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THE FACTORIZATION METHOD FOR
PARTIALLY PENETRABLE OBSTACLE IN ELASTIC SCATTERING∗

JUN GUO† , EN-GUO GU‡ , JIAN HE§ , AND LEI XIAO¶

Abstract. This paper considers the elastic scattering problem of a partially penetrable obstacle.
By partially penetrable obstacle, we mean that the elastic incident waves can only transmit from partial
boundary into the interior of the obstacle. Firstly, using the boundary integral equation method,
the direct scattering problem is discussed in a brief way. Then the inverse scattering problem of
reconstructing the shape and location of the obstacle from the knowledge of far field patterns due to
the incident plane compressional and shear waves is considered. To this end, we use the well known
factorization method to deal with it and establish the theory foundation of this method. Finally, some
numerical examples are presented to illustrate the validity and feasibility of the proposed method.
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1. Introduction
Elastic scattering problems have received a lot of attention in recent years. There

have been some research achievements for elastic scattering problems by penetrable
obstacle, in which case, the elastic wave fields pass through the whole boundary of the
obstacle. In certain conditions, however, a penetrable obstacle may touch a rigid crack,
then the elastic waves fields can only transmit from part of the boundary, which is the
problem under consideration. As far as we know, there are few papers involving such
a special transmission problem except for the paper [1], in which the authors use the
linear sampling method to reconstruct a combined scatterer consisting of a penetrable
obstacle and a hard crack touching with each other. Similar transmission problems also
appear in electromagnetic scattering [2, 3].

The inverse transmission problems in acoustic, electromagnetic and elastic scat-
tering have obtained abundant research results. Some of them are stated as follows.
The Newton iteration method is used to solve an inverse transmission problem for the
Helmholtz equation in [4]. The study of the factorization method for recovering a pene-
trable obstacle with a general conductive boundary condition is presented in [5], and for
determining a cavity bounded by a penetrable anisotropic inhomogeneous medium from
internal measurements of the cavity is given by [44]. The identification of a penetra-
ble obstacle with mixed transmission conditions is shown in [6] by the linear sampling
method. See [42] for a direct linear sampling approach to imaging scatterers in an
acoustic waveguide, and see [43] for multi-frequency reconstruction of sound soft and
penetrable obstacles via the linear sampling method. In the inverse electromagnetic
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scattering, the linear sampling method is applied in [7] to determine the shape and
surface conductivity of a partially coated dielectric from a knowledge of the far field
pattern of the scattered electromagnetic wave. In the paper [8], the author deduces the
formulas, which give direct links between the far field data and the unknowns of the
inverse problem, to reconstruct complex obstacles by giving the shapes, deciding the
nature of the obstacles (penetrable or impenetrable), and localizing the support of the
coating. For the inverse scattering of elastic waves, the enclosure method is established
to reconstruct penetrable unknown inclusions in a plane elastic body by boundary mea-
surements in [9]. The topological derivative method [41] is presented for elastic-wave
imaging of underground cavities. The problem of detecting a penetrable obstacle is
solved by using an iterative two-step method in [10] and the linear sampling method
in [11, 12]. We note that the uniqueness results are given, for example, in [13–15],
respectively, for acoustic, electromagnetic and elastic inverse transmission problems.

The problem we are interested in is to study the elastic scattering by a partially
penetrable obstacle, and the purpose of the present study is to extend the factorization
method to the reconstruction of the elastic body from the knowledge of the far field
pattern of the scattered fields for elastic plane incident waves. This method is applied
in [16] to the inverse elastic scattering problem by penetrable isotropic bodies and
later is proved to be suitable for acoustic transmission problem [17]. Different from the
impenetrable obstacle scattering, the fundamental data-to-pattern operator G (mapping
the boundary data to far field pattern) is no longer injective. By a deep investigation of
the nullspace of G and giving the exact description of it via the Dirichlet-to-Neumann
map, the authors derive an appropriate decomposition of the far field operator and
then explore thoroughly the properties of the involved boundary potential operators
such that the abstract functional theoretic result [18] can be employed to characterize
the penetrable obstacle. Since the boundary of the obstacle in our problem is made
up of the penetrable and impenetrable parts, the Dirichlet-to-Neumann map and the
boundary potential operators don’t maintain some of the properties as those in the case
of completely penetrable obstacle. We adopt different technical ideas to overcome this
difficulty and obtain the theoretical framework of the proposed method.

Since the first work [19] on using the factorization method to recover a soft or
hard obstacle in acoustic scattering, this method has been applied successfully to other
various inverse shape scattering problems for Helmholtz equation and Maxwell equations
as well as in electrical impedance tomography, such as [20–24, 44]. When it comes to
elastic wave scattering, the recorded literature on the factorization method is rare.
See [25] for a rigid cavity, [16] for penetrable bodies mentioned above, and [26] for
rigid obstacles by using only the knowledge of the transversal or longitudinal far field
pattern corresponding to incident plane shear wave or pressure wave. We refer to the
works [27–30] for a recent progress on the factorization method.

The outline of this paper is organized as follows. In Section 2, we formulate direct
and inverse scattering problems. Based on the conclusions in [1], a brief derivation to
the direct scattering is given by using the boundary integral equation approach. The
obtained boundary integral system is useful for the numerical experiments. In Section
3, under some suitable assumptions, a rigorous proof of the factorization method for
the reconstruction of the partially penetrable obstacle is provided. The properties of
the involved decomposition operators for the far field operator are proved to satisfy the
range identity theorem [18]. The numerical simulations are presented in Section 4 to
justify the validity of our method.
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2. The direct and inverse scattering problems

Consider the scattering of time harmonic elastic plane wave uin by a bounded par-
tially penetrable inclusion Di⊂R2. The boundary ∂Di of the connected domain Di is
assumed to be Lipschitz continuous and has a Lipschitz dissection ∂Di=Γ1∪Γ2, where
Γ1 and Γ1 are open subsets of ∂Di and are disjoint, denoting the penetrable and im-
penetrable portion of the boundary, respectively. The unbounded domain R2\Di is
denoted by De. Both regions of Di and De are occupied by isotropic and homoge-
neous elastic medium with constant density ρα, Lamé constants µα and λα satisfying
µα>0,2µα+λα>0, for α= i,e and we assume that ρi≥ρe, µi≥µe, λi≥λe. Then the
generated wave fields by the obstacle are the scattered one u defined in De and the
transmitted field v in Di, which are governed by the Navier equations{

µe∆u+(µe+λe)∇(∇·u)+ρeω
2u=0 in De,

µi∆v+(µi+λi)∇(∇·v)+ρiω
2v=0 in Di,

(2.1)

where ω>0 is the circular frequency. From now on, we denote by ∆∗α the Lamé operator
µα∆+(µα+λα)∇(∇·) for brevity.

