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MULTIPLE EQUILIBRIA AND TRANSITIONS IN
SPHERICAL MHD EQUATIONS∗

SAADET ÖZER† , TAYLAN ŞENGÜL‡ , AND QUAN WANG §

Abstract. In this study, we aim to describe the first dynamic transitions of the MHD equations in
a thin spherical shell. It is well known that the MHD equations admit a motionless steady state solution
with constant vertically aligned magnetic field and linearly conducted temperature. This basic solution
is stable for small Rayleigh numbers R and loses its stability at a critical threshold Rc. There are two
possible sources for this instability. Either a set of real eigenvalues or a set of non-real eigenvalues cross
the imaginary axis at Rc. We restrict ourselves to the study of the first case. In this case, by the center
manifold reduction, we reduce the full PDE to a system of 2lc +1 ODE’s where lc is a positive integer.
We exhibit the most general reduction equation regardless of lc. Then, it is shown that for lc = 1,2,
the system either exhibits a continuous transition accompanied by an attractor homeomorphic to 2lc
dimensional sphere which contains steady states of the system or a drastic transition accompanied by a
repeller bifurcated on R<Rc. We show that there are parameter regimes where both types of transitions
are realized. Besides, several identities involving the triple products of gradients of spherical harmonics
are derived, which are useful for the study of related problems.

Keywords. Magnetohydrodynamics convection; dynamical transition theory; spherical harmonics;
linear stability; principle of exchange of stabilities.
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1. Introduction
It is known that the thermal convection led by the buoyancy plays an important role

in the heat transfer in a thermal system, such as the general atmospheric circulation,
the formation of winds and oceanic currents, movements within the Earth’s mantle,
and the complex activity in the atmosphere of the sun. Convection is also used in
engineering practices of homes, industrial processes, cooling of equipment, etc. Among
these thermal systems, the phenomenon of magnetic convection with its importance in
the understanding of the dynamo processes [1, 2], industrial processes and astrophysics
[3, 4], has attracted in the past as also nowadays the attention of so many researchers
[5–10] from the perspective of numerical simulation and the linear stability analysis.
In this paper, we tackle the problem of first dynamic transitions associated with the
magnetic convection governing the 3D incompressible MHD equations in a spherical
shell.

Our main toolbox is the dynamical transition theory recently developed by Ma and
Wang, see [11]. This theory aims to search for the full set of transition states usually
described by a local attractor. According to this theory, dynamic transitions in dissi-
pative systems can be classified into three distinct types: continuous, catastrophic and
random. Roughly speaking, a continuous transition is characterized by the continuous
appearance of a local attractor; a catastrophic transition is characterized by an immedi-
ate jump from the basic state to another state and a random transition is said to occur
when the system exhibits both continuous and catastrophic transitions depending on
the initial conditions. Due to the practical feature of the theory, which offers detailed
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dynamic analysis from one state to another, it has been applied to study a lot of phase
transition phenomena, such as: the transitions of Rayleigh-Bénard convection [12–14],
the formation of Taylor vortex led by the centrifugal instability [15,16], the plasma per-
turbation systems [17] and the pattern formation in ocean dynamics [18–20]. Recently,
the theory has been generalized by Liu et al. [21,22] making it suitable for the stochastic
transition problems.

There are several recent papers dealing with dynamic transitions in problems re-
lated to the current study. The problem has been studied in the context of dynamical
transition theory in 3D rectangular domains in [23]. In that paper, the authors de-
scribe the dynamic transitions as well as pattern formations of symmetric patterns such
as rolls, rectangles and hexagons. From the perspective of the dynamical transition
theory, the convection problem without a magnetic field in a spherical shell is studied
in [24]. In that paper, the authors show that the first transition of the pure thermal
convection without the magnetic effects has a continuous transition characterized by
the attractor bifurcation theory [25]. They also manage to describe the structure of the
local attractors when the first critical eigenspace is either 3 or 5 dimensional. Recently,
the results in [24] have been extended to the double diffusive case in the context of
thermohaline circulation in [26].

As we discuss in this study, the addition of a magnetic field greatly changes the
nature of the problem. First, due to the non-selfadjointess of the linear operator, there
are two sources for the first transition of the system. Namely the transition is either
caused by a finite set of real or complex eigenvalues crossing the imaginary axis as
the control parameter Rayleigh number exceeds a critical threshold. In this study we
restrict ourselves to the study of the case of critical crossing of real eigenvalues. In
this case, the number of first eigenvalues depending on the system parameters must
be an odd integer greater than or equal to three. By reducing the system onto the
first critical eigenspace, we obtain a system of ODE’s with cubic nonlinearities. One of
the main achievements of the study is obtaining the exact coefficients of this reduced
system by the center manifold reduction. To carry out the center manifold reduction, a
basis for the phase space alternative to the eigenbasis of the associated linear operator
is constructed. This alternative approach allows us to make all computations related to
the nonlinear interactions of the different modes manually and then verify them using a
symbolic computation software. For the manual computations, we derive some integral
identities involving triple products of spherical harmonics and their gradients over a
sphere, which are presented in the Appendix and could be useful in the study of related
problems.

In this article, we only focus on the case where the first eigenspace is either 3
or 5 dimensional as in [24, 26] as higher dimensional cases lead to ODE systems with
cross cubic nonlinear terms which exhibit more complex behavior. In these two cases,
we manage to show that there are two possible transition types. More precisely, the
transition is either continuous accompanied by an attractor which is homeomorphic to
a sphere with one dimension less than the dimension of the critical eigenspace or it is
abrupt, meaning that the system suddenly moves to states away from the basic solution
after the transition. We show that there are parameter regimes where these two types
of transitions are possible.

The rest of the paper is arranged as follows. In Section 2, we formulate our problem.
In Section 3, we introduce our main results which include the linear stability result, the
verification of the PES condition, the main transition theorem and the proofs. The
discussion involving the relation between the specific transition types and the control
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parameter regimes and the conclusion are provided in Section 4.

2. Governing equations and the functional setting

2.1. Governing equations. We will consider the incompressible MHD convec-
tion in a thin spherical shell. The main motivation for thin shell assumption is the fact
that this geometry is the natural setting for geophysical flows. The thin spherical shell
can be approximated (see [27, 28]) as the Cartesian product S2

a×(0,h) where S2
a is the

2D sphere with radius a and h denotes the height of the fluid layer. The Boussinesq
approximation yields the following set of equations.

∂u

∂t
+(u ·∇)u=− 1

ρ0
(∇p+ρgêz)+µ0(∇×H)×H+ν∆u,

∂T

∂t
+(u ·∇)T =κT∆T,

∂H

∂t
+(u ·∇)H= (H ·∇)u+κH∆H,

divu= divH= 0,

(2.1)

where u is the 3D velocity, T is the temperature, H is the magnetic field, ρ is the
density, êz is the unit vector in the z-direction, ν, κT , κH , g are all positive constants
denoting the kinematic diffusivity, the thermal diffusivity, the magnetic diffusivity and
the gravitational constant, respectively.

In the Boussinesq approximation, the density ρ is considered constant except in
the body forcing term where it is given by an equation of state. We consider a linear
equation of state as

ρ=ρ0[1−aT (T −T0)],

where aT >0 is the thermal expansion coefficient, and T0, ρ0 are the temperature and
density at the boundary z= 0, respectively.

The Equations (2.1) possess a basic steady state solution given by

uss = 0,

Hss =H0êz,

Tss =T0−(T0−T1)
z

h
,

pss =p0−gρ0

(
aT (T0−T1)

z2

2h

)
,

(2.2)

where T1 represents the fixed temperature at the upper boundary z=h. Thus the basic
solution represents a motionless state with a constant vertically aligned magnetic field
and linearly conducted temperature. The nondimensional form of (2.1), obtained as
in [23], is given by

∂u

∂t
+(u ·∇)u=p1

(
−∇p+RT êz+∆u+Q

∂H

∂z
+

Q

p2
(H ·∇)H

)
,

∂T

∂t
+(u ·∇)T = ∆T +u3,

∂H

∂t
+(u ·∇)H= (H ·∇)u+p2

(
∂u

∂z
+∆H

)
,

divu= divH= 0,

(2.3)
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where R is the Rayleigh number, Q is the Chandrasekhar number and p1, p2 are the
Prandtl and magnetic Prandtl numbers, respectively, defined as

R =
aT g(T0−T1)h3

κT ν
, Q =

µ0H
2
0h

2

κHν
,

p1 =
ν

κT
, p2 =

κH
κT

.

