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SINGULARITY FORMATION FOR
A FLUID MECHANICS MODEL WITH NONLOCAL VELOCITY∗

CHANGHUI TAN†

Abstract. We study a 1D fluid mechanics model with nonlocal velocity. The equation can be
viewed as a fractional porous medium flow, a 1D model of quasi-geostrophic equation, and also a special
case of the Euler alignment system. For strictly positive smooth initial data, global regularity has been
proved in [Do, Kiselev, Ryzhik and Tan, Arch. Ration. Mech. Anal., 228(1):1–37, 2018]. We construct
a family of non-negative smooth initial data so that solution is not C1-uniformly bounded. Our result
indicates that strict positivity is a critical condition to ensure global regularity of the system. We also
extend our construction to the corresponding models in multi-dimensions.
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1. Introduction
We are interested in the following 1D continuity equation

∂tρ+∂x(ρu) = 0, (1.1)

with a nonlocal velocity field

u=HΛα−1ρ, 0<α<2, (1.2)

where H is the Hilbert transform, and Λs= (−∆)s/2 denotes the nonlocal fractional
Laplacian operator. The initial density is set to be non-negative

ρ(x,t)|t=0 =ρ0(x)≥0. (1.3)

The dynamics of ρ in the system (1.1)-(1.3) can be alternatively written as

∂tρ+u∂xρ=−ρΛαρ. (1.4)

It consists of a nonlocal transport term u∂xρ, and a dissipation term −ρΛαρ which is
nonlinear and nonlocal.

Without the dissipation term, the equation is an active scalar

∂tρ+u∂xρ= 0, (1.5)

with the velocity u defined in (1.2). It arises as 1D simplified models for 2D surface
quasi-geostrophic equations. For α= 1, Equation (1.5) was studied by Córdoba, Córdoba
and Fontelos [9], where a finite time loss of C1 regularity is shown for some initial data.
Silvestre and Vicol [17] proved the similar behavior for α∈ (0,2). Both results indicate
that the transport term intends to drive the dynamics into singularity in finite time.

With the dissipation term, the Equation (1.4) appears in many models in fluid me-
chanics. Since the dissipation term has a possible regularizing effect, the understanding
of the competition between the transport term and the dissipation term attracted a lot
of attention in recent years.

∗Received: August 30, 2017; Accepted (in revised form): March 27, 2019. Communicated by Pierre
Degond.
†Department of Mathematics, University of South Carolina, 1523 Greene St., Columbia, SC 29208,

USA (tan@math.sc.edu). http://people.math.sc.edu/tan/.

1779

mailto:tan@math.sc.edu
http://people.math.sc.edu/tan/


1780 SINGULARITY FORMATION FOR A FLUID MECHANICS MODEL

Fractional porous medium flow. The main system (1.1)-(1.3) can be viewed
as a porous medium equation with fractional potential pressure, where ρ represents
the density of the fluid. It was introduced by Caffarelli and Vázquez [3], where an
existence theory for weak solutions was established, for ρ0∈L1. The regularizing effect
was discussed in a series of successive works: [2] for α∈ (0,1)∪(1,2), and [4] for α= 1.
Their result states that weak solutions of the system with any L1 initial data instantly
becomes Hölder continuous, and stays in Cγ for all time, with some γ∈ (0,1). Such
regularizing effect is proved in higher dimensions as well.

For α= 1, Carrillo, Ferreira and Precioso [6] studied the system in the space of
probability measures with bounded second moment. They established a global well-
posedness theory by taking advantage of the gradient flow structure of the system in
1D.

The system is also related to a model for the motion of the dislocations in a solid
proposed by Biler, Karch and Monneau in [1].

1D model of quasi-geostrophic equation. Chae, Córdoba, Córdoba and Fonte-
los [8] considered (1.1)-(1.3) with α= 1. They interpreted the system as a 1D simplified
model of 2D quasi-geostrophic equation in atmospheric science, where θ(x,t), defined
as ρ(x,t)−κ, represents the temperature of the air. The dynamics of θ reads

∂tθ+∂x(θHθ) =−κΛθ.

They studied the system in the periodic domain T= [−1/2,1/2], and focused on prop-
agation of regularity with smooth initial data. The result consists of two parts. First,
they showed that if ρ0>0 (or θ0>−κ in their context), then all H3 initial data stays in
H3 for all time. Second, they proved that the system loses C1 regularity in finite time,
with the initial data chosen as

ρ0(x) = 1−cos(2πx), x∈T. (1.6)

The main difference between the two types of initial data is that ρ0(x) = 0 is attained
in the latter case. It indicates that the preservation of C1 regularity critically depends
on the strict positivity of the initial data.