A description of some notations is given as follows. For x∈R2, let x̂ be the unit
vector x̂ :=x/|x| and x⊥ be the vector obtained by rotating x anticlockwise by π/2. As
usual, we use the notations a ·b to represent the scalar product and a×b to present the
vector product for a,b∈R2. For a vector function u= [u1,u2]> and a matrix function
W = [w1,w2]>, the symbols ∇u and ∇·W are denoted respectively by

∇u= [∇u1,∇u2]>, ∇·W = [∇·w1,∇·w2]>.

Let n be the unit outward normal vector of the boundaries ∂Di. On the penetrable
part of the boundary ∂Di, the following transmission boundary conditions are satisfied

{
u+uin=v on Γ1,

Teu+Teu
in=Tiv+ iλv on Γ1.

(2.2)

Here, λ<0 is the constant surface conductivity, Tα is the surface stress operator on Γ1

which is given by

Tαw= (2µαn ·∇+λαn∇·−µαn⊥∇⊥·)w

=

 (λα+2µα)
∂w1

∂x1
+λα

∂w2

∂x2
µα(

∂w1

∂x2
+
∂w2

∂x1
)

µα(
∂w1

∂x2
+
∂w2

∂x1
) λα

∂w1

∂x1
+(λα+2µα)

∂w2

∂x2

n.
The Dirichlet boundary condition is imposed on both sides of the impenetrable part

Γ2,

v=0 on Γ2, (2.3)

u+uin=0 on Γ2. (2.4)

The incident wave is assumed to be a longitudinal plane wave with the form

uin=uinp =deikp,ex·d, d∈S,
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where S is the unit circle in R2 and d is the incident direction, or a transversal plane
wave with the form

uin=uins =qeiks,ex·d, q,d∈S,

where q is the polarization direction such that q⊥d. The wave numbers of compressional
and shear waves kp,e and ks,e, respectively are given by

kp,e=ω

√
ρe

2µe+λe
and ks,e=ω

√
ρe
µe
.

The wave numbers kp,i and ks,i can be defined in a similar way.
Due to the Helmholtz decomposition theorem [31], the scattered field u can be

decomposed as

u=up+us, up=− 1

k2
p,e

∇(∇·u), us=− 1

k2
s,e

∇⊥(∇⊥ ·u),

where up denotes the longitudinal wave and us is the transversal wave. Furthermore,
each displacement field ua(a=p,s) should satisfy the Helmholtz equation

∆ua+k2
a,eua=0,

and the Kupradze radiation condition [32]

lim
r→∞

√
r(
∂up
∂r
− ikp,eup) =0, lim

r→∞

√
r(
∂us
∂r
− iks,eus) =0, r= |x| (2.5)

uniformly in all directions x̂∈S. In the sequel, the solution of Navier Equation (2.1)
satisfying the Kupradze radiation condition is called the radiating solution. It holds
that the radiating solution to the Navier equation has the asymptotic expansions of the
forms [33,34]

u(x) =
eikp,e|x|√
|x|

u∞p (x̂)x̂+
eiks,e|x|√
|x|

u∞s (x̂)x̂⊥+O(|x|−3/2), |x|→∞ (2.6)

and

Te,x̂u(x) =
iω2

kp,e

eikp,e|x|√
|x|

u∞p (x̂)x̂+
iω2

ks,e

eiks,e|x|√
|x|

u∞s (x̂)x̂⊥+O(|x|−1), |x|→∞, (2.7)

where u∞p (x̂) is the compressional far field pattern of u and u∞s (x̂) is the shear far field
pattern of u. The far field pattern of the scattered field u is defined by

u∞(x̂) = (u∞p (x̂),u∞s (x̂)).

We call the direct scattering problem (2.1)–(2.5) as DP, and the classical boundary
integral equation method can be used to solve it. Here we just give a brief discussion on
this issue and obtain an equivalent boundary integral system for the sake of handling
the inverse scattering problem. We refer to the papers [33, 35] applying the boundary
integral equation method to solve the elastic obstacle scattering problems and to [1] for
mixed obstacle scattering problem.
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We now deal with the direct scattering problem DP and firstly introduce some
Sobolev spaces. Let H1(Di) and H1

loc(De) be the usual Sobolev spaces with H1/2(∂Di)
being the trace space. We introduce the following trace spaces on Γl,l= 1,2.

[H1/2(Γl)]
2 ={u|Γl : u∈ [H1/2(∂Di)]

2},

[H̃1/2(Γl)]
2 ={u∈ [H1/2(∂Di)]

2 : suppu⊆Γl},

[H−1/2(Γl)]
2 =
(

[H̃1/2(Γl)]
2
)′
, the dual space of [H̃1/2(Γl)]

2,

[H̃−1/2(Γl)]
2 =
(

[H1/2(Γl)]
2
)′
, the dual space of [H1/2(Γl)]

2.

Consider a general problem: let f ∈ [H1/2(Γ1)]2, g∈ [H−1/2(Γ1)]2 and h∈
[H−1/2(Γ2)]2 seek a radiating solution u∈ [H1

loc(De)]
2 and v∈ [H1(Di)]

2 such that

∆∗eu+ρeω
2u = 0 in De,

∆∗iv+ρiω
2v = 0 in Di,

u−v = f on Γ1,

Teu−Tiv− iλv = g on Γ1,

v = 0 on Γ2,

u = h on Γ2.

(2.8)

The fundamental solution, which is also called Green’s tensor of the Navier equation
in free space, is given by

Γα(x,y) =
i

4µα
H

(1)
0 (ks,α|x−y|)I+

i

4ω2
∇>x∇x(H

(1)
0 (ks,α|x−y|)−H(1)

0 (kp,α|x−y|))

for x,y∈R2 and x 6=y, whereH
(1)
0 (·) is the Hankel function of the first kind of order zero.

The following four boundary integral operators in terms of the fundamental solution will
be used

(Hα
jlg)(x) =

∫
Γj

Γα(x,y) ·g(y)ds(y), x∈Γl,

(Kα
jlg)(x) =

∫
Γj

[Tα,yΓα(x,y)]> ·g(y)ds(y), x∈Γl,

(K
′α
jl g)(x) =

∫
Γj

Tα,xΓα(x,y) ·g(y)ds(y), x∈Γl,

(Lαjlg)(x) =Tα,x

∫
Γj

[Tα,yΓα(x,y)]> ·g(y)ds(y), x∈Γl,

for j,l= 1,2,3. See [36] for the following mapping properties

Hα
ll : [H̃−1/2(Γl)]

2→ [H1/2(Γl)]
2, Kα

ll : [H̃1/2(Γl)]
2→ [H1/2(Γl)]

2,

K
′α
ll : [H̃−1/2(Γl)]

2→ [H−1/2(Γl)]
2, Lαll : [H̃1/2(Γl)]

2→ [H−1/2(Γl)]
2.