All the above dimensionless parameters are positive. In particular, the Rayleigh number
R>0 which means that T0>T1, in other words the fluid layer is heated from below.
Here we set the nondimensional spatial domain Ω =S2

r ×(0,1) with the nondimensional
radius r= a

h , and the variables in (2.3) are also in nondimensional form. Moreover ∇,
∇u, div and ∆ will denote both the scalar and vectorial differential operators given by

∇uf =u ·∇f =
1

r

(
uθ
∂f

∂θ
+

uϕ
sinθ

∂f

∂ϕ

)
,

∆f =
1

r2 sinθ

[
∂

∂θ

(
sinθ

∂f

∂θ

)
+

1

sinθ

∂2f

∂ϕ2

]
,

∇uv=
1

r

(
uθ
∂vθ
∂θ

+
uϕ

sinθ

∂vθ
∂ϕ
−uϕvϕcotθ

)
êθ+

1

r

(
uθ
∂vϕ
∂θ

+
uϕ

sinθ

∂vϕ
∂ϕ

+uϕvθ cotθ

)
êϕ,

∆u=

(
∆uθ−

2cosθ

r2 sin2θ

∂uϕ
∂ϕ
− uθ

r2 sin2θ

)
êθ+

(
∆uϕ+

2cosθ

r2 sin2θ

∂uθ
∂ϕ
− uϕ

r2 sin2θ

)
êϕ,

div u=
1

rsinθ

∂

∂θ
(uθ sinθ)+

1

rsinθ

∂uϕ
∂ϕ

,

where f is a scalar function, u=uθ êθ+uϕêϕ and v=vθ êθ+vϕêϕ are 2 dimensional
vector valued functions.

Let u=u+wêz be the 3D velocity field where u=uθ êθ+uϕêϕ is the horizontal
velocity field. Similarly, H=H+M êz is the 3D magnetic field vector where H=Hθ êθ+
Hϕêϕ is the 2D horizontal component of the magnetic field. With this notation, the
Equations (2.3) become

ut+∇uu+wuz =p1

(
−∇p+∆u+uzz+QHz+

Q

p2
(∇HH+MHz)

)
,

wt+∇uw+wwz =p1

(
−pz+RT +∆w+wzz+QMz+

Q

p2
(∇HM+MMz)

)
,

Tt+∇uT +wTz−w= ∆T +Tzz,

Ht+∇uH+wHz =∇Hu+Muz+p2(uz+∆H+Hzz),

Mt+∇uM+wMz =∇Hw+Mwz+p2(wz+∆M+Mzz),

div u+wz = 0,

div H+Mz = 0.

(2.4)

In the present paper the Equations (2.4) are examined with the following boundary
conditions

w=T =H=
∂u

∂z
=
∂M

∂z
= 0, at z= 0,1. (2.5)
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2.2. Functional settings. We first represent the main Equations (2.4) subject
to the boundary condition (2.5) as an abstract ODE in a Banach space. For this purpose,
we define the functional spaces as

H=

{
(u,w,T,H,M)∈L2(Ω)7 |div u= div H= 0,∫

Ω

u=

∫
Ω

M = 0,w=T =H= 0 at z= 0,1

}
,

H1 =

{
(u,w,T,H,M)∈H2(Ω)7 |div u= div H= 0,∫

Ω

u=

∫
Ω

M = 0,w=T =
∂M

∂z
=
∂u

∂z
=H= 0, at z= 0,1

}
.

(2.6)

The inner product in H is defined for the vectors Ψi= (ui,wi,Ti,Hi,Mi), i= 1,2 as

〈Ψ1,Ψ2〉=
∫ π

0

∫ 2π

0

∫ 1

0

(u1u2 +w1w2 +T1T2 +H1H2 +M1M2)r2 sinθ dzdϕdθ.

Now the main Equations (2.4) with the boundary conditions (2.5) become

∂Ψ

∂t
=LΨ+G(Ψ,Ψ), Ψ(0) = Ψ0, (2.7)

where the linear operator L :H1→H and the bilinear operator G :H1×H1→H are
defined by

L(Ψ) =P



p1

(
(∆+ ∂2

∂z2 )u+Q∂H
∂z

)
p1

(
(∆+ ∂2

∂z2 )w+RT +Q∂M
∂z

)
(∆+ ∂2

∂z2 )T +w

p2

(
(∆+ ∂2

∂z2 )H+ ∂u
∂z

)
p2

(
(∆+ ∂2

∂z2 )M+ ∂w
∂z

)


, (2.8)

G(Ψ1,Ψ2) =−P


∇u1

u2 +w1
∂u2

∂z −Qp1

p2

(
∇H1

H2 +M1
∂H2

∂z

)
∇u1w2 +w1

∂w2

∂z −Qp1

p2

(
∇H1M2 +M1

∂M2

∂z

)
∇u1

T2 +w1
∂T2

∂z

∇u1H2 +w1
∂H2

∂z −∇H1u2−M1
∂u2

∂z

∇u1M2 +w1
∂M2

∂z −∇H1w2−M1
∂w2

∂z

. (2.9)

Here P :L2(Ω)7→H is the usual Leray projection onto divergence-free vector fields. For
convenience, we denote

G(Ψ) =G(Ψ,Ψ),

which will be used throughout the text.

3. Main results

3.1. Linear stability. The linear stability analysis of the problem is well
studied, see for example the excellent classical treatment in [5]. Here we present the
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linear stability of the problem in a form which is suitable for the current analysis. The
eigenvalue problem of the linearized equations with the boundary conditions (2.5) are

p1 ((∆+∂zz)u+QHz−∇p) =βu, (3.1)

p1 ((∆+∂zz)w+QMz+RT −pz) =βw, (3.2)

(∆+∂zz)T +w=βT, (3.3)

p2 ((∆+∂zz)H+uz) =βH, (3.4)

p2 ((∆+∂zz)M+wz) =βM, (3.5)

div u+wz = 0, (3.6)

divH+Mz = 0, (3.7)

where β denotes an eigenvalue.
Note that due to zero mean conditions for u and M in (2.6), constant u with all

the other variables being zero or constant M with all the other variables being zero are
not allowed as eigensolutions. Hence there are no fixed zero eigenvalues for all R.

Case I. For an eigensolution independent of z, we must have w=T = 0 and H= 0
due to the boundary conditions. In this case, the Equation (3.5) yields

p2∆M =βM, (3.8)

which is the eigenvalue problem for the Laplacian operator on the sphere. If we define

α2
l =

l(l+1)

r2
, l∈N,

then (3.8) has an eigenfunction for each l∈N and m∈Z such that |m|≤ l given by the
spherical harmonics M =Ylm(θ,ϕ) with corresponding eigenvalue β=−p2α

2
l .

Taking the curl of (3.1) and using the incompressibility condition we have

p1∆∇×u=β∇×u,

which has a solution for each l∈N and m∈Z with |m|≤ l given by

u= curlYlmêz =∇×Ylmêz =
1

rsinθ

∂Ylm
∂ϕ

êθ−
1

r

∂Ylm
∂θ

êϕ, (3.9)

with corresponding eigenvalue β=−p1α
2
l .

Case II. For the more general case, we shall use the separation of variables on the
spherical shell as

u=∇f(θ,ϕ)χ′(z),

w=α2f(θ,ϕ)χ(z),

T =f(θ,ϕ)Θ(z),

H=∇f(θ,ϕ)Φ′(z),

M =α2f(θ,ϕ)Φ(z).