In [7], Castro and Córdoba discussed the blowup phenomenon for more general
initial data without strict positivity.

It is worth noting that u=Hρ when α= 1. Some properties and identities of Hilbert
transform were crucially used in their proof. So, the extension of the result to general
α∈ (0,2) is far from trivial.

Euler alignment system. System (1.1)-(1.3) is also related to a biologically-
motivated complex interacting system modeling collective behaviors. The Cucker-Smale
model [10] is an agent-based model governed by Newton’s second law

ẋi=vi, mv̇i=Fi :=
1

N

N∑
j=1

ψ(|xi−xj |)(vj−vi), (1.7)

where (xi,vi)
N
i=1 represent the position and velocity of agent i. The force Fi describes

the alignment interaction on velocity, where the influence function ψ characterizes the
strength of the velocity alignment between two agents. Natually, it is a decreasing
function of the distance between the agents.
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The macroscopic representation of Cucker-Smale model (1.7), derived through a
kinetic system (see [12]), is called Euler alignment system. In 1D, it reads

∂tρ+∂x(ρu) = 0, (1.8)

∂tu+u∂xu=

∫
R
ψ(|x−y|)(u(y,t)−u(x,t))ρ(y,t)dy. (1.9)

For the case when ψ is Lipschitz, the system was studied in [5, 18]. A critical
threshold phenomenon was discovered: preservation of C1 regularity depends on the
choice of initial data. Subcritical initial data lead to global regularity, while supercritical
initial data lead to fintie time shock formation.

Another case is when ψ is singular, taking the form

ψ(|x|) =
cα
|x|1+α

, 0<α<2, (1.10)

with cα be a positive constant such that

Λαf = cα P.V.

∫
R

f(x)−f(y)

|x−y|1+α
dy.

One interesting feature of such choice of ψ is that, Equation (1.9) becomes closely
related to the Burgers equation with fractional dissipation

∂tu+u∂xu=−Λαu, (1.11)

by enforcing ρ≡1. Kiselev, Nazarov and Shterenberg [13] studied (1.11): when 0<α<1,
there exists initial data leading to finite time blow up; when α∈ [1,2), all smooth initial
data lead to global regularity.

The Euler alignment system (1.8)-(1.9) with singular influence function (1.10) was
studied in [11] in the periodic domain. It was shown that all smooth initial data ρ0>0
leads to global regularity. In particular, in the range of α∈ (0,1), the behavior of
the solution is very different from the Burgers equation with fractional dissipation,
despite their similarity. The global regularity result is extended to more general singular
influence function in [14]. Moreover, it is shown that the C1 norm of the density ρ is
uniformly bounded for all time. For α∈ [1,2), global regularity was independently shown
by Shvydkoy and Tadmor in [15] through a different approach. Their result can also be
extended for α∈ (0,1) in [16].

As discussed in [11], a useful reformulation of the Euler alignment system for ρ and
G=∂xu−Λαρ has the form

∂tρ+∂x(ρu) = 0, ∂tG+∂x(Gu) = 0, ∂xu= Λαρ+G. (1.12)

In particular, if we pick the initial data such that G0(x) =∂xu0(x)−Λαρ0(x)≡0, then
G≡0 for all t>0, and the dynamics of ρ becomes our main system (1.1)-(1.2).

Therefore, the result in [11] implies that for α∈ (0,2), system (1.1)-(1.2) with smooth
initial data ρ0>0 stays smooth for all time. It serves as an extension to the first part
of the result in [8] with general α.

The main result. In this paper, we focus on (1.1)-(1.2) with non-negative initial
data ρ0 which is not strictly positive. We construct initial data which lead to singularity
formations.
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Theorem 1.1. Consider the system (1.1)-(1.3) in the periodic domain T. There
exists a family of smooth initial data ρ0 such that the solution ρ(·,t) is not bounded in
C1 uniformly in t.

Theorem 1.1 says that the solution will lose C1 regularity as time approaches infinity.
Note that this type of singularity does not happen when ρ0>0 (see [14]). Hence, the
non-vacuum assumption is critical to ensure global regularity.

Theorem 1.1 extends the blow up result in [8] to the general case α∈ (0,2). However,
it only guarantees singularity formations as time approaches infinity. Whether the blow
up happens in finite time is still an open problem, which requires future investigations.

As a direct consequence, we have the following result for Euler alignment system.

Corollary 1.1. Consider the initial value problem of Euler alignment system (1.8)-
(1.9) with singular influence function ψ defined in (1.10). There exists smooth initial
data ρ0≥0 and u0 such that the solution loses uniform C1 regularity.