Next, the layer potentials will be used to solve problem (2.8) and we suppose the
solution pair (u,v) in the form of combined single-and double-layer potentials

u(x) =

∫
Γ1

{
Γe(x,y) ·b(y)+[Te,yΓe(x,y)]> ·a(y)

}
ds(y)
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+

∫
Γ2

Γe(x,y) ·c(y)ds(y), x∈De, (2.9)

v(x) =

∫
Γ1

{
Γi(x,y) ·b(y)+[Ti,yΓi(x,y)]> ·a(y)

}
ds(y)

+

∫
Γ2

Γi(x,y) ·e(y)ds(y), x∈Di (2.10)

with a∈ [H̃1/2(Γ1)]2, b∈ [H̃−1/2(Γ1)]2, c∈ [H̃−1/2(Γ2)]2 and e∈ [H̃1/2(Γ2)]2 being un-
determined densities. Note that such combined single-and double-layer potentials make
sure that (u,v) belongs to [H1

loc(De)]
2× [H1(Di)]

2

By the jump relations of single-and double-layer potentials [36], the boundary con-
ditions in Equation (2.8) yield a boundary integral system

M11 M12 K
′e
21 −K

′i
21− iλHi

21

Ke
11−Ki

11 +I He
11−Hi

11 H
e
21 −Hi

21

Ke
12 He

12 He
22 0

Ki
12 Hi

12 0 Hi
22



a
b
c
e

=


g
f
h
0

, (2.11)

where M11 =Le11−Li11− iλKi
11 + iλ

2 I, M12 =K
′e
11−K

′i
11− iλHi

11−I. Denote by A the
boundary integral operator on the left side of above equation, and define the Sobolev
spaces

X := [H̃1/2(Γ1)]2× [H̃−1/2(Γ1)]2× [H̃1/2(Γ2)]2× [H̃−1/2(Γ2)]2,

X∗ := [H−1/2(Γ1)]2× [H1/2(Γ1)]2× [H−1/2(Γ2)]2× [H1/2(Γ2)]2,

one can observe that A :X→X∗ is a bounded operator.

Furthermore, following the ideas in [1], it can be proved that the operator A has a
bounded inverse operator. Thus the boundary integral system (2.11) is solvable, from
which we can deduce that problem (2.8) possesses the solution in the form of (2.9) and
(2.10). So, we conclude that the direct scattering problem DP is well posed.

The inverse scattering problem under consideration is the determination of the
partially penetrable obstacle Di, which is regarded as IP. The inversion data is the
knowledge of the far field pattern u∞(x̂,d;t) of the scattering field u(x,d;t) for all
observation direction x̂∈S, incident direction d∈S and the polarization t=d or q
associated with the incident plane wave deikp,ex·d or qeiks,ex·d.

We aim at extending the factorization method to the inverse elastic scatter-
ing problems IP and now introduce the elastic Herglotz wavefunction with density
τ = (τp,τs)∈ [L2(S)]2 defined by

ṽτ (x) =e−iπ/4
∫
S

{√kp,e
ω
eikp,ed·xdτp(d)+

√
ks,e
ω
eiks,ed·xd⊥τs(d)

}
ds(d), x∈R2.

(2.12)
The Hilbert space [L2(S)]2 throughout this paper is equipped with the inner product

〈g,h〉= ω

kp,e

∫
S
gphpds+

ω

ks,e

∫
S
gshsds, g,h∈ [L2(S)]2.
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The elastic far field operator F : [L2(S)]2→ [L2(S)]2 is defined by

(Fτ)(x̂) =e−iπ/4
∫
S

{√kp,e
ω

u∞(x̂,d;d)τp(d)+

√
ks,e
ω

u∞(x̂,d;d⊥)τs(d)
}
ds(d), x̂∈S,

(2.13)
where u∞ is the far field pattern of the scattered field u to the problem (2.1)–(2.5). We
know from the superposition principle that it is the far field pattern of the resulting
scattered field aroused by the incidence of Herglotz wavefunction.

The factorization method for inverse problem IP relies on the far field equation

(Fgz)(x̂) = Γ∞e (x̂,z;p) for gz ∈ [L2(S)]2,x̂∈S, (2.14)

where Γ∞e (x̂,z;p) = (Γ∞p,e(x̂,z;p),Γ∞s,e(x̂,z;p)) is the far field pattern of an elastic point
source Γe(x,z;p) = Γe(x,z) ·p in z∈R2 with the polarization direction p∈S. The lon-
gitudinal and transverse parts of Γe(x,y;p) are respectively given by

Γ∞p,e(x̂,y;p) =
1

2µ+λ

eiπ/4√
8πkp,e

e−ikp,ex̂·yx̂ ·p (2.15)

and

Γ∞s,e(x̂,y;p) =
1

µ

eiπ/4√
8πks,e

e−iks,ex̂·yx̂⊥ ·p. (2.16)

The factorization method is to establish the theoretical basis for the following phe-
nomena. The behavior of the solution gz for the varying point z plays a role as an
indicator function, from where we know whether the test point z is located in the un-
known obstacle Di and thereby obtain the location information on the obstacle.

3. The factorization method
This section concerns with the inverse problem IP. We proceed in three steps.

• properly decompose the far field operator F in the form F =G∗TG,

• use the test function Γ∞e (x̂,z;p) to characterize the obstacle Di,

• bridge between the test function and the data operator F by the data-to-pattern
operator G.

The difficulty is to verify that the operators T and G satisfy the assumptions in the
range identity theorem. We made partial use of the idea in [16] to show the coercivity
of the operator T .

We begin with the definitions of some operators related to the inverse problem.
In this paper, assume that ω is not an eigenvalue for following interior Dirichlet

problem. ∆∗eû+ρeω
2û = 0 in Di,
û = ϕ on Γ1,
û = ψ on Γ2,

(3.1)

where ϕ∈ [H1/2(Γ1)]2 and ψ∈ [H1/2(Γ2)]2. Then we can define the Dirichlet-to-
Neumann map Λ : [H1/2(Γ1)]2× [H1/2(Γ2)]2→ [H−1/2(Γ1)]2 by

Λ(ϕ,ψ) =Teû|Γ1
. (3.2)
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Let ϕ,ψ be given as in problem (3.1) and consider the following problem

∆∗eu+ρeω
2u = 0 in De,

∆∗iv+ρiω
2v = 0 in Di,

u−v = ϕ on Γ1,
Teu−Tiv− iλv = Λ(ϕ,ψ) on Γ1,

v = 0 on Γ2,
u = ψ on Γ2.