(3.10)

Substituting (3.10) into the incompressibility equation (3.6) gives a solution for each
l∈N and m∈Z with |m|≤ l

f =Ylm(θ,ϕ), α2 =α2
l =

l(l+1)

r2
.
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By taking the gradient of (3.2) and subtracting from the z-derivative of (3.1), we have

p1

(
(D2−α2)2χ+Q D(D2−α2)Φ−RΘ

)
=β(D2−α2)χ. (3.11)

In addition to (3.11), the Equations (3.3)–(3.6), with the help of the above separation
of variables, become

(D2−α2)Θ+α2χ=βΘ, (3.12)

p2

(
(D2−α2)Φ+D χ

)
=βΦ, (3.13)

where the operator D represents the derivative with respect to z. Meanwhile the corre-
sponding boundary conditions (2.5) become

χ= Θ = Φ =D2χ=D2Φ = 0, at z= 0,1. (3.14)

By considering the Equations (3.12), (3.13) and (3.14) we may take

χ= sinnπz,

Θ =
α2
l

n2π2 +α2
l +βln

sinnπz,

Φ =
p2nπ

p2(n2π2 +α2
l )+βln

cosnπz.

Upon plugging the above ansatz into (3.11), we obtain the dispersion relation (3.17) for
the eigenvalues.

Now we summarize the results. The set of all eigenfunctions and eigenvalues can
be indexed by Ψlmn and βln where l,m,n∈Z, l≥0, |m|≤ l, n≥0 and (l,n) 6= (0,0).
(1) When l= 0, n 6= 0, the eigenpairs are

β0n=−n2π2, Ψ00n= (0,0,T = sinnπz,0,0). (3.15)

(2) When l 6= 0 and n= 0, the two families of eigenpairs are

β1
l0 =−p1α

2
l , Ψ1

lm0 = (∇×Ylmêz,0,0,0,0),

β2
l0 =−p2α

2
l , Ψ1

lm0 = (0,0,0,0,Ylm).
(3.16)

(3) When l 6= 0 and n 6= 0, there are three families of eigenvalues which we order as
<(β1

ln)≥<(β2
ln)≥<(β3

ln) corresponding to the solutions of the following dispersion
equation

β3 +b0β
2 +b1β+b2 = 0, (3.17)

where

b0 =γ2
l,n(p1 +p2 +1),

b1 =p1

(
(p2 +

p2

p1
+1)γ4

l,n+p2Qn2π2−α2Rγ−2
l,n

)
,

b2 =p1p2(γ6
l,n+Qn2π2γ2

l,n−Rα2
l ),

and

γ2
l,n=n2π2 +α2

l . (3.18)
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(4) The eigenfunctions related to the above three eigenvalues, βkln, k= 1,2,3 are

Ψk
lmn=



u=nπ∇Ylmcosnπz,

w=α2
l Ylm sinnπz,

T =
α2
l

γ2
l,n+βkln

Ylm sinnπz,

H=− n2π2

γ2
l,n+

βk
ln

p2

∇Ylm sinnπz,

M =
α2
l nπ

γ2
l,n+

βk
ln

p2

Ylmcosnπz.

(3.19)

3.1.1. Adjoint problem. For the reduction of the full system to a system of
ODE’s, we need to study the eigenproblem of the adjoint linear operator L∗ which is
defined as

〈LΨ1,Ψ2〉= 〈Ψ1,L
∗Ψ2〉.

The eigenproblem for the adjoint linear operator reads

p1 ((∆+∂zz)u
∗−∇p∗)−p2H

∗
z =βu∗,

p1 ((∆+∂zz)w
∗−p∗z)−p2M

∗
z +T ∗=βw∗,

(∆+∂zz)T
∗+p1Rw∗=βT ∗,

p2(∆+∂zz)H
∗−p1Qu∗z =βH∗,

p2(∆+∂zz)M
∗−p1Qw∗z =βM∗,

divu∗+w∗z = 0,

divH∗+Mz = 0.

(3.20)

We only need to determine the adjoint eigenvector for the case l≥1 and n≥1.
Following a similar analysis as for the determination of the eigenvectors for the linear
operator, we obtain for l≥1, n≥1, |m|≤ l, k= 1,2,3,

Ψ∗klmn=



u∗=nπ∇Ylmcosnπz,

w∗=α2
l Ylm sinnπz,

T ∗=
p1Rα2

l

γ2
l,n+β

k

ln

Ylm sinnπz,

H∗=
p1n

2π2Q

p2γ2
l,n+βkln

∇Ylm sinnπz,

M∗=− p1nπα
2
lQ

p2γ2
l,n+βkln

Ylmcosnπz.

(3.21)

3.1.2. Principle of exchange of stabilities(PES). Now we present the princi-
ple of exchange of stabilities which is a conclusion of the linear stability analysis carried
out in the previous section. It is evident that the modes without vertical structure or
modes without horizontal structure are always stable by (3.15) and (3.16). By analyzing
(3.17), one can easily obtain the critical Rayleigh numbers for the onset of steady and
oscillatory transitions. We present the results in a slightly different form and provide a
short proof of PES condition for completeness, see also [23].
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Now let us define

R(l) =
γ2
l,1

α2
l

(γ4
l,1 +Qπ2), (3.22)

Rc= min
l∈N

R(l) = R(lc) =
γ2
lc,1

α2
lc

(γ4
lc,1 +Qπ2), (3.23)

R̃(l) =
(p2 +1)(p1 +p2)

p1

γ2
l,1

α2
l

[γ4
l,1 +

p2p1

(p2 +1)(p1 +1)
Qπ2], (3.24)

R̃c=R̃(l̃c) =
(p2 +1)(p1 +p2)

p1

γ2
l̃c,1

α2
l̃c

[γ4
l̃c,1

+
p2p1

(p2 +1)(p1 +1)
Qπ2], (3.25)

Q0(l) =γ4
l,1

p2(p1 +1)

π2p1(1−p2)
. (3.26)

Theorem 3.1. The following assertions hold true.

a) If p2≥1 or Q<Q0(l̃c) then Rc is the first critical Rayleigh number. That is,
there is a finite set of critical indices minimizing (3.23) such that the condition

β1
lc1(R)


<0, R<Rc,

= 0, R = Rc,

>0, R>Rc,

<βln(Rc)<0, l 6= lc, n 6= 1,

(3.27)

holds true generically in the parameter space.

b) If p2<1 and Q>Q0(lc) then R̃c is the first critical Rayleigh number. That is,
there is a finite set of critical indices minimizing (3.25) such that the condition

<β1
l̃c1

(R) =<β2
l̃c1

(R)


<0, R< R̃c,

= 0, R = R̃c,

>0, R> R̃c,

<βln(R̃c)<0, l 6= l̃c, n 6= 1,

(3.28)

holds true generically in the parameter space.

Proof. Solving b2 = 0 for R in (3.17) we find that (3.17) has 0 as a root at R = R(l).
Thus the real eigenvalues indexed by l≥1, n= 1 cross the imaginary axis as R crosses
R(l). Similarly, solving b2

b0
= b1 for R in (3.17) so that (3.17) has ±iρ, ρ>0, as roots, we

see that the complex eigenvalues indexed by l≥1, n= 1 cross the imaginary axis as R
crosses R̃(l). By taking the minimum of R(l) and R̃(l) over l≥1, the critical Rayleigh

numbers Rc and R̃c are obtained.

When p2 = 1, R(l)< R̃(l) for all l≥1, and as a result Rc< R̃c. For p2 6= 1, by com-

paring R(l) and R̃(l), a simple algebraic manipulation shows that

R(l)


< R̃(l), Q<Q0(l),

=R̃(l), Q = Q0(l),

> R̃(l), Q>Q0(l).
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By (3.23) and (3.25), it is clear that if p2>1 then Q0(l)<0 and R(l)≤ R̃(l) for all

l≥1 which implies that Rc< R̃c. When p2<1 and Q<Q0(l̃c), we have Rc≤R(l̃c)<

R̃(l̃c) =R̃c and Rc is the first critical Rayleigh number. Similarly, if Q>Q0(lc), then

Rc= R(lc)> R̃(lc)≥ R̃c and R̃c is the first critical Rayleigh number. That is

Q>Q0(lc) =⇒ R̃c<Rc. (3.29)

Remark 3.1. When p2<1, there must exist a critical Chandrasekhar number Q such
that the two neutral stability curves for Rc and R̃c intersect giving rise to a transition
from a set of eigenvalues some of which are complex and the rest are real. This type of
transition is beyond the scope of the current study.

3.2. Transition theorem. By Theorem 3.1, we know that the system must
undergo a transition as the Rayleigh number exceeds the critical Rayleigh number given
by

min
{
Rc,R̃c

}
.