The choice of initial data could be ρ0 from Theorem 1.1, and u0 =HΛα−1ρ0.
The rest of the paper is organized as follows. In Section 2, we show apriori bounds

for the system with some proposed symmetry. In Section 3, we obtain an enhanced
estimate on the velocity u, which plays an essential role in proving the singularity
formation. Theorem 1.1 is then proved in Section 4. In Section 5, we extend the result
to systems in multi-dimensional spaces. Finally, in Section 6, we make some remarks
on related topics for further investigation.

2. Apriori estimates
In this section, we derive some useful estimates for our main system (1.1)-(1.3),

which will help us to construct initial data and obtain finite time blow up.
We first propose the following even-symmetry condition to ρ0

ρ0(x) =ρ0(−x). (H1)

Since we consider periodic data, ρ0 can be determined by its value in x∈ [0,1/2].
We also note that periodicity and even-symmetry are preserved in time.

2.1. Maximum principle. Let us assume the initial data is bounded, satisfying

0≤ρ0(x)≤ ρ̄, ∀ x∈T. (H2)

Then, ρ(·,t) satisfies (H2) for all t≥0, due to maximum principle.

Proposition 2.1 (Maximum principle). Let ρ be a smooth solution of (1.1) with
initial data ρ0 satisfying (H2). Then, ρ(·,t) satisfies (H2) for all t≥0.

Proof. Suppose ρ(x,t)≤ ρ̄ does not hold for all (x,t). Then, there exist x0, t0 and
ε0>0 such that

ρ(x0,t0) = ρ̄, ρ(x,t0)≤ ρ̄, ∀ x∈T, and ρ(x0,t0 +ε)>ρ̄, ∀ ε∈ (0,ε0). (2.1)

So the violation first occurs at x0 at time t0+.
Since ρ(·,t0) attains its maximum at x0, we know ∂xρ(x0,t0) = 0, and

Λαρ(x0,t0)>0,

unless ρ(x,t0) = ρ̄ is a constant, in which case ρ(x,t) = ρ̄ for all time, and (H2) holds.



CHANGHUI TAN 1783

From (1.4) we obtain

∂tρ(x0,t0) =−u(x0,t0)∂xρ(x0,t0)−ρ(x0,t0)Λαρ(x0,t0) = ρ̄Λαρ(x0,t0)<0.

This contradicts with (2.1). Therefore, ρ(x,t)≤ ρ̄ holds for all x∈T and t≥0.
Positivity preserving property ρ(x,t)≥0 can be proved similarly.

2.2. Conservation of mass. We denote m as the initial mass

m=

∫
T
ρ0(x)dx. (2.2)

Integrating the continuity Equation (1.1) in x, we get

d

dt

∫
T
ρ(x,t)dx=−

∫
T
∂x(ρ(x,t)u(x,t)) = 0.

This implies the conservation of total mass.
Moreover, the mass in any interval is conserved along the characteristic flow.

Proposition 2.2 (Conservation of mass). Let ρ be a strong solution of the continuity
Equation (1.1). Let X1(t),X2(t) be two characteristic paths starting at x1 and x2,
respectively.

d

dt
Xi(t) =u(Xi(t),t), Xi(0) =xi, i= 1,2.

Then, the mass in the interval [X1(t),X2(t)] is conserved in time, namely∫ X(t;x2)

X(t;x1)

ρ(x,t)dx=

∫ x2

x1

ρ0(x)dx, ∀ t≥0. (2.3)

The proof can be found, for instance, in [19, Lemma 5.1].

2.3. Preservation of monotonicity. We make another assumption on ρ0.

ρ0(0) = 0, ∂xρ0(x)≥0, ∀ x∈ [0,1/2], (H3)

namely ρ0 is increasing in [0,1/2]. See Figure 2.1 for an illustration of the initial data
ρ0 satisfying (H1)-(H3).

The following proposition shows that such monotonicity is preserved in time.

Proposition 2.3 (Monotonicity). Assume that ρ0 is smooth and satisfies (H1)-(H3).
Let ρ be a smooth solution of (1.1)-(1.3). Then, ρ(·,t) satisfies (H3) for any t≥0.

Proof. Let us denote ζ :=∂xρ, and write down its dynamics by differentiating (1.4)
in x

∂tζ=−u∂xζ−2ζ∂xu−ρ∂2
xu=−u∂xζ−2ζΛαρ−ρΛαζ.