(3.3)

Also, u is required to satisfy Kupradze radiation condition. The well posedness of this
problem defines a data-to-pattern operator G : [H1/2(Γ1)]2× [H1/2(Γ2)]2→ [L2(S)]2 by

G(ϕ,ψ)(x̂) =u∞(x̂), (3.4)

where u∞(x̂) is the far field pattern of the scattered field u.
Let ṽτ be the Herglotz wavefunction and we define the Herglotz wave operator

H : [L2(S)]2→ [H1/2(Γ1)]2× [H1/2(Γ2)]2 by

Hτ = (ṽτ |Γ1
,ṽτ |Γ2

). (3.5)

Then, it follows that

Fτ =−G(Hτ). (3.6)

In order to apply the factorization method, a deep study of the relevant operators
is necessary.

Obviously, the adjoint operator H∗ : [H̃−1/2(Γ1)]2× [H̃−1/2(Γ2)]2→ [L2(S)]2 of H is
given in the form

(H∗(φ,θ))(d)

=eiπ/4
(∫

Γ1

√
ω

kp,e
e−ikp,ed·xd ·φ(x)ds(x),

∫
Γ1

√
ω

ks,e
e−iks,ed·xd⊥ ·φ(x)ds(x)

)
+eiπ/4

(∫
Γ2

√
ω

kp,e
e−ikp,ed·xd ·θ(x)ds(x),

∫
Γ2

√
ω

ks,e
e−iks,ed·xd⊥ ·θ(x)ds(x)

)

for d∈S. We can prove with the help of (2.15), (2.16) that the function
1/(
√

8πω)H∗(φ,θ) is just the far field pattern of the following potential

ŵ(x) =

∫
Γ1

Γe(x,y) ·φ(y)ds(y)+

∫
Γ2

Γe(x,y) ·θ(y)ds(y) (3.7)

for (φ,θ)∈ [H̃−1/2(Γ1)]2× [H̃−1/2(Γ2)]2 and x∈R2\∂Di.
Now, consider the interior transmission problem as below,

∆∗ew+ρeω
2w = 0 in Di,

∆∗i v̂+ρiω
2v̂ = 0 in Di,

w− v̂ = 0 on Γ1,

Tew−Tiv̂− iλv̂ = φ on Γ1,

v̂ = 0 on Γ2,

w = 0 on Γ2.

(3.8)
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We refer [37] for a detailed analysis on a similar problem in acoustic scattering. The
values of ω are called transmission eigenvalues, if the homogeneous interior transmission
problem (3.8) has a non-trivial solution. Throughout this paper, we assume that ω is
not a transmission eigenvalue and the problem (3.8) is well posed.

Noting the jump relation of the single layer potential and the boundary conditions
in problem (3.8), a simple calculation yields

Teŵ+−Tiv̂− iλv̂=Teŵ+ +φ−Tew=Teŵ−−Tew, on Γ1,

ŵ+− v̂= ŵ−−w, on Γ1 and ŵ+ = ŵ−= ŵ−−w, on Γ2.

The notation ŵ± means limh→0+ ŵ(x±hn) for x∈Γ and Teŵ± represents
limh→0+(2µin ·∇+λin∇·−µin⊥∇⊥·)ŵ(x±hn) for x∈Γ. In addition, we can obtain
that

(Teŵ−−Tew)|Γ1
= Λ((ŵ−−w)|Γ1

,ŵ+|Γ2
)

since ŵ−w satisfies problem (3.1) in the domain Di with ϕ= ŵ−−w on Γ1, ψ= ŵ−−w
on Γ2.

Therefore, (ŵ,v̂) satisfies following problem

∆∗eŵ+ρeω
2ŵ = 0 in De,

∆∗i v̂+ρiω
2v̂ = 0 in Di,

ŵ− v̂ = ŵ−−w on Γ1,

Teŵ−Tiv̂− iλv̂ = Λ((ŵ−−w)|Γ1 ,ŵ+|Γ2) on Γ1,

v̂ = 0 on Γ2,

ŵ = ŵ+ on Γ2.

(3.9)

According to the definition of the operator G, we have that

G((ŵ−−w)|Γ1
,ŵ+|Γ2

) = ŵ∞.

Define T : [H̃−1/2(Γ1)]2× [H̃−1/2(Γ2)]2→ [H1/2(Γ1)]2× [H1/2(Γ2)]2 by

T (φ,θ) = ((ŵ−−w)|Γ1 ,ŵ+|Γ2). (3.10)

Then we obtain

H∗(φ,θ) =
√

8πωG(T (φ,θ)),

which implies Hτ =
√

8πωT ∗G∗τ . So the far field operator has the factorized form

F =−
√

8πωGT ∗G∗. (3.11)

The decomposition technique of the far field operator F is more difficult than and
is different from that used in the papers [16,17]. We here adopt a ideological line based
on scattering problems, and get the desired decomposition. Next, we turn our attention
to the properties of the operator T and then explore the operator G, which are the key
for the factorization method.
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Before giving the proof of the next lemma, we would like to remind the reader of
Betti’s first integral formula. Let D be a bounded domain with Lipschitz continuous
boundary ∂D, for two vectors v,w∈ [H1(D)]2 with ∆∗v∈ [H1(D)]2, it holds that∫

D

Eα(v,w)dx+

∫
D

∆∗αv ·wdx=

∫
∂D

Tαv ·wds,

where the sesquilinear form Eα(v,w) is given as

Eα(v,w) = (2µα+λα)
( ∂v1

∂x1

∂w1

∂x1
+
∂v2

∂x2

∂w2

∂x2

)
+µα

( ∂v1

∂x2

∂w1

∂x2
+
∂v2

∂x1

∂w2

∂x1

)
+λα

( ∂v1

∂x1

∂w2

∂x2
+
∂v2

∂x2

∂w1

∂x1

)
+µα

( ∂v1

∂x2

∂w2

∂x1
+
∂v2

∂x1

∂w1

∂x2

)
.

Lemma 3.1. The imaginary part of the operator T is strictly positive, i.e.

Im〈T (φ,θ),(φ,θ)〉>0, for all (φ,θ)∈ [H̃−1/2(Γ1)]2× [H̃−1/2(Γ2)]2 with (φ,θ) 6=0.

