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Abstract. New estimates for the population risk are established for two-layer neural networks.
These estimates are nearly optimal in the sense that the error rates scale in the same way as the Monte
Carlo error rates. They are equally effective in the over-parametrized regime when the network size is
much larger than the size of the dataset. These new estimates are a priori in nature in the sense that
the bounds depend only on some norms of the underlying functions to be fitted, not the parameters in
the model, in contrast with most existing results which are a posteriori in nature. Using these a priori
estimates, we provide a perspective for understanding why two-layer neural networks perform better
than the related kernel methods.
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1. Introduction

One of the main challenges in theoretical machine learning is to understand the
errors in neural network models [43]. To this end, it is useful to draw an analogy with
classical approximation theory and finite element analysis [13]. There are two kinds of
error bounds in finite element analysis depending on whether the target solution (the
ground truth) or the numerical solution enters into the bounds. Let f* and fn be the
true solution and the “numerical solution”, respectively. “A priori” error estimates
usually take the form

o= F* I <Cn=® ) f 2.

where only norms of the true solution enter into the bounds. In “a posteriori” error
estimates, the norms of the numerical solution enter into the bounds:

1= F* I < Cn78)| fulls.

Here ||-||1,]- |l2,] - |l3 denote various norms. In this language, most recent theoretical
results [7,24,32-35] on estimating the generalization error of neural networks should be
viewed as “a posteriori” analysis, since the bounds depend on various norms of the neural
network model obtained after the training process. As was observed in [4, 18, 34], the
numerical values of these norms are very large, yielding vacuous bounds. For example,
[34] calculated the values of various a posteriori bounds for some real two-layer neural
networks and it is found that the best bounds are still on the order of O(10°).

In this paper, we pursue a different line of attack by providing “a priori” analy-
sis. Specifically, we focus on two-layer networks, and we consider models with explicit
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regularization. We establish estimates for the population risk which are asymptotically
sharp with constants depending only on the properties of the target function. Our
numerical results suggest that such regularization terms are necessary in order for the
model to be “well-posed” (see Section 7 for the precise meaning).

Specifically, our main contributions are:

e We establish a priori estimates of the population risk for learning two-layer
neural networks with an explicit regularization. These a priori estimates depend
on the Barron norm of the target function. The rates with respect to the number
of parameters and number of samples are comparable to the Monte Carlo rate.
In addition, our estimates hold for high dimensional and over-parametrized
regime.

e We make a comparison between the neural network and kernel methods using
these a priori estimates. We show that two-layer neural networks can be un-
derstood as kernel methods with the kernel adaptively selected from the data.
This understanding partially explains why neural networks perform better than
kernel methods in practice.

The present paper is the first in a series of papers in which we analyze neural network
models using a classical numerical analysis perspective. Subsequent papers will con-
sider deep neural network models [19,20], the optimization and implicit regularization
problem using gradient descent dynamics [20,22] and the general function spaces and
approximation theory in high dimensions [21].

2. Related work

There are two key problems in learning two-layer neural networks: optimization and
generalization. Recent progresses on optimization suggest that over-parametrization is
the key factor leading to a nice empirical landscape L, [23, 36, 38], thus facilitating
convergence towards global minima of L, for gradient-based optimizers [12,17,31]. This
leaves the generalization property of learning two-layer neural networks more puzzling,
since naive arguments would suggest that more parameters implies worse generalization
ability. This contradicts what is observed in practice. In what follows, we survey
previous attempts in analyzing the generalization properties of two-layer neural network
models.

‘ rate over-parametrization
rate of [6] % + mdl;(n) No
rate of [27] (%)1 3 No
our rate | = 4In(n)('2d)l/2 Yes

TABLE 2.1. Comparison of the theoretical bounds. The second column are the bounds and the
third column indicates whether the bounds are relevant in the over-parametrized regime, i.e. m>n.

2.1. Explicit regularization. This line of work studies the generalization
property of two-layer neural networks with explicit regularization and our work lies
in this category. Let m,m denote the number of samples and number of param-
eters, respectively. For two-layer sigmoidal networks, [6] established a risk bound
O(1/m+mdln(n)/n). By considering smoother activation functions, [27] proved an-
other bound O((Ind/n)'/3) for the case when m = /n. Both of these results are proved
for a regularized estimator. In comparison, the error rate established in this paper,
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O(1/m+Inn+/Ind/n) is sharper and in fact nearly optimal, and it is also applicable for
the over-parametrized regime. For a better comparison, please refer to Table 2.1.

More recently, [41] considered explicit regularization for classification problems.
They proved that for the specific cross-entropy loss, the regularization path converges
to the maximum margin solutions. They also proved an a priori bound on how the
network size affects the margin. However, their analysis is restricted to the case where
the data is well-separated. Our result does not have this restriction.

