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ASYMPTOTIC TRAVELING WAVE FOR A PRICING MODEL
WITH MULTIPLE CREDIT RATING MIGRATION RISK∗

ZHENZHEN WANG† , ZHENGRONG LIU‡ , TIANPEI JIANG§ , AND ZHEHAO HUANG¶

Abstract. In this paper, an asymptotic traveling wave of a free boundary problem related to a
pricing model for corporate bond with multiple credit rating migration risk is studied. The pricing
model is captured by a free boundary problem, whose existence, uniqueness and regularity of the
solution are obtained such that the rationality of the model is guaranteed. The existence of a unique
traveling wave in the free boundary problem is established with some risk discount rate condition
satisfied. The inductive method is applied to overcome the multiplicity of free boundaries. We prove
that the solution of the pricing model for corporate bond is convergent to the traveling wave, which
shows a clear dynamics of price change for the corporate bond.

Keywords. Traveling wave; Asymptotic behavior; Free boundary problem; Multiple credit rating
migration; Pricing model for corporate bond.
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1. Introduction

The rapid development of globalization and complexity of financial markets leads
to higher requirement on management of credit risks. Credit risks include default risks
and credit rating migration risks. The existing literature has paid much attention on
the default risks. Since the 2008 subprime crisis and the 2010 European debit crisis,
the credit rating migration risk plays more and more remarkable roles in credit risk
analysis. Therefore, researches on credit rating migration risks are attracting more and
more attention.

Both structural models and reduced form models are traditional models for default
risks. Structural models assume that default occurs when the value of firm falls below
some insolvency threshold, see Merton [23], Black and Cox [2], Leland [16], Longstarff
and Schwartz [18], Leland and Toft [17], Briys and de Varenne [3], Bessembinder et
al. [1] and so forth. For the reduced form models, an exogenous default intensity is
applied, see Jarrow and Turnbull [11], Lando [14], Duffie and Singleton [5] and so forth.
Both models have been widely adopted in different settings in practice and show their
strength and weakness.

In existing literature on credit rating migrations, Markov chain is the mainly em-
ployed approach, where a transferring intensity matrix is adapted. Then the reduced
form framework is directly developed for dynamic processes of credit rating migrations,
see Jarrow et al. [12], Das and Tufano [4], Lando [15], Thomas et al. [25] and so forth.
Some authors considered another perspective where the value of the firm is an important
factor in the credit rating migrations, see Hu et al. [10], Liang and Zeng [19], Liang et
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al. [20], Liang et al. [21], Liang et al. [22] and so forth. For instance, the 2010 European
debit crisis caused several European countries to be downgraded on their credit ratings
and resulted in a lot of difficulties. The primary origin of the crisis was the unsustain-
able levels of sovereign debts in these countries due to their bad economic behaviors
accumulated in the former years. In such a setting, Markov chain cannot fully capture
the migration of credit ratings. To reply to this problem, Liang and Zeng [19], Liang et
al. [20] apply structural model for pricing corporate bonds with credit rating migrations
relative to the asset value. They set a predetermined migration threshold to divide
the value of the firm into high and low rating levels, where the values follow different
stochastic processes. Subsequently, Hu et al. [10] improved the model by introducing
the proportion of the debt and the value of the firm as the threshold of the boundary of
the credit rating migration. The model is transferred into a free boundary problem of
partial differential equations (PDE). The existence, uniqueness and regularity of the free
boundary problem are obtained. Liang et al. [22] extended the work of Hu et al. [10] to a
pricing model where the volatility of the bond price strongly depends on potential credit
rating migration and stochastic change of the interest rate. The existence, uniqueness
and regularity of the solution for the model are established. In particular, following the
work of Hu et al. [10], Liang et al. [21] carry out the first study associating the traveling
wave to the problem on credit rating migrations. They have proved that the solution
of the free boundary problem transferred from the pricing model for credit rating mi-
gration is convergent to a traveling wave with an explicit form, through the Lyapnov
function approach. Traveling waves exist widely in nature, especially in physics, chem-
istry and ecology etc. The traveling waves have been studied in both theoretical and
applied mathematics in different areas, see Feng and Knobel [6], Morita [24], Wang [26]
and so forth.

Two credit ratings are considered in their models, the high and low credit ratings
respectively in credit rating migrations. In practice, we should consider more credit
ratings in credit rating migration problem, when accessing the credit of a corporation.
For instance, on the evening of December 16, 2009, the Standard & Poors, an interna-
tional rating agency, downgraded the long term sovereign credit rating of Greece from
A- to BBB+. Wu and Liang [27] considered a pricing model for corporate bond with
multiple credit rating migration risk. They discussed numeric scheme, stability of nu-
meric algorithm, convergence order and calibration of parameters. Subsequently, Yin et
al. [28] extended the work of Wu and Liang [27] to a model with stochastic interest rate.
The model improves the previous existing bond models with only two credit ratings or
multiple ratings but with a constant interest rate.

In this paper, due to the practical significance of multiple credit ratings when as-
sessing the credit level of a firm, the authors devote to considering the asymptotic
traveling wave in a pricing model of corporate bond with multiple credit rating migra-
tions. Indeed, our work is an extension of Liang et al. [21], where two credit ratings are
considered. Thus, the overall strategy of the current paper is the same as that in [21].
Firstly, the pricing model is transferred into an equivalent free boundary problem. To
ensure the model is well posed, the existence globally in time, uniqueness and regularity
of the solution are proved. The procedure to achieve these results follows similarly the
argument of Liang et al. [21], with some necessary modifications to fit the case of multi-
ple credit ratings. Secondly, the existence and uniqueness of traveling wave in the model
is established through a delicate application of inductive method. We claim that this is
the highlight of the current paper. In the work of Liang et al. [21], since it is assumed
that there are only two credit ratings in the model, the explicit formula for the traveling
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wave is presented, which directly verifies the existence of a unique traveling wave. How-
ever, in the case of multiple credit ratings, it fails to obtain the explicit formula of the
traveling wave. In the current paper, the authors prove the existence of the traveling
wave by showing a semi-explicit formula associated with a nonlinear parameter system
with any finite dimension, which is proved solvable. Thirdly, the convergence for the
solution of the model to the traveling wave is proved by the construction of a Lyapunov
function. The form of the Lyapunov function is similar to that in [21] but the authors
show that it is also applicable in the case of multiple credit ratings.

Naturally, one should focus on the differences between the cases of multiple credit
ratings and only two credit ratings. In the corresponding free boundary problem, there
should be multiple free boundaries rather than only one free boundary in the problem.
In the work of Liang et al. [21], it has been shown that the existence and convergence
of the traveling wave are subject to some constraint on the risk discount rate factor.
That is, the risk discount rate should be between the half squares of the volatilities
in the high and low credit ratings. For the case of multiple credit ratings, it is found
that as long as the risk discount rate is between the half squares of the volatilities in
the highest and lowest credit ratings, the traveling wave exists and the solution of the
free boundary problem converges to the traveling wave. Meanwhile, the phenomenon of
asymptotic traveling wave does not depend on the relations between the risk discount
rate and the volatilities in other credit ratings. In this paper, one can capture some
information on the distribution of the free boundaries, especially the order of them.
We do not need to consider this event in the case of two credit ratings, since only one
free boundary is involved. These free boundaries are shown uniformly bounded and
convergent to corresponding limits, where the constraint on the risk discount rate plays
an important role. Compared with the case of two credit ratings, as expounded in the
last paragraph, the technical highlight in the case of the multiple credit ratings is the
existence of a unique traveling wave. In the case of two credit ratings, an explicit formula
for the traveling wave is given. However, due to the multiplicity of free boundaries, a
nonlinear parameters system is derived and proved solvable by the delicate application
of inductive method, which implies the existence of a unique traveling wave in the case
of multiple credit ratings.

The paper is organized as follows. In Section 2, the baseline model and the corre-
sponding PDE problem are proposed. The model is transferred into a free boundary
problem of PDE in Section 3. In Section 4, an approximation for the free boundary
problem is presented and the existence of a unique traveling wave in the free boundary
problem is founded in Section 5. In Section 6, some estimates for the free boundaries
are given. Then through the approximated problem, the existence and uniqueness of
the solution in the free boundary problem are obtained in Section 7. In Section 8, we
show that the solution of the free boundary problem is convergent to the traveling wave.
Conclusion and discussion are presented in Section 9.

2. Baseline model

2.1. Assumptions. Let (Ω,F ,P) be a complete probability space. In the
current paper, we assume that the firm issues only one corporate bond, which is a
contingent claim of its value on this probability space.

Assumption 2.1 (The firm asset with credit rating migration). Let St, t≥0, be the
value of the firm in the risk neutral situation. It satisfies the following Black-Scholes-
type models

dSt= rStdt+σNStdWt, in the first highest credit rating region,



1978 TRAVELING WAVE IN MULTIPLE CREDIT MIGRATION

dSt= rStdt+σN−1StdWt, in the second highest credit rating region,

·· ·
dSt= rStdt+σ1StdWt, in the second lowest credit rating region,

dSt= rStdt+σ0StdWt, in the first lowest credit rating region,

where r is the risk free interest rate and

σN <σN−1< ·· ·<σ1<σ0 (2.1)

represent volatilities of the value of the firm under different credit ratings respectively.
They are assumed to be positive constants. Volatilities in high credit rating regions
should be smaller than those in low credit rating regions. A firm with low credit rating
might be accompanied with high volatility leading to high risk. Wt is the Brownian
motion which generates the filtration Ft.

Assumption 2.2 (The corporate bond). The firm issues only one corporate zero-coupon
bond with face value K. We focus on the effect of the firm value with multiple credit
rating migration to the bond. Therefore, the discount value of the bond is considered.
Denote by φt the discount value of the bond at time t. Thus, on the maturity time T ,
an investor can get φT = min{ST ,K}.

Assumption 2.3 (The risk discount1 rate). A nonnegative constant δ is introduced to
represent the risk discount rate on the proportion of the debt and the firm value from
the bond maturity. Financially, the risk discount rate implies that the credit rating
migration is more sensitive to the proportion of the debt and the firm value as maturity
approaches.

