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VARIATIONAL APPROACH TO
CONCENTRATION DEPENDENT DIELECTRICS WITH THE

BRUGGEMAN MODEL: THEORY AND NUMERICS∗

XIANG JI† AND SHENGGAO ZHOU‡

Abstract. The structure of the electric double layer has long been described by the classical
Poisson–Boltzmann (PB) theory, in which a uniform dielectric coefficient is often assumed. Experi-
mental data and molecular simulations evidence that the effective dielectric coefficient decreases with
local ionic concentrations. In this work, a variational approach is developed to incorporate nonlinear
concentration-dependent dielectrics described by the Bruggeman equation in a modified PB theory.
The Bruggeman equation, which takes into account contributions from both counterions and coions
systematically, provides a closure to the modified PB theory. In addition to ionic size and valence, our
theory introduces a new source of ion-specificity, i.e., the dielectric coefficient of hydrated ions, to the
continuum modeling of electrostatics. Asymptotic analysis reveals the connection between the modi-
fied PB theory and previous linear decrement models, and derives a criterion for counterion saturation.
Robust numerical methods with efficient acceleration techniques are proposed to solve the resulting
coupled equations. Dielectric coefficients predicted by our theory show good agreement with the ex-
perimental data for homogeneous electrolytes. The dielectric decrement effect on the ionic structure of
electric double layers is assessed in extensive numerical simulations. With ion-specific parameters, our
theory predicts asymmetric camel-shape profiles of differential capacitance against applied potentials
for electrolytes with low salinity, and asymmetric bell-shape profiles for electrolytes with high salinity.
The impact of counterion saturation, due to steric effects or dielectric decrement, on the shape of dif-
ferential capacitance profiles is demonstrated through analysis and numerical investigations. To further
understand the effect of concentration-dependent dielectrics, the modified PB theory is also applied to
study the distribution of counterions around charged cylinders with various dielectric coefficients.

Keywords. Concentration-dependent dielectrics; Bruggeman model; Poisson–Boltzmann theory;
Differential capacitance; Contact value theorem.
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1. Introduction
Understanding the structure of electric double layers (EDLs) is of interest in a wide

range of areas, such as biological macromolecules, colloidal suspensions, and electro-
chemical devices. As a mean-field model, the Poisson–Boltzmann (PB) theory gains its
popularity in describing the structure of EDLs on account of the simplicity and math-
ematical tractability of the models. In such models, the underlying charged system is
treated as a continuum medium characterized by a dielectric coefficient. For instance,
the dielectric coefficient of solutes, such as colloidal particles and biomolecules, is close
to 2. In contrast, the dielectric coefficient of aqueous solvent in the classical PB-type
continuum models is often set to be a homogeneous high constant, e.g., 78 [21].

The dielectric coefficient measures the polarizability of a medium in response to an
external electric field. With an asymmetric molecular structure, the water molecule has
large orientational polarizability, accounting for the large dielectric constant of aqueous
solvent under normal conditions. However, the polarizability of solvent can be lowered
pronouncedly due to the presence of charged particles, such as ions. Water molecules
in the immediate proximity of ions align to the electric field generated by ions, forming
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Fig. 1.1. A schematic plot of an aqueous ionic solution in contact with a charged surface. Ions are
surrounded by a layer of water molecules aligning with the local electric field created by ions. Arrows
represent the orientations of dipolar water molecules.

hydration layers; cf. Figure 1.1. The orientational polarization is much depressed for
water molecules in hydration layers, leading to the phenomenon of dielectric decrement.
Thus, the dielectric coefficient of electrolyte solutions are often heterogeneous, rather
than a constant. Experimental data have evidenced that the dielectric coefficient should
be a spatially varying function that depends on many factors related to the local envi-
ronment [21,22,50,51]. For instance, nonlocal dielectric models with position-dependent
dielectric permittivity have been developed to reflect permittivity correlations among
solute and solvent molecules and the spatial-frequency dependence of the dielectric per-
mittivity [2, 52–54].

It is expected that the dielectric coefficient of ionic solutions decreases with ionic
concentrations. Such a decrement has been confirmed by experimental data and molec-
ular simulation results [9, 21, 22, 50, 51]. To account for the concentration-dependent
dielectrics, various models have been proposed in the literature [4,5,10,15,17,18,20,30,
33,34,39–41,45]. For instance, a linear decrement model has been proposed to describe
the dielectric decrement of dilute solutions [5]:

ε=εw+γc, (1.1)

where εw is the dielectric coefficient of water, γ is a phenomenological coefficient, and c
is the ionic concentration. However, the linear decrement model gives poor prediction
as the concentration goes over 1.5 M, for which the dielectric coefficient saturates due
to nonlinear effects [22]. To enforce ellipticity of the Poisson’s equation, the dielec-
tric coefficient should be bounded below by a positive number. However, it is evident
that the linear decrement model gives unbounded dielectric coefficient for high ionic
concentrations. To include nonlinear effects, an exponential type of function with coef-
ficients determined by fitting against experimental data has been employed to describe
the effective dielectric coefficient [33]. Further analysis reveals that the corresponding
free-energy functional may no longer be convex with respect to concentrations.

To take into account the contributions from both counterions and coions, the decre-
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ment effects are linearly superimposed [41], i.e.,

ε=εw−
M∑
i=1

γici, (1.2)

where γi are ion-specific coefficients and M is the number of ionic species in the system.
While the refined linear decrement model (1.2) works well for concentrations up to 1.5
M [5], ionic concentrations close to a charged surface can easily exceed 1.5 M, even for
electrolytes with low bulk concentrations. The nonlinear dependence on concentrations
is therefore necessary for accurate description of the structure of electric double layers.
Based on a microfield approach, a nonlinear dependence of the dielectric function upon
salt concentrations has been proposed for concentrated solutions [17]. The nonlinearity
is taken into account with the help of the Langevin function. Recently, the dielec-
tric coefficient is treated as a nonlinear function of the ionic strength which includes
the contributions from counterions and coions together [10]. Grand canonical Monte
Carlo simulations with such a concentration-dependent dielectric coefficient are able
to accurately reproduce the mean ionic activity coefficients of concentrated electrolyte
solutions.
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Fig. 1.2. An illustrative plot of the effective dielectric coefficient ε(c), predicted by the Bruggeman
equation, as a function of ionic concentrations. There are two ion species with the parameters: v1 =
0.73nm3, v2 = 0.83nm3, εw = 78, ε1 = 5, and ε2 = 10.

The Bruggeman equation in effective medium theory is a well-established model to
describe the effective dielectric response of mixtures [8, 48]. It has been widely used
to determine effective dielectric coefficient for heterogeneous ellipsoidal or spheroidal
systems, such as polymers, energy storage capacitors, and waveguides [6,29,46]. In this
work, we consider nonlinear dependence of dielectric coefficients on ionic concentrations
through their volume fractions. For simplicity, the volume fractions of ions and solvent
are defined by

θi=vici and θw = 1−
M∑
i=1

θi,
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where vi represents the volume of the i-th species of hydrated ions. The Bruggeman
equation [8, 47, 48] for spherical inclusions is employed to predict the local effective
dielectric coefficient, which is a nonlinear function of volume fractions and dielectric
coefficients of compositions in mixtures:

θw
εw−ε
εw+2ε

+

M∑
i=1

θi
εi−ε
εi+2ε

= 0. (1.3)

Here εi is the dielectric coefficient of the i-th species of hydrated ions. Note that
ε=εw for the case of pure water. The Bruggeman Equation (1.3) defines a nonlinear
implicit function of the effective dielectric coefficient on concentrations. In contrast to
previous models, the effective dielectric coefficient defined by (1.3) is able to take into
account the contributions both from counterions and anions systematically, according
to their volume fractions. In addition, the Bruggeman equation works for dilute cases,
as well as high-concentration regimes where the linear decrement breaks down. It is of
mathematical interest to note that there exist two positive numbers εmin and εmax such
that the effective dielectric coefficient calculated by (1.3) satisfies

εmin≤ε(c)≤εmax.

