untuned input from
LGN. But the ring model is a heuristic model - a ring of neurons. There is no “ring” in
V1; rather, neurons in V1 reside in two dimensional cortical surfaces or layers. Could
one simulate the cortex with a model of V1 as a surface of neurons? If so, it would
necessitate large-scale modeling because of the number of neurons in the surface, even
just in the input layer.

The co-authors of this overview article have developed several different large-scale
models of a layer of macaque V1 [2–7, 9, 27, 32]. We have used each model to answer
specific questions about cortical processing. The overriding theme that links much of the
work presented here is the importance of recurrent cortical-cortical connections between
neurons in determining the responses of cortical neurons.

Before describing the various models, we want to express explicitly the modeling
philosophy that guided much of this work. Our philosophy of large-scale modeling is
founded upon using experimental anatomical and physiological data to guide the design
of models. One does NOT build into the model network assumptions about theoretical
mechanisms that are designed to enable the network to yield desired response properties.
The response properties of individual neurons and those of the full neuronal network
then emerge from this experimentally constrained construction. Also, our aim was to
use one network, with a fixed architecture and one set of parameters, to model many
experiments. Each of the models reviewed here aimed to be comprehensive, that is,
one model with one set of parameters had to fit many functional data. This was the
only satisfactory path to answer the fundamental question: Is what we know from
experiments enough to enable us to emulate the cortex?

If the response properties of a large-scale model agree with the biological responses
of the brain area, one can then use analytical “post-processing” techniques to identify
precisely the mechanisms by which the model achieves its responses. Understanding the
mechanisms in the model can lead to insights about mechanisms in the real cortex by
making predictions that can be tested by data from new experiments.

The paper is organized as follows: First, we present a description of the general
model architecture that is shared among models. Then we discuss each model, and the
questions that we asked and answered with that model.

2. General model architecture

Each of our models belongs to a general class of model neuronal networks: large-
scale recurrent networks of spiking neurons, conductance based with high network con-
ductances, with strong synaptic connectivity, strong nonlinear dynamics, exhibiting
complicated high-order neuronal interactions – models that cannot be easily “coarse-
grained”. But the individual models are very different from each other; for example,
they have crucial different internal balances that result in important differences in their
dynamics. Here we begin with a description of the common generic architecture of
the models. In the specific models discussed later, different investigators made many
different choices of connectivity and parameters, which will be discussed as they are
presented.

The generic model represents a 1mm2 local patch of input layer 4Cα, modeled as
conductance based, “integrate and fire” (I&F) point neurons. The model is a coupled
system of many point neurons (75% of which are excitatory and 25% inhibitory, ap-
proximating the real cortex), represented as a system of equations for V jσ (t), the jth
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neuron’s membrane potential:

C
d

dt
V jσ =−gL

(
V jσ −EL

)
−gjσE(t)

[
V jσ −EE

]
−gjσI(t)

[
V jσ −EI

]
. (2.1)

Here j= (j1,j2) labels the neuron’s location within the patch, σ= (E,I) labels the neu-
ron’s type (excitatory or inhibitory). The functions gjσE(t),gjσI(t) denote the temporal
profiles of the excitatory (inhibitory) conductances that impinge upon the jth neuron
of type σ. The spike times are denoted by tσjl , the lth spike time of the jth neu-

ron of type σ. When the voltage V jσ (t= tσjl ) reaches spiking threshold VT , the spike

time tσjl is recorded, the voltage is reset to ER, held there for a brief time tR, and

then re-initialized as V jσ (t= tσjl + tR) =ER. The capacitance C, “leak conductance”
gL, the reversal potentials (EL,EE ,EI) are constants, as is the threshold VT . The
“refractory period” tR= 2ms(1ms) for (inhibitory) neurons. We used commonly ac-
cepted values for the biophysical parameters C= 10−6Fcm−2,gL= 50×10−6Ω−1cm−2,
and EI(−80mv)<EL(−70mv)<VT (−55mv)<EE(0mv).

The conductances in Equation (2.1) drive the time evolution of the membrane volt-
age. The excitatory conductance is given by

gjσE(t) =gjlgn(t)+gjcort−cort,E(t)+νjE(t),

gjcort−cort,E(t)≡SσE
∑
k,l

[KσE
j−kGE(t− tE,kl )], (2.2)

and the inhibitory conductances by

gjσI(t) =gjcort−cort,I(t)+νjI (t),

gjcort−cort,I(t)≡SσI
∑
k,l

[MσI
j−kGI(t− t

I,k
l )]. (2.3)

The temporal profiles of both the excitatory and inhibitory cortical-cortical conduc-
tances, Equation (2.2), (2.3), were derived from cortical data. The LGN conductance
in Equation (2.2) is the sum of synaptic conductance waveforms evoked by LGN spikes,
with kinetics like the conductance waveforms of cortico-cortical synapses. Each LGN
neuron’s spike train is modeled as a modulated Poisson process. The modulation of
the spike rate of the kth LGN neuron is computed as a rectified space-time filter of the
visual stimulus I(x,t):

Rk±(t) =

{
RB±

∫ ∫
G(t−s)A(|xk−x|)I(x,s)d2xds

}+

, (2.4)

where I(x,t) denotes the visual stimuli. For example in the case of drifting gratings,
I(x,t) takes the form I(x,t) = I0 [1+εsin(k ·x−ωt−φ)], with parameters I0 (mean light
intensity), ε (contrast), ω (temporal frequency), φ (spatial phase), k= |k|[cos(θ),sin(θ)]
(with |k| the spatial frequency and θ the orientation of the grating). RB denotes the
spontaneous firing rate of individual LGN neurons. A(|xk−x|) is a circularly-symmetric
difference of Gaussians, centered in visual space on the receptive field location xk of each
LGN neuron in visual space. The two possible signs before the integrals in Equation
(2.4) capture the duality of LGN cells; namely, whether the cell responds to an increase
in luminance at the center of the receptive field, and to a decrease in luminance in
the surround (an “on-center LGN cell”); or vice-versa (an “off-center LGN cell”). The
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temporal profile G(t−s) in Equation (2.4) was derived from experimental data on LGN
neurons [11].

The receptive field of each cortical cell was spatially larger than that of each of
its LGN components; it had a “sub-field” structure that provided each V1 cell with
its orientation preference for the orientation of edges in the visual scene. In different
models, the number of LGN neurons projecting to a given cortical neuron (NLGN ) was
different.

Experimental data indicate that V1 has a orientation columnar structure, with each
cortical layer tiled by an ordered map of orientation preference, with each Hypercolumn
(HC) “tile” approximately 0.5 mm x 0.5mm in spatial extent. In most models the
density of cells was 4,000 cells/tile (4 tiles total), a number dictated by anatomical
data [12]. Within a tile, the orientation preferences conferred by the LGN input to the
cortex changed smoothly around the “pinwheel singularity” at the center of each tile.
The ordered “pinwheel tiling” of oriented LGN input was built into the models.

In addition to orientation preference, V1 neurons also have spatial and temporal
phase preferences. These were not ordered within the pinwheel tiling; rather they are
observed experimentally to be random. These random phase preferences were put into
the model through the LGN inputs as described above for orientation preference.

The spatial kernels KσE
j−k and MσI

j−k in Equation (2.2), (2.3) represent the spatial
pattern of coupling between neurons, taken to be isotropic Gaussians with length scales
of 200 µm for excitation and 100-200 µm for inhibition, consistent with anatomical
studies. All kernels were normalized to unity; hence, the coupling strengths were solely
described by the coupling matrix Sασσ′ in Equation (2.2), (2.3).