Assumption 2.4 (The credit rating migration times). The rating regions are deter-
mined by the proportion of the debt and the firm value. The credit rating migration times
are the first moments when the credit ratings of the firm are downgraded or upgraded.
Select a sequence of constants

0<γN <γN−1< ·· ·<γ1<1

as the threshold proportions of the debt and the value. Define the credit rating migration
times as follows:

τ0 = inf

{
t>0 :

φ0
S0
eδT ∈ (γ1,∞),

φt
St
eδ(T−t)∈ (−∞,γ1]

}
,

τN = inf

{
t>0 :

φ0
S0
eδT ∈ (−∞,γN ),

φt
St
eδ(T−t)∈ [γN ,∞)

}
,

and for n= 1,2, ·· · ,N−1,

τn= inf

{
t>0 :

φ0
S0
eδT ∈ (γn+1,γn),

φt
St
eδ(T−t)∈ (−∞,γn+1]∪ [γn,∞)

}
.

1A risk discount refers to a situation where an investor is willing to accept a lower expected return
in exchange for lower risk or volatility. The degree to which any particular investor, whether individual
or firm, is willing to trade risk for return depends on the particular risk tolerance and investment goals
of that investor.
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2.2. Cash flows. Once the credit rating migrates before the maturity T , a
virtual substitute termination happens, namely that the bond is virtually terminated
and substituted by a new one with a new credit rating. There is a virtual cash flow of
the bond. Denote φn(t,y), n= 0,1,·· · ,N , the values of the bond in each credit rating.
The values φn(t,y) are calculated in a way of conditional expectations as follows:

φ0(t,y) =Et,y
[
e−r(T−t)min{ST ,K}χτ0≥T

+e−r(τ0−t)φ1(τ0,Sτ0)χt<τ0<T

∣∣∣∣St=y,γ1e
−δ(T−t)<

φ0(t,y)

y

]
,

φN (t,y) =Et,y
[
e−r(T−t)min{ST ,K}χτN≥T

+e−r(τN−t)φN−1(τN ,SτN )χt<τN<T

∣∣∣∣St=y,γNe
−δ(T−t)>

φN (t,y)

y

]
,

for n= 1,2,·· · ,N−1,

φn(t,y) =Et,y
[
e−r(T−t)min{ST ,K}χτn≥T

+e−r(τn−t)φn−1(τn,Sτn)χφn(τn,Sτn )=γnSτn ,t<τn<T

+e−r(τn−t)φn+1(τn,Sτn)χφn(τn,Sτn )=γn+1Sτn ,t<τn<T

∣∣∣∣
St=y,γn+1e

−δ(T−t)<
φn(t,y)

y
<γne

−δ(T−t)
]
,

where χ is the indicator function. (χevent= 1 if “event” happens. Otherwise, χevent= 0.)

2.3. The PDE problem. The conditional expectations given in Subsection
2.2 imply that the value of the bond is continuous when it passes the rating threshold
value, namely that

φn=φn−1, n= 1,2,·· · ,N on the rating migration boundaries. (2.2)

By the Feynman-Kac formula, φn, n= 0,1,·· · ,N , are the functions of the firm value S
and time t. They satisfy the following PDE in their corresponding regions:

∂φ0
∂t

+
σ2
0

2
S2 ∂

2φ0
∂S2

+rS
∂φ0
∂S
−rφ0 = 0, φ0>γ0e

−δ(T−t)S, t>0,

∂φN
∂t

+
σ2
N

2
S2 ∂

2φN
∂S2

+rS
∂φN
∂S
−rφN = 0, φN <γNe

−δ(T−t)S, t>0, (2.3)

and for n= 1,2,·· · ,N−1,

∂φn
∂t

+
σ2
n

2
S2 ∂

2φn
∂S2

+rS
∂φn
∂S
−rφn= 0, γn+1e

−δ(T−t)S<φn<γne
−δ(T−t)S, t>0,

with the terminal conditions

φn(T,S) = min{S,K}, n= 0,1, ·· · ,N.

Meanwhile, according to the Black-Scholes theory (see Jiang [13]), it holds as well that

∂φn
∂S

=
∂φn−1
∂S

, n= 1,2, ·· · ,N on the rating migration boundaries. (2.4)
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3. Free boundary problem
In this section, we transfer the pricing model proposed in the last section to a free

boundary problem. Through the standard transformation of variables x= logS and
remaining T − t as t, define

ϕ(t,x) =φn(T − t,ex) in n-th rating region, n= 0,1,·· · ,N.

Through (2.2) and (2.4), we then derive the equation system (2.3) as

∂ϕ

∂t
− σ

2

2

∂2ϕ

∂x2
−
(
r− σ

2

2

)
∂ϕ

∂x
+rϕ= 0, −∞<x<∞, t>0, (3.1)

where σ=σ(ϕ,x) is given as

σ=σ(ϕ,x) =


σN , ϕ<γNe

x−δt,

σn, γn+1e
x−δt≤ϕ<γnex−δt, n= 1,2,·· · ,N−1,

σ0, ϕ≥γ1ex−δt.
(3.2)

Without loss of generality, we assume K= 1. Then (3.1) is supplemented with the initial
condition

ϕ(0,x) = min{ex,1}, −∞<x<∞. (3.3)

In this paper, we shall prove that the domain could be separated by N free bound-
aries x=λn(t), n= 1,2, ·· · ,N . The boundaries λn(t), n= 1,2, ·· · ,N , are a priori un-
known since they should be solved through the equations

ϕ(t,λn(t)) =γne
λn(t)−δt, n= 1,2,·· · ,N, (3.4)

where the solution ϕ is also a priori unknown. Since we have assumed that the system
(2.3) is valid across the free boundaries, we can derive from (2.2) and (2.4) that

ϕ(t,λn(t)−) =ϕ(t,λn(t)+) =γne
λn(t)−δt, (3.5)

∂ϕ

∂x
(t,λn(t)−) =

∂ϕ

∂x
(t,λn(t)+), (3.6)

for n= 1,2,·· · ,N .
This is a nonlinear problem with nonlinearity and discontinuity in the coefficient of

the highest order term. Liang et al. [21] established a comparison principle to overcome
the difficulty of energy estimates. The following comparison principle is a slightly mod-
ified version, which can be applied to our model. The proof is similar to that in Liang
et al. [21] and we refer the readers to the detailed proof of Theorem 3.1 in [21].

Proposition 3.1 (Comparison principle). Let

Li[ϕi],
∂ϕi
∂t
− σ

2
i

2

∂2ϕi
∂x2

−
(
r− σ

2
i

2

)
∂ϕi
∂x

+rϕi, i= 1,2,

where σi=σi(t,x) satisfy

σ1(t,x)≤σN +

N−1∑
n=0

(σn−σn+1)H(ϕ1−γn+1e
x−δt), (3.7)
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σ2(t,x)≥σN +

N−1∑
n=0

(σn−σn+1)H(ϕ2−γn+1e
x−δt), (3.8)

where H is the Heaviside function satisfying H(x) = 1 for x≥0 and H(x) = 0 for x<0.
Suppose that there exists B>0, depending on T , such that

σi(t,x) =σN , x>B, 0≤ t≤T, i= 1,2,

σi(t,x) =σ0, x<−B, 0≤ t≤T, i= 1,2.

For either i= 1 or i= 2,

∂2ϕi
∂x2

− ∂ϕi
∂x
≤0, −∞<x<∞, 0≤ t≤T. (3.9)

Assume also that ϕi∈W 1,2
∞,loc((0,T )×R)∩C([0,T ]×R)∩L∞((0,T )×R), i= 1,2, and

L1[ϕ1]≥L2[ϕ2], ϕ1(0,x)≥ϕ2(0,x), −∞<x<∞, t>0,

then

ϕ1(t,x)≥ϕ2(t,x), −∞<x<∞, 0<t≤T.

Remark 3.1. The assumption of W 1,2
∞,loc can be replaced by W 1,2

p,loc, p≥3.

As we shall establish the existence of a traveling wave and convergence to it, it will
be more convenient for us to work on

u(t,ξ) =ertϕ(t,x), ξ=x+ct, ηn(t) =λn(t)+ct, n= 1,2,·· · ,N,

where c= r−δ. Then (3.1)-(3.6) are transformed into

∂u

∂t
− σ

2

2

∂2u

∂ξ2
−
(
δ− σ

2

2

)
∂u

∂ξ
= 0, −∞<ξ<∞, t>0, (3.10)

where σ is defined as

σ=σ(u,ξ) =


σN , u<γNe

ξ,

σn, γn+1e
ξ≤u<γneξ, n= 1,2, ·· · ,N−1,

σ0, u≥γ1eξ,
(3.11)

with initial condition

u(0,ξ) = min{eξ,1}, −∞<ξ<∞, (3.12)

and free boundary conditions

u(t,ηn(t)−) =u(t,ηn(t)+) =γne
ηn(t), (3.13)

∂u

∂ξ
(t,η(t)−) =

∂u

∂ξ
(t,η(t)+), (3.14)

for n= 1,2,·· · ,N .
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4. Approximation for the problem
In this section, an approximation for solution of the free boundary problem is given

as a bridge for the existence and uniqueness of solution. Rewrite (3.11) as

σ=σN +

N−1∑
n=0

(σn−σn+1)H(u−γn+1e
ξ). (4.1)

We approximate the Heaviside function H by a C∞ function Hε such that

Hε(x) = 0 for x<−ε, Hε(x) = 1 for x>0, H ′ε(x)≥0 for −∞<x<∞.

Consider the approximated problem

L ε[uε],
∂uε
∂t
− σ

2
ε

2

∂2uε
∂ξ2
−
(
δ− σ

2
ε

2

)
∂uε
∂ξ

= 0, −∞<ξ<∞, t>0, (4.2)

with initial condition

uε(0,ξ) = min{eξ,1}, −∞<ξ<∞, (4.3)

where

σε=σN +

N−1∑
n=0

(σn−σn+1)Hε(uε−γn+1e
ξ).

Through a classical fixed point argument for PDE, it is easy to check that (4.2)-(4.3)
admits a unique classical solution uε. We then proceed to derive some estimates for uε
in the following argument. The following lemmas in this section are analogous to the
corresponding results in [21]. Some necessary modifications are needed to fit the case
of multiple credit ratings in the model.

Remark 4.1. The function Hε is a modification of H. We can see that there
exists a small buffer when changing from 0 to 1. In practice, the length of this buffer
corresponding to upgrading or downgrading is affected by the bond price. Furthermore,
we could set Hε monotone with respect to ε. People could control the length of this
buffer area to make their benefits optimal.

Lemma 4.1. Denote uε as the solution of (4.2) with initial condition (4.3). Then uε
satisfies

0≤uε(t,ξ)≤1 for −∞<ξ<∞, 0≤ t<∞.

Proof. It is easy to verify that 0 is a lower solution while 1 is a upper solution.
The lemma is the direct result of comparison principle.

