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AN OPTIMIZATION PRINCIPLE FOR INITIATION AND
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Abstract. Structural optimization of biological transport networks, such as leaf venation and blood
vessel systems, can be regarded as a consequence of natural selection. Many studies have examined
the important question of whether an adaptation dynamics of edges can be responsible for structural
optimization. However, what role the initiation process plays in structural optimization remains to be
clarified. Here we propose an optimization principle that potentially underlies common mechanisms
that drive the formation of biological transport networks. Associated with the optimization principle
is an adaptation dynamics of cell polarization that unifies initiation processes and segment formation
of transport networks. In our model, the competition between the reduction of transport energy cost
and the reduction of material and metabolic consumptions is sufficient to induce optimal structures: a
tree-like network as well as loops under different states of fluctuating drives.
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1. Introduction
Efficient and robust transport networks are the cornerstone of our modern industrial

life for quick delivery of people, goods, energy, and information. Despite their impor-
tance, a clear global designing principle of such networks is not present to guarantee
their efficiency and robustness in general [1]. In fact, the large scale structure of most in-
dustrial transport networks results from adaptive construction in response to continuous
changing local requirements. One may be interested in how good the global efficiency of
such a local adaptive strategy can be in constructing transport networks. Many trans-
port networks, such as railway and highway networks, are naturally embedded in two-
or three-dimensional spaces. It is also of interest to study the strategy of introducing
such geometrical constraints in network designing. Furthermore, as suggested by ideal-
ized models, such as the Steiner tree model [1–3], non-convex optimization and multiple
solutions may generally exist in the designing of transport networks. It is important to
study the way of avoiding high cost solutions in real applications.

Transport networks such as blood vessel systems and leaf venations also play a cru-
cial role in nutrient supply and waste removal for large life systems. As a consequence
of natural selection, one may simply believe that a kind of structural optimization for
biological transport networks, tailored for their physiological demanding and geometri-
cal constraints (such as the two-dimensional structure of leaves and retina), has been
selected by the long evolution history. An important scientific question is: do there ex-
ist macroscopic principles in general that control and organize underlying biochemical
and physiological processes of biological transport networks? A deep exploration of this
question may provide understandings in twofold – (1) the relatively simple macroscopic
function of the complex high-dimensional microscopic biological processes in the con-
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struction of biological transport networks and (2) a bionic means of designing efficient
and robust transport networks under geometrical constraints.

There has been a long interest in the designing principle of biological transport
networks, including the scaling properties of the blood vessel diameters and the origin
of specific network structures. Experimental studies have shown that for small blood
vessels, there is an approximate cubic law, D3 =D3

l +D3
r , between the diameter D of a

parent vessel and the diameters Dl and Dr of its daughter vessels [4]. By optimization
of the total energy cost in blood flow delivery and metabolic cost of blood cells, Murray
successfully explained this cubic relation, consequently, suggesting that there is a narrow
range of wall shear stress of the blood flow [5]. Biological transport networks that contain
many loops while maintaining an impression of a tree-like major structure are believed
to afford great benefits to living systems, including energy efficiency [1,6–16], mechanical
robustness [17], and damage tolerance [8]. With given initial network geometry, it is
shown that adaptation dynamics of network edges in response to local stimuli, such as
the adaptation of blood vessel diameters in response to the wall shear stress of blood
flow, can lead to structural optimization [13–16].

The mechanisms for initiation of transport networks has been under active ex-
plorations. Experimental studies have drawn attention to the importance of hormone
transport for initiating a biological transport network in both animals and plants. It
has been shown that for embryo vasculogenesis [18], the network of endothelial cells
is initiated before the heart starts to beat, eventually forming the earliest circulation
system. During leaf budding [19–22], it has been observed that delivery of auxin is
concentrated on a “network” of cells with an enhanced power of active transport, which
eventually develops to form the leaf venation. Theoretically, it has also been demon-
strated that migration and elongation of endothelial cells driven by chemoattractants
may be essential in vasculogenesis and angiogenesis [23, 24]. Canalization was hypoth-
esized [20, 22, 25–28] to stress the role of auxin in the formation of leaf veins, that is,
the differentiation of cells induced by transport of auxin enhances its power in active
transport. Furthermore, pruning of unnecessary blood vessels has been observed as
sequential events of vessel adaptation to optimize the network structure [14–16].