2.2. Implicit regularization. Another line of work studies how gradient de-
scent (GD) and stochastic gradient descent (SGD) find the generalizable solutions. [9]
proved that SGD learns over-parametrized networks that provably generalize for binary
classification problem. However, it is not clear how the population risk depends on
the number of samples for their compression-based generalization bound. Moreover,
their proof highly relies on the strong assumption that the data is linearly separable.
The experiments in [34] suggest that increasing the network width can improve the
test accuracy of solutions found by SGD. They tried to explain this phenomena by an
initialization-dependent (a posterior) generalization bound. However, in their experi-
ments, the largest width m~n, rather than m >n. Furthermore their generalization
bounds are arbitrarily loose in practice. So their result cannot tell us whether GD can
find generalizable solutions for arbitrarily wide networks.

In [15] and [1], it is proved that GD with a particularly chosen initialization, learning
rate and early stopping can find generalizable solutions 67 such that L(67) <ming L(6) +
g, as long as m > poly(n, %) These results differ from ours in several aspects. First, both
of them assume that the target function f* € H.,, where 7 is the uniform distribution
over S9. Recall that H,, is the reproducing kernel Hilbert space (RKHS) induced by
kro(@,2") =Eyor o ((w,z))o({(w,z'))], which is much smaller than By (X), the space we
consider. Secondly, through carefully analyzing the polynomial order in two papers, we
can see that the sample complexities they provided scales as O(1/ nt/ 4), which is worse
than O(1/4/n) proved here. See also [3,10] for some even more recent results.

Recent work in [20,22] has shown clearly that for the kind of initialization schemes
considered in these previous works or in the over-parametrized regime, the neural net-
work models do not perform better than the corresponding kernel method with a kernel
defined by the initialization. These results do not rule out the possibility that neural
network models can still outperform kernel methods in some regimes, but they do show
that finding these regimes is quite non-trivial.

3. Preliminaries

We begin by recalling the basics of two-layer neural networks and their approxima-
tion properties.

The problem of interest is to learn a function from a training set of n examples S=
{(xi,y:)}i—y, 1.i.d. samples drawn from an underlying distribution p, ,, which is assumed
fixed but known only through the samples. Our target function is f*(x) =E[y|z]. We
assume that the values of y; are given through the decomposition y= f*(z)+¢&, where
¢ denotes the noise. For simplicity, we assume that the data lie in X =[—1,1]¢ and
0<f*<L

The two-layer neural network is defined by

Fla:0)=> aro(wiz), (3.1)
k=1

where wy €R? o0:R—R is a nonlinear scale-invariant activation function such as
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ReLU [30] and Leaky ReLU [25], both satisfy the condition o(at)=ao(t) for any
a>0,teR. Without loss of generality, we assume o is 1-Lipschitz continuous. In the
formula (3.1), we omit the bias term for notational simplicity. The effect of bias term
can be incorporated if we assume that the first component of x is always 1. We say that
a network is over-parametrized if the network width m >mn. We define a truncated form
of f through T f(x) =max{min{f(z),1},0}. By an abuse of notation, in the following
we still use f to denote T'f. We will use 8 ={(ax,wy)}7, to denote all the parameters
to be learned from the training data,
The ultimate goal is to minimize the population risk

L(0) =Eq y[¢(f(2:0),y)].

In practice, we have to work with the empirical risk
£n(0)= 1S U (wii0).00)
n\VU)=— Ti30),Yi)-
[t !

Here the loss function £(y,y’) = %(yfy’)Q, unless it is specified otherwise.
Define the path norm [35],

1012 :=> " lak|llwell, (3.2)
k=1

We will consider the regularized model defined as follows:

DEFINITION 3.1.  For a two-layer neural network f(-;0) of width m, we define the
reqularized risk as

In(0):=Ln(0) + A([|0]lP +1).

The +1 term at the right-hand side is included only to simplify the proof. Our result
also holds if we do not include this term in the reqularized risk. The corresponding
regularized estimator is defined as

O, x =argminJy ().

Here A >0 is a tuning parameter that controls the balance between the fitting error and
the model complexity. It is worth noting that the minimizer is not necessarily unique,
and én A should be understood as any of the minimizers.

In the following, we will call Lipschitz continuous functions with Lipschitz constant
C' C-Lipschitz continuous. We will use X <Y to indicate that X <cY for some universal
constant ¢> 0.

3.1. Barron space. We begin by defining the natural function space associated
with two-layer neural networks, which we will refer to as the Barron space to honor
the pioneering work that Barron has done on this subject [5,27-29]. A more complete
discussion can be found in [21].

