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EXISTENCE OF SOLUTIONS TO AN ANISOTROPIC DEGENERATE
CAHN-HILLIARD-TYPE EQUATION∗

MARION DZIWNIK†

Abstract. We prove existence of solutions to an anisotropic Cahn-Hilliard-type equation with de-
generate diffusional mobility. In particular, the mobility vanishes at the pure phases, which is typically
used to model motion by surface diffusion. The main difficulty of the present existence result is the
strong non-linearity given by the fourth-order anisotropic operator. Imposing particular assumptions
on the domain and assuming that the strength of the anisotropy is sufficiently small enables to estab-
lish appropriate bounds which allow to pass to the limit in the regularized problem. In addition to the
existence we show that the absolute value of the corresponding solutions is bounded by 1.
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1. Introduction
In this paper we consider the existence of weak solutions to an anisotropic phase field

model, which may be identified as an anisotropic version of the Cahn-Hilliard equation.
The corresponding isotropic version, the classical Cahn-Hilliard equation in the form

∂u

∂t
= div(m(u)∇µ) , (1.1a)

µ=F ′(u)−ε2γ∆u, (1.1b)

is probably one of the most well-known examples for phase separation and was originally
introduced by Cahn and Hilliard to study phase separation of binary fluids [4,5]. In this
paper the phase field function u is defined such that u= 1 denotes the solid phase and
u=−1 denotes the vapor phase, ε is a small parameter that describes the interface width,
F is the homogeneous free energy and γ is the surface energy between film and vapor.
In order to model motion by surface diffusion, we need to assume that the diffusional
mobility m(u) is a non-negative function which is sufficiently strong degenerated at the
pure phases, see for example [11]. On the one hand, this constitutes a mathematical
difficulty since the a priori estimates, such as are commonly used in existence results,
loose their information at points where the mobility degenerates. On the other hand,
a degenerate mobility may be beneficial in order to show that solutions which initially
take values in the interval [−1,1] will do so for all positive time. Note that this is is not
true in general for fourth order parabolic equations without degeneracy since there is
no comparison principle available.

Considering present existence results for the Cahn-Hilliard equation with degenerate
mobility (1.1), the techniques introduced in the papers by Elliott and Garcke [8], Grün
[10] and by Bernis and Friedman [2] have proven to be extremely useful. In each of these
papers the general procedure is to replace (1.1) by a family of regularized problems with
smooth solutions uδ, establish particular a priori bounds and show that the approximate
solutions uδ converge to solutions of the original problem as δ→0. In [8], for example,

∗Received: October 20, 2016; Accepted (in revised form): July 10, 2019. Communicated by Chun
Liu.
†Department of Mathematics, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany

(marion.dziwnik@uni-hamburg.de).

2035

mailto:marion.dziwnik@uni-hamburg.de


2036 ANISOTROPIC CAHN-HILLIARD EQUATION WITH DEGENERATE MOBILITY

the degenerate mobility m(u) is approximated by a strictly positive mobility mδ(u)
which satisfies mδ→m, as δ→0. The resulting parabolic problem is non-degenerate
and provides global and smooth solutions uδ. With the help of appropriate a priori
estimates it is then shown that the integral of uδ in the region where |u|>1 converges
to zero as mδ approaches m, which yields |u|≤1 in the limit. In fact, it can be shown
that solutions to (1.1) with sufficiently strong degenerated mobility preserve the strict
inequalities |u|<1 for all times t≥0.

In particular, Elliott and Garcke [8] exploit the dissipation of two particular func-
tionals by solutions to (1.1) which provides the required regularity estimates. The first
is the free energy functional

E(u) :=

∫
Ω

F (u)+ε2
γ

2
|∇u|2 dx. (1.2)

and the second the functional defined by

U(u) :=

∫
Ω

Φ(u), where Φ′′(u) =
1√
m(u)

, (1.3)

also referred to as entropy functional. In particular, the functional U has become a key
tool in order to provide the bound |u|≤1.

We note that there is an alternative approach to existence, proposed by Lisini,
Matthes and Savaré [13], which exploits the variational structure of (1.1). A major
advantage of this newer approach is that essential properties of the solution, such as the
bound |u|≤1, are automatically provided by the construction from so-called minimizing
movements in the energy landscape, where the terminology minimizing movement is
due to De Giorgi [9]. Observing that (1.1) is in the shape of a gradient flow for E with
respect to a Wasserstein-like transport metric, weak solutions may be obtained as curves
of maximal slope. Unfortunately, the main assumption in [13] is that the mobility is a
concave function of u which is not satisfied by the bi-quadratic choice

m(u) = (1−u2)2, (1.4)

which we will apply in the following.

The Cahn-Hilliard equation, even with degenerate mobility, has been studied inten-
sively in the past [1, 2, 8, 10, 13, 14], but little mathematical analysis has been done for
the case where the surface energy is anisotropic, i.e.

∂u

∂t
= div(m(u)∇µ) , (1.5a)

µ=F ′(u)−ε2 div(A(∇u)∇u), (1.5b)

where

A(n) =

[
γ(θn)2 −γ′(θn)γ(θn)

γ′(θn)γ(θn) γ(θn)2

]
(1.6)

and θn denotes the angle between the x-axis and the vector n. The function γ(θ) is
given by

γ(θ) = 1+Gcos(nθ), (1.7)

where G is a positive constant and n an integer corresponding to the number of orien-
tations in the symmetry. An existence result for a different model which also includes
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(1.6) is provided by Burman and Rappaz [3]. They consider an anisotropic phase field
model for the isothermal solidification of a binary alloy due to Warren-Boettinger which
in the special case of only one concentration can be identified as an anisotropic version
of the well-known Allen-Cahn equation

∂u

∂t
=F ′(u)−ε2 div(A(∇u)∇u). (1.8)

Burman and Rappaz [3] show that the behavior of the anisotropic second-order operator
is strongly depending on the size of G. In particular, for small values of G the anisotropic
free energy functional

E(u) :=

∫
Ω

F (u)+ε2
γ(θ∇u)2

2
|∇u|2 dx (1.9)

is convex with respect to ∇u which implies monotonicity and hemicontinuity of the
Eulerian operator. Exploiting the literature, see for instance [16], the existence proof
is then essentially based on the theory for monotone operators. Note that the physical
interpretation of small values of G is that no corners or sharp edges develop on the
surface.