Along each characteristic path, we have

(∂t+u∂x)ζ=−2ζΛαρ−ρΛαζ. (2.4)

By periodicity and (H1), we know ζ(·,t) is odd, and so

ζ(0,t) = ζ(1/2,t) = 0.
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ρ0(x)

x
1/2

ρ̄

1

even

Fig. 2.1. The choice of initial data ρ0, satisfying (H1)-(H3)

Our goal is to prove ζ(x,t)≥0, for all x∈ (0,1/2) and t≥0. Assume the argument
is false, then there exists at time t0, a characteristic path X(t), and an ε0>0, such that
the solution satisfies

ζ(X(t0),t0) = 0, ζ(x,t0)≥0, ∀ x∈T, and ζ(X(t0 +ε),t0 +ε)<0, ∀ ε∈ (0,ε0).
(2.5)

so that the break down happens at (X(t0),t0+). The dynamics (2.4) at (X(t0),t0)
becomes

d

dt
ζ(X(t),t)

∣∣∣∣
t=t0

=−ρ(X(t0),t0)Λαζ(X(t),t0). (2.6)

From Proposition 2.1, we know ρ(X(t0),t0)≥0.
If ρ(X(t0),t0) = 0, then ρ(X(t),t) = 0 for any t≥ t0 as

ρ(X(t),t) =ρ(X(t0),t0)exp

(
−
∫ t

t0

Λαρ(X(s),s)ds

)
= 0.

This implies ζ(X(t),t) = 0 for all t≥ t0. It contradicts with (2.5).
If ρ(X(t0),t0)>0, we estimate Λαζ(X(t0),t0) as follows. Denote x0 =X(t0).

Λαζ(x0,t0) =cα

∫
R

ζ(x0,t0)−ζ(y,t0)

|x0−y|1+α
dy=−cα

∑
l∈Z

∫ 1/2

−1/2

ζ(y,t0)

|x0−y− l|1+α
dy

=−cα

[∑
l∈Z

∫ 1/2

0

ζ(−y,t0)

|x0 +y− l|1+α
dy+

∑
l∈Z

∫ 1/2

0

ζ(y,t0)

|x0−y− l|1+α
dy

]

=−cα
∫ 1/2

0

ζ(y,t0)
∑
l∈Z

(
1

|x0−y− l|1+α
− 1

|x0 +y− l|1+α

)
dy.

From (2.5) and the following Lemma 2.1, we conclude that Λαζ(x0,t0)<0 and hence

d

dt
ζ(X(t),t)

∣∣∣∣
t=t0

>0.

This contradicts with the last inequality in (2.5).
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Lemma 2.1. Suppose x,y∈ (0,1/2) and α>0. Then∑
l∈Z

(
1

|x−y− l|1+α
− 1

|x+y− l|1+α

)
>0.

Proof. We first consider the case when y≤x. The sum can be rewritten as∑
l≥1

[(
1

(l−1+x−y)1+α
− 1

(l−x−y)1+α

)
−
(

1

(l−1+x+y)1+α
− 1

(l−x+y)1+α

)]
.

Define

Hl(z) =
1

(l−1+x−z)1+α
− 1

(l−x−z)1+α
.

Then, the sum can be represented as∑
l≥1

(Hl(y)−Hl(−y)).

Since we have

H ′l(z) = (1+α)

[
1

(l−1+x−z)2+α
− 1

(l−x−z)2+α

]
>0, ∀ z∈ (−1/2,1/2),

we get Hl(y)−Hl(−y)≥0 for any y∈ [0,x]. It implies that the sum is non-negative.
The case when y>x can be treated in the same way.

2.4. An estimate on velocity. The velocity u defined in (1.2) can be expressed
in the integral form as follows:

u(x,t) = cα

∫
R

ρ(y,t)−ρ(x,t)

sgn(x−y)|x−y|α
dy. (2.7)

Fix x∈ [0,1/2] and t≥0. We decompose the integrand and use (H1) to get

1

cα
u(x,t) =

∫ ∞
0

ρ(y,t)−ρ(x,t)

|x+y|α
dy+

∫ x

0

ρ(y,t)−ρ(x,t)

|x−y|α
dy−

∫ ∞
x

ρ(y,t)−ρ(x,t)

|x−y|α
dy

=

∫ x

0

(ρ(y,t)−ρ(x,t))

(
1

(x+y)α
+

1

(x−y)α

)
dy

+

∫ ∞
x

(ρ(y,t)−ρ(x,t))

(
1

(x+y)α
− 1

(y−x)α

)
dy=: I+II.

Due to monotonicity condition of ρ(·,t) (H3), we know that the first term I≤0. For
the second term II, observe that

1

(x+y)α
− 1

(y−x)α
<0, ∀ y>x>0.