Proof. Using Betti’s first formula and the boundary conditions of problem (3.8),
taking note of the following equalities

φ=Tew−Tiv̂− iλv̂=Teŵ−−Teŵ+, ŵ+ = ŵ− on Γ1,

θ=Teŵ−−Teŵ+, ŵ+ = ŵ− on Γ2,

we have from the definition of the operator T that

〈(φ,θ),T (φ,θ)〉=
∫

Γ1

φ ·(ŵ−−w)ds+

∫
Γ2

θ ·ŵ+ds

=

∫
Γ1

φ ·ŵ−ds−
∫

Γ1

φ ·wds+

∫
Γ2

θ ·ŵ+ds

=

∫
Γ1

(Teŵ−−Teŵ+) ·ŵ−ds−
∫

Γ1

(Tew−Tiv̂− iλv̂) ·wds

+

∫
Γ2

(Teŵ−−Teŵ+) ·ŵ+ds

= (

∫
Γ1

Teŵ− ·ŵ−ds+

∫
Γ2

Teŵ− ·ŵ−ds)−(

∫
Γ1

Teŵ+ ·ŵ+ds+

∫
Γ2

Teŵ+ ·ŵ+ds)

−
∫

Γ

Tew ·wds+

∫
Γ

Tiv̂ · v̂ds+ iλ

∫
Γ1

|v̂|2ds

=

∫
Di

Ee(ŵ,ŵ)dx−ρeω2

∫
Di

|ŵ|2dx+

∫
Br∩De

Ee(ŵ,ŵ)dx−ρeω2

∫
Br∩De

|ŵ|2dx

−
∫
Di

Ee(w,w)dx+ρeω
2

∫
Di

|w|2dx+

∫
Di

Ei(v̂,v̂)dx−ρiω2

∫
Di

|v̂|2dx

−
∫
∂Br

Teŵ ·ŵds+ iλ

∫
Γ1

|v̂|2ds, (3.12)

where Br is a circle centering at the origin with radius r large enough such that Di⊂Br.
Since λ<0, Ei(v̂,v̂), Ee(w,w) and Ee(ŵ,ŵ) are real, we take the imaginary part and
have

Im〈T (φ,θ),(φ,θ)〉=−Im〈(φ,θ),T (φ,θ)〉
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=
ω2

kp,e

∫
S
|ŵ∞p |2ds+

ω2

ks,e

∫
S
|ŵ∞s |2ds−λ

∫
Γ1

|v̂|2ds

≥0,

where the second identity is obtained by the asymptotic expansions (2.6) and (2.7), and
(ŵ∞p ,ŵ

∞
s ) is the far field pattern of ŵ.

Let T (φ,θ) =0, then ŵ−w satisfies problem (3.1) with homogeneous boundary con-
dition. We have ŵ−w=0 in the domain Di due to the fact that ω is not an eigenvalue.
Thus, problem (3.9) has homogeneous boundary condition and as a result possesses
only zero solution. So we conclude that the potential function ŵ=0 in R2\∂Di, and
the jump relation of the single layer potential indicates (φ,θ) =0.

Denote by T the operator T with ω= i, the corresponding potential ŵ given by (3.7)

and the solution (w,v̂) of problem (3.8) are denoted by Ŵ and (W,V̂), respectively, then
we have the following lemma.

Lemma 3.2. The operator T has a decomposition of the form T =T +T with (a) ReT
being a coercive operator and (b) T being a compact one.

Proof.
(a) Make the same deduction as in (3.12) and notice that Ŵ decays exponentially as
|x| tends to infinity, we arrive at

〈(φ,θ),T (φ,θ)〉=
∫

Γ1

φ ·(Ŵ−−W)ds+

∫
Γ2

θ ·Ŵ+ds

=
(∫

Di

Ee(Ŵ,Ŵ)dx+ρe

∫
Di

|Ŵ|2dx
)

+
(∫

De

Ee(Ŵ,Ŵ)dx+ρe

∫
De

|Ŵ|2dx
)

−
(∫

Di

Ee(W,W)dx+ρe

∫
Di

|W|2dx
)

+
(∫

Di

Ei(V̂,V̂)dx+ρi

∫
Di

|V̂|2dx
)

+iλ

∫
Γ1

|V̂|2ds

:= Φ−e (Ŵ,Ŵ)+Φ+
e (Ŵ,Ŵ)−Φ−e (W,W)+Φ−i (V̂,V̂)+ iλ

∫
Γ1

|V̂|2ds, (3.13)

where the subscript α in the notation Φ±α (·,·) corresponds to the physical parameters
and the superscript ± represents the interior and exterior of Di. On the other hand,
owing to V̂=W on Γ1 and V̂=W=0 on Γ2, the first part of the second term in the
third identity of (3.12) can be changed into the following∫

Γ1

TeW ·Wds=

∫
Γ

TeW ·V̂ds.

In such a case, formula (3.12) can be rewritten as

〈(φ,θ),T (φ,θ)〉= Φ−e (Ŵ,Ŵ)+Φ+
e (Ŵ,Ŵ)

−
(∫

Di

Ee(W,V̂)dx+ρe

∫
Di

W ·V̂dx
)

+Φ−i (V̂,V̂)+ iλ

∫
Γ1

|V̂|2ds

:= Φ−e (Ŵ,Ŵ)+Φ+
e (Ŵ,Ŵ)+Φ−e (V̂,V̂)−Φ−e (W,V̂)

+Φ−i (V̂,V̂)−Φ−e (V̂,V̂)+ iλ

∫
Γ1

|V̂|2ds
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= Φ−e (Ŵ,Ŵ)+Φ+
e (Ŵ,Ŵ)+Φ−e (V̂ −W,V̂)+Φ−i−e(V̂,V̂)+ iλ

∫
Γ1

|V̂|2ds

= Φ−e (Ŵ,Ŵ)+Φ+
e (Ŵ,Ŵ)+Φ−e (V̂ −W,V̂ −W)+Φ−i−e(V̂,V̂)

+Φ−e (V̂ −W,W)+ iλ

∫
Γ1

|V̂|2ds. (3.14)

Since the real sesquilinear form Φ−e (W,W) is equal to Φ−e (W,V̂) by observing
∫

Γ
TeW ·

Wds=
∫

Γ
TeW ·V̂ds, it holds that Φ−e (W,W) = Φ−e (V̂,W), which results in

Φ−e (V̂ −W,W) = 0.