Although the endothelial cells of pruned vessels can migrate to be reused elsewhere
[14], signal pathways that can reduce the frequency of vessel pruning in vasculogenesis
and angiogenesis may significantly reduce energy cost in the formation of blood vessel
systems. For plants whose vascular cells cannot move freely, a pruning process is not
efficient and it is of particular importance to find optimal networks of low energy cost
through the initiation process. However, the important question of what is the role of
the initiation process remains to be elucidated in structural optimization of biological
transport networks. A governing principle that can incorporate the initiation process in
structural optimization may shed light on the global effects of signal pathways on the
initiation process of biological transport networks.

In this work, we propose an optimization process as an organization principle un-
derlying the physiological mechanism of the initiation process. We address the question
of what are the characteristics of intrinsically required driving stimuli and their phys-
iological function in the initiation process of biological transport networks; what role
the initiation process can play in the optimization of the network structure; and what
is the mechanism underlying the initial formation of loops in a network. Based on
our model and simulation results, we also discuss possible bionic means of designing
efficient and robust transport networks, which can be naturally embedded in two- or
three-dimensional spaces.
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2. Mathematical modeling of the initiation and adaptation process of
biological transport networks

We hypothesize that as a result of the long evolution history, the total effective
energy cost function of biological transport networks is optimized by reducing the me-
chanical energy cost in transport and metabolic energy cost in forming the network. We
use this optimization principle to construct a continuum model to incorporate both the
initiation and adaptation processes of biological transport networks. Our continuum
model does not require a preexisting network structure and in this model the optimal
transport network can naturally emerge.

In our model, we include the three transport means in tissue – pure diffusion, active
transport, and flow in veins. As can be seen from the experiment on leaf budding [19–22],
the active transport of auxin can concentrate on a specific direction as a result of a
direction-specific line-up of transmembrane proteins. To describe the enhancement of
active transport, we use the polarization vector, m, whose direction stands for the
direction of active transport and the amplitude |m| for the strength of transport power.
In the previous work [22], in which diffusion and concentration of auxin in tissue are
assumed to be able to stimulate active transport, the notion of critical strength of
active transport was introduced. Above this critical strength of active transport, cells
are assumed to differentiate to form vessel segments. In our model, |m| can be viewed
as playing a dual role: when the magnitude |m| is greater than some critical value m0,
we interpret this as the formation of a vascular segment, i.e., the direction of m can be
regarded as the direction of the segment and |m|2 as the conductance of the vascular
segment.

The different means of transport can be modeled by the transport tensor,

A=DI+Ã=DI+m⊗m,

where D is the diffusion constant of the background substrate, I is the identity tensor,
and ⊗ denotes the tensor product. Because the transport process is in general much
faster than the initiation process, we can describe the transport process by the steady
state equation

∇·(A ·∇P ) =s, (2.1)

where P is the partial pressure of the relevant hormone (e.g., auxin) and s is the dis-
tribution of the source of hormone produced in the tissue. In general, the background
diffusion constant is much smaller than the critical polarization power m2

0. Therefore,
for |m|>m0, Equation (2.1) can be effectively viewed as the Kirchoff’s laws for ob-
taining the flow distribution in the vascular network. As will be discussed below, the
distribution function s can be fluctuating. Then, the corresponding density of energy
cost in transport becomes 〈∇P ·A ·∇P 〉, where 〈·〉 is the average over all fluctuations. If
the time scale of fluctuations is comparable to that of the transport, a non-steady-state
transport equation should be used, which can lead to a reduction in the strength of
fluctuations in flux.