So, the integral in II can be decomposed into two parts:∫ ∞
x

=

∞∑
l=0

∫ l+1−x

l+x

+

∞∑
l=1

∫ l+x

l−x
.
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Again, condition (H3) implies that for the first part ρ(y,t)−ρ(x,t)≥0, and for the
second part ρ(y,t)−ρ(x,t)≤0. Let us denote II= II1 +II2 where II1 and II2 represents
the corresponding integrals. Then, II1≤0 and II2≥0.

The next lemma shows I+II2≤0, at least when x is sufficiently small.

Lemma 2.2. There exists a δ= δ(α)>0, such that for all x∈ [0,δ], I+II2≤0.

Proof. Let us first write

II2 =

∫ x

−x
(ρ(x,t)−ρ(y,t))

∞∑
l=1

(
1

(y+ l−x)α
− 1

(y+ l+x)α

)
dy.

Using mean value theorem, we have for y∈ (−x,x),

1

(y+ l−x)α
− 1

(y+ l+x)α
≤α(l−2x)−1−α ·(2x).

Therefore,

∞∑
l=1

1

(y+ l−x)α
− 1

(y+ l+x)α
≤2αx

[
(1−2x)−1−α+

∫ ∞
1

(z−2x)−1−αdz

]
≤Cx.

For x≤1/4, the last inequality holds with the choice of C= 2α+1(1+2α).
Now, let us put together I and II2.

I+II2 =

∫ x

0

(ρ(x,t)−ρ(y,t))

[
− 1

(x+y)α
− 1

(x−y)α

+

∞∑
l=1

(
1

(y+ l−x)α
− 1

(y+ l+x)α
+

1

(−y+ l−x)α
− 1

(−y+ l+x)α

)]
dy

≤
∫ x

0

(ρ(x,t)−ρ(y,t))

[
− 1

(x−y)α
+0+2Cx

]
dy

≤(−x−α+2Cx)

∫ x

0

(ρ(x,t)−ρ(y,t))dy.

We pick a small enough δ as follows

δ= min

{
1

4
,

(
1

3C

) 1
1+α

}
, (2.8)

Then, for any x∈ (0,δ], we have −x−α+2Cx≤−Cx<0.
Also, the monotonicity condition (H3) implies that∫ x

0

(ρ(x,t)−ρ(y,t))dy≥0.

Therefore, conclude that I+II2≤0 for all x∈ [0,δ].

Lemma 2.2 directly implies the following estimate on u.

Theorem 2.1. Let ρ be a smooth solution of (1.1)-(1.3), with periodic initial data ρ0

satisfying (H1)-(H3). Let δ be defined as (2.8). Then, the velocity

u(x,t)≤0, ∀ x∈ [0,δ], t≥0.

One may remove the smallness assumption on x in Theorem 2.1 by a more careful
estimate on II2. For our purpose, it is enough to consider small x.



CHANGHUI TAN 1787

3. An enhanced estimate on velocity
In order to show singularity formations, we need a stronger estimate on the velocity.

Recall

u(x,t) = (I+II2)+II1.

Lemma 2.2 ensures I+II2≤0. The estimate II1≤0 simply follows for (H3).
We aim to improve our estimate on

II1 =−
∞∑
l=0

∫ l+1−x

l+x

(ρ(y,t)−ρ(x,t))

(
1

(y−x)α
− 1

(y+x)α

)
dy.

An easy observation is that, if ρ(x,t) = ρ̄, then II1 = 0. In this case, it is not possible
to get any improvement. Therefore, we obtain an enhanced estimate when ρ(x,t) is
small.

Theorem 3.1. Let ρ be a smooth solution of (1.1)-(1.3), with periodic initial data ρ0

satisfying (H1)-(H3), Let δ be defined as (2.8). Then, there exists a positive constant
A=A(α,m,ρ̄)>0, for any (x,t) satisfying x∈ [0,δ] and

ρ(x,t)≤m
2
, (3.1)

the velocity

u(x,t)≤−Ax. (3.2)

Let us explain the main idea of the proof. We focus on a better bound on [x,1/2],
and use the rough bound by zero for the rest of the integrand.

II1≤−
∫ 1/2

x

(ρ(y,t)−ρ(x,t))

(
1

(y−x)α
− 1

(y+x)α

)
dy.

Denote the term that we are concerned with, as III.

III=

∫ 1/2

x

(ρ(y,t)−ρ(x,t))h(x,y)dy, h(x,y) =
1

(y−x)α
− 1

(y+x)α
.