In early models, the cortical-cortical coupling was “all to all”, with coupling
strengths falling off as a Gaussian with distance. Later proposed models had signif-
icantly sparser excitatory and inhibitory connectivity. The nature of the sparsity of
connections and the dependence of synaptic coupling with distance was handled differ-
ently in different later models.

Finally, νjE(t) and νjI (t) in Equation (2.2), (2.3) are noise terms representing inputs
from other cortical layers and areas,

νjσ(t)≡Sνσ
∑
l

Gσ(t−sl),σ=E,I, (2.5)

with the spike times sl a Poisson process with rate νjσ(t) chosen to ensure that the model
cortical neurons had a range of spontaneous firing rates like those observed in V1.

The general question we sought to answer was whether or not this generic model
architecture, with local isotropic cortico-cortical connectivity, was sufficient to model
the input layer of the real cortex. In many specific models developed later the answer
seems to be “yes” but with qualifications, as explained in the body of the paper.

3. Specific large-scale V1 models

3.1. Earliest large-scale V1 model. To begin, in [2, 3] the authors posed
the following questions: Orientation selectivity: Individual cortical cells possess
orientation preference and orientation selectivity. Orientation preference is set by the
orientation maps of feed forward connection properties of the group of LGN neurons
projecting to the given cortical neuron. However, orientation selectivity of some cortical
neurons is much greater than that of the summed input from neurons in the Lateral
Geniculate Nucleus (LGN), as established in [13], among others. These results led to
the first questions:
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• How does the full cortical network cause and shape orientation selectivity, and
its distribution over neurons?

• What are the roles of cortical excitation and inhibition?

Dynamics – time course of orientation tuning: Rapid presentation of flashed
patterns and reverse correlation of the stimulus patterns with V1 spike trains revealed
that orientation tuning occurred rapidly in V1 neurons.

• Can the model explain reverse correlation data on the time course of orientation
tuning?

Existence of simple cells: Individual cells in the cortical layer respond to visual
stimuli with varying degrees of linearity. Some cells, called simple cells, respond linearly
while others, called complex cells, respond very nonlinearly with distorted wave forms
containing multiple harmonics. It is surprising that linear (simple) cells exist at all,
given the nonlinearities of the LGN and cortical-cortical excitatory drives.

• Do simple cells exist in the model cortical network; and, if so, how do these
linear response properties emerge in the model?

To answer these questions about cortical function, [2] devised the earliest large-scale
model of layer 4Cα of V1 that we are summarizing. That model generally resembled
the model template described in Section 2. It was a model of a local patch of input
layer 4Cα, representing 1mm2 (four orientation pinwheels) containing ∼16,000 neurons
(75% excitatory and 25% inhibitory). In this model, on average 17 LGN neurons made
excitatory synapses on each cortical neuron, following the interpretations of experimen-
tal data by Alonso, et al. [22]. These collections produced a relatively strong summed
LGN input to most cortical cells. The LGN input imparted orientation preference and
weak orientation selectivity. The model’s recurrent cortico-cortical coupling was “all to
all”, with the synaptic arbors drawn isotropically in cortical space, without any explicit
spatial bias regarding the postsynaptic orientation-preference. The model operated with
high conductances that resulted primarily from high inhibitory conductance. In sum-
mary, the model was dominantly feed-forward with relatively weak recurrent excitation,
but it had strong recurrent inhibition.

3.1.1. Question 1: Orientation selectivity of cortical neurons. Many neu-
rons in V1 cortex respond best to a particular orientation of edges in the visual scene.
For each V1 neuron, one can measure an orientation tuning curve, a graph of the neu-
ron’s firing rate vs. the orientation of the visual stimulus. There are two aspects of
orientation tuning: preference and selectivity. Measured V1 tuning curves usually are
uni-modal, with peak at “preferred orientation” and trough at the orientation orthog-
onal to preferred. A neuron’s “orientation selectivity” is how much more the neuron
responds to stimuli at its optimal orientation compared to other orientations. Mea-
sures of orientation selectivity include the curves’ “half width” (also called bandwidth).
However, there are alternative measures such as circular variance (CV) that compare
the response at the preferred orientation to responses at all orientations including at
orthogonal. Sharply tuned neurons have a CV near 0, while CV’s of broadly-tuned
neurons are near 1 [19].

In the vintage 2000 model, the dominance of inhibition in the recurrent cortical-
cortical activity provides the mechanism that causes and shapes the model population’s
orientation selectivity. Inhibition, the summed inhibitory current from all inhibitory
neurons that make synaptic connections on a neuron, is more broadly orientation-tuned
than excitation. This broad (or global) inhibition shapes the tuning curves by bringing
down the firing rates near orthogonal (far from orientation preference). Figure 3.1 shows
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the comparison of the model’s orientation selectivity with that of experiment. There
is good qualitative agreement between model and data in Figure 3.1; in particular the
model does generate some sharply tuned cells. Figure 3.1b also displays the predicted
orientation tuning curve of the feedforward LGN current, as a dashed curve. The
feedforward input is substantially less selective than the most highly selective cortical
cells, indicating the important role of the cortical network in orientation selectivity.

Fig. 3.1. Sample Orientation Tuning Curves from Drifting Grating Stimuli: (a) Exper-
iment (three sample cells). The response is measured as the time-averaged firing rate and is plotted
in units of spikes per second. Stimuli were at optimal temporal frequency for each neuron, 2-10 Hz.
(b) Model (excitatory neurons, simulated at 8 Hz). The model results also include the orientation
selectivity obtained by an uncoupled neuron (long-dash line, the “feed-forward” response), normalized
for comparison to a peak response of 40 spikes per second. Reprinted from Proc. Nat. Acad. Sci.
(USA), ref [2].

3.1.2. Question 2: Dynamics of orientation preference and selectivity.
Does the large-scale model [2] capture the dynamical behavior of orientation prefer-
ence and selectivity? Dynamical behavior is measured experimentally by reverse time
correlation (RTC) experiments [18]. In reverse correlation experiments, visual stim-
uli, randomly-oriented stationary gratings, are flashed and then refreshed every 17
ms, with each pattern taken randomly and independently from a collection of pat-
terns with N values of orientation {θ=2k/N,k=1,2, ,N} and M values of the phase
{φ=2k/M,k=1,2, ,M}. Spike times of a given cortical neuron are correlated with pre-
vious visual stimuli to measure P (θ,τ), the probability that τ ms before a spike is fired,
visual stimulation at orientation θ occurred.

Figure 3.2 displays the temporal evolution of P (θ,τ) for both experimental and
model data, showing qualitative agreement between the two. Also shown is the circular
variance of P (θ,τ), CV [P ], as a function of τ which captures the temporal time course
of orientation selectivity – the model is in rough agreement with experiment.