This valuable property is crucial to the well-posedness of our model and robustness of
numerical computations. Figure 1.2 gives an illustrative plot of the effective dielectric
coefficient predicted by the Bruggeman equation, as a function of ionic concentrations.
As observed in experimental data [22], the effective dielectric coefficient first decreases
linearly in low-concentration regimes and gradually reaches a saturation value for high
ionic concentrations.

The development of a modified Poisson–Boltzmann (PB) theory starts with a free-
energy functional that takes concentration-dependent dielectrics into account. The min-
imization of the free-energy functional leads to governing equations of the system in
equilibrium. In such a variational approach, the Bruggeman equation that determines
effective dielectric coefficient through ionic concentrations and hydrated ion sizes pro-
vides a closure to the developed modified PB theory. Further analysis on the dependence
of the dielectric coefficient on concentrations reveals that the linear order of the Brugge-
man model presents an intuitive interpretation of the phenomenological coefficients in
the linear decrement model (1.2). In addition, we derive a modified Grahame equa-
tion, from which the criterion of saturation due to dielectric decrement is established.
Numerical methods with acceleration techniques are proposed to solve our model. The
effect of dielectric decrement on counterion concentrations is extensively studied in nu-
merical simulations. The simulation results on the effective dielectric coefficient give
good agreement with experimental data. We also apply the developed modified PB
theory to study the differential capacitance of the electric double layer capacitors. With
ion-specific parameters, such as the hydrated ionic size and dielectric coefficient, our
model predicts asymmetric camel-shape profiles of differential capacitance against ap-
plied potentials for electrolytes with low salinity, and asymmetric bell-shape profiles
for electrolytes with high salinity. Analysis and numerical investigation demonstrate
that the peaks in the asymmetric profiles correspond to the counterion saturation that
arises either from steric effects or dielectric decrement. The newly introduced dielectric
coefficient of hydrated ions provides a new perspective to study the asymmetry in differ-
ential capacitance profiles. The model is further applied to predict the ionic distribution
around charged cylinders with various dielectric constants.
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We organize the rest of the paper as follows: In Section 2, we derive governing equa-
tions by taking variation of the free-energy functional with concentration-dependent
dielectrics. We analyze the properties of the Bruggeman model, and derive a modified
Grahame equation. In Section 3, we propose a numerical algorithm for solving the de-
rived governing equations. In Section 4, we present our numerical results on dielectrics,
the structure of electric double layer, and differential capacitance. Finally, in Section 5,
we draw our conclusions.

2. Model

2.1. Governing equations. We consider ionic solutions with M species occu-
pying a region Ω in R3 with a smooth boundary ∂Ω. For each i (1≤ i≤M), the valence
of i-th species of ions is denoted by zi, and the ionic concentration at position x is rep-
resented by ci(x) : Ω→R+. Let c(x) = (c1(x),. ..,cM (x)). To emphasize its dependence
on concentrations, the effective dielectric coefficient is denoted by ε(c) :R+→R. The
electrostatic potential, denoted by ψ : Ω→R, solves a boundary-value problem of the
Poisson’s equation: {

−∇·ε0ε(c)∇ψ=ρ(c) in Ω,

ψ=ψD on ∂Ω,
(2.1)

where ψD is a restriction of a function in W 2,∞(Ω) on the boundary ∂Ω. Here ε0 is
the vacuum permittivity and the effective dielectric coefficient ε(c) is determined by the
Bruggeman Equation (1.3) [8, 47]. The charge density ρ(c) is given by

ρ(c) =ρf +

M∑
i=1

qici, (2.2)

where the function ρf : Ω→R represents the fixed charge density, and qi=zie with zi
the valence of the i-th ionic species and e the elementary charge. The mean-field free
energy of such a charged system is given by [7, 31,38]

F [c] =

∫
Ω

1

2
ρ(c)ψ(c)dV −

∫
∂Ω

1

2
ε0ε(c)

∂ψ(c)

∂n
ψDdS

+β−1
M∑
i=0

∫
Ω

ci[log(vici)−1]dV −
M∑
i=1

∫
Ω

µicidV, (2.3)

where ∂ψ(c)/∂n denotes the normal derivative on ∂Ω with n the exterior unit normal,
β−1 =kBT with kB being the Boltzmann constant and T being the absolute temper-
ature, vi (1≤ i≤M) denotes the volume of a hydrated ion and v0 is the volume of
a solvent molecule, µi is the chemical potential of the i-th species of ions. For i= 0,
c0(x) : Ω→R+ represents the local concentration of solvent molecules and is given by

c0(x) =v−1
0

[
1−

M∑
i=1

θi(x)

]
. (2.4)

We here have assumed full packing of particles, whereas there are voids among nonuni-
form particles. To refine the packing description, the interstitial voids can be introduced
as an additional particle species [35, 36, 54]. In these types of models, the steric effect
of ions is considered by including the entropy of solvent with its concentration given by
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(2.4). Other types of models that are based on the steric interactions between ions have
been proposed in the literature [12,16,23,25,44,55].

In the rest of the paper, we make the following assumptions.

(A1) The Ω⊂R3 is a bounded, open, and connected domain with a smooth boundary
∂Ω.

(A2) The distribution of the fixed charge density ρf is a given function with ρf ∈
L∞(Ω). The boundary data ψD is a given function that is a restriction on ∂Ω
of a function in W 2,∞(Ω). For the local minimizer of the free-energy functional
cMin(x) := argminF [c], there exist positive numbers Cl and Cu such that Cl≤
cMin
i (x)≤ 1

vi
−Cu for a.e. x∈Ω and i= 1,. ..,M ;

(A3) The effective dielectric coefficient is a decreasing function with ε∈C1([0,∞)).
The dielectric coefficients of hydrated ions satisfy 0<εi<εw (1≤ i≤M).