Let S?:={w||w||; =1}, and let F be the Borel o-algebra on S? and P(S?%) be the
collection of all probability measures on (S¢,F). Let B(X) be the collection of functions
that admit the following integral representation:

f(x)zéda(w)a(<w,m>)dw(w) Vre X, (3.3)
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where 7€ P(S?), and a(-) is a measurable function with respect to (S¢,F). For any
feB(X) and p>1, we define the following norm

1/p
wih)= it ([ latwrasw) (3.4

(a,m)€OF

where

07 ={(a,m)| f(x) = / a(w)o((w,z))dm(w) }.

Sd

DEFINITION 3.2 (Barron space). We define Barron space by
By (X):={f€B(X) | 7p(f) <oo}.

Since 7(-) is a probability distribution, by Holder’s inequality, for any ¢ >p>0 we
have v,(f) <74(f). Thus, we have By (X) C--- CBa(X) C B (X).

Obviously B,(X) is dense in C(X) since all the finite two-layer neural networks
belong to Barron space with 7(w)=-L3"" | §(w —1dy,) and the universal approximation
theorem [14] tells us that continuous functions can be approximated by two-layer neural
networks. Moreover, it is interesting to note that the v1(-) norm of a two-layer neural
network is bounded by the path norm of the parameters.

An important result proved in [8,27] states that if a function f:X—R satisfies
Jga ||| (w)]dw < 0o, where f is the Fourier transform of an extension of f, then it
can be expressed in the form (3.3) with

)= sup o) S [ [wlR1Fw)lde

weSe

Thus it lies in Boo(X).

Connection with reproducing kernel Hilbert space. The Barron space has
a natural connection with reproducing kernel Hilbert space (RKHS) [2], and as we will
show later, this connection will lead to a precise comparison between two-layer neural
networks and kernel methods. For a fixed 7, we define

1o(3)i={ [ atwlotwa)ino): |, <o .
where

1113, =Exlla(w)]].

Recall that for a symmetric positive definite (PD)! function k:X x X +— R, the in-
duced RKHS H, is the completion of {)".a;k(z;,x)} with respect to the inner product
(k(xi,-),k(zj,-)) 1, =k(xs,2;). It was proved in [37] that H, =H, with the kernel k.
defined by

krx(z,2")=Er[o({(w,z))o({(w,z'))]. (3.5)

1We say k is PD function, if for any x1,...,2,, the matrix K™ with Kz?lj =k(z;,z) is positive
semidefinite.
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Thus Barron space can be viewed as the union of a family of RKHS with kernels defined
by 7 through Equation (3.5), i.e.

By(X)= |J HalX). (3.6)

TEP(SY)
Note that the family of kernels is only determined by the activation function o(-).

3.2. Approximation property. ~
THEOREM 3.1. For any f€Ba(X), there exists a two-layer neural network f(-;0) of
width m, such that

E.[(f(x) —f(m,é))Q] < 37327§f)

16]1> <272(f) (3.8)

This kind of approximation results have been established in many papers, see for
example [5,8]. The difference is that we provide the explicit control of the norm of the
constructed solution in (3.8), and the bound is independent of the network size. This
observation will be useful for what follows.

The proof of Theorem 3.1 can be found in Appendix A. The basic intuition is that
the integral representation of f allows us to approximate f by the Monte-Carlo method:
f(@)~ L3 a(wg)o((wy,z)) where {wy,}{"; are sampled from the distribution .

(3.7)

4. Main results

For simplicity we first discuss the case without noise, i.e. £ =0. In the next section,
we deal with the noise. We also assume In(2d) > 1, and let 4, (f) =max{1,v,(f)}.Ap =

2In(2d)/n. Here d is the dimension of input and the definition of ~,(-) is given in
Equation (3.4).

THEOREM 4.1 (Noiseless case). Assume that the target function f*€By(X) and
A> M. Then for any 6 >0, with probability at least 1 —6 over the choice of the training
set S, we have

Eul (a3 )— @) 5 20 4 xau(r) (@)
== (32 + V(). (42)

Tn
The above theorem provides an a priori estimate for the population risk. The a priori
nature is reflected by dependence of the 43(-) norm of the target function. The first
term at the right-hand side controls the approximation error. The second term bounds
the estimation error. Surprisingly, the bound for the estimation error is independent of
the network width m. Hence the bound also makes sense in the over-parametrization
regime.

In particular, if we take A<\, and m>./n, the bound becomes O(1/y/n) up to
some logarithmic terms. This bound is nearly optimal in a minimax sense [28,42].