3.1.3. Question 3: Existence of simple cells. Previously visual spatial sum-
mation was studied with particular visual stimuli: contrast reversal gratings, [20, 21].
Such stimuli also were effective for classifying cells as simple or complex. Simple cells
respond to contrast reversal gratings at the fundamental frequency of temporal modula-
tion ω, with small amplitudes of second (or higher) temporal harmonics, while complex
cells would respond to contrast reversal with large second harmonics at many different
spatial phases. Each simple cortical cell is driven by the summed excitatory input from
the LGN, which has significant frequency doubling (second harmonic). And yet, there
were many simple cells in the model. How did this happen?
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Fig. 3.2. P (θ,τ) from RTC at Several Times τ , Showing the Dynamics and Sharpening
of Orientation Selectivity: The normalized correlation, P (θ,τ), is the probability that τ msec before
a spike was produced, an image with angle θ was presented. The graph’s left vertical scale is probability,
whereas the vertical scale on the right, for the rightmost boxes only, is in units of CV. (a) Experiment
(4Cα simple cell, 18 angles). (b) Model (16 angles). The rightmost boxes show circular variance
CV [P (·,τ)]. The dashed CV[P] curve in (b) is that for an uncoupled model neuron, and it shows that
feed-forward input by itself produces only a small reduction in CV in the RTC experiment. Reprinted
from Proc. Nat. Acad. Sci. (USA), ref [2].

The key to the existence of simple cells is cortical interactions. In addition to being
driven by LGN spike trains, cortical cells are excited by spike activity in nearby excita-
tory cells and inhibited by spikes in nearby inhibitory cells. Spikes from the LGN and
from cortical cells influence a target cell through their synaptic conductances. Corti-
cal neurons sum all the incoming synaptic conductances. This summation effectively
averages the phases of the responses from the different neighboring neurons, produc-
ing significant second harmonics in the cortical-cortical excitatory and inhibitory drive.
But in the early model [2], inhibition is large, and the inhibitory second harmonic
terms cancel the excitatory second harmonics in the LGN drive and also in the weaker
cortical-cortical excitation; thus, simple, linear cells emerge in the model because of the
cancellation of excitatory harmonic distortion by inhibitory harmonic distortion.

This early model provided the first explanation, based upon cortical architecture,
for the existence of simple cells [3].

3.2. The egalitarian model. In the classical model of Hubel and Wiesel [10],
V1 simple and complex cells are part of a feed-forward hierarchy: simple cells receive
strong geniculate excitation and pool their outputs to drive complex cells. Therefore,
in response to sinusoidally-modulated, drifting gratings, a simple cell responds linearly
by following the temporal modulation of the grating and peaks when its receptive field
and the stimulus maximally overlap. A complex cell, by pooling many different phase-
specific simple-cell outputs, responds with a temporally unmodulated firing rate. To
classify the simple/complex responses of individual V1 cells, [18] analyzes the response
modulation to the drifting grating stimulus. They find that many V1 cells are neither
wholly simple nor wholly complex but lie somewhere in between. Simple and complex
cells appear in roughly equal proportion.

The earlier 4Cα model produced a V1 network entirely of simple cells. How can one
incorporate complex cells in this model and so explain how the observed distribution of
simple and complex cells arises in the cortex?

3.2.1. Question: The distribution of simple and complex cells. Indi-
vidual V1 cells respond with varying degrees of linearity. In [3], simple cell responses
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Fig. 3.3. Schematic of the Egalitarian model: Upper panel: Inputs from the visual stimu-
lus, as relayed through the LGN. Each V1 neuron receives (excitatory) visual stimulation through a
collection of LGN cells that is probabilistically chosen from a two-dimensional Gabor function. Ori-
entation preference is laid out in pinwheels (color map) and the spatial phase preference is distributed
randomly (map not shown, but examples are shown for 3 neurons). Lower left: Intracortical couplings
are isotropic and are modeled to be Gaussians in space (excitation in red and inhibition in blue).
Lower right: Each cortico-cortical postsynaptic conductance is modeled as a single or a sum of alpha
functions. Reprinted from [4].

are produced by the feed-forward excitation of its presynaptic LGN neurons and the
phase-invariant inhibition produced by the cortical network of simple cells. However,
the cortico-cortical excitatory conductance of each neuron resembles the responses of
complex cells. These results led to the questions:

• How do individual simple and complex cells arise in the network?

• How does the network shape the simple and complex cell distribution in cortex?

• What are the roles of feed-forward excitation, and of cortical excitation and
cortical inhibition?

To address these questions, Tao et al. [4] studied a 4Cα network where each neuron
receives excitatory drive from a widely varying number of presynaptic LGN cells. Lack-
ing evidence that cortical inhibition differs widely in 4Cα neurons, cortical inhibitory
coupling strengths are assumed uniform across the network. This leads to the central
assumption of our Egalitarian model: the total excitation, divided between geniculate
and cortical, is roughly constant.

Mathematically, the Egalitarian model consists of the systems of I&F point neurons,
Equations (2.1), (2.3)-(2.5); a schematic of the model is shown in Figure 3.3. The
collective LGN drive into a single V1 neuron is modeled as a Poisson spike train whose
time-varying rate is a sum of linear spatiotemporal filters. The on- and off-centered LGN
cells presynaptic to a V1 neuron are segregated into elongated Gabor-like subregions,
tilted at a preferred angle and having a preferred spatial phase. As in the earlier models,
preferred orientation is laid out in pinwheel patterns, while preferred spatial phase varies
randomly from neuron to neuron. In a difference from the earlier models, the number
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of LGN cells presynaptic to a V1 neuron is distributed randomly, with that number
being independent from neuron to neuron. In particular, some cortical cells receive
significant LGN drive while their neighbors may receive little or no LGN excitation. We
combine this with the constraint that the total excitatory synaptic drive onto each cell
is approximately constant, with those neurons receiving weak or no LGN drive receiving
stronger recurrent excitation.

Having already explained how simple cells arise in a network of simple cells, let
us consider how a complex cell might arise in the egalitarian network. Consider a
V1 neuron receiving little or no LGN input but is driven strongly by cortico-cortical
inputs. In a network of simple and complex cells, a contrast-reversing grating over one
cycle of stimulation would drive neurons with different spatial phase preferences, and a
non-specific pooling of these neurons’ outputs would produce synaptic inputs that are
frequency doubled and insensitive to spatial phase.

The trade-off between LGN and cortico-cortical drive is key to how the egalitarian
model produces both simple and complex cells.

3.2.2. Simple and complex cells under drifting gratings. Let us now
examine the case of drifting grating stimulus, which also evokes differences between
simple and complex cells. For the model’s simple and complex cells, Figure 3.4 shows
their firing rate and membrane potential responses to a drifting grating. The simple cell
follows the temporal modulation of the grating whereas the complex cell responds in
an elevated, mostly constant fashion. Figure 3.4 shows that the strong LGN excitation
into the simple cell follows the stimulus frequency. In the network, different cells have
differing spatial preference and receive diverse LGN excitation, and so their outputs are
diverse in both amplitude and time of peak excitation. Pooling their responses yields
nearly time-invariant cortico-cortical conductances. Thus, for the model simple cell,
both the intracellular effective reversal potential, VS , and its extracellular firing pattern
modulate on the time dependence of its LGN input. For the model complex cell both VS
and the firing pattern are driven by the steady cortico-cortical conductances, and show
only elevated, unmodulated responses. Therefore, in the egalitarian network, drifting
gratings evoke a spectrum of balances between LGN and cortico-cortical forcing, having
phase specific cells whose firing follows the temporal modulation of the grating, cells
with phase insensitive firing, and cells a mixture of both.