Note that we have used the standard notion for Sobolev spaces [1]. It follows from the
Bruggeman Equation (1.3) that the effective dielectric coefficient satisfies

Min(ε1,ε2,. ..,εM )≤ε(c)≤Max(ε1,ε2,. ..,εM ). (2.5)

In the free-energy functional (2.3), the first integral term is the electrostatic poten-
tial energy, the second integral represents the entropy of ions and solvent molecules, and
the last term is the contribution from the chemical potential. For simplicity, we rewrite
F [c] =Fpot[c]+Fent[c]+Fchem[c], where

Fpot[c] =

∫
Ω

1

2
ρ(c)ψ(c)dV −

∫
∂Ω

1

2
ε0ε(c)

∂ψ(c)

∂n
ψDdS, (2.6)

Fent[c] =β−1
M∑
i=0

∫
Ω

ci[log(vici)−1]dV, (2.7)

Fchem[c] =−
M∑
i=1

∫
Ω

µicidV. (2.8)

We now perform sensitivity analysis on each ionic species to derive the variation of
the free-energy functional with respect to concentrations. We consider an infinitesimally
small perturbation, δcj , to the j-th ionic concentration. Let δc= (0,. ..,δcj ,. ..,0). Such
a perturbation in concentration in turn induces a small perturbation on the electrostatic
potential δψ. The boundary-value problem of the Poisson’s Equation (2.1) has a unique
weak solution ψ satisfying∫

Ω

ε0ε(c)∇ψ ·∇ηdV =

∫
Ω

ρ(c)ηdV ∀η∈H1
0 (Ω). (2.9)

It follows from the Poisson’s equation that∫
Ω

ε0ε(c)∇ψ ·∇ψdV −
∫
∂Ω

ε0ε(c)
∂ψ

∂n
ψDdS=

∫
Ω

ρ(c)ψdV. (2.10)

After perturbation, we analogously have∫
Ω

ε0ε(c+δc)∇(ψ+δψ) ·∇ψdV −
∫
∂Ω

ε0ε(c+δc)
∂(ψ+δψ)

∂n
ψDdS

=

∫
Ω

[ρ(c)+qjδcj ]ψdV. (2.11)
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Keeping terms up to the linear order, we obtain from (2.9) with η= δψ and subtraction
of (2.10) from (2.11) that

δFpot[c] =
1

2

∫
Ω

qjδcjψdV +
1

2

∫
Ω

qjδcjψdV −
1

2

∫
Ω

ε0
∂ε(c)

∂cj
δcj |∇ψ|2 dV

=

∫
Ω

[
qjψ−

1

2
ε0
∂ε(c)

∂cj
|∇ψ|2

]
δcj dV . (2.12)

The leading order perturbation of the entropic part reads

δFent[c] =β−1

∫
Ω

[
log(vjcj)−

vj
v0

log

(
1−

M∑
i=1

vici

)]
δcj dV. (2.13)

Similarly, we have the perturbation of the contribution from the chemical potential:

δFchem[c] =−
∫

Ω

µjδcj dV. (2.14)

Combining (2.12), (2.13), and (2.14) and letting δcj→0, we have the first variation of
the free-energy functional with respect to each concentration:

δF [c]

δcj
= qjψ−

1

2
ε0
∂ε(c)

∂cj
|∇ψ|2 +β−1

[
log(vjcj)−

vj
v0

log

(
1−

M∑
i=1

vici

)]
−µj .

Thus, the chemical potential is obtained from the Euler-Lagrange equation:

µj = qjψ−
1

2
ε0
∂ε(c)

∂cj
|∇ψ|2 +β−1

[
log(vjcj)−

vj
v0

log

(
1−

M∑
i=1

vici

)]
. (2.15)

At equilibrium, the chemical potential is a constant determined by bulk values, i.e.,

µj =β−1

[
log(vjc

∞
j )− vj

v0
log

(
1−

M∑
i=1

vic
∞
i

)]
. (2.16)

Finally, we arrive at the generalized Boltzmann distributions

qjψ−
1

2
ε0
∂ε(c)

∂cj
|∇ψ|2 +β−1

[
log

(
cj
c∞j

)
− vj
v0

log

(
1−
∑M
i=1vici

1−
∑M
i=1vic

∞
i

)]
= 0. (2.17)

Denote by c0 the characteristic concentration and λD =
√

ε0kBT
c0e2

the characteristic

length. Introduce x̃= x
λD

, c̃i=
ci
c0

, c̃i
∞=

c∞i
c0

, ṽi=vic0, φ= eψ
kBT

, φD = eψD

kBT
, and ρ̃f = ρf

ec0
.

Dropping the tildes in new variables, we have the following dimensionless governing
equations for the electrostatic potential and concentrations at equilibrium:

−∇·ε(c)∇φ=ρf +

M∑
i=1

zici in Ω, with φ=φD on ∂Ω,

θw
εw−ε(c)
εw+2ε(c)

+

M∑
i=1

θi
εi−ε(c)
εi+2ε(c)

= 0,

zjφ−
1

2

∂ε(c)

∂cj
|∇φ|2 +log

(
cj
c∞j

)
− vj
v0

log

(
θw
θ∞w

)
= 0 for 1≤ j≤M.

(2.18)
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2.2. Bruggeman model. The Bruggeman Equation (1.3) calculates an effective
dielectric constant for a medium that consists of multi-component spherical inclusions
with different dielectric constants. We here consider the effective dielectric constant in
the limits of dilute and concentrated ionic solutions with two ionic species.

In the limit of dilute solutions, the ionic concentration ci→0 for 1≤ i≤2. Then the
effective dielectric constant has an asymptotic expansion

ε(c) =εw+cgT +
1

2
cGcT +o(c2), (2.19)

where o(c2) are higher order terms,

g=

(
3εw(εw−ε1)v1

ε1 +2εw
,
3εw(εw−ε2)v2

ε2 +2εw

)
,

and the Hessian matrix

G=

[
18(ε1−εw)2ε1εwv

2
1

(ε1+2εw)3 g12

g21
18(ε2−εw)2ε2εwv

2
2

(ε2+2εw)3

]
(2.20)

with cross-derivative terms

g12 =g21 =
18εwv1v2(εw−ε1)(εw−ε2)(4εw+2ε2 +3εwε1 +εwε2 +ε1ε2−8ε2

w)

(2εw+ε1)(2εw+ε2)(4ε1−8εw+4ε2−2εwε1−2εwε2 +ε1ε2 +12ε2
w)
.

Such an expansion reveals that the effective dielectric constant reduces to the dielectric
constant of water in the dilute limit. Also, one can see that, up to terms of linear order,
the effective dielectric constant decreases linearly with respect to concentrations. Recall
a linear decrement model proposed in [41]:

ε(c) =εw−γ1c1−γ2c2.

It is not straightforward to determine the coefficients γi separately based on experimen-
tal data [41]. Interestingly, our model provides a physical interpretation of such two
coefficients:

γi=
3εw(εw−εi)vi

εi+2εw
. (2.21)

The higher order terms in ci represent the nonlinear correction to the dielectric decre-
ment. Although the diagonal terms of the Hessian matrix are positive, detailed cal-
culations on the determinant of the matrix show that the matrix is indefinite. The
indefiniteness of the matrix leads to a nonconvex free-energy functional (2.3) with re-
spect to concentrations, when the solution is dilute. Interested readers are referred to
the work [33] for the detailed mathematical analysis on non-convexity.

In the limit of concentrated solutions, we have θw→0. The effective dielectric
constant is given by

ε(c)→θ1(2ε1−ε2)+θ2(2ε2−ε1)

4

+

√
[θ1(2ε1−ε2)+θ2(2ε2−ε1)]2 +8ε1ε2

4
, as θw→0.
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When c2 is fully depleted from the charged surface, we have the following asymptotic
expansions in terms of θw:

ε(c) =ε1 +
3ε1(εw−ε1)

εw+2ε1
θw+

9(εw−ε1)2ε1εw
(εw+2ε1)3

θ2
w+o(θ2

w). (2.22)

It is easy to find that ε(c)→ε1, as expected.