Lemma 4.2. Denote uε as the solution of (4.2) with initial condition (4.3). Then uε
satisfies

∂2uε
∂ξ2
− ∂uε
∂ξ

<0, −∞<ξ<∞, t>0.

Proof. Denote

w,
∂uε
∂t
−δ ∂uε

∂ξ
=
σ2
ε

2

(
∂2uε
∂ξ2
− ∂uε
∂ξ

)
.
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Differentiating (4.2) with respect to t gives

∂2uε
∂t2
− σ

2
ε

2

∂3uε
∂t∂ξ2

−
(
δ− σ

2
ε

2

)
∂2uε
∂t∂ξ

=σε

(
∂2uε
∂ξ2
− ∂uε
∂ξ

)N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)
∂uε
∂t

. (4.4)

Differentiating (4.2) with respect to ξ gives

∂2uε
∂t∂ξ

− σ
2
ε

2

∂3uε
∂ξ3
−
(
δ− σ

2
ε

2

)
∂2uε
∂ξ2

=σε

(
∂2uε
∂ξ2
− ∂uε
∂ξ

)N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)δ

(
∂uε
∂ξ
−γn+1e

ξ

)
. (4.5)

Associating (4.4) with (4.5) gives

L ε[w] =
2w

σε

N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)

(
∂uε
∂t
−δ
(
∂uε
∂ξ
−γn+1e

ξ

))
.

At t= 0, w produces a Dirac measure of intensity −1 at ξ= 0 and w(0,ξ) = 0 for both
ξ <0 and ξ >0. By further approximating the initial data with smooth functions if
necessary, we derive that w<0 by maximum principle (see Theorem 3.7 in Chapter 3
of Hu [9]), which completes the proof of the lemma.

Lemma 4.3. Denote uε as the solution of (4.2) with initial condition (4.3). Then uε
satisfies

−1≤ ∂uε
∂ξ
−uε≤0,

∂uε
∂ξ
≥0.

Proof. Denote w=∂uε/∂ξ−uε. Then for the first inequality, w satisfies

∂w

∂t
=

(
∂

∂ξ
−1

)
∂uε
∂t

=
σ2
ε

2

∂2w

∂ξ2
+

(
δ− σ

2
ε

2

)
∂w

∂ξ
+σε

∂σε
∂ξ

∂w

∂ξ
.

Together with the fact that

∂σε
∂ξ

=

N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)

(
∂uε
∂ξ
−γn+1e

ξ

)
,

it holds that

L ε
1 [w],L ε[w]−σε

∂w

∂ξ

N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)

(
∂uε
∂ξ
−γn+1e

ξ

)
= 0.

Hence, w would not reach any positive maximum point in the region. It is clear as well
that initially w(0,ξ) = 0 for ξ <0 and w(0,ξ) =−1 for ξ >0. Then it follows by maximum
principle that w(t,ξ)≤0 for −∞<ξ<∞, t>0. It is also clear that L ε

1 [−1] = 0. Thus,
we have w(t,ξ)≥−1 for −∞<ξ<∞, t>0 by comparison principle.
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For the second inequality, differentiating (4.2) with respect to ξ, we get

L ε

[
∂uε
∂ξ

]
=σε

(
∂2uε
∂ξ2
− ∂uε
∂ξ

)N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)

(
∂uε
∂ξ
−γn+1e

ξ

)
. (4.6)

As in the proof of the first inequality, take

l(ξ),σε

(
∂2uε
∂ξ2
− ∂uε
∂ξ

)N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)

(
∂uε
∂ξ
−γn+1e

ξ

)
(4.7)

as a given function. If −ε≤uε−γneξ≤0 holds for some fixed n, then associating with
the first inequality, it holds that

−1−ε≤ ∂uε
∂ξ
−γneξ≤0,

which implies that l(ξ)≥0 with the result from Lemma 4.2. Thus, we are able to apply
the comparison principle by noticing that initially ∂uε(0,ξ)/∂ξ=eξ>0 for ξ <0 and
∂uε(0,ξ)/∂ξ= 0 for ξ >0. Then it follows that ∂uε/∂ξ≥0.

Lemma 4.4. Denote uε as the solution of (4.2) with initial condition (4.3). Then
there exist constants C1, C2 and C3, independent of ε, such that

−C3−
C2√
t
e−C1ξ

2/t≤ ∂uε
∂t
≤ δ, −∞<ξ<∞, 0<t<∞.

Proof. Through Lemmas 4.1-4.3, it is easy to see that

∂uε
∂t

=
σ2
ε

2

∂2uε
∂ξ2

+

(
δ− σ

2
ε

2

)
∂uε
∂ξ

=
σ2
ε

2

(
∂2uε
∂ξ2
− ∂uε
∂ξ

)
+δ

∂uε
∂ξ
≤ δ ∂uε

∂ξ
≤ δ.

This establishes the second inequality. Next, we establish the first inequality. Since
uε(0,0) = 1>γ1 and by uniform Hölder continuity of the solution, there exists ρ>0,
independent of ε, such that

uε(t,ξ)>
1+γ1

2
>γ1e

ξ for |ξ|≤ρ, 0≤ t≤ρ2.

Thus σε=σ0 for |ξ|≤ρ, 0≤ t≤ρ2. It follows from the standard parabolic estimates (see
Chapter 4 in Garrori and Menaldi [8]) that

∂uε
∂t
≥−C2−

C2√
t
e−C1ξ

2/t for |ξ|< ρ

2
, 0<t≤ ρ

2

4
, (4.8)

where C1, C2>0 are constants independent of ε. In particular, this implies that there
exists a constant C3>0 independent of ε, such that

∂uε
∂t
≥−C3 on

{
0<t<

ρ2

4
, |ξ|= ρ

2

}
∪
{
t=

ρ2

4
,|ξ|< ρ

2

}
. (4.9)

Define

L ε
2 [v],L ε[v]−

(
∂2uε
∂ξ2
− ∂uε
∂ξ

)
σε

N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)v.
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Then it holds that L ε
2 [∂uε/∂t] = 0. Thus, we have

L ε
2

[
∂uε
∂t

+C3

]
=−

(
∂2uε
∂ξ2
− ∂uε
∂ξ

)
σε

N−1∑
n=0

(σn−σn+1)H ′ε(uε−γn+1e
ξ)C3≥0.

Consider the region Q= [0,∞)×(−∞,∞)\Qρ, where Qρ= (0,ρ2/4)×(−ρ/2,ρ/2).
Then by maximum principle, we can conclude that ∂uε/∂t+C3≥0 on this region, to-
gether with (4.8), which implies the establishment of the first inequality.

5. Existence of traveling wave
In this paper, we devote to capturing the phenomenon of asymptotic traveling wave

in the model, which could give us a profile for the bond price. The precondition is the
existence of traveling wave. The following theorem solves this problem by showing the
existence of a traveling wave in (3.10). Moreover, such traveling wave is unique. We
shall assume that the risk discount rate δ satisfies

σ2
N

2
<δ<

σ2
0

2
. (5.1)

This hypothesis on the risk discount rate not only suffices the existence of traveling
wave, but also directs the convergence to the traveling wave, which will be verified in
Section 8.

Theorem 5.1. Suppose that the risk discount rate δ satisfies (5.1). The following
problem

σ2

2
ψ′′(ξ)+

(
δ− σ

2

2

)
ψ′(ξ) = 0, (5.2)

for ξ∈ (−∞,η∗1)∪(η∗1 ,η
∗
2)∪···∪(η∗N−1,η

∗
N )∪(η∗N ,∞), with conditions

ψ(η∗n+) =ψ(η∗n−) =γne
η∗n , ψ′(η∗n+) =ψ′(η∗n−), (5.3)

for n= 1,2,·· · ,N , and

ψ(+∞) = 1, ψ(−∞) = 0, (5.4)

where

σ=


σ0, ξ≤η∗1 ,
σn, η

∗
n<ξ≤η∗n+1, n= 1,2, ·· · ,N−1,

σN , ξ >η
∗
N ,

admits a unique solution (ψ,η∗n,n= 1,2, ·· · ,N) solved as

ψ(ξ) =α0 +β0e
(1−2δ/σ2

0)ξ, ξ≤η∗1 ,

ψ(ξ) =αn+βne
(1−2δ/σ2

n)ξ, η∗n<ξ≤η∗n+1,

for n= 1,2,·· · ,N−1, and

ψ(ξ) =αN +βNe
(1−2δ/σ2

N )ξ, ξ >η∗N ,
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where αn, βn, n= 0,1,2,·· · ,N , satisfy

α0 = 0, αN = 1, (5.5)

αn+βne
(1−2δ/σ2

n)η
∗
n+1 =γn+1e

η∗n+1 , (5.6)

αn+1 +βn+1e
(1−2δ/σ2

n+1)η
∗
n+1 =γn+1e

η∗n+1 , (5.7)

σ2
n+1βne

(1−2δ/σ2
n)η
∗
n+1(σ2

n−2δ) =σ2
nβn+1e

(1−2δ/σ2
n+1)η

∗
n+1(σ2

n+1−2δ), (5.8)

for n= 0,1,2,·· · ,N−1.

Proof. We just need to show that system (5.5)-(5.8) for n= 0,1,2, ·· · ,N−1 is
solvable with δ, σ0, σn, γn as known parameters. We would like to achieve this result
inductively. As N = 1, system (5.5)-(5.8) is simplified into

α0 = 0, α1 = 1,

α0 +β0e
(1−2δ/σ2

0)η
∗
1 =γ1e

η∗1 ,

α1 +β1e
(1−2δ/σ2

1)η
∗
1 =γ1e

η∗1 ,

σ2
1β0e

(1−2δ/σ2
0)η
∗
1 (σ2

0−2δ) =σ2
0β1e

(1−2δ/σ2
1)η
∗
1 (σ2

1−2δ),

and δ satisfies σ2
1<2δ<σ2

0 . For this case, it is easy to solve that

η∗1 = logσ2
0(2δ−σ2

1)− log2δγ1(σ2
0−σ2

1),

β0 =γ1e
2δη∗1/σ

2
0 , β1 = (γ1e

η∗1 −1)e(2δ/σ
2
1−1)η

∗
1 .