3.2.3. Population distributions of modulation ratio. The two cells ex-
amined in Figure 3.4 are examples from a continuum of intracellular and extracellular
responses that reflects the trade-off between LGN and cortico-cortical drive. We explore
this continuum further for drifting grating stimulus using the modulation ratio F1/F0,
which is, given a periodic response at the stimulus frequency, the ratio of the first har-
monic amplitude to the mean. Complex cells have modulation ratios near zero; their
responses are nearly constant in time (Figure 3.4b), while simple cells, whose responses
modulate with the stimulus, have modulation ratios near two (Figure 3.4a). Figure 3.5a
shows the histogram of F1/F0 for the cycle-averaged effective reversal potential, VS ,
across the whole cortical population. The distribution is broad, unimodal, and mono-
tonically decreasing, and reflects the broad distribution in number of LGN afferents
and the constraint of fixed total synaptic excitation within the model. Experimental
measurements [17] show also a broad and unimodal distribution of the membrane po-
tential’s F1/F0. This unimodality is not preserved in F1/F0 distribution of the firing
rate. Figure 3.5b shows the distribution of modulation ratio of the cycle-averaged firing
rate. Qualitatively similar, the distributions from both model and experiment show a
bimodal structure peaked near the extremes of the classifier, but still with a large pro-



1396 MODELS OF V1

Fig. 3.4. Responses to drifting gratings: (a) The model simple cell. (b) The model complex
cell. From left to right: cycle-averaged firing rates (spontaneous rates as dashed red lines); effective
reversal potential VS (magenta); LGN-driven conductance (green); cortico-cortical excitatory conduc-
tance (red); cortico-cortical inhibitory conductance (blue). The dotted lines are standard deviations.
The thin black lines indicate instantaneous values of conductances and potentials. Reprinted from [4].

Fig. 3.5. Modulation Ratio: (a) Distribution of F1/F0 of membrane potential of excitatory
neurons in model network. (b) Distribution of F1/F0 of the firing rate for excitatory neurons in
model network. (The distribution for the inhibitory population is qualitatively similar.) For these two
distributions, only cells with mean rates greater than 8 spikes per sec are included. (c) Distribution of
the modulation ratio F1/F0 of the firing rate for 308 cells (complex cells, n=184; simple cells, n=124)
from the experiments of Ringach et al. [18]. Reprinted from [4].

portion of cells having responses that are neither wholly simple, nor wholly complex.
Mechler and Ringach [15] have shown that spike-rate rectification could be responsible
for transforming a unimodal membrane potential F1/F0 distribution into a bimodal
distribution in firing rate F1/F0 (see also [16]). Figure 3.4 shows that this result is
a natural consequence of the highly diverse balance between LGN and cortico-cortical
synaptic drives in the egalitarian model.

3.3. Sparse, high gain model. Orientation Selectivity of Complex Cells: While
the egalitarian model had reasonable distributions of simple and complex cells, its com-
plex cells were poorly tuned, and not as selective for orientation as experimentally
observed. Thus, the question:

• Can a model be developed, realistically constrained by experimental observa-
tions, the complex cells of which are sufficiently orientation selective?

A High Gain Stable Network: In order for sufficiently selective complex cells to emerge
in the egalitarian model, it seemed that much stronger cortical-cortical excitation was
needed. However, as cortical excitation was increased, the model quickly went unstable,
with firing rates that were much too high (limited only by the refractory period). Hence,
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three overriding questions:

• Does a “high-gain” network exist with strong cortical-cortical excitation, which
is stable with reasonable firing rates?

• What are the mechanisms that stabilize the network?

• What are the characteristics of the “operating point” or “operating state” of
this model cortical network?

The model developed in [5] is very similar to the egalitarian model [4], although with
the network architecture simplified slightly. The main difference is that its excitatory
connections are sparse and much stronger. These are introduced into the model by
hardwiring randomly: Let pjk denote the probability that neuron k is connected to

neuron j. pjk is chosen, independently for each j and k, to be 1 with probability p and
0 otherwise. This fixes the connectivity once and for all – a connectivity in which all
neurons, regardless of E or I type, have the same average degree of sparsity. Thus, on
average each neuron will be connected to Neff =pN , where N is the total number of

neurons in the network. The conductances are then scaled by the factor pjk/p:

gjcort−cort,E(t)≡SσE
∑
k,l

[(
pjk
p

)
KσE
j−k
[(

1−Λ
)
GAMPA
E (t− tE,kl )+ΛGNMDA

E (t− tE,kl )
]]
.

(3.1)
Note that the probability p∈ [0,1] controls the mean connectivity, with small p sparse
and p= 1 all to all; also, p−1 scales up the strength of the individual connections,
making sparser networks have stronger postsynaptic conductances (PSCs). In addition
as in [4], NMDA conductances are added to the much faster AMPA conductances, with
the parameter Λ representing the % of NMDA. Thus, the model [5] is actually a two
parameter (p,Λ) family of models, with p controlling the sparsity of the network (and
p−1 controlling the strength of its connections) and Λ controlling the % of NMDA to
AMPA conductances.

3.3.1. Question 1: Orientation selectivity of complex cells. A study of
this two parameter (p,Λ) family of large-scale neuronal networks [5] found that spar-
sity indeed stabilizes the high gain network and produces complex cells with realistic
orientation selectivity, including contrast invariant tuning curves that are relatively in-
variant with respect to the neuron’s distance in the cortical layer from pinwheel centers,
as shown in Figure 3.6. Note that this network is very sparse, with p = 0.023; thus,
each of the N = 4000 neurons is connected, on average, to only Neff =pN = 96 neurons,
but with strong PSPs scaling as p−1.

3.3.2. Question 2: A high gain, stable network: Figure 3.7 shows the firing
rate gain curves (as a function of the LGN drive Ginput) for different levels of sparsity
and different percentages of NMDA, for a somewhat idealized network of 1600 neurons.
(See Methods in [5] for specifics about the idealization.) Figure 3.7 clearly shows that
as sparsity increases, or the percentage of NMDA decreases, bistability is eliminated
and the firing rates are reduced. This stabilization results from a significant increase
in the level of intrinsically generated fluctuations as sparsity increases or percentage of
NMDA decreases. This model works well with parameters for which the gain curves
of Figure 3.7 are just below the critical value for the onset of bistability. For example,
(Λ = 0., pcr = 0.03;Neff =pcrN = 50); that is, very sparse connectivity.

3.3.3. Question 3: The natural operating point of this high gain network.
The “operating point” or “operating state” of the neuronal network model of [5] has
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Fig. 3.6. Orientation Selectivity of Model Excitatory Cells:(a) Histogram of CV for exci-
tatory simple cells (Upper) and excitatory complex cells (Lower). (b) CV of excitatory cells at medium
and low contrasts. (c) CV of excitatory cells as a function of distance to nearest pinwheel center
(Solid, excitatory simple, ES; Dashed, excitatory complex, EC). Reprinted from Proc. Nat. Acad. Sci.
(USA), ref [5].

Fig. 3.7. Bifurcation Diagrams: Shown is the firing rate per neuron of the excitatory cell pop-
ulation vs. Ginput. These curves were obtained by first increasing and then decreasing the strength of
the feedforward excitation Ginput (a) for networks with different Neff =25,50,100,200; [The network

synaptic coupling strengths are S
(s)
EE and S

(s)
IE = 0.25 for the simple cell population; S

(c)
EE and S

(c)
IE =

0.50 for the complex cell population; and SEI = SII = 0.9 for all cells; Λ=0 for each of the four
cases.](b) For five networks with different Λ=0%,25%,50%,75%,100%, (the coupling strengths are the
same as in figure (a), with Neff =25 for each of the five cases). Reprinted from Proc. Nat. Acad.
Sci. (USA), ref [5].

the following characteristics: It is “high-gain”, just below bistability; it has large in-
trinsically generated fluctuations; it has large conductances, with large cortical-cortical
inhibition and excitation; its total excitation (LGN + cortical-cortical) approximately
balances inhibition. And its temporal fluctuations make it very asynchronous, far from
either homogeneity or synchrony. An operating point with these characteristic features
is very important for the [5] model to achieve and faithfully represent experimentally
observed performances, such as complex cells that are well tuned for orientation, with
reasonable firing rates. Sparsity of connections seems necessary to achieve and stabilize
this asynchronous, high gain operating point.