2.3. Contact value theorem. The contact value theorem is an important con-
clusion that states the force balance on a planar charged surface. It is of interest to
derive the conclusion with our modified PB model. We now focus on a simple system
that consists of a planar charged surface connected to an electrolyte reservoir. Due to
the simplicity of geometry, our model can be reduced to a one-dimensional case with
the origin located at the charged surface, cf. Figure 1.1. To derive the contact value
theorem, we first calculate the pressure, which satisfies [26]

P ′(x) =

M∑
j=1

cj(x)µ′j(x), (2.23)

where the chemical potential µj is given by (2.15). We have by integrating the Equation
(2.23) and integration by parts that

P (x)−P (∞) =

M∑
j=1

∫ x

∞
cjµ
′
j dξ

=

M∑
j=1

∫ x

∞
qjcjψ

′− ε0cj
2

[
∂ε(c)

∂cj
ψ′2
]′

+β−1

(
c′j+

vjcj
∑M
i=1θ

′
i

v0θw

)
dξ

=

∫ x

∞
−(ε0ε(c)ψ

′)′ψ′dξ−
M∑
j=1

ε0cj
2

∂ε(c)

∂cj
ψ′2

∣∣∣∣∣∣
x

∞

+

∫ x

∞

ε0

2

M∑
j=1

c′j
∂ε(c)

∂cj
ψ′2dξ

+β−1

∫ x

∞

M∑
j=1

c′j+
(1−θw)

∑M
i=1θ

′
i

v0θw
dξ,

where we have used the Poisson’s equation. Using integration by parts twice, we have

P (x)−P (∞) =− ε0ε(c)ψ
′2∣∣x
∞−

M∑
j=1

ε0cj
2

∂ε(c)

∂cj
ψ′2

∣∣∣∣∣∣
x

∞

+

∫ x

∞

ε0

2

M∑
j=1

c′j
∂ε(c)

∂cj
ψ′2dξ

+
ε0

2

∫ x

∞
ε(c)dψ′2 + β−1

[
M∑
i=1

ci−
1

v0
(logθw−θw)

]∣∣∣∣∣
x

∞

=− ε0

2

[
ε(c)+

M∑
i=1

ci
∂ε(c)

∂ci

]
ψ′2

∣∣∣∣∣
x

∞

+ β−1

[
M∑
i=1

ci−
1

v0
(logθw−θw)

]∣∣∣∣∣
x

∞

.

Thus, the pressure at location x is given by

P (x) =−ε0

2

[
ε(c)+

M∑
i=1

ci
∂ε(c)

∂ci

]
ψ′2 +β−1

{
M∑
i=0

ci−
1

v0
logθw

}
. (2.24)
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Note that the pressure is consistent with the classical PB case if the ionic volumes go to
zero and the dielectric coefficient is independent of ionic concentrations. At equilibrium,
the pressure is a constant for all x. By P (0) =P (∞), we have a modified Grahame
equation

σ2

2ε0ε(cs)2

[
ε(cs)+

M∑
i=1

csi
∂ε(cs)

∂ci

]
=β−1

[
M∑
i=0

(csi −c∞i )− 1

v0
log

(
θsw
θ∞w

)]
, (2.25)

where the superscript s represents the value at the surface.

2.4. Counterion saturation. Near a highly charged surface, the counterions
are strongly attracted to the surface due to electrostatic interactions. It is known that
the ionic steric effect hinders the counterion accumulation and gives rise to counterions
saturation at the surface [4, 7, 28, 31, 32, 57]. As counterions saturate at close packing,
its concentration can be estimated by 1/v with v being the volume of counterions. In
addition to the steric effect, the dielectric decrement depletes the counterions near the
charged surface as well [5, 20, 33, 41]. The interplay between these two mechanisms
and their influences on the structure of the electric double layer have been elaborated
with a linear dielectric decrement model [41]. We now investigate the distribution
of counterions under the influence of both the steric effect and dielectric decrement
described by the Bruggeman equation, and characterize the condition for which the
effect becomes predominant.

We assume that there are two ionic species in the ionic solution (M = 2). When
counterions saturate at the charged surface, it is reasonable to assume that the coions,
c2, are fully depleted from the charged surface. The modified Grahame Equation (2.25)
reduces to

σ2≈ 2β−1ε0ε(c
s)2

ε(cs)+cs1
∂ε(cs)
∂c1

[
(cs1−c∞1 )− 1

v0
log

(
1−v1c

s
1

1−v1c∞1

)]
. (2.26)

Define

εd(c
s) =ε(cs)+cs1

∂ε(cs)

∂c1
.

Solving the Bruggeman Equation (1.3), we obtain

εd=
2εw−ε1 +2φc

4
+

√
(2εw−ε1 +φc)2 +8ε1εw

4
+

φc(2εw−ε1 +φc)

4
√

(2εw−ε1 +φc)2 +8ε1εw
, (2.27)

where φc= 3v1c
s
1(ε1−εw). Since the counterion concentration at the surface is higher

than that in the bulk, the Equation (2.26) implies that εd>0. Detailed calculations
show that such an inequality is equivalent to

φc>
(ε1 +2εw)2

2(ε1−2εw)
, (2.28)

which gives a saturation concentration for counterions due to dielectric decrement:

cs1<
(ε1 +2εw)2

6v1(ε1−2εw)(ε1−εw)
. (2.29)
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Notice that the saturation due to dielectric decrement, described by the Bruggeman
model, depends on both the dielectric coefficient and volume of counterions. In con-
trast, saturation concentration described by linear dielectric decrement is given by
cs1<

2εw
γ1

[41]. The nonlinear dielectric decrement in the Bruggeman model accounts
for such a difference in saturation concentrations.

Since both steric effects and dielectric decrement give rise to counterion saturations,
we now discuss which mechanism would become predominant in determining counterion
distribution. Comparing the saturation concentrations induced by two mechanisms,
(2.29) versus c1≤1/v1, we know that the dielectric decrement prevails if

(ε1 +2εw)2

6(ε1−2εw)(ε1−εw)
<1,

which is equivalent to

ε1<
2

5
εw.

Otherwise, the counterions close to the highly charged surface are constrained by the
steric effect with the saturation concentration 1/v1. Analysis here shows that 2

5εw is a
critical threshold value for counterions to distinguish the predominance of steric effects
from the dielectric decrement. Counterion saturation is further numerically studied in
Section 4.2.

3. Numerical methods
We present our numerical methods in a 2D rectangular domain Ω = (a,b)×(c,d).

We introduce grid points

a=x1<x2< ·· ·<xNx = b,

c=y1<y2< ·· ·<yNy =d,

where Nx and Ny are the number of grid points along each dimension. Define

xi+ 1
2

=
xi+xi+1

2
and yj+ 1

2
=
yj+yj+1

2
for i= 1,. ..,Nx−1, j= 1,. ..,Ny−1.

The domain is covered by a nonuniform mesh

{xi,yj} for i= 1,. ..,Nx, j= 1,. ..,Ny,

with grid spacing given by

hxi =xi+ 1
2
−xi− 1

2
, hyj =yj+ 1

2
−yj− 1

2
for i= 1,. ..,Nx−1, j= 1,. ..,Ny−1,

and

hxi+ 1
2

=xi+1−xi, hyj+ 1
2

=yj+1−yj for i= 1,. ..,Nx−1, j= 1,. ..,Ny−1.