In this paper we consider the anisotropic Cahn-Hilliard-type Equation (1.5) on a
rectangular open subset Ω⊂R2 with boundary conditions

nΩ ·∇u= 0, (1.10a)

m(u)nΩ ·∇µ= 0, (1.10b)

on ∂Ω, where nΩ is the unit outward pointing normal vector onto Ω. Note that A(n) is
the anisotropy matrix defined by (1.6). We apply the homogeneous free energy

F (u) =
1

2
(1−u2)2 (1.11)

and biquadratic diffusional mobility (1.4). As shown in a previous paper [6], this com-
bination recovers motion by pure surface diffusion in the sharp interface limit, i.e. when
ε→∞ in Equation (1.5). We assume that γ is a smooth 2π-periodic function and ex-
ploit the fact that in two space dimensions θ can be written in terms of the arctangent
function

θ= arctan
uy
ux
. (1.12)

Moreover we will require the interface energy to be only weakly anisotropic, i.e.

γ(θ)+γ′′(θ)>0, (1.13)

for all θ∈ [−π,π], to avoid ill-posedness of the resulting evolution equations. To be
more precise, if γ2|∇u|2 is not convex then the term ∇u may be backwards diffusive for
some initial data [7, 17] and in the two-dimensional case, which we consider here, this
corresponds to the case if and only if γ(θ)+γ′′(θ)≤0, which is referred to as strongly
anisotropic. Since Equation (1.5) is of fourth order, we additionally need some higher
order bounds on div(A(∇u)∇u). This requires the assumption that G is sufficiently
small such that at least (2.1) holds true. The second assumption is that the considered
function u satisfies ∫

Ω

u2
xy−uxxuyy = 0. (1.14)
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Note that phase field functions u which are constant on ∂Ω naturally fulfill (1.14)
according to partial integration. In particular the eigenfunctions of the Laplace operator
on a rectangular domain Ω with Neumann boundary conditions obviously satisfy (1.14),
which will be applied in the main proof.

The energy of the system is then given by (1.9) and in order to derive appropriate
energy estimates similar as in the proof by Elliott and Garcke [8] we introduce the
function

Φ : (−1,1)→R+
0 ,

where R+
0 denotes the set of non-negative real numbers, and Φ is defined by

Φ′′(u) =
1√
m(u)

, Φ′(0) = 0, and Φ(0) = 0.

The following theorem states the existence of a weak solution to the anisotropic
Cahn-Hilliard equation with doubly degenerated mobility on an arbitrary interval [0,T ],
for some T ∈R+.

Theorem 1.1. Suppose that (1.14) holds true and that G is sufficiently small, ac-
cording to Lemma 2.3. Let u0∈H1(Ω) with |u0|≤1 a.e. and∫

Ω

(F (u0)+Φ(u0))≤C, C ∈R+.

Then there exists a pair of functions (u,µ) such that

(1) u∈L∞(0,T ;H1(Ω))∩C([0,T ];L2(Ω)),

(2) ut∈L2(0,T ;(H1(Ω))′),

(3) u(0) =u0,

(4) m(u)∇µ∈
[
L2(ΩT )

]2
which satisfies (1.5) in the following weak sense:∫ T

0

〈ξ(t),ut(t)〉H1,(H1)′ =−
∫

ΩT

m(u)∇µ ·∇ξ (1.15)

for all ξ∈L2(0,T ;H1(Ω)) and∫
Ω

µφ=

∫
Ω

F ′(u)φ+

∫
Ω

ε2A(∇u)∇u ·∇φ (1.16)

for all φ∈H1(Ω) which fulfill nΩ∇φ= 0 on ∂Ω×(0,T ) and almost all t∈ [0,T ].

Motivated by [3], we exploit the properties of the anisotropy operator (1.6), but
since our equation is of fourth order, we additionally need some higher order bounds on
div(A(∇u)∇u). All necessary properties are collected in Section 2.1. In Section 2.2 we
then present the proof of Theorem 1.1. The proof of the existence theorem is divided
in two main steps. The first step is to consider the regularized problem, i.e. with a
mobility which is bounded away from zero by a small parameter δ, and apply a Galerkin-
approximation for this auxiliary problem. We prove the existence of solutions to the
approximate problem and derive appropriate a priori bounds, which are in particular
independent of the regularization parameter δ. All the results, which correspond to the
approximate problem are given in Subsection 2.2.1, for a better overview. The second
step of the proof, given in Subsection 2.2.2, is to pass to the limit in the approximate
problem and deduce existence of solutions to the degenerate problem.
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2. Existence of solutions to the anisotropic Cahn-Hilliard equation with
degenerate mobility (1.5)

The main difficulty in the present existence proof, compared to the result in ref-
erence [8] or [10], resides in the strongly non-linear fourth-order operator. Motivated
by [3], we will exploit the fact that the impact of the anisotropy depends on the size of
G and that for small values of G the energy functional (1.9) stays convex with respect to
∇u. This implies monotonicity and hemicontinuity of u 7→ 〈(A(∇u)∇u),∇·〉, which will
be very useful in situations where we have to identify limits of approximate problems.
Furthermore, since the differential Equation (1.5) is of fourth order we will additionally
need some higher order bounds on div(A(∇u)∇u). These are in particular necessary
in order to recover the energy estimates (or a priori estimates) as posed in [8] for the
anisotropic case.

In the following section we collect all the crucial properties of the anisotropic oper-
ator. Note that the former may also be found in [3].

2.1. Properties of the anisotropic operator.
Notation 2.1. Throughout this and the following sections of this chapter we assume
that Ω is an open, bounded domain in R2, with a Lipschitz boundary ∂Ω. The L2(Ω)-
scalar product will be denoted by (·, ·) and ΩT = Ω×(0,T ) will denote the space-time
domain for some T >0. For brevity we write H1 instead of H1(Ω) in the indices of
corresponding norms or scalar products. We omit the differential “dx” at the end of an
integral in order to save space. Furthermore, unless otherwise stated, C>0 denotes a
constant.