One final remark about this sparse model and the egalitarian model of Section
3.2: The temporal fluctuations in both models exhibit “gamma band” behavior in that
their power spectra have broad frequency bands in the gamma range between (40Hz,
100Hz), centered near 80Hz [unpublished]. These “oscillations” were observed in the
spike rasters, the network firing rates, and in individual voltage traces. They were
weaker in the sparse model than in the egalitarian model, because the sparse model’s
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operating point was more asynchronous. Numerical experiments [unpublished] were
performed at different parameter values in an effort to eliminate this gamma band, or
at least reduce its presence – but to no avail. This gamma band seemed robust, in
both models. At the time, the authors of [4, 5] did not understand how this gamma
band behavior arose in the models, and no analysis of it was performed on either model.
Analysis of gamma-rhythms was carried out over a decade later by Chariker, Shapley
and Young [27] for their comprehensive model described in Section 3.5. However, the
robust presence of gamma band in the two earlier models did lead the authors of [4,5] to
reconsider, and take more seriously, the possibility of the presence of gamma behavior
in monkey V1 – another type of consequence of large-scale modeling.

3.4. Model of larger cortical patch, with long-range connections. Ques-
tions to be addressed: After exploring the potential regimes associated with a small
cortical patch (e.g., a few hypercolumns within 1 square mm of cortex), [6] and [7] en-
larged the scale of the model. (See also [32] for a similar model for awake, rather than
anesthetized, monkey V1.) This larger model spanned 6mm×4mm of cortex, compris-
ing ∼100 hypercolumns. Notably, this larger network included additional physiological
features which come into play at these larger spatial scales. As discussed below, the
larger network includes (a) ‘long-range’ synapses which connect hypercolumns several
mm apart, and (b) an NMDA-type excitatory conductance with a slow decay time-
scale (∼100ms). Is the enlarged model sufficiently rich to exhibit the following two
experimental phenomena which are observed within the cortex at these scales:

i) Spontaneous Background Patterns [6]: When unstimulated, cortical dynamics
exhibits coherent spatiotemporal correlations, which can be imaged with voltage sensi-
tive dyes [23]. These spatiotemporal correlations involve co-activity spanning multiple
neuronal populations up to several mm apart, and persist with a timescale of ∼100ms.
Intriguingly, these spontaneous background patterns are similar in structure to the pat-
terns of activity observed under drifting-grating stimuli; i.e., orientation-domains of
similar orientation-preference tend to be active simultaneously even when separated by
several mm – except that, in background, the spatial patterns exhibit irregular temporal
jumps.

ii) Preattentive Illusory Motion [7]: When stimulated by a small visual ‘cue’ that
steadily drifts (over ∼100ms), the cortex responds with a burst of activity which is
initially localized around the cortical footprint of the initial cue, and which then steadily
spreads out to encompass the cortical footprint of the cue’s trajectory (see Figure 3.8A).
As visualized by voltage sensitive dyes [24], this cortical activity pattern is quite similar
(both in shape and time-course) to the cortical response associated with the Hikosaka
Line Motion Illusion (LMI), which is stimulated by a brief (∼30ms) visual ‘cue’ which
abruptly transforms into a larger ‘bar’ (see Figure 3.8D). Note that, while the cortical
response to the LMI-stimulus is similar to that evoked by the steadily-moving stimulus,
the LMI-stimulus itself does not contain any actual moving image. Nevertheless, psycho-
physical experiments indicate that the LMI-stimulus produces the perception of motion,
suggesting that certain kinds of visual processing may depend on the spatio-temporal
dynamics of the cortical response within V1.

Note that both of these phenomena describe the behavior of large swathes of neurons
across long stretches of time. Together, these phenomena pose a serious constraint on
the dynamics of the enlarged model network, requiring certain kinds of coordination
across different hypercolumns for several hundred ms at a time.

One of the main goals of study of the enlarged model was to determine the mech-
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anisms at play in the large-scale model, and to understand how those mechanisms give
rise to the phenomena above. Work was focused on the role played by (a) long-range
connections between different hypercolumns, and (b) the slow excitatory NMDA-type
conductance.

Overview of the Model: A large-scale model of a 6mm×4mm patch of V1 cortex
was constructed using a two-dimensional lattice of ∼106 model neurons, each obeying
integrate-and-fire equations as in Section 2. Note that the enlarged model does not
distinguish between the input-layer and the superficial layers of V1: it is an effective
or “lumped” model of V1. This model cortex is driven by background noise and a
model LGN (mLGN). Similar to before, the model contains ∼80% excitatory neurons
and ∼20% inhibitory neurons, half of which receive direct mLGN input (i.e., ‘simple’
cells), whereas the other half do not (i.e., ‘complex’); in addition, each neuron also
has a preferred orientation θ (laid out in predetermined pinwheel-patterns) which is
imposed by the mLGN input for that neuron. The local cortical circuit contained only
AMPA, with no NMDA (although the absence of NMDA was not essential to the model’s
performance). The local circuit was sparsely connected, although not at the extreme
sparsity level of the model of Section 3.3. The local connections had the following
sparsity levels: E→E−−25%;E→ I−−25%;I→E−−75%;I→ I−−75%.

i) Long-range connections: In addition to the typical local connections described in
Section 2, each excitatory neuron in the enlarged model also projects to many neurons
in other more distant hypercolumns. These long-range connections are orientation-
specific, and preferentially connect neurons of similar θ (as indicated experimentally
in [25]). The long-range connections are chosen to be random and sparse; for any given
θ, the long-range spatial coupling kernel takes the form of an anisotropic Gaussian with
a spatial scale of ∼1.5mm and an eccentricity of ∼1.5.

ii) Slow NMDA-type conductance: In addition to the faster ∼2ms AMPA exci-
tatory conductances described in Section 2, each excitatory neuron also gives rise to a
slower NMDA excitatory postsynaptic conductance with a longer decay time-constant
(i.e., ∼100ms). In the long range connections, the ratio of NMDA to AMPA was set
at 75% NMDA to 25% AMPA, with the coupling-strength associated with the NMDA-
conductance chosen so that the total postsynaptic NMDA current is roughly the same
order of magnitude as the postsynaptic excitatory AMPA currents. The actual percent-
ages of NMDA vs AMPA was not important; but the presence of NMDA was essential
to the model’s performance. In the long range connections, NMDA targeted both exci-
tatory and inhibitory neurons, with inhibition more substantially targeted.

As mentioned above, the architecture of this large-scale model is endowed with two
spatial scales – a small scale describing the local connections, and a significantly larger
scale describing the long-range connections. In order to simulate this large system effi-
ciently, [8] developed a fast numerical algorithm which takes advantage of this separation
in scale, reducing the overall computational burden by an order of magnitude.

Results: The enlarged large-scale model derives many of its properties from its
operating point. Parameters were chosen so that (i) the membrane-potential of most
neurons in the network hovers close to threshold most of the time, and (ii) the excitatory
and inhibitory synaptic coupling strengths are both strong. These effects create a
fluctuation driven regime with a high gain; a relatively small increase in either excitatory
or inhibitory current can give rise to large increases or decreases in activity.