Next, we consider the metabolic cost in forming a network. In comparison with pure
diffusion, although active transport and flow in veins are more efficient in enhancing the
delivery power and reducing the energy cost in transport, these two processes also require
higher metabolic investment in maintaining high concentration of membrane proteins
for active transport or in forming the veins and producing the fluid such as blood in
the veins. In our model, we assume that the density of metabolic energy cost, M(|m|2),
can be effectively captured by a function of the amplitude of the polarization m.
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The total energy cost function can now be written as

E=

∫
Ω

(
〈∇P ·A ·∇P 〉+M(|m|2)+α|∇m|2

)
dx,

where Ω is the tissue domain with x as the spatial coordinate. The term α|∇m|2 takes
into account the entropy associated with the intra- and inter-cellular diffusion of the
polarization signal. A corresponding adaptation dynamics that fulfill the optimization
principle can be modeled as follows by requiring that the total energy cost is decreasing
along with the adaptation of the polarization vector m:

∂m

∂t
=D04m+c0(〈(m ·∇P )∇P 〉−M ′(|m|2)m), (2.2)

where D0 is the diffusion constant of polarization signal, c0 =D0/2α is a constant that
determines the time scale of adaptation. We use 〈·〉 to represent the average of the
stimuli over all fluctuating states. For |m|>m0, Equation (2.2) can be regarded as
the corresponding adaptation process of the segments [14–16]. In other words, we have
seamlessly integrated both the initiation process and the adaptation process of segments
in a single model.

The adaptation dynamics of the polarization vector is dominated by the competi-
tion between two processes — the polarization process driven by the flux to enhance
the delivery power and the natural contracting process to reduce the metabolic cost
in maintaining the polarization or segments of the venation. At steady states of the
adaptation dynamics, the total energy cost reaches a minimum and an optimal struc-
ture is obtained. It is worthwhile to point out that in our model the stimuli depend
only on local information. This is important for living systems since communication of
information is usually energetically costly.

Simulation results. Our model exhibits rich dynamics with a plethora of optimal
structures. First, we consider the case of a fixed source (sink) distribution, namely, s is
independent of time. As is shown by our simulation, the convexity of the metabolic cost
function, M(·), plays a controlling role in the formation of the optimal structure. When
M(·) is a concave function, the adaptation process induces the formation of a tree-like
structure (see Figure 2.1); when it is convex, the steady state consists of a nearly uniform
sheet without any vascular segment formation. The effects of convexity are consistent
with the results obtained from discretized optimal transport networks [7, 8, 10, 11, 15].
For a concave metabolic cost function, intuitively, it is energetically favorable to deliver
flow in concentrated channels instead of delivering separately through multiple parallel
paths (a uniform sheet can be viewed as its limiting case). As a consequence, when the
sources and sinks are fixed, loopy networks are unstable and tree-like structures emerge.

The diffusion constants, D and D0, induce two characteristic length scales, i.e.,
the characteristic length separating the smallest branches of a tree, l0, and the char-
acteristic width of veins, l1. In particular, for a metabolic function in the form of
power law, M(|m|2) = b|m̃|2γ , γ <1, the two length scales become l0 =

√
bγDγ+1/s0

and l1 =α
1+γ
4 (bγ)−

γ
2D

(1+γ)(1−γ)
2 s

γ−1
2

0 , respectively (see Appendix B). When the deliv-
ery length (the distance from a location to its nearest vascular segment) is much smaller
than l0, it is energetically favorable to transport directly by the background diffusion and
there is no active transport, thus no formation of veins; in contrast, when the distance is
much greater than l0, active transport leads to the formation of veins so as to reduce the
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Fig. 2.1. Optimal tree-like network structures obtained with the adaptation dynamics (2.2). Colors
stand for the amplitude of log

(
|m|2 +D

)
. A uniform constant source (s= s0) is fixed in the entire

domain with a single sink at the center. The initial value of the polarization vector field is random and
has the magnitude of the diffusion constant

√
D. The Neumann boundary conditions for Eqs. (2.1)

and (2.2) are used in the simulation. Parameters: D= 1×10−3, α= 1×10−6, c0 = 5×10−3, b= 1,
s0 = 1, and γ= 0.5. The length of the hexagon edge is 1. See numerical methods in Appendix C.