The results of this section refer to the particular representation (1.7) of the
anisotropic surface energy and the corresponding matrix representation (1.6) of the
anisotropy in the partial differential equation. We recall that G represents the strength
of the anisotropy and n corresponds to symmetry type.

First of all we repeat the key lemma from Section 4 in the paper by Burman and
Rappaz [3].

Lemma 2.1. If

G<
1

n2−1
, (2.1)

then

(1) the functional

Ê(v) :=

∫
Ω

γ(θv)2

2
|v|2

is strictly convex in v, ∀v∈ [L2(Ω)]2.

(2) the Gateaux derivative of the potential

Ẽ(u) =

∫
Ω

γ(θ∇u)2

2
|∇u|2

exists for each u∈H1(Ω) and is given by

Ẽ′(u)v=

∫
Ω

A(∇u)∇u ·∇v
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(3) the anisotropic operator satisfies the following upper and lower bounds

(1−G)2|u|2H1 ≤
∫

Ω

A(∇u)|∇u|2 dx≤ (1+G)2|u|2H1 .

Proof. See Section 4 in [3].

Properties (1) and (2) turn out to be useful in order to prove the following lemma.

Lemma 2.2. The mapping

u∈H1(Ω) 7→ 〈A(∇u)∇u,∇· 〉(H1)′,H1 ∈ (H1(Ω))′

is monotone and hemicontinuous.

Proof. From Lemma 4.8 in [16], we know that u∈H1(Ω) 7→ 〈A(∇u)∇u,∇· 〉∈
(H1(Ω))′ is monotone and radially continuous in the sense of Definition 2.3 in [15].
Using Lemma 2.16 in [15] then gives hemicontinuity as well.

The following lemma states the particular bounds on div(A(∇u)∇u).

Lemma 2.3. Let u∈C2(Ω) and assume that (1.14) is satisfied. Then there exists
0<G0≤1/(n2−1) such that for all G≤G0 there exists a constant C(n,G)>0, only
depending on n and G, such that

0≤
∫

Ω

(div(A(∇u)∇u))
2≤C(n,G)

∫
Ω

div(A(∇u)∇u)∆u.

Proof. Exploiting the particular representation of θ, i.e. (1.12), we have

θx=
uyxux−uyuxx
|∇u|2

, θy =
uyyux−uyuxy
|∇u|2

.

On the one hand, we obtain

∇θ ·
(
−uy
ux

)
=

1

|∇u|2
(
−2uyxuxuy+u2

yuxx+uyyu
2
x

)
,

where “·” denotes the standard Euclidean scalar product of two vectors and we exploited
the fact that uxy =uyx.

On the other hand we have

|∇θ|2|∇u|2 =
1

|∇u|2
(

(uyxux−uyuxx)
2

+(uyyux−uyuxy)
2
)

=
1

|∇u|2
(
−2uxyuxuy∆u+u2

xy|∇u|2 +u2
yu

2
xx+u2

xu
2
yy

)
=

1

|∇u|2
(
−2uyxuxuy+u2

yuxx+uyyu
2
x

)
∆u+u2

xy−uxxuyy,

which together reveals the relation

|∇θ|2|∇u|2 =

(
∇θ ·

(
−uy
ux

))
∆u+u2

xy−uxxuyy.

Moreover, denoting the angle between ∇θ and ∇u by α, we have

(∇θ ·∇u) = cos(α) |∇θ||∇u|,(
∇θ ·

(
−uy
ux

))
= cos(

π

2
−α) |∇θ||∇u|= sin(α) |∇θ||∇u|,

(2.2)
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which gives

(|∇θ||∇u|)2
= sin(α)∆u |∇θ||∇u|+u2

xy−uxxuyy

and consequently

(|∇θ||∇u|)1,2 =
1

2
sin(α)∆u±

√
1

4
sin2(α)(∆u)2 +u2

xy−uxxuyy.

Observing that |∇θ||∇u| is positive and real and x∈R2→|x| is a surjective mapping
we may conclude that only

|∇θ||∇u|= 1

2
sin(α)∆u+

√
1

4
sin2(α)(∆u)2 +u2

xy−uxxuyy (2.3)

is a reasonable solution.

Consider now div(A(∇u)∇u) and apply the representation (2.2)

div(A(∇u)∇u) = div(γ2∇u)+div

(
γγ′
(
−uy
ux

))
=γ2∆u+2γγ′ (∇θ ·∇u)+((γ′)2 +γγ′′)

(
∇θ ·

(
−uy
ux

))

=γ2∆u+

2γγ′cos(α)+((γ′)2 +γγ′′)sin(α)︸ ︷︷ ︸
=:c1(α,θ,G)

|∇θ||∇u|
where c1(α,θ,G) is uniformly bounded and satisfies

γ2 +c1(α,θ,G)sinα=γ2 +2γγ′cos(α)sin(α)+((γ′)2 +γγ′′)sin2(α)

= (γ cos(α)+γ′ sin(α))2︸ ︷︷ ︸
≥0

+(γ(γ+γ′′︸ ︷︷ ︸
>0

))sin2(α)︸ ︷︷ ︸
≥0

. (2.4)

Consequently we have

γ2 +
c1
2

(α,θ,G)sinα≥ γ
2

2
>0, (2.5)

which we keep in mind for the following estimates.

Exploiting (2.3) and applying short forms, i.e. c1 for c1(α,θ,G) and c2 for c2(α,θ,G),
we then have

div(A(∇u)∇u) =
(
γ2 +

c1
2

sin(α)
)

∆u+c1

√
1

4
sin2(α)(∆u)2 +u2

xy−uxxuyy. (2.6)

Multiplying (2.6) with ∆u∈H1(Ω) and integrating over Ω we have∫
Ω

div(A(∇u)∇u)∆u=

∫
Ω

(
γ2 +

c1
2

sin(α)
)

(∆u)2

+

∫
Ω

c1∆u

√
1

4
sin2(α)(∆u)2 +u2

xy−uxxuyy



2042 ANISOTROPIC CAHN-HILLIARD EQUATION WITH DEGENERATE MOBILITY

≥
∫

Ω

(
γ2 +

c1
2

sin(α)
)

(∆u)2

−
∫

Ω

|c1∆u|
√

1

4
sin2(α)(∆u)2 +u2

xy−uxxuyy. (2.7)

Concerning the last integral, we may deduce by applying Young’s inequality with
εY >0 ∫

Ω

|c1∆u|
√

1

4
sin2(α)(∆u)2 +u2

xy−uxxuyy

≤εY
∫

Ω

|c1∆u|2 +
1

4εY

∫
Ω

1

4
sin2(α)(∆u)2 +u2

xy−uxxuyy

≤
(
εY C1 +

1

8εY

)∫
Ω

|∆u|2, (2.8)

where C1 := maxα,θ,G c
2
1 and we exploited the fact that u2

xy−uxxuyy has zero mean value.