For this paper, we restrict ourselves to the study of the transitions under the PES
condition (3.27), i.e. when the eigenvalues which first cross the imaginary axis are real,
which is equivalent to the condition

Rc= min
{
Rc,R̃c

}
. (3.30)

Theorem 3.1 gives sufficient conditions for the condition (3.30) to hold. Namely, when
p2≥1 or Q<Q0(l̃c), the condition (3.30) holds.

Second, the condition (3.27) holds only generically in the parameter space when it
indeed holds. That is, for parameters in a set of measure zero in the parameter space,
it is possible that β1

lc,1
=β1

lc+1,1 giving rise to a transition from 4lc+4 eigenvalues. This
nongeneric case is very interesting by its implications for the pattern formations of the
system, however the reduction in this case is more difficult. We will only deal with the
generic case in this work.

To describe the transition which takes place at R=Rc, we need to reduce the full
PDE system to a system of ODE’s by the center manifold reduction and then analyze
this ODE system. The details of the procedure can be found in [11]. For this purpose
let us define the 2lc+1 dimensional eigenspace

E1 = span

{
lc∑

m=−lc

xmΨ1
lcm1 |x−m= (−1)mxm, xm∈C

}
⊂H,

spanned by the first critical eigenvectors with corresponding eigenvalues β1
lc,1

satisfying

(3.27). Note that E1 consists of real valued functions since by the symmetry Y lm=

(−1)mYl−m of the spherical harmonics, it follows that Ψ
1

lcm1 = (−1)mΨ1
lcm1.

We show that the reduction of the main equations onto the critical subspace E1 is
given by the following 2lc+1 equations. For each m∈Z, −lc≤m≤ lc,

dxm
dt

=β1
lc1 xm+ωlcxm|x|2 +

∑
l,m1,p1

ξl,lcc
m1,m2,m
lc,l,lc

cp1,p2,m2

lc,lc,l
xm1

xp1xp2 , (3.31)
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where |x|2 =
∑lc
j=−lc |xj |

2, m2 =m−m1, p2 =m2−p1 and the sum is over l∈
{2,4,. ..,2lc}, |m1|≤ lc, and |p1|≤ lc. Here the tripling coefficients of the spherical har-
monics are defined by

cm1,m2,m
l1,l2,l

=
1

r2

∫
S2
r

Yl1m1
Yl2m2

YlmdS
2.

The coefficients wlc and ξl,lc depend on the system parameters whose explicit expressions
are given later by (3.67) and (3.68).

Theorem 3.2. Suppose that Rc is the first critical Rayleigh number and the generic
condition (3.27) is satisfied. In this case, the stability and transitions of the basic steady
state solution (2.2) near R=Rc is governed by a system of 2lc+1 ODE’s given by
(3.31). Particularly, for lc= 1 and lc= 2 the sum in (3.31) reduces significantly since

∑
l,m1,p1

ξl,lcc
m1,m2,m
lc,l,lc

cp1,p2,m2

lc,lc,l
xm1

xp1xp2 =


ξ2,1|x|2

5π
, lc= 1,

5ξ2,2 +9ξ4,2
49π

|x|2, lc= 2.

Thus when lc= 1, the reduced equations read

dxm
dt

=β1
11 xm+q1xm|x|2 +o(3), m=−1,0,1, (3.32)

with

q1 =ω1 +
ξ2,1
5π

. (3.33)

When lc= 2, the reduced equations read

dxm
dt

=β1
21 xm+q2xm|x|2 +o(3), m=−2,−1,0,1,2, (3.34)

with

q2 =ω2 +
5ξ2,2 +9ξ4,2

49π
. (3.35)

Proof. The proof of the theorem is given in Section 3.3.

From Theorem 3.2, we see that in the cases of lc= 1 and lc= 2, the transition is
described by a single dimensionless number, q1 and q2. For lc≥3, mixed cubic terms
appear in (3.31) which complicates the analysis. We plan to address this case elsewhere.
The simplicity of the reduced Equations (3.32) and (3.34) allows us to state the following
theorem which governs the first transition of the system.

Theorem 3.3. Suppose that Rc is the first critical Rayleigh number and the generic
condition (3.27) is satisfied. Assume further that lc= 1 or lc= 2. Then the following
statements hold true.

(1) When R<Rc, the basic state (2.2) is locally asymptotically stable.

(2) If qlc <0 then there is a continuous transition at R = Rc and a bifurcated at-
tractor ΣR, which is homeomorphic to the 2lc dimensional sphere, bifurcates on
R>Rc. Moreover, ΣR has the following approximation

ΣR =

{
lc∑

m=−lc

xmΨ1
lcm1 |x−m= (−1)mxm,

lc∑
m=−lc

|xm|2 =−
β1
lc,1

qlc

}
+o(β1

lc,1).
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Fig. 3.1. The regions of the critical wave index lc as a function of the aspect ratio r and the
Chandrasekhar number Q.

The attractor ΣR attracts H\Γ, where Γ is the stable manifold of φ= 0 with
codimension 2lc+1.

(3) When lc= 1, the S2-attractor consists precisely of degenerate steady states.
When lc= 2, the S4-attractor contains at least a S2 subset of degenerate steady
states.

(4) If qlc >0 then there is a drastic transition on R>Rc. In particular, a repeller
ΣR bifurcates on R<Rc as given above and there exists an open and dense
neighborhood U of Ψ = 0 in H such that for any initial condition Ψ0∈U and for
every Rc<R<Rc+ε with some ε>0, the solution ΨR(t,Ψ0) of (2.7) satisfies

limsup
t→∞

‖ΨR(t,Ψ0)‖≥ δ>0.

for some δ which is independent of R.

Proof. The proof is a modification of the one in [24] and is included only for
completeness. By the linear analysis in the previous subsection, apparently, the assertion
(1) is true. By the attractor bifurcation theorem in [11], to show (2) and (4), we only
need to show that Ψ = 0 is stable (unstable) at R = Rc. From Theorem 3.2, one can easily
see that the stability (instability) of Ψ = (u,w,T,H,M) = 0 at R = Rc is equivalent to
qlc <0 (qlc >0). That is, the Assertions (2) and (4) hold true. To show (3), let us denote
L(Ψ) =A(Ψ)+BR(Ψ), where

A(Ψ) =P


p1(∆+ ∂2

∂z2 )u

p1(∆+ ∂2

∂z2 )w

(∆+ ∂2

∂z2 )T

p2(∆+ ∂2

∂z2 )H

p2(∆+ ∂2

∂z2 )M

, BR(Ψ) =P


p1Q∂H

∂z

p1RT +p1Q∂M
∂z

w
p2

∂u
∂z

p2
∂w
∂z

. (3.36)

Apparently, the operator A is invertible. Then, the steady problem

LΨ =−G(Ψ),

can be rewritten as (
id+A−1BR

)
Ψ =−A−1G(Ψ). (3.37)
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One can easily check that the operator id+A−1BR :H→H is a completely continuous
field, and the operator A−1G :H→H is compact. Hence by the Krasnoselski bifurcation
theorem (see e.g. Theorem 1.10 in [29]), (3.37) has a nontrivial steady state bifurcation
at Rc, as the critical eigenvalue has odd multiplicity 2lc+1, which is the dimension of
the eigenspace. Due to the spherical symmetry of the governing equations, this steady
state will generate a S2-set of steady states. The degeneracy of this steady state is
evident from the reduced Equation (3.32) and (3.34). The proof is complete.

3.3. Proof of the Theorem 3.2.

3.3.1. Approximation of the center manifold. Let Ψc be the projection of
the solution onto E1. Hence we have

Ψc=

lc∑
m=−lc

xm(t)Ψ1
lcm1∈E1.

Since the first eigenvalues which cross the imaginary axis are real, the center man-
ifold function can be approximated by the below equation, see [11].

−LΦ(Ψc) =P2G(Ψc)+o(2). (3.38)

Here

P2 :H→E2 :={Ψ∈H1 | 〈Ψ,Ψ1∗
lc,m,1〉= 0 for all |m|≤ lc},

is the canonical projection, L=L |E2
, L is the linear operator and G is the nonlinear

operator in (2.7) and

o(2) =o
(
|x|2
)

+O(|β1
lc1(R)||x|2), as R→Rc, |x|→0,

where |x|2 =
∑lc
m=−lc |xm|

2.
In order to resolve (3.38) we will use the natural basis of our phase space to ex-

pand the center manifold. This is accomplished by considering the eigenvectors of the
following system of linear operator with the same boundary conditions as in (2.5).