To obtain a lower bound on III, we need several observations. First, for a fixed
x∈ [0,δ], h(x,y)≥0 for any y∈ (x,1/2]. Moreover,

∂yh(x,y) =−α
[

1

(y−x)α+1
− 1

(y+x)α+1

]
≤0. (3.3)

Next, we apply (H2) (H3), and get

0
(H3)

≤ ρ(y,t)−ρ(x,t)
(H2)

≤ ρ̄−ρ(x,t), ∀ y∈ (x,1/2]. (3.4)

Moreover, the assumption (3.1) implies∫ 1/2

x

(ρ(y,t)−ρ(x,t))dy
(H3)

≥
∫ 1/2

0

(ρ(y,t)−ρ(x,t))dy=
m

2
− ρ(x,t)

2

(3.1)

≥ m

4
. (3.5)
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The following lemma is helpful to get a positive lower bound of III.

Lemma 3.1. Let f be a positive decreasing function on [a,b]. λ and M are positive
constants such that λ<M(b−a). Then,

min
ω

{∫ b

a

ω(x)f(x)dx

∣∣∣∣∣ 0≤ω(x)≤M,

∫ b

a

ω(x)dx≥λ

}
=M

∫ b

b− λ
M

f(x)dx.

The minimum is attained at

ωmin(x) =

{
0 a≤x<b− λ

M

M b− λ
M ≤x≤ b

.

Proof. First, it is easy to check that ωmin satisfies

0≤ω(x)≤M,

∫ b

a

ω(x)dx≥λ. (3.6)

We will prove that for any ω which satisfies (3.6),
∫ b
a

(ω(x)−ωmin(x))f(x)dx≥0. Com-
pute ∫ b

a

(ω(x)−ωmin(x))f(x)dx=

∫ b− λ
M

a

ω(x)f(x)dx+

∫ b

b− λ
M

(ω(x)−M)f(x)dx.

From the first condition in (3.6), we know ω(x)≥0 and ω(x)−M ≤0. Together with
the assumption that f is positive and decreasing, we obtain∫ b

a

(ω(x)−ωmin(x))f(x)dx≥ f(b− λ

M
)

∫ b− λ
M

a

ω(x)dx+f(b− λ

M
)

∫ b

b− λ
M

(ω(x)−M)dx

= f(b− λ

M
)

[∫ b

a

ω(x)dx−M · λ
M

]
≥f(b− λ

M
)(λ−λ) = 0.

Hence, we conclude

min
ω satisfies (3.6)

∫ b

a

ω(x)f(x)dx=

∫ b

a

ωmin(x)f(x)dx=M

∫ b

b− λ
M

f(x)dx.

Putting together (3.3), (3.4) and (3.5), we can apply Lemma 3.1 with

f(y) =h(x,y), ω(y) =ρ(y,t)−ρ(x,t), λ=
m

4
, M = 1−ρ(x,t), a=x, b=

1

2
.

Then,

III≥ (1−ρ(x,t))

∫ 1
2

1
2−

m
4(ρ̄−ρ(x,t))

h(x,y)dy≥ (1−ρ(x,t))

∫ 1
2

1
2−

m
4ρ̄

h(x,y)dy.

Using the mean value theorem, we have

h(x,y)≥ α

(y+x)1+α
·(2x)≥2αx.
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Finally, we obtain

III≥ 1

2
· m
4ρ̄
·(2αx) =

αm

4ρ̄
x,

and therefore

II1≤−
αm

4ρ̄
x.

We end up with the improved estimate (3.2) with A= αm
4ρ̄ .

4. Singularity formation
In this section, we prove Theorem 1.1: for any smooth initial data satisfying (H1)-

(H3), the solution loses uniform C1 regularity.
We will argue by contradiction. Suppose the solution is uniformly C1 for all time,

then there exists ε>0 such that

ρ(ε,t)≤m
2
, ∀ t≥0. (4.1)

Without loss of generality, we assume ε≤ δ. In fact, if ε>δ, u(δ,t)≤u(ε,t)≤ m
2 by (H3).

We can then take ε= δ.
Let us denote X(t;x) be the characteristic path initiated at x, satisfying

d

dt
X(t;x) =u(X(t;x),t), X(0;x) =x.

By symmetry, we know u(0,t) = 0 and hence X(t;0) = 0 for all t≥0.
Define m(x,t) to be the mass in the interval [0,x] at time t:

m(x,t) :=

∫ x

0

ρ(x,t)dx.

We apply Proposition 2.2 and get

m(X(t;x),t) =m(x,0). (4.2)

Let x0 = inf{x≥0 : ρ0(x)>0}. By (H1) and (H3), we have

supp(ρ0) = (x0,1−x0).

We shall proceed with two cases.