Introducing the function

Y (εY ) := εY C1 +
1

8εY
,

and calculating the derivative with respect to εY

Y ′(εY ) :=C1−
1

8ε2Y
,

reveals that Y has a minimum at 1/
√

8C1 and

Y

(
1√
8C1

)
=

1

2

√
C1 =: εG>0,

so that we can choose at least εY = εG in (2.8). Then, considering C1 and exploiting the
particular representation of γ, i.e. (1.7), we have√

C1 = max
α,θ,G

(
2γγ′cos(α)+((γ′)2 +γγ′′)sin(α)

)
≤|2γγ′|+(γ′)2 + |γγ′′|
≤Gn((2+n)+Gn),

which basically reveals that C1 tends to zero for sufficiently small G. On the other
hand, (2.5) implies boundedness from below of γ2 + c1

2 sin(α) by a positive constant.
Now, going back to (2.7), we are in the position to deduce that for G sufficiently small
we may choose εG such that

0<εG≤
(
γ2 +

c1
2

sin(α)
)

for all α,θ and consequently∫
Ω

div(A(∇u)∇u)∆u≥
∫

Ω

(
γ2 +

c1
2

sin(α)
)

(∆u)2−εG
∫

Ω

(∆u)2≥0. (2.9)



MARION DZIWNIK 2043

We now consider the right-hand side of the inequality in Lemma 2.3. Multiplying
(2.6) with div(A(∇u)∇u) and integrating over Ω we obtain

0≤
∫

Ω

(div(A(∇u)∇u))
2

=

∫
Ω

(
γ2 +

c1
2

sin(α)
)

div(A(∇u)∇u)∆u

+

∫
Ω

div(A(∇u)∇u)c1

√
1

4
sin2(α)(∆u)2 +u2

xy−uxxuyy

≤
∫

Ω

(
γ2 +

c1
2

sin(α)
)

div(A(∇u)∇u)∆u

+εY

∫
Ω

|div(A(∇u)∇u)c1|2 +
1

4εY

∫
Ω

1

4
sin2(α)(∆u)2, (2.10)

where we again exploited the fact that u2
xy−uxxuyy has zero mean value. Choosing

εY = 1/(C1 +1) and observing that from (2.9) we know that there exists a constant
C>0 such that ∫

Ω

|∆u|2≤C
∫

Ω

div(A(∇u)∇u)∆u,

we obtain from (2.10)

0≤
∫

Ω

(div(A(∇u)∇u))
2

≤
∫

Ω

Cdiv(A(∇u)∇u)∆u+
C1

C1 +1

∫
Ω

|div(A(∇u)∇u)|2.

Note that C>0 is now a different constant which we still denote the same to simplify
matters. Finally we conclude that

1

C1 +1

∫
Ω

(div(A(∇u)∇u))
2≤
∫

Ω

Cdiv(A(∇u)∇u)∆u,

which completes the proof.

Remark 2.1. In the Appendix it is shown that G can be at least as big as 1/5 G0 in
order to satisfy Lemma 2.3.

We are now in the position to prove the existence result, i.e. Theorem 1.1.

2.2. Proof of Theorem 1.1. We now present the proof of Theorem 1.1, which
consists of two main steps. The first step is to consider (1.5) with a mobility which is
bounded away from zero by a small parameter δ, and apply a Galerkin-approximation
for this regularized problem. The existence of solutions to the approximate problem is
stated in Lemma 2.4 and appropriate a priori bounds are given in Lemma 2.5. These
are in particular independent of the regularization parameter δ and the corresponding
proof basically exploits the dissipation of two energy functionals. For a better overview,
we collect the results corresponding to the approximate problem, or the first step, re-
spectively, in the following subsection.

The second step of the proof, given in Subsection 2.2.2, is to pass to the limit in
the approximate problem and deduce existence of solutions to the degenerate problem.
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2.2.1. Step 1: Galerkin approximation of the regularized problem. Con-
sider the anisotropic Cahn-Hilliard Equation (1.5) with the regularized mobility mδ(u)
defined by

mδ(u) :=


m(−1+δ) for u≤−1+δ,

m(u) for u<1−δ,
m(1−δ) for u≥1−δ,

where δ�1 and define Φδ(u) such that

Φ′′δ (u) =
1√
mδ(u)

, Φ′δ(0) = 0, and Φδ(0) = 0. (2.11)

We point out that Φδ(u) = Φ(u) when |u|≤1−δ. In a similar way we define Ψδ(u) such
that

Ψ′′δ (u) =
1

mδ(u)
, Ψ′δ(0) = 0, and Ψδ(0) = 0, (2.12)

which will prove useful in order to derive appropriate bounds for the anisotropy operator.

We observe that mδ ∈C(R,R+) and there exist m1,M1>0 such that

m1≤|mδ(u)|≤M1

for all u∈R.

We now apply a Galerkin approximation to the regularized problem. Let {φi}i∈N be
the eigenfunctions of the Laplace operator with Neumann boundary conditions which is
an orthogonal basis of H1(Ω). We suppose that the φi are normalized in the L2(Ω) scalar
product, i.e. (φi,φj)L2(Ω) = δij and that without loss of generality the first eigenfunction
φ1 corresponds to the eigenvalue λ1 = 0, i.e. ∆φ1 = 0.