4.1. Comparison with kernel methods.  Consider f* € By(X), and without
loss of generality, we assume that (a*,7*) € © - is one of the best representations of f*
(it is easy to prove that such a representation exists), i.e. v3(f*)=E[|a*(w)|?]. For a
fixed 7, we have,

fr(x)= /S @ (w)o((w,z))dr" (w) = / a*(w)dw*

sd dﬁo

(w)o ({w,z))dmo(w) (4.3)
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as long as 7 is absolutely continuous with respect to mp. In this sense, we can view
f* from the perspective of H,. Note that H,, is induced by PD function k., (z,z')=
Eprmo [o({(w,z))o((w,2'))], and the norm of f* in H,, is given by

dr*
dﬂ'o

(w)[?].

1113, =B, lla* (w)

Let H,L, A be the solution of the kernel ridge regression (KRR) problem defined by:

n

1

i N — )2 . 4.4
hrenjlirwlo 2n;(h($z) Yi)” + A Ao, (4.4)

We are interested in the comparison between the two population risks L(@Any,\) and

~ ~

L(hn,)\) :]E[é(hn,k(x)ay)]'
If || f*[[,, < oo, then we have f*€Hr, and infep, L(h)=0. In this case, it was
proved in [11] that the optimal learning rate is

Iy

NG

Compared to Theorem 4.1, we can see that both rates have the same scaling with
respect to n, the number of samples. The only difference appears in the two norms:
Y2(f*) and || f*[|3,,. From the definition (3.4), we always have v2(f*) <|[f*[|3,, , since
(a*%,ﬂ'o) €0Oy-. If m* is nearly singular with respect to 7o, then [|f*[|3;, >72(f").
In this case, the population risk for the kernel methods should be much larger than the
population risk for the neural network model.

Example. Take 7y to be the uniform distribution over S¢ and f*(z)=o((w*,x)),
for which 7*(w) =§(w —w*) and a*(w)=1. In this case y2(f*) =1, but || f*|[#,, =+oc.
Thus the rate (4.5) becomes trivial. Assume that the population risk scales as O(n=?),
and it is interesting to see how 3 depends on the dimension d. We numerically estimate
B’s for two methods, and report the results in Table 4.1. It does show that the higher
the dimensionality, the slower the rate of the kernel method. In contrast, the rates for
the two-layer neural networks are independent of the dimensionality, which confirms the
the prediction of Theorem 4.1. For this particular target function, the value of >1 is
bigger than the lower bound (1/2) proved in Theorem 4.1. This is not a contradiction
since the latter holds for any f € Ba(X).

d 10 100 1000
Ban | 1.18 1.23  1.02
Brer | 0.50  0.35 0.14

TABLE 4.1. The error rates of learning the one-neuron function in different dimensions. The
second and third lines correspond to the two-layer neural network and the kernel ridge regression
method, respectively.

The two-layer neural network model as an adaptive kernel method. Recall
that By(X)=U;H.(X). The norm ~,(:) characterizes the complexity of the target
function by selecting the best kernel among a family of kernels {k(:,-)}rcp(say. The
kernel method works with a specific RKHS with a particular choice of the kernel or the
probability distribution 7. In contrast, the neural network models work with the union
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of all these RKHS and select the kernel or the probability distribution adapted to the
data. From this perspective, we can view the two-layer neural network model as an
adaptive kernel method.

4.2. Tackling the noise. = We first make the following sub-Gaussian assumption
on the noise.

ASSUMPTION 4.1. We assume that the noise satisfies

Pl¢]>t] < coe™ T V> 0. (4.6)

Here cy,m9 and o are constants.

In the presence of noise, the population risk can be decomposed into
L(0)=E,(f(x:0) — f*(x))* +E[£°]. (4.7)

This suggests that, in spite of the noise, we still have argmin, L(0) =argmingE,.| f(x;6) —
f*(x)|?, and the latter is what we really want to minimize. However due to the noise,
£(f(x;),y;) might be unbounded. We cannot directly use the generalization bound in
Theorem 5.2. To address this issue, we consider the truncated risk defined as follows,

B2

-

. 1 — B?

Lp(0)= EZE(%‘;@)’%) A 5
=1

Lp(0) =Eq y[6(f(2:0),y) A

Let B, =1+max{ry,0%Inn}. For the noisy case, we consider the following regularized
risk:

In(0):=Lp, (0) +AB,(||0]|p+1). (4.8)
The corresponding regularized estimator is given by ém x=argminJy(6). Here for sim-
plicity we slightly abused the notation.

THEOREM 4.2 (Main result, noisy case). Assume that the target function f* € Ba(X)
and A>X,. Then for any § >0, with probability at least 1—9§ over the choice of the
training set S, we have

2( px 2
S B )+ T (salr) + /D))

B? [ E[£2
+J(6002+ 1[52])
NG nl/2)
Compared to Theorem 4.1, the noise introduces at most several logarithmic terms. The
case with no noise corresponds to the situation with B, =1.

E.|f(2;0,5) — f*(z)?