Fig. 2.2. An optimal loopy network obtained with fluctuating sources. (a) Magnitude of the
polarization vector filed. (b) Angle between the polarization vector and the x-axis, which shows that
the polarization vector on an edge is approximately tangential to the edge. The domain is divided into
900 small sub-domains and the sources on only 10 randomly selected sub-domains are open at each
time step. The Dirichlet boundary condition is applied for Equation (2.1) on the short edge on the left.
All other boundary conditions are Neumann. Parameters: D= 1×10−6, α= 1×10−6, c0 = 5×10−3,
b= 1, s0 = 1, and γ= 0.5. The length of the diamond edge is 1.

total energy cost. Therefore, l0 characterizes the length between neighboring segments
of the network. Meanwhile, l1 characterizes the width of vascular segments. In the
limiting case that both diffusion constants vanish, the steady-state network manifests a
fractal structure.

Due to the concavity of the metabolic cost function, M(·), there is a large set of dif-
ferent optimal tree-like structures that can be obtained from different initial conditions
of m. Therefore, it is interesting to study how optimal networks with high energy cost
can be avoided by the adaptation dynamics. According to our simulation, when the
strength of the random initial polarization, |m|2, is much smaller than the background
diffusion constant D, the optimal tree-like structures have similar appearances to each
other; When the initial polarization is comparable to D, the configuration of optimal
structures becomes sensitive to the initial value but the difference in total energy cost
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between different optimal configurations is still small (e.g., less than 3%); When the
random initial polarization is significantly greater than D, the total energy cost of the
optimal structures can be 10% greater than that obtained with small initial values.
Therefore, we can control the background diffusion in the initiation process leading to
optimal network structures with low energy cost. These simulation results suggest that
high energy cost of locally optimal transport networks can be avoided by the adaptation
dynamics with small initial value of the polarization, m.

Loops are common in real biological transport networks. The question of how
they arise and what benefit they can provide has attracted great interests [8, 9, 15, 17].
The benefit from loopy structures has been discussed on energy efficiency [8, 9, 15],
damage tolerance [8], and mechanical robustness [17]. Theoretically, it was observed that
loops become stable in a network as a result of fluctuations in flow distributions [15].
Interestingly, experimental observations also show that there are fluctuations in the
production of auxin [19,21,26].

In order to study the effect of fluctuating sources, a Monte-Carlo method is used in
our simulation: the tissue domain is divided into small sub-domains, and the hormone is
produced only on a few randomly-selected sub-domains at each time step. With a suffi-
ciently small time step, the adaptation process can also yield relatively stable networks.
As is shown in Figure 2.2, loops are generated in the network through the adaptation
dynamics when there is a small percentage of hormone-producing sub-domains at each
step. From our simulation, the loop density (loop number per unit area) increases with
the power parameter γ and decreases with the percentage of hormone-producing sub-
domains at each step. In particular, when the percentage is greater than a critical value
(∼0.7 for γ= 0.5), no loops are found in the optimal network. Intuitively, a smaller
power parameter γ means a more concave metabolic function, hence more unstable
parallel pathways, thus more difficult to form stable loops. In contrast, a smaller per-
centage of hormone-producing sub-domains corresponds to stronger fluctuations in the
flow distribution, thus making loops more stable. These results are consistent with the
previous discussions on adaptation processes of discretized transport networks [15].

The above numerical results show that by incorporating sufficiently strong fluctu-
ations in hormone sources, loops can spontaneously emerge along with the adaptation
dynamics (2.2). From this point of view, fluctuations in hormone sources as observed
in experiments may be employed simply to induce the formation of loops. With these
loops, optimal vascular networks obtained from the adaptation dynamics (2.2) can meet
well the requirement of network efficiency optimization under fluctuating flow demand.

Conclusion and discussion. We have proposed an optimization principle with
its associated adaptation dynamics that integrates both the initiation and adaptation
processes of general biological transport networks. The optimal structures are obtained
at steady states of the adaptation dynamics. The adaptation dynamics is mainly driven
by the competition between two local processes, which are required in structural opti-
mization of the networks. The concavity of the metabolic cost function underlies the
instability of parallel transport paths in the adaptation process and brings the net-
work structures into being. For fixed sources (sinks), optimal networks possess tree-like
structures due to the instability of parallel paths.