Consider the following Galerkin ansatz for u and µ

uN (t,x) =

N∑
i=1

cNi (t)φi(x), µN (t,x) =

N∑
i=1

dNi (t)φi(x) (2.13)∫
Ω

∂tu
Nφj =−

∫
Ω

mδ(u
N )∇µN ·∇φj for j= 1,..,N, (2.14)∫

Ω

µNφj =

∫
Ω

ε2A(∇uN )∇uN ·∇φj+

∫
Ω

F ′(uN )φj for j= 1,..,N, (2.15)

uN (0) =

N∑
i=1

(u0,φi)L2(Ω)φi, (2.16)

which leads to an initial value problem for a system of ordinary differential equations
for (c1,..,cN )

∂tc
N
j =−

N∑
k=1

dNk

∫
Ω

mδ

(
N∑
i=1

cNi (t)φi(x)

)
∇φk ·∇φj (2.17)

dNj =

∫
Ω

ε2A

(
N∑
i=1

cNi (t)∇φi(x)

)
N∑
k=1

cNk (t)∇φk(x) ·∇φj+

∫
Ω

F ′

(
N∑
i=1

cNi (t)φi(x)

)
φj

(2.18)
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cNj (0) = (u0,φj)L2(Ω) (2.19)

which has to hold for j= 1,...,N .

Lemma 2.4 (Existence of approximate solutions). Let u0∈H1(Ω). Then the initial
value problem (2.17)-(2.19) admits a global solution (uNδ ,µ

N
δ ) for every j= 1,...,N , such

that

(1) uNδ ∈L∞(0,T ;H1(Ω))

(2) ∂tu
N
δ ∈L2(0,T ;(H1(Ω))′),

(3) µNδ ∈L2(0,T ;H1(Ω)).

Furthermore the solution uNδ satisfies

∇
(
div
(
A(∇uNδ )∇uNδ

))
∈
[
L2(ΩT )

]2
. (2.20)

Proof. Recalling that the mapping

u∈H1(Ω) 7→ 〈A(∇u)∇u,∇· 〉∈ (H1(Ω))′

is hemicontinuous implies that

t∈R 7→ 〈A(∇(u+ tv))∇(u+ tv),∇w〉

is continuous for all u,v,w∈H1(Ω). We then conclude that

ck 7→
〈
A
((
uN6=k+ck∇φk

))(
uN6=kc

N
i (t)∇φi(x)+ck∇φk

)
,∇φj

〉
,

where

uN6=k =

N∑
i=1,i6=k

cNi (t)∇φi(x),

is continuous for every ck, which reveals continuity of the right-hand side of (2.17) and
therefore existence of a local weak solution to (2.17)-(2.19) due to the Peano existence
theorem. In order to provide that this solution exists globally in time we need to show
that the energy stays bounded uniformly in t. For this purpose, consider the time
derivative of the energy E

d

dt
E(t) =

d

dt

∫
Ω

(
F (uN )+ε2

γ(θ∇uN )2

2
|∇uN |2

)
=

∫
Ω

F ′(uN )∂tu
N +ε2

(
γγ′θt |∇u|2 +γ2∇uN∇uNt

)
=

∫
Ω

F ′(uN )uNt +ε2
(
γγ′
(
−∂yuN

∂xuN

)
+γ2∇uN

)
·∇uNt

=

∫
Ω

µN∂tu
N =−

∫
Ω

mδ(u
N )|∇µN |2,

where we exploited the particular representation of θ, i.e. (1.12). Integrating over [0,t]
then reveals ∫

Ω

ε2
γ(θ∇uN (t))

2

2
|∇uN (t)|2 +

∫
Ω

F (uN (t))+

∫
Ωt

mδ(u
N )|∇µN |2
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=

∫
Ω

ε2
γ(θ∇uN (0))

2

2
|∇uN (0)|2 +

∫
Ω

F (uN (0))≤C, (2.21)

where C is a constant which is independent of N,δ and t. From (2.14) with j= 1 we
deduce that ∂t

∫
Ω
uN = 0 and since γ is bounded uniformly we obtain from Poincaré’s

inequality

ess sup0<t<T ‖uN (t)‖H1(Ω)≤C, (2.22)

which implies that cN1 ,...,c
N
N are bounded uniformly and therefore a global solution to

(2.17)-(2.19) exists, which we denote by

(uNδ ,µ
N
δ ),

and uNδ ∈L∞(0,T ;H1(Ω)).

Let now ΠN denote the projection of L2(Ω) onto span{φ1,...,φN}. Considering an
arbitrary function φ∈L2(0,T ;H1(Ω)) then reveals∣∣∣∣∫

ΩT

∂tu
N
δ φ

∣∣∣∣= ∣∣∣∣∫
ΩT

∂tu
N
δ ΠNφ

∣∣∣∣
=

∣∣∣∣∫
ΩT

mδ(u
N
δ )∇µNδ ∇ΠNφ

∣∣∣∣
=

(∫
ΩT

∣∣mδ(u
N
δ )∇µNδ

∣∣2) 1
2
(∫

ΩT

|∇ΠNφ|2
) 1

2

≤C0

(∫
ΩT

mδ(u
N
δ )
∣∣∇µNδ ∣∣2) 1

2

‖∇φ‖L2(ΩT )

≤C1‖∇φ‖L2(ΩT )

where C0 and C1 are independent of N,δ and t. Note that we exploited (2.21) for the
last inequality. Consequently we have ∂tu

N
δ ∈L2(0,T ;(H1(Ω))′).

We now show the boundedness of µNδ . Since

(A(θξ)ξ)
T ·(A(θξ)ξ)

=

(
γ2(θξ)ξ1−γ′(θξ)γ(θξ)ξ2
γ′(θξ)γ(θξ)ξ1 +γ2(θξ)ξ2

)t
·
(
γ2(θξ)ξ1−γ′(θξ)γ(θξ)ξ2
γ′(θξ)γ(θξ)ξ1 +γ2(θξ)ξ2

)
=γ2(θξ)(γ

2(θξ)+(γ′(θξ))
2)(ξ2

1 +ξ2
2)

≤C(n,G)|ξ|2 (2.23)

we obtain as a direct consequence∫
Ω

|A(∇uNδ )∇uNδ |2≤C(n,G)

∫
Ω

|∇uNδ |2. (2.24)

Due to (2.22), the right-hand side in the last inequality is uniformly bounded and hence
A(∇uNδ )∇uNδ is uniformly bounded in L2(Ω).