4.3. Extension to classification problems. Let us consider the simplest
setting: binary classification problem, where y € {0,1}. In this case, f*(z) =P{y=1|z}
denotes the probability of y=1 given z. Given f*(-) and f(-;6, ), the corresponding
plug-in classifiers are defined by n*(z) =1[f*(z) > 3] and 7j(z) = 1[f(2;0,.0) > 1], respec-
tively. n* is the optimal Bayes classifier.
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For a classifier 7, we measure its performance by the 0-1 loss defined by £(n)=
P{n(z) #y}-

COROLLARY 4.1.  Under the same assumption as in Theorem /.2 and taking A=\,
for any § € (0,1), with probability at least 1—4, we have

* n"*(d) +1n"*(n/s
7%)+&21/2(f*) ( ):;/4 (n/)

EMSEM)+
Proof. According to the Theorem 2.2 of [16], we have

(1) —Em") < 2E[|f(x30,,2) = f* ()]
<2E[|f(2:00,0) = " (@)[] (4.9)

In this case, e; =y; — f*(x;) is bounded by 1, thus 7o =1,¢=0=0. Applying Theorem 4.2
yields the result. 0

The above theorem suggests that our a priori estimates also hold for classification
problems, although the error rate only scales as O(n~'/%). It is possible to improve
the rate with more a delicate analysis. One potential way is to specifically develop a
better estimate for L; loss, as can be seen from inequality (4.9). Another way is to
make a stronger assumption on the data. For example, we can assume that there exists
f* € Ba(X) such that P, (yf*(x) >1) =1, for which the Bayes error £(n*) =0. We leave
these to future work.

5. Proofs

5.1. Bounding the generalization gap.
DEFINITION 5.1 (Rademacher complexity). Let F be a hypothesis space, i.e. a set of
functions. The Rademacher complexity of F with respect to samples S = (z1,22,...,2,) 1
defined as R, (F)= 1R, [sup e > iy €if (2:)], where {e;}}, are i.i.d. random variables
with P(e;=+1) =P(e;=—1)=1.

The generalization gap can be estimated via the Rademacher complexity by the
following theorem [39].

THEOREM 5.1.  Fiz a hypothesis space F. Assume that for any f € F and z, | f(2)| < B.
Then for any § >0, with probability at least 1—06 over the choice of S=(z1,22,...,2n),
we have,

IR - 2In(2/6
237 fa) - Bl ()] < 2[R ()] + By 20
i=1
Let Fo={f(x;0)]|10]l» <Q} denote all the two-layer networks with path norm bounded
by Q. It was proved in [35] that

R (Fo)<2Q QIHTW). (5.1)

By combining the above result with Theorem 5.1, we obtain the following a posterior
bound of the generalization gap for two-layer neural networks. The proof is deferred to
Appendix B.

THEOREM 5.2 (A posterior generalization bound). Assume that the loss function
£(-,y) is A—Lipschitz continuous and bounded by B. Then for any ¢ >0, with probability
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at least 1—9§ over the choice of the training set S, we have, for any two-layer network

1£6) - L)) < 14y 222D (g 1) (52

+B\/21n(20(||9||7>+1)2/5)

n

, (5.3)

where c=Y ;- 1/k*.

We see that the generalization gap is bounded roughly by ||0]lp/+/n up to some
logarithmic terms.

5.2. Proof for the noiseless case. The intuition is as follows. The path norm
of the special solution 6 which achieves the optimal approximation error is independent
of the network width, and this norm can also be used to bound the generalization gap
(Theorem 5.2). Therefore, if the path norm is suitably penalized during training, we
should be able to control the generalization gap without harming the approximation
accuracy.

We first have the estimate for the regularized risk of 6.

PROPOSITION 5.1. Let 0 be the network constructed in Theorem 5.1, and A\> \,,.
Then with probability at least 1 —0, we have

~ ~ 2In(2¢/d
Jn(0) < L(0)+8Ma(f*) +2 % (5.4)
Proof. First é(y,yi):%(yfyi)2 is 1-Lipschitz continuous and bounded by 2.

According to Definition 3.1 and the property that 10]l» <27v2(f*), the regularized risk
of 6 satisfies

In(0) =L (0)+ (|0l +1)

SL(é)+(An+A)(||é||P+1)+2\/2ln(26(||5|np+1)2/5)

< L(0) +6Ma(f") +2\/2ln(20(1 . ?M*))%)

. (5.5)

The last term can be simplified by using va+b<+/a+ Vb and In(1+a)<afora>0,b>
0. So we have

V2In(2¢(1+272(f%))2/6) < /2In(2¢/6) + 332 (f*).
Plugging it into Equation (5.5) completes the proof. O

PROPOSITION 5.2 (Properties of regularized solutions). The regularized estimator

0., x satisfies:

J)\(én,/\) < Jx(0)

I0alp < 2 5oy 4 L yi2ers)
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Proof. The first claim follows from the definition of én For the second claim, note
that

A([[0n]lp+1) < Jx(6,) <A (6),

Applying Proposition 5.1 completes the proof. ]

REMARK 5.1.  The above proposition establishes the connection between the regular-
ized solution and the special solution 6 constructed in Theorem 3.1. In particular, by
taking A=t\,, with ¢>1 the generalization gap of the regularized solution is bounded

by % — L(0)/(tv/In2d) as n— oo, up to some constant. This suggests that our

regularization term is appropriate, and it forces the generalization gap to be roughly in
the same order as the approximation error.