Thus, system (5.5)-(5.8) is solvable as N = 1. Meanwhile, the traveling wave solution
obtained for the case N = 1 is consistent with the one in Lemma 4.7 of [21]. The
constraint σ2

1<2δ<σ2
0 not only guarantees the solvability of the system, but also guar-

antees the fact that the function ψ(ξ)→1 as ξ→∞ and ψ(ξ)→0 as ξ→−∞. Now
we suppose that system (5.5)-(5.8) is solvable as N =k for some k∈N with δ satisfying
σ2
k<2δ<σ2

0 . Then we need to show that it is also solvable as N =k+1 with δ satisfying
σ2
k+1<2δ<σ2

0 .
If σ2

k<2δ<σ2
0 , we set αk = 1. Then by the hypothesis, system (5.5)-(5.8) for n=

0,1,2,·· · ,k−1 is solvable. Since αk = 1, γke
η∗k ≤1 and

αk+βke
(1−2δ/σ2

k)η
∗
k =γke

η∗k ,

it is known that βk≤0. Define functions f1, f2 as

f1(x) =γk+1e
x−βke(1−2δ/σ

2
k)x,

f2(x) =γke
x−βke(1−2δ/σ

2
k)x.

Since γk>γk+1, we have f2(x)>f1(x) for all x∈R. We know that f2(η∗k) = 1>f1(η∗k).
Meanwhile, it is easy to see that f1(x)→∞ as x→±∞ since 2δ>σ2

k. Then there exists
x∗ such that f1(x∗) = 1 by mean value theorem. Let η∗k+1 =x∗ and there holds

1+βke
(1−2δ/σ2

k+1)η
∗
k+1 =γk+1e

η∗k+1 . (5.9)
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Furthermore, we can solve that

αk+1 =C1, βk+1 =
βkσ

2
k+1(σ2

k−2δ)

σ2
k(σ2

k+1−2δ)
e(2δ/σ

2
k+1−2δ/σ

2
k)η
∗
k+1 ,

where

C1 =γk+1e
η∗k+1−

βkσ
2
k+1(σ2

k−2δ)

σ2
k(σ2

k+1−2δ)
e(1−2δ/σ

2
k)η
∗
k+1 .

This claims that the following system

α0 = 0, αk+1 =C1,

αn+βne
(1−2δ/σ2

n)η
∗
n+1 =γn+1e

η∗n+1 ,

αn+1 +βn+1e
(1−2δ/σ2

n+1)η
∗
n+1 =γn+1e

η∗n+1 ,

σ2
n+1βne

(1−2δ/σ2
n)η
∗
n+1(σ2

n−2δ) =σ2
nβn+1e

(1−2δ/σ2
n+1)η

∗
n+1(σ2

n+1−2δ),

for n= 0,1,2,·· · ,k, is solvable. It is equivalent to claiming that the problem

σ2

2
ψ′′(ξ)+

(
δ− σ

2

2

)
ψ′(ξ) = 0,

for ξ∈ (−∞,η∗1)∪(∪kn=1(η∗n,η
∗
n+1))∪(η∗k+1,∞), with conditions

ψ(η∗n+) =ψ(η∗n−) =γne
η∗n ,ψ′(η∗n+) =ψ′(η∗n−),

for n= 1,2,·· · ,k+1, and

ψ(+∞) =C1,ψ(−∞) = 0,

admits a unique solution. Note that αk+1 =C1>0. Make a transformation θ(y) =
ψ(y+logC1)/C1. Then θ satisfies

σ2

2
θ′′(y)+

(
δ− σ

2

2

)
θ′(y) = 0,

for y∈ (−∞,η∗1− logC1)∪(∪kn=1(η∗n− logC1,η
∗
n+1− logC1))∪(η∗k+1− logC1,∞), with

conditions

θ((η∗n− logC1)+) =θ((η∗n− logC1)−) =γne
η∗n−logC1 ,

θ′((η∗n− logC1)+) =θ′((η∗n− logC1)−),

for n= 1,2,·· · ,k+1, and

θ(+∞) = 1, θ(−∞) = 0,

where

σ=σ(y) =


σ0, y≤η∗1− logC1,

σn, η
∗
n− logC1<y≤η∗n+1− logC1, n= 1,2, ·· · ,k,

σk+1, y>η
∗
k+1− logC1.
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This implies that if the condition σ2
k<2δ<σ2

0 holds, system (5.5)-(5.8) for n=
0,1,2, ·· · ,k is solvable.

Next we suppose that σ2
k+1<2δ<σ2

1 . In this case, we set α1 = 0. Then by the
hypothesis, system (5.5)-(5.8) for n= 1,2, ·· · ,k is solvable and we can derive that

η∗1 =
σ2
1

2δ
(logβ1− logγ1),

α0 =C2, β0 =
β1σ

2
0(σ2

1−2δ)

σ2
1(σ2

0−2δ)
e(2δ/σ

2
0−2δ/σ

2
1)η
∗
1 ,

where

C2 =γ1e
η∗1 − β1σ

2
0(σ2

1−2δ)

σ2
1(σ2

0−2δ)
e(1−2δ/σ

2
1)η
∗
1 .

This claims that system

α0 =C2, αk+1 = 1, (5.10)

αn+βne
(1−2δ/σ2

n)η
∗
n+1 =γn+1e

η∗n+1 , (5.11)

αn+1 +βn+1e
(1−2δ/σ2

n+1)η
∗
n+1 =γn+1e

η∗n+1 , (5.12)

σ2
n+1βne

(1−2δ/σ2
n)η
∗
n+1(σ2

n−2δ) =σ2
nβn+1e

(1−2δ/σ2
n+1)η

∗
n+1(σ2

n+1−2δ), (5.13)

for n= 0,1,2, ·· · ,k, is solvable. Let α′0 =α0−C2 = 0, ζ∗1 = log(γ1e
η∗1 −C2)− logγ1. Note

that γ1e
η∗1 >C2 and ζ∗1 is well defined. Then it holds that

α′0 +β′0e
(1−2δ/σ2

0)ζ
∗
1 =γ1e

ζ∗1 ,

where β′0 =β0e
(1−2δ/σ2

0)(η
∗
1−ζ

∗
1 ). Denote

β′1,
β′0σ

2
1(σ2

0−2δ)

σ2
0(σ2

1−2δ)
e(2δ/σ

2
1−2δ/σ

2
0)ζ
∗
1 .

Then it holds that

σ2
1β
′
0e

(1−2δ/σ2
0)ζ
∗
1 (σ2

0−2δ) =σ2
0β
′
1e

(1−2δ/σ2
1)ζ
∗
1 (σ2

1−2δ).

We can choose α′1 such that

α′1 +β′1e
(1−2δ/σ2

1)ζ
∗
1 =γ1e

ζ∗1 .

Define

g1(x) =γ1e
x−β′1e(1−2δ/σ

2
1)x,

g2(x) =γ2e
x−β′1e(1−2δ/σ

2
1)x.

Since γ2<γ1, we have g2<g1 and g2(ζ∗1 )<g1(ζ∗1 ) =α′1. On the other hand, it holds that
g2(x)→∞ as x→∞ since 2δ<σ2

1 . Then there exists ζ∗2 such that g2(ζ∗2 ) =α′1, namely
that

α′1 +β′1e
(1−2δ/σ2

1)ζ
∗
2 =γ2e

ζ∗2 .



ZHENZHEN WANG, ZHENGRONG LIU, TIANPEI JIANG, AND ZHEHAO HUANG 1989

Denote

β′2,
β′1σ

2
2(σ2

1−2δ)

σ2
1(σ2

2−2δ)
e(2δ/σ

2
2−2δ/σ

2
1)ζ
∗
2 .

Then it holds that

σ2
2β
′
1e

(1−2δ/σ2
1)ζ
∗
2 (σ2

1−2δ) =σ2
1β
′
2e

(1−2δ/σ2
2)ζ
∗
2 (σ2

2−2δ).

We can choose α′2 such that

α′2 +β′2e
(1−2δ/σ2

2)ζ
∗
2 =γ2e

ζ∗2 .

With the programming going on, we can construct a system from system (5.10)-(5.13)
for n= 0,1,2,·· · ,k as follows:

α′n+β′ne
(1−2δ/σ2

n)ζ
∗
n+1 =γn+1e

ζ∗n+1 ,

α′n+1 +β′n+1e
(1−2δ/σ2

n+1)ζ
∗
n+1 =γn+1e

ζ∗n+1 ,

σ2
n+1β

′
ne

(1−2δ/σ2
n)ζ
∗
n+1(σ2

n−2δ) =σ2
nβ
′
n+1e

(1−2δ/σ2
n+1)ζ

∗
n+1(σ2

n+1−2δ),

for n= 0,1,2, ·· · ,k. This claims that the problem

σ2

2
θ′′(ξ)+

(
δ− σ

2

2

)
θ′(ξ) = 0,

for ξ∈ (−∞,ζ∗1 )∪(∪kn=1(ζ∗n,ζ
∗
n+1))∪(ζ∗k+1,∞), with conditions

θ(ζ∗n+) =θ(ζ∗n−) =γne
ζ∗n , θ′(ζ∗n) =θ′(ζ∗n),

for n= 1,2,·· · ,k+1, and

θ(+∞) =C3, θ(−∞) = 0,

where

σ=


σ0, ξ≤ ζ∗1 ,
σn, ζ

∗
n<ξ≤ ζ∗n+1, n= 1,2,·· · ,k,

σk+1, ξ >ζ
∗
k+1,

admits a unique solution. Make a transformation υ(y) =θ(y+logC3)/C3. Then υ sat-
isfies

σ2

2
υ′′(y)+

(
δ− σ

2

2

)
υ′(y) = 0,

for y∈ (−∞,ζ∗1 − logC3)∪
(
∪kn=1 (ζ∗n− logC3,ζ

∗
n+1− logC3)

)
∪(ζ∗k+1− logC3,∞), with

conditions

υ((ζ∗n− logC3)+) =υ((ζ∗n− logC3)−) =γne
ζ∗n−logC3 ,

υ′((ζ∗n− logC3)+) =υ′((ζ∗n− logC3)−),
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for n= 1,2,·· · ,k+1, and

υ(+∞) = 1, υ(−∞) = 0,

where

σ=


σ0, y≤ ζ∗1 − logC3,

σn, ζ
∗
n− logC3<y≤ ζ∗n+1− logC3,n= 1,2, ·· · ,k,

σk+1, y>ζ
∗
k+1− logC3.

This equivalently claims that if the condition σ2
k+1<2δ<σ2

1 holds, system (5.5)-(5.8)
for n= 0,1,2, ·· · ,k is solvable.

Combining the result under the condition σ2
k<2δ<σ2

0 and the result under the
condition σ2

k+1<2δ<σ2
1 , we conclude that if the condition σ2

k+1<2δ<σ2
0 holds, system

(5.5)-(5.8) is solvable as N =k+1, which completes the proof of the theorem.