Case 1: x0<ε. By the definition of x0, we know ρ0(ε)>0. Moreover, m(ε,0)>0.
By Theorem 2.1, we know X(t;ε)≤ε for any t≥0. Then, the assumption (4.1)

ensures that ρ(X(t;ε))≤ m
2 for all time. This allows us to use the enhanced estimate,

Theorem 3.1, and get

u(X(t;ε),t)≤−AX(t;ε),

where A>0 does not depend on ε or t.
Then, we can integrate along the characteristic path, and get

X(t;ε)≤εe−At.



1790 SINGULARITY FORMATION FOR A FLUID MECHANICS MODEL

A simple estimate yields

m(X(t;ε),t) =

∫ X(t;ε)

0

ρ(x,t)dx
(H3)

≤ X(t;ε)ρ(X(t;ε),t)≤ εm
2
e−At.

This contradicts with the mass conservation (4.2) if we pick t large enough, more
precisely,

t>
1

A
log

εm

2m(ε,0)
. (4.3)

Remark 4.1. If ρ0(x) = 0 only at a single point x= 0, then x0 = 0. No matter what
ε is, we are always under this case. Therefore, we have already shown the singularity
formation. Note that the initial data (1.6) lie in this category.

Case 2: x0≥ε. If x0>0, namely ρ0(x) = 0 in an interval [−x0,x0], it is possible
that ε≤x0. Then, m(ε,0) = 0. Consequently, the right-hand side of (4.3) is not bounded
any more.

To obtain a contradiction, we first examine the characteristic path starting at x0.
Since ρ0(x0) = 0, it is easy to see that ρ0(X(t;x0),t) = 0 at any time. We can apply the
enhanced estimate (3.2) at (X(t;x0),t), and obtain

X(t;x0)≤x0e
−At.

Then, there exists a finite time T∗ such that X(t;x0)≤ε. For instance, one can take

T∗=
1

A
log

x0

ε
.

Now, we consider the characteristic path that goes through the point (ε,T∗+1).
If the flow is smooth, we can track back and find a unique point x∗ such that ε=
X(T∗+1;x∗). See Figure 4.1 for an illustration.

Moreover, as X(T∗+1;x0)<ε, we have x0<x∗. By the definition of x0, we know
ρ0(x∗)>0 and hence m(x∗,0)>0.

Now, we can repeat the argument in case 1 along X(t;x∗). First, apply the enhanced
estimate (3.2) at (X(t;x∗),t) for t≥T∗+1 and get

X(t;x∗)≤εe−A(t−(T∗+1)), ∀ t≥T∗+1.

Next, we estimate the mass

m(X(t;x∗),t)≤X(t;x∗)ρ(X(t;x∗),t)≤
εm

2
e−A(t−(T∗+1)), ∀ t≥T∗+1.

Finally, take t large enough

t>
1

A
log

εm

2m(x∗,0)
+(T∗+1).

Then, m(X(t;x∗),t)<m(x∗,0), which contradicts with the mass conservation (4.2).

5. Extension to systems in multi-dimensions
In this section, we extend our main result to systems in higher dimensions. The main

idea is to consider ρ0(x) =ρ0(x1) and reduce the system to 1D so that our construction
can be used.
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t

x
ε x0

T∗

x∗

supp(ρ0)

(ε,T∗+1)

Fig. 4.1. The characteristic path that leads to a contradiction.

5.1. Fractional porous medium flow. Let us recall the fractional porous
medium flow in multi-dimensions

∂tρ+∇·(ρu) = 0, u=∇Λα−2ρ, (5.1)

with x= (x1, ·· · ,xn)∈Tn and 0<α<2.
Fix any time t and drop the time dependence for simplicity. Assume ρ(x) =ρ(x1),

namely ρ is a constant in (x2, ·· · ,xn) variables. We calculate the velocity field u, starting
with

Λα−2ρ= cn,α

∫
Rn
ρ(x−y)

1

|y|n+α−2
dy.

Then, we obtain u by taking the gradient of the potential

ui(x) =∂xiΛ
α−2ρ= cn,α

∫
Rn

(ρ(x1−y1)−ρ(x1))
yi

|y|n+α
dy.

For i= 2, ·· · ,n, we have

ui(x) = cn,α

∫
R

(ρ(x1−y1)−ρ(x1))

[∫
Rn−1

yi
|y|n+α

dy2 ·· ·dyn
]
dy1 = 0. (5.2)

The last eqaulity is due to oddness of the inside integral with respect to yi.
For i= 1,

u1(x) = cn,α

∫
R

(ρ(x1−y1)−ρ(x1))y1

[∫
Rn−1

1

|y|n+α
dy2 ·· ·dyn

]
dy1.