We denote by cli,j , φi,j , and εi,j the numerical approximations of cl(xi,yj), φ(xi,yj), and
ε(c1(xi,yj), ·· · ,cM (xi,yj)), respectively. Here the index 1≤ l≤M is used to label the
ionic species. To facilitate the presentation, we introduce discrete difference operators

D+
x fi,j =

fi+1,j−fi,j
hx
i+ 1

2

, D+
y fi,j =

fi,j+1−fi,j
hy
j+ 1

2

for a grid function fi,j defined on grid points (xi,yj) .
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3.1. Bruggeman equation. Given the concentrations c= (c1,. ..,cM ), the effec-
tive dielectric coefficient ε(c) can be obtained by numerically solving the Bruggeman
Equation (1.3). It is easy to show that there exists at least one solution in the interval
[Min(ε1,. ..,εM ),Max(ε1,. ..,εM )]. Multiple solutions are possible when the number of
ionic species gets large. Although multiple solutions to the Bruggeman equation could
exist in the interval, it is nontrivial to prove that there exist multiple solutions of phys-
ical significance to the whole system (2.18). Existence and multiplicity of solutions to
the model and related physical phenomena deserve further studies.

It is crucial to observe that the functional dependence of the effective dielectric
coefficient on concentrations can be precomputed and stored before solving the coupled
system (2.18). Furthermore, it follows from the constraint (2.4) that the concentration
ci ranges from zero to 1

vi
. We introduce a mesh for each species of concentration

0 =pl1<p
l
2< ·· ·<plNl

=
1

vl
for l= 1,. ..,M, (3.1)

where Nl is the total number of grid points for the l-th ionic species. Uniform meshes
for concentrations are used in our numerical computations. Define

f(ε) =θw (εw−ε)
M∏
i=1

(εi+2ε)+

M∑
i=1

θi (εi−ε)(εw+2ε)

M∏
j 6=i

(εj+2ε)

.
For any grid point c=

(
p1
i1
,p2
i2
.. .,pMiM

)
(1≤ il≤Nl), we solve for an effective dielectric

coefficient a scalar equation f [ε(p1
i1
,p2
i2
.. .,pMiM )] = 0 by Newton’s iterations

εk+1 =εk− f(εk)

f ′(εk)
,

with an initial guess ε0 =εw. After convergence, we store ε(p1
i1
,p2
i2
.. .,pMiM ) on the grid

points (3.1). In addition, we use finite-difference schemes to compute

∂ε(p1
i1
,p2
i2
.. .,pMiM )

∂cl
≈
ε(p1

i1
,. ..,plil+1,. ..,p

M
iM

)−ε(p1
i1
,. ..,plil−1,. ..,p

M
iM

)

plil+1−plil−1

for l= 1,. ..,M.

Again, such partial derivatives are stored for each grid point. We remark that this
approach gets memory demanding when the number of ion species gets large.

For any concentration c= (c1,. ..,cM ), we use high-order interpolation schemes to

compute the ε(c) and ∂ε(c)
∂cl

based on the stored data. Such a pre-computation technique
can efficiently speed up the computation, especially in three dimensional calculations
for applications of practical interest.

3.2. Poisson’s equation. Ionic concentrations often have large variations near
charged surfaces; therefore, the effective dielectric coefficient that depends on ionic con-
centrations may have large variations as well. Furthermore, the dielectric coefficient is
often discontinuous across the dielectric interface that separates different dielectric me-
dia. We develop numerical methods for the Poisson’s equation with special treatments
for dielectric jump on the interface. Also, we consider Dirichlet boundary conditions on
the outer boundaries of the rectangular domain with boundary data that are maintained
by electrodes.
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Given numerical solutions of concentrations cli,j and the corresponding εi,j , we dis-
cretize the Poisson’s Equation (2.1) with a central differencing scheme

−

(
εi+ 1

2 ,j
D+
x φi,j−εi− 1

2 ,j
D+
x φi−1,j

hxi
+
εi,j+ 1

2
D+
y φi,j−εi,j− 1

2
D+
y φi,j−1

hyj

)

=ρf
i,j+

M∑
l=1

zlc
l
i,j , (3.2)

where the dielectric coefficient on the half-grid points are approximated by the harmonic
mean

εi+ 1
2 ,j

=
εi,jεi+1,j

ω1εi+1,j+ω2εi,j
.

Here the weights satisfy ω1≥0, ω2≥0, and ω1 +ω2 = 1. If there is no dielectric interface
between grid points (i,j) and (i+1,j), we simply choose ω1 =ω2 = 0.5. When there is
a dielectric interface, ω1 and ω2 are chosen according to the ratios of the distance of
the interface point to adjacent grid points (i,j) and (i+1,j) over hx

i+ 1
2

. Other dielectric

coefficients εi− 1
2 ,j

and εi,j± 1
2

are treated analogously. Compared to the arithmetic
mean, the harmonic mean gives a smoother approximation of the dielectric coefficient
and improves the accuracy of the approximation of the electrostatic potential, especially
when the dielectric coefficient has large variations [11].

3.3. Generalized Boltzmann distribution. After solving the Poisson’s equa-
tion, we obtain the numerical solutions of φi,j and

|∇φ|2i,j≈

(
φi+1,j−φi−1,j

hx
i+ 1

2

+hx
i− 1

2

)2

+

(
φi,j+1−φi,j−1

hy
j+ 1

2

+hy
j− 1

2

)2

.

Given φi,j and |∇φ|2i,j , we update the ionic concentration by solving the generalized
Boltzmann distribution (2.17), which can be reformulated as follows:

cl(θw,c) = c∞l exp

[
−zlφ+

1

2

∂ε(c)

∂cl
|∇φ|2

](
θw
θ∞w

) vl
v0

for 1≤ l≤M. (3.3)

We remark that the above equations are spatially decoupled for each grid point. How-
ever, concentrations cl for 1≤ l≤M are still coupled. We define

h(θw,c) =θw+

M∑
i=1

vic
∞
i exp

[
−ziφ+

1

2

∂ε(c)

∂ci
|∇φ|2

](
θw
θ∞w

) vi
v0

−1. (3.4)

It is readily verified that θw solves the equation h(θw,c) = 0. In the following, we propose
a Newton-type iterative method to solve (3.3) on a spatial grid point (xi,yj).

Algorithm 1

Step 1. Given φi,j and |∇φ|2i,j , initialize c0 and θ0
w. Let k= 0. Set a stepsize ν (0<ν<1).

Step 2. Update ck+1
l (θkw,c

k) using (3.3) with a projection on the interval (0,1/vl) for
1≤ l≤M .
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Step 3. Update θk+1
w by Newton’s iteration

θk+1
w =θkw−ν

h(θkw,c
k+1)

∂θwh(θkw,c
k+1)

,

with a projection on the interval (0,1).

Step 4. Check convergence. If yes, the algorithm stops; otherwise, go back to Step 2.

We remark that θw is used as an iteration variable in the iterations, instead of ci which
have M variables. This treatment saves memory and computational time in calculations.
In the iterations for θw, the concentrations cl have to be updated alternatively with
(3.3). It is of importance to remark that, when the linear dielectric decrement model
or concentration-independent dielectrics is considered, the proposed algorithm becomes
a classical Newton’s method for one variable θw. Because the function h does not
depend on concentrations in that case. With the obtained θw, the concentrations can
be evaluated directly from (3.3). Thus, our algorithm is promising in solving other
modified PB theories efficiently.

We now summarize the whole algorithm as follows:

Algorithm 2
Step 1. Initialize k= 0 and c0 = (c01,·· · ,c0M ). Set a relaxation parameter τ (0<τ <1)

and convergence tolerance εtol.

Step 2. Solve the Bruggeman Equation (1.3) for ε(ck) and ∂ε(ck)
∂ci

(1≤ i≤M); cf. Section
3.1.