In turn according to the strict coercivity property of Φ±α (·,·), the continuity of the trace
operator and the continuous invertibility of the single-layer potential operator, we can
obtain

Re〈T (φ,θ),(φ,θ)〉=Re〈(φ,θ),T (φ,θ)〉

≥Φ−e (Ŵ,Ŵ)≥ c‖Ŵ‖[H1(Di)]2

≥ c(‖Ŵ|Γ1
‖[H1/2(Γ1)]2 +‖Ŵ|Γ2

‖[H1/2(Γ2)]2)

≥ c(‖φ‖[H̃−1/2(Γ1)]2 +‖θ‖[H̃−1/2(Γ2)]2).

An analogous and more detailed argument in Lemma 3.5 of [16] is recommended
to the reader. The claim of the continuous invertibility of the single-layer operator is
stated as follows.

Let Hαjl be the single-layer operator corresponding to ω= i, which is defined in Sec-

tion 2. The single-layer potential function Ŵ defined by (3.7) satisfies interior Dirichlet
problem in Di with boundary data

Ŵ|Γ1
=He11φ+He21θ, Ŵ|Γ2

=He12φ+He22θ,

which implies the boundary integral equation[
He11 He21

He12 He22

][
φ
θ

]
:=B

[
φ
θ

]
=

[
Ŵ|Γ1

Ŵ|Γ2

]
.

A standard derivation can show that the operator B : [H̃−1/2(Γ1)]2× [H̃−1/2(Γ2)]2→
[H1/2(Γ1)]2× [H1/2(Γ2)]2 is invertible.

(b) It is easy to verify that (w−W,v̂−V̂)∈ [H1(Di)]
2× [H1(Di)]

2 satisfies the following
source problem

∆∗e(w−W)−ρe(w−W) = −ρe(1+ω2)w in Di,

∆∗i (v̂−V̂)−ρe(v̂−V̂) = −ρe(1+ω2)v̂ in Di,

(w−W)−(v̂−V̂) = 0 on Γ1,

Te(w−W)−Ti(v̂−V̂)− iλ(v̂−V̂) = 0 on Γ1,

v̂−V̂ = 0 on Γ2,

w−W = 0 on Γ2.

The well posedness of this problem shows that the mapping (w,v̂) 7→ (w−W,v̂−V̂)
from the source to the solution is bounded from [L2(Di)]

2× [L2(Di)]
2 into [H1(Di)]

2×
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[H1(Di)]
2. The mapping φ 7→ (w,v̂) from the boundary data φ to the solution of problem

(3.8) is bounded from [H̃−1/2(Γ1)]2 into [H1(Di)]
2× [H1(Di)]

2. The compact imbedding
from [H1(Di)]

2× [H1(Di)]
2 into [L2(Di)]

2× [L2(Di)]
2 shows that the mapping φ 7→ (w−

W,v̂−V̂) is compact. Moreover, the difference of the single-layer potential ŵ−Ŵ
has a continuous kernel and thereby is compact from [H̃−1/2(Γl)]

2 into [H1/2(Γl)]
2 for

l= 1,2. In conclusion, the mapping T −T : [H̃−1/2(Γ1)]2× [H̃−1/2(Γ2)]2→ [H1/2(Γ1)]2×
[H1/2(Γ2)]2 with

(T −T )(φ,θ) =
(

(ŵ−−Ŵ−)|Γ1
−(w−W)|Γ1

,(ŵ+−Ŵ+)|Γ2

)
is compact due to the boundedness of the trace operator.

We next pay attention to the operator G and have the result as below.

Lemma 3.3. Assume that ω is not a transmission eigenvalue, then the operator G
given by (3.4) is injective and has a dense range.

Proof. Let G(ϕ,ψ) =0, that is the far field pattern of the scattered field u to
problem (3.3) vanishes. Then Rellich’s lemma implies that u=0 in De and consequently
ψ=0. Recall the solution û of problem (3.1) and definition of the operator Λ given by
(3.2). We thus derive that (−û,v) satisfies interior transmission problem (3.8) with
homogenous boundary conditions. The fact that ω is not a transmission eigenvalue
yields (−û,v) = (0,0) in Di and thereby ϕ=0. So, the operator G is injective.

From the definitions of the far field operator F and G, we observe that Range(F )⊂
Range(G). The dense range of F implies the denseness of G and we next show the
operator F has a dense range. To this end, we refer to Theorem 2 in [38] (where the
scattering problem for a penetrable obstacle is considered) and claim that the following
also hold true for the adjoint operator F ∗ : [L2(S)]2→ [L2(S)]2 of F

F ∗g=LFLg, for g∈ [L2(S)]2, (3.15)

where the reflection operator L : [L2(S)]2→ [L2(S)]2 is defined by

(Lg)(d) :=g(−d),d∈S.

Indeed, for given Herglotz incident fields ṽg and ṽh, let (ug,vg) and (uh,vh) be the
corresponding solutions to problem (2.1)-(2.5). The author in [25] has shown that

√
8πω(Fg,h) =

∫
∂Di

(ug ·Teṽh− ṽh ·Teug)ds.

Noting the relation ṽh= ṽLh, using the boundary conditions and applying Betti’s third
formula and radiation conditions, we can obtain

√
8πω(Fg,h) =

∫
∂Di

(ug ·TeṽLh− ṽLh ·Teug)ds

=

∫
Γ1

(ug ·TivLh− ṽLh ·Tivg)ds−
∫

Γ1

(ug ·TeuLh− ṽLh ·Teṽg)ds

+iλ

∫
Γ1

(ug ·vLh− ṽLh ·vg)ds+

∫
Γ2

(ug ·TeṽLh− ṽLh ·Teug)ds

=

∫
Γ1

(ug ·TivLh− ṽLh ·Tivg)ds−
∫
∂Di

(ug ·TeuLh− ṽLh ·Teṽg)ds
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+iλ

∫
Γ1

(ug ·vLh− ṽLh ·vg)ds+

∫
Γ2

(ug ·Te(ṽLh+uLh)− ṽLh ·Te(ug+ ṽg))ds

=

∫
∂Di

(ug ·TivLh− ṽLh ·Tivg)ds−
∫
∂Di

(uLh ·Teug− ṽg ·TeṽLh)ds

+iλ

∫
Γ1

(ug ·vLh− ṽLh ·vg)ds+

∫
Γ2

(ug ·Te(ṽLh+uLh)− ṽLh ·Te(ug+ ṽg))ds

−
∫

Γ2

(ug ·TivLh− ṽLh ·Tivg)ds. (3.16)

A continuous calculus yields∫
∂Di

(ug ·TivLh− ṽLh ·Tivg)ds−
∫
∂Di

(uLh ·Teug− ṽg ·TeṽLh)ds

=

∫
Γ1

(
(vg− ṽg) ·TivLh−(vLh−uLh) ·Tivg

)
ds

−
∫

Γ1

(
uLh ·(Tivg−Teṽg)− ṽg ·(TivLh−TeuLh)