6. Estimates for free boundaries
Denote by ηεn, n= 1,2, ·· · ,N , the approximated free boundaries. They are the im-

plied solutions of the equations

uε(t,η
ε
n(t)) =γne

ηεn(t), n= 1,2, ·· · ,N. (6.1)

In this section, we derive some estimates for the approximated free boundaries.

Lemma 6.1. Let ηεn, n= 1,2, ·· · ,N , be the approximated free boundaries defined as
(6.1). Then the sequence ηεn, n= 1,2, ·· · ,N , is strictly increased with respect to n, i.e.

ηε1<η
ε
2< ·· ·<ηεN−1<ηεN .

Proof. For fixed n, we claim that ηεn(t) 6=ηεn+1(t) for any t≥0. To obtain a
contradiction, we suppose that there exists t0≥0, such that

ηεn(t0) =ηεn+1(t0),

which implies that

uε(t0,η
ε
n(t0))e−η

ε
n(t0) =uε(t0,η

ε
n+1(t0))e−η

ε
n+1(t0)

Nevertheless, as for any t≥0, it holds that

uε(t,η
ε
n(t))e−η

ε
n(t) =γn 6=γn+1 =uε(t,η

ε
n+1(t))e−η

ε
n+1(t),

which contradicts the hypothesis. To see the order of ηεn and ηεn+1, we have

∂

∂ξ
(uε(t,ξ)e

−ξ) =
∂uε/∂ξ−uε

eξ
≤0

by Lemma 4.3. Since

uε(t,η
ε
n(t))e−η

ε
n(t) =γn>γn+1 =uε(t,η

ε
n+1(t))e−η

ε
n+1(t),

this implies that ηεn(t)<ηεn+1(t) for t≥0.

Remark 6.1. If the approximated free boundaries ηεn, n= 1,2, ·· · ,N , converge to the
free boundaries ηn, n= 1,2, ·· · ,N , then by Lemma 6.1, the domain could be divided
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into regions as {(t,ξ) : ξ≤η1(t)}, {(t,ξ) : ξ >ηN (t)} and for n= 1,2,·· · ,N−1, {(t,ξ) :
ηn(t)<ξ≤ηn+1(t)}, or equivalently, {(t,x) :x≤λ1(t)}, {(t,x) :x>λN (t)} and for n=
1,2, ·· · ,N−1, {(t,x) :λn(t)<x≤λn+1(t)}. Indeed, this convergence should be held,
which will be claimed subsequently.

It is easy to see that the comparison principle in Proposition 3.1 is correct for u(t,ξ)
as well under corresponding assumptions, by which, the upper and lower bounds for the
approximated free boundaries ηεn, n= 1,2, ·· · ,N , are obtained.

Lemma 6.2. Let ηεn,n= 1,2, ·· · ,N , be the approximated free boundaries defined by
(6.1). Then for sufficiently small ε, ηεn,n= 1,2,·· · ,N , satisfy

κε≤ηε1<ηε2< ·· ·<ηεN−1<ηεN ≤−logγN ,

where κε is given as

κε≡
σ2
0

2δ
log

β0
γ1

+
σ2
0

2δ
log

(
1− 2δ

σ2
0

)
+

(
1− σ

2
0

2δ

)
max

{
log

1+ε

γn
−η∗n, n= 1,2, ·· · ,N

}
,

β0, η∗n, n= 1,2,·· · ,N , are given in Theorem 5.1.

Proof. Let uε be the solution of the approximated problem (4.2). Define

ξε= max

{
log

1+ε

γn
−η∗n, n= 1,2,·· · ,N

}
,

where η∗n, n= 1,2, ·· · ,N , are the boundaries given in Theorem 5.1. Then the func-
tion vε(t,ξ) ,ψ(ξ−ξε), where ψ is the solution of the problem (5.2)-(5.4), satisfies the
following problem

L̂ ε[vε],
∂vε
∂t
− σ̂

2
ε

2

∂2vε
∂ξ2
−
(
δ− σ̂

2
ε

2

)
∂vε
∂ξ

= 0,

where

σ̂ε(ξ) =


σ0, ξ≤ ξε+η∗1 ,

σn, ξε+η∗n<ξ≤ ξε+η∗n+1, n= 1,2, ·· · ,N−1,

σN , ξε+η∗N <ξ.

For ξ≤ ξε+η∗1 , it trivially holds that σ̂ε≥σε. Now consider ξ∈ (ξε+η∗n,ξε+η∗n+1], for
which σ̂ε(ξ) =σn, n= 1,2,·· · ,N . Note that ξ >ξε+η∗n≥ log(1+ε)− logγn, thus it holds
that

uε(t,ξ)+ε≤1+ε=γne
log(1+ε)−logγn <γne

ξ≤γkeξ

for all k≤n, namely that uε(t,ξ)−γkeξ<−ε for all k≤n. The definition of σε gives

σε≤σN +

N−1∑
k=n

(σk−σk−1) =σn,

which shows that σ̂ε(ξ)≥σε(t,ξ) for ξ∈ (ξε+η∗n,ξε+η∗n+1]. Thus, it holds that σ̂ε≥σε.
Let wε(t,ξ),vε(t,ξ)−M , where M>0 is determined subsequently. Then wε satisfies

L̂ ε[wε] = 0. It holds that for ξ≥0,

wε(0,ξ) =vε(0,ξ)−M<vε(0,ξ)<1 =uε(0,ξ).
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Since ξε+η∗1 ≥0, then for ξ≤0≤ ξε+η∗1 , there holds

wε(0,ξ) =ψ(ξ−ξε)−M =β0e
µ(ξ−ξε)−M,

where β0 is given in Theorem 5.1 and µ= 1−2δ/σ2
0 . We need to choose M such that

for ξ≤0,

wε(0,ξ) =β0e
µ(ξ−ξε)−M ≤eξ =uε(0,ξ).

Define the function

f(ξ) =β0e
µ(ξ−ξε)−eξ.

Then it satisfies f(−∞) = 0 and f(0) =β0e
−µξε−1. Since β0 =γ1e

2δη∗1/σ
2
0 , it holds that

f(0) =β0e
−µξε−1 =γ1e

2δη∗1/σ
2
0−µξε−1.

By the definition of ξε, we have

γ1e
2δη∗1/σ

2
0−µξε ≤γ1e2δη

∗
1/σ

2
0+µ logγ1+µη

∗
1−µ log(1+ε) =γ1e

η∗1+µ logγ1−µ log(1+ε) =
γ1+µ1 eη

∗
1

(1+ε)µ
.

With the fact that γ1e
η∗1 ≤1 and γ1<1, it holds that γ1+µ1 eη

∗
1 (1+ε)−µ<1 and f(0)<0.

Letting

f ′(ξ) =β0µe
µ(ξ−ξε)−eξ = 0,

we can solve that

ξ∗=
logβ0 +logµ−µξε

1−µ
.

Again by γ1e
η∗1 ≤1 and 2δ<σ2

0 , it holds that β0 =γ1e
2δη∗1/σ

2
0 <1. Meanwhile, it holds

that µ<1 and ξε>0, which implies that ξ∗<0. It is easy to see that if

ξ < ξ̂,
logβ0−µξε

1−µ
,

then f(ξ)>0. On the other hand, f(−∞) = 0. Thus, since ξ∗<ξ̂, f(ξ) attains its
positive maximum at ξ∗. We take

M ≡f(ξ∗) =β
1/(1−µ)
0 (µµ/(1−µ)−µ1/(1−µ))e−µξε/(1−µ).

Thus, we have shown that wε(0,ξ)≤uε(0,ξ). With the fact that σ̂ε≥σε satisfying the
conditions (3.7)-(3.8) in the statement of Proposition 3.1, it holds that wε(t,ξ)≤uε(t,ξ)
for −∞<ξ<∞, t>0 by the comparison principle of Proposition 3.1, the proof of which
can be referred to Theorem 3.1 in [21]. In particular, for ξ≤ ξε+η∗1 , t>0,

wε(t,ξ) =β0e
µ(ξ−ξε)−M.

The inequality wε(t,ξ)>γ1e
ξ is equivalent to

β0e
µ(ξ−ξε)−M>γ1e

ξ,
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namely that

h(ξ),β0e
µ(ξ−ξε)−M−γ1eξ>0.

Letting

h′(ξ) =β0µe
µ(ξ−ξε)−γ1eξ = 0

gives

ξ∗∗=
logβ0 +logµ−µξε− logγ1

1−µ
.

Then

h(ξ∗∗) =β
1/(1−µ)
0 (µµ/(1−µ)−µ1/(1−µ))(γ

−µ/(1−µ)
1 −1)e−µξε/(1−µ)>0.

Thus, we have

uε(t,ξ
∗∗)≥wε(t,ξ∗∗)>γ1eξ

∗∗
,

which implies that {ξ≤ ξ∗∗} is in the lowest rating region and ηε1(t)≥ ξ∗∗.

Remark 6.2. If we consider the base case N = 1 and set (γ,η∗) = (γ1,η
∗
1), β=β0 =

γe2δη
∗/σ2

0 and αε=γeη
∗
/(1+ε), then with

η∗= logσ2
0(2δ−σ2

1)− log2δγ1(σ2
0−σ2

1),

it is found that

κε=
1

1−β
logαεβ

(1+ε)1−β

γ1−β
,

which agrees with the corresponding lower bound in Lemma 4.8 of [21], after correcting
the proof there using the same definition of σ̂ε in Lemma 6.3.

Lemma 6.3. For any T >0, there exists CT >0, independent of ε, such that the
derivatives of the approximated free boundaries ηεn, n= 1,2, ·· · ,N , are bounded by

−CT ≤
dηεn
dt
≤CT for 0<t<T, n= 1,2, ·· · ,N.

Proof. Clearly, it holds that

dηεn
dt

=
∂uε(t,η

ε
n(t))/∂t

uε(t,ηεn(t))−∂uε(t,ηεn(t))/∂x
, n= 1,2, ·· · ,N.

It follows from Lemma 4.4 that

−C0≤
∂uε
∂t

(t,ηεn(t))≤ δ, t≥0, n= 1,2,·· · ,N,

where C0>0 is a constant independent of ε. To finish the proof, it is sufficient to
establish a result

uε(t,η
ε
n(t))− ∂uε

∂x
(t,ηεn(t))≥C∗
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for some constant C∗>0 independent of ε. Let L ε
1 be the operator defined in Lemma

4.3. As shown in Lemma 4.3, w≡uε−∂uε/∂ξ satisfies L ε
1 [w] = 0 and w(0,ξ) = 1 for

ξ >0, w(0,ξ) = 0 for ξ <0. From Lemma 6.2, there exists R>0, independent of ε, such
that

−R+1≤ηεn(t)≤R−1, 0<t≤T, n= 1,2,·· · ,N.