Step 3. Update φk+1 by solving the Poisson’s equation with ck and the updated ε(ck);
cf. Section 3.2.

Step 4. Obtain ck,∗ by solving (3.3) with φk+1,
∣∣∇φk+1

∣∣, and ∂ε(ck)
∂ci

; cf. Section 3.3.

Step 5. Update ck+1 by ck+1 = τck,∗+(1−τ)ck.
Step 6. Check convergence Max1≤i≤M‖ck+1

i −cki ‖∞<εtol. If yes, the algorithm stops;
otherwise, go back to Step 2.

Note that the relaxation step (Step 5) with a relatively small τ is helpful in achieving
final convergence.

4. Results
For simplicity of presentation, we introduce the following abbreviations in the rest

of this paper:

(1) The classical Poisson–Boltzmann model is denoted by “PB”.

(2) The Poisson–Boltzmann model with size effect [4, 7, 31] is denoted by “SMPB”,
which means the size modified PB model.

(3) Our current model with the dielectric decrement described by the Bruggeman model
is denoted by “SDMPB”, which means the size and dielectric modified PB model.

Note that the SMPB model can be regarded as a special case of the current SDMPB
model with a uniform dielectric coefficient, i.e., εi=εw. To understand the effect of
dielectric decrement, we also solve the classical PB model and SMPB model for com-
parison. Unless stated otherwise, we consider monovalent electrolytes with two ionic
species. The dielectric coefficient for water is set to be εw = 78.3. In the following
simulations, the numerical iterations converge robustly with the choice of τ = 0.2.

4.1. Dielectrics. Experiments and molecular dynamics (MD) studies have
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Fig. 4.1. Comparison of predicted dielectric coefficient from the Bruggeman model (lines) and
experimental data (symbols) against concentrations of different electrolyte solutions.

evidenced that the dielectric coefficient decreases as local ionic concentrations in-
crease [21,22,50,51]. We numerically solve the Bruggeman Equation (1.3) to investigate
the dependence of dielectric coefficient on the ionic concentrations of salt solutions: NaI,
RbCl, and KF. Experimental data of the dependence of dielectric coefficient on concen-
trations have been reported for such salt solutions in the literature [9, 17, 30, 50]. Since
the dielectric coefficients of hydrated ions are not available in the literature, we treat
them as fitting parameters. In our computation, the effective hydrated ionic volume is
obtained from the work [42]: vNa+ = 0.7163 nm3, vI− = 0.6623 nm3, vRb+ = 0.6583 nm3,
vCl− = 0.6643 nm3, vK+ = 0.6623 nm3, and vF− = 0.7043 nm3. Fitting against the ex-
perimental data gives the dielectric coefficient of hydrated ions: εNa+ = 46, εI− = 50,
εRb+ = 51, εCl− = 50, εK+ = 56, and εF− = 55. With these parameters, the predicted di-
electric coefficients against concentrations are shown in solid lines in Figure 4.1. One
can observe that, when the ionic concentrations are dilute, the dielectric decrement is
linear with different slopes for different salt solutions. In addition, our theoretical pre-
diction from the Bruggeman model agrees with the experimental data very well, even for
concentrations up to 4 to 5 M. In such a high-concentration regime, the linear dielectric
decrement model breaks down. The nice agreement for high concentrations indicates
that the Bruggeman model is capable of capturing the dependence of the dielectric
coefficient on concentrations in both low- and high-concentration regimes.

4.2. Electric double layer structure. We now apply our SDMPB model to
study the effect of dielectric decrement on the ionic structure in an electric double layer
(EDL). In our computations, we prescribe a fixed potential at the surface, ψ=−10
(in kBT/e), as a Dirichlet boundary condition for the Poisson’s equation. Also, we
take the following parameters: v1 = 0.6623 nm3, v2 = 0.6643 nm3, ε1 = 10, ε2 = 20, and
c∞1,2 = 0.1M .

As displayed in Figure 4.2, counterions are attracted to the surface due to the elec-
trostatic interaction. With ions described by point charges, the classical PB theory
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Fig. 4.2. Left: Counterion concentrations against the distance to the charged surface for the
classical PB, SMPB, and SDMPB models. The inset shows the corresponding dielectric coefficient for
the classical PB and SDMPB models. Right: The electrostatic potential against the distance to the
charged surface.

predicts very high concentration at the surface. In contrast, the counterion concentra-
tion calculated by the SMPB model is much lower, as the size effect hinders counterions
from accumulating at the surface. Further, when the dielectric decrement is taken into
account, our SDMPB model predicts even lower concentrations. From the inset plot of
Figure 4.2, one can see that the dielectric coefficient quickly decreases in the vicinity
of the surface, in contrast to the case of the classical PB or SMPB that uses a uniform
dielectric coefficient. Such a dielectric inhomogeneity accounts for the depletion of ions
close to the surface [5, 33, 41]. The right plot of Figure 4.2 depicts the profiles of elec-
trostatic potential obtained with different models. Because of the attracted counterions
at the surface, the electrostatic potential obtained by different models gets screened
quickly. Nevertheless, the potential predicted by SDMPB is screened relatively slower
due to less accumulated counterions in the electric double layer. Our calculations evi-
dence that the dielectric decrement plays a significant role in determining the structure
of electric double layer.

To further understand the effect of dielectric decrement, we consider the distribution
of counterions with different bulk concentrations. We use the same parameters as pre-
vious simulations, except that c∞1 varies from 0.1M to 1.5M. As depicted in Figure 4.3,
the counterion concentration close to the surface increases as the bulk concentration
goes from 0.1M to 1.5M. Of interest is that the counterion concentration becomes a
non-monotone function against the distance to the surface, due to the ion depletion
arising from dielectric decrement close to the surface. The equilibrium distribution of
counterions reflects the competition between the electrostatic attraction and depletion
from the size effect and dielectric decrement. In the immediate vicinity of the surface,
the ion depletion starts to prevail over electrostatic attraction as the bulk concentration
goes over a threshold value. Similar non-monotone distributions of counterions have
been observed in Monte Carlo studies using concentration-dependent dielectric coeffi-
cients [20]. From the right plot of Figure 4.3, one observes that the dielectric coefficient
decreases with higher counterion concentrations. As expected from the Bruggeman
equation, the non-monotonicity presents itself in the distribution of dielectric coefficient
as well, when c∞1 = 1.5M . As discussed in Section 2.4, there is a saturation concen-
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tration for counterions near the charged surface, if the electrostatic attraction between
the surface and couterions is strong. There are two mechanisms accounting for the
saturation: close packing due to size effect and dielectric decrement. In-depth analysis
has demonstrated that the dielectric decrement would be predominant if the dielectric
coefficient of counterions ε1<

2
5εw; otherwise, the size effect prevails with the saturation

concentration 1/v1. From (2.29), we know that the saturation concentration is given by

cds =
(ε1 +2εw)2

6v1(ε1−2εw)(ε1−εw)
.

We now perform two series of numerical simulations to confirm our analysis. The
simulation takes the following parameters: v1 = 0.853 nm3, v2 = 0.83 nm3, ε2 = 20, c∞1,2 =
1.5 M, and ψ=−10 (in kBT/e) at the surface. For ε1, we take two different values:
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ε1 = 25 (ε1<
2
5εw) and ε1 = 60 (ε1>

2
5εw).