(∆+∂zz)u−∇p=βu,

(∆+∂zz)w−pz =βw,

(∆+∂zz)T =βT,

(∆+∂zz)H=βH,

(∆+∂zz)M =βM,

div u+wz = 0,

divH+Mz = 0.

(3.39)

The eigenvectors of the above equation constitute a basis for the phase space. It is
not difficult to see that the eigenvectors of (3.39) are as follows.

e00n= (0,0,sinnπz,0,0),

e1
lm0 = (∇×Ylmêz,0,0,0,0),

e2
lm0 = (0,0,0,0,Ylm)

e1
lmn= (nπ∇Ylmcosnπz,α2

l Ylm sinnπz,0,0,0),

e2
lmn= (0,0,Ylm sinnπz,0,0),

e3
lmn= (0,0,0,−nπ∇Ylm sinnπz,α2

l Ylmcosnπz),

(3.40)
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where l∈N, |m|≤ l, m∈N, n∈N, and ∇×Ylmêz is given in (3.9). The above basis is
an alternative to the eigenbasis of the linear operator (2.8) of the original system. The
main advantage of using the above basis is that it avoids having a very complicated
dependence on the system parameters that the eigenbasis of (3.1)–(3.7) has, since the
coefficients in (3.19) depend on the eigenvalues β which are determined as the roots of
cubic polynomial Equation (3.17).

Using the above basis and in virtue of (3.38), the center manifold function can
be expanded by modes with n= 0,2 thanks to the orthogonality of the trigonometric
functions and l= 2,4,. ..,2lc thanks to the orthogonality of the spherical harmonics, see
(5.7). Thus we can write

Φ =y002e002 +
∑
l,m
k=1,2

yklm0e
k
lm0 +

∑
l,m

k=1,2,3

yklm2e
k
lm2 +o(2), (3.41)

where the sums run over l∈{2,4,. ..,2lc} and |m|≤ l. The coefficients of the center
manifold can be evaluated as

y002 =−〈G(Ψc),e002〉
〈e002,L∗e002〉

,

yklm0 =− 〈G(Ψc),e
k
lm0〉

〈eklm0,L
∗eklm0〉

, k= 1,2,

yklm2 =− 〈G(Ψc),e
k
lm2〉

〈eklm2,L
∗eklm2〉

, k= 1,2,3.

(3.42)

Recalling that L∗ is the adjoint linear operator which is given by the left-hand side
of (3.20), the terms in the denominator are easily found as

L∗e002 =−4π2e002, L∗e1
lm0 =−p1α

2
l e

1
lm0 L∗e2

lm0 =−p2α
2
l e

2
lm0,

and

L∗e1
lmn=

{
−p1γ

2
l,nnπ∇Ylmcosnπz,−p1γ

2
l,nα

2
l Ylm sinnπz,0,0,0

}
,

L∗e2
lmn=

{
0,∗,−γ2

l,nYlm sinnπz,0,0
}
,

L∗e3
lmn=

{
∗,∗,0,p2γ

2
l,nnπ∇Ylm sinnπz,−p2γ

2
l,nα

2
l Ylmcosnπz

}
,

where ∗ denotes a nonzero term which will not enter into the calculations and hence is
omitted.

In what follows, we will use the below notation∫
Ω

fdΩ =

∫ 1

z=0

∫
S2
r

fdS2dz=

∫ 1

z=0

∫ 2π

ϕ=0

∫ π

θ=0

fr2 sinθdθdϕdz.

By (3.19), the critical eigenvectors are

ψ1
lcm=

{
ûc∇Ylcm cosπz,ŵcYlm sinπz,T̂cYlcm sinπz,Ĥc∇Ylcm sinπz,M̂cYlmcosπz

}
,

where

ûc=π, ŵc=α2
lc , T̂c=α2

lc/γ
2
lc,1, Ĥc=−π2/γ2

lc,1 M̂c=α2
lcπ/γ

2
lc,1. (3.43)
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3.3.2. Computation of y002. We start with the computation of y002.

〈G(Ψc),e002〉=−
∫

Ω

(uc ·∇Tc+wc
∂Tc
∂z

)sin2πzdΩ

=−
lc∑

m1,m2=−lc

xm1
xm2

ûcT̂c

∫ 1

0

cosπz sinπz sin2πzdz

∫
S2
r

∇Ylc,m1
·∇Ylc,m2

dS2

−
lc∑

m1,m2=−lc

xm1
xm2

ŵcT̂cπ

∫ 1

0

sinπzcosπz sin2πzdz

∫
S2
r

Ylc,m1
Ylc,m2

dS2. (3.44)

Using

lc∑
m=−lc

(−1)mxmx−m=

lc∑
m=−lc

xmxm= |x|2,

and (5.4), (5.5) in (3.44) gives

〈G(Ψc),e002〉=−
lc∑

m1,m2=−lc

xm1
xm2

(−1)m2δm1,−m2
r2 1

4

(
ûcT̂cα

2
lc + ŵcT̂c

)
=−r2 1

4

(
ûcT̂cα

2
lc +πŵcT̂c

)
|x|2. (3.45)

We also have

〈e002,L
∗e002〉=−4π2

∫ 1

0

sin2 2πzdz

∫
S2
r

dS2 =−8r2π3. (3.46)

Combining (3.45) and (3.46), we obtain y002 as in (3.52).

3.3.3. Computation of y1
lm0. We will show that the higher frequency 2D

horizontal velocity field modes e1
lm0 have no affect on the transition. To see this, we

will show that

〈G(Ψc),e
1
lm0〉= 0,

which in turn implies that y1
lm0 = 0 by (3.42). For this, we first expand

〈G(Ψc),e
1
lm0〉=−

1

2

lc∑
m1,m2=−lc

xm1
xm2

×
((

ûcûc−
Qp1

p2
ĤcĤc

)
gm1m2m
lclcl

−π
(
ŵcûc+

Qp1

p2
M̂cĤc

)
fm1m2m
lclcl

)
,

where the tensors gm1m2m
lclcl

and fm1m2m
lclcl

are defined in (5.12). By the anti-symmetry
property (5.14), we have

lc∑
m1,m2=−lc

xm1xm2f
m1m2m
lclcl

=

lc∑
m1,m2=−lc

xm1xm2

1

2

(
fm1m2m
lclcl

+fm2m1m
lclcl

)
= 0.

Similar argument holds for

lc∑
m1,m2=−lc

xm1
xm2

gm1m2m
lclcl

= 0.
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3.3.4. Computation of y2
lm0. A straightforward computation shows that

〈G(Ψc),e
2
lm0〉=−

∫
Ω

(
∇ucMc+wc

∂Mc

∂z
−∇Hcwc−Mc

∂wc
∂z

)
Y lm

=−
lc∑

m1,m2=−lc

xm1xm2

(
ûcM̂c−Ĥcŵc

2
bm1,m2,m
lc,lc,l

−πŵcM̂cc
m1,m2,m
lc,lc,l

)
r2, (3.47)

where cm1,m2,m
lc,lc,l

and bm1,m2,m
lc,lc,l

are the triple product integral coefficients defined by (5.8)
and (5.6).

Also direct computation shows that

〈e2
lm0,L

∗e2
lm0〉=−p2α

2
l

∫ 1

0

dz

∫
S2
r

YlmY lmdS
2 =−p2α

2
l r

2. (3.48)

Finally combining (3.47), (3.48) and (3.43) we obtain y2
lm0 as in (3.54).