)
ds

−iλ
∫

Γ1

(uLh ·vg− ṽg ·vLh)ds+

∫
Γ2

(ug ·TivLh− ṽLh ·Tivg)ds

−
∫

Γ2

(uLh ·Teug− ṽg ·TeṽLh)ds

=

∫
Γ1

(vg ·TivLh−vLh ·Tivg)ds+

∫
Γ1

(uLh ·Teṽg− ṽg ·TeuLh)ds

−iλ
∫

Γ1

(uLh ·vg− ṽg ·vLh)ds+

∫
Γ2

(ug ·TivLh− ṽLh ·Tivg)ds

−
∫

Γ2

(uLh ·Teug− ṽg ·TeṽLh)ds

=

∫
∂Di

(vg ·TivLh−vLh ·Tivg)ds+

∫
∂Di

(uLh ·Teṽg− ṽg ·TeuLh)ds

−iλ
∫

Γ1

(uLh ·vg− ṽg ·vLh)ds+

∫
Γ2

(ug ·TivLh− ṽLh ·Tivg)ds

−
∫

Γ2

(
uLh ·(Teug+Teṽg)− ṽg ·(TeṽLh+TeuLh)

)
ds. (3.17)

The sum of the Equations (3.16) and (3.17) shows

√
8πω(Fg,h) =

∫
∂Di

(vg ·TivLh−vLh ·Tivg)ds+

∫
∂Di

(uLh ·Teṽg− ṽg ·TeuLh)ds.

(3.18)
Applying Betti’s third formula again for vg,vLh in the domain Di, the first integral in
(3.18) vanishes and we hence have

√
8πω(Fg,h) =

∫
∂Di

(uLh ·Teṽg− ṽg ·TeuLh)ds

=

∫
∂Di

(uLh ·TeṽLg− ṽLg ·TeuLh)ds

=
√

8πω(FLh,Lg) =
√

8πω(g,LFLh), (3.19)
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it is observed from this that (3.15) holds true.
As a result, the injectivity of the operator F indicates its denseness. Now let

Fg=0, that is the far field pattern of the scattered field u to problem (2.1)-(2.5) with
Herglotz incident field ṽg is zero. Rellich’s lemma shows that u=0 in De. Thus (v,ṽg)
satisfies interior transmission problem (3.8) with homogenous boundary conditions and
accordingly Herglotz wavefunction ṽg equals to zero in Di. Hence g=0 and the lemma
follows.

Lemma 3.4. Assume that ω is not a transmission eigenvalue, for the far field pattern
Γ∞e (·,z;p) = (Γ∞p,e(·,z;p),Γ∞s,e(·,z;p)) of the elastic point source Γe(·,z;p) = Γe(·,z) ·p in
z∈R2 with the polarization direction p∈S (see (2.15) and (2.16)), then Γ∞e (·,z;p) is
in the range of G if and only if z∈Di.

Proof. We first consider the case z∈Di and let (w,v) be the solution of following
interior transmission problem

∆∗ew+ρeω
2w = 0 in Di,

∆∗iv+ρiω
2v = 0 in Di,

w−v = −Γe(·,z;p) on Γ1,

Tew−Tiv− iλv = −TeΓe(·,z;p) on Γ1,

v = 0 on Γ2,

w = −Γe(·,z;p) on Γ2.

Then (Γe(·,z;p),v) satisfies problem (3.3) with boundary data ϕ=−w|Γ1
, ψ=−w|Γ2

and Λ(ϕ,ψ) =−Tew|Γ1
. The definition of the operator G shows that G(−w|Γ1

,−w|Γ2
) =

Γ∞e (·,z;p), which implies that Γ∞e (·,z;p) belongs to Range(G).
Now let z∈De and on the contrary assume that Γ∞e (·,z;p)∈Range(G). Then

there exists ϕ∈ [H1/2(Γ1)]2 and ψ∈ [H1/2(Γ2)]2 such that G(ϕ,ψ) = Γ∞e (·,z;p). Let
(u,v) satisfy problem (3.3) with boundary data ϕ, Λ(ϕ,ψ) and ψ. We then also have
G(ϕ,ψ) =u∞ and hence Γ∞e (·,z;p) =u∞ by the injectivity of the operator G. It holds
that u= Γe(·,z;p) by Rellich’s lemma and unique continuation principle, which is a
contradiction due to the fact that u belongs to [H1(De)]

2 but Γe(·,z;p) has a singularity
at the point z. The proof is then completed.

Combining with Lemma 3.1-3.4 and Picard’s range criterion, and then applying the
range identity theorem [18] we arrive at the main result of this paper.

Theorem 3.5. Recall the far field equation given by

(Fgz)(x̂) = Γ∞e (x̂,z;p) for gz ∈ [L2(S)]2,x̂∈S,

then we have

z∈Di⇐⇒Γ∞e (·,z;p)∈Range((F])1/2),

and as a result

z∈Di⇐⇒‖gz‖[L2(S)]2 =

∞∑
j=1

|〈Γ∞e (·,z;p),σj〉[L2(S)]2 |2

|µj |
<∞, (3.20)

where {µj ,σj} is an eigensystem of the operator F]= |Re(F )|+ |Im(F )|. In other words,
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the sign of the function

W (z) =

 ∞∑
j=1

|〈Γ∞e (·,z;p),σj〉[L2(S)]2 |2

|µj |

−1

is just the characteristic function of the obstacle Di.

In the subsequence, we turn to the study of the factorization method from the
knowledge of the transversal far field pattern u∞s for using only the incident plane shear
waves, and this inverse problem is called IPs. The analysis is along the lines of [26].
We note that the discussion on using the knowledge of the longitudinal far field pattern
u∞p corresponding to the incident plane pressure waves, to determine the obstacle Di is
analogous, and we name this inverse problem IPp.

Given the projection operator Ps : [L2(S)]2→L2(S) as

Psg=gs for g= (gp,gs)∈ [L2(S)]2.

We denote by P ∗s :L2(S)→ [L2(S)]2 the adjoint operator of Ps. Define the operator
Fs :L2(S)→L2(S) by Fs :=PsFP

∗
s , as a result we have the factorization by (3.11)

Fs=−
√

8πω(PsG)T ∗(PsG)∗.