Proof. (Proof of Theorem 4.1.) Now we are ready to prove the main result.
Following the a posteriori generalization bound given in Theorem 5.2, we have with
probability at least 1—4,

L(0p2) < Ln(0n2) + A (|00 llp +1)+3Qn

) ~
< In(0n ) +3Qn,

—~
=

where Q, = \/ln(Zc(l—I—||9An,>\||)2/5)/n. The inequality (1) is due to the choice A>\,,.

The first term can be bounded by Jx(6,,) < Jx(6), which is given by Proposition 5.1.
It remains to bound @,

VQn < \/I@nc/8) +\/2(1+ 01720, 5 )
< Vin(@ne/6) + /26 71/
By Proposition 5.2, we have
¢ﬂwmxb<c¢%I@VA+&bUﬂ+05v@Wkﬁm
Vi N
2M®+3%uﬂ+<maw»”€

- )\nl/Q n1/4 n

Thus after some simplification, we obtain

Qn <24/ 1n(2/5) +1/ iﬁg% + 3%/%*) . (5.6)

By combining Equation (5.4) and (5.6), we obtain

3 ( L(6)

L(én)gL(é)—FS)\%(f*)‘Fﬁ 2\

+a(f*)+v/I(n/5) ).

By applying L(0) <3~2(f*)/m, we complete the proof. 0
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5.3. Proof for the noisy case. We need the following lemma. The proof is
deferred to Appendix C.

LEMMA 5.1.  Under Assumption 4.1, we have

26002

stelp|L(9)*LBn(9)|§

Therefore we have,

L(0)=L(0)—Lp,(0)+Lp,(0) <

This suggests that as long as we can bound the truncated population risk, the original
risk will be bounded accordingly.

Proof. (Proof of Theorem 4.2.) The proof is almost the same as the noiseless
case. The loss function £(y,y;) A B2/2 is B-Lipschitz continuous and bounded by B2/2.
By analogy with the proof of Proposition 5.1, we obtain that with probability at least
1—9 the following inequality holds,

)< L, (0)+ 8B (1) + B2 2L (5.7)

Following the proof in Proposition 5.2, we similarly obtain Jy (énA) < J,\(é) and

||én,A||P§L%@-l—&?(f*)-i-%\/ln@c/é). (5.8)

n

Following the proof of Theorem 4.1, we have

Lp, (0n.0) < Jx(0)+ %’21\/2111(2@(1 +10n.ll2)2/8) /0. (5.9)

Plugging (5.7) and (5.8) into (5.9), we get

L, (6nx) <Lp, (0)+8B,Aa(f*)A

+3B72L( Lgp, (0)
NN D)

Using Lemma 5.1 and the decomposition (4.7), we complete the proof. 0

+52(f)+VIn(n /o) ).

6. Numerical experiments

In this section, we evaluate the regularized model using numerical experiments. We
consider two datasets, MNIST? and CIFAR-10%. Each example in MNIST is a 28 x 28
grayscale image, while each example in CIFAR-10 is a 32x32x 3 color image. For
MNIST, we map numbers {0,1,2,3,4} to label 0 and {5,6,7,8,9} to 1. For CIFAR-10,
we select the examples with labels 0 and 1 to construct our new training and validation
sets. Thus, our new MNIST has 60,000 training examples, and CIFAR-10 has 10,000
training examples.

2http://yann.lecun.com/exdb/mnist/
Shttps://www.cs.toronto.edu/~kriz/cifar.html


http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
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The two-layer ReLU network is initialized using a; ~N(0,2%), w; ; ~N(0,2x/d). We
use k=1 and train the regularized models using the Adam optimizer [26] for T'= 10,000
steps, unless it is specified otherwise. The initial learning rate is set to be 0.001, and
it is then multiplied by a decay factor of 0.1 at 0.77 and again at 0.97. We set the
trade-off parameter A=0.1)\,,* .