3.3.5. Computation of y1
lm2.

〈G(Ψc),e
1
lm1〉

=−
∫

Ω

(
uc ·∇uc+wc

∂uc
∂z
−Qp1

p2

(
Hc ·∇Hc+Mc

∂Hc

∂z

))
2π∇Y lmcos2πz

−
∫

Ω

(
uc ·∇wc+wc

∂wc
∂z
−Qp1

p2

(
Hc ·∇Mc+Mc

∂Mc

∂z

))
α2
l Y lm sin2πz

=− π
2

lc∑
m1,m2=−lc

xm1xm2

(
ûcûce

m1m2m
lclcl

+πûcŵcd
m1m2m
lclcl

)
r2

− π
2

lc∑
m1,m2=−lc

xm1
xm2

Qp1

p2

(
ĤcĤce

m1m2m
lclcl

−πM̂cĤce
m1m2m
lclcl

)
r2

− α
2
l

4

lc∑
m1,m2=−lc

xm1
xm2

(
ûcŵcb

m1m2m
lclcl

+ ŵcŵcπc
m1m2m
lclcl

)
r2

+
α2
l

4

lc∑
m1,m2=−lc

xm1
xm2

Qp1

p2

(
ĤcM̂cb

m1m2m
lclcl

−πM̂cM̂cc
m1m2m
lclcl

)
r2

=
πα2

l (4α
2
lc
−α2

l )(p1π
2Q+p2γ

4
lc,1

)r2

8p2γ2
lc,1

lc∑
m1,m2=−lc

xm1
xm2

cm1m2m
lclcl

, (3.49)

where bm1m2m
lclcl

, dm1m2m
lclcl

, em1m2m
lclcl

are as defined in (5.8), (5.9), (5.10).

3.3.6. Computation of y2
lm2. Direct computation yields

〈G(Ψc),e
2
lm1〉=−

∫
Ω

(
uc ·∇Tc+wc

∂Tc
∂z

)
Y lm sin2πz

=− π
2

lc∑
m1,m2=−lc

xm1xm2

1

4

(
ûcT̂cb

m1m2m
lclcl

+πŵcT̂cc
m1m2m
lclcl

)
r2

=
πα2

lc

8γ2
lc,1

(−4α2
lc +α2

l )r
2

lc∑
m1,m2=−lc

xm1
xm2

cm1m2m
lclcl

, (3.50)
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3.3.7. Computation of y3
lm2. We will show that the higher frequency magnetic

field modes e3
lm2 do not affect the transition.

〈G(Ψc),e
3
lm2〉

=−
∫

Ω

(
uc ·∇Hc+wc

∂Hc

∂z
−Hc ·∇uc−Mc

∂uc
∂z

)
(−2π)∇Y lm sin2πz

−
∫

Ω

(
uc ·∇Mc+wc

∂Mc

∂z
−Hc ·∇wc−Mc

∂wc
∂z

)
α2
l Y lmcos2πz

=

lc∑
m1,m2=−lc

xm1
xm2

1

4

(
ŵcĤc+M̂cûc

)(
2π2dm1m2m

lclcl
−α2

l b
m1m2m
lclcl

)
= 0, (3.51)

since ŵcĤc+M̂cûc= 0 by (3.43).

3.3.8. The summary of the center manifold coefficients. We present
below the results of our computations in the previous section.

y002 =Alc02|x|2, (3.52)

y1
lm0 = 0, (3.53)

y2
lm0 =Alcl0

lc∑
m1,m2=−lc,
m1+m2=m

cm1,m2,m
lc,lc,l

xm1 xm2 , (3.54)

yklm2 =Aklcl2

lc∑
m1,m2=−lc,
m1+m2=m

cm1,m2,m
lc,lc,l

xm1 xm2 , k= 1,2, (3.55)

y3
lm2 = 0. (3.56)

Here, the coefficients are obtained as follows:

Alc02 =−
α4
lc

16π2γ2
lc,1

, Alcl0 =
α2
lc
π2

2p2γ2
lc,1

A1
lcl2 =

alclblcl
f1
lcl

, A2
lcl2 =

alcl
f2
lcl

, A3
lcl2 = 0,

alcl=
πα2

lc
r2

4γ2
lc,1

(
2α2

lc−
1

2
α2
l

)
, blcl=

α2
l

α2
lc

(
p1

p2
π2Q+γ4

lc,1),

f1
lcl= 〈e

1
lcm2,L

∗e1
lcm2〉=−

p1

2
α2
l r

2γ4
l,2,

f2
lcl= 〈e

2
lcm2,L

∗e2
lcm2〉=−

1

2
r2γ2

l,2.

(3.57)

3.3.9. The Computation of the reduced equations. Now, we let Ψ =
Ψc+Φ, where Ψc∈E1 and Φ is the center manifold function. We plug Ψ in (2.7) and
project the resulting equation onto E1 to obtain

dxm
dt

=β1
lc1 xm+

〈G(Ψc+Φ),Ψ1∗
lcm1〉

〈Ψ1
lcm1,Ψ

1∗
lcm1〉

+o(3). (3.58)

The nonlinear part of the equation represents the mixing of critical modes with the
modes spanning the center manifold.



1548 TRANSITIONS IN SPHERICAL MHD

Since the integral of the triple product of any combination of cosπz, sinπz over the
unit interval is zero, one gets right away that

〈G(Ψc,Ψc),Ψ
1∗
lcm1〉= 0.

This implies the vanishing of any quadratic nonlinearities in (3.58). Also as Φ =O(|x|2),
one gets G(Φ,Φ) =O(|x|4) and hence

〈G(Ψc+Φ),Ψ1∗
lcm1〉= 〈G(Ψc,Ψc),Ψ

1∗
lcm1〉+〈G(Ψc,Φ),Ψ1∗

lcm1〉+〈G(Φ,Ψc),Ψ
1∗
lcm1〉

= 〈Gs(Φ,Ψc),Ψ
1∗
lcm1〉+O(|x|4),

where Gs(Ψ1,Ψ2) =G(Ψ1,Ψ2)+G(Ψ2,Ψ1). The reduced equations become

dxm
dt

=β1
lc1 xm+

〈Gs(Ψc,Φ),Ψ1∗
lcm1〉

〈Ψ1
lcm1,Ψ

1∗
lcm1〉

+o(3). (3.59)

The denominator 〈Ψ1
lcm1,Ψ

1∗
lcm1〉 of the nonlinear term in (3.59) depends only on lc and

it can be written for arbitrary lc explicitly as

glc = 〈Ψ1
lcm1,Ψ

1∗
lcm1〉=

1

2
α2
lcr

2

[
p1Rα2

lc

γ4
lc,1

+γ2
lc,1(1− p1Qπ2

p2γ4
lc,1

)

]
, (3.60)

where γ2
lc,1

=π2 +α2
lc

as we have defined before.
The numerator of the nonlinear term in (3.59) can be dealt with as follows.

〈Gs(Ψc,Φ),Ψ1∗
lcm1〉=

∑
m1

xm1
〈Gs(Ψ1

lcm11,Φ),Ψ∗lc,m,1〉

=
∑
m1

xm1

〈
Gs

Ψ1
lcm11,y002e002 +

∑
m2

y2
lm20e

2
lm20 +

∑
m2,k

yklm22e
k
lm22

 ,Ψ∗lc,m,1
〉

=
∑
m1

xm1
y002〈Gs(Ψ1

lcm11,e002),Ψ∗lc,m,1〉

+
∑
m1,m2

xm1y
2
lm20〈Gs(Ψ1

lcm11,e
2
lm20),Ψ∗lc,m,1〉

+
∑

l,m1,m2,k

xm1
yklm22〈Gs(Ψ1

lcm11,e
k
l,m2,2),Ψ∗lc,m,1〉

:=P0m2(x)+

2lc∑
l=1

(Plm0(x)+Plm2(x)), |m|≤ lc.

The computations of the above terms are similar to the computations of the center
manifold coefficients which were previously carried out. For example, the first term
above can be computed as shown below.

P0m2(x) =
∑
m1

xm1
〈Gs(Ψ1

lcm11,e002),Ψ∗lc,m,1〉

=−
∑
m1

xm1

∫
Ω

w1
lcm112πcos2πzT ∗lc,m,1
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=−2πŵcT̂
∗
c

∑
m1

xm1

∫
Ω

Ylcm1
sinπzcos2πzYlcm sinπz

=
ŵcT̂

∗
c π

2
r2
∑
m1

xm1δm1,m

=
ŵcT̂

∗
c π

2
xmr

2, (3.61)

where T̂ ∗c =
p1Rα2

lc

γ2
lc,1

as given in (3.21).