Compute the integral inside,∫
Rn−1

1

|y|n+α
dy2 ·· ·dyn=

∫
Rn−1

(
y2

1 +y2
2 + ·· ·+y2

n

)−n+α
2 dy2 ·· ·dyn

= |y1|−(n+α)

∫
Rn−1

(
1+y2

2 + ·· ·+y2
n

)−n+α
2 |y1|n−1dy2 ·· ·dyn

= |y1|−1−αωn−1

∫ ∞
0

(1+r2)−
n+α

2 rn−2dr= c′n,α|y1|−1−α.
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Here, ωn denotes the area of the unit sphere in n dimensions. The constant c′n,α is
clearly positive, finite, and only depends on n and α.

Then, we obtain

u1(x) = cn,αc
′
n,α

∫
R

ρ(x1−y1)−ρ(x1)

sgn(y1)|y1|α
dy1. (5.3)

So, u1(x) =u1(x1) is also a constant in (x2,·· · ,xn). Moreover, as a function of x1, the
expression of u1 is the same as (2.7), except the constant cα might be different.

From (5.2) and (5.3), we have

∇·(ρ(x)u(x)) =∂x1
(ρ(x1)u1(x1)).

This implies that if ρ0(x) =ρ0(x1), then ρ(x,t) =ρ(x1,t). Moreover, (ρ,u1) as functions
of x1, will be the solution of the 1D system (1.1)-(1.3). Hence, Theorem 1.1 can be
extended to multi-dimensions, with the choice of initial data ρ0(x) =ρ0(x1), where ρ0

as a function of x1 is chosen the same way as in the 1D case. The different constant in
(5.3) mentioned above will only affect the choice of δ throughout the proof.

We summarize the discussion in the following theorem.

Theorem 5.1. Consider the initial value problem of system (5.1) in the periodic
domain Tn. There exists a family of smooth initial data ρ0 such that the solution loses
uniform C1 regularity.

5.2. Fractional Euler alignment system. The multi-dimensional Euler align-
ment system with singular influence function takes the form

∂tρ+∇·(ρu) = 0, ∂tu+u ·∇u= cn,α

∫
Rn

u(y,t)−u(x,t)

|y−x|n+α
ρ(y,t)dy. (5.4)

Let G=∇·u−Λαρ. Then, the dynamics of G reads

∂tG+∇·(Gu) = tr(∇u⊗2)−(∇·u)2.

Note that in the 1D case, the right-hand side becomes (∂xu)2−(∂xu)2 = 0. Then,
the dynamics becomes (1.12), and as a special case of G≡0, we reach our system (1.1)-
(1.2).

However, the right-hand side is not necessarily zero in higher dimensions. This
quantity is known as spectral gap. In particular, it destroys the maximum principle on
G, and hence G0≡0 does not imply G(·,t)≡0.

Therefore, fractional porous medium flow (5.1) is not a special case of the Euler
alignment system, except in 1D. The global regularity on (5.4) for ρ0>0 is an open
problem. The main difficulty is the lack of apriori control of the spectral gap.

To construct ρ0≥0 which leads to singularity formations, we can avoid the difficulty
by selecting a special family of initial data such that the spectral gap is zero for all time.

The choice of (ρ0,u0) is the same as Section 5.1:

ρ0(x) =ρ0(x1), (u0)1(x) = (u0)1(x1), (u0)i(x) = 0, ∀ i= 2, ·· · ,n.

By the same argument, we know that such structure preserves in time. So,

tr(∇u⊗2)−(∇·u)2 = (∂x1
u1)2−(∂x1

u1)2 = 0.
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Therefore, we pick ρ0 the same as in Theorem 5.1, and u0 =∇Λα−2ρ0. The solution
will form singularities the same way as (5.1).

Corollary 5.1. Consider the initial value problem of system (5.4) in the periodic
domain Tn. There exists a family of smooth initial data (ρ0,u0) such that the solution
loses uniform C1 regularity.

6. Further discussions

Theorem 1.1 shows singularity formations for equations (1.1)-(1.3). However, it
does not specify whether the blow up happens in finite time or when time approaches
infinity.

For the special case with α= 1 and initial data (1.6), a finite time blowup was shown
in [8]. Therefore, a reasonable conjecture would be, the singularity formations happen
at a finite time.

The proof of the conjecture will require a stronger estimate on the velocity field

u(x,t)≤−Cxγ ,

with γ<1. This will ensure the characteristic paths intersect in finite time, causing a
blowup. To obtain the strong inequality, a delicate estimate to the singular integral
near the singularity is required. We will leave it for future investigations.
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