It is ease to show that the operator G given by (3.4) is compact, which, combining
with the denseness result in Lemma 3.3, leads us to deduce that PsG : [H1/2(Γ1)]2×
[H1/2(Γ2)]2→L2(S) is compact and dense. The properties of the operator T is presented
in Lemma 3.1 and 3.2. So, using the range identity theorem 2.15 of [18], we obtain

that the ranges of PsG and F
1/2
s] coincide if ω is not a transmission eigenvalue, where

Fs] := |Re(Fs)|+ |Im(Fs)|.
Based on Lemma 3.4, and making necessary modifications in the light of Lemma

3.6 in [26], we have the following result to characterize the obstacle Di.

Lemma 3.6. Assume that ω is not a transmission eigenvalue, then the far field pattern
Ps(Γ

∞
e (·,z;p)) = Γ∞s,e(·,z;p)) is in the range of PsG if and only if z∈Di.

In conclusion, we have the following theorem.

Theorem 3.7. Assume that ω is not a transmission eigenvalue, then

z∈Di⇐⇒
∞∑
j=1

|〈Γ∞s,e(·,z;p),δj〉L2(S)|2

|ηj |
<∞, (3.21)

where {δj ,ηj} is an eigensystem of the operator Fs].

4. The numerical algorithm and results
In this section, we report some numerical experiments to illustrate the validity of

the factorization method. In all examples we assume that the host elastic medium has
Lamé constants λe= 1,µe= 2, the included medium has Lamé constants λi= 1.5,µi= 2.5
and the mass densities take value ρe=ρi= 1.

Firstly, we solve the direct scattering problem (2.1)-(2.5) to produce the forward
data synthetically. To this end, we use the collocation and quadrature approaches
[39,40] to solve the boundary integral Equation (2.11) with f =−uin|Γ1

, g=−Teuin|Γ1
,

h=−uin|Γ2
. Then the scattered field is obtained by the combined potentials (2.9), and
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Fig. 4.1. Reconstruction of the kite for noise level=1%, circular frequencies ω= 4, with polariza-
tion directions p= [0,1] in (a), p= [−1,0] in (b), and p=−[

√
2/2,
√

2/2] in (c). The first, second and
third lines correspond to the experiment results for problems IP, IPs and IPp, respectively.

we deduce the far field data from there, in which the far field patterns of the single-and
double-layer potentials are computed by

(H∞j,ag)(x̂) =βa

∫
Γj

Ja(x̂)g(y)e−ika,ex̂·yds(y)

and

(K∞j,ag)(x̂) =γa

∫
Γj

Ja(x̂)B(x̂,y)g(y)e−ika,ex̂·yds(y),

respectively, with the coefficients

βp=
1

2µe+λe

eiπ/4√
8πkp,e

, βs=
1

µe

eiπ/4√
8πks,e

,

γp=
e−iπ/4

2µe+λe

√
kp,e
8π

, γs=
e−iπ/4

µe

√
ks,e
8π

,
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Fig. 4.2. Reconstruction of the semi-ellipse and bottom line for p= [1,0]>, noise level=1%, with
circular frequencies ω= 3 in (a), ω= 5 in (b), and ω= 7 in (c). The first, second and third lines
correspond to the experiment results for problems IP, IPs and IPp, respectively.

and the matrices Jp= x̂x̂>/|x̂|2, Js= I−Jp and

B(x̂,y) =λex̂n(y)>+µen(y)x̂>+µen(y) · x̂I.

Secondly, we treat with the far field Equation (2.14). Given N incident direc-
tions dl= (cos(2πl/N),sin(2πl/N))>,l= 1,. ..,N , and N observation directions x̂m=
(cos(2πm/N),sin(2πm/N))>,m= 1,. ..,N , the limited data of the far field patterns
u∞(x̂,d;d) and u∞(x̂,d;d⊥) for N plane compressional and shear waves, respectively,
are obtained and hence we can discretize approximatively the far field operator F by
matrix FN ∈C2N×2N

FN =
2π

N
e−iπ/4

√kp,e
ω u∞p (x̂m,dl;dl)

√
ks,e
ω u∞p (x̂m,dl;d

⊥
l )√

kp,e
ω u∞s (x̂m,dl;dl)

√
ks,e
ω u∞s (x̂m,dl;d

⊥
l )

.
The test function on the right side of (2.14) can be approximated by a column vector
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Γ∞e,N ∈C2N given by

Γ∞e,N =

 1
2µe+λe

eiπ/4√
8πkp,e

e−ikp,ex̂m·zx̂m ·p
1
µe

eiπ/4√
8πks,e

e−iks,ex̂m·zx̂⊥m ·p

.
Finally, solve the discretization form of the far field equation, choose a region con-

taining the expected obstacle and calculate the value of the indicator function W (z) for
every sampling point z lying in this region. Then we plot W (z) with 100 contour lines
at fixed polarization p. In the reconstruction, the far field data are given for 40 incident
directions and 40 observation directions equally distributed on the unit circle and we
use a grid of 81×81 equally spaced sampling points on the rectangle [−4,4]× [−4,4].

For the problem IPs, the incident shear wave is d⊥l e
iks,ex·dl , the far field oper-

ator Fs is approximated by the N×N matrix FsN = (
√

ks,e
ω u∞s (x̂m,dl;d

⊥
l ))m,l, and

the test function F∞s,e is given approximately by a N dimensional column vector

F∞sN,e= ( 1
µe

eiπ/4√
8πks,e

e−iks,ex̂m·zx̂⊥m ·p)m. The description of the numerical experiment

for problem IPp is omitted.
We give the reconstruction results by the following two examples. In Figure 4.1, a

kite

∂Di :=
{(

1.2cos(sπ)+0.6cos(2sπ),1.2sin(sπ)+0.5
)

: 0≤s≤2
}

is considered, the top half of the kite is penetrable and the bottom half is impenetrable.
In Figure 4.2, the penetrable semi-ellipse

Γ1 :=
{(√

2cos(sπ),sin(sπ)+0.5
)

: 0≤s≤1
}

with the impenetrable bottom line

Γ2 :=
{(
−cot(

sπ

6
),0.5

)
: 1≤s≤5

}
is reconstructed. In all the figures, the red lines represent the original scatterers.

The numerical experiments show the viability of the factorization method for the
reconstructions of the partially penetrable obstacles. In addition, we observe that: The
polarization direction p has a certain influence on the experiments, since the char-
acteristic function is associated with p. The reaction to the circular frequency ω is
sensitive in the numerical examples and the experimental effect is just relatively good
for ω= 3,4,5,6, which shows the factorization method works effectively in the resonance
region. The reconstruction by using the complete far field pattern is more reliable than
using only the S-part or the P-part of the far field pattern. The possible explanation is
given in [26].
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