Because many neurons tend to accumulate close to the firing-threshold, any ex-
citatory spike can easily cause several other nearby excitatory neurons to fire shortly
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Fig. 3.8. Large-scale model in [6, 7]. On the left we show the dimensions of the large-scale
model; each pixel is colored according to its preferred orientation. On the right we show several panels,
each row corresponding to a different time following stimulus onset. Column A shows a moving
stimulus (presented as input to the mLGN). Column B shows the ∆F fluorescence response obtained
in experiment (see [24]). Column C shows the subthreshold voltage response ∆V obtained in our
model. Columns D,E,F are analogous to A,B,C, except for the LMI-stimulus. Note that, even though
the image-frames in column-D change abruptly, the dynamical response of the cortex shown in Columns
E,F changes continuously, similar to that shown in Columns B,C, respectively. Reprinted from [6, 7].

afterwards. The firing of these next neurons can lead to yet more firing-events, causing
a cascade that recruits a large pool of local excitatory and inhibitory neurons, with the
activation of the latter curtailing any further spikes in the sequence [6]. These rapid
semi-synchronous cascades will be referred to as ‘recurrent-firing-events’, or RFEs.

Within the context of this large-scale model, RFEs are not uncommon, comprising
a small (but significant) portion of the total number of firing-events. In background the
RFEs tend to be small, involving a small subset of the neurons in a local cluster. Under
drive the RFEs can be larger, with the largest RFEs comprising a significant fraction
of the neurons in an orientation domain.

Analysis of the large-scale network suggests that RFEs are a critically important
ingredient in modeling i) spontaneous background patterns [6] and ii) the line-motion
illusion [7]. To see why, first note that, whenever an RFE occurs, it tends to run its
course rather quickly (.10ms). This is because the transient dynamics of the RFE
are controlled primarily by the fast timescales associated with the AMPA- and GABA-
conductances. Nevertheless, once an RFE has concluded, the effects of the NMDA are
much longer lasting. More specifically, the excitatory neurons that participated in any
RFE leave their postsynaptic targets with a residual NMDA-conductance that persists
for ∼100ms. This residual NMDA-conductance serves to ‘prime’ those postsynaptic
neurons: While not strong enough to cause an abundance of postsynaptic firing-events,
the increased NMDA conductance does increase the subthreshold-voltage of the postsy-
naptic neurons. This increase in subthreshold-voltage pushes the neurons closer to the
firing-threshold, increasing the probability that they will nucleate another RFE within
the next 100ms or so. It is this NMDA-facilitated priming, together with the anisotropic
architecture of the long-range connections, which is responsible for the large-scale phe-
nomena in our model.

Spontaneous Background Patterns: In background any excitatory firing-event
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which triggers RFEs primes not only the other nearby neurons within the same hyper-
column (via local connections), but also neurons in other hypercolumns (via long-range
connections). Because the long-range connections are more common between neurons
of similar orientation-preference, RFEs tend to prime multiple orientation domains of
similar orientation preference simultaneously. The spatial extent of these spontaneous
patterns is linked to the scale of the long-range connections, which span several mm
of cortex. These spontaneous background patterns themselves are similar to the pat-
terns of cortical activity driven by oriented grating stimuli, except they do not persist
very long temporally. Rather, these background patterns decay and are re-initiated,
irregularly in time and randomly in orientation, by the next collection of RFEs.

Preattentive Illusory Motion: Under the LMI-stimulus, the initial cue causes
vigorous cortical firing along with several RFEs in the cortical footprint of the cue.
These RFEs then prime the neighboring cortex, with a spatial profile that extends
beyond the cue, but not so far as to encompass the entire cortical footprint of the bar
to follow. Subsequently, when the LMI-stimulus changes from cue to bar, the primed
area of cortex (closer to the original cue) responds before the more distal unprimed
areas (at the far end of the bar). This staggered response gives rise to a spatiotemporal
dynamic profile similar to that observed under a growing stimulus (see Figure 3.8B,C
and 3.8D,E).

In summary, investigations of the enlarged large-scale model highlighted once again
the importance of recurrent synaptic interactions. Specifically, the interplay between
neurons in a high-gain state naturally facilitates rapid causal sequences of firing-events
– i.e., recurrent-firing-events. These RFEs serve as dynamical building blocks which lay
the foundation for more complicated large-scale phenomena.

3.5. A new model of macaque V1: From structure to dynamics to func-
tion. A few years ago, Logan Chariker (then PhD student), Robert Shapley, and
Lai-Sang Young embarked on a project to study macaque V1 cortex through computa-
tional modeling. This problem had been tackled by several groups at NYU in the 1990s
and early 2000s (see [2, 4] and the references therein). Young’s group benefited from
this earlier research; indeed they used as their starting point a number of ideas from [4].
The present effort has a strong focus on population dynamics not present in previous
studies. To discover mechanisms they would study not only behaviors of individual
model neurons but also how neurons in a population interact dynamically with one
another, and their experience has convinced them that analysis of population activity
in large-scale network models has the potential to yield new and valuable information
for neuroscience.

Two pieces of modeling work below illustrate (i) how structure and dynamics are
connected to function and (ii) the rich interplay between neuroscience and mathematics.
The reader is referred to published papers for a more systematic treatment.

Model overview. The primary target of the model is a small region of Layer
4Cα (L4), the input layer to V1 in the magnocellular pathway of the macaque visual
cortex. In addition to L4, the model has two other components: the thalamic Lateral
Geniculate Nucleus (LGN), which feeds forward to L4, and Layer 6 (L6) in V1, which
feeds back to L4. The physical layout of the model is depicted in Figure 3.9A.

This model has been challenged with an ensemble of visual stimuli consisting of drift-
ing gratings of many orientations, spatial frequencies and contrasts, and has passed all
the tests, producing outputs that closely resembled experimental data. These tests in-
clude firing rates, tuning curves, contrast response functions, contrast dependence, both
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on the level of individual neurons and on populations. The model also produces simple
and complex cells; it produces diverse neuronal responses and gamma-band rhythms, to
name some of its main properties. The problem of feedback, a perennial headache for
modelers, is solved in this model with a self-adjusted dynamic algorithm. This scheme,
which will appear in a forthcoming paper, has greatly expanded the versatility of the
model.

All model results were achieved in a single model, using a single set of parameters.
This is important, for as mentioned earlier, one of the primary goals of Young and
colleagues is to uncover mechanisms, and the wider the range of V1 phenomena a model
is able to replicate, the more confident one can be that model function is derived from
mechanisms similar to those in the real cortex.

Fig. 3.9. A. Model layout. The grating on the left is symbolic of the visual stimulus
presented to the eye. LGN is modeled as ON/OFF cells, the red square at the center of the
LGN sheet corresponding roughly to one Hypercolumn (HC) in cortex. LGN projects to Layer
4Cα. The right half of the diagram depicts a feedback loop between Layer 4Cα and Layer
6. The model has 9 HC each subdivided into 6 intended orientation domains; a majority
of the neurons in each domain is connected to LGN configurations spatially aligned with the
intended orientation. B. LGN templates. Shown are 3 admissible LGN configurations for
4Cα cells in the vertical-preferring domain (left), horizontal-preferring domain (right). C.
Interspike intervals. Shown are ISI plots of 10 E-neurons with firing rates between 20-30
spikes/s superimposed. D. Gamma-band activity. Top: Rasters of spikes of cells in a patch
of 400 E- and and I-cells in the vertical-preferring domain of the central HC. These are spike
time rasters during stimulation by an optimal grating, drifting at 4 Hz. The x-axis is time;
y-axis is neuron index within the patch. E cell spikes are red dots, sorted by decreasing number
of LGN inputs: the cells near the bottom are likely complex; I cell spikes are blue dots. Bottom:
Time-frequency analysis of spike density. Power spectral density is calculated within sliding
windows of 200 ms, for the same data as shown in the raster. The color plot shows wandering
frequencies centering at around 60 Hz.