The background diffusion of hormone plays three important roles in the initiation
process and also contributes in structural optimization. First, it spontaneously embeds
the network into the tissue space. Second, it determines a characteristic length scale
between neighboring segments. Below this length scale, pure diffusion incurs far less
energy cost and there are no vascular segments or strong polarizations. Finally, with
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pure diffusion, the initiation process can lead to an optimal network with low energy
cost, since initial polarization is always small in life systems.

Fluctuations in the source production of hormones can change the instability of
parallel pathways, leading to the formation of loops in networks. Since fluctuations in
flow demand always exist in life systems, the physiological goal of the fluctuations in
hormone production may be simply to achieve a loopy optimal vascular network. As
has been discussed in the previous works [5, 15], the power exponent γ is equal to 1/2
for blood vessel systems and the effective γ is greater than 1/2 for leaf venation. This
difference in the power exponent may underly the fact that most leaf venations have a
larger loop density than arterial vessel systems, since loop density of optimal networks
increases with the power exponent γ, as seen in our simulation.

The previous models on the adaptation and initiation processes of biological trans-
port networks mostly start with a given prior initial network or cellular network struc-
tures [1, 6–13, 15, 20, 26–28]. In contrast to cellular models of the initiation of leaf
venation [19–21], the anisotropic active transport is described by a polarization vector
in our model. In our continuum model, networks embedded in given tissue geometry
emerge spontaneously without requiring pre-given network or cellular structures. We
note that the anisotropism is not responsible for the emergence of network, because
scalar-based models and tensor-based models can also possess similar network struc-
tures (see Appendix A). The scalar-based model may be relevant to the emergence of
network in slime mold Physarum polycephalum [1], where the conductivity for fluid
delivery is isotropic.

In most cases, global optimization is not present in the designing of industrial
transport networks. For industrial transport networks, although the objective function
may be quite complex, it is still useful to separate it into the energy cost in delivery and
energy cost in building the network. In particular, an adaptation process in response
to local signals may still be useful to enhance the efficiency of the networks. Similar
quantities may be introduced in designing these networks: For example, fluctuations in
sources and sinks may be introduced to design loopy networks and enhance the efficiency
and robustness of the networks; “background diffusion” may be introduced to embed the
network into a two- or three-dimensional space and obtain optimal structures with low
energy cost. Furthermore, space-dependent diffusion constant and source (sink) field
may be employed flexibly to satisfy practical requirements in the designing of optimal
industrial transport networks.

Acknowledgements. The work was supported by NSFC grants 11471213 and
91630208. This work was also supported by Center for High Performance Computing,
Student Innovation Center, Shanghai Jiao Tong University, and the NYU Abu Dhabi
Institute under grant G1301.

Appendix A. Scalar- and Tensor-based models.

A.1. Scalar-based model. The enhancement of transport power may be
isotropic instead of direction-specific (e.g., in the network emergence of slime mold
Physarum polycephalum). Let Ã be the enhancement of transport power, then the
transport process is described by

∇·
((
Ã+D

)
∇P

)
=s, (A.1)

where D is the diffusion constant and s is the source (sink) of flow or hormone. The
adaptation dynamics of Ã satisfies
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∂Ã

∂t
=D04Ã+c0

(
〈∇P ·∇P 〉−M ′

(
Ã
))
, (A.2)

where D0 is the diffusion constant of the enhancement signal and c0 is the parameter
that determines the time scale of the adaptation dynamics. This adaptation dynamics
satisfies the following energy relation

d

dt

∫
Ω

((
Ã+D

)
〈|∇P |2〉+M(Ã)+

D0

2c1
|∇Ã|2

)
dx

=− 1

c0

∫
Ω

(
D04Ã+c0

(
〈|∇P |2〉−M ′

(
Ã
)))2

dx.

Thus the adaptation dynamics lead to the formation of optimal transport network.