As in the proof of Lemma 4.4, there exists ρ>0, independent of ε, such that

uε(t,ξ)>
1+γ1

2
≥γ1eξ, |ξ|≤ρ, 0<t≤ρ2,

which implies that {|ξ|≤ρ} is in the lowest rating region. Then for 0≤ t≤ρ2, we have

ηεN (t)>ηεN−1(t)> ·· ·>ηε2(t)>ηε1(t)≥ρ.

Consider the region

Γ =

{
ρ

2
<ξ<R,0<t<ρ2

}
∪{−R≤ ξ≤R,ρ2≤ t≤T}.

The parabolic boundary of the region Γ consists of five line segments. On the initial
segment {(0,ξ) :ρ/2≤ ξ≤R}, it holds that w(0,ξ) = 1. The segment {(t,R) : 0≤ t≤T}
is completely in the highest rating region and the other segments {(t,ρ/2) : 0≤ t≤ρ2},
{(ρ2,ξ) :−R≤ ξ≤ρ/2} and {(t,−R) :ρ2≤ t≤T} are in the lowest rating region. Note
that they are independent of ε. Thus, by compactness and strong maximum principle,
on these four boundaries, w≥C>0 for some constant independent of ε. It follows that
w≥min{1,C}≡C∗ on the region Γ and completes the proof of the lemma.

7. Existence and uniqueness for the problem
Lemmas 4.2-4.4 provide estimates for the approximated solution uε. By taking

the limit as ε→0 along a subsequence if necessary, we derive the existence of solution
for problem (3.10)-(3.14). Lemmas 6.1-6.3 show that there are uniform estimates in
space C1([0,T ]) for approximated free boundaries ηεn, n= 1,2, ·· · ,N . Therefore, the
limits of ηεn, n= 1,2,·· · ,N , as ε→0 exist, which are denoted by ηn, n= 1,2, ·· · ,N . The
ηn, n= 1,2, ·· · ,N , are the free boundaries of the problem (3.10)-(3.14). Recalling that
u(t,ξ) =ertϕ(t,ξ), ξ=x+ct, ηn(t) =λn(t)+ct, n= 1,2,·· · ,N , where c= r−δ, we have
the following theorem for existence immediately.

Theorem 7.1. The free boundary problem (3.1)-(3.6) admits a solution (ϕ,λn,n=
1,2, ·· · ,N) with ϕ∈W 1,2

∞ ([0,T ]×(−∞,∞)\Qρ)∩W 0,1
∞ ([0,T ]×(−∞,∞)) for any ρ>0,

where Qρ= (0,ρ2)×(−ρ,ρ) and λn∈W 1([0,T ]). Furthermore, the solution satisfies

∂2ϕ

∂x2
− ∂ϕ
∂x
≤0, −∞<x<∞, 0<t≤T.

Meanwhile, the comparison principle in Proposition 3.1 implies the following theorem
for uniqueness.

Theorem 7.2. The solution (ϕ,λn,n= 1,2, ·· · ,N) of the boundary problem (3.1)-(3.6)
with ϕ∈{∩ρ>0W

1,2
∞ ([0,T ]×(−∞,∞)\Qρ)}∩W 0,1

∞ ([0,T ]×(−∞,∞)), λn∈C([0,T ]) sat-
isfying

∂2ϕ

∂x2
− ∂ϕ
∂x
≤0, −∞<x<∞, 0<t≤T,

is unique.
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8. Convergence to the traveling wave

8.1. Estimates for large space. Theorem 5.1 has shown the existence of a
unique traveling wave ψ for the boundary problem (3.10)-(3.14). In this section, we
devote to proving that when the risk discount rate δ satisfies (5.1), the solution of
this boundary problem converges to this traveling wave as time tends to infinity. For
the convergence, as ψ(+∞) = 1, ψ(−∞) = 0, we give the estimates in the infinity for u
through uε by upper and lower solutions.

Lemma 8.1. Denote uε as the solution of (4.2) with initial condition (4.3). There hold

0≤uε(t,ξ)≤e(1−2δ/σ
2
0)(ξ−κε), ξ <κε, t>0,

and

1−e(1−2δ/σ
2
N )(ξ−log((1+ε)/γN ))≤uε(t,ξ)≤1, ξ > log

1+ε

γN
, t>0,

where κε is given in Lemma 6.2.

Proof. Define the function fu as

fu(ξ) =e(1−2δ/σ
2
0)(ξ−κε)

on the region (t,ξ)∈ [0,∞)×(−∞,κε). As ηε1(t)≥κε, this region is in the lowest rating
region uε(t,ξ)≥γ1eξ and thus σε=σ0. Meanwhile, it holds that

L ε[fu](ξ) =−σ
2
0

2
f ′′u (ξ)−

(
δ− σ

2
0

2

)
f ′u(ξ) = 0, −∞<ξ<∞.

Recalling that δ<σ2
0/2 and κε<0, we have initially fu(ξ)>eξ =uε(0,ξ) for −∞<ξ<

κε. When ξ=κε, fu(κε) = 1>uε(t,κε). By comparison principle, it holds that fu(ξ)≥
uε(t,ξ) for t>0, ξ <κε. If ξ > log((1+ε)/γN ), then uε(t,ξ)<γNe

ξ−ε and thus σε=σN .
Define

fl(ξ) = 1−e(1−2δ/σ
2
N )(ξ−log((1+ε)/γN ))

on the region (t,ξ)∈ [0,∞)×(log((1+ε)/γN ),∞). It holds that

L ε[fl] =−σ
2
N

2
f ′′l (ξ)−

(
δ− σ

2
N

2

)
f ′l (ξ) = 0, −∞<ξ<∞.

Similarly, we can derive that fl(ξ)≤uε(t,ξ) for ξ > log((1+ε)/γN ), t>0.

8.2. Estimates for large time. In this subsection, we consider the large-time
behavior for the solution of the free boundary problem and establish the convergence
to the traveling wave through constructing a Lyapunov function (see Zelenyak [29],
Galaktionov [7]). Firstly we show the formal construction, namely that we ignore the
integrability of any integral appearing in the construction, and then we verify the inte-
grability of those integrals in the formal construction through the approximated solution.
The formal construction of Lyapunov function is similar to the one by Liang et al. [21].
When associating with the solution of the model and considering the integrability of
the integrals in the Lyapunov function, we need some corresponding modifications to
fit the case of multiple credit ratings as well. We can see that the integrability depends
on the highest and lowest volatilities corresponding to the lowest and highest credit
ratings, but independent of volatilities in other credit ratings. This also extends the
corresponding results for the case of two credit ratings by Liang et al. [21].
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8.2.1. Formal construction of Lyapunov function. Let G (ξ,u,q) be a
function to be determined and let

E[u](t) =

∫ ∞
−∞

G (ξ,u(t,ξ),uξ(t,ξ))dξ. (8.1)

Formally, assuming the integrability, we have

d

dt
E[u](t) =

∫ ∞
−∞

(Guut+Gquξt)dξ

=

∫ ∞
−∞

ut(Gu−Gqξ−Gquuξ−Gqquξξ)dξ

=

∫ ∞
−∞

ut

(
Gu−Gqξ−Gquuξ−Gqq

(
2

σ2
ut+

2

σ2

(
σ2

2
−δ
)
uξ

))
dξ

=−
∫ ∞
−∞

2

σ2
Gqqu

2
tdξ+

∫ ∞
−∞

ut

(
Gu−Gqξ−Gquuξ−Gqq

(
1− 2δ

σ2

)
uξ

)
dξ

=−
∫ ∞
−∞

2

σ2
Gqqu

2
tdξ,

provided we take G such that for all −∞<ξ<∞, 0≤u≤1 and 0≤ q≤1,

Gu(ξ,u,q)−Gqξ(ξ,u,q)−qGqu(ξ,u,q)−qGqq(ξ,u,q)
(

1− 2δ

σ2(u,ξ)

)
= 0. (8.2)

We set ρ(ξ,u,q) =Gqq(ξ,u,q). Assuming G (ξ,u,0) =Gq(ξ,u,0) = 0, we have∫ q

0

(q−m)ρ(ξ,u,m)dm=

∫ q

0

(q−m)dGq(ξ,u,m) =

∫ q

0

Gq(ξ,u,m)dm=G (ξ,u,q). (8.3)

Thus, it holds that

Gu=

∫ q

0

(q−m)ρu(ξ,u,m)dm,

Gq =

∫ q

0

ρ(ξ,u,m)dm,

Gqξ =

∫ q

0

ρξ(ξ,u,m)dm,

Gqu=

∫ q

0

ρu(ξ,u,m)dm,

and

qGqq = qρ(ξ,u,q) =

∫ q

0

d

dm
(ρ(ξ,u,m)m)dm=

∫ q

0

(ρ(ξ,u,m)+ρq(ξ,u,m))dm.

Then (8.2) can be written as∫ q

0

(qρu(ξ,u,m)−mρu(ξ,u,m)−ρξ(ξ,u,m)−qρu(ξ,u,m))dm

−
∫ q

0

(
1− 2δ

σ2(u,ξ)

)
(ρ(ξ,u,m)+ρq(ξ,u.m)m)dm= 0.
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Thus (8.2) is satisfied if for −∞<ξ<∞, 0≤u≤1 and 0≤m≤1, it holds that

mρu(ξ,u,m)+ρξ(ξ,u,m)+

(
1− 2δ

σ2(u,ξ)

)
(ρ(ξ,u,m)+ρq(ξ,u,m)m) = 0. (8.4)

Formally, let v(ξ;ξ0,u0,q0) be a solution of the equation

−vξξ+

(
1− 2δ

σ2(v,ξ)

)
vξ = 0 (8.5)

with conditions

v(ξ;ξ0,u0,q0)|ξ=ξ0 =u0, vξ(ξ;ξ0,u0,q0)|ξ=ξ0 = q0.