Orientation selectivity from sparse LGN inputs. The following example shows
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how Young et al. made an effort to adhere to neuroanatomy (structure), and to explain
the simulation results (function) that followed. The results are reported in [9].

Hubel and Wiesel proposed that orientation selectivity (OS) for a V1 neuron is
derived from the alignment of its LGN afferents. The number of LGN inputs to a V1
cell at ∼5◦ eccentricity was previously assumed to be 15-30 [2, 4, 5, 7]. When Young et
al. tried to put the model together, they had difficulty reconciling these numbers with
the sizes of LGN receptive fields and their amount of overlap. This caused them to
search the literature, and to discover that a number of earlier experiments had in fact
pointed to a significantly smaller of LGN inputs [26,28,29].

Constrained by the small number (9-10) of LGN cells per hypercolumn, the reach
of each LGN cell, the requirement that there be rows of ON and OFF cells aligned
in various directions, and the distances between rows required to satisfy preferred spa-
tial frequencies, Young and colleagues were confronted with a perplexing geometric-
combinatorial problem. Using a perturbed hexagonal lattice, they found that this prob-
lem in fact had solutions, though barely. Examples of admissible LGN configurations
are shown in Figure 3.9B.

The sparseness of LGN led immediately to the following question: is this really
enough to confer OS on V1 cells? With an average of 3-4 LGN inputs per V1 cell, the
feedforward current is necessarily small (∼10% of the total excitatory current received
by E-neurons in Layer 4Cα), contradicting traditional feedforward views. One might
question also the number of distinct orientations that can be formed out of such a small
pool of LGN cells, or the effectiveness of rows of 2-3 ON/OFF LGN cells in constraining
orientation.

The model in [9] dispelled once and for all these concerns. The model described
there was able to produce distributions of firing rates for E and I cells that emulated
data, in background as in drive, in optimally as well as in orthogonally driven regions
of cortex. In the model while LGN currents were broad and weak, consistent with the
numbers and geometry above, cortico-cortical interactions magnified and sharpened OS
of neurons in V1. The sparseness of LGN is an important difference between [9] and
models by earlier NYU groups. Another departure from previous NYU models is that
they have used realistic connectivities between E- and I-cells based on data.

Interspike intervals (ISI) and gamma-band rhythms. Gamma-band activity
is an emergent phenomenon in neuronal systems. Together with ISI, it is also an example
of how individual and collective dynamical behaviors of neurons can be very different.

The ISI of Excitatory neurons are well known to have distributions resembling those
of exponential random variables; see Figure 3.9C. Yet throughout cortex, one observes
that, when stimulated, local populations produce a rhythm in the gamma band; see
Figure 3.9D (top). These two very different spiking patterns may at first sight appear
to contradict one another, but they do not: Comparing the firing rates of individual
neurons to the frequencies of the spiking events in Figure 3.9D, one sees that most
neurons participate in only a fraction of the events, and their ISI plots show that the
participation is irregular, skipping random numbers of events before participating in
another one.

As to how gamma rhythms are produced, the first explanation was a model called
PING [31]. PING produces regular oscillations fueled by full E-population spikes driv-
ing full I-population spikes, the cycle repeating when the suppression ends. Several
years ago, [30] proposed the idea of multiple-firing events (MFEs): Fluctuations under
drive cause a few E-neurons to cross threshold. That may or may not produce enough
recurrent excitation to cause more E and I-neurons to spike. If that happens, it will
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be followed by a commensurate pushback by I-cells milliseconds later. The decay of
I-conductance and depolarization of E-cells then completes the cycle. The idea has
similarities with PING, but only fractions of the population are involved, variable frac-
tions of E and I neurons depending on their operating points and to some degree sheer
“luck”. MFEs as a concept are not the same as RFEs referred to in Section 3.4, which
consist of recurrent single bursts of E-firing separated by timescales of total inactivity of
the E-population lasting the full duration of NMDA, i.e. 100 ms. RFE’s are analyzed
in [30] (Figure 9 in Supp. Info.), where it is seen that they differ substantially from
MFEs like those shown in panel Figure 3.9D.

The model in [9] produces a gamma-rhythm when driven by a drifting grating.
It is an emergent phenomenon; nothing was programmed into the model to make that
happen. Young et al. studied this rhythm in more detail in [27], and found a remarkable
resemblance between it and real data: the rhythm is episodic, graded in power, and
wandering in phase and frequency; see Figure 3.9D (bottom). Young et al. used this
model to investigate underlying mechanisms, and found that what drives gamma-band
activity in the model is much closer to the MFEs described in [30] than to PING;
in particular, it is driven more by recurrent excitation than by disinhibition. That,
however, was not the whole story: while gamma-band activity is generated within local
populations, they also found that pulses from regions outside of the local population
have a stronger than expected influence on this rhythm.

4. Conclusion

Our work shows that today enough is known to make comprehensive models of the
primary visual cortex that emulate its function in great detail, quantitatively. This
is particularly established by the latest comprehensive large-scale models of references
[9,27]. Future work will lead, we hope, to more experiments and better models – toward
a better understanding of what the visual cortex is trying to do.

REFERENCES

[1] R. Ben-Yishai, R. Bar-Or, and H. Sompolinsky, Theory of orientation tuning in visual cortex,
Proc. Natl. Acad. Sci. USA, 92:3844–3848, 1995. 1

[2] D. McLaughlin, R. Shapley, M. Shelley, and D. Wielaard, A neuronal network model of macaque
primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Cα, Proc.
Natl. Acad. Sci. USA, 97:8087–8092, 2000. 1, 3.1, 3.1, 3.1.2, 3.2, 3.1.3, 3.5, 3.5

[3] D. Wielaard, M. Shelley, D. McLaughlin, and R. Shapley, How simple cells are made in a nonlinear
network model of the visual cortex, J. Neurosci., 21(14):5203–5211, 2001. 1, 3.1, 3.1.3, 3.2.1

[4] L. Tao, M. Shelley, D. McLaughlin, and R. Shapley, An egalitarian network model for the emergence
of simple and complex cells in visual cortex, Proc. Natl. Acad. Sci. USA, 101:366–371, 2004.
1, 3.3, 3.2.1, 3.4, 3.5, 3.3, 3.3, 3.3.3, 3.5, 3.5

[5] L. Tao, D. Cai, D. McLaughlin, M. Shelley, and R. Shapley, Orientation selectivity in visual cortex
by fluctuation-controlled criticality, Proc. Natl. Acad. Sci. USA, 103:12911–12916, 2006. 1,
3.3, 3.3, 3.3.1, 3.3.2, 3.3.3, 3.6, 3.7, 3.5

[6] D. Cai, A. Rangan, and D. McLaughlin, Architectural and synaptic mechanisms underlying coher-
ent spontaneous activity in V1, Proc. Natl. Acad. Sci. USA, 102:5868–5873, 2005. 1, 3.4, 3.8,
3.4