Figure 4.4 shows the profiles of counterion concentrations with two different ε1 val-
ues. For reference, the saturation concentrations due to size effect and dielectric decre-
ment are shown as well. For ε1 = 60, one can see that there is an extended condensed
layer of counterions with a saturation concentration, 1/v1, due to the size effect, while
the saturation concentration due to dielectric decrement is much higher. For ε1 = 25, the
saturation concentration due to dielectric decrement becomes lower than the constraint
by size effect, and the concentration in the vicinity of the surface reaches the satura-
tion concentration due to dielectric decrement. Such simulation results corroborate our
analysis on the competition between two mechanisms.

4.3. Differential capacitance. The structure of a charged surface and ions ad-
sorbed in electric double layers (EDLs) is analogous to conventional dielectric capacitors
with an inter-electrode separation about the radius of a counterion. Due to the small
separation, such electric double layer capacitors often can achieve very large capaci-
tance values. As discussed in the previous section, counterions saturate in the vicinity
of charged surface on account of finite ionic sizes and dielectric decrement. Wider EDLs,
resulting from counterion saturation, have lower differential capacitance values [41]. We
here discuss the impact of steric effect and dielectric decrement on the value of EDL
differential capacitance.

4.3.1. Comparison of modified PB models. We consider the differential
capacitance of an EDL with the following parameters: z1 = +1, z2 =−1, and c∞1 = c∞2 =
0.1 M. Figure 4.5 displays curves of differential capacitance against the applied surface
potential that varies from −10 to 10 kBT/e. Four different theoretical models are
used to predict the differential capacitance at given surface potential. The classical PB
theory predicts a monotonically increasing curve when the strength of surface potential
increases. Since ions are modeled as point charges in the classical PB theory, more
energy is stored in the EDL layer with more counterions piling up at the surface without
steric hindrance. As the surface potential increases, the differential capacitance diverges
exponentially, being consistent with the formula for the classical PB theory [3].

In contrast, the differential capacitance predicted by the SMPB models first in-
creases with the strength of surface potential, but decreases after the surface potential
exceeds a certain threshold value. Such a non-monotone dependence gives a camel-shape
curve, which has been seen in experimental studies [3]. The decline of differential ca-
pacitance can be ascribed to the growth in the width of effective EDL capacitor arising
from counterion saturation [28,41, 43]. Notice that the differential capacitance curve is
symmetric when uniform ionic sizes are used in the simulation, cf. the blue dash-dot
line shown in Figure 4.5. Nevertheless, the curve becomes asymmetric if non-uniform
ionic sizes are used. For instance, the cation is the counterion to the surface with a
negative potential. Since the size of cations does not change in simulations, the curves
with negative potentials overlap for the SMPB model with symmetric or asymmetric
sizes, cf., the green and blue curves in the figure. This indicates that the size of coions
has very limited effect on the differential capacitance. In contrast, the curves behave
differently when the potential becomes positive. Because anions become counterions
to the surface, and the size of anions has changed from 0.43 to 0.53 nm3. With larger
counterion sizes, the differential capacitance becomes smaller, as less charges are stored
in the EDLs.

From the black solid curve, one can observe that the differential capacitance de-
creases further with the inclusion of dielectric decrement. As discussed before, the satu-
ration due to dielectric decrement prevails over the steric effect when εi<

2
5εw. From the



X. JI AND S. ZHOU 1967

−10 −8 −6 −4 −2 0 2 4 6 8 10
50

100

150

200

250

300

φ

C
 [

µ
F

c
m

−
2
]

 

 

Classical PB

SMPB with Symmetric Sizes

SMPB with Asymmetric Sizes

SDMPB

Fig. 4.5. Differential capacitance versus surface potential predicted by different models. The red
dotted line is calculated by the classical PB theory. The blue dash-dot line is calculated by the SMPB
model with uniform ionic sizes (v1 =v2 = 0.43nm3). The green dashed line corresponds to the SMPB
model with nonuniform ionic sizes (v1 = 0.43nm3 and v2 = 0.53nm3). The black solid line represents
the SDMPB model with parameters: v1 = 0.43nm3, v2 = 0.53nm3, ε1 = 10, and ε2 = 20.

parameters used here, we know that the saturation due to dielectric decrement occurs,
both for cations and anions, as the surface potential exceeds certain strength. In addi-
tion, as estimated by the Equation (2.29), the saturation concentration corresponding
to cations and anions has a ratio: c+1

ds : c−1
ds = 1.38 : 1. This is consistent with the two

peaks in the curve that the peak value of differential capacitance is higher when the
surface potential is negative. Because more cations are crowding at the surface when
the potential is negative. Such asymmetric differential capacitance curves evidence that
our SDMPB model can effectively capture the ion-specificity, such as the ionic volume
and dielectric response of hydrated ions.

4.3.2. Camel shape to bell shape. The dependence of differential capacitance
on the surface potential exhibits a camel-shape curve at low salinity. Such a shape has
also been observed in Monte Carlo simulations [13] and experimental studies [19, 28].
As the bulk concentration increases, the capacitance-potential curve changes from a
camel shape to a bell shape, which has also been observed in experiments of ionic
liquids [28,41]. We now apply our model to probe the effect of the bulk concentration on
the capacitance-potential curves. Figure 4.6 presents the capacitance-potential curves
with bulk concentrations ranging from 0.01 to 2 M. From Section 4.2, we know that
the threshold potential for counterion saturation lowers when the bulk concentration
increases. Therefore, the two peaks in the camel-shape curve get close when the bulk
concentration increases, gradually switching from a camel shape to a bell shape that
has a single peak at the center. At high salinity, e.g., c∞1 = 2 M, the nonlinear dielectric
decrement described by the Bruggeman model becomes more and more important, and
the curve becomes asymmetric, with the main capacitance peak slightly shifting to a
positive surface potential. The effect of size and dielectric disparity on the differential
capacitance predicted from our model qualitatively agrees well with Density Functional
Theory (DFT) [27] and MD simulations [14].
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Fig. 4.6. Differential capacitance versus surface potential using various bulk concentrations. The
simulations use the parameters: v1 = 0.6623nm3, v2 = 0.6643nm3, ε1 = 10, and ε2 = 20.

4.3.3. Effect of Ion-specific parameters. To further understand asymmetric
capacitance-potential curves, we investigate the differential capacitance with different
counterion volumes, dielectric coefficients, and bulk concentrations. For low salinity,
the differential capacitance, as seen in the upper left plot of Figure 4.7, decreases sub-
stantially as the size of couterion increases; however, it does not have noticeable change
for the positive potential when the size of coions increases. This again illustrates that
our model can effectively capture the effect of non-uniform ionic sizes. It is interesting
to notice that the surface potential corresponding to peaks decreases as counterion size
increases, because a lower surface potential is needed to trigger counterion saturation
when counterion size is large. To study the effect of dielectric coefficient of counterions,
we fix the counterion volume (v1 = 0.6623 nm3) as well as other parameters, and grad-
ually increase the dielectric coefficient from 5 to 30. Since ε1<

2
5εw in such cases, the

saturation due to dielectric decrement prevails the size-effect saturation. As shown in
the upper right plot of Figure 4.7, the differential capacitance enhances as the dielectric
coefficient of counterions increases. Also, the surface potential corresponding to peaks
decreases, as the counterion saturation occurs at a lower surface potential for a smaller
dielectric coefficient. It is of importance to note that the differential capacitance is in-
dependent of the dielectric coefficient of coions, indicating that the Bruggeman model
indeed predicts an effective dielectric coefficient that reflects different mixture compo-
nents.