Then, exploiting (2.24) together with the uniform boundedness of F ′(uNδ (t)) for t∈
[0,T ), we first obtain that

∫
Ω
µNδ (t)≤C(δ) and consequently, including (2.21), Poincaré’s

inequality leads to

‖µNδ ‖L2(0,T ;H1(Ω))≤C(δ).
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Note that in order to apply (2.21) in Poincaré’s inequality it is necessary to assume that
mδ>0, so that C in this case is independent of N but not of δ.

In order to show (2.20) we first show div
(
A(∇uNδ )∇uNδ

)
∈L2(ΩT ). From (2.15) we

have ∫
Ω

(F ′(uNδ )−µNδ )φj+ε2A(∇uNδ )∇uNδ ·∇φj = 0, (2.25)

for j= 1,..N . Exploiting the projection ΠN we then have∣∣∣∣∫
Ω

ε2A(∇uNδ )∇uNδ ·∇ΠNψ

∣∣∣∣≤∫
Ω

|(µNδ −F ′(uNδ ))ΠNψ|

≤C ‖ΠNψ‖L2(Ω)

≤C ‖ψ‖L2(Ω),

which implies that

ψ 7→ ε2A(∇uNδ )∇uNδ ·∇ΠNψ, ψ∈C∞c (Ω) (2.26)

is a linear and continuous functional on C∞c (Ω) with respect to the L2-norm. Since
C∞c (Ω) is dense in L2(Ω), this functional can be extended uniquely to a linear and
continuous functional on L2(Ω). From the Riesz representation theorem we then obtain
existence of a unique function v∈L2(Ω), such that v corresponds to the weak divergence
of A(∇uNδ )∇uNδ and consequently

div
(
A(∇uNδ )∇uNδ

)
∈L2(Ω). (2.27)

We may now apply the identity µNδ =F ′(uNδ )−ε2 div
(
A(∇uNδ )∇uNδ

)
and since

∇F ′(uNδ ) =F ′′(uNδ )∇uNδ ∈
[
L2(ΩT )

]2
and ∇µNδ ∈

[
L2(ΩT )

]2
we obtain that also

∇
(
div
(
A(∇uNδ )∇uNδ

))
∈
[
L2(ΩT )

]2
. This completes the proof of Lemma 2.4.

Therefore we can apply the weak form∫ T

0

〈
ΠNζ,∂tu

N
δ

〉
H1,(H1)′

=−
∫

ΩT

mδ(u
N
δ )∇

(
F ′(uNδ )−ε2 div

(
A(∇uNδ )∇uNδ

))
·∇ΠNζ,

(2.28)

for all ζ ∈L2(0,T ;H1(Ω)).

In the next step, we prove the essential energy estimates which provide in particular
uniform bounds independent of δ.

Lemma 2.5 (Energy estimates). Suppose that (1.14) holds true and that G is suffi-
ciently small, according to Lemma 2.3. Let u0∈H1(Ω) with |u0|≤1 a.e. and∫

Ω

(F (u0)+Φ(u0))≤C, C ∈R+.

Then there exists a δ0 such that for all 0<δ≤ δ0 the following estimates hold for the
pair of solutions (uNδ ,µ

N
δ ) with a constant C independent of N and δ:

(a) ess sup0<t<T

∫
Ω

Φδ(u
N
δ (t))≤C

(b)

∫
ΩT

|div
(
A(∇uNδ )∇uNδ

)
|2≤C
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(c) ess sup0<t<T

∫
Ω

(|uNδ |−1)2
+≤Cδ2

(d)

∫
ΩT

|JNδ |2≤C, where JNδ :=mδ(u
N
δ )∇µNδ .

Proof. To prove (a), we consider the function Φδ(u
N
δ ) defined by (2.11). Since

Φ′′δ (uNδ ) is bounded uniformly in t, we have Φ′δ(u
N
δ )∈L2(0,T ;H1(Ω)) and therefore

Φ′δ(u
N
δ ) is an admissible test function in (2.28). On the one hand, we have that∫ t

0

〈
Φ′δ(u

N
δ ),∂tu

N
δ

〉
H1,(H1)′

=

∫
Ω

Φδ(u
N
δ (t))−

∫
Ω

Φδ(u
N
δ (0))

is true for almost all t∈ [0,T ]. On the other hand, we have∫ t

0

〈
Φ′δ(u

N
δ ),∂tu

N
δ

〉
H1,(H1)′

=

∫ t

0

〈
ΠNΦ′δ(u

N
δ ),∂tu

N
δ

〉
H1,(H1)′

=

∫
Ωt

−mδ(u
N
δ )∇µNδ ·∇ΠNΦ′δ(u

N
δ )

≤
(∫

Ωt

mδ(u
N
δ (t))|∇µNδ |2

)1/2(∫
Ωt

mδ(u
N
δ (t))|∇ΠNΦ′δ(u

N
δ )|2

)1/2

≤C0

(∫
Ωt

mδ(u
N
δ (t))|∇µNδ |2

)1/2(∫
Ωt

mδ(u
N
δ (t))|∇Φ′δ(u

N
δ )|2

)1/2

=C0

(∫
Ωt

mδ(u
N
δ (t))|∇µNδ |2

)1/2(∫
Ωt

mδ(u
N
δ (t))|Φ′′δ (uNδ )∇uNδ |2

)1/2

=C0

(∫
Ωt

mδ(u
N
δ (t))|∇µNδ |2

)1/2(∫
Ωt

|∇uNδ |2
)1/2

, (2.29)

where the right-hand side is bounded. It follows that there exists a constant C which
is independent of δ such that∫

Ω

Φδ(u
N
δ (t))≤C+

∫
Ω

Φδ(u
N
δ (0)),

which proves (a).

Consider now Ψδ defined by (2.12). Similar as in (2.29) we obtain∫
Ω

Ψδ(u
N
δ (t))−

∫
Ω

Ψδ(u
N
δ (0)) =

∫
Ωt

−mδ(u
N
δ )∇µNδ Ψ′′δ (uNδ ) ·∇uNδ

=

∫
Ωt

−ε2 div(A(∇uNδ )∇uNδ )∆uNδ −F ′′(uNδ )|∇uNδ |2,

which again implies that there exists a constant C which is independent of δ such that∫
Ω

Ψδ(u
N
δ (t))+

∫
Ωt

ε2 div(A(∇uNδ )∇uNδ )∆uNδ +F ′′(uNδ )|∇uNδ |2

≤C+

∫
Ω

Ψδ(u
N
δ (0)).