With the above notations, the reduced Equations (3.59) become

dxm
dt

=β1
lc1 xm+

1

glc

(
P0m2(x)+

2lc∑
l=1

Plm0(x)+Plm2(x)

)
, |m|≤ lc, (3.62)

where P0m2(x), Plm0(x), Plm2(x) represent cubic polynomials in xj and are related to
the center manifold coefficients y002, y

2
lm0, y

k
lm2, k= 1,2, respectively. We now give their

explicit expressions.

P0m2(x) =S1
lcxmy002, (3.63)

Plm0(x) :=S2
lc,l

∑
m1

∑
m2

cm1,m2,m
lc,l,lc

xm1
y2
lm20, (3.64)

Plm2(x) :=

2∑
k=1

S3,k
lc,l

∑
m1

∑
m2

cm1,m2,m
lc,l,lc

xm1
yklm22. (3.65)

where the sums run over |m1|≤ lc, |m2|≤ lc, and

S1
lc =

α4
lc

2γ2
lc,1

r2p1πR

S2
lc,l=

p1

p2
π2Qr2

(
π2

2

α2
l

γ2
lc,1

−α2
lc

)
,

S3,1
lc,l

=
α2
l

4γ2
lc,1

r2π(
1

2
α2
l −2α2

lc)

[
p1

p2
π2Q−γ4

lc,1

]
,

S3,2
lc,l

=
α2
lc

4γ2
lc,1

r2π(2α2
lc−

1

2
α2
l )p1R.

(3.66)

Finally, it is possible to write the equation in the form (3.31) with

ωlc =
1

glc
S1
lcAlc02, (3.67)

and

ξl,lc =
1

glc

(
S2
lc,lAlcl0 +S3,1

lc,l
A1
lcl2 +S3,2

lc,l
A2
lcl2

)
, (3.68)

where the A-coefficients are given by (3.57).
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4. Conclusion

4.1. The dependence of transition types on the system parameters. In
this section, we analyze the transition number q1 given by (3.33) which dictates the
type of transition under the critical crossing condition (3.27) with lc= 1. We have seen
that similar analysis holds true for lc= 2 case which we omit in this study for brevity.
According to Theorem 3.3, the system exhibits either a continuous transition to a local
attractor containing degenerate steady states if q1<0 or a catastrophic transition to
states far away from the basic state if q1>0.

We note that the sign of the denominator term glc given by (3.60) is always positive
at R=Rc given by (3.23) as it can be written in the form

glc =
1

2
α2
lcr

2 p1

γ2
lc,1

(p2−1)π2

p2
(Q−Q0(lc))

where Q0 is given by (3.26). By our assumption we have either p2≥1 or if p2<1 then
we must have Q<Q0(lc), see (3.29), and in both cases glc >0. Thus the contribution
of glc is irrelevant for the determination of the sign of the transition number.

A symbolic manipulation shows that q1 given by (3.33) can be written as

q1 =k(a1Q
2 +b1Q+c1)

a1 = 3π6α2
1>0

b1 = 8π4(3π2−2γ2
1,1)γ4

2,2 +p2
2

(
π2α2

1γ
2
1,1γ

2
2,2(π2−5γ2

2,2)
)

c1 =p2
2

(
α2

1γ
6
1,1γ

2
2,2(π2−5γ2

2,2)− 1

p2
1

3π2α2
1γ

8
1,1

)
<0

(4.1)

where k is a positive constant. Equation (4.1) implies that q1<0 if Q is sufficiently
small and becomes positive as Q increases. Furthermore q1 is negative for sufficiently
large p2 (since π2<5γ2

2,2). Finally q1 is negative if p1 is sufficiently small and the effect
of p1 on q1 diminishes quadratically as p1 increases.

Now, we will show that both types of transitions described by Theorem 3.3 are
possible. Theorem 3.3 is valid under the following conditions:

• The PES condition (3.27) should hold. For this, either the condition p2>1
or the condition Q<Q0(l̃c) given by (3.26) must hold. The determination of
the number Q0(l̃c) is non-trivial but one can easily determine a lower estimate
Q′0<Q0(l̃c) given by

Q′0 =π2 p2(p1 +1)

p1(1−p2)
,

by using the fact γ4
lc,1

>π4. Thus this condition holds if either Q<Q′0 or p2>1.

• To have lc= 1, Q must be smaller than some Q1 depending on the radius r
which can be obtained from (3.23), see also Figure 3.1.

Now let us fix r= .7, p1 = 1 and p2 = 0.1. For these values we find thatQ′0 = 2.19 andQ1 =
13.7. Hence, for Q<Q′0 and Q<Q1 the assumptions hold true. With these parameters
in (4.1), we find that

q1 =k(−14.72+34.85Q+0.12Q2)

{
<0, 0<Q<0.42

>0, Q>0.42
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showing that both types of transition can occur.
The transition is determined by the nonlinear interactions of the higher frequency

modes with the critical modes. We have already discussed in the proof that the higher
frequency horizontal velocity field modes e1

lm0 and the magnetic field modes e3
lm2 have

no effect on the transition for any lc. The effect of the heat conduction mode T = sin2z,
is always stabilizing, because

S1
1A102 =

−p1α
6
1(π2Q+γ4

1,1)

32πγ2
1,1

<0.

The effect of the vertically homogeneous vertical magnetic field mode M =Y2m is desta-
bilizing (resp. stabilizing) for r<2/π (resp. r>2/π), due to

S2
1,2A202

5π
=

p1π
3Qα4

1(3π2−2γ2
1,1)

20p2
2γ

4
1,1

=
p1π

3Qα4
1(π2− 4

r2 )

20p2
2γ

4
1,1

.

The effect of the velocity mode (u,w) = (2π∇Ylmcos2πz,α2
2Y2m sin2πz) is

S3,1
1,2A

1
122

5π
=

3πα6
1(p2

1π
4Q2−p2

2γ
8
1,1)

160p1p2
2γ

4
1,1γ

4
2,2

and its effect depends on the sign of p2
1π

4Q2−p2
2γ

8
1,1. The effect of the temperature

mode T =Y2m sin2πz is

S3,2
1,2A

2
122

5π
=

p1πα
6
1(π2Q+γ4

1,1)

160γ2
1,1γ

2
2,2

>0

and is always destabilizing.

4.2. Discussion. In this paper we study the first dynamical transitions from
the basic steady profile of the MHD equations as the Rayleigh number is increased.
We consider the case where the first 2lc+1 critical eigenvalues of the linear operator
are real where lc is a positive integer. To reduce the full PDE to a system of 2lc+1
ODE’s, our main tool is the center manifold reduction. To carry out this reduction,
we construct a suitable basis for the phase space and derive some identities involving
the triple product of gradients of spherical harmonics, which we believe can be used in
the related problems. The transition is fully described by the stability analysis of this
reduced model. We derive the most general reduced system irrespective of the integer
lc. Then by specializing to lc= 1,2 cases, we show that the system exhibits either
continuous transitions or drastic transitions. In the continuous transition scenario, an
attractor which is homeomorphic to 2lc dimensional sphere containing an S2-set of
degenerate steady states of the system bifurcates as the Rayleigh number R crosses
the critical Rayleigh number Rc. In the drastic transition scenario, the system has a
repeller bifurcated on R<Rc and the system moves abruptly from the basic state to
a new state which is away from the basic state. We show that for lc= 1,2 cases, the
first transition is continuous if the Chandrasekhar number Q is sufficiently small, or the
Prandtl number p1 is sufficiently small or the magnetic Prandtl number p2 is sufficiently
large. Furthermore, we demonstrate a parameter regime such that by increasing Q, the
type of transition changes from continuous to drastic, which is essentially different from
the transition in the convection on a spherical shell without a magnetic field.

Acknowledgments. The work of Quan Wang was supported by the National
Nature Science Foundation of China (NSFC), Grant No. 11901408.
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Appendix. Spherical harmonics. In this section we recall some properties of
spherical harmonics and derive some identities on the integral of triple product of gra-
dients of spherical harmonics.

First of all, the spherical harmonics are the eigenfunctions of the Laplacian on the
sphere S2

r with radius r, i.e. for l∈N and m∈N, |m|≤ l, they satisfy

∆Ylm=−α2
l Ylm, in S2

r (5.1)

where

α2
l =

l(l+1)

r2
.