For high salinity, the capacitance-potential curves become a bell shape with a single
peak, as discussed in the previous section. As the cation volume increases, the differ-
ential capacitance moves down, especially for the positive potential. Notice that the
curves become more and more asymmetric as v1 decreases. With smaller v1, more ions
are able to be attracted to the EDL capacitor when the negatively stronger surface is
applied. However, the differential capacitance decreases monotonically for all v1 when
the positively stronger potential is applied. Because, at high salinity, the effective width
of EDL grows with positively larger surface potential, no matter how the (coion) size
v1 changes.
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Fig. 4.7. Differential capacitance versus surface potential using different ionic sizes and dielectric
coefficients of hydrated ions. Top: Low salinity c∞i = 10mM ; Bottom: High salinity (c∞i = 1M). Left:
The cation takes a fixed dielectric coefficient ε1 = 10 but various ionic volumes: v1 = 0.43nm3, 0.63nm3,
and 0.83nm3. Right: The cation takes a fixed ionic volume v1 = 0.6623nm3 but various dielectric
coefficients: ε1 = 5, 10, 20, and 30.

As shown in the right plot of Figure 4.7, the variation of dielectric coefficient of
ε1 has some impact on the capacitance-potential curve as well. With larger ε1, the
location of the peak of bell shape curve gradually shifts to negative surface potentials,
and the height of the peak increases as well. As ε1 increases, the dielectric depletion
effect diminishes, leading to more ions stored in the EDL capacitor. Further, one can
observe that the positive-potential branch of the curves overlap each other, since not
many coions are present in the EDL. This again illustrates that our model is capable of
capturing the dielectric effect of hydrated ions as a source of ion-specificity.

4.4. Charged cylinders. We investigate the effect of concentration-dependent
dielectrics on the electrostatics between two long charged cylinders immersed in a mono-
valent electrolyte solution. We assume the system is homogeneous along the direction of
cylinders; therefore, the system under consideration reduces to a two-dimensional case.
The computational domain [−5,5]× [−5,5] (in nm) is resolved by a 100×100 mesh. The
two cylinders of radius 1 nm located at (−2,0) and (2,0) carrying positive charges in the
center [24]. The dielectric coefficient in the cylinders is denoted by εint. The parameters
of water molecules and ions are given by

ε0 = 78.3,v0 = 0.2753nm3, c∞1 = c∞2 = 0.1M,

ε1 = 46, v1 = 0.7163nm3, z1 = +1,

ε2 = 12, v2 = 0.6763nm3, z2 =−1.
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Fig. 4.8. The equilibrium distribution of counterion concentration, electrostatic potential, and
dielectrics with εint = 20 and εint = 120.
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To explore the impact of dielectric coefficient of cylinders, we perform numerical
simulations with εint = 20 and εint = 120. Figure 4.8 displays the equilibrium distribu-
tion of counterion concentrations, electrostatic potential, and dielectrics with low and
high dielectric coefficients in the cylinders. As expected, the counterions are attracted
to charged cylinders. High concentration leads to dielectric decrement around the cylin-
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ders. Due to the effect of dielectric depletion, the counterion concentration in the close
vicinity of cylinders is lowered for the case of εint = 20. Correspondingly, the electrostatic
potential is much higher because it is less screened by the lower dielectric profile.

For comparison, we also perform simulations with the classical PB and SMPB mod-
els, in which the dielectric coefficient outside the cylinders takes ε=εw. To have a quan-
titative comparison, we show in Figure 4.9 the counterion concentration predicted by
the PB, SMPB, and SDMPB models along the x-axis. Clearly, the classical PB model
that ignores steric effects predicts high concentration around the cylinders. In com-
parison with SMPB, our SDMPB model predicts a bit lower counterion concentration
with εint = 20 because of dielectric depletion. For the case of εint = 120, the dielectric
depletion is suppressed by large dielectric coefficient inside the cylinders — the SDMPB
predicts slightly lower counterion concentration than that of the SMPB model.

5. Conclusions

In this work, we develop a modified Poisson–Boltzmann (PB) theory with a varia-
tional approach that takes the nonlinear concentration-dependent dielectrics into ac-
count. The effective dielectric coefficient, as a nonlinear implicit function on both
counterion and coion concentrations, is determined by solving the Bruggeman equa-
tion, which provides a closure to the modified PB theory. In addition to ionic size
and valence, our theory introduces a new source of ion-specificity, i.e., the dielectric
coefficient of hydrated ions, to the continuum modeling of electrostatics. Robust and
efficient numerical methods with acceleration techniques are proposed for solving the
equilibrium state of the PB theory.

We further analyze the Bruggeman model in the limits of dilute and concentrated
concentrations. The connection between the Bruggeman model and previous linear
decrement models is established via asymptotic expansions. Also, we derive a modified
Grahame equation that relates the surface charge density, effective dielectric coefficient,
and ionic concentrations at a charged surface. Such a relation leads to a saturation
concentration of counterions due to dielectric decrement. Furthermore, we investigate
the counterion saturation arising from both the steric effects and dielectric decrement.
A criterion has been derived to tell which of the two will become predominant in de-
termining counterion distribution. The criterion has been confirmed later by numerical
simulations.

We apply the modified PB theory to study dielectrics of electrolytes. The prediction
by our model has good agreement with experimental data. The dielectric decrement
effect on the structure of the electric double layer (EDL) has been extensively assessed
with numerical simulations. We also apply the developed modified PB theory to study
the differential capacitance of the EDL capacitors. The profound effect of counterion
saturation, due to steric effects and dielectric decrement, on the shape of differential
capacitance profiles is theoretically analyzed and numerically investigated. With ion-
specific parameters, our theory is able to reproduce asymmetric camel-shape profiles of
differential capacitance against applied potentials for electrolytes with low salinity, and
asymmetric bell-shape profiles for electrolytes with high salinity. The newly introduced
dielectric coefficients of hydrated ions provide a new perspective to study the asymmetry
of differential capacitance profiles. The modified PB theory is also applied to probe
the effect of concentration-dependent dielectrics on electrostatics between two charged
cylinders with various dielectric constants.

We now discuss several issues and possible further refinements of our work. Con-
tinuum dynamical models, such as the modified Poisson–Nernst–Planck equations with
the Bruggeman equation, can be readily derived from the electrostatic free-energy func-



1972 BRUGGEMAN MODEL FOR CONCENTRATION DEPENDENT DIELECTRICS

tional. It is of significance to assess the effect of concentration-dependent dielectrics on
ionic transport in ion channels, nanofluidic devices, and electrochemical systems [56].
Our analysis on the Bruggeman equation shows that the Hessian matrix of the function
of effective dielectric coefficient on concentrations is indefinite. As analyzed in our pre-
vious work [33], the electrostatic free-energy functional may be nonconvex with respect
to concentrations. It remains for future work to study the existence of multiple equi-
librium solutions that are of physical interest, and to perform stability analysis on the
multiple solutions in dynamical models. The effective dielectric coefficient, determined
by the Bruggeman equation, is a spatially inhomogeneous function of concentrations.
To account for dielectric inhomogeneity, the Born energy of solvated ions can be taken
into account [37, 49]. The impact of Born energy on the structure of EDLs and the
differential capacitance of EDL capacitors deserves further studies.
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