Then it holds that

d

dξ
ρ(ξ,v(ξ;ξ0,u0,q0),vξ(ξ;ξ0,u0,q0))

=ρξ(ξ,v(ξ;ξ0,u0,q0),vξ(ξ;ξ0,u0,q0))

+ρu(ξ,v(ξ;ξ0,u0,q0),vξ(ξ;ξ0,u0,q0))vξ(ξ;ξ0,u0,q0)

+ρq(ξ,v(ξ;ξ0,u0,q0),vξ(ξ;ξ0,u0,q0))vξξ(ξ;ξ0,u0,q0)

=ρξ(ξ,v(ξ;ξ0,u0,q0),vξ(ξ;ξ0,u0,q0))

+ρu(ξ,v(ξ;ξ0,u0,q0),vξ(ξ;ξ0,u0,q0))vξ(ξ;ξ0,u0,q0)

+ρq(ξ,v(ξ;ξ0,u0,q0),vξ(ξ;ξ0,u0,q0))vξ(ξ;ξ0,u0,q0)

(
1− 2δ

σ2(v,ξ)

)
=−

(
1− 2δ

σ2(v,ξ)

)
ρ(ξ,v(ξ;ξ0,u0,q0),vξ(ξ;ξ0,u0,q0)),

where the last equality is due to (8.4). Thus, it holds that

ρ(ξ0,u0,q0) =C(v(0;ξ0,u0,q0),vξ(0;ξ0,u0,q0))e−
∫ ξ0
0 (1−2δ/σ2(v(ζ;ξ0,u0,q0),ζ))dζ ,

where C(u,q) is an arbitrary function. Take C(u,q)≡1. Replacing ξ0 by ξ, u0 by u and
q0 by q, we have

ρ(ξ,u,q) =e−
∫ ξ
0
(1−2δ/σ2(v(ζ;ξ,u,q),ζ))dζ . (8.6)

Integrating the Lyapunov function and assuming E(t)≥0, we obtain∫ T

t0

∫ ∞
−∞

2

σ2
ρu2tdξdt=E(t0)−E(t)≤E(t0).

8.2.2. Lyapunov function through approximated solution. The formal
process to use a Lyapunov function is shown in the last subsection. As explained in Liang
et al. [21], there are two problems with this formal construction. Firstly, function ρ grows
exponentially as ξ→±∞. Thus, it should be shown that the derivative of the solution
with respect to time ut converges exponentially to zero at a faster rate as ξ→±∞, such
that the integration is valid. Secondly, the coefficient in (8.5) is discontinuous and the
theory of ordinary differential equations (ODE) cannot be applied directly. To address
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these two issues, we should work on constructing a Lyapunov function for approximated
solution uε with all estimates independent of ε. We begin this process by defining

ERε [uε] =

∫ R

−R
Gε

(
ξ,uε(t,ξ),

∂uε
∂ξ

(t,ξ)

)
dξ,

for R>0, where Gε is defined by

Gε(ξ,u,q) =

∫ q

0

(q−m)ρε(ξ,u,m)dm,

satisfying Gε(ξ,u,0) =∂Gε/∂q(ξ,u,0) = 0, ρε is defined by (8.6) with σ(v(ζ;ξ,u,q),ζ) =

σN +
∑N−1
n=0 (σn−σn+1)H(v(ζ;ξ,u,q)−γn+1e

ζ) replaced by σε(vε(ζ;ξ,u,q),ζ) =σN +∑N−1
n=0 (σn−σn+1)Hε(vε(ζ;ξ,u,q)−γn+1e

ζ), and vε(ζ;ξ,u,q) is the solution of the fol-
lowing equation

−d
2vε
dζ2

+

(
1− 2δ

σ2
ε (vε,ζ)

)
dvε
dζ

= 0, (8.7)

with conditions

vε(ζ;ξ,u,q)|ζ=ξ =u,
dvε
dζ

(ζ;ξ,u,q)|ζ=ξ = q.

Since

1− 2δ

σ2
N

≤1− 2δ

σ2
ε (vε,ζ)

≤1− 2δ

σ2
0

,

it is easy to see from the theory of ODE that (8.7) can be solved for any given u, q, ξ
on the real line ζ ∈R. Thus Gε is well defined. According to the definition of Gε and
following the process (8.2)-(8.6), it holds that

∂Gε
∂u
− ∂2Gε
∂q∂ξ

− ∂2Gε
∂q∂u

∂uε
∂ξ
− ∂

2Gε
∂q2

∂uε
∂ξ

(
1− 2δ

σ2
ε (uε,ξ)

)
= 0.

Therefore, we have

d

dt
ERε [uε](t) =

∫ R

−R

(
∂Gε
∂u

∂uε
∂t

+
∂Gε
∂q

∂2uε
∂ξ∂t

)
dξ

=
∂Gε
∂q

∂uε
∂t

∣∣∣∣R
−R

+

∫ R

−R

∂uε
∂t

(
∂Gε
∂u
− ∂2Gε
∂q∂ξ

− ∂2Gε
∂q∂u

∂uε
∂ξ
− ∂

2Gε
∂q2

∂2uε
∂ξ2

)
dξ

=
∂Gε
∂q

∂uε
∂t

∣∣∣∣R
−R
−
∫ R

−R

2

σ2
ε

∂2Gε
∂q2

(
∂uε
∂t

)2

dξ

+

∫ R

−R

∂uε
∂t

(
∂Gε
∂u
− ∂2Gε
∂q∂ξ

− ∂2Gε
∂q∂u

∂uε
∂ξ
− ∂

2Gε
∂q2

(
1− 2δ

σ2
ε

)
∂uε
∂ξ

))
dξ

=
∂Gε
∂q

∂uε
∂t

∣∣∣∣R
−R
−
∫ R

−R

2

σ2
ε

∂2Gε
∂q2

(
∂uε
∂t

)2

dξ

=
∂Gε
∂q

∂uε
∂t

∣∣∣∣R
−R
−
∫ R

−R

2

σ2
ε

ρε

(
∂uε
∂t

)2

dξ.
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Lemma 8.2. Denote uε as the solution of (4.2) with initial condition (4.3). Then for
any K1>0, there exist K2, C2>0, independent of ε, such that∣∣∣∣∂uε∂ξ

∣∣∣∣+ ∣∣∣∣∂uε∂t
∣∣∣∣≤C2e

K2t−K1ξ, (t,ξ)∈ (0,∞)×
(

log
1+ε

γN
,∞
)
. (8.8)

There exist K3, C3>0, independent of ε, such that∣∣∣∣∂uε∂ξ
∣∣∣∣+ ∣∣∣∣∂uε∂t

∣∣∣∣≤C3e
K3t+ξ, (t,ξ)∈ (0,∞)×(−∞,κε), (8.9)

where κε is given in Lemma 6.2.

Proof. Define the operators as follows

G ε
σN [·], ∂

∂t
− σ

2
N

2

∂2

∂ξ2
+

(
σ2
N

2
−δ
)
∂

∂ξ
,

G ε
σ0

[·], ∂

∂t
− σ

2
0

2

∂2

∂ξ2
+

(
σ2
0

2
−δ
)
∂

∂ξ
.

Then

G ε
σN [uε] =G ε

σN

[
∂uε
∂ξ

]
=G ε

σN

[
∂uε
∂t

]
= 0, (t,ξ)∈ (0,∞)×

(
log

1+ε

γN
,∞
)
,

G ε
σ0

[uε] =G ε
σ0

[
∂uε
∂ξ

]
=G ε

σ0

[
∂uε
∂t

]
= 0, (t,ξ)∈ (0,∞)×(−∞,κε).

In Lemmas 4.3 and 4.4, we have already established

sup
0<t<∞

(∣∣∣∣∂uε∂ξ
∣∣∣∣+ ∣∣∣∣∂uε∂t

∣∣∣∣)∣∣∣∣
ξ=log((1+ε)/γN )

+ sup
0<t<∞

(∣∣∣∣∂uε∂ξ
∣∣∣∣+ ∣∣∣∣∂uε∂t

∣∣∣∣)∣∣∣∣
ξ=κε

≤C,

where C>0 is a constant. On the other hand, we have

∂uε
∂ξ

(0,ξ) =
∂uε
∂t

(0,ξ) = 0, ξ∈
(

log
1+ε

γN
,∞
)
,

∂uε
∂ξ

(0,ξ) =eξ,
∂uε
∂t

(0,ξ) = δeξ, ξ∈ (−∞,κε).

Then for any given K1, there exist K2, C2>0 such that G ε
σN [C2e

K2t−K1ξ]≥0 for (t,ξ)∈
(0,∞)×(log((1+ε)/γN ),∞), which implies that

−C2e
K2t−K1ξ≤ ∂uε

∂t
+
∂uε
∂ξ
≤C2e

K2t−K1ξ,

and then (8.8). A similar application of the comparison principle claims that there exist
K3, C3>0 such that (8.9) holds.

Lemma 8.3. There exist C1, C2, C3, C4, C5, C6>0, independent of ε, such that ρε
satisfies

C1≤ρε(ξ,u,q)≤C2, κε−ε≤ ξ≤ log
1+ε

γN
+ε,
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C3e
(2δ/σ2

N−1)ξ≤ρε(ξ,u,q)≤C4e
(2δ/σ2

N−1)ξ, ξ > log
1+ε

γN
+ε,

C5e
(2δ/σ2

0−1)ξ≤ρε(ξ,u,q)≤C6e
(2δ/σ2

0−1)ξ, ξ <κε−ε,

Gε satisfies

C1

2
q2≤Gε(ξ,u,q)≤

C2

2
q2, κε−ε≤ ξ≤ log

1+ε

γN
+ε,

C3

2
q2e(2δ/σ

2
N−1)ξ≤Gε(ξ,u,q)≤

C4

2
q2e(2δ/σ

2
N−1)ξ, ξ > log

1+ε

γN
+ε,

C5

2
q2e(2δ/σ

2
0−1)ξ≤Gε(ξ,u,q)≤

C6

2
q2e(2δ/σ

2
0−1)ξ, ξ <κε−ε,

∂Gε/∂q satisfies

C1q≤
∂Gε
∂q

(ξ,u,q)≤C2q, κε−ε≤ ξ≤ log
1+ε

γN
+ε,

C3qe
(2δ/σ2

N−1)ξ≤ ∂Gε
∂q

(ξ,u,q)≤C4qe
(2δ/σ2

N−1)ξ, ξ > log
1+ε

γN
+ε,

C5qe
(2δ/σ2

0−1)ξ≤ ∂Gε
∂q

(ξ,u,q)≤C6qe
(2δ/σ2

0−1)ξ, ξ <κε−ε,

for q≥0, where κε is given in Lemma 6.2.

Proof. We know from (8.6) that

ρε(ξ,u,q) =e−
∫ ξ
0
(1−2δ/σ2

ε (vε(ζ;ξ,u,q),ζ))dζ .