Realizing that Ψδ and F ′′ are both convex functions which are bounded from below and
taking Lemma 2.3 into account, we conclude that there exists another constant, which
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is independent of δ such that∫
ΩT

|div(A(∇uNδ )∇uNδ )|2≤C+

∫
Ω

Ψδ(u
N
δ (0)),

which proves (b).

We will now use the bound for
∫

Ω
Φδ(u

N
δ ) to derive a bound for

∫
Ω

(|uNδ |−1)2
+. If

z>1 and δ<1, then we have

Φδ(z) = Φ(1−δ)︸ ︷︷ ︸
≥0

+Φ′(1−δ)︸ ︷︷ ︸
≥0

(z−(1−δ))︸ ︷︷ ︸
≥0

+
1

2
Φ′′(1−δ)(z−(1−δ))2

≥ 1

2
Φ′′(1−δ)(z−1)2 =

1

2

1√
m(1−δ)

(z−1)2

=
1

2

1

1−(1−δ)2
(z−1)2≥C−1δ−2(z−1)2.

It follows that (z−1)2≤Cδ2Φδ(z). Similarly we obtain (−z−1)2≤Cδ2Φδ(z) for z<−1.
This implies ∫

Ω

(|uNδ |−1)2
+≤Cδ2

∫
Ω

Φδ(u
N
δ )≤Cδ2,

which proves (c).

Assertion (d) follows easily from the energy estimate (2.21), and this finishes the
proof of Lemma 2.5.

2.2.2. Step 2: Convergence of the approximate problem. We are now in
the position to prove Theorem 1.1 by passing to the limit in the approximate problem.

Proof. (Proof of Theorem 1.1.) Due to Lemma 2.4 the initial value problem
(2.17)-(2.19) admits a global solution (uNδ ,µ

N
δ ), satisfying (2.20) and the uniform bounds

of Lemma 2.5.

Exploiting the compact embeddings{
u∈L2

(
0,T ;H1(Ω)

)
|∂tu∈L2

(
0,T ;

(
H1(Ω)

)′)}
↪→L2

(
0,T ;L2(Ω)

)
, (2.30)

(see [12], p. 57) and{
u∈L∞

(
0,T ;H1(Ω)

)
|∂tu∈L2

(
0,T ;

(
H1(Ω)

)′)}
↪→C

(
[0,T ];L2(Ω)

)
, (2.31)

(see [18], p. 422) we are in the position to deduce that there exist subsequences (which
we still denote by uNδ ) such that

uNδ
∗
⇀u weak−∗ in L∞(0,T ;H1(Ω)),

uNδ →u strongly in C([0,T ];L2(Ω)),

∂tu
N
δ ⇀∂tu weakly in L2(0,T ;(H1(Ω))′), and

uNδ →u strongly in L2(0,T ;Lp(Ω)) and a.e. in ΩT ,

where p<∞.
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According to the bounds of Lemma 2.5 together with standard compactness prop-
erties, we obtain that there exists a function J such that

JNδ ⇀J in
[
L2(ΩT )

]2
. (2.32)

Moreover by the boundedness of div(A(∇uNδ )∇uNδ ) in L2(ΩT ) we have that

A(∇uNδ )∇uNδ ⇀χ in
[
H1(Ω)

]2
,

for some function χ∈
[
H1(ΩT )

]2
. At this point we apply Minty’s Trick in order to

identify χ as A(∇uNδ )∇uNδ . Adding and subtracting elements we obtain, due to the
monotonicity property, that

〈χ−A(∇v)∇v,∇u−∇v〉
=
〈
χ−A(∇uNδ )∇uNδ +A(∇uNδ )∇uNδ −A(∇v)∇v,∇u−∇v

〉
=
〈
χ−A(∇uNδ )∇uNδ ,∇u−∇v

〉
+
〈
A(∇uNδ )∇uNδ −A(∇v)∇v,∇u−∇v

〉
=
〈
χ−A(∇uNδ )∇uNδ ,∇u−∇v

〉
+
〈
A(∇uNδ )∇uNδ −A(∇v)∇v,∇u−∇uNδ +∇uNδ −∇v

〉
=
〈
χ−A(∇uNδ )∇uNδ ,∇u−∇v

〉
+
〈
A(∇uNδ )∇uNδ −A(∇v)∇v,∇u−∇uNδ

〉
+
〈
A(∇uNδ )∇uNδ −A(∇v)∇v,∇uNδ −∇v

〉
≥
〈
χ−A(∇uNδ )∇uNδ ,∇u−∇v

〉
+
〈
A(∇uNδ )∇uNδ −A(∇v)∇v,∇u−∇uNδ

〉
,

for all v∈H1(Ω), where the last inequality holds because of the monotonicity property.
Taking the limit we observe that the right-hand side goes to zero and hence

(χ−A(∇v)∇v,∇u−∇v)≥0. (2.33)

We are now in the position to apply Minty’s Trick (Lemma 2.13 in [15]) and deduce
that

χ=A(∇u)∇u. (2.34)

Since H1(Ω) is compactly embedded in L2(Ω) the weak convergence A(∇uNδ )∇uNδ ⇀
A(∇u)∇u in

[
H1(Ω)

]2
implies

A(∇uNδ )∇uNδ →A(∇u)∇u in
[
L2(Ω)

]2
. (2.35)

Passing to the limit in ∫
Ω

(|uNδ |−1)2
+≤Cδ2

yields |u|≤1 a.e. in ΩT .
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It remains to show that u fulfills the limit equation. The weak convergence of ∂tu
N
δ

and JNδ gives in the limit ∫ T

0

〈ξ,∂tu〉H1,(H1)′ =

∫
ΩT

J ·∇ξ,

for all ξ∈L2(0,T ;H1(Ω)). Now we have to identify J. Therefore, we want to pass to
the limit in the equation∫