The spherical harmonics are orthogonal in L2(S2
r ), and we further assume that they are

normalized via∫
S2
r

Yl1m1Yl2m2dS
2 =

∫ 2π

ϕ=0

∫ π

θ=0

Yl1m1Yl2m2 sinθr2dθdϕ= r2δl1,l2δm1,m2 . (5.2)

Spherical harmonics satisfy the symmetry condition

Yl,m= (−1)mYl,−m (5.3)

By (5.2) and (5.3), we obtain∫
S2
1

Yl1,m1
Yl2,m2

dS2 = (−1)m2r2δl1,l2δm1,−m2
. (5.4)

Now integrating by parts and using (5.1) and (5.3), we obtain∫
S2
r

∇Yl1,m1
·∇Yl2,m2

dS2 =−
∫
S2
r

∆Yl1,m1
Yl2,m2

dS2

=α2
l r

2(−1)m2δl1,l2δm1,−m2
.

(5.5)

Now we deal with triple products of spherical harmonics. First, we define

cm1,m2,m
l1,l2,l

=
1

r2

∫
S2
r

Yl1m1
Yl2m2

YlmdS
2. (5.6)

It is well known ( [30]) that the tripling coefficients cm1,m2,m3

l1,l2,l3
vanish unless all of the

following conditions hold:

(1) The triangle condition, i.e. |lj1− lj2 |≤ lj3 for all distinct j1, j2, j3∈{1,2,3},
(2) m1 +m2 =m3,

(3) l1 + l2 + l3 is an even integer which guarantees that the integrand is an even function.
This is a parity conservation law.
Thus

cm1,m2,m
lc,lc,l

= 0 unless m=m1 +m2 and l∈{2,4,. ..,2lc}. (5.7)

In what follows, we derive some identities which are used in the derivation of the
center manifold function.
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Proposition 5.1. The following integrals in terms of (5.6) hold true:

bm1,m2,m
l1,l2,l

=
1

r2

∫
S2
r

∇Yl1m1
·∇Yl2m2

YlmdS
2 =

1

2

(
α2
l1 +α2

l2−α
2
l

)
cm1,m2,m
l1,l2,l

, (5.8)

dm1,m2,m
l1,l2,l

=
1

r2

∫
S2
r

Yl1m1
∇Yl2m2

·∇YlmdS2 =
1

2
(−α2

l1 +α2
l2 +α2

l )c
m1,m2,m
l1,l2,l

, (5.9)

em1,m2,m
l1,l2,l

=
1

r2

∫
S2
r

∇Yl1m1
·∇∇Yl2m2

·∇YlmdS2

=
1

2

(
α2
l1 +α2

l2−α
2
l

)
dm1,m2,m
l1,l2,l

. (5.10)

In particular, we have

bm1,m2,m
lc,lc,l

=
1

2

(
2α2

lc−α
2
l

)
cm1,m2,m
lc,lc,l

,

dm1,m2,m
lc,lc,l

=
1

2
α2
l c
m1,m2,m
lc,lc,l

,

em1,m2,m
lc,lc,l

=
1

4
α2
l

(
2α2

lc−α
2
l

)
cm1,m2,m
lc,lc,l

.

(5.11)

Proof. The identity (5.8) can be seen by integrating by parts thrice and using
(5.1). The calculation goes as follows.

bm1,m2,m
l1,l2,l

=α2
l1c

m1,m2,m
l1,l2,l

− 1

r2

∫
S2
r

∇Yl1m1
·Yl2m2

∇YlmdS2

=α2
l1c

m1,m2,m
l1,l2,l

+
1

r2

∫
S2
r

Yl1m1
∇Yl2m2

·∇YlmdS2−α2
l c
m1,m2,m
l1,l2,l

= (α2
l1−α

2
l )c

m1,m2,m
l1,l2,l

−bm1,m2,m
l1,l2,l

+α2
l2c

m1,m2,m
l1,l2,l

,

from which the result follows. The identity (5.9) is similar and we omit its proof. For
(5.10),

em1,m2,m
l1,l2,l

=− 1

r2

∫
S2
r

Yl1m1
∇·
(
∇∇Yl2m2

·∇Ylm
)
dS2

=− 1

r2

∫
S2
r

Yl1m1

(
∇·∇∇Yl2m2

·∇Ylm+trace
(
∇∇Yl2m2

∇∇Ylm
))
dS2

=α2
l2d

m1,m2,m
l1,l2,l

−I

Using the Einstein summation over indices i,j= 1,2 and D1, D2 denoting the horizontal
derivatives, we obtain

I=
1

r2

∫
S2
r

Yl1m1
trace

(
∇∇Yl2m2

∇∇Ylm
)
dS2

=
1

r2

∫
S2
r

Yl1m1
DijYl2m2

DijYlmdS
2

=− 1

r2

∫
S2
r

DjYl1m1
DiYl2m2

DijYlmdS
2 +α2

l d
m1,m2,m
l1,l2,l

=
(
−α2

l1 +α2
l

)
dm1,m2,m
l1,l2,l

+
1

r2

∫
S2
r

DjYl1m1
DijYl2m2

DiYlmdS
2

=
(
−α2

l1 +α2
l2 +α2

l

)
dm1,m2,m
l1,l2,l

−I
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Hence the result (5.10) follows.

Proposition 5.2. Let

fm1m2m
l1l2l

=
1

r2

∫
S2
r

Yl1m1
∇Yl2m2

·(∇×Ylmêz)dS
2

gm1m2m
l1l2l

=
1

r2

∫
S2
r

∇Yl1m1
·(∇∇Yl2m2

) ·(∇×Ylmêz)dS
2

(5.12)

Then we have

gm1m2m
l1l2l

=
1

2
(α2
l1 +α2

l2−α
2
l )f

m1m2m
l1l2l

, (5.13)

and the anti-symmetry properties

fm1m2m
l1l2l

=−fm2m1m
l2l1l

, gm1m2m
l1l2l

=−gm2m1m
l2l1l

, (5.14)

hold true.

Proof. First notice that

gm1m2m
l1l2l

=− 1

r2

∫
S2
r

Yl1m1
∇·
(
∇∇Yl2m2

·(∇×Ylmêz)
)
dS2 =I+J

where

I=− 1

r2

∫
S2
r

Yl1m1
(∇·∇∇Yl2m2

) ·(∇×Ylmêz)dS
2 =α2

l2f
m1m2m
l1l2l

.

Denoting Z1 =D2Ylm and Z2 =−D1Ylm, we have by three integration by parts

J =− 1

r2

∫
S2
r

Yl1m1trace
(
∇∇Yl2m2∇(∇×Ylmêz)

)
dS2

=− 1

r2

∫
S2
r

Yl1m1DijYl2m2DiZjdS
2 =

1

2
(α2
l1−α

2
l2−α

2
l )f

m1m2m
l1l2l

Hence (5.13) is proved and as a consequence we only need to prove the anti-symmetry
of fm1m2m

l1l2l
in (5.14). We can alternatively express fm1m2m

l1l2l
as

fm1m2m
l1l2l

=
1

r2

∫
S2
r

Yl1m1J(Yl2m2 ,Ylm)dS2

where J is the advective nonlinearity

J(f,g) = (D1fD2g−D2fD1g) .

The symmetries of the following trilinear form∫
S2
r

f1J(f2,f3)dS2 =

∫
S2
r

f2J(f3,f1)dS2 =−
∫
S2
r

f2J(f1,f3)dS2

for any suitable f1, f2, f3 is well-known and can easily be shown to hold. Thus, (5.14)
is proved.
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[26] S. Özer and T. Şengül, Transitions of spherical thermohaline circulation to multiple equilibria, J.
Math. Fluid Mech., 20(2):499–515, 2018. 1

[27] J.-L. Lions, R. Temam, and S. Wang, New formulations of the primitive equations of atmosphere
and applications, Nonlinearity, 5(2):237–288, 1992. 2.1

[28] J. Pedlosky, Geophysical Fluid Dynamics, Springer Science & Business Media, 2013. 2.1
[29] T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, 53, 2005. 3.2
[30] G.B. Arfken and H.J. Weber, Mathematical Methods for Physicists, Fourth Edition, 67, 1999. 4.2