For κε−ε≤ ξ≤ log((1+ε)/γN )+ε, it is easy to derive that there exist C1, C2>0 such
that

C1≤ρε(ξ,u,q)≤C2, κε−ε≤ ξ≤ log
1+ε

γN
+ε.

For ξ > log((1+ε)/γN )+ε,

ρε(ξ,u,q) =e
(
∫ log((1+ε)/γN )+ε

0 +
∫ ξ
log((1+ε)/γN )+ε

)(2δ/σ2
ε (vε(ζ;ξ,u,q),ζ)−1)dζ

=e
∫ log((1+ε)/γN )+ε

0 (2δ/σ2
ε (vε(ζ;ξ,u,q),ζ)−1)dζe(2δ/σ

2
N−1)(ξ−log((1+ε)/γN )−ε).

Thus there exist C3, C4>0 such that

C3e
2δ/σ2

N−1≤ρε(ξ,u,q)≤C4e
2δ/σ2

N−1

for ξ > log((1+ε)/γN )+ε. Similarly, for ξ <κε−ε, we have

ρε(ξ,u,q) =e
∫ 0
κε−ε

(1−2δ/σ2
ε (vε(ζ;ξ,u,q),ζ))dζe(2δ/σ

2
0−1)(ξ−κε+ε),

which implies that there exist C5, C6>0, such that

C5e
2δ/σ2

0−1≤ρε(ξ,u,q)≤C6e
2δ/σ2

0−1
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for ξ <κε−ε. Moreover, since

Gε(ξ,u,q) =

∫ q

0

(q−m)ρε(ξ,u,m)dm,
∂Gε
∂q

=

∫ q

0

ρε(ξ,u,m)dm,

then applying the estimates for ρε, we can derive the estimates for Gε and ∂Gε/∂q.

Through the Lemmas 8.2 and 8.3, we have

C ′e2K2t−2K1ξ+(2δ/σ2
N−1)ξ≤Gε

(
ξ,uε(t,ξ),

∂uε
∂ξ

(t,ξ)

)
≤C ′′e2K2t−2K1ξ+(2δ/σ2

N−1)ξ,

for ξ > log((1+ε)/γN )+ε, and

C ′e2K3t+ξ+2δ/σ2
0ξ≤Gε

(
ξ,uε(t,ξ),

∂uε
∂ξ

(t,ξ)

)
≤C ′′e2K3t+ξ+2δ/σ2

0ξ,

for ξ <κε−ε, where C ′, C ′′ are fixed constants. This implies that

lim
R→∞

∫ R

−R
Gε

(
ξ,uε(t,ξ),

∂uε
∂ξ

(t,ξ)

)
dξ=

∫ ∞
−∞

Gε

(
ξ,uε(t,ξ),

∂uε
∂ξ

(t,ξ)

)
dξ.

Similar applications of Lemmas 8.2 and 8.3 lead to

lim
R→∞

∂Gε
∂q

(t,±R)
∂uε
∂t

(t,±R) = 0,

lim
R→∞

∫ R

−R

2ρε
σ2
ε

(
∂uε
∂t

)2

dξ=

∫ ∞
−∞

2ρε
σ2
ε

(
∂uε
∂t

)2

dξ.

Following the formal procedure with these results, we derive∫ T

t0

∫ ∞
−∞

2ρε
σ2
ε

(
∂uε
∂t

)2

dξdt≤E∞ε [uε](t0)≤C,

where C is independent of ε. By the estimates for ρε in Lemma 8.3, we have

2ρε
σ2
ε

=
2ρε

(σN +
∑N−1
n=0 (σn−σn+1)Hε(uε−γn+1eξ))2

≥C0>0,

where C0 is independent of ε. Then it holds that∫ ∞
t0

∫ ∞
−∞

u2t (t,ξ)dξdt<∞. (8.10)

8.3. Convergence. Let un(t,ξ) =u(t+n,ξ) and consider un as a sequence of
functions on [0,1]×R. Since un(t,ξ) is a bounded sequence in W 1,2

∞ ([0,1]×R), we derive

by embedding theorem that there exists a subsequence nj of n and a function ψ̃(t,ξ)
such that as nj→∞,

unj→ ψ̃ in C(1+α)/2,1+α([0,1]× [−R,R]), 0<α<1, (8.11)

for any R>1. Furthermore, by taking a further subsequence if necessary, it holds that

u
nj
t

w∗−→ ψ̃t, u
nj
ξξ

w∗−→ ψ̃ξξ in L∞([0,1]×R),
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and thus

‖ ψ̃t ‖L∞≤ liminf
n→∞

‖unjt ‖L∞≤C, ‖ ψ̃ξξ ‖L∞≤ liminf
n→∞

‖unjξξ ‖L∞≤C.

Since (8.10) implies that∫ 1

0

∫ ∞
−∞

(unt )2(t,ξ)dξdt=

∫ n+1

n

∫ ∞
−∞

u2t (t,ξ)dξdt→0 as n=nj→∞,

we have
∫ 1

0

∫∞
−∞ ψ̃

2
t dξdt= 0. It follows that ψ̃t≡0, which implies that ψ̃(t,ξ) is indepen-

dent of t and depends only on ξ. The following estimates on uε are then passed to u
and then ψ̃,

0≤ ψ̃(ξ)≤1, ψ̃ξ(ξ)≥0, ψ̃ξ(ξ)− ψ̃(ξ)≤0, ψ̃ξξ(ξ)− ψ̃ξ(ξ)≤0.

Now suppose that

liminf
nj→∞

min
0≤t≤1

ηi(t+nj) =η∗
i
≤η∗i = limsup

nj→∞
max
0≤t≤1

ηi(t+nj), i= 1,2,·· · ,N.

We choose ti,j , ti,j ∈ [0,1] such that min0≤t≤1ηi(t+nj) =ηi(ti,j+nj) and

max0≤t≤1ηi(t+nj) =ηi(ti,j+nj). Taking subsequences along which liminf and limsup
are achieved, together with the free boundary condition un(ηi(t+n),t) =γie

ηi(t+n) and
(8.11), it is deduced that

ψ̃(η∗
i
) =γie

η∗
i , ψ̃(η∗i ) =γie

η∗i , i= 1,2, ·· · ,N.

We claim that η∗
i

=η∗i for all i= 1,2,·· · ,N . If this is not the case, then the following
results

d

dξ
(e−ξψ̃(ξ))≤0, e−η

∗
i ψ̃(η∗

i
) =e−η

∗
i ψ̃(η∗i ) =γi, i= 1,2, ·· · ,N,

imply

ψ̃(ξ)≡γieξ, η∗i <ξ<η
∗
i , i= 1,2, ·· · ,N.

Fixing some i, it is easy to check that un satisfies the following equation

unξξ−unξ =
2(unt −δunξ )

(σN +
∑N−1
i=0 (σi−σi+1)H(un−γi+1eξ))2

, η∗
i
<ξ<η∗i , 0≤ t≤1. (8.12)

It is clear that 2unt /(σN +
∑N−1
i=0 (σi−σi+1)H(un−γi+1e

ξ))2 converges in L2 to zero.

By (8.11), unξ converges uniformly to ψ̃ξ(ξ) =γie
ξ for η∗

i
<ξ<η∗i and hence for n�1,

−2δunξ

(σN +
∑N−1
i=0 (σi−σi+1)H(un−γi+1eξ))2

≤−δγi
σ2
0

eξ, η∗
i
<ξ<η∗i , 0≤ t≤1.

The left-hand side of (8.12) converges weak ∗ in L∞ to ψ̃ξξ− ψ̃ξ, which equals to zero for
η∗
i
<ξ<η∗i . Then by taking a limit in (8.12) as n=nj→∞, we obtain 0≤−δγieξ/σ2

0 ,
which leads to a contradiction. Hence, we have proved η∗

i
=η∗i for all i= 1,2, ·· · ,N . It

is clear ψ̃ satisfies (5.2) and (5.3). By Lemma 8.1, ψ̃ satisfies (5.4) as well. By the
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result of uniqueness, it holds that ψ≡ ψ̃, where ψ is the traveling wave in Theorem 5.1.
Moreover, the uniqueness implies that all subsequence limit should be uniform and thus
the full sequence must converge as n→∞.

Theorem 8.1 (Convergence to traveling wave). Let ϕ be the solution of the free
boundary problem (3.1)-(3.6). Then ertϕ(t) converges uniformly to the traveling wave
ψ, where ψ is the solution of (5.2)-(5.4). The wave speed is given as c= δ−r, where δ
satisfies σ2

N <2δ<σ2
0.

9. Conclusion and discussion

In this paper, we have studied the phenomenon of asymptotic traveling wave in
the pricing model for corporate bond with multiple credit rating migration risk. The
results in this paper extend the work of Liang et al. [21], where two credit ratings
are considered. In mathematics, the existence, uniqueness and regularity of solution
in the model are obtained, which verifies the rationality of the model. The traveling
wave solution is established through the delicate application of inductive method. The
form of the traveling wave is semi-explicit, since it is related to a nonlinear system of
parameters. This is different from the corresponding result of Liang et al. [21], where the
traveling wave solution is explicit. Such difference is caused by the multiplicity of credit
ratings. The solvability of the nonlinear system of parameters implies the existence of
the traveling wave solution. Then by constructing a Lyapunov function, it is shown
that the solution of the model converges to the traveling wave solution. Interestingly,
the existence and convergence condition of the traveling wave is that the risk discount
rate is between the half squares of the highest and lowest volatilities, regardless of the
volatilities in other credit ratings.

The problem shows not only its own interests in mathematics, such as a traveling
wave with multiple free boundaries, but also shows some interpretations in finance.
For instance, firstly, one can understand that the pricing solution will keep closer to a
pattern along a certain direction at certain speed. Secondly, one can approximate the
pricing solution by the traveling wave, which has a semi-explicit analyzing form and can
be unfolded through some effective numeric solvers, when the time is far away from the
maturity. Thirdly, one can learn that the speed of the traveling wave is the difference
between the risk discount rate and the risk-free interest rate. Conclusively, the pattern
of traveling wave in the pricing model could help realize more precise prediction for the
price of the corporate bond under multiple credit rating migration.

In [27, 28], the authors consider models with stochastic change of interest rate. In
particular, the model in [28] not only captures multiple credit rating migration but also
involves stochastic interest rate. Therefore, there rises a question on traveling wave in
a model with both multiple credit rating migration and stochastic interest rate, which
needs to be addressed. We would address this problem in our following work.
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