ΩT

JNδ ·ΠNη=

∫
ΩT

mδ(u
N
δ )∇(−ε2 div(A(∇uNδ )∇uNδ )+F ′(uNδ ))ΠNη, (2.36)

where η∈L2(0,T ;H1(Ω,Rn))∩L∞(ΩT ,Rn) with η ·nΩ = 0 on ∂Ω×(0,T ). Note that
the projection operator is applied component-wise in this case. Realizing that ΠNη→η
in L2(0,T ;H1(Ω,Rn)) and taking (2.32) into account implies that the left-hand side
converges to

∫
ΩT

J ·η. Since ∇div(A(∇uNδ )∇uNδ ) may not have a limit in L2(ΩT ), we

integrate the first term on the right-hand side of (2.36) by parts to get∫
ΩT

mδ(u
N
δ )∇(−ε2 div(A(∇uNδ )∇uNδ ))ΠNη

=

∫
ΩT

ε2 div(A(∇uNδ )∇uNδ )mδ(u
N
δ )∇ΠNη

+

∫
ΩT

ε2 div(A(∇uNδ )∇uNδ )m′δ(u
N
δ )∇uNδ ·ΠNη

=:I+II. (2.37)

Using the fact that for all z∈R

|mδ(z)−m(z)|≤ sup
1−δ≤|y|≤1

|m(y)|→0 as δ→0,

it follows that mδ→m uniformly.

Hence we have

mδ(u
N
δ )→m(u) a.e. in ΩT .

Exploiting that div(A(∇uNδ )∇uNδ ) is uniformly bounded in L2(ΩT ), we may deduce
that there exists ρ∈L2(ΩT ) such that

div(A(∇uNδ )∇uNδ )⇀ρ in L2(ΩT ). (2.38)

From the definition of the weak divergence and the already established convergence
(2.35), we then have that for any test function Ψ∈C∞c (ΩT )∫

ΩT

div(A(∇uNδ )∇uNδ )Ψ =−
∫

ΩT

A(∇uNδ )∇uNδ ·∇Ψ

→−
∫

ΩT

A(∇u)∇u ·∇Ψ

=

∫
ΩT

div(A(∇u)∇u)Ψ. (2.39)
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Since the weak divergence is unique we immediately obtain

div(A(∇u)∇u) =ρ. (2.40)

Recalling that mδ is uniformly bounded, we conclude∫
ΩT

ε2 div(A(∇uNδ )∇uNδ )mδ(u
N
δ )∇ΠNη→

∫
ΩT

ε2 div(A(∇u)∇u)m(u)∇η,

as δ→0, which equals the convergence of I in (2.37) . Now we pass to the limit in II.
As for m, we have m′δ→m′ uniformly, which gives

m′δ(u
N
δ )→m′(u) a.e. in ΩT .

By using

A(∇uNδ )∇uNδ →A(∇u)∇u in
[
L2(ΩT )

]2
and a.e. in ΩT ,

and the fact that m′δ is uniformly bounded a generalized version of the Lebesgue con-
vergence theorem yields

m′δ(u
N
δ )∇uNδ →m′(u)∇u in L2(Ω).

Hence∫
ΩT

ε2 div(A(∇uNδ )∇uNδ )m′δ(u
N
δ )∇uNδ ·ΠNη→

∫
ΩT

ε2 div(A(∇u)∇u)m′(u)∇u ·η,

as δ→0, where we used the fact that η∈L∞(ΩT ).

Finally the strong convergence of uNδ in C([0,T ];L2(Ω)) proves uNδ (0)→u0 in L2(Ω),
which shows that u solves the Cahn-Hilliard equation in the sense of Theorem 1.1.

3. Discussion and outlook
We have proved the existence of weak solutions to the anisotropic Cahn-Hilliard

Equation (1.5) with degenerate mobility under the assumption that the strength of
the anisotropy is sufficiently small (see Lemma 2.3). The main difficulties arise in
establishing the estimates of Lemma 2.5, in particular in view of the degenerate mobility
and the non-linear anisotropy function. The limitation of sufficiently weak anisotropy
enables to apply Lemma 2.3, given in the preliminary results of Section 2.1, at this
point, which turns out to be of essential importance for the present existence proof. In
addition to existence, we show that solutions |u| are bounded by one without having a
maximum principle.

There are still many open questions. The most important is whether the assump-
tions of Lemma 2.3 may be relaxed in order to obtain existence of solution in a more
general case. In particular, the existence of solutions on different domains would be
desirable.

Furthermore, it would be interesting to know if there exists a unique solution. We
note that already in the isotropic case, studied by Elliott and Garcke [8] or Grün [10], this
remains an open question. Since so far no uniqueness result for fourth order degenerate
parabolic equations has been established, a corresponding existence result for the present
problem is less obvious.

Besides studying the question of uniqueness we are also interested in the qualitative
behavior of solutions, for example as |u|→1. Just as in the isotropic case we expect that
for the present degenerate mobility the sets {u=−1} and {u= 1} develop an interior
which implies a free boundary problem for ∂{u=−1} and ∂{u=−1}, respectively. In
addition, it would be interesting to study the asymptotic behavior of solutions in the
case as t→∞.
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Appendix. Size of G. Recalling inequality (2.9) we know that G has to be chosen
sufficiently small such that

0<εG≤
(
γ2 +

c1
2

sin(α)
)
. (4.1)

Realizing that on the one hand we have

εG=
3

4

√
C1≤

3

4
Gn((2+n)+Gn)

and on the other hand

0<
γ2

2
≤γ2 +

c1
2

sin(α),

which implies that if G is sufficiently small such that

3

2
Gn((2+n)+Gn)≤ (1−G)2≤γ2,

then (4.1) clearly holds true as well.
Defining

H(G) :=
3

2
Gn((2+n)+Gn)−(1−G)2,

and calculating its zeros reveals that H(G) has a positive zero at G=Gz =Gz(n), where

Gz(n) =
−4−6n−3n2 +

√
3n(16+28n+12n2 +3n3)

2(−2+3n2)
.

This means, that if G≤Gz≤G0 = 1/(n2−1), then (4.1) is satisfied as well. Realizing
that Gz(n)/G0(n) is a monotonically increasing function in n, we obtain

Gz(n)/G0(n)≥Gz(2)/G0(2)≥ 1

5
,

which provides a greatest lower bound for Gz(n), i.e. we may at least choose

Gz(n) =
1

5
G0(n),

in order to satisfy condition (4.1).
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