6.1. Shaper bounds for the generalization gap. Theorem 5.2 shows that

the generalization gap is bounded by % up to some logarithmic terms. Previous

works [18, 34] showed that (stochastic) gradient descent tends to find solutions with
huge norms, causing the a posterior bound to be vacuous. In contrast, our theory
suggests there exist good solutions (i.e. solutions with small generalization error) with
small norms, and these solutions can be found by the explicit regularization.

To see how this works in practice, we trained both the regularized models and
unregularized models (A=0) for fixed network width m =10,000. To cover the over-
parametrized regime, we also consider the case n=100 where m/n=100>1. The
results are summarized in Table 6.1.

dataset ‘ A ‘ n ‘ training accuracy | testing accuracy ‘ ”\9/"%’
0 104 100% 84.5% 58
100 100% 70.5% 507
CIFAR-10
10* 87.4% 86.9% 0.14
0.1
100 91.0% 72.0% 0.43
0 6x 104 100% 98.8% 58
MNIST 100 ; 100% 78.7% 162
6x 10 98.1% 97.8% 0.27
0.1
100 100% 74.9% 0.41

TABLE 6.1. Comparison of regularized (A=0.1) and unregularized (A=0) models. For each case,
the experiments are repeated for 5 times, and the mean values are reported.

As we can see, the test accuracies of the regularized and unregularized solutions are
generally comparable, but the values of %, which serve as an upper bound for the gen-
eralization gap, are drastically different. The bounds for the unregularized models are
always vacuous, as was observed in [4,18,34]. In contrast, the bounds for the regularized
models are always several orders of magnitude smaller than that for the unregularized
models. This is consistent with the theoretical prediction in Proposition 5.2.

To further explore the impact of over-parametrization, we trained various models
with different widths. For both datasets, all the training examples are used. In Fig-
ure 6.1, we display how the value of % of the learned solution varies with the network
width. We find that for the unregularized model this quantity increases with network
width, whereas for the regularized model it is almost constant. This is consistent with
our theoretical result.

6.2. Dependence on the Initialization. Since the neural network model is
non-conves, it is interesting to see how initialization affects the performance of the differ-
ent models, regularized and unregularized, especially in the over-parametrized regime.
To this end, we fix m=10000,7=100 and vary the variance of random initialization

4Qur proof of theoretical results requires A > \,,. However, this condition is not necessarily optimal.
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MNIST CIFAR-10
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Fic. 6.1. Comparison of the path norms between the reqularized and unregularized solutions for
varying widths.

MNIST CIFAR-10
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F1G. 6.2. Test accuracies of solutions obtained from different initializations. Each experiment is
repeated for 5 times, and we report the mean and standard deviation.

k. The results are reported in Figure 6.2. In general, we find that regularized mod-
els are much more stable than the unregularized models. For large initialization, the
regularized model always performs significantly better.

7. Conclusion

In this paper, we proved nearly optimal a priori estimates of the population risk
for learning two-layer neural networks. Our results also give some insight regarding the
advantage of neural network models over the kernel method. We should also mention
that the main result of this paper has also been extended to deep residual network
models in [19].

The most unsatisfactory aspect of our result is that it is proved for the regularized
model since practitioners rely on the so-called implicit regularization. At the moment
it is unclear where the “implicit regularization” comes from and how it actually works.
Existing works consider special initialization schemes and require strong assumptions
on the target function [1,9,15,20,22]. In particular, the work in [20,22] demonstrates
clearly that in the regimes considered the neural network models are no better than the
kernel method in terms of implicit regularization. This is quite unsatisfactory.

There is overwhelming evidence that by tuning the optimization procedure,
including the algorithm, the initialization, the hyper-parameters, etc., one can find
solutions with superior performance on the test data. The problem is that excessive
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tuning and serious experience is required to find good solutions. Until we have a
good understanding about the mysteries surrounding implicit regularization, the
business of parameter tuning for unregularized models will remain an art. In contrast,
the regularized model proposed here is rather robust and much more fool-proof.
Borrowing the terminology from mathematical physics, one is tempted to say that the
regularized model considered here is “well-posed” whereas the unregularized model is
“lll-posed” [40].

Acknowledgement. The work presented here is supported in part by a gift to
Princeton University from iFlytek and the ONR grant N00014-13-1-0338.

Appendix A. Proof of Theorem 3.1. Without loss of generality, let (a,m) be
the best representation of f, i.e. v3(f) =Ex[la(w)[*]. Let U={w;}7-, be i.i.d. random
variables sampled from 7 (-), and define

1
E Z alw w]7 >)
Jj=1
Let Ly =E,|fu(z) — f(2)|? denote the population risk, we have
Ey[Ly)=E.Ev|fv(z) - f(2)]”

= LB, S B (0o ((wy.2) - £ aw)o(wi.2) - £(a)]

J,l=1

Sv%(f)'

m

On the other hand, denote the path norm of fy(z) by Ay, we have Ey[Ay] =y (f) <
Y2(f)-

Define the event F;={Ly < %}, and Es={Ay <2v(f)}. By Markov’s in-
equality, we have

P{E1}=1-P{Ly > Sviif)}zl—W%
PLE) =1-PlAy > 2(N}21- 20 >3,

Therefore, we have the probability of two events happening together,
2 1
P{E1NEy}=P{E1}+P{E2}—1> = 3 +* 1>0.