A.2. Tensor-based model. Similarly, we construct the tensor-based model.
Let Ã represent the polarization tensor of transport power due to active transport or
transport in veins. We define the transport tensor as A=DI+Ã. The transport process
can be described by

∇·(A ·∇P ) =s. (A.3)

The adaptation dynamics of Ã satisfies

∂Ã

∂t
=D04Ã+c0(〈∇P ⊗∇P 〉−M ′(|Ã|) Ã

|Ã|
), (A.4)

where |Ã| is the Frobenius norm of Ã. This system of equations satisfies the following
energy relation

d

dt

∫
Ω

(
〈∇P ·A ·∇P 〉+M(|Ã|)+

2D0

2c1
|∇Ã|2

)
dx

=− 1

c1

∫
Ω

∣∣∣∣∣D04Ã+c1(〈∇P ⊗∇P 〉−M ′(|Ã|) Ã

|Ã|
)

∣∣∣∣∣
2

dx.

In the tensor-based model, we do not distinguish between the positive and negative
direction of the active transport. In the adaptation dynamics, a newly formed vessel
segment can lead to redistribution of polarizations in the neighboring tissue, including
the change of direction of the active transport. For the vector based model in the main
text, the directional change can only be achieved by a rotation of the polarization vector;
For the tensor-based model, it can be achieved by changing the principle eigenvector
of the polarization tensor; in contrast, for the scalar-based model, there is no need of
directional change. The latter two are relatively easy to achieve. As a result, the adap-
tation dynamics of the scalar- and tensor-based models can find transport networks with
less energy cost than that obtained from the vector-based model (a network obtained
with the tensor-based model is shown in Figure A.1). However, the energy cost of the
networks obtained from different models is not significant.

Appendix B. Dimensional analysis of the length scales.
For the characteristic length separating the smallest branches of a tree, l0, we note

that over this length scale, the efficiency of pure diffusion is comparable to the active
transport. Thus by nondimensionalizing the first equation in the main text, we have

D∼m2
0, and D

P0

l20
∼s0,
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Fig. A.1. Optimal tree-like network structure obtained with the tensor-based model. Colors stand

for the amplitude of log
(
|Ã|+D

)
. A uniform constant source (s= s0) is fixed in the entire domain

with a single sink at the center. The initial value of the polarization tensor is random and has the
magnitude of the diffusion constant

√
D. The Neumann boundary conditions are used in the simula-

tion. Parameters: D= 1×10−4, α= 1×10−6, c0 = 5×10−3, b= 1, s0 = 1, and γ= 0.5. The length of
the hexagon edge is 1.

where P0 and m0 are the characteristic scale of P and m away from the veins, respec-
tively. Noting that the terms in the bracket of Equation (2.2) should almost cancel each
other out, we have

m0
P 2

0

l20
∼γbm2γ−1

0 .

By cancelling P0 and m0, we obtain the characteristic length separating the smallest
branches of the tree, l0 =

√
bγD1+γ/s0.

For the characteristic width of veins, we may consider the smallest veins since the
change of the width is not significant. From Equation (2.1), the flux in the veins satisfies

m2
1Pdl1∼s0l

2
0,

where m1 is the characteristic scale of m in the veins and Pd is the characteristic scale
of ∇P along the direction of the veins. Noting that the three terms on the right-hand
side of Equation (2.2) should be of the same magnitude in the veins at steady state, we
obtain

α
m1

l21
∼m1P

2
d ∼ bγm

2γ−1
1 .

By cancelling m1 and Pd, we obtain l1 =α
1+γ
4 (bγ)

− γ
2 D

(1+γ)(1−γ)
2 s

γ−1
2

0 .

Appendix C. Brief description of the numerical methods. The standard
finite element method can be used to solve the equation for the steady-state transport
process (1). The PDE-toolbox in matlab can be employed to solve this equation at each
time step.

Note that the diffusion constant D0 is very small in general. As a result, the explicit
finite difference method can be directly employed to solve the evolution Equation (2.2).
In our simulation, since the triangle mesh is used to solve the system, an operator-
splitting method is used to solve the evolution equation: the heat kernel is used to
update the the diffusion part of the equation, whereas the Euler method is used to
update the nonlinear part.
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