[7] A. Rangan, D. Cai, and D. McLaughlin, Modeling the spatio-temporal cortical activity associ-
ated with the line-motion illusion in the primary visual cortex, Proc. Natl. Acad. Sci. USA,
102:18793–18800, 2005. 1, 3.4, 3.8, 3.4, 3.5

[8] A. Rangan and D. Cai, Fast numerical methods for simulating large-scale integrate-and-fire neu-
ronal networks, J. Comput. Neurosci., 22:81-100, 2007. 3.4

[9] L. Chariker, R. Shapley, and L-S. Young, Orientation selectivity from very sparse LGN inputs in
a comprehensive model of macaque V1 cortex, J. Neurosci., 36(49):12368–12384, 2016. 1, 3.5,
4

https://doi.org/10.1073/pnas.92.9.3844
https://doi.org/10.1073/pnas.110135097
https://doi.org/10.1523/JNEUROSCI.21-14-05203.2001
https://doi.org/10.1073/pnas.2036460100
https://doi.org/10.1073/pnas.0605415103
https://doi.org/10.1073/pnas.0501913102
https://doi.org/10.1073/pnas.0509481102
https://link.springer.com/article/10.1007/s10827-006-8526-7
https://doi.org/10.1523/JNEUROSCI.2603-16.2016


1406 MODELS OF V1

[10] D. Hubel and T. Wiesel, Receptive fields, binocular interaction and functional architecture in the
cat’s visual cortex, J. Physiol., 160:106–154, 1962. 3.2

[11] E. Benardete and E. Kaplan, The dynamics of primate m retinal ganglion cells, Visual Neurosci.,
16:355–368, 1999. 2

[12] C. Beaulieu, Z. Kisvarday, P. Somogyi, M. Cynader, and A. Cowey, Quantitative distribution
of GABA-immunopositive and immunonegative neurons and synapses in the monkey striate
cortex (Area 17), Cereb. Cortex, 2:295–309, 1992. 2

[13] H. Sompolinsky and R. Shapley, New perspectives on the mechanisms for orientation selectivity,
Curr. Opin. Neurobiol., 7:514–522, 1997. 3.1

[14] K. Obermayer and G. Blasdel, Geometry of orientation and ocular dominance columns in monkey
striate cortex, J. Neurosci., 13:4114–4129, 1993.

[15] F. Mechler and D. Ringach, On the classification of simple and complex cells, Vision Res.,
42(5):1017–1033, 2002. 3.2.3

[16] L. Abbott and F. Chance, Rethinking the taxonomy of visual neurons, Nat. Neurosci., 5(5):391–
392, 2002. 3.2.3

[17] N.J. Priebe, F. Mechler, M. Carandini, and D. Ferster, The contribution of spike threshold to the
dichotomy of cortical simple and complex cells, Nat. Neurosci., 7(10):1113–1122, 2004. 3.2.3

[18] D. Ringach, M. Hawken, and R. Shapley, Dynamics of orientation tuning in macaque primary
visual cortex, Nature, 387:281–284, 1997. 3.1.2, 3.2, 3.5

[19] D. Ringach, R. Shapley, and M. Hawken, Orientation selectivity in macaque V1: diversity and
laminar dependence, J. Neurosci., 22(13):5639–5651, 2002. 3.1.1

[20] J. Movshon, I. Thompson, and D. Tolhurst, Receptive field organization of complex cells in the
cat’s striate cortex, J. Physiol., 283:79–99, 1978. 3.1.3

[21] R. De Valois, R. Albrecht, and D. Thorell, Spatial frequency selectivity of cells in macaque visual
cortex, Vision Res., 22:545-559, 1982. 3.1.3

[22] J. Alonso, W. Usrey, and R. Reid, Rules of connectivity between geniculate cells and simple cells
in cat primary visual cortex, J. Neurosci., 21:4002–4015, 2001. 3.1

[23] M. Tsodyks, T. Kenet, A. Grinvald, and A. Arieli, Linking spontaneous activity of single cortical
neurons and the underlying functional architecture, Science, 286:1943–1946, 1999. 3.4

[24] D. Jancke, F. Chavance, S. Naaman, and A. Grinvald, Imaging cortical correlates of illusion in
early visual cortex, Nature, 428:423–426, 2004. 3.4, 3.8

[25] W. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, Orientation selectivity and the arrange-
ment of horizontal connections in tree shrew striate cortex, J. Neurosci., 17:2112–2127, 1997.
3.4

[26] A. Angelucci and K. Sainsbury, Contribution of feedforward thalamic afferents and corticogenic-
ulate feedback to the spatial summation area of macaque V1 and LGN, J. Comp. Neurol.,
498:330–351, 2006. 3.5

[27] L. Chariker, R. Shapley, and L.-S. Young, Rhythm and synchrony in a cortical network model, J.
Neurosci., 38:8621–8634, 2018. 1, 3.3.3, 3.5, 4

[28] M. Connolly and D. Van Essen, The representation of the visual field in parvicellular and mag-
nocellular layers of the lateral geniculate nucleus in the macaque monkey, J. Comp. Neurol.,
226:544–564, 1984. 3.5

[29] L.C.L. Silveira and V.H. Perry, The topography of magnocellular projecting ganglion cells (M-
ganglion cells) in the primate retina, Neurosci., 40:217–237, 1991. 3.5

[30] A.V. Rangan , and L.-S. Young, Emergent dynamics in a model of visual cortex, J. Comput.
Neurosci., 35:155–167, 2013. 3.5

[31] M.A. Whittington, R.D. Traub, N. Kopell, B. Ermentrout, and E.H. Buhl, Inhibition-based
rhythms: experimental and mathematical observations on network dynamics, Int. J. Psy-
chophysiol, 38:315–336, 2000. 3.5

[32] D. Zhou, A. Rangan, D. McLaughlin, and D. Cai, Spatiotemporal dynamics of neuronal population
response in the primary visual cortex, Proc. Natl. Acad. Sci. USA, 110(23):9517–9522, 2013.

1, 3.4

https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1017/S0952523899162151
https://doi.org/10.1093/cercor/2.4.295
https://doi.org/10.1016/S0959-4388(97)80031-1
https://doi.org/10.1523/JNEUROSCI.13-10-04114.1993
https://www.mendeley.com/catalogue/classification-simple-complex-cells/
https://www.nature.com/articles/nn0502-391
https://www.nature.com/articles/nn0502-391
https://www.nature.com/articles/nn1310
https://www.nature.com/articles/387281a0
https://doi.org/10.1523/JNEUROSCI.22-13-05639.2002
https://doi.org/10.1113/jphysiol.1978.sp012489
https://doi.org/10.1016/0042-6989(82)90113-4
https://doi.org/10.1523/JNEUROSCI.21-11-04002.2001
https://science.sciencemag.org/content/286/5446/1943
https://www.nature.com/articles/nature02396
https://doi.org/10.1523/JNEUROSCI.17-06-02112.1997
https://doi.org/10.1002/cne.21060
https://doi.org/10.1523/JNEUROSCI.0675-18.2018
https://doi.org/10.1002/cne.902260408
https://doi.org/10.1016/0306-4522(91)90186-R
https://link.springer.com/article/10.1007%2Fs10827-013-0445-9
https://doi.org/10.1016/S0167-8760(00)00173-2
https://doi.org/10.1073/pnas.1308167110