This completes the proof.

Appendix B. Proof of Theorem 5.2. Before we provide the upper bound for the
Rademacher complexity of two-layer networks, we first need the following two lemmas.

LEMMA B.1 (Lemma 26.11 of [39]). Let S=(x1,...,X,) be n vectors in R%. Then the
Rademacher complexity of Hi={x—wu-x | ||u|l1 <1} has the following upper bound,

21In(2d)

R () < max x| | 2
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The above lemma characterizes the Rademacher complexity of a linear predictor with
f1 norm bounded by 1. To handle the influence of nonlinear activation function, we
need the following contraction lemma.

LEMMA B.2 (Lemma 26.9 of [39]). Let ¢;:R—R be a p—Lipschitz function,
i.e. for all o, BER we have |p;(a)—¢i(B)| <pla—pB|. For any acR™, let ¢(a)=
(61(01),++6n(an)), then we have

7%7L(¢OH) < /ﬂén(H)
We are now ready to estimate the Rademacher complexity of two-layer networks.

LEMMA B.3. Let Fg={fm(z;0)|0]lp <Q} be the set of two-layer networks with path
norm bounded by Q, then we have

RN@Qme@

Proof.  To simplify the proof, we let ¢, =0, otherwise we can define wy = (w}, ;)7

and x= (xT,1)T.

nRy(Fg)=Ee[ sup Z&Zakﬂwk\ha W x;)]
k=1

loll»<Qi=7

<E¢| Z&ZakHwkHlU uj;x;)]

||9H7><Q Huklh Lic1 k=

=E¢| Zakllwll Z& o(ujx;)]

H9HP<Q HukH1 1

<E[ sup Zmnwuu sup |Za o(uTx,)|

lel»< lwlli=1

<wgmw2@u&u

lull1=1 i=1

<QE¢| sup |Z£l ulx;)]].

[lull1<1 i=1

Due to the symmetry, we have that

Ee[ sup |Z§Z u”x;)|] <E¢[ sup Z& ul'x;)+ sup Z Gio(u"x;)]

lwli<t 3= lwll <132 lull <132

~25] s, 3 6]

HUH1<1

Since o is Lipschitz continuous with Lipschitz constant 1, by applying Lemma B.2 and
Lemma B.1, we obtain

m@mm?%@
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PROPOSITION B.1.  Assume the loss function £(-,y) is A—Lipschitz continuous and
bounded by B, then with probability at least 1 —¢§ we have,

sup |L(6) — L, (0)] <4AQ\/2ln£2d) +B\/2ln(2/6). (B.1)

llol»<Q n

Proof. Define Ho={lof|f€Fg}, then we have R,,(Hg) §2BQ\/21HT(2d), which
follows from Lemma B.2 and B.3. Then directly applying Theorem 5.1 yields the result.
a0

Proof. (Proof of Theorem 5.2.) Consider the decomposition F=U;°, F;, where
Fir={fm(x:0)]|0]|p <1}. Let § = - where c=) 2, &. According to Proposition B.1,
if we fix [ in advance, then with probability at least 1 —§; over the choice of S, we have

sup |L(0)— L.n(6)] §4Al\/21n£2d) +B\/2hl(j/5l). (B.2)

llel»<i

So the probability that there exists at least one [ such that (B.2) fails is at most Y _,>, 6, =
0. In other words, with probability at least 1—4, the inequality (B.2) holds for all I.

Given an arbitrary set of parameters 6, denote lo=min{l|||0||p <I}, then Iy <
10|l + 1. Equation (B.2) implies that

106) - £.(0) < ity 22D, 2 CAE/0)

<aa(lolp+ 1y 2220 | g, G+ IPIPTB]

n

Appendix C. Proof of Lemma 5.1.
Proof. Let Z = f(x;0)— f*(x) —e, then for any B >2+1p, we have

L)~ Le(0)| =E[(Z* ~ B*)12> ]
:/OOI[D{Z2 —B2>t2dt? < /OOIP{|Z\ > /B2 +2}dt?

0 0

g/ P{le| > VBE 1 2 - 2}dt?
0

s, _B?/205?
=cp e 202ds“=2¢cyo”e
B

57
Since B,, > o2lnn, we have 2¢yo2e” 202 < 2coo?n~ /2. We thus complete the proof. 0O
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